Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2021

Stereoselective β-Mannosylations and β-Rhamnosylations from Glycosyl Hemiacetals Mediated by Lithium Iodide

Imlirenla Pongener, Dionissia A. Pepe, Joseph J. Ruddy and Eoghan M. McGarrigle*

Centre for Synthesis & Chemical Biology, UCD School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland.

Supporting Information – Part 1

Table of Contents

General Experimental	5
Synthesis of Mannopyranosyl Donors	6
1,2,3,4,6-Penta- <i>O</i> -acetyl-α/β-D-mannopyranose S1	7
Ethyl 2,3,4,6-tetra- <i>O</i> -acetyl-1-thio-α-D-mannopyranoside S2	7
Ethyl 4,6- <i>O</i> -benzylidene-1-thio-α-D-mannopyranoside S3	8
Ethyl 2,3-di-O-benzyl-4,6-O-benzylidene-1-thio-α/β-D-mannopyranoside S4	9
Ethyl 2,3,6-tri- <i>O</i> -benzyl-1-thio-α-D-mannopyranoside S5	10
Ethyl 6- <i>O</i> -triisopropylsilyl-1-thio-α/β-D-mannopyranoside S6	10
Ethyl 2,3,4-tri-O-benzyl-6-O-triisopropylsilyl-1-thio-α-D-mannopyranoside S7	11
Ethyl 2,3,4-tri-O-(4-methylbenzyl)-6-O-triisopropylsilyl-1-thio-α-D-mannopyranoside S8	12
Ethyl 2,3,4-tri-O-benzyl-6-O-(4-methylbenzyl)-1-thio-α-D-mannopyranoside S9	13
Ethyl 2,3-di-O-isopropylidene-6-O-triisopropylsilyl-1-thio-α-D-mannopyranoside S10	14
Ethyl 2,3-di-O-isopropylidene-4-O-(4-methylbenzyl)-6-O-triisopropylsilyl-1-thio-α-D-mat	nnopyranoside
S11	14
2,3,4,6-Tetra-O-benzyl-α/β-D-mannopyranose 1a	15
2,3,4-Tri-O-benzyl-6-O-(4-methylbenzyl)-α/β-D-mannopyranose 1b	16
2,3,6-Tri-O-benzyl-4-O-(4-methylbenzyl)-α/β-D-mannopyranose 1c	17
2,3,4-Tri-O-benzyl-6-O-(4-methoxybenzyl)-α-D-mannopyranose 1d	19
2,3,4-Tri- <i>O</i> -benzyl-6- <i>O</i> -(2-naphthyl)-α/β-D-mannopyranose 1e	20
2,3,4-Tri- <i>O</i> -benzyl-6- <i>O-tert</i> -butyldiphenylsilyl-α/β-D-mannopyranose 1f	22
2,3,6-Tri- <i>O</i> -benzyl-4- <i>O</i> -tert-butyldimethylsilyl- α/β -D-mannopyranose 1g	23
6-O-Benzoyl-2,3,4-tri-O-benzyl-α/β-D-mannopyranose 1h	25
4- <i>O</i> -Acetyl-2,3,6-tri- <i>O</i> -benzyl-α/β-D-mannopyranose S22	26

2,3,4-Tri-O-benzyl-6-O-triisopropylsilyl-α/β-D-mannopyranose S23	28
2,3,4,6-Tetra- <i>O</i> -acetyl-α-D-mannopyranose S24	29
6- <i>O</i> -Pivaloyl-2,3,4-tri- <i>O</i> - <i>p</i> -methylbenzyl-α/β-D-mannopyranose 1i	29
Acetyl 2,3,4,6-Tetra-O-benzyl-α/β-D-mannopyranose 8a	31
Synthesis of Rhamnosyl Donors	32
Ethyl 1-thiol-L-rhamnoside S28	33
Ethyl 2,3-O-isopropylidene-1-thio-L-rhamnoside S29	34
2,3,4-Tri-O-benzyl-L-rhamnoside 1j	34
2,3-Di-O-benzyl-4-O-p-methylbenzyl-L-rhamnoside 1k	36
2,3-Di-O-benzyl-4-O-benzoyl-L-rhamnoside 11	38
2,3,4-Tri- <i>O</i> -acetyl-L-rhamnoside S35	39
Synthesis of Acceptors	40
Methyl 2,3,4-tri- <i>O</i> -benzyl-α-D-glucopyranoside 3a	40
Methyl 4,6- <i>O</i> -benzylidene-α-D-glucopyranoside S38	41
Methyl 2,3-di-O-benzyl-4,6-O-benzylidene-α-D-glucopyranoside S39	41
Methyl 2,3,6-tri- <i>O</i> -benzyl-α-D-glucopyranoside 3b	42
Methyl 2-O-benzyl-4,6-O-benzylidene-α-D-glucopyranoside 3d and Methyl 3-O-benzyl-4,6	5-0-
benzylidene-α-D-glucopyranoside S40	43
Methyl 3-O-acetyl-2-O-benzyl-4,6-O-benzylidene-α-D-glucopyranoside S41 and Methyl 2-	O-acetyl-3-O-
benzyl-4,6- <i>O</i> -benzylidene-α-D-glucopyranoside S42	44
Methyl 3-O-acetyl-2,6-di-O-benzyl-α-D-glucopyranoside S43 and Methyl 2-O-acetyl-3,6-d	i-O-benzyl-α-
D-glucopyranoside S44	45
Methyl 2,4,6-tri- <i>O</i> -benzyl-α-D-glucopyranoside 3c	46
Methyl 4,6- <i>O</i> -benzylidene-α-D-galactopyranoside S45	46
Methyl 2-O-benzyl-3-O-acetyl-4,6-O-benzylidene-α-D-galactopyranoside S47 and Methyl 3	3-O-benzyl-2-
<i>O</i> -acetyl-4,6- <i>O</i> -benzylidene-α-D-galactopyranoside S48	47
Methyl 2- <i>O</i> -benzyl-4,6- <i>O</i> -benzylidene-α-D-galactopyranoside S46	49
Methyl 3- <i>O</i> -benzyl-4,6- <i>O</i> -benzylidene-α-D-galactopyranoside 3j	49
Ethyl 2,3,4-tri-O-(4-methylbenzyl)-1-thio-α-D-mannopyranoside 3i	50
Methyl 2,3,4-tri- <i>O</i> -benzoyl-α-D-glucopyranoside S49	51
β-Mannosylations and β-Rhamnosylations	52
Methyl (2,3,4,6-tetra- <i>O</i> -benzyl- β -D-mannopyranosyl)-(1 \rightarrow 6)-2,3,4-tri- <i>O</i> -benzyl- α -D-gluco	pyranoside 2a 54
Optimisation reactions (isolated yields and α/β ratios)	55
$Methyl (2,3,4-tri-O-benzyl-6-O-(4-methylbenzyl)-\beta-D-mannopyranosyl)-(1\rightarrow 6)-2,3,4-tri-O-benzyl-6-O-(4-methylbenzyl)-\beta-D-mannopyranosyl)-(1\rightarrow 6)-2,3,4-tri-O-benzyl-6-O-(4-methylbenzyl)-\beta-D-mannopyranosyl)-(1\rightarrow 6)-2,3,4-tri-O-benzyl-6-O-(4-methylbenzyl)-\beta-D-mannopyranosyl)-(1\rightarrow 6)-2,3,4-tri-O-benzyl-6-O-(4-methylbenzyl)-\beta-D-mannopyranosyl)-(1\rightarrow 6)-2,3,4-tri-O-benzyl-6-O-(4-methylbenzyl)-\beta-D-mannopyranosyl)-(1\rightarrow 6)-2,3,4-tri-O-benzyl-6-O-(4-methylbenzyl)-(1\rightarrow 6)-2,3,4-tri-O-benzyl-6-O-(4-methylbenzyl)-(1\rightarrow 6)-2,3,4-tri-O-benzyl-6-O-(4-methylbenzyl)-(1\rightarrow 6)-2,3,4-tri-O-benzyl-6-O-(4-methylbenzyl)-(1\rightarrow 6)-2,3,4-tri-O-benzyl-6-O-(4-methylbenzyl)-(1\rightarrow 6)-2,3,4-tri-O-benzyl-6-O-(4-methylbenzyl-$)-benzyl-α-D-
glucopyranoside 2b	55
$Methyl (2,3,6-tri-O-benzyl-4-O-(4-methylbenzyl)-\beta-D-mannopyranosyl)-(1\rightarrow 6)-2,3,4-tri-O-benzyl-4-O-(4-methylbenzyl)-\beta-D-mannopyranosyl)-(1\rightarrow 6)-2,3,4-tri-O-benzyl-4-O-(4-methylbenzyl)-\beta-D-mannopyranosyl)-(1\rightarrow 6)-2,3,4-tri-O-benzyl-4-O-(4-methylbenzyl)-\beta-D-mannopyranosyl)-(1\rightarrow 6)-2,3,4-tri-O-benzyl-4-O-(4-methylbenzyl)-\beta-D-mannopyranosyl)-(1\rightarrow 6)-2,3,4-tri-O-benzyl-4-O-(4-methylbenzyl)-\beta-D-mannopyranosyl)-(1\rightarrow 6)-2,3,4-tri-O-benzyl-4-O-(4-methylbenzyl)-(1\rightarrow 6)-2,3,4-tri-O-benzyl-4-O-(4-methylbenzyl)-(1\rightarrow 6)-2,3,4-tri-O-benzyl-4-O-(4-methylbenzyl)-(1\rightarrow 6)-2,3,4-tri-O-benzyl-4-O-(4-methylbenzyl)-(1\rightarrow 6)-2,3,4-tri-O-benzyl-4-O-(4-methylbenzyl-4-O-benzyl$)-benzyl-α-D-
glucopyranoside 2c	56

Methyl (2,3,4-tri-O-benzyl-6-O-(4-methoxylbenzyl)-β-D-mannopyranosyl)-(1→6)-2,3,4-tri-O-benzyl-α	,-
D-glucopyranoside 2d	57
$Methyl (2,3,4-tri-O-benzyl-6-O-(2-naphthyl)-\beta-D-mannopyranosyl)-(1\rightarrow 6)-2,3,4-tri-O-benzyl-\alpha-D-(1-1)-$	
glucopyranoside 2e	58
Methyl (2,3,4-tri- <i>O</i> -benzyl-6- <i>O</i> - <i>tert</i> -butyldiphenylsilyl-β-D-mannopyranosyl)-(1→6)-2,3,4-tri- <i>O</i> -benzy	l-
α-D-glucopyranoside 2f	59
$Methyl (2,3,6-tri-O-benzyl-4-O-tert-butyl dimethyl silyl-\beta-D-mannopyranosyl)-(1 \rightarrow 6)-2,3,4-tri-O-benzyl-2,4-tri-O-benzyl$	1-
α-D-glucopyranoside 2g	60
Methyl (2,3,4-tri- <i>O</i> -benzyl-6- <i>O</i> -(benzoyl)-α/β-D-mannopyranosyl)-(1→6)-2,3,4-tri- <i>O</i> -benzyl-α-D-	
glucopyranoside 2h	61
Methyl (2,3,4-tri- <i>O</i> - <i>p</i> -methylbenzyl-6- <i>O</i> -(pivaloyl)- β -D-mannopyranosyl)-(1 \rightarrow 6)-2,3,4-tri- <i>O</i> -benzyl- α -D gluconyranoside 2i	67
Methyl 2 3 4-tri-O-benzyl-6-O-(2 3 4-tri-O-benzyl-6-L-rhamnosyl)-a-D-aluconyranoside 2i	62 63
Methyl 2 3 4-tri-O-benzyl-6-O-(2 3-di-O-benzyl-4-O-n-methylbenzyl-8-I -rhamnosyl)-g-D-	05
gluconvranoside 2k	64
Methyl 2.3.4-tri- <i>O</i> -benzyl-6- <i>O</i> -(2.3-di- <i>O</i> -benzyl-4- <i>O</i> -benzoyl-β-L-rhamnosyl)-α-D-glucopyranoside 21	65
Methyl (2.3.4.6-tetra- O -benzyl- β -D-mannopyranosyl)-(1 \rightarrow 4)-2.3.6-tri- O -benzyl- α -D-glucopyranosyle	4b
	66
Methyl (2,3,4,6-tetra- <i>O</i> -benzyl-β-D-mannopyranosyl)-(1 \rightarrow 3)-2,4,6-tri- <i>O</i> -benzyl-α-D-glucopyranoside of the state of th	łс 67
Methyl (2,3,4,6-tetra- <i>O</i> -benzyl- β -D-mannopyranosyl)-(1 \rightarrow 3)-2- <i>O</i> -benzyl-4,6- <i>O</i> -benzylidene- α -D-	
glucopyranoside 4d	68
Phenyl 2,3,4,6-tetra- <i>O</i> -benzyl-β-D-mannopyranoside 4e	68
1-Naphthyl 2,3,4,6-tetra- <i>O</i> -benzyl-β-D-mannopyranoside 4f	69
<i>p</i> -Nitrophenyl 2,3,4,6-tetra- <i>O</i> -benzyl-β-D-mannopyranoside 4g	70
<i>p</i> -Methoxyphenyl (2,3,4,6-tetra- <i>O</i> -benzyl-β-D-mannopyranosyl)-(1→4)-2-azido-3,6-di- <i>O</i> -benzyl-β-D-	
glucopyranoside 4h	71
Methyl 2,3,6-tri- <i>O</i> -benzyl-4- <i>O</i> -(2,3,4-tri- <i>O</i> -benzyl-β-D-rhamnosyl)-α-D-glucopyranoside 5b	72
Methyl 2,4,6-tri- <i>O</i> -benzyl-3- <i>O</i> -(2,3,4-tri- <i>O</i> -benzyl-β-L-rhamnosyl)-α-D-glucopyranoside 5c	73
Methyl 2-O-benzyl-4,6-benzylidene-3-O-(2,3,4-tri-O-benzyl-β-L-rhamnosyl)-α-D-glucopyranoside 5d	74
Phenyl 2,3,4-tri- <i>O</i> -benzyl-β-L-rhamnoside 5e	74
Naphthyl 2,3,4-tri- <i>O</i> -benzyl-β-L-rhamnoside 5f	75
<i>p</i> -Nitrophenyl 2,3,4-tri- <i>O</i> -benzyl-β-L-rhamnoside 5g	76
p-Methoxyphenyl 2-azido-3,6-di-O-benzyl-4-O-(2,3,4-tri-O-benzyl-β-L-rhamnosyl)-β-D-glucopyranosi	de
5h	76
$Ethyl \ 1-thiol \ 2,3,4-tri-{\it O-benzyl-6-O-(2,3,4-tri-{\it O-p-methylbenzyl-\beta-L-rhamnosyl)-\alpha-D-mannopyranoside} + \alpha - \alpha$	e
5i	77
$Methyl \ 3-{\it O}-benzyl-4, 6-benzylidene-2-{\it O}-(2,3,4-tri-{\it O}-benzyl-\beta-L-rhamnosyl)-\alpha-D-galactopyranoside \ 5j$	78
Boc-L-tyrosine methyl ester 2,3,4-tri-O-benzyl-β-L-rhamnoside 5k	79

Cholesteryl 2,3,4-tri- <i>O</i> -benzyl-α/β-L-rhamnoside S50	80
Donor and Acceptor Limitations	
Mechanistic Investigations	
References	

General Experimental

The reagents and solvents used in the following experiments were bought commercially and used without further purification. Oxalyl chloride from a fresh bottle was immediately stored in a Young's tube under a nitrogen atmosphere. In a glove-box, anhydrous lithium iodide beads were powdered. The powdered LiI was stored in capped vials on the bench for several weeks before use. It should be a freeflowing white solid. Dry solvents were obtained using equipment based on Grubb's design^[1] and stored in Strauss flask over 4 Å molecular sieves. A Karl Fischer Titrator was used to determine the amount of water in dry solvents. For air-sensitive reactions, solvents were added via syringe through rubber septa. Reactions were monitored by thin layer chromatography using silica-coated aluminium plates and the eluents outlined in the respective experiments; spots were detected under 254 nm UV light. Flash column chromatography was performed using silica gel [Davisil, 400–230 mesh (63–40 µm)]. ¹H NMR, ¹³C NMR and 2D NMR were carried out on 400 MHz, 500 MHz or 600 MHz spectrometers using deuterated chloroform (CDCl₃). Chemical shifts are reported in parts per million (ppm), coupling constants (J) are reported in Hertz (Hz) and multiplicities are abbreviated as; s (singlet), d (doublet), t (triplet) or m (multiplet) or combinations thereof. Chemical shifts were referenced to the residual proton of TMS for ¹H NMR spectra and to the ¹³C signal of deuterated chloroform (CDCl₃) for ¹³C NMR spectra. For compounds not reported in literature, NMR assignments have been made using COSY, HSQC and HMBC. Mass Spectra were recorded by the University College Dublin, School of Chemistry mass spectrometry service using ESI-MS and GCMS techniques.

4-Methoxyphenyl 2-azido-3,6-di-O-benzyl-2-deoxy- β -D-glucopyranoside **3h** was purchased from Carbosynth.

Synthesis of Mannopyranosyl Donors

Scheme 1 Syntheses of mannosyl donors.

1,2,3,4,6-Penta-O-acetyl-α/β-D-mannopyranose S1

A solution of D-mannose (1.0 g, 5.5 mmol) in pyridine (2 mL) was treated with acetic anhydride (5.2 mL, 55 mmol) and DMAP (67 mg, 0.55 mmol) and stirred at room temperature. TLC (1:1; cyclohexane/EtOAc) analysis after 3 h showed complete consumption of starting material. The reaction mixture was diluted with CH₂Cl₂ and washed with 1 M HCl, saturated NaHCO₃, and brine. The organic layer was dried over anhydrous MgSO₄, filtered and concentrated *in vacuo*

to give S1 as a colourless syrup (2.1 g, quantitative crude, $\alpha/\beta = 78:22$). NMR data were consistent with literature data.^[2]

The following were observed for α/β anomers:

¹H NMR (500 MHz, Chloroform-*d*): δ 2.06 (s, 3H, CH₃), 2.02 (s, 3H, CH₃).

α-anomer

¹H NMR (500 MHz, Chloroform-*d*): δ 6.05 (d, J = 1.9 Hz, 1H, H-1), 5.34 – 5.29 (m, 2H, H-3, H-4), 5.24 – 5.22 (m, 1H, H-2), 4.25 (dd, J = 12.4, 4.8 Hz, 1H, H-6a), 4.07 (dd, J = 12.4, 2.5 Hz, 1H, H-6b), 4.05 – 3.99 (m, 1H, H-5), 2.15 (s, 3H, CH₃), 2.14 (s, 3H, CH₃), 1.975 (s, 3H, CH₃).

β-anomer

¹H NMR (500 MHz, Chloroform-*d*): δ 5.84 (d, J = 1.2 Hz, 1H, H-1), 5.45 (dd, J = 3.3, 1.2 Hz, 1H, H-2), 5.30 – 5.22 (m, 1H, H-4), 5.11 (dd, J = 10.0, 3.3 Hz, 1H, H-3), 4.31 – 4.25 (m, 1H, H-6a), 4.11 (dd, J = 12.4, 2.4 Hz, 1H, H-6b), 3.78 (ddd, J = 9.9, 5.3, 2.4 Hz, 1H, H-5), 2.18 (s, 3H, CH₃), 2.07 (s, 3H, CH₃), 1.972 (s, 3H, CH₃).

Ethyl 2,3,4,6-tetra-O-acetyl-1-thio-α-D-mannopyranoside S2

Under a N₂ atmosphere, a solution of pentaacetate mannose **S1** (22 g, 56 mmol) and 4Å powdered molecular sieves in anhydrous CH_2Cl_2 (200 mL) was treated with ethanethiol (12.0 mL, 161 mmol) at room temperature. The reaction mixture was stirred at 0 °C for 30 min after which BF₃.Et₂O (21.0 mL, 169 mmol) was slowly added. After stirring the reaction mixture at room temperature for 18 h, the

reaction was quenched with saturated NaHCO₃. The organic layer was washed with water and brine, dried over anhydrous MgSO₄ and concentrated *in vacuo* to give a yellow paste. Purification by column chromatography (2:1; cyclohexane/EtOAc) gave the title compound **S2** as a white solid (15 g, 68% yield). ¹H NMR (500 MHz, Chloroform-*d*): δ 5.34 (dd, *J* = 3.2, 1.6 Hz, 1H, H-2), 5.32 (t, *J* = 9.9 Hz, 1H, H-4), 5.29 (d, *J* = 0.9 Hz, 1H, H-1), 5.27 (dd, *J* = 9.9, 3.3 Hz, 1H, H-3), 4.40 (ddd, *J* = 9.4, 5.3, 2.3 Hz, 1H, H-5), 4.32 (dd, *J* = 12.2, 5.4 Hz, 1H, H-6a), 4.10 (dd, *J* = 12.2, 2.4 Hz, 1H, H-6b), 2.74 – 2.55 (m, 2H, SCH₂CH₃), 2.17 (s, 3H, CH₃), 2.10 (s, 3H, CH₃), 2.05 (s, 3H, CH₃), 1.99 (s, 3H, CH₃), 1.31 (t, *J* = 7.4 Hz, 3H, SCH₂CH₃). ¹³C NMR (126 MHz, Chloroform-*d*): δ 170.7 (C=O), 170.1 (C=O), 169.91 (C=O), 169.86 (C=O), 82.4 (C-1), 71.3 (C-2), 69.6 (C-3), 69.1 (C-5), 66.5 (C-4), 62.6 (C-6), 25.6 (SCH₂CH₃), 21.1 (CH₃), 20.86 (CH₃), 20.85 (CH₃), 20.78 (CH₃), 14.90 (SCH₂CH₃). NMR data were consistent with literature data.^[3]

Ethyl 4,6-O-benzylidene-1-thio-α-D-mannopyranoside S3

A solution of **S2** (10.9 g, 27.8 mmol) in methanol (100 mL) was treated with Na₂CO₃ (883 mg, 8.34 mmol) and stirred at room temperature for 4 h. The reaction mixture was neutralised with resin IR-120, filtered and concentrated *in vacuo* to give a brown syrup. A solution of the syrup in MeCN (100 mL) was treated with TsOH.H₂O (529 mg, 2.78 mmol), followed by benzaldehyde dimethyl acetal (5.0 mL, 34 mmol) and stirred at 60 °C for 8 h. The reaction mixture was concentrated *in vacuo*, re-dissolved in CH₂Cl₂, washed with saturated NaHCO₃ and brine, dried over anhydrous MgSO₄ and concentrated *in vacuo*. After purification by column chromatography (100:0 to 80:20; CH₂Cl₂/Et₂O), the title compound **S3** was obtained as a white solid (2.4 g, 28% yield over 2 steps). ¹H NMR (500 MHz, Chloroform-*d*): δ 7.54 – 7.45 (m, 2H, ArCH), 7.44 – 7.31 (m, 3H, ArCH), 5.56 (s, 1H, PhC*H*), 5.36 (d, *J* = 1.1 Hz, 1H, H-1), 4.28 – 4.18 (m, 2H H-6a, H-3), 4.11 (dt, *J* = 3.1, 1.4 Hz, 1H, H-2), 4.05 (dt, *J* = 9.7, 3.3 Hz, 1H, H-5), 3.96 (t, *J* = 9.3 Hz, 1H, H-4), 3.89 – 3.79 (m, 1H, H-6b), 2.88 (d, *J* = 2.0 Hz, 1H, OH), 2.80 (d, *J* = 3.3 Hz, 1H, OH), 2.73 – 2.52 (m, 2H, SCH₂CH₃), 1.30 (t, *J* = 7.4 Hz, 3H, SCH₂CH₃). NMR data were consistent with literature data.^[4]

Under a N₂ atmosphere, a solution of mannopyranoside **S3** (2.4 g, 7.7 mmol) in anhydrous DMF (17 mL) was cooled to 0 °C and NaH (60% dispersion in mineral oil) (1.1 g, 27 mmol) was added. The reaction mixture was stirred at room temperature for 30 min after which it was again cooled down to 0 °C. Benzyl bromide (3.2 mL, 27 mmol) was added dropwise and the reaction mixture was left to stir at room temperature for 4 h. The reaction was quenched with MeOH and the mixture was concentrated *in vacuo* to give a yellow slurry. The slurry was diluted with CH₂Cl₂ (150 mL) and washed with 1 M HCl, followed by saturated NaHCO₃ and brine, dried over anhydrous MgSO₄ and concentrated *in vacuo*. Purification by column chromatography (95:5 to 0:100; Pentane/Et₂O) gave **S4** as clear yellowish syrup (3.1 g, 81% yield, $\alpha/\beta = 93:7$).

The following were observed for α/β anomers:

¹H NMR (500 MHz, Chloroform-*d*): δ 7.52 – 7.48 (m, 2H, ArCH), 7.41 – 7.26 (m, 13H, ArCH).

α-anomer

¹H NMR (500 MHz, Chloroform-*d*): δ 5.64 (s, 1H, PhC*H*), 5.30 (d, *J* = 1.3 Hz, 1H, H-1), 4.79 (d, *J* = 12.2 Hz, 1H, C*H*HPh), 4.76 (d, *J* = 12.3 Hz, 1H, C*H*HPh), 4.72 (d, *J* = 12.2 Hz, 1H, C*H*HPh), 4.62 (d, *J* = 12.1 Hz, 1H, C*H*HPh), 4.27 (t, *J* = 9.5 Hz, 1H, H-4), 4.23 – 4.15 (m, 2H, H-6a, H-5), 3.95 – 3.85 (m, 3H, H-3, H-6b, H-2), 2.65 – 2.48 (m, 2H, SC*H*₂CH₃), 1.23 (t, *J* = 7.4 Hz, 3H, SCH₂C*H*₃). ¹³C NMR (126 MHz, Chloroform-*d*) δ 138.6 (C), 138.1 (C), 137.8 (C), 129.0 (CH), 128.6 (CH), 128.4 (CH), 128.3 (CH), 128.2 (CH), 128.0 (CH), 127.8 (CH), 127.7 (CH), 126.2 (CH), 101.6 (PhCH), 83.7 (C-1), 79.4 (C-4), 78.3 (C-2), 76.6 (C-3), 73.3 (PhCH₂), 73.2 (PhCH₂), 68.8 (C-6), 64.8 (C-5), 25.5 (SCH₂CH₃), 15.1 (SCH₂CH₃). NMR data were consistent with literature data.^[5]

β-anomer

¹H NMR (500 MHz, Chloroform-*d*) selected signals: δ 5.62 (s, 1H, PhC*H*), 5.01 (d, *J* = 11.2 Hz, 1H, C*H*HPh), 4.86 (d, *J* = 12.4 Hz, 1H, C*H*HPh), 4.81 (d, *J* = 11.2 Hz, 1H, C*H*HPh), 4.72 (d, *J* = 12.4 Hz, 1H, C*H*HPh), 4.64 (d, *J* = 1.2 Hz, 1H, H-1), 4.31 – 4.24 (m, 1H, H-4), 4.01 (dd, *J* = 3.2, 1.2 Hz, 1H, H-2), 3.72 (dd, *J* = 9.9, 3.1 Hz, 1H, H-3), 3.40 (ddd, *J* = 10.1, 9.2, 5.0 Hz, 1H, H-5), 1.28 (t, *J* = 7.4 Hz, 3H, SCH₂C*H*₃).

