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Figure ESI-1 Raman spectra for the KCl-MgCl2 (50:50 mol%) molten salt (black dashed line) 

and CrCl3 (5 mol%) in the KCl-MgCl2 (red dashed line) at 1073 K. Note that the addition of 

dilute Cr3+ ions slightly modifies the KCl-MgCl2 spectrum in the ~260-350 cm-1 region, 

however, it is impossible to clearly assign frequencies related to Cr3+ species in the molten salt, 

revealing the limitations of this form of spectroscopy for investigation of dilute metal ion 

species. The most intense band at ~232 cm-1 corresponds to the Mg–Cl symmetric stretching 

vibrations based on the previous reports.1,2 

 

 
Figure ESI-2 Furnace and molten salt samples used for X-ray scattering studies at NSLS-II. a) 

Experimental setup at the PDF beamline, NSLS-II (the inset shows inside features of the furnace 

for clarity): 1, molten salt sample in quartz capillary; 2, sample port; 3, X-ray entrance port; 4, 

heating wire; 5, thermocouple port. b) Molten KCl-MgCl2 (50:50 mol%) (left) and CrCl3 (5 

mol%) in the KCl-MgCl2 (right) salts at ~1073 K. 

 



 

Figure ESI-3 The relative X-ray weighting factors (𝑤𝑖𝑗(𝑄) =
(2−𝛿𝑖𝑗)𝑥𝑖𝑥𝑗𝑓𝑖(𝑄)𝑓𝑗(𝑄)

[∑ 𝑥𝑖𝑓𝑖(𝑄)𝑖 ]2  , where 𝛿𝑖𝑗 is 

one for i=j and zero for i≠j) calculated at Q=0 for the ionic pair correlations in the KCl-MgCl2 

system. As can be seen, most of the scattering comes from the pairs containing chlorides and 

thus the X-ray diffraction patterns in Fig. 1 (main text) are primarily dominated by Cl-Cl, K-Cl, 

and Mg-Cl correlations. 

 

 
Figure ESI-4 Optical absorption spectra of Cr3+ (5 mol%) in KCl-MgCl2 (50:50 mol%), as a 

function of temperature. It is a well-defined spectrum with two bands in the visible region, 

assigned as follows: to 4A2→
4T2 (

4F) for peak at 12,000 cm-1, and to 4A2→
4T1(

4F) for peak at 

18,000 cm-1, and a charge transfer band corresponding to 4A2→
4T1(

4P) transition. There are no 

prominent features in the near-IR range. Based on the spectra, the symmetry of Cr3+can be 



attributed to the octahedral CrCl6
3- ions. The spectral features and hence the geometry of the 

complex remain consistent over the temperature range investigated. The results obtained are in 

agreement with the Cr3+spectrum reported by Harrington and Sundheim,3 and by Gruen and 

McBeth,4 in the LiCl-KCl eutectic melt. 

 

 

Figure ESI-5 Comparison of radial distribution functions, g(r), obtained from RMC modeling 

(circles) and AIMD simulations (solid lines) for the CrCl3-KCl-MgCl2 system.  

 
Figure ESI-6 Partial structure functions, S(Q)s, and pair distribution functions, G(r)s, obtained 

from the AIMD simulations for a) the KCl-MgCl2 and b) the CrCl3-KCl-MgCl2 molten salts at 

1073 K. 



 
Figure ESI-7 The differential pair distribution function, dG(r), and its partial subcomponents 

obtained from the AIMD simulations. 

 

 
Figure ESI-8 Radial distribution functions from the AIMD trajectories for the molten salt 

systems without (1) and with (2) CrCl3. Note a slight shift of the Cl-Cl g(r) toward shorter 

distances because of the presence of Cr3+ in the melt.  

 



 
Figure ESI-9 1D (a) and 2D (b,d,f) free energies (involving Mg-Cl, Mg-Mg, K-Cl distance and 

electric field (in atomic unit) experienced by Cl, Mg, and Cl, respectively) and corresponding 

Marcus parabolas (solids are  parabolic fits and dots are actual data) in electric field space (c,e,g) 

describing chloride exchange around Mg and dissociation of Mg-Mg dimers and chloride 

exchange around K. Reorganization of ionic media that causes electric field rearrangement 

drives exchange and dissociation events. The color bar (h) represents the contour levels in the 

2D-free energy surfaces. 

