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Fig. S1. Raman spectra of the prepared g-C3N4, g-C3N4-AC and C3.0N-Se0.03. The g-C3N4 and g-C3N4-
AC only showed some characteristic peaks in the region of 500-3000 cm-1, which corresponded to 
the stretching vibrations of heptazine heterocyclic ring units in their 2D conjugated framework.

Fig. S2. XPS survey spectra of C3.0N-Se0.03.



Fig. S3. TEM images of the prepared other CxN-Sey materials. (a) C0.7N-Se0.002, (b) C0.9N-Se0.003, (c) 
C2.1N-Se0.01, and (d) C4.2N-Se0.05. The morphology of the CxN-Sey materials with different C/N ratios 
was significantly different. C0.7N-Se0.002 and C0.9N-Se0.003 had a thin nanosheet structure (Fig. S3a 
and b). Some portions of C2.1N-Se0.01 material possessed the hollow column structure (Fig. S3c), 
while C4.2N-Se0.05 showed curved tubular structure with width in the range of about 20 to 50 nm (Fig. 
S3d). In comparison with the C3.0N-Se0.03, the hollow cavity width of C4.2N-Se0.05 was smaller and 
the curvature and agglomeration of tubes were more serious.
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Fig. S4. (a) TEM image and (b) SEM image of the prepared g-C3N4
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Fig. S5. XRD patterns of C0.7N-Se0.002, C0.9N-Se0.003, C2.1N-Se0.01, C3.0N-Se0.03, and C4.2N-Se0.05. 
C0.7N-Se0.002 and C0.9N-Se0.003 showed signals of both conjugated tri-s-triazine and graphene-like 
turbostratic forms, while the typical ordering turbostratic form was observed for the C2.1N-Se0.01, 
C3.0N-Se0.03 and C4.2N-Se0.05. Moreover, a gradual decrease of interlayer distance could be found 
when more Se was incorprated in the framework. 
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Fig. S6. (a) XRD patterns, and (b) N2 adsorption-desorption isotherms of g-C3N4 (synthesized from 
urea) and g-C3N4-AC (synthesized from urea and NH4Cl). A slight shift of single broad diffraction 
peak at 24.8° the C3.0N-Se0.03 (1e) compared with the typical peak (27.8°) in g-C3N4 (synthesized 
from urea) and g-C3N4-AC (synthesized from urea and NH4Cl) can be found, implying the decrease 
of interlayer distance in C3.0N-Se0.03 caused by Se doping. Meanwhile, the peak centered at 13.0° in 
g-C3N4 and g-C3N4-AC, which was the characteristic peak for the tri-striazine structure, was not 
obsereved in C3.0N-Se0.03, indicating the change of the tri-s-triazine structure owing to the Se doping 
and the different C/N atomic ratio.
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Fig. S7. FT-IR spectra (a) and Raman spectra (b) of C0.7N-Se0.002, C0.9N-Se0.003, C2.1N-Se0.01, C3.0N-
Se0.03, and C4.2N-Se0.05. With increasing C/N atomic ratio, the band at 810 cm-1 (ascribed to tritazine 
rings) in FT-IR spectra became weaker (Fig. S7a), and the graphene-like structure of CxN-Sey 
materials became stronger (Fig. S7b). C2.1N-Se0.01, C3.0N-Se0.03 and C4.2N-Se0.05 had similar FT-IR 
and Raman spectra, implying the very close structure of these three materials.
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Fig. S8. XPS spectra of the prepared g-C3N4. (a) XPS survey spectra, (b) high-resolution XPS spectra 
of C 1s, (c) high-resolution XPS spectra of N 1s, and (d) high-resolution XPS spectra of O 1s. The 
strength of C-C and N-(C)3 bonds in C3.0N-Se0.03 was significantly enhanced compared with those in 
g-C3N4, which may be caused by the high content of C atoms in C3.0N-Se0.03.
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Fig. S9. XPS survey spectra of C0.7N-Se0.002, C0.9N-Se0.003, C2.1N-Se0.01, C3.0N-Se0.03, and C4.2N-
Se0.05. The signals for Se and C became stronger with the increase of the used SeO2 amount, while 
the N signals became weaker.