Ethyl 2,3,6-tri-O-benzyl-1-thio-α-D-mannopyranoside S5

Based on the literature procedure,^[6] under a N₂ atmosphere, a solution of S4 (2.0 g, 4.1 mmol) in anhydrous CH₂Cl₂ (14 mL) was cooled to 0 °C and treated slowly with trifluoroacetic acid (1.9 mL, 25 mmol) followed by triethylsilane (4.0 mL, 25 mmol). The reaction mixture was warmed up to room temperature and stirred for 45 minutes. The reaction was diluted with CH₂Cl₂ and quenched with saturated NaCHO₃. The organic layer was washed with brine, dried over anhydrous MgSO₄ and concentrated in vacuo to give a yellow syrup. Purification by column chromatography (3:1 to 2:1; Pentane/Et₂O) gave S5 as a yellowish syrup (1.7 g, 85% yield). ¹H NMR (500 MHz, Chloroform-d): δ 7.41 – 7.21 (m, 15H, ArCH), 5.41 (d, J = 1.4 Hz, 1H, H-1), 4.70 (d, J = 12.2 Hz, 1H, CHHPh), 4.63 (d, J = 12.1 Hz, 1H, CHHPh), 4.58 (d, J = 12.2 Hz, 1H, CHHPh), 4.56 (d, J = 12.1 Hz, 1H, CHHPh), 4.54 (d, J = 11.7 Hz, 1H, CHHPh), 4.47 (d, J = 11.7 Hz, 1H, CHHPh), 4.15 – 4.05 (m, 2H, H-4, H-5), 3.84 (dd, J = 3.2, 1.5 Hz, 1H, H-2), 3.81 – 3.75 (m, 2H, H-6a, H-6b), 3.66 (dd, J = 9.1, 3.1 Hz, 1H, H-3), 2.70 - 2.53 (m, 2H, SCH₂CH₃), 2.48 (d, J = 1.8 Hz, 1H, OH), 1.26 (t, J = 7.4 Hz, 3H, SCH₂CH₃). ¹³C NMR (126 MHz, Chloroform-d): δ 138.4 (C), 138.1 (C), 138.0 (C), 128.6 (CH), 128.5 (CH), 128.4 (CH), 128.1 (CH), 128.0 (CH), 127.9 (CH), 127.7 (CH), 127.6 (CH), 82.1 (C-1), 79.9 (C-3), 75.8 (C-2), 73.6 (PhCH₂), 72.2 (PhCH₂), 71.9 (PhCH₂), 71.8 (C-5), 70.3 (C-6), 68.0 (C-4), 25.5 (SCH₂CH₃), 15.1 (SCH₂CH₃). NMR data were consistent with literature data.^[4]

Ethyl 6-O-triisopropylsilyl-1-thio-α/β-D-mannopyranoside S6

A solution of **S2** (13 g, 33 mmol) in methanol (250 mL) was treated with Na₂CO₃ (1.0 g, 9.9 mmol) and stirred at room temperature for 2 h. The reaction mixture was neutralised with resin IR-120, filtered and concentrated *in vacuo* to give a brown paste. Under a N₂ atmosphere, a solution of the crude material and imidazole (6.7 g, 99 mmol) in anhydrous DMF (100 mL) was treated with triisopropylsilyl chloride (11 mL, 52 mmol) and left to stir at room temperature for 2 h. The reaction mixture was diluted with CH₂Cl₂ and washed with water and brine, dried over anhydrous MgSO₄ and concentrated *in vacuo* to give a brown syrup. Purification by column chromatography (100:0 to 95:5; CH₂Cl₂/MeOH) gave **S6** as

a white solid (11 g, 85% yield over 2 steps, $\alpha/\beta = 90:10$). ESI-HRMS for $C_{17}H_{36}O_5SSiNa^+$ (M+Na)⁺ calculated: 403.1945; found: 403.1948.

α-anomer

¹H NMR (600 MHz, Chloroform-*d*): δ 5.30 (d, J = 1.4 Hz, 1H, H-1), 4.07 – 4.00 (m, 2H, H-2, H-5), 4.00 – 3.92 (m, 2H, H-6a, H-6b), 3.89 – 3.80 (m, 2H, H-3, H-4), 3.62 (s, 1H, OH), 3.02 (d, J = 3.8 Hz, 1H, OH), 2.80 (d, J = 3.5 Hz, 1H, OH), 2.66 (dq, J = 12.9, 7.4 Hz, 1H, SC*H*HCH₃), 2.58 (dq, J = 13.0, 7.4 Hz, 1H, SC*H*HCH₃), 1.29 (t, J = 7.4 Hz, 3H, SCH₂CH₃), 1.18 – 1.11 (m, 3H, SiC*H*(CH₃)₂), 1.08 (s, 12H, SiCH(CH₃)₂), 1.07 (s, 6H, SiCH(CH₃)₂). ¹³C NMR (151 MHz, Chloroform-*d*): δ 83.9 (C-1), 72.25 (C-3/4), 72.22 (C-3/4), 71.8 (C-2), 70.2 (C-5), 66.0 (C-6), 25.1 (SCH₂CH₃), 18.01 (SiCH(CH₃)₂), 15.0 (SCH₂CH₃), 11.87 (SiCH(CH₃)₂).

β-anomer

¹H NMR (600 MHz, Chloroform-*d*) selected signals: δ 4.68 (d, J = 1.0 Hz, 1H, H-1), 4.07 – 4.00 (m, 2H, H-2, H-6a), 4.00 – 3.92 (m, 1H, H-6b), 3.89 – 3.80 (m, 1H, H-4), 3.72 (s, 1H, OH), 3.62 (br s, 1H, H-3), 3.36 (ddd, J = 9.3, 7.1, 5.2 Hz, 1H, H-5), 2.73 (dqd, J = 11.5, 7.4, 3.7 Hz, 2H, SCH₂CH₃). ¹³C NMR (151 MHz, Chloroform-*d*) selected signals: δ 83.8 (C-1), 77.9 (C-5), 75.2 (C-3), 71.7 (C-2 or C-4), 65.9 (C-6), 25.4 (SCH₂CH₃), 15.2 (SCH₂CH₃).

Ethyl 2,3,4-tri-O-benzyl-6-O-triisopropylsilyl-1-thio-α-D-mannopyranoside S7

Under a N₂ atmosphere, a solution of mannopyranoside **S6** (2.00 g, 5.2 mmol) in anhydrous DMF (8.4 mL) was cooled to 0 °C and NaH (60% dispersion in mineral oil) (757 mg, 18.9 mmol) was added. The reaction mixture was stirred at room temperature for 30 min after which it was again cooled down to 0 °C. Benzyl bromide (2.2 mL, 19 mmol) was added dropwise and the reaction mixture was left to stir at room temperature for 2 h. The reaction was quenched with MeOH and diluted with pentane (150 mL). The aqueous layer was washed with pentane (2 x 40 mL). The organic layers were combined and neutralised with 1 M HCl. The organic layer was washed with water and brine, dried over anhydrous MgSO₄ and concentrated *in vacuo* to give a yellow syrup. Purification by column chromatography (98:2 to 95:5; Pentane/Et₂O) gave **S7** as a clear colourless syrup (3.0 g, 88% yield). ¹H NMR (600 MHz, Chloroform-*d*): δ 7.39 – 7.23 (m, 15H, ArCH), 5.33 (d, *J* = 1.5 Hz, 1H, H-1), 4.92 (d, *J* = 11.0 Hz, 1H, C*H*HPh), 4.66 (s, 2H, 2 x C*H*HPh), 4.65 – 4.60 (m, 2H, 2 x C*H*HPh), 4.58 (d, *J* = 11.7 Hz, 1H, C*H*HPh), 3.98 (ddd, *J* = 9.5, 4.5, 2.4 Hz, 1H, H-5), 3.96 – 3.91 (m, 3H, H-4, H-6a, H-6b), 3.86 (dd, *J* = 8.9, 3.2

Hz, 1H, H-3), 3.80 (dd, J = 3.2, 1.6 Hz, 1H, H-2), 2.62 (dq, J = 12.8, 7.4 Hz, 1H, SC*H*HCH₃), 2.53 (dq, J = 12.8, 7.5 Hz, 1H, SC*H*HCH₃), 1.22 (t, J = 7.4 Hz, 3H, SCH₂CH₃), 1.12 – 1.03 (m, 3H, SiC*H*(CH₃)₂), 1.06 (s, 12H, SiCH(CH₃)₂), 1.05 (s, 6H, SiCH(CH₃)₂). ¹³C NMR (151 MHz, Chloroform-*d*): δ 138.9 (C), 138.5 (C), 138.4 (C), 128.49 (CH), 128.46 (CH), 128.42 (CH), 128.2 (CH), 128.0 (CH), 127.9 (CH), 127.8 (CH), 127.7 (CH), 81.3 (C-1), 80.6 (C-3), 76.8 (C-2), 75.28 (PhCH₂), 75.25 (C-4), 73.8 (C-5), 72.3 (PhCH₂), 72.1 (PhCH₂), 63.3 (C-6), 25.0 (SCH₂CH₃), 18.14 (SiCH(CH₃)₂), 18.11 (SiCH(CH₃)₂), 14.9 (SCH₂CH₃), 12.2 (SiCH(CH₃)₂). ESI-HRMS for C₃₈H₅₄O₅SSiNa⁺ (M+Na)⁺ calculated: 673.3353; found: 673.3351.

Ethyl 2,3,4-tri-O-(4-methylbenzyl)-6-O-triisopropylsilyl-1-thio-α-D-mannopyranoside S8

Based on the literature procedure,^[7] under a N₂ atmosphere, a solution of mannopyranoside S6 (1.2 g, 3.2 mmol) in anhydrous DMF (11 mL) was cooled to 0 °C and NaH (60% dispersion in mineral oil) (577 mg, 14.4 mmol) was added. The reaction mixture was stirred at room temperature for 30 min after which it was again cooled down to 0 °C. 4-Methylbenzyl bromide (2.66 g, 14.4 mmol) was added and the reaction mixture was left to stir at room temperature for 5 h. The reaction was quenched with MeOH and diluted with Et₂O (100 mL). The aqueous layer was washed with Et₂O (2 x 40 mL). The organic layers were combined and neutralised with 1 M HCl. The organic layer was washed with water and brine, dried over anhydrous MgSO₄ and concentrated in vacuo to give a yellow oil. Purification by column chromatography (99:1 to 95:5; Pentane/Et₂O) gave S8 as a clear colourless syrup (1.7 g, 77% yield). ¹H NMR (600 MHz, Chloroform-d): δ 7.28 – 7.16 (m, 6H, ArCH), 7.14 – 7.07 (m, 6H, ArCH), 11.3 Hz, 2H, 2 x CHHPh), 4.52 (d, J = 11.5 Hz, 1H, CHHPh), 3.94 (ddd, J = 9.4, 5.7, 1.9 Hz, 1H, H-5), 3.91 – 3.83 (m, 3H, H-4, H-6a, H-6b), 3.82 (dd, *J* = 9.2, 3.1 Hz, 1H, H-3), 3.76 (dd, *J* = 3.1, 1.6 Hz, 1H, H-2), 2.60 (dq, J = 12.8, 7.3 Hz, 1H, SCHHCH₃), 2.51 (dq, J = 12.9, 7.5 Hz, 1H, SCHHCH₃), 2.343 (s, 3H, CH₃), 2.341 (s, 3H, CH₃), 2.33 (s, 3H, CH₃), 1.21 (t, J = 7.4 Hz, 3H, SCH₂CH₃), 1.10 – 1.05 (m, 3H, SiCH(CH₃)₂), 1.05 (s, 12H, SiCH(CH₃)₂), 1.04 (s, 6H, SiCH(CH₃)₂). ¹³C NMR (151 MHz, Chloroform-*d*): δ 137.37 (C), 137.35 (2 x C), 135.9 (C), 135.6 (C), 135.4 (C), 129.2 (CH), 129.13 (CH), 129.11 (CH), 128.3 (CH), 128.1 (CH), 81.2 (C-1), 80.5 (C-3), 76.4 (C-2), 75.1 (PhCH₂ and C-4), 73.8 (C-5), 72.1 (PhCH₂), 71.9 (PhCH₂), 63.3 (C-6), 24.9 (SCH₂CH₃), 21.34 (CH₃), 21.33 (CH₃), 21.31 (CH₃), 18.13 (SiCH(CH₃)₂), 18.11 (SiCH(CH₃)₂), 14.9 (SCH₂CH₃), 12.1 (SiCH(CH₃)₂). ESI-HRMS for C₄₁H₆₄O₅SSiN⁺ (M+NH₄)⁺ calculated: 710.4269; found: 710.4268.

Ethyl 2,3,4-tri-O-benzyl-6-O-(4-methylbenzyl)-1-thio-α-D-mannopyranoside S9

Based on the literature procedure,^[8] a solution of S7 (1.0 g, 1.5 mmol) in MeCN/H₂O (4:1, 15 mL) was treated with trifluoroacetic acid (0.94 mL, 12 mmol) at room temperature. After stirring for 16 h at room temperature, the reaction was quenched with saturated NaHCO3 and diluted with CH2Cl2 (100 mL). The aqueous layer was washed with CH₂Cl₂ (2 x 100 mL). The combined organic layers were washed with brine, dried over anhydrous MgSO₄ and concentrated *in vacuo* to give a clear syrup. The crude material was used in the next step without further purification. Based on the literature procedure,^[7] under a N₂ atmosphere, a solution of the crude mannopyranoside in anhydrous DMF (5 mL) was cooled to 0 °C and NaH (60% dispersion in mineral oil) (154 mg, 3.85 mmol) was added. The reaction mixture was stirred at room temperature for 30 min after which it was again cooled down to 0 °C. 4-Methylbenzyl bromide (712 mg, 3.85 mmol) was added and the reaction mixture was left to stir at room temperature for 2 h. The reaction was quenched with MeOH and diluted with Et₂O (100 mL). The aqueous layer was washed with Et₂O (2 x 40 mL). The organic layers were combined and neutralised with 1 M HCl. The organic layer was washed with water and brine, dried over anhydrous MgSO4 and concentrated in vacuo to give a yellow oil. Purification by column chromatography (90:10 to 60:40; Pentane/Et₂O) gave S9 as a yellowish syrup (850 mg, 92% yield over 2 steps). ¹H NMR (500 MHz, Chloroform-d): δ 7.41 – 7.35 (m, 2H, ArCH), 7.34 – 7.20 (m, 13H, ArCH), 7.15 (dd, *J* = 7.5, 2.1 Hz, 2H, ArCH), 7.10 (d, *J* = 7.8 Hz, 2H, ArCH), 5.40 (d, J = 1.3 Hz, 1H, H-1), 4.86 (d, J = 10.8 Hz, 1H, CHHPh), 4.73 (d, J = 12.4 Hz, 1H, CHHPh), 4.68 – 4.61 (m, 2H, 2 x CHHPh), 4.58 (d, J = 11.8 Hz, 1H, CHHPh), 4.55 (d, J = 11.8 Hz, 1H, *CH*HPh), 4.47 (d, *J* = 10.8 Hz, 1H, *CH*HPh), 4.46 (d, *J* = 11.9 Hz, 1H, *CH*HPh), 4.11 (ddd, *J* = 9.8, 4.8, 1.9 Hz, 1H, H-5), 4.05 – 3.98 (m, 1H, H-4), 3.86 – 3.81 (m, 2H, H-2, H-3), 3.80 (dd, J = 10.8, 4.7 Hz, 1H, H-6a), 3.68 (dd, J = 10.8, 1.9 Hz, 1H, H-6b), 2.69 – 2.49 (m, 2H, SCH₂CH₃), 2.31 (s, 3H, CH₃), 1.24 (t, J = 7.4 Hz, 3H, SCH₂CH₃). ¹³C NMR (126 MHz, Chloroform-*d*): δ 138.7 (C), 138.4 (C), 138.3 (C), 137.2 (C), 135.4 (C), 129.1 (CH), 128.49 (CH), 128.48 (CH), 128.4 (CH), 128.09 (CH), 128.06 (CH), 128.0 (CH), 127.9 (CH), 127.8 (CH), 127.74 (CH), 127.65 (CH), 82.0 (C-1), 80.5 (C-2/3), 76.5 (C-2/3), 75.21 (PhCH₂), 75.19 (C-4), 73.3 (PhCH₂), 72.19 (PhCH₂), 72.15 (C-5), 72.07 (PhCH₂), 69.0 (C-6), 25.4 (SCH₂CH₃), 21.3 (CH₃), 15.1 (SCH₂CH₃). ESI-HRMS for C₃₇H₄₂O₅SNa⁺ (M+Na)⁺ calculated: 621.2645; found: 621.2648.

Ethyl 2,3-di-O-isopropylidene-6-O-triisopropylsilyl-1-thio-α-D-mannopyranoside S10

Based on the literature procedure,^[9] a solution of **S6** (4.00 g, 10.5 mmol) in acetone (11 mL) was treated with 2,2-dimethoxypropane (52 mL, 0.42 mol) followed by TsOH.H₂O (400 mg, 2.10 mmol). After stirring the reaction mixture for 18 h at room temperature, the reaction was quenched with saturated NaHCO3 and the product was extracted with Et₂O (3 x 150 mL). The combined organic layers were dried over anhydrous MgSO₄ and concentrated *in vacuo* to give a yellow oil. Purification by column chromatography (90:10 to 80:20; Pentane/Et₂O) gave **S10** as a colourless syrup (3.7 g, 84% yield). ¹H NMR (500 MHz, Chloroform-*d*): δ 5.53 (s, 1H, H-1), 4.16 (dd, *J* = 5.6, 1.0 Hz, 1H, H-2), 4.11 (dd, *J* = 7.3, 5.7 Hz, 1H, H-3), 3.99 – 3.89 (m, 3H, H-6a, H-6b, H-5), 3.80 (ddd, *J* = 9.4, 7.3, 2.3 Hz, 1H, H-4), 3.09 (d, *J* = 2.4 Hz, 1H, OH), 2.69 (dq, *J* = 13.0, 7.3 Hz, 1H, SC*H*HCH₃), 2.54 (dq, *J* = 13.0, 7.5 Hz, 1H, SC*H*HCH₃), 1.54 (s, 3H, O2C(C*H*3)2), 1.35 (s, 3H, O2C(C*H*3)2), 1.29 (t, *J* = 7.4 Hz, 3H, SCH₂C*H*₃), 1.18 – 1.09 (m, 3H, SiC*H*(CH₃)₂), 1.08 (s, 12H, SiCH(C*H*₃)₂), 1.07 (s, 6H, SiCH(C*H*₃)₂). ¹³C NMR (126 MHz, Chloroform-*d*): δ 109.7 (O2C(CH3)2), 79.5 (C-1), 78.3 (C-3), 76.3 (C-2), 72.9 (C-4), 69.1 (C-5), 65.3 (C-6), 28.3 (O2C(CH3)2), 26.5 (O2C(CH3)2), 24.3 (SCH₂CH₃), 18.0 (SiCH(C*H*₃)₂), 14.6 (SCH₂CH₃), 11.9 (SiCH(CH₃)₂). ESI-HRMS for C₂₀H₄₀O₅SSiNa⁺ (M+Na)⁺ calculated: 443.2258; found: 443.2258.

Ethyl 2,3-di-*O*-isopropylidene-4-*O*-(4-methylbenzyl)-6-*O*-triisopropylsilyl-1-thio-α-Dmannopyranoside S11

Based on the literature procedure,^[7] under a N₂ atmosphere, a solution of mannopyranoside **S10** (1.1 g, 2.6 mmol) in anhydrous DMF (5 mL) was cooled to 0 °C and NaH (60% dispersion in mineral oil) (208 mg, 5.21 mmol) was added. The reaction mixture was stirred at room temperature for 30 min after which it was again cooled down to 0 °C. 4-Methylbenzyl bromide (962 mg, 5.20 mmol) was added and the reaction mixture was left to stir at room temperature for 2 h. The reaction was quenched with MeOH and diluted with Et₂O (100 mL). The aqueous layer was washed with Et₂O (2 x 75 mL). The organic

layers were combined and neutralised with 1 M HCl. The organic layer was washed with water and brine, dried over anhydrous MgSO₄ and concentrated *in vacuo* to give a yellow oil. Purification by column chromatography (98:2 to 95:5; Pentane/Et₂O) gave **S11** as a clear yellowish syrup (1.3 g, 93% yield). ¹H NMR (500 MHz, Chloroform-*d*): δ 7.24 – 7.18 (m, 2H, ArCH), 7.13 (d, J = 7.8 Hz, 2H, ArCH), 5.54 (s, 1H, H-1), 4.84 (d, J = 11.3 Hz, 1H, C*H*HPh), 4.57 (d, J = 11.3 Hz, 1H, C*H*HPh), 4.29 (dd, J = 7.2, 5.7 Hz, 1H, H-3), 4.15 (dd, J = 5.7, 0.9 Hz, 1H, H-2), 3.96 (qd, J = 5.6, 1.9 Hz, 1H, H-5), 3.94 (dd, J = 11.1, 1.8 Hz, 1H, H-6a), 3.80 (dd, J = 11.0, 5.7 Hz, 1H, H-6b), 3.57 (dd, J = 10.2, 7.2 Hz, 1H, H-4), 2.71 (dq, J = 12.9, 7.3 Hz, 1H, SC*H*HCH₃), 2.51 (dq, J = 12.9, 7.5 Hz, 1H, SC*H*HCH₃), 2.33 (s, 3H, CH₃), 1.52 (s, 3H, O2C(CH3)2), 1.36 (s, 3H, O2C(CH3)2), 1.26 (t, J = 7.4 Hz, 3H, SCH₂CH₃), 1.13 – 1.02 (m, 21H, SiC*H*(CH₃)₂). ¹³C NMR (126 MHz, Chloroform-*d*): δ 137.4 (C), 135.5 (C), 129.1 (CH), 128.2 (CH), 109.4 (O2C(CH3)2), 79.0 (C-3), 78.9 (C-1), 76.8 (C-2), 76.1 (C-4), 73.1 (PhCH₂), 70.7 (C-5), 63.2 (C-6), 28.2 (O2C(CH3)2), 26.6 (O2C(CH3)2), 23.8 (SCH₂CH₃), 21.3 (CH₃), 18.1 (SiCH(CH₃)₂), 14.4 (SCH₂CH₃), 12.1 (SiCH(CH₃)₂). ESI-HRMS for C₂₈H₄₈O₅SSiNa⁺ (M+Na)⁺ calculated: 547.2884; found: 547.2884.

2,3,4,6-Tetra-O-benzyl-α/β-D-mannopyranose 1a

A solution of **S2** (2.8 g, 7.1 mmol) in methanol (30 mL) was treated with Na₂CO₃ (222 mg, 2.09 mmol) and stirred at room temperature for 14 h. The reaction mixture was neutralised with resin IR-120, filtered and concentrated *in vacuo* to give a brown syrup. Under a N₂ atmosphere, a solution of the syrup in anhydrous DMF (18 mL) was cooled to 0 °C and NaH (60% dispersion in mineral oil) (1.6 g, 39 mmol) was added. The reaction mixture was stirred at room temperature for 30 min after which it was again cooled down to 0 °C. Benzyl bromide (4.7 mL, 39 mmol) was added dropwise and the reaction mixture was left to stir at room temperature for 4 h. The reaction was quenched with MeOH and the mixture was concentrated *in vacuo* to give a yellow slurry. The slurry was diluted with CH₂Cl₂ and washed with 1 M HCl, followed by saturated NaHCO₃ and brine, dried over anhydrous MgSO₄ and concentrated *in vacuo*. Purification by column chromatography (90:10 to 80:20; Pentane/Et₂O) gave **S12** as a clear yellow oil (3.8 g, 90% yield, α only). ¹H NMR (400 MHz, Chloroform-*d*): δ 7.41 – 7.22 (m, 18H, ArCH), 7.21 – 7.11 (m, 2H, ArCH), 5.40 (d, *J* = 1.4 Hz, 1H, H-1), 4.88 (d, *J* = 10.8 Hz, 1H, C*H*HPh), 4.73 (d, *J* = 12.4 Hz, 1H, C*H*HPh), 4.59 (d, *J* = 11.9 Hz, 1H, C*H*HPh), 4.55 (d, *J* = 11.9 Hz, 1H, C*H*HPh), 4.53 – 4.46 (m, 2H, 2 x C*H*HPh), 4.13 (ddd, *J* = 9.8, 4.8, 1.9 Hz, 1H, H-5), 4.06 – 3.99 (m, 1H, H-4), 3.87 – 3.78 (m, 3H, H-2, H-3, H-6a), 3.71 (dd, *J* = 10.8, 1.9 Hz, 1H, H-6b),

2.70 – 2.48 (m, 2H, SC*H*₂CH₃), 1.24 (t, *J* = 7.4 Hz, 3H, SCH₂C*H*₃). ¹³C NMR (126 MHz, Chloroform*d*): δ 138.7 (C), 138.5 (C), 138.4 (C), 138.3 (C), 128.49 (CH), 128.48 (CH), 128.42 (CH), 128.39 (CH), 128.1 (CH), 128.0 (CH), 127.93 (CH), 127.85 (CH), 127.8 (CH), 127.7 (CH), 127.6 (CH), 82.0 (C-1), 80.5 (C-), 76.5 (C-), 75.24 (PhCH), 75.20 (C-4), 73.4 (PhCH), 72.2 (PhCH), 72.14 (C-5), 72.09 (PhCH), 69.3 (C-6), 25.5 (SCH₂CH₃), 15.1 (SCH₂CH₃). NMR data were consistent with literature data.^[3]

S12 was dissolved in 9:1 acetone/water (30 mL) and treated with NBS (3.5 g, 20 mmol) at room temperature. After 5 h the reaction was quenched with saturated Na₂S₂O₃ and diluted with CH₂Cl₂. The aqueous layer was washed with CH₂Cl₂. The combined organic layers were washed with water and brine, dried over anhydrous MgSO₄, filtered and concentrated *in vacuo* to give a yellow syrup. Purification by column chromatography (2:1 to 1:1; Pentane/Et₂O) afforded the hydrolysed product **1a** as a colourless syrup (3.1 g, 89% yield, $\alpha/\beta = 90:10$). ¹H NMR (500 MHz, Chloroform-*d*): δ 7.40 – 7.20 (m, 18H, ArCH), 7.20 – 7.11 (m, 2H, ArCH), 5.24 (dd, *J* = 3.4, 1.9 Hz, 1H, H-1), 4.87 (d, *J* = 10.9 Hz, 1H, CHHPh), 4.74 (d, *J* = 12.4 Hz, 1H, CHHPh), 4.70 (d, *J* = 12.5 Hz, 1H, CHHPh), 4.61 (s, 2H, 2 x CHHPh), 4.58 (d, *J* = 12.2 Hz, 1H, CHHPh), 4.52 (d, *J* = 12.2 Hz, 1H, CHHPh), 4.49 (d, *J* = 10.9 Hz, 1H, CHHPh), 4.03 (ddd, *J* = 9.9, 6.4, 2.1 Hz, 1H, H-5), 3.95 (dd, *J* = 9.3, 3.0 Hz, 1H, H-3), 3.85 (t, *J* = 9.6 Hz, 1H, H-4), 3.79 (dd, *J* = 3.0, 1.9 Hz, 1H, H-2), 3.71 (dd, *J* = 10.5, 2.1 Hz, 1H, H-6a), 3.66 (dd, *J* = 10.5, 6.4 Hz, 1H, H-6b), 3.23 (d, *J* = 3.4 Hz, 1H, OH).