 

 

 



 
Figure ESI-10 Lower and higher adiabatic energy surfaces (solids) obtained from coupled 

Marcus diabats (dots) in electric field space and the reactant-to-product transition path 

highlighted by a green arrow. While the chloride exchange around Mg follows an adiabatic path 

(transition dynamics confined on the lower adiabatic surface), the dissociation of Mg-Mg 

dimmer and chloride exchange around K are described by a nonadiabatic path (transition 

dynamics requires hopping on the higher energy surface). 

 

 
Figure ESI-11 Distributions of velocities at which electric field trajectories cross the transition 

state at E=E† for different scenarios of chloride exchange around cations and dissociation of 

cation-cation chloride-shared dimers. 

 



 
Figure ESI-12 Inverse of a mass-like quantity associated with the motion along electric field, 

which is conserved through the simulation (red indicates running average). 

 

Table ESI-1 Parameters of the hybrid TS-Marcus theory for chloride exchange around Cr3+ (Cr-

Cl), Mg2+ (Mg-Cl), and K+ (K-Cl) and dissociation of dimeric Cr-Cr, Cr-Mg, and Mg-Mg 

configurations. 

 Cr-Cl Cr-Cr Cr-Mg Mg-Cl Mg-Mg K-Cl 

Marcus parabolas 

WR 

WP 

(kcal/mol) 

ER 

EP 

(𝐸h/Bohr

𝑒
) 

KR 

KP 

[kcal mol-1/ (Eh/Bohr

𝑒
)2] 

 

-0.1628 

5.8357 

 

0.09465 

0.01467 

 

5374.0 

1016.4 

 

-0.04398 

2.89793 

 

0.03039 

0.01058 

 

7156.64 

4877.38 

 

0.13201 

1.06426 

 

0.01991 

0.00521 

 

6443.04 

6857.34 

 

0.027607 

5.27748 

 

0.04959 

-0.00031 

 

5818.95 

1255.14 

 

0.065153 

0.714734 

 

0.004876 

-0.00081 

 

7865.78 

7154.03 

 

-0.15785 

2.44279 

 

-0.019397 

0.007957 

 

3551.44 

1220.11 



Barriers 

𝑊(𝐸†) 

Δ𝑊𝑟
𝐸†

 

[𝑊(𝐸†) + Δ𝑊𝑟
𝐸†

] 

(kcal/mol) 

𝑒
−𝛽[𝑊(𝐸†)+Δ𝑊𝑟

𝐸†
]
 

 

4.548 

5.900 

 

10.448 

 

0.00745 

 

2.259 

4.220 

 

6.479 

 

0.047908 

 

0.943 

2.600 

 

3.543 

 

0.18987 

 

4.891 

4.462 

 

9.353 

 

0.01244 

 

0.465 

1.900 

 

2.365 

 

0.329825 

 

2.058 

1.680 

 

3.738 

 

0.173227 

Mass-weighted 

reactant volume 

𝑍𝐸  

(e2 nm-6/g mol-1) 

1

√𝑍𝐸

𝑉R
𝐸 

(nm g1/2 mol-1/2) 

 

 

6334.423 

± 

117.000 

 

0.312 

± 

0.003 

 

5859.540 

± 

500.000 

 

0.216 

± 

0.009 

 

8116.252 

± 

151.000 

 

0.194 

± 

0.002 

 

10418.30 

± 

152.500 

 

0.198 

± 

0.001 

 

8116.15 

± 

127.70 

 

0.215 

± 

0.002 

 

6114.29 

 ± 

75.00 

 

0.105 

± 

0.001 

Barrier-recrossing 

𝜅LZ 

C 

(kcal/mol) 

|�̅�𝐸| 

(𝐸ℎ/Bohr

𝑒
 𝑓𝑠−1) 

|S2-S1| 

(kcal mol-1/ 
𝐸h/Bohr

𝑒
) 