Fig. S10. High-resolution XPS spectra of C 1s. (a) C0.7N-Se0.002, (b) C0.9N-Se0.003, (c) C2.1N-Se0.01, 
and (d) C4.2N-Se0.05. The content of sp2 C-C bond was obviously increased with the increasing amount 
of the used SeO2, while the content of sp2 C-N-C decreased.



Fig. S11. High-resolution XPS spectra of N 1s for C0.7N-Se0.002, C0.9N-Se0.003, C2.1N-Se0.01, and C4.2N-
Se0.05. XPS spectra of N 1s showed that with the increase of Se content, the ratio of graphitic N 
obviously increased while an opposite tendency was found for pyridinic N.

Fig. S12. (a) Conversion of furfural and yields of various products at different applied potentials over 
C3.0N-Se0.03 in 0.5 M KHCO3 solution, and (b) Current density and total charge at different 
electrolysis times at 1.7 V vs. Ag/AgCl.



Fig. S13. XPS spectra of fresh and recovered C3.0N-Se0.03. 



Fig. S14. LSV curves at a scan rate of 50 mV/s with and without 10 mM Furfural in (a) 0.5 M 
(NH4)2SO4, (b) 1 M of KOH, (c) 1M H2SO4, and (D) pH=7 phosphate buffered solution (PBS).
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Fig. S15. (a) LSV curves of g-C3N4 at a scan rate of 50 mV/s, and (b) Tafel plots of g-C3N4 with 
and without furfural in 0.5 M aqueous KHCO3 solution.
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Fig. S16. (a) The furfural conversion, MA yield and FE at different applied potentials, and (b) 
Concentrations of furfural and the oxidation products at various electrolysis times over pure g-C3N4 
electrode at 1.8 V vs. Ag/AgCl in 0.5 M aqueous KHCO3 electrolyte.
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Fig. S17. LSV curves of a serious of CxN-Sey materials at a scan rate of 50 mV/s without furfural in 
0.5 M KHCO3 solution.
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Fig. S18. (a) Charging current density differences plotted against scan rates, and (b) Nyquist plots of 
g-C3N4 and C3.0N-Se0.03 in 0.5 M KHCO3 solution at an open circuit potential.
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Fig. S19. Nyquist plots of various CxN-Sey electrodes in 0.5 M KHCO3 solution at an open circuit 
potential.



Table S1. Furfural oxidation using various heterogeneous catalysts.

Catalysts Furfural conv. (%) MA yield (%) MA selec. (%) References

C3.0N-Se0.03 99.5 84.2 84.0 This work

Amberlyst-15 ＞99 11 11 1

Nb2O5 ＞99 5 5 1

ZrO2 ＞99 5 5 1

ZSM-5 ＞99 2.4 2.4 2

H5PV2Mo10O40·xH2O 98.7 54 55 3

H5PV2Mo10O40·xH2O 100 41.8 41.8 4

TS-1 100 62 62 5

V2O5/SnO2 74.4 38.9 52.3 6

FeT(p-Br)PPCl/SBA-15 53.7 38 70.8 7



Table S2. Electrochemical oxidation of furfural and distribution of products over C3.0N-Se0.03 in 
various electrolytes with different acidity and alkalinity. 

Eletrolytes pH Potential (V)
Furfural 

conversion (%)

MA yield 

(%)
Furanone yield (%) FA yield (%)

Selectivity of 

MA (%)

0.5 M H2SO4 0.42 1.7 98.1 20.8 1.4 < 0.1 21.2

0.5 M (NH4)2SO4 5.18 1.7 90.7 59.8 3.4 < 0.1 65.9

PBS（pH=7） 7.01 1.7 91.1 15.6 0.27 0.19 17.1

1 M KOH 13.67 1.6 100 37.8 1.1 2.65 37.8

Table S3. Concentration of surface nitrogen species of various electrodes.
Sample Total N (atom%) Pyridinic N (atom%) Graphitic N (atom%) Oxidized N (atom%)

g-C3N4 20.6 17.6 2.2 1.8

C0.7N-Se0.002 15.1 9.6 4.4 1.1

C0.9N-Se0.003 14.2 7.8 5.4 1.0

C2.1N-Se0.01 8.0 4.0 3.5 0.5

C3.0N-Se0.03 5.1 2.3 2.4 0.3

C4.2N-Se0.05 3.3 1.1 1.9 0.3
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