2,3,4-Tri-O-benzyl-6-O-(4-methylbenzyl)-α/β-D-mannopyranose 1b

A solution of **S9** (829 mg, 1.38 mmol) in 9:1 acetone/water (14 mL) and treated with NBS (737 mg, 4.14 mmol) at room temperature. After 2 h the reaction was quenched with saturated Na₂S₂O₃ and diluted with CH₂Cl₂. The aqueous layer was washed with CH₂Cl₂. The combined organic layers were washed with water and brine, dried over anhydrous MgSO₄, filtered and concentrated *in vacuo* to give a colourless syrup. Purification by column chromatography (100:0 to 90:10; CH₂Cl₂/Et₂O) afforded the hydrolysed product **1b** as a white solid (681 mg, 89% yield, $\alpha/\beta = 80:20$). ESI-HRMS for C₃₅H₃₈O₆Na⁺ (M+Na)⁺ calculated: 577.2561; found: 577.2559.

The following were observed for α/β anomers:

¹H NMR (600 MHz, Chloroform-*d*): δ 7.39 – 7.05 (m, 19H, ArCH), 4.60 (s, 2H, 2 x C*H*HPh), 2.31 (s, 3H, CH₃).

α-anomer

¹H NMR (600 MHz, Chloroform-*d*): δ 5.24 (dd, J = 3.4, 1.9 Hz, 1H, OH), 4.86 (d, J = 10.9 Hz, 1H, C*H*HPh), 4.73 (d, J = 12.5 Hz, 1H, C*H*HPh), 4.70 (d, J = 12.4 Hz, 1H, C*H*HPh), 4.54 (d, J = 12.0 Hz, 1H, C*H*HPh), 4.48 (d, J = 12.0 Hz, 1H, C*H*HPh), 4.47 (d, J = 10.9 Hz, 1H, C*H*HPh), 4.02 (ddd, J = 9.9, 6.5, 2.1 Hz, 1H, H-5), 3.95 (dd, J = 9.3, 3.1 Hz, 1H, H-3), 3.87 – 3.81 (m, 1H, H-4), 3.78 (dd, J = 3.1, 1.9 Hz, 1H, H-2), 3.69 (dd, J = 10.4, 2.1 Hz, 1H, H-6a), 3.64 (dd, J = 10.5, 6.5 Hz, 1H, H-6b), 3.35 (d, J = 3.4 Hz, 1H, OH). ¹³C NMR (151 MHz, Chloroform-*d*): δ 138.6 (C), 138.54 (C), 138.50 (C), 137.39 (C), 135.1 (C), 129.14 (CH), 128.47 (CH), 128.46 (CH), 128.4 (CH), 128.30 (CH), 128.11 (CH), 127.98 (CH), 127.76 (CH), 127.72 (CH), 127.70 (CH), 127.67 (CH), 92.9 (C-1), 79.9 (C-3), 75.38 (C-4), 75.2 (PhCH₂), 75.0 (C-2), 73.3 (PhCH₂), 72.8 (PhCH₂), 72.3 (PhCH₂), 71.7 (C-5), 69.5 (C-6), 21.31 (CH₃).

β-anomer

¹H NMR (600 MHz, Chloroform-*d*): δ 5.07 (d, J = 11.7 Hz, 1H, C*H*HPh), 4.83 (d, J = 10.7 Hz, 1H, C*H*HPh), 4.76 – 4.67 (m, 3H, 3 x C*H*HPh), 4.64 (dd, J = 11.5, 1.4 Hz, 1H, H-1), 4.51 (d, J = 10.7 Hz, 1H, C*H*HPh), 3.94 – 3.90 (m, 1H, H-4), 3.85 – 3.80 (m, 2H, H-2, OH), 3.71 (d, J = 3.5 Hz, 2H, H-6a,H-6b), 3.58 (dd, J = 9.4, 2.8 Hz, 1H, H-3), 3.43 (dt, J = 9.5, 3.5 Hz, 1H, H-5). ¹³C NMR (151 MHz, Chloroform-*d*): δ 138.4 (C), 138.3 (C), 138.2 (C), 137.37 (C), 135.2 (C), 129.13 (CH), 128.7 (CH), 128.6 (CH), 128.45 (CH), 128.33 (CH), 128.32 (CH), 128.12 (CH), 128.06 (CH), 127.96 (CH), 127.80 (CH), 93.9 (C-1), 83.2 (C-3), 76.2 (C-2), 75.35 (C-5), 75.1 (PhCH₂), 74.8 (PhCH₂), 74.7 (C-4), 73.5 (PhCH₂), 73.0 (PhCH₂), 68.9 (C-6), 21.30 (CH₃).

2,3,6-Tri-O-benzyl-4-O-(4-methylbenzyl)-α/β-D-mannopyranose 1c

Based on the literature procedure,^[8] a solution of **S11** (1.3 g, 2.5 mmol) in MeCN/H₂O (4:1, 13 mL) was treated with trifluoroacetic acid (2.0 mL, 26 mmol) at room temperature. After stirring for 7 h at room temperature, the reaction was quenched with saturated NaHCO₃ and diluted with CH_2Cl_2 (150 mL). The aqueous layer was washed with CH_2Cl_2 (2 x 100 mL). The combined organic layers were washed with brine, dried over anhydrous MgSO₄ and concentrated *in vacuo* to give a bright yellow oil. The crude material was used in the next step without further purification.

Under a N₂ atmosphere, a solution of crude mannopyranoside **S13** in anhydrous DMF (5 mL) was cooled to 0 °C and NaH (60% dispersion in mineral oil) (462 mg, 11.3 mmol) was added. The reaction mixture

was stirred at room temperature for 15 min after which it was again cooled down to 0 °C. Benzyl bromide (1.3 mL, 11 mmol) was added and the reaction mixture was left to stir at room temperature for 3 h. The reaction was quenched with MeOH and diluted with Et_2O (100 mL). The aqueous layer was washed with Et_2O (2 x 75 mL). The organic layers were combined and dried over anhydrous MgSO₄ and concentrated *in vacuo* to give a yellow oil.

A solution of crude **S14** in 9:1 acetone/water (13 mL) and treated with NBS (1.3 g, 7.5 mmol) at room temperature. After 2.5 h the reaction was quenched with saturated Na₂S₂O₃ and diluted with CH₂Cl₂. The aqueous layer was washed with CH₂Cl₂ (2 x 100 mL). The combined organic layers were washed with water and brine, dried over anhydrous MgSO₄, filtered and concentrated *in vacuo* to give a yellow syrup. Purification by column chromatography (100:0 to 90:10; CH₂Cl₂/Et₂O) afforded the hydrolysed product **1c** as a yellowish syrup (1.1 g, 79% yield over 3 steps, $\alpha/\beta = 85:15$). ESI-HRMS for C₃₅H₃₈O₆Na⁺ (M+Na)⁺ calculated: 577.2561; found: 577.2565.

The following were observed for α/β anomers:

¹H NMR (500 MHz, Chloroform-*d*): δ 7.39 – 7.23 (m, 15H, ArCH), 7.11 – 6.96 (m, 4H, ArCH), 2.32 (s, 3H, CH₃). ¹³C NMR (126 MHz, Chloroform-*d*): δ 75.1 (Ph*C*H₂), 21.3 (CH₃).

α-anomer

¹H NMR (500 MHz, Chloroform-*d*): δ , 5.25 (dd, J = 3.4, 1.9 Hz, 1H, H-1), 4.83 (d, J = 10.6 Hz, 1H, C*H*HPh), 4.75 (d, J = 12.6 Hz, 1H, C*H*HPh), 4.70 (d, J = 12.6 Hz, 1H, C*H*HPh), 4.64 (d, J = 11.9 Hz, 1H, C*H*HPh), 4.60 (d, J = 11.9 Hz, 1H, C*H*HPh), 4.58 (d, J = 12.3 Hz, 1H, C*H*HPh), 4.53 (d, J = 12.3 Hz, 1H, C*H*HPh), 4.45 (d, J = 10.6 Hz, 1H, C*H*HPh), 4.01 (ddd, J = 9.8, 6.2, 2.1 Hz, 1H, H-5), 3.94 (dd, J = 9.3, 3.0 Hz, 1H, H-3), 3.85 (t, J = 9.6 Hz, 1H, H-4), 3.79 (dd, J = 3.0, 2.0 Hz, 1H, H-2), 3.71 (dd, J = 10.5, 2.2 Hz, 1H, H-6a), 3.66 (dd, J = 10.5, 6.3 Hz, 1H, H-6b), 2.92 (d, J = 3.3 Hz, 1H, OH). ¹³C NMR (126 MHz, Chloroform-*d*): δ 138.7 (C), 138.5 (C), 138.2 (C), 137.4 (C), 135.5 (C), 129.1 (CH), 128.48 (CH), 128.45 (CH), 128.28 (CH), 128.09 (CH), 127.97 (CH), 127.8 (CH), 127.71 (CH), 127.66 (CH), 92.9 (C-1), 79.9 (C-3), 75.2 (C-4), 75.0 (C-2), 73.5 (PhCH₂), 72.8 (PhCH₂), 72.4 (PhCH₂), 71.8 (C-5), 69.8 (C-6).

β-anomer

¹H NMR (500 MHz, Chloroform-*d*): δ 5.09 (d, J = 11.8 Hz, 1H, C*H*HPh), 4.80 (d, J = 10.7 Hz, 1H, C*H*HPh), 4.74 – 4.66 (m, 3H, 3 x C*H*HPh), 4.66 – 4.60 (m, 3H, H-1, 2 x C*H*HPh), 4.50 (d, J = 10.9 Hz, 1H, C*H*HPh), 3.92 (t, J = 9.4 Hz, 1H, H-4), 3.84 – 3.82 (m, 1H, H-2), 3.80 – 3.74 (m, 1H, OH), 3.74 – 3.70 (m, 2H, H-6a, H-6b), 3.59 (dd, J = 9.4, 2.8 Hz, 1H, H-3), 3.43 (ddd, J = 9.5, 4.2, 2.9 Hz, 1H, H-5). ¹³C NMR (126 MHz, Chloroform-*d*): δ 138.34 (C), 138.29 (C), 137.6 (C), 135.3 (C), 129.2 (CH), 128.7 (CH), 128.6 (CH), 128.31 (CH), 128.05 (CH), 127.95 (CH), 127.1 (CH), 93.8 (C-1), 83.2 (C-3), 76.3 (C-2), 75.4 (C-5), 74.8 (PhCH₂), 74.6 (C-4), 73.7 (PhCH₂), 73.0 (PhCH₂), 69.2 (C-6).

2,3,4-Tri-O-benzyl-6-O-(4-methoxybenzyl)-α-D-mannopyranose 1d

Under a N₂ atmosphere, a solution of mannopyranoside **S6** (0.50 g, 1.3 mmol) in anhydrous DMF (2.6 mL) was cooled to 0 °C and NaH (60% dispersion in mineral oil) (0.21 g, 5.2 mmol) was added followed by benzyl bromide (0.62 mL, 5.2 mmol). After stirring the reaction mixture for 11 h, it was quenched with MeOH and diluted with Et₂O (40 mL). The aqueous layer was washed with Et₂O (2 x 40 mL). The organic layers were combined and neutralised with 1 M HCl. The organic layer was washed with water and brine, dried over anhydrous MgSO₄ and concentrated *in vacuo* to give a yellow oil.

Based on the literature procedure,^[8] a solution of crude **S7** in MeCN/H₂O (4:1, 6.5 mL) was treated with trifluoroacetic acid (0.74 mL, 10 mmol) at room temperature. After stirring for 8 h at room temperature, the reaction was quenched with saturated NaHCO₃ and diluted with CH₂Cl₂ (50 mL). The aqueous layer was washed with CH₂Cl₂ (2 x 50 mL). The combined organic layers were washed with brine, dried over anhydrous MgSO₄ and concentrated *in vacuo* to give a yellow syrup. The crude material was used in the next step without further purification. Under a N₂ atmosphere, a solution of the crude mannopyranoside in anhydrous DMF (2.5 mL) was cooled to 0 °C and NaH (60% dispersion in mineral oil) (130 mg, 3.25 mmol). After 15 minutes, 4-methoxylbenzyl bromide (0.45 mL, 3.3 mmol) was added and the reaction mixture was left to stir at room temperature for 2 h. The reaction was quenched with MeOH and diluted with Et₂O (100 mL). The aqueous layer was washed with Et₂O (2 x 40 mL). The organic layers were combined and neutralised with 1 M HCl. The organic layer was washed with water and brine, dried over anhydrous MgSO₄ and concentrated *in vacuo* to give a yellow oil.

A solution of **S15** in 9:1 acetone/water (13 mL) and treated with NBS (0.69 g, 3.9 mmol) at room temperature. After 2 h the reaction was quenched with saturated Na₂S₂O₃ and diluted with CH₂Cl₂. The aqueous layer was washed with CH₂Cl₂. The combined organic layers were washed with water and brine, dried over anhydrous MgSO₄, filtered and concentrated *in vacuo* to give a colourless syrup. Purification by column chromatography (96:4; CH₂Cl₂/Et₂O) afforded the hydrolysed product along with an aromatic impurity. Trituration from Pentane/Et₂O (90:10) afforded pure **1d** as a white solid (471 mg, 63% yield over 4 steps, α -only). ¹H NMR (600 MHz, Chloroform-*d*): δ 7.49 – 7.03 (m, 17H, ArCH), 6.82 (d, *J* = 8.1 Hz, 2H, ArCH), 5.30 – 5.13 (m, 1H, H-1), 4.86 (d, *J* = 10.9 Hz, 1H, C*H*HPh), 4.74 (d, *J* = 12.5 Hz, 1H, C*H*HPh), 4.70 (d, *J* = 12.6 Hz, 1H, C*H*HPh), 4.60 (s, 2H, 2 x C*H*HPh), 4.54 – 4.39 (m, 3H, 3 x C*H*HPh), 4.02 (br t, *J* = 8.1 Hz, 1H, H-5), 3.94 (dd, *J* = 9.4, 3.1 Hz, 1H, H-3), 3.83 (t, *J* = 9.5

Hz, 1H, H-4), 3.78 (s, 1H, H-2), 3.75 (s, 3H, OCH₃), 3.68 (d, *J* = 10.4 Hz, 1H, H-6a), 3.63 (dd, *J* = 10.4, 6.7 Hz, 1H, H-6b), 3.39 (d, *J* = 3.4 Hz, 1H, OH). ¹³C NMR (151 MHz, Chloroform-*d*): δ 159.3 (C), 138.6 (C), 138.54 (C), 138.51 (C), 130.2 (C), 129.8 (CH), 128.48 (CH), 128.46 (CH), 128.4 (CH), 128.1 (CH), 127.98 (CH), 127.76 (CH), 127.73 (CH), 127.72 (CH), 127.67 (CH), 113.9 (CH), 92.9 (C-1), 79.9 (C-3), 75.4 (C-4), 75.2 (PhCH₂), 75.0 (C-2), 73.0 (PhCH₂), 72.8 (PhCH₂), 72.3 (PhCH₂), 71.6 (C-5), 69.3 (C-6), 55.3 (OCH₃). NMR data were consistent with literature data.^[10]

2,3,4-Tri-O-benzyl-6-O-(2-naphthyl)-α/β-D-mannopyranose 1e

Under a N₂ atmosphere, a solution of mannopyranoside **S6** (0.50 g, 1.3 mmol) in anhydrous DMF (2.6 mL) was cooled to 0 °C and NaH (60% dispersion in mineral oil) (0.21 g, 5.2 mmol) was added followed by benzyl bromide (0.62 mL, 5.2 mmol). After stirring the reaction mixture for 11 h, it was quenched with MeOH and diluted with Et₂O (40 mL). The aqueous layer was washed with Et₂O (2 x 40 mL). The organic layers were combined and neutralised with 1 M HCl. The organic layer was washed with water and brine, dried over anhydrous MgSO₄ and concentrated *in vacuo* to give a yellow oil.

Based on the literature procedure,^[8] a solution of crude **S7** in MeCN/H₂O (4:1, 6.5 mL) was treated with trifluoroacetic acid (0.74 mL, 10 mmol) at room temperature. After stirring for 8 h at room temperature, the reaction was quenched with saturated NaHCO₃ and diluted with CH_2Cl_2 (50 mL). The aqueous layer was washed with CH_2Cl_2 (2 x 50 mL). The combined organic layers were washed with brine, dried over anhydrous MgSO₄ and concentrated *in vacuo* to give a yellow syrup. The crude material was used in the next step without further purification. Under a N₂ atmosphere, a solution of the crude mannopyranoside in anhydrous DMF (2.5 mL) was cooled to 0 °C and NaH (60% dispersion in mineral oil) (130 mg, 3.25 mmol). After 5 minutes, 2-(bromomethyl)naphthalene (719 mg, 3.25 mmol) was added and the reaction mixture was left to stir at room temperature for 1 h. The reaction was quenched with MeOH and diluted with Et_2O (100 mL). The aqueous layer was washed with Et_2O (2 x 40 mL). The organic layers were combined and neutralised with 1 M HCl. The organic layer was washed with water and brine, dried over anhydrous MgSO₄ and concentrated *in vacuo* to give a yellow oil.

A solution of **S16** in 9:1 acetone/water (13 mL) and treated with NBS (0.69 g, 3.9 mmol) at room temperature. After 2 h the reaction was quenched with saturated $Na_2S_2O_3$ and diluted with CH_2Cl_2 . The aqueous layer was washed with CH_2Cl_2 . The combined organic layers were washed with water and

brine, dried over anhydrous MgSO₄, filtered and concentrated *in vacuo* to give a colourless syrup. Purification by column chromatography (1:1 to 1:2; Pentane/Et₂O) afforded the hydrolysed product along with an aromatic impurity. Trituration from Pentane/Et₂O (90:10) afforded pure **1e** as a white solid (523 mg, 68% yield over 4 steps, $\alpha/\beta = 87$:13). ESI-HRMS for C₃₈H₃₈O₆Na⁺ (M+Na)⁺ calculated: 613.2561; found: 613.2559.

The following were observed for α/β anomers:

¹H NMR (600 MHz, Chloroform-*d*): δ 7.82 – 7.72 (m, 4H, ArCH), 7.49 – 7.42 (m, 3H, ArCH), 7.39 – 7.22 (m, 10H, ArCH), 7.21 – 7.08 (m, 3H, ArCH), 7.05 (d, *J* = 7.1 Hz, 2H, ArCH), 4.76 – 4.67 (m, 4H, 4 x C*H*HPh).

α-anomer

¹H NMR (600 MHz, Chloroform-*d*): δ 5.26 (dd, J = 3.4, 1.9 Hz, 1H, H-1), 4.85 (d, J = 10.9 Hz, 1H, C*H*HPh), 4.57 (s, 2H, 2 x C*H*HPh), 4.45 (d, J = 10.9 Hz, 1H, C*H*HPh), 4.07 (ddd, J = 9.1, 6.6, 2.0 Hz, 1H, H-5), 3.94 (dd, J = 9.4, 2.9 Hz, 1H, H-3), 3.85 (t, J = 9.6 Hz, 1H, H-4), 3.78 (t, J = 2.5 Hz, 1H, H-2), 3.70 (dd, J = 10.5, 2.0 Hz, 1H, H-6a), 3.70 (dd, J = 10.5, 6.6 Hz, 1H, H-6b), 3.33 (d, J = 3.4 Hz, 1H, OH). ¹³C NMR (151 MHz, Chloroform-*d*): δ 138.6 (C), 138.5 (C), 138.4 (C), 135.6 (C), 133.37 (C), 133.15 (C), 128.5 (CH), 128.37 (CH), 128.30 (CH), 128.1 (CH), 128.04 (CH), 127.98 (CH), 127.83 (CH), 127.77 (CH), 127.74 (CH), 127.68 (CH), 127.67 (CH), 126.9 (CH), 126.18 (CH), 126.0 (CH), 92.9 (C-1), 79.9 (C-3), 75.4 (C-4), 75.18 (PhCH₂), 75.0 (C-2), 73.6 (PhCH₂), 72.8 (PhCH₂), 72.3 (PhCH₂), 71.7 (C-5), 69.8 (C-6).

β-anomer

¹H NMR (600 MHz, Chloroform-*d*): δ 5.07 (d, J = 11.8 Hz, 1H, C*H*HPh), 4.82 (d, J = 10.7 Hz, 1H, C*H*HPh), 4.79 (d, J = 12.3 Hz, 1H, C*H*HPh), 4.65 (dd, J = 11.6, 1.4 Hz, 1H, H-1), 4.51 (d, J = 10.7 Hz, 1H, C*H*HPh), 3.96 – 3.91 (m, 1H, H-4), 3.82 (d, J = 11.4 Hz, 1H, OH), 3.81 (d, J = 2.2 Hz, 1H, H-2), 3.80 – 3.74 (m, 2H, H-6a, H-6b), 3.56 (dd, J = 9.4, 2.8 Hz, 1H, H-3), 3.46 (ddd, J = 9.6, 4.5, 2.8 Hz, 1H, H-5). ¹³C NMR (151 MHz, Chloroform-*d*): δ 138.3 (C), 138.20 (C), 138.15 (C), 135.8 (C), 133.38 (C), 133.14 (C), 128.7 (CH), 128.6 (CH), 128.41 (CH), 128.26 (CH), 126.23 (CH), 125.9 (CH), 93.9 (C-1), 83.2 (C-3), 76.2 (C-2), 75.4 (C-5), 75.16 (PhCH₂), 74.8 (PhCH₂), 74.7 (C-4), 73.8 (PhCH₂), 72.9 (PhCH₂), 69.2 (C-6).

2,3,4-Tri-O-benzyl-6-O-tert-butyldiphenylsilyl-α/β-D-mannopyranose 1f

A solution of **S2** (500 mg, 1.27 mmol) in methanol (10 mL) was treated with Na₂CO₃ (40 mg, 0.38 mmol) and stirred at room temperature for 1.5 h. The reaction mixture was neutralised with resin IR-120, filtered and concentrated *in vacuo* to give a brown paste. Under a N₂ atmosphere, a solution of the crude material and imidazole (259 mg, 3.81 mmol) in anhydrous DMF (2.5 mL) was treated with TBDPSC1 (0.50 mL, 1.9 mmol) and left to stir at room temperature for 2.5 h. The reaction mixture was diluted with Et₂O and washed with water and brine, dried over anhydrous MgSO₄ and concentrated *in vacuo* to give a yellow syrup.

Under a N₂ atmosphere, a solution of crude mannopyranoside **S17** in anhydrous DMF (2.5 mL) was cooled to 0 °C and NaH (60% dispersion in mineral oil) (228 mg, 5.72 mmol) was added. The reaction mixture was stirred at room temperature for 15 min after which it was again cooled down to 0 °C. Benzyl bromide (0.68 mL, 5.7 mmol) was added and the reaction mixture was left to stir at room temperature for 6 h. The reaction was quenched with MeOH and diluted with Et_2O (100 mL). The aqueous layer was washed with Et_2O (2 x 75 mL). The organic layers were combined and dried over anhydrous MgSO₄ and concentrated *in vacuo* to give a yellow oil.

A solution of crude **S18** in 9:1 acetone/water (13 mL) and treated with NBS (678 mg, 3.81 mmol) at room temperature. After 50 minutes the reaction was quenched with saturated Na₂S₂O₃ and diluted with CH₂Cl₂. The aqueous layer was washed with CH₂Cl₂ (2 x 100 mL). The combined organic layers were washed with water and brine, dried over anhydrous MgSO₄, filtered and concentrated *in vacuo* to give a yellow syrup. Purification by column chromatography (3:1 to 0:1; Pentane/Et₂O) afforded the hydrolysed product **1f** as a yellowish syrup (388 mg, 44% yield over 4 steps, $\alpha/\beta = 85:15$).

The following were observed for α/β anomers:

¹H NMR (500 MHz, Chloroform-*d*): δ 7.77 – 7.72 (m, 2H, ArCH), 7.72 – 7.66 (m, 2H, ArCH), 7.41 – 7.22 (m, 19H, ArCH), 7.20 – 7.12 (m, 2H, ArCH). ¹³C NMR (126 MHz, Chloroform-*d*): δ 135.8 (CH), 19.49 (Si*C*(CH₃)₃).