 

0.999 

2.421 

 

0.001029 

 

295.4975 

 

 

0.116 

0.900 

 

0.000733 

 

164.6591 

 

0.210 

0.143 

 

0.000712 

 

93.69809 

 

0.552 

0.551 

 

0.001016 

 

257.0060 

 

0.009 

0.665 

 

0.000645 

 

52.36781 

 

0.353 

0.533 

 

0.000644 

 

123.9671 

Timescale: τ (ps) 

No barrier-recrossing 

With barrier-recrossing 

 

35.2±0.3 

35.2±0.3 

 

3.8±0.2 

32.6±1.5 

 

0.9±0.01 

4.1±0.04 

 

13.2±0.1 

24.1±0.2 

 

0.5±0.004 

60.6±0.50 

 

0.5±0.003 

1.44±0.01 

 

Density measurements. Given the bright purple color of the KCl-MgCl2 molten salt after 

addition of 5 mol% CrCl3 (Fig. ESI-2b), the density of the resulting CrCl3-KCl-MgCl2 mixture 

can be accurately determined by measuring the volume of the melt at 8000C. A similar technique 



to measure the density of molten NaCl-CrCl3 salt was applied by Li et al.5 To determine the 

volume, the salt mixture was melted under an inert atmosphere in a calibrated quartz tube. The 

molten salt visibly colored the quartz and the colored part of the tube was used to deduce the 

height, from which the volume can be calculated for the molten salt sample of known mass. The 

measurements were repeated three times with different amounts of the CrCl3-KCl-MgCl2 salts, 

giving the density of 1.65 g/cm3 at 8000C.  

X-ray structure function and pair distribution function. The X-ray structure function, S(Q), 

is defined as the following: 

𝑆(𝑄) =
𝐼𝑐𝑜ℎ(𝑄) − ∑ 𝑥𝑖𝑓𝑖

2(𝑄)𝑖

[∑ 𝑥𝑖𝑓𝑖(𝑄)𝑖 ]2
      (1) 

where Icoh is coherent scattering intensity, xi and fi(Q) are the molar fraction and Q-dependent X-

ray ionic form factor of species i, respectively, and Q denotes the magnitude of the scattering 

vector (Q = 4πsin(θ)/λ), where 2θ is the scattering angle, and λ is the incident X-ray wavelength. 

Notice that as defined here, S(Q) goes to zero at large Q. In other words, our S(Q) is FX(Q) as 

defined in the review article by Keen;6 we highlight this to avoid confusion with different 

terminologies and definitions commonly used in total scattering.  

Computationally we define the X-ray weighted total scattering structure function, S(Q), as 

𝑆(𝑄) =
𝜌0 ∑ ∑ 𝑥𝑖𝑗≥𝑖𝑖 𝑥𝑗𝑓𝑖(𝑄)𝑓𝑗(𝑄) ∫ 4𝜋𝑟2(𝑔𝑖𝑗(𝑟) − 1)

𝑠𝑖𝑛(𝑄𝑟)
𝑄𝑟 𝑑𝑟

∞

0

[∑ 𝑥𝑖𝑓𝑖(𝑄)𝑖 ]2
      (2) 

Where 𝜌0 is the ionic number density of the system, 𝑥𝑖 and 𝑥𝑗 are molar fractions of ionic species 

𝑖 and 𝑗, 𝑓𝑖(𝑄) and 𝑓𝑗(𝑄) are X-ray atomic form factors for species 𝑖 and 𝑗 and 𝑔𝑖𝑗(𝑟) is the radial 

pair distribution function for species 𝑖 and 𝑗. 

Real space pair distribution functions (PDF), 𝐺(𝑟) and 𝐷(𝑟), are obtained from 𝑆(𝑄) via the 

expressions 

𝐺(𝑟) =
1

(2π)3ρ0
∫ 4

∞

0

π𝑞2𝑆(𝑄)
sin(Qr)

𝑄𝑟
𝑑𝑄      (3) 

𝐷(𝑟) = 4𝜋𝜌0𝑟𝐺(𝑟) =
2

𝜋
∫ 𝑄𝑆(𝑄) sin(𝑄𝑟) 𝑑𝑄

∞

0

     (4) 

One can also define the partial subcomponents of 𝐺(𝑟) and 𝐷(𝑟) via the Fourier transformation 

of the partial subcomponents of 𝑆(𝑄). 