α-anomer

¹H NMR (500 MHz, Chloroform-*d*): δ 5.22 (dd, *J* = 3.3, 1.9 Hz, 1H, H-1), 4.92 (d, *J* = 10.8 Hz, 1H, C*H*HPh), 4.81 (d, *J* = 12.4 Hz, 1H, C*H*HPh), 4.69 – 4.64 (m, 3H, 3 x C*H*HPh), 4.61 (d, *J* = 10.9 Hz, 1H, C*H*HPh), 4.13 (t, *J* = 9.6 Hz, 1H, H-4), 4.01 (dd, *J* = 11.3, 4.6 Hz, 1H, H-6a), 3.97 (dd, *J* = 9.5, 3.1 Hz, C*H*HPh), 4.13 (t, *J* = 9.6 Hz, 1H, H-4), 4.01 (dd, *J* = 11.3, 4.6 Hz, 1H, H-6a), 3.97 (dd, *J* = 9.5, 3.1 Hz), 4.01 (dd, *J* = 11.3, 4.6 Hz, 1H, H-6a), 3.97 (dd, *J* = 9.5, 3.1 Hz), 4.01 (dd, *J* = 11.3, 4.6 Hz, 1H, H-6a), 4.92 (dd, *J* = 9.5, 3.1 Hz), 4.92 (dd, *J* = 9.5, 3.1 Hz), 4.91 (dd, *J* = 11.3, 4.6 Hz), 4.91 (dd, *J* = 11.3, 4.6 Hz), 4.91 (dd, *J* = 11.3, 4.6 Hz), 4.91 (dd, *J* = 9.5, 3.1 Hz), 4.91 (dd, *J* = 11.3, 4.6 Hz), 4.91 (dd, *J* = 11.3, 4.6 Hz), 4.91 (dd, *J* = 9.5, 3.1 Hz), 4.91 (dd, *J* = 11.3, 4.6 Hz), 4.91 (dd, *J* = 9.5, 3.1 Hz), 4.91 (dd, *J* = 11.3, 4.6 Hz), 4.91 (dd, *J* = 9.5, 3.1 Hz), 4.91 (dd, *J* = 11.3, 4.6 Hz), 4.91 (dd, *J* = 9.5, 3.1 Hz), 4.91 (dd, *J* = 11.3, 4.6 Hz), 4.91 (dd, *J* = 9.5, 3.1 Hz), 4.91 (dd, *J* = 9.5, 3.1 Hz), 4.91 (dd, *J* = 11.3, 4.6 Hz), 4.91 (dd, *J* = 9.5, 3.1 Hz), 4.91 (dd, *J* = 11.3, 4.6 Hz), 4.91 (dd, *J* = 9.5, 3.1 Hz), 4.91 (dd, *J* = 9.5 (dd, J = 9.5 (dd, J

1H, H-3), 3.91 – 3.83 (m, 2H, H-6b, H-5), 3.79 (dd, *J* = 3.1, 1.9 Hz, 1H, H-2), 2.58 (d, *J* = 3.4 Hz, 1H, OH), 1.05 (s, 9H, SiC(CH₃)₃). ¹³C NMR (126 MHz, Chloroform-*d*): δ 138.8 (C), 138.74 (C), 138.73 (C), 136.08 (CH), 134.1 (C), 133.6 (C), 129.66 (CH), 129.64 (CH), 128.49 (CH), 128.43 (CH), 128.0 (CH), 127.86 (CH), 127.76 (CH), 127.63 (CH), 127.60 (CH), 92.9 (C-1), 79.8 (C-3), 75.7 (C-2), 75.23 (PhCH₂), 74.85 (C-4), 73.3 (C-5), 72.9 (PhCH₂), 72.4 (PhCH₂), 63.6 (C-6), 26.98 (SiC(CH₃)₃). NMR data were consistent with literature data.^[11]

β-anomer

¹H NMR (500 MHz, Chloroform-*d*) selected signals: δ 5.15 (d, J = 11.5 Hz, 1H, C*H*HPh), 4.91 (d, J = 10.8 Hz, 1H, C*H*HPh), 4.76 (s, 2H, 2 x C*H*HPh), 4.68 – 4.63 (m, 1H, H-1), 4.18 (t, J = 9.3 Hz, 1H, H-4), 3.95 – 3.91 (m, 1H, H-6a), 3.88 – 3.84 (m, 1H, H-2), 3.66 – 3.61 (m, 2H, OH, H-3), 3.33 (ddd, J = 9.2, 3.7, 2.1 Hz, 1H, H-5), 1.04 (s, 9H, SiC(C*H*₃)₃). ¹³C NMR (126 MHz, Chloroform-*d*): δ 138.6 (C), 138.5 (C), 138.3 (C), 136.13 (CH), 134.0 (C), 133.4 (C), 128.7 (CH), 128.6 (CH), 128.51 (CH), 127.91 (CH), 127.82 (CH), 127.69 (CH), 93.6 (C-1), 83.1(C-3), 77.1 (C-2), 76.2 (C-5), 75.21 (PhCH₂), 74.94 (PhCH₂), 74.4 (C-4), 73.0 (PhCH₂), 63.1 (C-6), 26.95 (SiC(CH₃)₃).

2,3,6-Tri-O-benzyl-4-O-tert-butyldimethylsilyl-α/β-D-mannopyranose 1g

Under a N₂ atmosphere, a solution of **S5** (800 mg, 1.62 mmol), TBSCl (488 mg, 3.24 mmol), imidazole (441 mg, 6.48 mmol) and DMAP (20 mg, 0.16 mmol) in anhydrous DMF (2 mL) was stirred at room temperature for 15 h. The reaction mixture diluted with CH₂Cl₂ and washed with water and brine. The organic layer was dried over anhydrous MgSO₄, filtered and concentrated *in vacuo* to give a colourless oil. The crude material was used in the next step without further purification. ¹H NMR (500 MHz, Chloroform-*d*): δ 7.38 – 7.22 (m, 15H, ArCH), 5.39 (d, *J* = 1.8 Hz, 1H, H-1), 4.66 – 4.56 (m, 4H, 4 x C*H*HPh), 4.53 (s, 2H, 2 x C*H*HPh), 4.10 (ddd, *J* = 8.4, 6.1, 2.0 Hz, 1H, H-5), 4.07 – 4.00 (m, 1H, H-4), 3.81 – 3.75 (m, 2H, H-2, H-6a), 3.72 (dd, *J* = 10.7, 6.3 Hz, 1H, H-6b), 3.62 (dd, *J* = 8.6, 3.0 Hz, 1H, H-3), 2.73 – 2.54 (m, 2H, SCH₂CH₃), 1.28 (t, *J* = 7.4 Hz, 3H, SCH₂CH₃), 0.82 (s, 9H, SiC(CH₃)₃), 0.01 (s, 6H, 2 x SiCH₃). ¹³C NMR (126 MHz, Chloroform-*d*): δ 138.7 (C), 138.45 (C), 138.43 (C), 128.4 (CH), 128.353 (CH), 128.345 (CH), 127.9 (CH), 127.8 (CH), 127.7 (CH), 127.6 (CH), 127.5 (CH), 127.4 (CH), 81.92 (C-1), 80.6 (C-3), 76.4 (C-2), 73.6 (C-5), 73.2 (PhCH₂), 72.2 (PhCH₂), 71.7 (PhCH₂), 69.9 (C-6), 68.5 (C-4), 26.1 (SiC(*C*H₃)₃), 25.3 (SCH₂CH₃), 18.3 (SiC(CH₃)₃), 15.1 (SCH₂CH₃), -3.7 (SiCH₃), -4.8 (SiCH₃).

The crude material **S19** was dissolved in 9:1 acetone/water (10 mL) and treated with NBS (865 mg, 4.86 mmol) at room temperature. TLC analysis (2:1; Pentane/Et₂O) of the reaction after 2.5 h showed the hydrolysed product along with de-silylated hydrolysed product. The reaction was quenched with saturated Na₂S₂O₃ and diluted with CH₂Cl₂. The organic layer was washed with water and brine, dried over anhydrous MgSO₄, filtered and concentrated *in vacuo*. Purification by column chromatography (3:1 to 1:1, Pentane/Et₂O) afforded the hydrolysed product **1g** as a syrup (308 mg, 34% yield over 2 steps, $\alpha/\beta = 86:14$). ESI-HRMS for C₃₃H₄₄O₆SiNa⁺ (M+Na)⁺ calculated: 587.2799; found: 587.2799.

The following were observed for α/β anomers:

¹H NMR (500 MHz, Chloroform-*d*): δ 7.39 – 7.19 (m, 15H, ArCH). ¹³C NMR (126 MHz, Chloroform-*d*): 26.0 (SiC(*C*H₃)₃).

α-anomer

¹H NMR (500 MHz, Chloroform-*d*): δ 5.26 (t, J = 2.5 Hz, 1H, H-1), 4.69 (d, J = 12.3 Hz, 1H, C*H*HPh), 4.65 (d, J = 12.3 Hz, 1H, C*H*HPh), 4.64 (d, J = 12.3 Hz, 1H, C*H*HPh), 4.59 (d, J = 11.9 Hz, 1H, C*H*HPh), 4.55 (d, J = 12.0 Hz, 1H, C*H*HPh), 4.52 (d, J = 12.3 Hz, 1H, C*H*HPh), 4.01 (ddd, J = 9.7, 8.1, 2.0 Hz, 1H, H-5), 3.91 (t, J = 9.1 Hz, 1H, H-4), 3.79 – 3.75 (m, 2H, H-2, H-6a), 3.72 (dd, J = 8.8, 2.9 Hz, 1H, H-3), 3.58 (dd, J = 10.2, 8.0 Hz, 1H, H-6b), 3.48 (br s, 1H, OH), 0.79 (s, 9H, SiC(C*H*₃)₃), -0.01 (s, 3H, SiCH₃), -0.03 (s, 3H, SiCH₃). ¹³C NMR (126 MHz, Chloroform-*d*): δ 138.63 (C), 138.59 (C), 138.2 (C), 128.47 (CH), 128.40 (CH), 128.3 (CH), 128.04 (CH), 127.8 (CH), 127.65 (CH), 127.63 (CH), 127.5 (CH), 93.0 (C-1), 79.9 (C-3), 74.8 (C-2), 73.4 (PhCH₂), 73.0 (C-5), 72.9 (PhCH₂), 71.8 (PhCH₂), 70.3 (C-6), 68.7 (C-4), 18.22 (SiC(CH₃)₃), -3.7 (SiCH₃), -4.8 (SiCH₃).

β-anomer

¹H NMR (500 MHz, Chloroform-*d*) selected signals: δ 4.98 (d, J = 11.7 Hz, 1H, C*H*HPh), 4.77 – 4.72 (m, 1H, H-1), 3.97 (t, J = 8.7 Hz, 1H, H-4), 3.83 – 3.80 (m, 2H, H-2, H-6a), 3.62 (dd, J = 10.4, 6.7 Hz, 1H, H-6b), 3.47 (ddd, J = 8.9, 6.4, 2.5 Hz, 1H, H-5), 3.41 (dd, J = 8.7, 2.7 Hz, 1H, H-3), 0.81 (s, 9H, SiC(CH₃)₃), 0.02 (s, 6H, 2 x SiCH₃). ¹³C NMR (126 MHz, Chloroform-*d*) selected signals: δ 128.6 (CH), 128.55 (CH), 128.42 (CH), 128.02 (CH), 127.9 (CH), 127.69 (CH), 93.8 (C-1), 83.2 (C-3), 76.9 (C-5), 75.6 (C-2), 74.5 (PhCH₂), 68.0 (C-4), 18.19 (SiC(CH₃)₃), -3.8 (SiCH₃), -4.7 (SiCH₃).

6-O-Benzoyl-2,3,4-tri-O-benzyl-α/β-D-mannopyranose 1h

Based on the literature procedure,^[8] a solution of S7 (930 mg, 1.43 mmol) in MeCN/H₂O (4:1, 10 mL) was treated with trifluoroacetic acid (0.89 mL, 12 mmol) at room temperature. After stirring for 11 h at room temperature, the reaction was quenched with saturated NaHCO₃ and diluted with CH₂Cl₂ (100 mL). The aqueous layer was washed with CH_2Cl_2 (2 x 40 mL). The combined organic layers were washed with brine, dried over anhydrous MgSO₄ and concentrated *in vacuo* to give a colourless syrup. The crude material was used in the next step without further purification. Under a N₂ atmosphere, a solution of the crude material and DMAP (17 mg, 0.14 mmol) in anhydrous CH₂Cl₂ (2.9 mL) was treated with anhydrous pyridine (0.11 mL, 1.4 mmol) followed by benzoyl chloride (0.33 mL, 2.8 mmol) at room temperature. TLC (CH₂Cl₂) analysis of the reaction after 50 minutes showed complete consumption of starting material. The reaction was quenched with water and diluted with CH₂Cl₂. The organic layer was washed with 1 M HCl, saturated NaHCO3 and brine. The organic layer was dried over anhydrous MgSO₄, filtered and concentrated in vacuo to give a colourless oil. ¹H NMR (500 MHz, Chloroform-d) selected signals: δ 5.39 (d, J = 1.6 Hz, 1H, H-1), 4.94 (d, J = 10.8 Hz, 1H, CHHPh), 4.70 (m, 2H, 2 x CHHPh), 4.63 (s, 2H, 2 x CHHPh), 4.60 (d, J = 10.8 Hz, 1H, CHHPh), 4.59 – 4.56 (m, 1H, H-6a), 4.54 (dd, *J* = 11.8, 2.4 Hz, 1H, H-6b), 4.29 (ddd, *J* = 9.8, 4.3, 2.4 Hz, 1H, H-5), 4.12 (t, *J* = 9.5 Hz, 1H, H-4), 3.91 (dd, J = 9.2, 3.1 Hz, 1H, H-3), 3.87 (dd, J = 3.1, 1.7 Hz, 1H, H-2), 2.71 – 2.47 (m, 2H, SC H_2 CH₃), 1.24 (t, J = 7.4 Hz, 3H, SCH₂CH₃).

The crude material **S20** was dissolved in 9:1 acetone/water (14 mL) and treated with NBS (1.02 g, 5.72 mmol) at room temperature. After 3 h the reaction was quenched with saturated Na₂S₂O₃ and diluted with CH₂Cl₂. The aqueous layer was washed with CH₂Cl₂. The combined organic layers were washed with water and brine, dried over anhydrous MgSO₄, filtered and concentrated *in vacuo* to give a colourless syrup. Purification by column chromatography (2:1 to 1:1; Pentane/Et₂O) afforded the hydrolysed product **1h** as a colourless syrup (645 mg, 81% yield over 3 steps, $\alpha/\beta = 77:23$).

The following were observed for α/β anomers:

¹H NMR (500 MHz, Chloroform-*d*): δ 8.05 – 7.97 (m, 2H, ArCH), 7.55 – 7.47 (m, 1H, ArCH), 7.42 – 7.20 (m, 17H, ArCH), 4.62 (d, J = 10.8 Hz, 1H, C*H*HPh). ¹³C NMR (126 MHz, Chloroform-*d*): δ 75.4 (PhCH₂), 63.9 (C-6).

α-anomer

¹H NMR (500 MHz, Chloroform-*d*): δ 5.27 (d, *J* = 2.0 Hz, 1H, H-1), 4.95 (d, *J* = 10.8 Hz, 1H, C*H*HPh), 4.77 (d, *J* = 12.2 Hz, 1H, C*H*HPh), 4.68 (s, 2H, 2 x C*H*HPh), 4.65 (d, *J* = 12.2 Hz, 1H, C*H*HPh), 4.58 (dd, *J* = 11.9, 1.6 Hz, 1H, H-6a), 4.52 (dd, *J* = 12.0, 3.4 Hz, 1H, H-6b), 4.16 – 4.10 (m, 2H, H-4, H-5), 4.06 – 4.01 (m, 1H, H-3), 3.83 (dd, *J* = 3.0, 2.0 Hz, 1H, H-2), 2.92 (br s, 1H, OH). ¹³C NMR (126 MHz, Chloroform-*d*): δ 166.6 (C=O), 138.48 (C), 138.47 (C),138.2 (C), 133.1(CH), 129.9 (CH), 128.55 (CH), 128.53 (CH), 128.46 (CH), 128.44 (CH), 128.29 (CH), 127.73 (CH), 92.8 (C-1), 79.8 (C-3), 75.3 (C-2), 74.6 (C-4), 72.9 (PhCH₂), 72.4 (PhCH₂), 70.6 (C-5).

β-anomer

¹H NMR (500 MHz, Chloroform-*d*): δ 5.14 (d, J = 11.5 Hz, 1H, C*H*HPh), 4.91 (d, J = 10.8 Hz, 1H, C*H*HPh), 4.78 (s, 2H, 2 x C*H*HPh), 4.72 (d, J = 1.3 Hz, 1H, H-1), 4.67 (d, J = 11.6 Hz, 1H, C*H*HPh), 4.59 (dd, J = 11.9, 2.3 Hz, 1H, H-6a), 4.49 (dd, J = 11.7, 4.5 Hz, 1H, H-6b), 4.06 – 4.01 (m, 1H, H-4), 3.89 (dd, J = 2.8, 1.4 Hz, 1H, H-2), 3.69 (dd, J = 9.3, 2.7 Hz, 1H, H-3), 3.63 (ddd, J = 9.5, 4.6, 2.3 Hz, 1H, H-5). ¹³C NMR (126 MHz, Chloroform-*d*): δ 166.5 (C=O), 138.3 (C), 137.92 (C), 137.86 (C), 130.2 (CH), 128.73 (CH), 128.71 (CH), 128.59 (CH), 128.32 (CH), 128.12 (CH), 128.06 (CH), 127.95 (CH), 127.82 (CH), 127.69 (CH), 93.8 (C-1), 83.2 (C-3), 76.6 (C-2), 75.0 (PhCH₂), 74.2 (C-4), 73.6 (C-5), 73.0 (PhCH₂). NMR data were consistent with literature data.^[12]

4-O-Acetyl-2,3,6-tri-O-benzyl-α/β-D-mannopyranose S22

A solution of **S5** (800 mg, 1.62 mmol), acetic anhydride (0.31 mL, 1.6 mmol) and DMAP (20 mg, 0.16 mmol) in pyridine (0.13 mL, 1.6 mmol) (little bit of CH₂Cl₂ was added to get a clear solution) was stirred at room temperature for 2 h. The reaction mixture was diluted with CH₂Cl₂ and washed with 1 M HCl, saturated NaHCO₃ and brine. The organic layer was dried over anhydrous MgSO₄, filtered and concentrated *in vacuo* to give a yellowish syrup. The crude material was used in the next step without further purification. ¹H NMR (500 MHz, Chloroform-*d*): δ 7.44 – 7.14 (m, 15H, ArCH), 5.38 (t, *J* = 9.7 Hz, 1H, H-4), 5.37 (s, 1H, H-1), 4.69 (d, *J* = 12.4 Hz, 1H, C*H*HPh), 4.66 (d, *J* = 12.4 Hz, 1H, C*H*HPh), 4.54 (d, *J* = 11.9 Hz, 1H, C*H*HPh), 4.53 (d, *J* = 12.2 Hz, 1H, C*H*HPh), 4.51 (d, *J* = 12.0 Hz, 1H, C*H*HPh), 4.43 (d, *J* = 12.1 Hz, 1H, C*H*HPh), 4.23 – 4.16 (m, 1H, H-5), 3.82 (dd, *J* = 3.1, 1.8 Hz, 1H, H-2), 3.76 (dd, *J* = 9.5, 3.1 Hz, 1H, H-3), 3.62 (dd, *J* = 10.8, 6.1 Hz, 1H, H-6a), 3.55 (dd, *J* = 10.8, 3.1 Hz, 1H, H-6b), 2.70 – 2.52 (m, 2H, SCH₂CH₃), 1.92 (s, 3H, CH₃), 1.26 (t, *J* = 7.4 Hz, 3H, SCH₂CH₃). ¹³C NMR (126 MHz, Chloroform-*d*): δ 17.0 (C=O), 138.3 (C), 138.2 (C), 138.1 (C), 128.49 (CH), 128.46 (CH),

128.4 (CH), 128.0 (CH), 127.81 (CH), 127.79 (CH), 127.75 (CH), 127.6 (CH), 82.14 (C-1), 77.4 (C-3), 76.0 (C-2), 73.5 (PhCH₂), 72.4 (PhCH₂), 71.9 (PhCH₂), 70.7 (C-5), 69.9 (C-6), 69.2 (C-4), 25.4 (SCH₂CH₃), 21.1 (CH₃), 15.0 (SCH₂CH₃). NMR data were consistent with literature data.^[4]

The crude material **S21** was dissolved in 9:1 acetone/water (10 mL) and treated with NBS (865 mg, 4.86 mmol) at room temperature. After 5 h the reaction was quenched with saturated Na₂S₂O₃ and diluted with CH₂Cl₂. The organic layer was washed with water and brine, dried over anhydrous MgSO₄, filtered and concentrated *in vacuo*. Purification by column chromatography (2:1 to 1:1, Pentane/Et₂O) afforded the hydrolysed product **S22** as a syrup (632 mg, 79% yield over 2 steps, $\alpha/\beta = 79:21$).

The following were observed for α/β anomers:

¹H NMR (500 MHz, Chloroform-*d*): δ 7.41 – 7.16 (m, 15H, ArCH), 4.57 (d, *J* = 11.9 Hz, 1H, C*H*HPh), 4.52 (d, *J* = 12.0 Hz, 1H, C*H*HPh), 4.49 (d, *J* = 12.1 Hz, 1H, C*H*HPh). ¹³C NMR (126 MHz, Chloroform-*d*): 21.1 (CH₃).

α-anomer

¹H NMR (500 MHz, Chloroform-*d*): δ 5.28 (t, J = 9.8 Hz, 1H, H-4), 5.23 (d, J = 2.5 Hz, 1H, H-1), 4.75 (d, J = 12.4 Hz, 1H, C*H*HPh), 4.67 (d, J = 12.4 Hz, 1H, C*H*HPh), 4.46 (d, J = 12.2 Hz, 1H, C*H*HPh), 4.06 (ddd, J = 10.1, 7.5, 2.6 Hz, 1H, H-5), 3.86 (dd, J = 9.6, 3.0 Hz, 1H, H-3), 3.77 (dd, J = 3.0, 2.1 Hz, 1H, H-2), 3.60 (dd, J = 10.5, 7.5 Hz, 1H, H-6a), 3.47 (dd, J = 10.5, 2.6 Hz, 1H, H-6b), 3.38 (d, J = 3.4 Hz, 1H, OH), 1.92 (s, 3H, CH₃). ¹³C NMR (126 MHz, Chloroform-*d*): δ 170.1 (C=O), 138.4 (C), 138.3 (C), 137.89 (C), 128.47 (CH), 128.45 (CH), 128.2 (CH), 128.0 (CH), 127.81 (CH), 127.77 (CH), 127.73 (CH), 127.6 (CH), 93.1 (C-1), 76.9 (C-3), 74.4 (C-2), 73.6 (PhCH₂), 73.0 (PhCH₂), 72.0 (PhCH₂), 70.4 (C-5), 70.2 (C-6), 69.2 (C-4).

β-anomer

¹H NMR (500 MHz, Chloroform-*d*): δ 5.33 (t, *J* = 9.3 Hz, 1H, H-4), 5.04 (d, *J* = 11.7 Hz, 1H, C*H*HPh), 4.69 – 4.65 (m, 1H, H-1), 4.66 (d, *J* = 12.1 Hz, 1H, C*H*HPh), 4.64 (d, *J* = 11.7 Hz, 1H, C*H*HPh), 3.83 (dd, *J* = 2.8, 1.5 Hz, 1H, H-2), 3.58 – 3.51 (m, 4H, H-6a, H-6b, H-3, H-5), 1.91 (s, 3H, CH₃). ¹³C NMR (126 MHz, Chloroform-*d*) selected signals: δ 170.0 (C=O), 138.0 (C), 137.93 (C), 137.8 (C), 128.70 (CH), 128.66 (CH), 128.4 (CH), 128.1 (CH), 127.72 (CH), 93.7 (C-1), 80.1 (C-3), 75.4 (C-2), 74.7 (PhCH₂), 73.7 (C-5), 72.7 (PhCH₂), 70.0 (C-6), 68.9 (C-4). NMR data were consistent with literature data.^[13]

2,3,4-Tri-O-benzyl-6-O-triisopropylsilyl-α/β-D-mannopyranose S23

A solution of **S7** (1.00 g, 1.54 mmol) in 9:1 acetone/water (15 mL) and treated with NBS (822 mg, 4.62 mmol) at room temperature. TLC (8:2; Pentane/Et₂O) analysis of reaction after 3 minutes showed complete consumption of starting material and the desired hydrolysed product along with de-silylated hydrolysed product were observed. The reaction was immediately quenched with saturated Na₂S₂O₃ and diluted with CH₂Cl₂. The aqueous layer was washed with CH₂Cl₂. The combined organic layers were washed with water and brine, dried over anhydrous MgSO₄, filtered and concentrated *in vacuo* to give a colourless syrup. Purification by column chromatography (9:1 to 7:3; Pentane/Et₂O) afforded the hydrolysed product **S23** as a colourless syrup (564 mg, 60% yield, $\alpha/\beta = 72:28$). ESI-HRMS for C₃₆H₅₀O₆SiNa⁺ (M+Na)⁺ calculated: 629.3269; found: 629.3269.

The following were observed for α/β anomers:

¹H NMR (600 MHz, Chloroform-*d*): δ 7.40 – 7.25 (m, 15H, ArCH), 1.16 - 1.03 (m, 3H, SiC*H*(CH₃)₂), 1.06 (s, 12H, SiCH(CH₃)₂), 1.05 (s, 6H, SiCH(CH₃)₂). ¹³C NMR (151 MHz, Chloroform-*d*): δ 18.2 (SiCH(CH₃)₂), 18.1 (SiCH(CH₃)₂).

α-anomer

¹H NMR (600 MHz, Chloroform-*d*): δ 5.23 (dd, *J* = 3.6, 2.0 Hz, 1H, H-1), 4.92 (d, *J* = 10.9 Hz, 1H, C*H*HPh), 4.75 (d, *J* = 12.5 Hz, 1H, C*H*HPh), 4.67 – 4.63 (m, 4H, 4 x C*H*HPh), 4.00 – 3.96 (m, 2H, H-4, H-3), 3.94 (dd, *J* = 11.0, 4.8 Hz, 1H, H-6a), 3.91 (dd, *J* = 11.1, 2.1 Hz, 1H, H-6b), 3.87 – 3.81 (m, 1H, H-5), 3.78 (t, *J* = 2.4 Hz, 1H, H-2), 2.80 (d, *J* = 3.5 Hz, 1H, OH).

¹³C NMR (151 MHz, Chloroform-*d*): δ 138.9 (C), 138.8 (C), 138.7 (C), 128.47 (CH), 128.46 (CH), 128.4 (CH), 128.2 (CH), 127.86 (CH), 127.82 (CH), 127.81 (CH), 127.79 (CH), 92.8 (C-1), 79.8 (C-3), 75.6 (C-2), 75.2 (PhCH₂), 74.9 (C-4), 73.8 (C-5), 72.8 (PhCH₂), 72.40 (PhCH₂), 63.4 (C-6), 12.17 (SiCH(CH₃)₂).