𝑆𝑖𝑗(𝑄) = 2 ×
𝜌0𝑥𝑖𝑥𝑗𝑓𝑖(𝑄)𝑓𝑗(𝑄) ∫ 4𝜋𝑟2(𝑔𝑖𝑗(𝑟) − 1)

sin(𝑄𝑟)
𝑄𝑟 𝑑𝑟

∞

0

[∑ 𝑥𝑖𝑓𝑖(𝑄)𝑖 ]2
 



𝑆𝑖𝑖(𝑄) =
𝜌0𝑥𝑖𝑥𝑖𝑓𝑖(𝑄)𝑓𝑖(𝑄) ∫ 4𝜋𝑟2(𝑔𝑖𝑖(𝑟) − 1)

𝑠𝑖𝑛 (𝑄𝑟)
𝑄𝑟 𝑑𝑟

∞

0

[∑ 𝑥𝑖𝑓𝑖(𝑄)𝑖 ]2
      (5) 

and 

𝐺𝑖𝑗(𝑟) =
1

(2𝜋)3𝜌0
∫ 4𝜋𝑄2𝑆𝑖𝑗(𝑄)

sin(𝑄𝑟)

𝑄𝑟
𝑑𝑄

∞

0

 

𝐷𝑖𝑗(𝑟) = 4𝜋𝜌0𝑟𝐺𝑖𝑗(𝑟)      (6)   

These provide information as to which pair interactions contribute to the PDF at specific 

distances. The differential PDF, d𝐺(𝑟), is accordingly defined as in Eq. 3, but with 𝑆(𝑄) 

replaced by the difference between two 𝑆(𝑄)s for the CrCl3-loaded KCl-MgCl2 and the pristine 

KCl-MgCl2 molten salt mixture. Note that a direct subtraction of 𝐺(𝑟) for the KCl-MgCl2 

mixture from 𝐺(𝑟) for the CrCl3-KCl-MgCl2 leads to the identical d𝐺(𝑟) as follows from the 

above definitions. 

Coordination number. If 𝑟𝑖 is the distance between the ith Cl- ion out of a total number of Cl- 

ions (𝑁Cl) and a cation, and 𝑟† is the location of the boundary of the first chloride solvation shell 

determined from the first minimum of the cation–Cl- radial distribution function (RDF), the 

coordination number of the cation is defined in terms of a smooth function, fi, (0 <fi <1): 

𝐶𝑁 = ∑
1 − (

𝑟𝑖

𝑟†)
12

1 − (
𝑟𝑖

𝑟†)
24

𝑁Cl

𝑖=1

= ∑ 𝑓𝑖

𝑁Cl

𝑖=1

   (7) 

Eq. 7 allows smooth transitions of Cl-  across the boundary of the first chloride solvation shell.  

Number of shared Cl-. 𝑓𝑖 in Eq. 1 represents the contribution of the ith Cl- to the coordination 

structure of a cation. Thus, if  𝑓𝑖𝑗 and 𝑓𝑖𝑘 are the contributions of the ith Cl- respectively to the 

coordination structures of the jth and kth cations, the number of Cl- shared between these two 

cations is given by: 

𝑛Shared = ∑ 𝑓𝑖𝑗

𝑁Cl

𝑖=1

𝑓𝑖𝑘   (8) 

Notice that, 𝑛Shared is maximum for Cl- ions that are located between these two cations, 

contributing the most to their shared overlapping coordination shells. Eq. 8 can also be used to 

determine the number of cations coordinating with two different cations through chloride ions, 

but in this case, f is determined using the cation–cation RDF and corresponding 𝑟†. 

Free energy calculations. The 1D-free energy profile for a reaction coordinate is calculated 

using its probability distribution function (Ω (x)) computed from the AIMD trajectory: W(x)=-

kBTln[Ω (x)], where x is the reaction coordinate such as coordination number (CN) or distance 

(r). The 2D-free energy surfaces were computed using the joint probability distribution function 



(Ω (r,y)): 𝑊(𝑟, 𝑦) = −𝑘B𝑇𝑙𝑛[Ω(𝑟, 𝑦)], where y is a coordination number (CN), or number of 

shared chloride ion between two cations, or number of cations simultaneously coordinating with 

two different cations via chloride ions (𝑛Shared), or electric field (E). Note that the averaging for 

the free energies was done considering all possible ion pairs and the production length of the 

AIMD trajectories.  

TS-Marcus approach. We describe rate processes in a Coulombic system of molten salts in 

terms of the reaction coordinate, E, which is the electric field exerted by the solvent ions on the 

solute ion projected along a specific direction (û), and the ionic solvent bath coordinate, B.  

Following the work of Darve and Pohorille,7 the Hamiltonian for this system can be determined 

through a coordinate transformation from a set of conventional Cartesian coordinates X of 3N 

components (N is the total number of ions) to the set of (E, B), where B has 3N−1 components. 

The associated conjugate momenta in this new set are pE and PB with 3N−1 components—these 

are also transformed from the Cartesian momenta PX with 3N components.  Thus, the 

Hamiltonian can be expressed as: 𝐻 =
1

2
𝑍𝐸𝑝𝐸

2 +
1

2
𝑃𝐵

𝑇𝑍𝐵𝑃𝐵 + 𝑉(𝐸, 𝐵) (9) 

The first two terms in the above equation represent respectively the kinetic energy associated 

with the motion of the electric field and bath coordinates (notice that the cross-terms between pE 

and PB have been ignored for simplicity) and the last one is the potential energy. 1/𝑍𝐸 is a mass-

like quantity moving with the momentum pE in the electric filed space and can be obtained as:  

𝑍𝐸 =  ∑
1

𝑚𝑖

3𝑁
𝑖=1 (

𝜕𝐸

𝜕𝑥𝑖
)

2

. Here, xi is a component of the Cartesian coordinate X and mi is the 

associated mass. If the ith solvent ion with charge Qi (considering formal charges +3, +2, +1, and 

-1 respectively for Cr3+, Mg2+, K+, and Cl-) is located at a distance ri, the electric field on a solute 

ion exerted by all the solvent ions projected along û is obtained as 𝐸 = �̂�. ∑
𝑄𝑖

𝑟𝑖
2

𝑁−1
𝑗=1 𝑟�̂�. Thus, ZE 

takes the form of: 

𝑍𝐸 = ∑
(𝑓𝑖

′)
2

𝜇𝑖

𝑁−1
𝑖=1 +

2

𝑀
∑ ∑ 𝑓𝑖

′𝑓𝑗
′𝑁−1

𝑗=𝑖+1
𝑁−2
𝑖=1 (𝑟�̂�. 𝑟�̂�) (10)  

where 𝑓𝑖
′ =  

𝑑𝐸

𝑑𝑟𝑖
 and 𝑓𝑗

′ =  
𝑑𝐸

𝑑𝑟𝑗
 , and M and 𝜇𝑖 are the mass of the solute ion and the solute ion-ith 

solvent ion reduced mass, respectively. 𝑟�̂� and 𝑟�̂� are the unit vectors pointing respectively from 

the ith and jth solvent ions to the solute ion. Now, the rate of transition between an initial (Ei) and 

final (Ef) electric field states via the transition state, E=E†, can be obtained as:8 

𝑘𝐸 =
∫ 𝑑𝐵 𝑑𝑝𝐵𝑑𝐸𝑑𝑝𝐸δ(𝐸 − 𝐸†)𝑍𝐸𝑝𝐸Θ(𝑍𝐸𝑝𝐸)𝑒−β𝐻

∫ 𝑑𝐵 𝑑𝑝𝐵𝑑𝐸𝑑𝑝𝐸𝑒−β𝐻
 

= √
𝑍𝐸

2πβ

𝑒−β𝑊(𝐸†)

∫ 𝑑𝐸
𝐸†

𝐸𝑖
𝑒−β𝑊(𝐸)

.               (11) 

Here, Θ is the Heaviside step function ensuring a positive flux (𝑍𝐸𝑝𝐸 ≥ 0) through the transition 

state.  𝛽 =1/kBT is the inverse thermal energy at temperature T and kB is the Boltzmann constant. 