β-anomer

¹H NMR (600 MHz, Chloroform-*d*): δ 5.11 (d, J = 11.6 Hz, 1H, C*H*HPh), 4.87 (d, J = 10.8 Hz, 1H, C*H*HPh), 4.79 – 4.74 (m, 2H, 2 x C*H*HPh), 4.73 (d, J = 10.9 Hz, 1H, C*H*HPh), 4.69 – 4.66 (m, 1H, H-1), 4.61 (d, J = 11.5 Hz, 1H, C*H*HPh), 4.08 (t, J = 9.2 Hz, 1H, H-4), 4.01 – 3.95 (m, 2H, H-6a, H-6b), 3.87 – 3.81 (m, 1H, H-2), 3.65 (d, J = 12.2 Hz, 1H, OH), 3.64 (dd, J = 9.3, 2.7 Hz, 1H, H-3), 3.31 (dt, J = 9.1, 3.0 Hz, 1H, H-5). ¹³C NMR (151 MHz, Chloroform-*d*): δ 138.5 (C), 138.3 (C), 128.6 (CH), 128.6 (CH), 127.94 (CH), 127.84 (CH), 127.68 (CH), 127.67 (CH), 127.6 (CH),

93.5 (C-1), 83.0 (C-3), 77.0 (C-2), 76.6 (C-5), 75.1 (PhCH₂), 74.8 (PhCH₂), 74.3 (C-4), 73.1 (PhCH₂), 62.9 (C-6), 12.19 (SiCH(CH₃)₂).

2,3,4,6-Tetra-O-acetyl-α-D-mannopyranose S24

Following the literature procedure,^[14,15] the penta-*O*-acetate mannose **S1** (2.17 g, 5.55 mmol), and FeCl₃.6H₂O (749 mg, 2.77 mmol) were dissolved in bench MeCN (10 mL) and heated to 90 °C using MW 150W. TLC analysis (2:1; cyclohexane/EtOAc) after 30 min showed complete consumption of starting material. The reaction mixture was diluted with CH₂Cl₂ and washed with water, saturated NaHCO₃, and brine. The organic layer was dried over anhydrous MgSO₄, filtered and concentrated *in vacuo*. Purification by column chromatography ($R_f = 0.4$, 5:1; CH₂Cl₂/EtOAc) gave the product **S24** as a yellow syrup (290 mg, 63% yield, $\alpha/\beta \ge 95:5$). ¹H NMR (500 MHz, Chloroform-*d*): δ 5.43 (dd, *J* = 10.0, 3.4 Hz, 1H, H-3), 5.31 (t, *J* = 10.0 Hz, 1H, H-4), 5.27 (dd, *J* = 3.4, 1.9 Hz, 1H, H-2), 5.25 (br s, 1H, H-1), 4.28 – 4.21 (m, 2H, H-6a, H-5), 4.17 – 4.12 (m, 1H, H-6b), 3.64 (br s, 1H, OH), 2.17 (s, 3H, CH₃), 2.11 (s, 3H, CH₃), 2.06 (s, 3H, CH₃), 2.01 (s, 3H, CH₃). ¹³C NMR (126 MHz, Chloroform-*d*): δ 171.0 (C=O), 170.3 (C=O), 170.2 (C=O), 169.9 (C=O), 92.3 (C-1), 70.14 (C-2), 68.9 (C-3), 68.6 (C-5), 66.3 (C-4), 62.71 (C-6), 21.0 (CH₃), 20.9 (CH₃), 20.85 (CH₃), 20.83 (CH₃). NMR data were consistent with literature data.^[16]

6-O-Pivaloyl-2,3,4-tri-O-p-methylbenzyl-α/β-D-mannopyranose 1i

For the synthesis of **3i** see p.54.

Under a N_2 atmosphere, **3i** (200 mg, 0.37 mmol) was dissolved in anhydrous CH_2Cl_2 (3.7 mL) and the reaction was treated with anhydrous pyridine (0.11 mL, 1.4 mmol) followed by pivaloyl chloride (0.146 mL, 1.20 mmol) at room temperature. TLC (cyclohexane:EtOAc) analysis of the reaction after 1 h showed complete consumption of starting material. The reaction was quenched with water and diluted

with CH₂Cl₂. The organic layer was washed with 1 M HCl, saturated NaHCO₃ and brine. The organic layer was dried over anhydrous MgSO₄, filtered and concentrated *in vacuo* to give a colourless oil.

The crude material **S25** was dissolved in 9:1 acetone/water (4 mL) and treated with NBS (214 mg, 1.20 mmol) at room temperature. After 5 minutes the reaction was quenched with saturated Na₂S₂O₃ and diluted with CH₂Cl₂. The aqueous layer was washed with CH₂Cl₂. The combined organic layers were washed with water and brine, dried over anhydrous MgSO₄, filtered and concentrated *in vacuo* to give a colourless syrup. Purification by column chromatography (2:1 to 1:1; Pentane/Et₂O) afforded the hydrolysed product **1i** as a colourless syrup (176 mg, 83% yield over 2 steps, $\alpha/\beta = 71:29$). ESI-HRMS for C₃₅H₄₄O₇NH₄⁺ (M+NH₄)⁺ calculated: 594.3431; found: 594.3420.

The following were observed for α/β anomers:

¹H NMR (500 MHz, Chloroform-*d*): δ 7.29 – 7.07 (m, 17H, ArCH), 4.70 (d, *J* = 12.0 Hz, 2H 2 x C*H*HPh), 4.61 – 4.51 (m, 5H, 5 x C*H*HPh), 2.37 – 2.31 (m, 13H, CH₃). ¹³C NMR (126 MHz, Chloroform-*d*) δ 129.3 (ArCH), 129.23 (ArCH), 129.19 (ArCH), 129.11 (ArCH), 129.08 (ArCH), 129.0 (ArCH), 128.3 (ArCH), 128.2 (ArCH), 128.0 (ArCH), 127.93 (ArCH), 127.90 (ArCH), 127.85 (ArCH), 75.1 (CHHPh), 72.6 (CHHPh).

α-anomer

¹H NMR (500 MHz, Chloroform-*d*): δ 5.17 (d, *J* = 1.6 Hz, 1H, H-1), 4.90 (d, *J* = 10.5 Hz, 1H, C*H*HPh), 4.47 – 4.43 (m, 1H, H-6a), 4.23 (dd, *J* = 11.9, 3.1 Hz, 1H, H-6b), 3.99 – 3.90 (m, *J* = 3.7 Hz, 3H, H-2, H-3, H-4), 3.76 (br s, 1H, H-2), 3.10 (br s, 1H, OH), 1.19 (s, 9H, CH₃). ¹³C NMR (126 MHz, Chloroform*d*): δ 178.6 (C=O), 137.5 (4° C), 137.3 (4° C), 137.2 (4° C), 135.4 (4° C), 135.3 (2 x 4° C), 92.7 (C-1), 79.5 (C-3), 74.9 (C-2), 74.5 (C-4), 72.1 (*C*HHPh), 70.6 (C-5), 62.9 (C-6), 38.9 (*C*(CH₃)₃), 27.2 (2 x CH₃), 21.2 (CH₃).

β-anomer

¹H NMR (500 MHz, Chloroform-*d*): δ 5.06 (d, J = 11.4 Hz, 1H, C*H*HPh), 4.87 (d, J = 10.5 Hz, 1H, C*H*HPh), 4.62 (d, J = 4.8 Hz, 1H, H-1), 4.41 (dd, J = 11.9, 2.1 Hz, 1H, H-6a), 4.23 (dd, J = 11.9, 3.1 Hz, 1H, H-6b), 3.87 (t, J = 9.4 Hz, 1H, H-4), 3.80 (dd, J = 2.5, 1.3 Hz, 1H, H-2), 3.60 (dd, J = 9.3, 2.7 Hz, 1H, H-3), 3.49 – 3.43 (m, 1H, H-5), 1.18 (s, 9H, CH₃). ¹³C NMR (126 MHz, Chloroform-*d*): δ 178.3 (C=O), 137.72 (4° C), 137.68 (2 x 4° C), 135.2 (4° C), 135.0 (4° C), 134.9 (4° C), 93.5 (C-1), 82.8 (C-3), 76.3 (C-2), 74.6 (CHHPh), 74.2 (C-4), 73.6 (C-5), 72.7 (CHHPh), 63.1 (C-6), 38.9 (*C*(CH₃)₃), 27.2 (2 x CH₃), 21.2 (CH₃).

A solution of **1a** (150 mg, 0.28 mmol) in pyridine (200 μ L) was treated with acetic anhydride (200 μ L, 2.00 mmol) and stirred at room temperature. TLC (4:1; cyclohexane/EtOAc) analysis after 3 h showed complete consumption of starting material. The reaction mixture was diluted with CH₂Cl₂ and washed with 1 M HCl, saturated NaHCO₃, and brine. The organic layer was dried over anhydrous MgSO₄, filtered and concentrated *in vacuo* to give **8a** as a yellowish syrup (163 mg, quantitative yield, $\alpha/\beta = 89:11$).

α-anomer

¹H NMR (500 MHz, Chloroform-*d*): δ 7.42 – 7.37 (m, 2H, ArCH), 7.36 – 7.22 (m, 16H, ArCH), 7.20 – 7.15 (m, 2H, ArCH), 6.22 (d, *J* = 2.1 Hz, 1H, H-1), 4.89 (d, *J* = 10.6 Hz, 1H, C*H*HPh), 4.78 (d, *J* = 12.3 Hz, 1H, C*H*HPh), 4.73 (d, *J* = 12.4 Hz, 1H, C*H*HPh), 4.66 (d, *J* = 12.1 Hz, 1H, C*H*HPh), 4.59 (d, *J* = 11.9 Hz, 1H, C*H*HPh), 4.58 – 4.50 (m, 3H, 3 x C*H*HPh), 4.08 (t, *J* = 9.6 Hz, 1H, H-4), 3.88 – 3.82 (m, 2H, H-3, H-5), 3.78 (dd, *J* = 11.0, 4.7 Hz, 1H, H-6a), 3.73 (dd, *J* = 3.2, 2.1 Hz, 1H, H-2), 3.71 (dd, *J* = 11.0, 1.9 Hz, 1H, H-6b), 2.01 (s, 3H, CH₃). ¹³C NMR (126 MHz, Chloroform-*d*): δ 169.1 (C=O), 138.4 (2 x C), 138.3 (C), 138.0 (C), 128.51 (CH), 128.45 (CH), 128.2 (CH), 128.1 (CH), 128.0 (CH), 127.89 (CH), 127.85 (CH), 127.84 (CH), 127.7 (CH), 92.0 (C-1), 79.3 (C-3), 75.4 (PhCH), 74.6 (C-5), 74.4 (C-4), 73.6 (PhCH), 73.5 (C-2), 72.6 (PhCH), 72.2 (PhCH), 69.0 (C-6), 21.2 (CH₃).

β-anomer

¹H NMR (500 MHz, Chloroform-*d*) selected signals: 5.59 (d, J = 1.1 Hz, 1H, H-1), 3.99 (t, J = 9.4 Hz, 1H, H-4), 3.94 (dd, J = 2.8, 1.1 Hz, 1H, H-2), 3.62 (dd, J = 9.3, 2.8 Hz, 1H, H-3), 3.56 (dt, J = 9.6, 3.6 Hz, 1H, H-5), 2.07 (s, 3H, CH₃). NMR data were consistent with literature data.^[17]

Synthesis of Rhamnosyl Donors

Scheme 2. Syntheses of rhamnosyl donors

Ethyl 1-thiol-L-rhamnoside S28

L-Rhamnose (5.00 g, 30.4 mmol) was added to acetic anhydride (70.0 mL, 735 mmol) giving a cloudy solution. Pyridine (70.0 mL, 863 mmol) was added, and the mixture was stirred at room temperature for 15 mins, after which the cloudy solution had turned clear. TLC analysis (cyclohexane: EtOAc; 6:4; R_f = 0.6) showed full conversion of the starting material into a single product. The reaction was diluted with CH₂Cl₂ (150 mL) and 1 M HCl (50 mL) was added and stirring was continued for 0.5 h. The organic layer was washed with saturated NaHCO₃ solution (3 x 50 mL), water (3 x 50 mL), brine (1 x 50 mL), dried over anhydrous MgSO₄ and filtered. The resulting solution was concentrated in *vacuo* to give the product **S26** as a pale-yellow oil (8.70 g, 26.2 mmol, 88%, α/β 84:16). ¹H NMR (600 MHz, Chloroform-*d*) δ 6.02 (d, *J* = 2.0 Hz, 1H), 5.32 – 5.29 (m, 1H), 5.25 (dd, *J* = 3.6, 2.0 Hz, 1H), 5.12 (t, *J* = 10.0 Hz, 1H), 3.94 (dq, *J* = 9.7, 6.2 Hz, 1H), 2.17 (s, 3H), 2.16 (s, 3H), 2.07 (s, 3H), 2.01 (s, 3H), 1.24 (d, *J* = 6.2 Hz, 3H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 170.0, 169.79, 169.77, 168.3, 90.6, 70.4, 68.74, 68.68, 68.6, 20.9, 20.8, 20.72, 20.65, 17.4. NMR data are consistent with the literature.^[18]

Under a N₂ atmosphere, a solution of tetraacetate rhamnose **S26** (8.70 g, 26.2 mmol) in anhydrous CH₂Cl₂ (262 mL) was treated with ethanethiol (4.90 mL, 68.1 mmol) at room temperature. The reaction mixture was stirred at 0 °C for 30 min after which BF₃.Et₂O (16.2 mL, 131 mmol) was slowly added. After stirring the reaction mixture at room temperature for 20 h, TLC analysis (cyclohexane: EtOAc; 6:4; $R_f = 0.7$) showed full conversion of the starting material into a single product. The reaction mixture was then carefully quenched with saturated NaHCO₃. The organic layer was washed with water and brine, dried over anhydrous MgSO₄ and concentrated in *vacuo* to give **S27** as a yellow oil (9.00 g, 26.2 mmol, quant., α/β 80:20). ¹H NMR (500 MHz, Chloroform-*d*) δ 5.34 (dd, J = 3.4, 1.6 Hz, 1H), 5.23 (dd, J = 10.1, 3.4 Hz, 1H), 5.20 (d, J = 1.5 Hz, 1H), 5.10 (t, J = 9.9 Hz, 1H), 4.29 – 4.18 (m, 1H), 2.69 – 2.57 (m, 2H), 2.16 (s, 3H), 2.06 (s, 3H), 1.99 (s, 3H), 1.30 (t, J = 7.4 Hz, 3H), 1.24 (d, J = 6.3 Hz, 3H). NMR data are consistent with the literature.^[19]

Thiorhamnoside **S27** (9.0 g, 26.2 mmol) was dissolved in MeOH (300 mL). Na₂CO₃ (0.5 g, 5.0 mmol) was added to the solution and the mixture was left to stir at room temperature for 2 h, after which TLC analysis (EtOAc; $R_f = 0$) indicated that the reaction had gone to completion. The reaction mixture was neutralised with resin IR-120 and the mixture was filtered and was concentrated in *vacuo* to give **S28** as a yellow oil, which was used in the next step without further purification.

Ethyl 2,3-O-isopropylidene-1-thio-L-rhamnoside S29

Thiorhamnoside **S28** (3.00 g, 14.4 mmol) was dissolved in acetone (21 mL) and *p*TsOH.H₂O (0.68 g, 2.64 mmol) was added to the reaction mixture. 2,2-Dimethoxypropane (31.8 mL, 259 mmol) was added and the reaction left to stir at room temperature overnight. TLC analysis (CH₂Cl₂:MeOH; 97:3; R_f =0.7) indicated that the reaction had gone to completion. Et₃N (2 mL) was added to quench the reaction mixture and the solvent was concentrated in *vacuo*. The crude residue was dissolved in CH₂Cl₂(50 mL) and washed with water, dried over anhydrous Na₂SO₄, filtered and concentrated in *vacuo*. Purification by column chromatography (pentane: EtOAc; 95:5 to 80:20) led to separation of the two anomers of **S29** (α anomer; 2.23 g, 8.99 mmol, 63%, β anomer; 0.35 g, 1.4 mmol, 16%).

α-anomer:

¹H NMR (500 MHz, Chloroform-*d*) δ 5.52 (d, J = 0.9 Hz, 1H, H-1), 4.17 (dd, J = 5.5, 0.8 Hz, 1H, H-2), 4.05 (dd, J = 7.6, 5.5 Hz, 1H, H-3), 4.00 – 3.93 (m, 1H, H-5), 3.43 (ddd, J = 9.7, 7.6, 4.0 Hz, 1H, H-4), 2.91 (dd, J = 4.6, 1.9 Hz, 1H, OH), 2.67 (dq, J = 13.0, 7.4 Hz, 1H, SCH₂CH₃), 2.54 (dq, J = 13.0, 7.4 Hz, 1H, SCH₂CH₃), 1.54 (s, 3H, CH₃), 1.35 (s, 3H, CH₃), 1.33 – 1.28 (m, 6H, SCH₂CH₃, H-6). NMR data are consistent with the literature.^[19]

β-anomer:

¹H NMR (500 MHz, Chloroform-*d*) δ 4.83 (d, J = 2.2 Hz, 1H, H-1), 4.28 (dd, J = 5.5, 2.2 Hz, 1H, H-2), 3.99 (dd, J = 7.3, 5.4 Hz, 1H, H-3), 3.45 (ddd, J = 9.5, 7.3, 3.4 Hz, 1H, H-4), 3.30 – 3.23 (m, 1H, H-5), 2.96 – 2.89 (m, 1H, OH), 2.77 (q, J = 7.5 Hz, 2H, SCH₂CH₃), 1.55 (s, 3H, CH₃), 1.38 (s, 3H, CH₃), 1.36 – 1.30 (m, 6H, SCH₂CH₃, H-6). NMR data are consistent with the literature.^[20]

2,3,4-Tri-O-benzyl-L-rhamnoside 1j

Under a N₂ atmosphere, thiorhamnoside **S28** (3.00 g, 14.4 mmol) was dissolved in anhydrous DMF (72 mL). The flask was cooled to 0 °C (50:50; ice/water), and NaH (60% dispersion in mineral oil) (2.60 g, 108 mmol) was added to the reaction flask. The ice bath was removed, and the reaction was left to stir

at room temperature for 30 min. The flask was again cooled to 0 °C, and BnBr (6.0 mL, 50.4 mmol) and TBAI (0.44 g, 1.2 mmol) were added to the reaction mixture. The ice bath was removed, and the reaction mixture was left to stir at room temperature overnight, after which TLC analysis (cyclohexane: EtOAc; 9:1; $R_f = 0.5$) showed that the starting material had been consumed. The reaction was quenched with MeOH (5 mL), and the solvents were removed using rotary evaporation. The crude mixture was dissolved in CH₂Cl₂ (100 mL) and washed with 1 M HCl (2 × 50 mL), deionised water (1 × 50 mL), saturated NaHCO₃ (2 × 50 mL), deionised H₂O (1 × 50 mL) and brine (1 × 50 mL). The organic layer was dried over anhydrous Na₂SO₄, filtered off and concentrated in *vacuo*.

Crude rhamnoside **S30** (~14.7 mmol) was dissolved in a 9:1 mixture of acetone:water (140 mL) and NBS (7.70 g, 44.1 mmol) was added. The reaction left to stir at room temperature for 2 h when TLC analysis (cyclohexane: EtOAc; 8:2; R_f =0.3) showed the complete conversion of the starting material to the desired product. The mixture was quenched with saturated Na₂S₂O₃ (50 mL), concentrated in *vacuo* to remove acetone and diluted with CH₂Cl₂ (250 mL). The organic phase was then washed with saturated NaHCO₃ (50 mL), deionised H₂O (50 mL) and brine (50 mL). The organic layer was dried over anhydrous Na₂SO₄, filtered off and concentrated in *vacuo*. Purification by column chromatography (pentane: EtOAc; 9:1 to 8:2) gave product **1j** as a white solid (6.0 g, 13.8 mmol, 96%, α/β 1:1).

Signals observed for both anomers:

¹H NMR (500 MHz, Chloroform-*d*) δ 7.41 – 7.25 (m, 30H, Ar-CH), 5.10 (d, *J* = 11.6 Hz, 1H, PhCH₂), 4.94 (d, *J* = 10.9, 1H, PhCH₂), 4.93 (*J* = 10.8, 1H, PhCH₂), 4.81 – 4.62 (m, 9H, 9 x PhCH₂). ¹³C NMR (126 MHz, Chloroform-*d*) δ 138.60 (4° C), 138.56 (4° C), 138.33 (4° C), 138.28 (4° C), 138.07 (4° C), 138.05 (4° C), 128.63 (Ar-CH), 128.55 (Ar-CH), 128.43 (Ar-CH), 128.36 (Ar-CH), 128.2 (Ar-CH), 128.09 (Ar-CH), 128.06 (Ar-CH), 128.02 (Ar-CH), 128.01 (Ar-CH), 127.9 (Ar-CH), 127.8 (Ar-CH), 127.7 (Ar-CH), 127.63 (Ar-CH), 127.55 (Ar-CH), 75.43 (PhCH₂), 75.35 (PhCH₂), 74.9 (PhCH₂), 72.9 (PhCH₂), 72.3 (PhCH₂).

α-anomer:

¹H NMR (500 MHz, Chloroform-*d*) δ 5.15 (d, *J* = 1.9 Hz, 1H, H-1), 3.96 – 3.89 (m, 2H, H-3, H-5), 3.80 (dd, *J* = 3.1, 2.0 Hz, 1H, H-2), 3.63 (t, *J* = 9.4 Hz, 1H, H-4), 2.71 (s, 1H, OH), 1.31 (d, *J* = 6.2 Hz, 3H, H-6). ¹³C NMR (126 MHz, Chloroform-*d*) δ 93.0 (C-1), 80.5 (C-4), 79.7 (C-3), 75.0 (C-2), 68.1 (C-5), 18.1 (C-6).

β-anomer:

¹H NMR (500 MHz, Chloroform-*d*) δ 4.61 (t, *J* = 4.5 Hz, 1H, H-1), 3.84 (d, *J* = 1.9 Hz, 1H, H-2), 3.59 – 3.54 (m, 2H, H-3, H-4), 3.40 – 3.32 (m, 1H, H-5), 1.34 (d, *J* = 6.2 Hz, 1H, H-6). ¹³C NMR (126 MHz, Chloroform-*d*) δ 93.4 (C-1), 83.1 (C-3), 78.0 (C-4), 76.55 (C-2), 71.61 (C-5), 17.9 (C-6).

NMR data are consistent with the literature.^[21]

2,3-Di-O-benzyl-4-O-p-methylbenzyl-L-rhamnoside 1k

Under an N₂ atmosphere, thiorhamnoside **S29** (1 g, 4 mmol) was dissolved in anhydrous DMF (20 mL, 0.5 M) and NaH (60% dispersion in mineral oil) (192 mg, 8.00 mmol) was added. The ice bath was removed, and the reaction was left to stir at room temperature for 30 min. The flask was again cooled to 0 °C, and *p*MeBnBr (0.93 g, 5.0 mmol) was added to the reaction mixture. The ice bath was removed, and the reaction mixture was left to stir at room temperature overnight, after which TLC analysis (cyclohexane:EtOAc; 4:1; R_f = 0.8) showed that the starting material had been consumed. The reaction was quenched with MeOH (2 mL), and the solvents were removed using rotary evaporation. The crude mixture was dissolved in CH₂Cl₂ (100 mL) and washed with 1 M HCl (2 × 50 mL), deionised water (1 × 50 mL), saturated NaHCO₃ (2 × 50 mL), deionised H₂O (1 × 50 mL) and brine (1 × 50 mL). The organic layer was dried over anhydrous Na₂SO₄, filtered off and concentrated in *vacuo*.

Crude thiorhamnoside S31 was dissolved in CH₂Cl₂ (12 mL) and H₂O (0.5 mL) was added. TFA (4.0 mL, 52 mmol) was then added and the reaction left to stir at RT overnight. TLC analysis (cyclohexane: EtOAc; 7:3; $R_f = 0.3$) indicated that the reaction had gone to completion. The reaction mixture was quenched saturated NaHCO₃ (20 mL), diluted with CH₂Cl₂ (50 mL) and the two layers were separated. The aqueous phase was extracted with CH_2Cl_2 (100 mL) and the combined organic layers were washed with water (20 mL), brine (20 mL), dried over anhydrous Na₂SO₄, filtered and concentrated in vacuo. The crude material was used in the next step without further purification. Under a N2, the crude thiorhamnoside was dissolved in anhydrous DMF (20 mL, 0.2 M). The flask was cooled to 0 °C (50:50; ice/water), and NaH (60% dispersion in mineral oil) (384 mg, 16.0 mmol) was added to the reaction flask. The ice bath was removed, and the reaction was left to stir at room temperature for 30 min. The flask was again cooled to 0 °C, and BnBr (1.2 mL, 10 mmol) was added to the reaction mixture. The ice bath was removed, and the reaction mixture was left to stir at room temperature for 4 h, after which TLC analysis (cyclohexane: EtOAc; 4:1; $R_f = 0.6$) showed that the starting material had been consumed. The reaction was quenched with MeOH (2 mL), and the solvents were removed using rotary evaporation. The crude mixture was dissolved in $CH_2Cl_2(100 \text{ mL})$ and washed with 1 M HCl (2 × 50 mL), deionised water (1 \times 50 mL), saturated NaHCO₃ (2 \times 50 mL), deionised H₂O (1 \times 50 mL) and brine (1 \times 50 mL). The organic layer was dried over anhydrous Na₂SO₄, filtered off and concentrated in *vacuo*.
Crude rhamnoside **S32** was dissolved in a 9:1 mixture of acetone:water (20 mL) and NBS (1.1 mg, 6.0 mmol) was added. The reaction left to stir at room temperature for 1 h when TLC analysis (cyclohexane: EtOAc; 6:4; $R_f = 0.6$) showed the complete conversion of the starting material to the desired product. The crude mixture was dissolved in CH₂Cl₂ (100 mL) and washed with saturated Na₂S₂O₃ (50 mL), saturated NaHCO₃ (50 mL), deionised H₂O (50 mL) and brine (50 mL). The organic layer was dried over anhydrous Na₂SO₄, filtered off and concentrated in *vacuo*. Purification by column chromatography (pentane: EtOAc; 9:1 to 8:2) gave product **1k** as an off-white solid (757 mg, 1.75 mmol, 87%, α/β 76:24). ESI-HRMS for C₂₈H₃₂O₅NH₄⁺ (M+NH₄)⁺ calculated: 466.2588; found: 466.2588.

Signals observed for both anomers:

¹H NMR (500 MHz, Chloroform-*d*) δ 7.40 – 7.25 (m, 11H, Ar-CH), 7.21 (d, *J* = 7.8 Hz, 3H, Ar-CH), 7.16 – 7.10 (m, 3H, Ar-CH), 5.10 (d, *J* = 11.6 Hz, 0.5H, PhCH₂), 4.90 (d, *J* = 10.6, 1H, PhCH₂), 4.88 (d, *J* = 10.5, 0.5H, PhCH₂), 4.81 – 4.71 (m, 3H, 3 x PhCH₂), 4.69 (d, *J* = 11.1 Hz, 1H, PhCH₂), 4.66 – 4.63 (m, 2H, 2 x PhCH₂), 4.60 (d, *J* = 10.8 Hz, 1H, PhCH₂). ¹³C NMR (126 MHz, Chloroform-*d*) δ 138.6 (4° C), 138.3 (4° C), 138.13 (4° C), 138.05 (4° C), 137.5 (4° C), 137.3 (4° C), 135.5 (4° C), 135.2 (4° C), 129.1 (Ar-CH), 129.0 (Ar-CH), 128.6 (Ar-CH), 128.5 (Ar-CH), 128.4 (Ar-CH), 128.3 (Ar-CH), 128.20 (Ar-CH), 128.15 (Ar-CH), 128.1 (Ar-CH), 128.0 (Ar-CH), 127.8 (Ar-CH), 127.67 (Ar-CH), 127.66 (Ar-CH), 127.62 (Ar-CH), 127.5 (Ar-CH), 75.3 (PhCH₂), 75.2 (PhCH₂), 74.9 (PhCH₂), 72.94 (PhCH₂), 72.90 (PhCH₂), 72.3 (PhCH₂).

α-anomer:

¹H NMR (500 MHz, Chloroform-*d*) δ 5.15 (dd, J = 3.4, 1.9 Hz, 1H, H-1), 3.95 – 3.86 (m, 2H, H-5, H-3), 3.80 (dd, J = 3.1, 1.9 Hz, 1H, H-2), 3.66 – 3.57 (m, 1H, H-4), 2.62 – 2.60 (m, 1H, OH), 2.33 (s, 3H, CH₃), 1.31 (d, J = 6.3 Hz, 3H, H-6). ¹³C NMR (126 MHz, Chloroform-*d*) δ 93.0 (C-1), 80.4 (C-4), 79.6 (C-3), 75.1 (C-2), 68.3 (C-5), 21.2 (CH₃), 18.1 (C-6).

β-anomer:

¹H NMR (500 MHz, Chloroform-*d*) δ 4.62 (s, 1H, H-1), 3.85 – 3.82 (m, 1H, H-2), 3.57 – 3.52 (m, 2H, H-3, H-4), 3.39 – 3.30 (m, 1H, H-5), 2.46 (d, *J* = 3.5 Hz, 1H, OH), 2.34 (s, 3H, CH₃), 1.33 (d, *J* = 6.2 Hz, 3H, H-6). ¹³C NMR (126 MHz, Chloroform-*d*) δ 93.3 (C-1), 83.1 (C-3), 79.8 (C-4), 76.6 (C-2), 71.6 (C-5), 21.2 (*C*H₃), 17.9 (C-6).

2,3-Di-O-benzyl-4-O-benzoyl-L-rhamnoside 11

Under an N₂ atmosphere, thiorhamnoside **S29** (1 g, 4 mmol) was dissolved in anhydrous DMF (20 mL, 0.5 M) and BzCl (0.9 mL, 8.0 mmol) was added. Pyridine (1.29 mL, 16.0 mmol) was then added and the reaction left to stir at RT overnight. TLC analysis (cyclohexane: EtOAc; 4:1; R_f =0.8) indicated that the reaction had gone to completion. The reaction mixture was diluted with CH₂Cl₂ (100 mL) and washed with 1 M HCl (50 mL). The aqueous phase was extracted with CH₂Cl₂ (100 mL) and the combined organic layers were washed with saturated NaHCO₃ (50 mL), water (50 mL) and brine (50 mL). The organic phase was dried over anhydrous Na₂SO₄, filtered and concentrated in *vacuo*.

Crude thiorhamnoside S33 was dissolved in CH₂Cl₂ (12 mL) and H₂O (0.5 mL) was added. TFA (4.0 mL, 52 mmol) was then added and the reaction left to stir at RT overnight. TLC analysis (cyclohexane:EtOAc; 7:3; $R_f = 0.4$) indicated that the reaction had gone to completion. The reaction mixture was quenched saturated NaHCO₃ (20 mL), diluted with CH₂Cl₂(50 mL) and the two layers were separated. The aqueous phase was extracted with CH_2Cl_2 (100 mL) and the combined organic layers were washed with water (20 mL), brine (20 mL), dried over anhydrous Na₂SO₄, filtered and concentrated in *vacuo*. The crude material was used in the next step without further purification. Under a N_2 , the crude thiorhamnoside was dissolved in anhydrous DMF (20 mL). The flask was cooled to 0 °C (50:50; ice/water), and NaH (60% dispersion in mineral oil) (384 mg, 16.0 mmol) was added to the reaction flask. The ice bath was removed, and the reaction was left to stir at room temperature for 30 min. The flask was again cooled to 0 °C, and BnBr (1.2 mL, 10 mmol) was added to the reaction mixture. The ice bath was removed, and the reaction mixture was left to stir at room temperature for 4 h, after which TLC analysis (cyclohexane: EtOAc; 4:1; $R_f = 0.6$) showed that the starting material had been consumed. The reaction was quenched with MeOH (2 mL), and the solvents were removed using rotary evaporation. The crude mixture was dissolved in $CH_2Cl_2(100 \text{ mL})$ and washed with 1 M HCl (2 × 50 mL), deionised water (1 \times 50 mL), saturated NaHCO₃ (2 \times 50 mL), deionised H₂O (1 \times 50 mL) and brine (1 \times 50 mL). The organic layer was dried over anhydrous Na₂SO₄, filtered off and concentrated in *vacuo*.

Crude rhamnoside **S34** (~1.0 mmol) was dissolved in a 9:1 mixture of acetone:water (9:1 mL) and NBS (534 mg, 3 mmol) was added. The reaction left to stir at room temperature for 1 h when TLC analysis (cyclohexane: EtOAc; 6:4; R_f = 0.5) showed the complete conversion of the starting material to the desired product. The crude mixture was dissolved in CH₂Cl₂ (50 mL) and washed with saturated Na₂S₂O₃

(25 mL), saturated NaHCO₃ (25 mL), deionised H₂O (25 mL) and brine (25 mL). The organic layer was dried over anhydrous Na₂SO₄, filtered off and concentrated in *vacuo*. Purification by column chromatography (pentane: EtOAc; 9:1 to 8:2) gave product **11** as a yellowish syrup (251 mg, 0.56 mmol, 56%, α/β 80:20). ¹H NMR (500 MHz, Chloroform-*d*) δ 8.02 (d, *J* = 7.8 Hz, 3H, Ar-CH), 7.62 – 7.54 (m, 2H, Ar-CH), 7.48 – 7.15 (m, 10H, Ar-CH), 5.50 (t, *J* = 9.7 Hz, 1H, H-4), 5.24 (s, 1H, H-1), 4.83 (d, *J* = 12.3 Hz, 1H, PhCH₂), 4.75 – 4.70 (m, 1H, PhCH₂), 4.56 (d, *J* = 12.1 Hz, 1H, PhCH₂), 4.45 (d, *J* = 12.2 Hz, 1H, PhCH₂), 4.14 – 4.06 (m, 1H, H-5), 3.99 (dd, *J* = 9.7, 2.8 Hz, 1H, H-3), 3.87 (d, *J* = 2.4 Hz, 1H, H-2), 2.89 (d, *J* = 3.5 Hz, 1H, OH), 1.25 (d, *J* = 6.4 Hz, 3H, H-6). NMR data are consistent with the literature.^[22]

2,3,4-Tri-O-acetyl-L-rhamnoside S35

Crude rhamnoside **S27** (1 g, 3 mmol) was dissolved in a 9:1 mixture of acetone:water (30 mL) and NBS (1.6 g, 9.0 mmol) was added. The reaction was left to stir at room temperature overnight. TLC analysis (cyclohexane: EtOAc; 1:1; $R_f = 0.4$) showed the complete conversion of the starting material to the desired product. Purification by column chromatography (pentane: EtOAc; 1:1) gave product **S35** as a white solid (400 mg, 1.38 mmol, 46% α/β 89:11). ¹H NMR (500 MHz, Chloroform-*d*) δ 5.37 (dd, J = 10.1, 3.4 Hz, 1H, H-3), 5.26 (dd, J = 3.2, 2.0 Hz, 1H, H-2), 5.15 (br s, 1H, H-1), 5.07 (t, J = 10.0 Hz, 1H, H-4), 4.18 – 4.09 (m, 1H, H-5), 3.86 (s, 1H, OH), 2.17 – 2.15 (m, 3H, CH₃), 2.06 (s, 3H, CH₃), 2.01 (s, 3H, CH₃), 1.22 (d, J = 6.3 Hz, 3H, H-6). ¹³C NMR (151 MHz, Chloroform-*d*) δ 170.4 (C=O), 170.23 (C=O), 170.17 (C=O), 92.00 (C-1), 71.1 (C-4), 70.4 (C-2), 68.9 (C-3), 66.3 (C-5), 20.88 (CH₃), 20.8 (CH₃), 20.7 (CH₃), 17.4 (C-6). NMR data are consistent with the literature.^[23]

Synthesis of Acceptors

Methyl 2,3,4-tri-O-benzyl-a-D-glucopyranoside 3a

Under a N₂ atmosphere, methyl α -D-glucopyranoside (3.66 g, 18.9 mmol) was dissolved in anhydrous DMF (30 mL) and imidazole (3.86 g, 56.6 mmol) was added. TIPSCl (4.43 mL, 20.7 mmol) was added dropwise over a period of 15 minutes. After-stirring the reaction at RT for 24 h, it was diluted with water (100 mL) and extracted with CH₂Cl₂ (3 × 60 mL). The combined organic layer was washed with brine, dried over anhydrous Na₂SO₄, filtered and concentrated *in vacuo*.

A solution of the crude product **S36** was dissolved in anhydrous DMF (100 mL) and the flask was cooled to 0 °C. NaH (60% dispersion in mineral oil) (3.77 g, 94.3 mmol) was added to the solution and the icebath was removed. The reaction was stirred at room temperature for 1 h, after which it was again cooled to 0 °C and treated slowly with BnBr (11.2 mL, 94.3 mmol). The ice-bath was removed, and the reaction mixture was left to stir at room temperature. TLC analysis (cyclohexane:EtOAc; 9:1) after 12 h showed complete consumption of starting material. The reaction mixture was quenched with MeOH (10 mL) and was extracted wit Et₂O (3 × 200 mL). The combined organic layer was washed with 1 M HCl (100 mL) followed by saturated NaHCO₃ (100 mL) and brine (30 mL). The organic layer was dried over anhydrous Na₂SO₄, filtered and concentrated *in vacuo* to give a yellow oil.

The crude product **S37** was dissolved in MeOH (10 mL) and 1.25 M HCl in MeOH (10 mL) was added. The reaction was left to stir over the weekend, after which TLC analysis (cyclohexane:EtOAc; 9:1, R_f = 0.1) showed that the reaction had gone to completion. The reaction mixture was quenched with saturated NaHCO₃ (20 mL), diluted with CH₂Cl₂ (250 mL) and the two phases were separated. The organic phase was washed with saturated NaHCO₃ (50 mL), water (50 mL), brine (50 mL), dried over anhydrous Na₂SO₄, filtered and concentrated *in vacuo* to give a yellow oil. Purification by column chromatography (pentane:EtOAc; 98:2 to 90:10 to 80:20) afforded the desired product **3a** as a white solid (6.0 g, 12.9 mmol, 68% over 3 steps).

 $R_f = 0.4$ (pentane:EtOAc; 4:1; H₂SO₄ (15-20% EtOH) stain); ¹H NMR (500 MHz, Chloroform-*d*): δ 7.40 – 7.25 (m, 15H, Ar-CH), 4.99 (d, J = 10.9 Hz, 1H, PhCH₂), 4.91 – 4.77 (m, 3H, 3 x PhCH₂), 4.70 – 4.63 (m, 2H, 2 x PhCH₂), 4.57 (d, J = 3.5 Hz, 1H, H-1), 4.00 (t, J = 9.3 Hz, 1H, H-3), 3.80 – 3.62 (m, 3H, H-6a, H-6b, H-5), 3.56 – 3.47 (m, 2H, H-4, H-2), 3.37 (s, 1H, OCH₃), 1.64 (br s, 1H, OH). ¹³C NMR (126

MHz, Chloroform-*d*): δ 138.8 (4° C), 138.2 (4° C), 138.1 (4° C), 128.50 (Ar-*C*H), 128.49 (Ar-*C*H), 128.4 (Ar-*C*H), 128.13 (Ar-*C*H), 128.05 (Ar-*C*H), 127.98 (Ar-*C*H), 127.96 (Ar-*C*H), 127.89 (Ar-*C*H), 127.6 (Ar-*C*H), 98.2 (C-1), 82.0 (C-3), 78.0 (C-2), 77.4 (C-4), 75.8 (Ph*C*H₂), 75.1 (Ph*C*H₂), 73.5 (Ph*C*H₂), 70.7 (C-5), 61.9 (C-6), 55.2 (O*C*H₃). NMR data are consistent with the literature.^[24]

Methyl 4,6-O-benzylidene-a-D-glucopyranoside S38

Under a N₂ atmosphere, a solution of methyl- α -D-glucopyranoside (5.0 g, 26 mmol) in anhydrous DMF (52 mL) was treated with TsOH.H₂O (0.25 g, 1.3 mmol), followed by benzaldehyde dimethyl acetal (4.6 mL, 31 mmol) and stirred at 60 °C for 18 h. The reaction mixture was concentrated *in vacuo*, re-dissolved in CH₂Cl₂, washed with saturated NaHCO3 and brine, dried over anhydrous MgSO4 and concentrated *in vacuo* to give a yellow slurry. After purification by column chromatography (95:5 to 90:10; CH₂Cl₂/MeOH), the title compound **S38** was obtained as a white solid (5.0 g, 68% yield). ¹H NMR (500 MHz, Chloroform-*d*): δ 7.51 – 7.45 (m, 2H, ArCH), 7.43 – 3.31 (m, 3H, ArCH), 5.51 (s, 1H, PhC*H*), 4.74 (d, *J* = 3.9 Hz, 1H, H-1), 4.27 (dd, *J* = 9.9, 4.5 Hz, 1H, H-6a), 3.90 (td, *J* = 9.2, 2.0 Hz, 1H, H-3), 3.78 (td, *J* = 9.7, 4.5 Hz, 1H, OCH₃), 3.22 (d, *J* = 2.4 Hz, 1H, OH), 2.65 (d, *J* = 9.0 Hz, 1H, OH). ¹³C NMR (126 MHz, Chloroform-*d*): δ 137.2 (C), 129.4 (CH), 128.4 (CH), 126.5 (CH), 102.1 (PhCH), 99.9 (C-1), 81.1 (C-4), 72.9 (C-2), 71.7 (C-3), 69.0 (C-6), 62.5 (C-5), 55.7 (OCH₃). NMR data were consistent with literature data.^[25]

Methyl 2,3-di-O-benzyl-4,6-O-benzylidene-α-D-glucopyranoside S39

Under a N_2 atmosphere, a solution of glucopyranoside **S38** (5.0 g, 18 mmol) in anhydrous DMF (40 mL) was cooled to 0 °C and NaH (60% dispersion in mineral oil) (2.3 g, 58 mmol) was added. The reaction mixture was stirred at room temperature for 30 min after which it was again cooled down to 0

°C. Benzyl bromide (6.4 mL, 54 mmol) was added dropwise to the reaction mixture. The reaction mixture was left to stir at room temperature for 9 h. The reaction was quenched with MeOH and the mixture was concentrated *in vacuo* to give a yellow slurry. The slurry was diluted with CH₂Cl₂ and washed with 1 M HCl, followed by saturated NaHCO₃ and brine, dried over anhydrous MgSO₄ and concentrated *in vacuo*. Purification by column chromatography (90:10; Pentane/Et₂O) gave **S39** as a white solid (7.9 g, 95% yield). ¹H NMR (500 MHz, Chloroform-*d*): δ 7.52 – 7.46 (m, 2H, ArCH), 7.42 – 7.24 (m, 13H, ArCH), 5.55 (s, 1H, PhC*H*), 4.91 (d, *J* = 11.3 Hz, 1H, C*H*HPh), 4.85 (d, *J* = 12.2 Hz, 1H, C*H*HPh), 4.85 (d, *J* = 11.3 Hz, 1H, C*H*HPh), 4.70 (d, *J* = 12.2 Hz, 1H, C*H*HPh), 4.60 (d, *J* = 3.7 Hz, 1H, H-1), 4.26 (dd, *J* = 10.1, 4.8 Hz, 1H, H-6a), 4.05 (t, *J* = 9.3 Hz, 1H, H-3), 3.83 (td, *J* = 9.9, 4.8 Hz, 1H, H-5), 3.70 (t, *J* = 10.3 Hz, 1H, H-6b), 3.60 (t, *J* = 9.4 Hz, 1H, H-4), 3.56 (dd, *J* = 9.3, 3.7 Hz, 1H, H-2), 3.40 (s, 1H, OCH₃). ¹³C NMR (126 MHz, Chloroform-*d*): δ 138.9 (C), 138.3 (C), 137.5 (C), 129.0 (CH), 128.6 (CH), 128.44 (CH), 128.35 (CH), 128.3 (CH), 128.2 (CH), 128.1 (CH), 127.7 (CH), 126.2 (CH), 101.4 (PhCH), 99.4 (C-1), 82.3 (C-4), 79.3 (C-2), 78.7 (C-3), 75.5 (PhCH₂), 73.9 (PhCH₂), 69.2 (C-6), 62.5 (C-5), 55.5 (OCH₃). NMR data were consistent with literature data.^[25]

Methyl 2,3,6-tri-O-benzyl-a-D-glucopyranoside 3b

Based on the literature procedure,^[6] under a N₂ atmosphere, a solution of **S39** (3.6 g, 7.8 mmol) in anhydrous CH₂Cl₂ (29 mL) was cooled to 0 °C and treated slowly with trifluoroacetic acid (3.6 mL, 47 mmol) followed by triethylsilane (7.4 mL, 47 mmol). The reaction mixture was warmed up to room temperature and stirred for 45 minutes. The reaction was diluted with CH₂Cl₂ and quenched with saturated NaCHO₃. The organic layer was washed with brine, dried over anhydrous MgSO₄ and concentrated *in vacuo* to give a yellow syrup. Purification by column chromatography (2:1; Pentane/Et₂O) gave **3b** as a yellowish syrup (3.0 g, 83% yield). ¹H NMR (500 MHz, Chloroform-*d*): δ 7.41 – 7.21 (m, 15H, ArCH), 5.00 (d, *J* = 11.5 Hz, 1H, C*H*HPh), 4.77 (d, *J* = 12.1 Hz, 1H, C*H*HPh), 4.73 (d, *J* = 11.4 Hz, 1H, C*H*HPh), 4.66 (d, *J* = 12.1 Hz, 1H, C*H*HPh), 4.63 (d, *J* = 3.5 Hz, 1H, H-1), 4.59 (d, *J* = 12.2 Hz, 1H, C*H*HPh), 4.54 (d, *J* = 12.1 Hz, 1H, C*H*HPh), 3.78 (t, *J* = 9.2 Hz, 1H, H-3), 3.73 – 3.68 (m, 1H, H-5), 3.68 – 3.65 (m, 2H, H-6a, H-6b), 3.60 (td, *J* = 9.2, 2.4 Hz, 1H, H-4), 3.53 (dd, *J* = 9.6, 3.5 Hz, 1H, H-2), 3.38 (s, 3H, OCH₃), 2.31 (t, *J* = 2.4 Hz, 1H, OH). ¹³C NMR (126 MHz, Chloroform-*d*): δ 138.9 (C), 138.2 (C), 138.1 (C), 128.7 (CH), 128.6 (CH), 128.5 (CH), 128.3 (CH), 128.12 (CH), 128.08 (CH), 127.76 (CH), 127.75 (CH), 98.3 (C-1), 81.6 (C-3), 79.7 (C-2),

75.6 (PhCH₂), 73.7 (PhCH₂), 73.3 (PhCH₂), 70.9 (C-4), 70.0 (C-5), 69.6 (C-6), 55.4 (OCH₃). NMR data were consistent with literature data.^[8]

Methyl 2-*O*-benzyl-4,6-*O*-benzylidene-α-D-glucopyranoside 3d and Methyl 3-*O*-benzyl-4,6-*O*-benzylidene-α-D-glucopyranoside S40

A solution of glucopyranoside **S38** (6.7 g, 24 mmol) in anhydrous CH_2Cl_2 (240 mL) was treated with Bu_4NHSO_4 (4.1 g, 12 mmol), followed by benzyl bromide (3.4 mL, 29 mmol) and 1 M NaOH (80 mL) at room temperature. The reaction mixture was then left to stir at reflux for 41 h. The organic and aqueous layers were separated and the aqueous layer was washed with CH_2Cl_2 . The combined organic layers were dried over anhydrous MgSO₄ and concentrated *in vacuo* to give a white solid. Purification by column chromatography (90:10; Pentane/Et₂O) gave **3d** and **S40** as white solid (6.6 g, 74% yield, **3d:S40** = 2:1).

3d (3-OH) ($R_f = 0.38$; 2:1 cyclohexane/EtOAc)

¹H NMR (400 MHz, Chloroform-*d*): δ 7.61 – 7.43 (m, 2H, ArCH), 7.43 – 7.26 (m, 8H, ArCH), 5.52 (s, 1H, PhC*H*), 4.79 (d, *J* = 12.2 Hz, 1H, C*H*HPh), 4.70 (d, *J* = 12.1 Hz, 1H, C*H*HPh), 4.62 (d, *J* = 3.6 Hz, 1H, H-1), 4.26 (dd, *J* = 10.1, 4.7 Hz, 1H, H-6a), 4.15 (td, *J* = 9.3, 2.2 Hz, 1H, H-3), 3.81 (td, *J* = 9.9, 4.7 Hz, 1H, H-5), 3.70 (t, *J* = 10.2 Hz, 1H, H-6b), 3.49 (t, *J* = 9.4 Hz, 1H, H-4), 3.47 (dd, J = 9.2, 3.6 Hz, 1H, H-2), 3.38 (s, 3H, OCH₃), 2.55 (d, *J* = 2.2 Hz, 1H, OH). ¹³C NMR (101 MHz, Chloroform-*d*): δ 138.1 (C), 137.2 (C), 129.4 (CH), 128.7 (CH), 128.5 (CH), 128.30 (CH), 128.27 (CH), 126.5 (CH), 102.1 (PhCH), 98.8 (C-1), 81.4 (C-4), 79.7 (C-2), 73.5 (PhCH₂), 70.4 (C-3), 69.2 (C-6), 62.2 (C-5), 55.5 (OCH₃). NMR data were consistent with literature data.^[25]

S40 (2-OH) ($R_f = 0.25$; 2:1 cyclohexane/EtOAc)

¹H NMR (500 MHz, Chloroform-*d*): δ 7.55 – 7.44 (m, 2H, ArCH), 7.44 – 7.14 (m, 8H, ArCH), 5.57 (s, 1H, PhC*H*), 4.96 (d, *J* = 11.6 Hz, 1H, C*H*HPh), 4.81 (d, *J* = 3.9 Hz, 1H, H-1), 4.79 (d, *J* = 11.6 Hz, 1H, C*H*HPh), 4.30 (dd, *J* = 10.0, 4.6 Hz, 1H, H-6a), 3.88 – 3.79 (m, 2H, H-3, H-5), 3.79 – 3.70 (m, 2H, H-6b, H-2), 3.64 (t, *J* = 9.2 Hz, 1H, H-4), 3.45 (s, 3H, OCH₃), 2.30 (d, *J* = 7.4 Hz, 1H, OH). ¹³C NMR (126 MHz, Chloroform-*d*): δ 138.6 (C), 137.5 (C), 129.1 (CH), 128.5 (CH), 128.4 (CH), 128.1 (CH), 127.9 (CH), 126.2 (CH), 101.4 (PhCH), 100.01 (C-1), 82.1 (C-4), 79.0 (C-3), 75.0 (PhCH₂), 72.6 (C-2), 69.2 (C-6), 62.7 (C-5), 55.6 (OCH₃). NMR data were consistent with literature data.^[25]

Methyl 3-O-acetyl-2-O-benzyl-4,6-O-benzylidene-α-D-glucopyranoside S41 and Methyl 2-Oacetyl-3-O-benzyl-4,6-O-benzylidene-α-D-glucopyranoside S42

A solution of **3d** and **S40** (6.6 g, 18 mmol), acetic anhydride (3.4 mL, 36 mmol) and DMAP (22 mg, 0.18 mmol) in pyridine (1.4 mL, 18 mmol) (little bit of CH₂Cl₂ was added to get a clear solution) was stirred at room temperature for 4 h. The reaction mixture was diluted with CH₂Cl₂ and washed with 1 M HCl, saturated NaHCO₃, and brine. The organic layer was dried over anhydrous MgSO₄, filtered and concentrated *in vacuo* to give a white solid. The crude material was used in the next step without further purification.