W(E) is the potential of mean force (PMF) in the electric field space. Note that, TST assumes 

that after arrival at the transition state (barrier-top) from the reactant minimum on the PMF, a 

trajectory immediately moves to the product minimum. However, numerous studies on solvation 

and ion/charge transport indicated that solvent bath-induced barrier-recrossing is inevitable and 

must be accounted for to determine correct transition rates. The methods of reactive flux by 

Chandler,9 Kramer’s theory,10 Grote-Hynes theory,11 and the semiclassical Landau-Zener12 

approach are typically employed to examine such non-equilibrium solvent effects, wherein 

transmission coefficient is determined as a measure of the fraction of the flux of the trajectories 

through the transition state that finally arrives at the product minimum. The product of the TST 

rate and the transmission coefficient provides the correct rate of transition. 

Recently, Marcus theory of electron transfer has been extended by Roy et al. to investigate ion 

pairing, solvent exchange, and ion exchange processes in condensed phase systems.13-17 

Following this theory, we can express the reactant (R) and product (P) free energy states using 

parabolic functions of electric fields, 𝑊R(𝐸) and 𝑊P(𝐸), respectively: 

𝑊R(𝐸) = 𝑊R +  
1

2
𝐾R(𝐸 − 𝐸R)2 

      𝑊P(𝐸) = 𝑊𝑃 +
1

2
𝐾P(𝐸 − 𝐸P)2  (12) 

Here, 𝑊R and 𝑊P are the minima of the reactant product parabolas located at 𝐸 = 𝐸R and 𝐸 =

𝐸P, and  𝐾R and 𝐾P are corresponding curvatures. These parabolas are diabatic states and the 

reactant-to-product transition occurs through their crossing locations. These diabats can be 

extracted as slices from a 2D-free energy surface (W(r,E)) spanned by interionic distance (r) and 

electric field. The first slice is for the equilibrium close-contact distance in the reactant state (𝑟 =

𝑟R) and the second one is for the equilibrium solvent-separated distance in the product state (𝑟 =

𝑟P). These slices, which cross at 𝐸 = 𝐸†, are modeled with parabolic functions as presented in 

Eq. 12. An exact Marcus theory suggests that solvent reorganization in the form of electric field 

change drives the equilibrium reactant state, e.g., the state of close-contact ion pair, to an 

activated transition state (the crossing point of the two parabolas; 𝐸 = 𝐸†) where the barrier 

along the distance (Δ𝑊𝑟
𝐸†

) are expected to vanish or reduce significantly, resulting in rapid 

dissociation of the ion pair, i.e., rapid transition to the equilibrium product state. However, in 

practice, slower transition rates are anticipated due to a large value of Δ𝑊𝑟
𝐸†

 and recrossing 

events of the crossing point. Then depending on specific cases, in addition to accounting for this 

additional barrier, the recrossing events are treated with either the adiabatic or nonadiabatic 

prescription of Marcus theory. 

When the reactant and product parabolas start to couple (with the coupling strength C) as they 

start to cross, they are modified by each other resulting in a lower (𝑊−) and a higher (𝑊+) 

adiabatic free energy surfaces: 𝑊± =
𝑊R(𝐸)+𝑊P(𝐸)

2
±

1

2
 √4[𝐶(𝐸)]2 + [𝑊R(𝐸) − 𝑊P(𝐸)]2. The 

coupling constant can be determined as: 𝐶 =  
𝐾R+𝐾P

2√𝐾R𝐾P
√[𝑊R(𝐸) − 𝑊R][𝑊P(𝐸) − 𝑊P], where the 

prefactor disappears for 𝐾R = 𝐾P, i.e., when both the parabolas have equal curvatures.13-17    



When the equilibrium locations of the reactant and product parabolas (diabatic states) are well-

separated and cross at the “normal” region (opposite side), a strong coupling strength at the 

crossing point can create a large gap between the lower and higher adiabatic states. Then the 

reactant-to-product transition dynamics can be simply confined on the lower adiabatic surface. 