S41 (3-OAc)

¹H NMR (600 MHz, Chloroform-*d*): δ 7.46 – 7.41 (m, 2H, ArCH), 7.40 – 7.28 (m, 8H, ArCH), 5.56 (t, *J* = 9.7 Hz, 1H, H-3), 5.45 (s, 1H, PhC*H*), 4.69 (d, *J* = 3.5 Hz, 1H, H-1), 4.66 (d, *J* = 12.4 Hz, 1H, C*H*HPh), 4.63 (d, *J* = 12.4 Hz, 1H, C*H*HPh), 4.26 (dd, *J* = 10.3, 4.9 Hz, 1H, H-6a), 3.89 (td, *J* = 10.0, 4.9 Hz, 1H, H-5), 3.70 (t, *J* = 10.3 Hz, 1H, H-6b), 3.57 (dd, *J* = 9.7, 3.6 Hz, 1H, H-2), 3.53 (t, *J* = 9.6 Hz, 1H, H-4), 3.402 (s, 3H, OCH₃), 2.04 (s, 3H, CH₃). ¹³C NMR (151 MHz, Chloroform-*d*): δ 169.8 (C=O), 138.0 (C), 137.2 (C), 129.1 (CH), 128.6 (CH), 128.3 (CH), 128.1 (CH), 128.0 (CH), 126.3 (CH), 101.6 (Ph*C*H), 98.9 (C-1), 79.7 (C-4), 77.8 (C-2), 73.14 (Ph*C*H₂), 70.7 (C-3), 69.12 (C-6), 62.48 (C-5), 55.5 (OCH₃), 21.14 (CH₃). NMR data were consistent with literature data.^[26]

¹H NMR (600 MHz, Chloroform-*d*): δ 7.51 – 7.47 (m, 2H, ArCH), 7.40 – 7.28 (m, 8H, ArCH), 5.59 (s, 1H, PhC*H*), 4.93 – 4.86 (m, 3H, H-1, H-2, C*H*HPh), 4.71 (d, *J* = 11.2 Hz, 1H, C*H*HPh), 4.30 (dd, *J* = 10.1, 4.7 Hz, 1H, H-6a), 4.03 (t, *J* = 9.4 Hz, 1H, H-3), 3.88 – 3.83 (m, 1H, H-5), 3.78 (t, *J* = 10.3 Hz, 1H, H-6b), 3.75 – 3.68 (m, 1H, H-4), 3.396 (s, 3H, OCH₃), 2.08 (s, 3H, OCH₃). ¹³C NMR (151 MHz, Chloroform-*d*) δ 170.5 (C=O), 138.6 (C), 137.4 (C), 128.41 (CH), 128.37 (CH), 127.8 (CH), 127.7 (CH), 126.2 (CH), 101.5 (PhCH), 97.9 (C-1), 82.2 (C-4), 76.3 (C-3), 75.0 (PhCH₂), 73.12 (C-2), 69.08 (C-6), 62.45 (C-5), 55.4 (OCH₃), 21.05 (CH₃). NMR data were consistent with literature data.^[27]

Methyl 3-O-acetyl-2,6-di-O-benzyl-α-D-glucopyranoside S43 and Methyl 2-O-acetyl-3,6-di-Obenzyl-α-D-glucopyranoside S44

Under a N₂ atmosphere, a solution of **S41** and **S42** (6.7 g, 16 mmol) in anhydrous CH_2Cl_2 (59 mL) was cooled to 0 °C and treated slowly with trifluoroacetic acid (7.4 mL, 96 mmol) followed by triethylsilane (15 mL, 96 mmol). The reaction mixture was warmed up to room temperature and stirred for 1 h. The reaction was diluted with CH_2Cl_2 and quenched with saturated NaCHO₃. The organic layer was washed with brine, dried over anhydrous MgSO₄ and concentrated *in vacuo* to give a yellowish syrup. Purification by column chromatography (3:1 to 1:1; Pentane/Et₂O) gave **S43** as a colourless syrup (3.2 g, 48% yield) and **S44** as a colourless syrup (0.98 g, 15% yield).

S43 (3-OAc)

¹H NMR (500 MHz, Chloroform-*d*): δ 7.38 – 7.25 (m, 10H, ArCH), 5.23 (t, *J* = 9.5 Hz, 1H, H-3), 4.68 (d, *J* = 3.6 Hz, 1H, H-1), 4.66 (d, *J* = 12.4 Hz, 1H, C*H*HPh), 4.62 (d, *J* = 12.4 Hz, 1H, C*H*HPh), 4.60 (d, *J* = 12.1 Hz, 1H, C*H*HPh), 4.56 (d, *J* = 12.1 Hz, 1H, C*H*HPh), 3.77 – 3.67 (m, 3H, H-4, H-6a, H-6b), 3.64 (td, *J* = 9.3, 4.7 Hz, 1H, H-5), 3.53 (dd, *J* = 9.9, 3.6 Hz, 1H, H-2), 3.38 (s, 3H, OCH₃), 2.79 (d, *J* = 4.7 Hz, 1H, OH), 2.09 (s, 3H, CH₃). ¹³C NMR (126 MHz, Chloroform-*d*): δ 172.4 (C=O), 138.1 (C), 138.0 (C), 128.6 (CH), 128.5 (CH), 128.1 (CH), 128.0 (CH), 127.9 (CH), 127.8 (CH), 98.0 (C-1), 76.8 (C-2), 75.8 (C-3), 73.8 (PhCH₂), 73.2 (PhCH₂), 70.6 (C-5), 70.4 (C-4), 69.4 (C-6), 55.4 (OCH₃), 21.2 (CH₃). ESI-HRMS for C₂₃H₂₈O₇Na⁺ (M+Na)⁺ calculated: 439.1727; found: 439.1729.

S44 (2-OAc)

¹H NMR (500 MHz, Chloroform-*d*): δ 7.37 – 7.26 (m, 10H, ArCH), 4.91 (d, *J* = 3.7 Hz, 1H, H-1), 4.85 (dd, *J* = 9.9, 3.7 Hz, 1H, H-2), 4.80 (d, *J* = 11.7 Hz, 1H, C*H*HPh), 4.73 (d, *J* = 11.7 Hz, 1H, C*H*HPh), 4.62 (d, *J* = 12.1 Hz, 1H, C*H*HPh), 4.56 (d, *J* = 12.1 Hz, 1H, C*H*HPh), 3.84 (dd, *J* = 9.9, 8.5 Hz, 1H, H-3), 3.78 – 3.67 (m, 4H, H-4, H-5, H-6a, H-6b), 3.39 (s, 3H, OCH₃), 2.49 (d, *J* = 2.5 Hz, 1H, OH), 2.07 (s, 3H, CH₃). ¹³C NMR (126 MHz, Chloroform-*d*): δ 170.4 (C=O), 138.7 (C), 138.0 (C), 128.7 (CH), 128.6 (CH), 128.0 (CH), 127.9 (CH), 127.80 (CH), 127.75 (CH), 97.3 (C-1), 79.9 (C-3), 75.3 (PhCH₂), 73.8 (PhCH₂), 73.5 (C-2), 71.6 (C-4/5), 69.9 (C-4/5 and C-6), 55.3 (OCH₃), 21.1 (CH₃). NMR data were consistent with literature data.^[28]

Methyl 2,4,6-tri-O-benzyl-a-D-glucopyranoside 3c

Under a N_2 atmosphere, a solution of glucopyranoside S43 (2.1 g, 5.0 mmol) in anhydrous DMF (17 mL) was cooled to 0 °C and benzyl bromide (0.72 mL, 6.1 mmol) was added. After 15 minutes, NaH (60% dispersion in mineral oil) (242 g, 6.05 mmol) was added in one portion and the reaction mixture was stirred at 0 °C for 30 minutes. The reaction mixture was warmed to room temperature and stirred for 3.5 h. The reaction was quenched with MeOH and the mixture was concentrated in vacuo to give a yellowish slurry. The slurry was diluted with CH₂Cl₂ and washed with 1 M HCl, followed by saturated NaHCO₃ and brine, dried over anhydrous MgSO₄ and concentrated *in vacuo*. A solution of the crude in MeOH was treated with MeONa (0.14 g, 2.5 mmol) and the mixture was left to stir at room temperature for 3 days. Purification by column chromatography (98:2 to 95:5; CH₂Cl₂/Et₂O) gave **3c** as a colourless syrup (1.3 g, 56% yield over 2 steps). ¹H NMR (500 MHz, Chloroform-d): δ 7.38 – 7.25 (m, 13H, ArCH), 7.24 - 7.18 (m, 2H, ArCH), 4.83 (d, J = 11.1 Hz, 1H, CHHPh), 4.70 (d, J = 12.2 Hz, 1H, CHHPh), 4.67 (d, J = 12.1 Hz, 1H, CHHPh), 4.65 (d, J = 3.5 Hz, 1H, H-1), 4.61 (d, J = 12.1 Hz, 1H, CHHPh), 4.52 (d, *J* = 11.2 Hz, 1H, CHHPh), 4.49 (d, *J* = 12.2 Hz, 1H, CHHPh), 4.07 (ddd, *J* = 9.5, 8.7, 2.2 Hz, 1H, H-3), 3.74 - 3.69 (m, 2H, H-5, H-6a), 3.67 - 3.62 (m, 1H, H-6b), 3.58 - 3.51 (m, 1H, H-4), 3.41 (dd, J = 9.6, 3.5 Hz, 1H, H-2), 3.33 (s, 3H, OCH₃), 2.42 (d, J = 2.2 Hz, 1H, OH). ¹³C NMR (126 (CH), 128.2 (CH), 128.1 (CH), 128.0 (CH), 127.9 (CH), 127.8 (CH), 97.7 (C-1), 79.6 (C-2), 77.6 (C-4), 74.7 (PhCH₂), 73.8 (C-3), 73.7 (PhCH₂), 73.2 (PhCH₂), 69.8 (C-5), 68.7 (C-6), 55.3 (OCH₃). NMR data were consistent with literature data.^[29]

Methyl 4,6-O-benzylidene-α-D-galactopyranoside S45

Following the literature procedure,^[30] a solution of methyl α -D-galactopyranose (1.1 g, 5.7 mmol), benzaldehyde dimethyl acetal (1.0 ml, 6.7 mmol) and *p*TsOH.H₂O (0.02 g, 0.1 mmol, 2 mol%) in anhydrous DMF (12 ml) was heated on a rotary-evaporator (50 °C, 250 mbar) for four hours. TLC

analysis (9:1; ethyl acetate/methanol; H₂SO₄ (10-15% EtOH)) of the reaction mixture against a sample of pure product showed the desired product had been formed ($R_f = 0.64$) and some starting material remained ($R_f = 0.49$, faint spot). The DMF was removed using rotary evaporation. The white solid obtained was dissolved in CH₂Cl₂ (20 ml) and washed with saturated NaHCO₃ solution (20 ml). The aqueous layer was extracted with CH_2Cl_2 (3 × 20 ml). The combined organic layers were washed with brine (20 ml) and dried over Na₂SO₄, filtered and concentrated in vacuo. Purification by column chromatography (95:5; dichloromethane/methanol) gave the desired product $\mathbf{S45}$ as a white solid (0.87) g, 54% yield); $R_{\rm f} = 0.24$ (95:5; CH₂Cl₂/MeOH), mp 172–174 °C (lit.^[30] 170.3–171.0 °C (cyclohexane/ethyl acetate)); ¹H NMR (400 MHz, Chloroform-d) δ 7.58 – 7.44 (m, 2H, Ar-CH), 7.44 – 7.30 (m, 3H, Ar-CH), 5.54 (s, 1H, PhCH), 4.91 (d, J = 3.1 Hz, 1H, H-1), 4.27 (dd, J = 12.5, 1.6 Hz, 1H, H-6a), 4.24 (br d, J = 2.0 Hz, 1H, H-4), 4.06 (dd, J = 12.6, 1.8 Hz, 1H, H-6b), 3.99 – 3.83 (m, 2H, H-2, H-3), 3.67 (br s, 1H, H-5), 3.44 (s, 3H, OCH₃), 2.64 (d, *J* = 7.3 Hz, 1H, OH), 2.42 (d, *J* = 6.3 Hz, 1H, OH); ¹³C NMR (101 MHz, Chloroform-d) δ 137.7 (4 °C), 129.3 (Ar-CH), 128.4 (Ar-CH), 126.4 (Ar-CH), 101.4 (PhCH), 100.4 (C-1), 76.0 (C-4), 69.9, 69.8 (C-2, C-3), 69.4 (C-6), 62.8 (C-5), 55.8 (OCH₃); ESI-HRMS for $C_{14}H_{18}NaO_6^+$ (M+Na)⁺ calculated: 305.1001; found: 305.0986. NMR data were consistent with the literature.^[30]

Methyl 2-*O*-benzyl-3-*O*-acetyl-4,6-*O*-benzylidene-α-D-galactopyranoside S47 and Methyl 3-*O*-benzyl-2-*O*-acetyl-4,6-*O*-benzylidene-α-D-galactopyranoside S48

Based on the literature procedure,^[30] ^{*n*}Bu₄NHSO₄ (16 g, 47 mmol) followed by aq. NaOH (150 mL, 1.2M) were added to a stirred solution of methyl 4,6-*O*-benzylidene- α -D-galactopyranoside **S45** (13.5 g, 47.8 mmol) in CH₂Cl₂ (500 mL). The mixture was stirred for 30 min at room temperature. BnBr (7.0 mL, 59 mmol) was then added to the reaction mixture. The reaction was heated at reflux temperature for three days (time unoptimised). TLC analysis (9:1; dichloromethane/methanol) showed that some of the galactopyranoside starting material remained ($R_f = 0.45$) and two new spots were detected in the reaction mixture ($R_f = 0.82$, 0.86). The aqueous and organic layers were separated. The aqueous layer was extracted with CH₂Cl₂ (2 × 150 mL). The combined organic layers were washed with NaHCO₃ (200

mL), brine (200 mL), dried over MgSO₄, filtered and concentrated *in vacuo*. Column chromatography was performed (99:1 to 90:10; cyclohexane/ EtOAc) which afforded a mixture of methyl 2-*O*-benzyl-4,6-*O*-benzylidene- α -D-galactopyranoside **S46** and methyl 3-*O*-benzyl-4,6-*O*-benzylidene- α -D-galactopyranoside **3j** as a white solid (12 g, 67% yield). Based on the relative integrations of PhC*H* in the ¹H NMR spectrum the ratio of the two products was determined as 54:46 (**S46:3j**, 3-OH/2-OH product). The mixture of **S46** and **3j** (12 g, 32 mmol) was added to a solution of acetic anhydride (12.0 mL, 127 mmol) and anhydrous pyridine (50 mL), under a N₂ atmosphere. The reaction mixture was stirred at room temperature for three days (time unoptimised). TLC analysis (EtOAc) showed that the starting materials had been consumed ($R_f = 0.53$) and a new spot appeared ($R_f = 0.66$). The reaction mixture was diluted with CH₂Cl₂ (200 mL) and washed with 1M HCl (2 × 100 mL), brine (100 mL), dried over anhydrous Na₂SO₄, filtered and concentrated *in vacuo*. Purification by column chromatography (95:5 to 60:40; cyclohexane/ EtOAc) afforded **S47 (3-OAc)** as an amorphous white solid (6.9 g, 52% yield) and **S48 (2-OAc)** as a white solid (3.4 g, 26% yield); 1.6 g (12% yield) remained as mixed fractions.

Methyl 2-*O***-benzyl-3-***O***-acetyl-4,6-***O***-benzylidene-α-D-galactopyranoside S47: R_f = 0.3 (4:1; cyclohexane/ EtOAc); ¹H NMR (400 MHz, Chloroform-***d***) δ 7.52 – 7.45 (m, 2H, Ar-CH), 7.43 – 7.27 (m, 8H, Ar-CH), 5.50 (s, 1H, PhC***H***), 5.29 (dd, J = 10.5, 3.5 Hz, 1H, H-3), 4.80 (d, J = 3.5 Hz, 1H, H-1), 4.75 (d, J = 12.2 Hz, 1H, PhCH₂), 4.62 (d, J = 12.2 Hz, 1H, PhCH₂), 4.46 (dd, J = 3.6, 1.2 Hz, 1H, H-4), 4.23 (dd, J = 12.5, 1.6 Hz, 1H, H-6a), 4.09 (dd, J = 10.5, 3.5 Hz, 1H, H-2), 4.04 (dd, J = 12.5, 1.8 Hz, 1H, H-6b), 3.75 – 3.69 (m, 1H, H-5), 3.40 (s, 3H, OCH₃), 2.09 (s, 3H, (H₃CC(O)O)); ¹³C NMR (101 MHz, Chloroform-***d***) δ 170.8 (C=O), 138.4 (4 °C), 137.9 (4 °C), 129.1 (Ar-CH), 128.5 (Ar-CH), 128.3 (Ar-CH), 127.9 (Ar-CH), 126.3 (Ar-CH), 100.9 (PhCH), 99.3 (C-1), 74.4 (C-4), 73.7, 73.6 (C-2, PhCH₂), 71.0 (C-3), 69.4 (C-6), 62.2 (C-5), 55.7 (OCH₃), 21.3 (H₃CC(O)O); ESI-HRMS for C₂₃H₂₆NaO₇⁺ (M+Na)⁺ calculated: 437.1576; found: 437.1561. NMR data were consistent with literature data.^[30]**

Methyl 3-*O*-benzyl-2-*O*-acetyl-4,6-*O*-benzylidene-α-D-galactopyranoside S48: $R_f = 0.27$ (4:1; cyclohexane/ EtOAc); ¹H NMR (500 MHz, Chloroform-*d*) δ 7.61 – 7.47 (m, 2H, Ar-CH), 7.41 – 7.22 (m, 8H, Ar-CH), 5.48 (s, 1H, PhC*H*), 5.34 (dd, J = 10.5, 3.6 Hz, 1H, H-2), 5.06 (d, J = 3.6 Hz, 1H, H-1), 4.72 (d, J = 12.5 Hz, 1H, PhCH₂), 4.68 (d, J = 12.5 Hz, 1H, PhCH₂), 4.24 (dd, J = 12.4, 1.6 Hz, 1H, H-6a), 4.20 (br d, J = 3.3 Hz, 1H, H-4), 4.04 – 3.95 (m, 2H, H-3, H-6b), 3.63 – 3.56 (m, 1H, H-5), 3.38 (s, 3H, OCH₃), 2.09 (s, 3H, (H₃CC(O)O)); ¹³C NMR (126 MHz, Chloroform-*d*) δ 170.4 (C=O), 138.5 (4 °C), 137.8 (4 °C), 129.0 (Ar-CH), 128.4 (Ar-CH), 128.2 (Ar-CH), 127.7 (Ar-CH), 127.5 (Ar-CH), 126.4 (Ar-CH), 101.1 (PhCH), 98.0 (C-1), 74.3 (C-4), 73.7 (C-3), 71.9 (PhCH₂), 70.2 (C-2), 69.3 (C-6), 62.5 (C-5), 55.5 (OCH₃), 21.1 (H₃CC(O)O); ESI-HRMS for C₂₃H₂₆NaO₇⁺ (M+Na)⁺ calculated: 437.1576; found: 437.1598.

Methyl 2-O-benzyl-4,6-O-benzylidene-a-D-galactopyranoside S46

Using Zemplén conditions,^[31] **S47** (1.5 g, 3.6 mmol) was dissolved in MeOH (36 mL) and NaOMe was added (0.08 g, 1.5 mmol). After 24 h TLC analysis (5:3; cyclohexane/ EtOAc) showed the starting material was consumed (R_f = 0.35) and a new spot had appeared (R_f = 0.09) in the reaction mixture. The mixture was neutralised with Amberlyst[®] IR 120, filtered and concentrated *in vacuo*. Purification by column chromatography (62:38 to 24:75; cyclohexane/ EtOAc) afforded the desired product **S46** as a white foam (1.12 g, 84% yield). R_f = 0.09 (5:3; cyclohexane/ EtOAc); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.55 – 7.43 (m, 2H, Ar-CH), 7.41 – 7.25 (m, 8H, Ar-CH), 5.55 (s, 1H, PhCH), 4.81 (d, *J* = 12.3 Hz, 1H, PhCH₂), 4.79 (d, *J* = 3.6 Hz, 1H, H-1), 4.66 (d, *J* = 12.1 Hz, 1H, PhCH₂), 4.28 (dd, *J* = 3.9, 1.3 Hz, 1H, H-4), 4.25 (dd, *J* = 12.5, 1.6 Hz, 1H, H-6a), 4.14 (br dd, *J* = 10.1, 3.6 Hz, 1H, H-3), 4.07 (dd, *J* = 12.6, 1.9 Hz, 1H, H-6b), 3.82 (dd, *J* = 10.0, 3.5 Hz, 1H, H-2), 3.71 – 3.64 (m, 1H, H-5), 3.37 (s, 3H, OCH₃), 2.41 (s, 1H, OH); ¹³C NMR (101 MHz, Chloroform-*d*) δ 138.4 (4° C), 137.7 (4° C), 129.3 (Ar-CH), 128.6 (Ar-CH), 128.3 (Ar-CH), 128.2 (Ar-CH), 128.0 (Ar-CH), 126.4 (Ar-CH), 101.4 (PhCH), 99.1 (C-1), 76.9 (C-2), 76.2 (C-4), 73.5 (PhCH₂), 69.5 (C-6), 68.7 (C-3), 62.5 (C-5), 55.7 (OCH₃); ESI-HRMS for C₂₁H₂₄NaO₆⁺ (M+Na)⁺ calculated: 395.1471; found: 395.1467. ¹H NMR data were consistent with the literature.^[30]

Methyl 3-O-benzyl-4,6-O-benzylidene-α-D-galactopyranoside 3j

Using Zemplén conditions,^[31] **S48** (1.5 g, 3.6 mmol) was dissolved in MeOH (36 mL) and NaOMe was added (0.09 g, 1.7 mmol). As the reaction proceeded a white precipitate formed. After 24 h this was filtered using Hirsch filtration. The filter cake was washed with cold MeOH. Desired product **3j** was obtained as a white solid without further purification (0.8 g, 60% yield). A second crop was obtained

from the filtrate (0.4 g, 30% yield). mp 200–202 °C (lit.^[32] 185–186 °C (CH₂Cl₂/hexane)); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.58 – 7.45 (m, 2H, Ar-CH), 7.44 – 7.21 (m, 8H, Ar-CH), 5.45 (s, 1H, PhC*H*), 4.95 (d, *J* = 3.8 Hz, 1H, H-1), 4.73 (s, 2H, 2 × PhCH₂), 4.26 (dd, *J* = 12.5, 1.6 Hz, 1H, H-6a), 4.23 – 4.16 (m, 2H, H-2, H-4), 4.02 (dd, *J* = 12.4, 1.8 Hz, 1H, H-6b), 3.79 (dd, *J* = 10.0, 3.5 Hz, 1H, H-3), 3.65 – 3.57 (m, 1H, H-5), 3.44 (s, 3H, OCH₃), 2.26 (d, *J* = 6.2 Hz, 1H, OH); ¹³C NMR (101 MHz, Chloroform-*d*) δ 138.5 (4 °C), 137.9 (4 °C), 129.0 (Ar-CH), 128.6 (Ar-CH), 128.3 (Ar-CH), 127.94 (Ar-CH), 127.92 (Ar-CH), 126.4 (Ar-CH), 101.1 (PhCH), 100.3 (C-1), 76.6 (C-3), 73.7 (C-4), 71.5 (PhCH₂), 69.6 (C-6), 68.1 (C-2), 62.9 (C-5), 55.7 (OCH₃); ESI-HRMS for C₂₁H₂₄NaO₆⁺ (M+Na)⁺ calculated: 395.1471; found: 395.1456. Proton NMR data were consistent with the literature data with the exception of the assignments for H-4 and H-5.^[32]

Ethyl 2,3,4-tri-O-(4-methylbenzyl)-1-thio-α-D-mannopyranoside 3i

Based on the literature procedure,^[8] a solution of **S8** (0.69 g, 1.0 mmol) in MeCN/H₂O (4:1, 15 mL) was treated with trifluoroacetic acid (0.940 mL, 12.2 mmol) at room temperature. After stirring for 4 h at room temperature, the reaction was quenched with saturated NaHCO₃ and diluted with CH₂Cl₂ (100 mL). The aqueous layer was washed with CH_2Cl_2 (2 x 50 mL). The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄ and concentrated *in vacuo* to give a bright yellow oil. Purification by column chromatography (9:1 to 1:1; pentane/Et₂O) gave **3i** as a colourless syrup (0.54 g, quantitative yield). ESI-HRMS for $C_{32}H_{44}O_5SN^+$ (M+NH₄)⁺ calculated: 554.2935; found: 554.2939. ¹H NMR (500 MHz, Chloroform-*d*): δ 7.27 – 7.18 (m, 6H, ArCH), 7.15 – 7.09 (m, 6H, ArCH), 5.26 (d, *J* = 1.3 Hz, 1H, H-1), 4.88 (d, *J* = 10.7 Hz, 1H, CHHPh), 4.67 (d, *J* = 12.2 Hz, 1H, CHHPh), 4.63 (d, *J* = 12.1 Hz, 1H, CHHPh), 4.58 (d, J = 10.7 Hz, 1H, CHHPh), 4.55 (d, J = 11.5 Hz, 1H, CHHPh), 4.52 (d, J = 11.6 Hz, 1H, CHHPh), 3.99 – 3.90 (m, 2H, H-4, H-5), 3.85 – 3.72 (m, 4H, H-2, H-3, H-6a, H-6b), 2.61 – 2.45 (m, 2H, SCH₂CH₃), 2.34 (s, 3H, CH₃), 2.34 (s, 3H, CH₃), 2.33 (s, 3H, CH₃), 1.24 – 1.17 (m, 4H, SCH₂CH₃, OH). ¹³C NMR (126 MHz, Chloroform-*d*): δ 137.6 (C), 137.5 (C), 137.4 (C), 135.5 (C), 135.3 (C), 135.1 (C), 129.18 (CH), 129.16 (CH), 129.15 (CH), 128.3 (CH), 128.2 (CH), 128.0 (CH), 82.40 (C-1), 80.3 (C-3), 76.4 (C-2), 75.2 (PhCH₂), 75.0 (C-4), 72.5 (C-5), 72.4 (PhCH₂), 72.1 (PhCH₂), 62.5 (C-6), 25.4 (SCH₂CH₃), 21.29 (CH₃), 21.28 (CH₃), 21.27 (CH₃), 15.0 (SCH₂CH₃).