On the other hand, when the reactant and product parabolas cross at the “inverted” region (same 

side) with a weak coupling strength, a nonadiabatic jump from the lower to the higher surface is 

needed to describe the reactant-to-product transition. The crossing location affects the recrossing 

events, which is determined in terms of the transmission coefficient (i.e., the fraction of the flux 

of the trajectories that actually traverse the crossing point and land up at the product minimum). 

Herein, we determine the transmission coefficient using the semiclassical approach of Landau 

and Zener (𝜅LZ).12 𝜅LZ is governed by the probability (P) of the reactive transitions through the 

crossing point: 𝜅LZ = 2𝑃/(𝑃 + 1) when the parabolas cross at the “normal” region and 𝜅LZ =

2𝑃(1 − 𝑃) when the parabolas cross at the “inverted” region. P depends on the coupling strength 

between the parabolas and the mean traversal velocity of the electric field (�̅�𝐸) at the crossing 

point, E†: 𝑃 = 1 − exp [−
2𝜋[𝐶(𝐸†)]

2

ℏ|�̅�𝐸||𝑆2−𝑆1|
], where ℏ = ℎ/2𝜋 (h is the Planck constant) and 𝑆1,2 =

𝑑𝑊(𝐸)

𝑑𝐸
|𝐸=𝐸†  are the slopes of the parabolas at the crossing point. The trajectories traversing the 

crossing point exhibit an exponential velocity distribution (Fig. ESI-11) in the form of: 

𝐷(|v𝐸|) = D0 exp[−|𝑣𝐸|/|�̅�𝐸|],  providing the mean velocity required to determine P.  

To determine the rate of the reactant-to-product transition within a hybrid TS-Marcus 

framework, we can utilize the TST expression given in Eq. 11, the adiabatic energy surfaces 

obtained from coupled Marcus parabolas, and the transmission coefficient 𝜅LZ, providing a new 

rate expression:  

𝑘𝐸 =  𝜅LZ√
𝑍𝐸

2𝜋𝛽

𝑒−𝛽[𝑊(𝐸†)+Δ𝑊𝑟
𝐸†

]

∫ 𝑑𝐸
𝐸†

𝐸𝑖
𝑒−𝛽𝑊(𝐸)

  

=  𝜅LZ√
1

2𝜋𝛽

𝑒−𝛽[𝑊(𝐸†)+Δ𝑊𝑟
𝐸†

]

1

√𝑍𝐸

∫ 𝑑𝐸
𝐸†

𝐸𝑖
𝑒−𝛽𝑊(𝐸)

     

    = 𝜅LZ√
1

2𝜋𝛽

𝑒−𝛽[𝑊(𝐸†)+Δ𝑊𝑟
𝐸†

]

1

√𝑍𝐸

𝑉R
𝐸

, (13) 

where, W(E)=𝑊−(𝐸), is the lower adiabatic free energy surface. Notice that 
1

√𝑍𝐸
∫ 𝑑𝐸

𝐸†

𝐸𝑖
𝑒−𝛽𝑊(𝐸) =

1

√𝑍𝐸
𝑉R

𝐸 is a mass-weighted configuration space region in electric field—

we call it “mass-weighted reactant volume”, because the integral sums over the Boltzmann-

weighted volume elements of electric field (dE) in the reactant region. ZE computed for our 

systems are given in Fig. ESI-12. We accounted for the additional barrier, Δ𝑊𝑟
𝐸†

, that may exist 



along the distance coordinate at 𝐸 = 𝐸†. This barrier is determined by extracting a slice along 

𝐸 = 𝐸† from the 2D-free energy surfaces and computing the barrier height from the reactant 

minimum of the slice. 
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