Methyl a-D-glucopyranoside (2.0 g, 10 mmol), was dissolved in anhydrous pyridine (34 mL) under a N2 atmosphere and treated with imidazole (1.40 g, 20.6 mmol) and TIPSCI (2.2 mL, 10 mmol). The reaction mixture was stirred at room temperature for 17 hours and monitored by TLC (9:1; CH₂Cl₂/methanol). When the starting material was consumed, BzCl (7.38 mL, 61.8 mmol) and catalytic DMAP (0.1 g, 1 mmol) were added and the reaction was stirred for 7.5 hours. The reaction mixture turned a yellow colour. TLC analysis (8:2; pentane/Et₂O) showed complete conversion of intermediate. The reaction was quenched with water (5 mL), diluted with CH₂Cl₂ (200 mL) and the two phases separated. The organic layer was subsequently washed with 1 M HCl, water, saturated NaHCO3 and brine, dried over anhydrous MgSO₄, filtered and concentrated *in vacuo* to give a light brown syrup. The crude material was dissolved in CH₃CN and water (100 mL, 7:1) and treated with TFA (16 mL, 0.21 mol). The reaction mixture was stirred at room temperature for 21 hours and monitored by TLC analysis (8:2; pentane/Et₂O). The reaction mixture was concentrated in vacuo and the residue was diluted with CH₂Cl₂ (200 mL), washed with brine, dried over anhydrous MgSO4 and concentrated in vacuo to give a light brown syrup. Purification by column chromatography (1:1 pentane/Et₂O followed by 9:1 CH₂Cl₂/Et₂O) afforded the product S49 (3.23 g, 48% yield) as a white crystalline solid. ¹H NMR (400 MHz, Chloroform-*d*): δ 8.01 – 7.94 (m, 4H, ArCH), 7.90 – 7.85 (m, 2H, ArCH), 7.57 – 7.48 (m, 2H, ArCH), 7.45 – 7.34 (m, 5H, ArCH), 7.32 – 7.24 (m, 2H, ArCH), 6.23 (t, J = 9.7 Hz, 1H, H-3), 5.50 (t, J = 9.9 Hz, 1H, H-4), 5.32 – 5.24 (m, 2H, H-2, H-1), 4.04 (ddd, J = 10.1, 3.8, 2.3 Hz, 1H, H-5), 3.83 (ddd, J = 13.0, 8.7, 2.3 Hz, 1H, H-6a), 3.74 (ddd, J = 12.9, 5.5, 3.8 Hz, 1H, H-6b), 3.47 (s, 3H, OCH₃), 2.68 (dd, J = 8.7, 5.6 Hz, 1H, OH). ¹³C NMR (101 MHz, Chloroform-*d*): δ 166.6 (C=O), 166.0 (C=O), 165.9 (C=O), 133.9 (C), 133.5 (C), 133.3 (C), 130.13 (CH), 130.05 (CH), 129.8 (CH), 129.3 (CH), 129.2 (CH), 128.72 (CH), 128.66 (CH), 128.6 (CH), 128.4 (CH), 97.3 (C-1), 72.2 (C-2), 70.2 (C-3), 69.9 (C-5), 69.7 (C-4), 61.2 (C-6), 55.8 (CH₃). NMR data were consistent with literature data.^[8]

β-Mannosylations and β-Rhamnosylations

General Procedure A for Mannosylation Donor Scope

A 25 mL crimp-top vial charged with a stir-bar, hemiacetal (0.10 mmol, 1 eq) and Ph₃PO (14 mg, 0.050 mmol, 0.5 eq) was placed under three cycles of vacuum and nitrogen. The solids were dissolved in anhydrous CHCl₃ (0.2 mL, 0.5 M), treated with oxalyl chloride (10 μ L, 0.12 mmol, 1.2 eq) and left to stir at room temperature. After 1 h, the solvent and excess oxalyl chloride were removed by applying vacuum. Solid acceptor (0.07 mmol, 0.7 eq) and powdered LiI (53 mg, 0.40 mmol, 4 eq) were added to the vial and placed under three cycles of vacuum and nitrogen. The contents were re-dissolved in anhydrous CHCl₃ (0.25 mL, 0.4 M w.r.t. donor) and treated with iPr₂NEt (42 μ L, 0.25 mmol, 2.5 eq). The reaction was stirred at 45 °C for 24 h or 30 °C for 36 h. The reaction mixture was diluted with CH₂Cl₂ (1 mL) and treated with 1 M HCl (1 mL). The aqueous layer was washed with CH₂Cl₂ (2 x 1 mL) and the combined organic layers were dried over anhydrous MgSO₄ and concentrated *in vacuo* to give a yellow or brown syrup. The α/β ratio was determined by ¹H NMR spectroscopy of the crude reaction mixture.

General Procedure B for Mannosylation Acceptor Scope

A 25 mL crimp-top vial charged with a stir-bar, hemiacetal (0.10 mmol, 1 eq) and Ph₃PO (28 mg, 0.10 mmol, 1 eq) was placed under three cycles of vacuum and nitrogen. The solids were dissolved in anhydrous CHCl₃ (0.2 mL, 0.5 M), treated with oxalyl chloride (10 μ L, 0.12 mmol, 1.2 eq) and left to stir at room temperature. After 30 minutes, the solvent and excess oxalyl chloride were removed by applying vacuum. Solid acceptor (0.07 mmol, 0.7 eq) and powdered LiI (53 mg, 0.40 mmol, 4 eq) were added to the vial and placed under three cycles of vacuum and nitrogen. The contents were re-dissolved in anhydrous CHCl₃ (0.25 mL, 0.4 M w.r.t. donor) and treated with iPr₂NEt (69 μ L, 0.40 mmol, 4 eq). The reaction was stirred at 45 °C for 24 h. The reaction mixture was diluted with CH₂Cl₂ (1 mL) and treated with 1 M HCl (1 mL). The aqueous layer was washed with CH₂Cl₂ (2 x 1 mL) and the combined organic layers were dried over anhydrous MgSO₄ and concentrated *in vacuo* to give a yellow or brown syrup. The α/β ratio was determined by ¹H NMR spectroscopy of the crude reaction mixture.

General Procedure C for Mannosylation Acceptor Scope

A 25 mL crimp-top vial charged with a stir-bar, hemiacetal (0.10 mmol, 1 eq) and Ph₃PO (28 mg, 0.10 mmol, 1 eq) was placed under three cycles of vacuum and nitrogen. The solids were dissolved in anhydrous CHCl₃ (0.2 mL, 0.5 M), treated with oxalyl chloride (10 μ L, 0.12 mmol, 1.2 eq) and left to stir at room temperature. After 30 minutes, the solvent and excess oxalyl chloride were removed by applying vacuum. Powdered LiI (53 mg, 0.40 mmol, 4 eq) was added to the vial and placed under three cycles of vacuum and nitrogen. A stock solution of the acceptor in anhydrous CHCl₃ (0.4 M w.r.t. donor

or 0.28 M w.r.t acceptor) was added followed by iPr_2NEt (69 µL, 0.40 mmol, 4 eq). The reaction was stirred at 45 °C for 24 h. The reaction mixture was diluted with CH_2Cl_2 (1 mL) and treated with 1 M HCl (1 mL). The aqueous layer was washed with CH_2Cl_2 (2 x 1 mL) and the combined organic layers were dried over anhydrous MgSO₄ and concentrated *in vacuo* to give a yellow or brown syrup. The α/β ratio was determined by ¹H NMR spectroscopy of the crude reaction mixture.

General procedure D for Rhamnosylation Donor Scope

A 25 mL crimp-top vial charged with a stir-bar, hemiacetal (0.10 mmol, 1 eq) and Ph₃PO (28 mg, 0.10 mmol, 1 eq) was placed under three cycles of vacuum and nitrogen. The solids were dissolved in anhydrous CHCl₃ (0.2 mL, 0.5 M), treated with oxalyl chloride (10 μ L, 0.12 mmol, 1.2 eq) and left to stir at room temperature. After 30 minutes, the solvent and excess oxalyl chloride were removed by applying vacuum. Solid acceptor (0.07 mmol, 0.7 eq) and powdered LiI (53 mg, 0.40 mmol, 4 eq) were added to the vial and placed under three cycles of vacuum and nitrogen. The contents were re-dissolved in anhydrous CHCl₃ (0.25 mL, 0.4 M w.r.t. donor) and treated with iPr₂NEt (69 μ L, 0.40 mmol, 4 eq). The reaction was stirred at 45 °C or 30 °C for 24 h. The reaction mixture was diluted with CH₂Cl₂ (15 ml) and washed with 1M HCl (2 × 5 ml), brine (10 ml), dried using Na₂SO₄, filtered and concentrated *in vacuo*. The α/β ratio was determined by ¹H NMR spectroscopy of the crude reaction mixture.

General procedure E for Rhamnosylation Acceptor Scope

A 25 mL crimp-top vial charged with a stir-bar, hemiacetal (0.10 mmol, 1 eq) and Ph₃PO (14 mg, 0.050 mmol, 0.5 eq) was placed under three cycles of vacuum and nitrogen. The solids were dissolved in anhydrous CHCl₃ (0.2 mL, 0.5 M), treated with oxalyl chloride (10 μ L, 0.12 mmol, 1.2 eq) and left to stir at room temperature. After 1 h, the solvent and excess oxalyl chloride were removed by applying vacuum. Solid acceptor (0.07 mmol, 0.7 eq) and powdered LiI (53 mg, 0.40 mmol, 4 eq) were added to the vial and placed under three cycles of vacuum and nitrogen. The contents were re-dissolved in anhydrous CHCl₃ (0.25 mL, 0.4 M w.r.t. donor) and treated with iPr₂NEt (42 μ L, 0.25 mmol, 2.5 eq). The reaction was stirred at 45 °C or 30 °C for 24 h. The reaction mixture was diluted with CH₂Cl₂ (15 ml) and washed with 1M HCl (2 × 5 ml), brine (10 ml), dried using Na₂SO₄, filtered and concentrated *in vacuo*. The α/β ratio was determined by ¹H NMR spectroscopy of the crude reaction mixture.

Methyl (2,3,4,6-tetra-*O*-benzyl-β-D-mannopyranosyl)-(1→6)-2,3,4-tri-*O*-benzyl-α-Dglucopyranoside 2a

Following the general procedure A, hemiacetal **1a** (54 mg, 0.10 mmol), Ph₃PO (28 mg, 0.10 mmol, 1 eq) and acceptor **3a** (33 mg, 0.070 mmol) were used. The reaction was stirred at 45 °C for 18 h. ¹H NMR spectroscopy of the crude reaction mixture gave an $\alpha/\beta = 2:98$. Purification by column chromatography (97:3; CH₂Cl₂/Et₂O) gave **2a** as a white solid (55 mg, 80% yield).

1 mmol scale

In a slight modification of general procedure A, hemiacetal **1a** (580 mg, 1.07 mmol), Ph₃PO (149 mg, 0.535 mmol, 0.05 eq) and acceptor **3a** (348 mg, 0.750 mmol) were used. The reaction was stirred at 30 °C for 18 h. ¹H NMR spectroscopy of the crude reaction mixture gave an $\alpha/\beta = 4:96$. Purification by column chromatography (85:15; Cyclohexane/EtOAc) gave **2a** as a white solid (615 mg, 85% yield). Reaction was also performed at 45 °C leading to the desired product **2a** as a white solid ($\alpha/\beta = 10:90$, 90% yield).

β-anomer

¹H NMR (500 MHz, Chloroform-*d*): δ 7.48 – 7.05 (m, 35H, ArCH), 5.01 (d, J = 10.9 Hz, 1H, CHHPh), 4.93 (d, J = 12.5 Hz, 1H, CHHPh), 4.88 (d, J = 10.8 Hz, 1H, CHHPh), 4.83 (d, J = 10.9 Hz, 1H, CHHPh), 4.81 (d, J = 11.5 Hz, 1H, CHHPh), 4.81 – 4.75 (m, 2H, 2 x CHHPh), 4.66 (d, J = 12.1 Hz, 1H, CHHPh), 4.61 – 4.54 (m, 3H, H-1, 2 x CHHPh), 4.53 (d, J = 11.9 Hz, 1H, CHHPh), 4.52 (d, J = 10.7 Hz, 1H, CHHPh), 4.51 (d, J = 11.5 Hz, 1H, CHHPh), 4.47 (d, J = 11.9 Hz, 1H, CHHPh), 4.16 (dd, J = 10.5, 2.0 Hz, 1H, H-6a), 4.12 (s, 1H, H-1'), 4.02 (t, J = 9.2 Hz, 1H, H-3), 3.83 (t, J = 9.5 Hz, 1H, H-4'), 3.81 – 3.77 (m, 1H, H-5), 3.77 (dd, J = 10.9, 2.2 Hz, 1H, H-6a'), 3.75 – 3.68 (m, 2H, H-2', H-6b'), 3.50 (dd, J = 9.7, 3.5 Hz, 1H, H-2), 3.49 – 3.41 (m, 2H, H-6b, H-4), 3.41 (dd, J = 9.4, 3.1 Hz, 1H, H-3'), 3.38 (dd, J = 9.7, 6.2, 2.1 Hz, 1H, H-5'), 3.32 (s, 3H, OCH₃). ¹³C NMR (126 MHz, Chloroform-*d*): δ 139.0 (C), 138.9 (C), 138.6 (C), 138.4 (2 x C), 138.3 (C), 138.2 (C), 128.6 (CH), 128.18 (CH), 128.14 (CH), 128.48 (CH), 128.40 (CH), 128.39 (CH), 127.77 (CH), 127.76 (CH), 127.5 (CH), 101.6 (C-1'), 97.9 (C-1), 82.4 (C-3'), 82.3 (C-3), 80.0 (C-2), 77.8 (C-4), 76.1 (C-5'), 75.8 (PhCH₂), 75.3 (PhCH₂), 73.7 (C-2'), 73.6 (PhCH₂), 73.5 (PhCH₂), 71.7 (PhCH₂), 69.91 (C-5), 69.88 (C-6'), 68.4 (C-6), 55.2 (OCH₃). NMR data were consistent with literature data.^[33]

α-anomer

¹H NMR (500 MHz, Chloroform-*d*): δ 3.30 (s, 3H, OCH₃).

Donor	Ph ₃ PO 1 eq	Ph ₃ PO 1 eq	Ph ₃ PO 2 eq	Ph ₃ PO 0.5 eq
	45 °C, 24 h	30 °C, 36 h	45 °C, 18 h	45 °C, 18 h
1b	$\alpha/\beta = 21:79$	$\alpha/\beta = 5:95$		$\alpha/\beta = 5:95$
	71%	78%		93%
1c	$\alpha/\beta = 19:81$	$\alpha/\beta = 4:96$		$\alpha/\beta = 4:97$
	70%	93%		90%
1d	$\alpha/\beta = 14:86$	$\alpha/\beta = 5:95$		$\alpha/\beta = 3:97$
	50% conv	46%		71%
1e	$\alpha/\beta = 11:89$	$\alpha/\beta = 12:88$	$\alpha/\beta = 59:41$	$\alpha/\beta = 5:95$
	77%	77%	67% conv	94%

Optimisation reactions (isolated yields and α/β ratios)

Methyl (2,3,4-tri-*O*-benzyl-6-*O*-(4-methylbenzyl)-β-D-mannopyranosyl)-(1→6)-2,3,4-tri-*O*-benzyl-α-D-glucopyranoside 2b

Following the general procedure A, hemiacetal **1b** (55 mg, 0.10 mmol) and acceptor **3a** (33 mg, 0.070 mmol) were used. The reaction was stirred at 45 °C for 18 h. ¹H NMR spectroscopy of the crude reaction mixture gave an α/β = 5:95. Purification by column chromatography (97:3; CH₂Cl₂/Et₂O) gave **2b** as a white solid (64 mg, 93% yield). ESI-HRMS for C₆₃H₆₈O₁₁Na⁺ (M+Na)⁺ calculated: 1023.4654; found: 1023.4659.

β-anomer

¹H NMR (600 MHz, Chloroform-*d*): δ 7.53 – 7.11 (m, 32H, ArCH), 7.07 (d, *J* = 7.7 Hz, 2H, ArCH), 5.01 (d, *J* = 10.9 Hz, 1H, *CH*HPh), 4.93 (d, *J* = 12.5 Hz, 1H, *CH*HPh), 4.87 (d, *J* = 10.7 Hz, 1H, *CH*HPh), 4.82 (d, *J* = 11.0 Hz, 1H, *CH*HPh), 4.81 (d, *J* = 11.4 Hz, 1H, *CH*HPh), 4.78 (d, *J* = 12.5 Hz, 1H, *CH*HPh), 4.78 (d, *J* = 12.2 Hz, 1H, *CH*HPh), 4.66 (d, *J* = 12.1 Hz, 1H, *CH*HPh), 4.58 (d, *J* = 3.5 Hz, 1H, H-1), 4.55 (d, *J* = 11.9 Hz, 1H, *CH*HPh), 4.53 – 4.49 (m, 4H, 4 x *CH*HPh), 4.47 (d, *J* = 11.7 Hz, 1H, *CH*HPh),

4.16 (dd, J = 10.5, 2.0 Hz, 1H, H-6a), 4.11 (s, 1H, H-1'), 4.02 (t, J = 9.2 Hz, 1H, H-3), 3.82 (t, J = 9.5 Hz, 1H, H-4'), 3.80 – 3.77 (m, 1H, H-5), 3.75 (dd, J = 10.9, 1.9 Hz, 1H, H-6a'), 3.72 (d, J = 3.0 Hz, 1H, H-2'), 3.70 (dd, J = 10.8, 5.9 Hz, 1H, H-6b'), 3.50 (dd, J = 9.6, 3.5 Hz, 1H, H-2), 3.47 – 3.42 (m, 2H, H-6b, H-4), 3.40 (dd, J = 9.4, 3.0 Hz, 1H, H-3'), 3.37 (ddd, J = 9.6, 6.1, 2.0 Hz, 1H, H-5'), 3.33 (s, 3H, OCH₃), 2.30 (s, 3H, CH₃). ¹³C NMR (151 MHz, Chloroform-*d*): δ 139.0 (C), 138.9 (C), 138.43 (C), 138.42 (C), 138.3 (C), 138.2 (C), 137.2 (C), 135.5 (C), 129.1 (CH), 128.6 (CH), 128.51 (CH), 128.47 (CH), 128.42 (CH), 128.40 (CH), 128.28 (CH), 128.27 (CH), 128.20 (CH), 128.18 (CH), 128.10 (CH), 128.05 (CH), 127.77 (CH), 127.76 (CH), 127.73 (CH), 127.71 (CH), 127.66 (CH), 127.5 (CH), 101.6 (C-1', ¹J_{1CH} = 154.0 Hz, from coupled HSQC), 97.9 (C-1, ¹J_{1CH} = 170.0 Hz, from coupled HSQC), 82.4 (C-3'), 82.3 (C-3), 80.0 (C-2), 77.8 (C-4), 76.1 (C-5'), 75.8 (PhCH₂), 75.3 (PhCH₂), 75.1 (C-4'), 74.9 (PhCH₂), 73.8 (PhCH₂), 73.7 (C-2'), 73.46 (PhCH₂), 73.45 (PhCH₂), 71.7 (PhCH₂), 69.9 (C-5), 69.6 (C-6'), 68.4 (C-6), 55.2 (OCH₃), 21.3 (CH₃).

α-anomer

¹H NMR (600 MHz, Chloroform-*d*): δ 4.96 (d, J = 1.8 Hz, 1H, H-1'), 3.30 (s, 3H, OCH₃). ¹³C NMR (151 MHz, Chloroform-*d*): δ 98.4 (C-1', ¹ $J_{1CH} = 170.0$ Hz, from coupled HSQC).

Methyl (2,3,6-tri-*O*-benzyl-4-*O*-(4-methylbenzyl)-β-D-mannopyranosyl)-(1→6)-2,3,4-tri-*O*benzyl-α-D-glucopyranoside 2c

Following the general procedure A, hemiacetal **1c** (55 mg, 0.10 mmol) and acceptor **3a** (32 mg, 0.069 mmol) were used. The reaction was stirred at 45 °C for 18 h. ¹H NMR spectroscopy of the crude reaction mixture gave an α/β = 4:96. Purification by column chromatography (97:3; CH₂Cl₂/Et₂O) gave **2c** as a white solid (62 mg, 90% yield). ESI-HRMS for C₆₃H₆₈O₁₁Na⁺ (M+Na)⁺ calculated: 1023.4654; found: 1023.4659.

β-anomer

 1H, H-1'), 4.01 (dd, J = 9.7, 8.8 Hz, 1H, H-3), 3.81 (t, J = 9.5 Hz, 1H, H-4'), 3.81 – 3.74 (m, 2H, H-5, H-6a'), 3.73 – 3.67 (m, 2H, H-2', H-6b'), 3.50 (dd, J = 9.7, 3.5 Hz, 1H, H-2), 3.49 – 3.40 (m, 2H, H-6b, H-4), 3.40 (dd, J = 9.4, 3.0 Hz, 1H, H-3'), 3.37 (ddd, J = 9.7, 6.1, 1.9 Hz, 1H, H-5'), 3.32 (s, 3H, OCH₃), 2.32 (s, 3H, CH₃). ¹³C NMR (126 MHz, Chloroform-*d*): δ 139.0 (C), 138.9 (C), 138.6 (C), 138.42 (C), 138.35 (C), 138.2 (C), 137.5 (C), 129.1 (CH), 128.6 (CH), 128.52 (CH), 128.48 (CH), 128.39 (CH), 128.38 (CH), 128.29 (CH), 128.27 (CH), 128.2 (CH), 128.1 (CH), 127.9 (CH), 127.8 (CH), 127.72 (CH), 127.67 (CH), 127.6 (CH), 127.5 (CH), 101.6 (C-1', ¹J_{1CH} = 154.8 Hz, from coupled HSQC), 97.9 (C-1, ¹J_{1CH} = 169.8 Hz, from coupled HSQC), 82.4 (C-3'), 82.3 (C-3), 80.0 (C-2), 77.8 (C-4), 76.1 (C-5'), 75.8 (PhCH₂), 75.2 (PhCH₂), 74.94 (C-4'), 74.85 (PhCH₂), 73.8 (PhCH₂ and C-2'), 73.6 (PhCH₂), 73.5 (PhCH₂), 71.7 (PhCH₂), 69.91 (C-5), 69.87 (C-6'), 68.4 (C-6), 55.2 (OCH₃), 21.3 (CH₃).

α-anomer

¹H NMR (500 MHz, Chloroform-*d*): δ 4.95 (d, J = 1.9 Hz, 1H, H-1'), 3.30 (s, 3H, OCH₃). ¹³C NMR (126 MHz, Chloroform-*d*): δ 98.4 (C-1, ¹ $J_{1CH} = 171.2$ Hz, from coupled HSQC).

Methyl (2,3,4-tri-*O*-benzyl-6-*O*-(4-methoxylbenzyl)-β-D-mannopyranosyl)-(1→6)-2,3,4-tri-*O*benzyl-α-D-glucopyranoside 2d

Following the general procedure A, hemiacetal **1d** (57 mg, 0.10 mmol) and acceptor **3a** (32 mg, 0.069 mmol) were used. The reaction was stirred at 45 °C for 18 h. ¹H NMR spectroscopy of the crude reaction mixture gave an α/β = 3:97. Purification by column chromatography (97:3; CH₂Cl₂/Et₂O) gave **2d** as a white solid (49 mg, 71% yield). ESI-HRMS for C₆₃H₆₈O₁₂Na⁺ (M+Na)⁺ calculated: 1039.4603; found: 1039.4613.

β-anomer

 1H, H-4), 3.41 (dd, J = 9.4, 3.0 Hz, 1H, H-3'), 3.36 (ddd, J = 9.8, 5.9, 2.0 Hz, 1H, H-5'), 3.33 (s, 3H, OCH₃). ¹³C NMR (151 MHz, Chloroform-*d*): δ 159.2 (C), 139.0 (C), 138.9 (C), 138.43 (C), 138.42 (C), 138.3 (C), 138.2 (C), 130.6 (C), 129.6 (CH), 128.6 (CH), 128.51 (CH), 128.48 (CH), 128.43 (CH), 128.39 (CH), 128.3 (CH), 128.19 (CH), 128.18 (CH), 128.1 (CH), 127.78 (CH), 127.77 (CH), 127.73 (CH), 127.72 (CH), 127.67 (CH), 127.5 (CH), 113.8 (CH), 101.6 (C-1', ¹ $J_{1CH} = 155.0$ Hz, from coupled HSQC), 97.90 (C-1, ¹ $J_{1CH} = 170.1$ Hz, from coupled HSQC), 82.4 (C-3'), 82.3 (C-3), 80.0 (C-2), 77.8 (C-4), 76.1 (C-5'), 75.8 (PhCH₂), 75.3 (PhCH₂), 75.1 (C-4'), 74.9 (PhCH₂), 73.8 (PhCH₂), 73.8 (C-2'), 73.5 (PhCH₂), 73.22 (PhCH₂), 71.7 (PhCH₂), 69.9 (C-5), 69.4 (C-6'), 68.4 (C-6), 55.3 (OCH₃), 55.2 (OCH₃).

α-anomer

¹H NMR (500 MHz, Chloroform-*d*): δ 4.96 (d, J = 1.7 Hz, 1H, H-1'), 3.30 (s, 3H, OCH₃). ¹³C NMR (126 MHz, Chloroform-*d*) from HSQC: δ 98.3 (C-1').

Methyl (2,3,4-tri-*O*-benzyl-6-*O*-(2-naphthyl)-β-D-mannopyranosyl)-(1→6)-2,3,4-tri-*O*-benzyl-α-D-glucopyranoside 2e

Following the general procedure A, hemiacetal **1e** (59 mg, 0.10 mmol) and acceptor **3a** (32 mg, 0.069 mmol) were used. The reaction was stirred at 45 °C for 18 h. ¹H NMR spectroscopy of the crude reaction mixture gave an α/β = 5:95. Purification by column chromatography (97:3; CH₂Cl₂/Et₂O) gave **2e** as a white solid (68 mg, 94% yield). ESI-HRMS for C₆₆H₆₈O₁₁Na⁺ (M+Na)⁺ calculated: 1059.4654; found: 1059.4660.

β-anomer

¹H NMR (500 MHz, Chloroform-*d*): δ 7.86 – 7.70 (m, 4H, ArCH), 7.52 – 7.07 (m, 33H, ArCH), 5.01 (d, *J* = 10.9 Hz, 1H, C*H*HPh), 4.94 (d, *J* = 12.5 Hz, 1H, C*H*HPh), 4.87 (d, *J* = 10.8 Hz, 1H, C*H*HPh), 4.82 (d, *J* = 11.0 Hz, 1H, C*H*HPh), 4.80 (d, *J* = 11.5 Hz, 1H, C*H*HPh), 4.79 (d, *J* = 12.5 Hz, 1H, C*H*HPh), 4.78 (d, *J* = 12.0 Hz, 1H, C*H*HPh), 4.75 (d, *J* = 12.3 Hz, 1H, C*H*HPh), 4.72 (d, *J* = 12.3 Hz, 1H, C*H*HPh), 4.66 (d, *J* = 12.1 Hz, 1H, C*H*HPh), 4.58 (d, *J* = 3.5 Hz, 1H, H-1), 4.56 – 4.56 (m, 4H, 4 x C*H*HPh), 4.18 (dd, *J* = 10.5, 2.0 Hz, 1H, H-6a), 4.13 (s, 1H, H-1'), 4.02 (t, *J* = 9.2 Hz, 1H, H-3), 3.88 – 3.81 (m, 1H, H-4'), 3.83 – 3.78 (m, 2H, H-5, H-6a'), 3.75 (dd, *J* = 10.9, 6.0 Hz, 1H, H-6b'), 3.73 (d, *J* = 2.9 Hz, 1H, H-2'), 3.51 (dd, *J* = 9.6, 3.5 Hz, 1H, H-2), 3.50 – 3.37 (m, 4H, H-6b, H-4, H-3', H-5'), 3.32 (s, 3H, OCH₃). ¹³C NMR (126 MHz, Chloroform-*d*): δ 139.0 (C), 138.9 (C), 138.4 (C), 138.31 (C), 138.29 (C),

138.2 (C), 136.1 (C), 133.4 (C), 133.1 (C), 128.6 (CH), 128.51 (CH), 128.49 (CH), 128.47 (CH), 128.40 (CH), 128.3 (CH), 128.17 (CH), 128.15 (CH), 128.05 (CH), 128.02 (CH), 127.8 (CH), 127.74 (CH), 127.67 (CH), 127.5 (CH), 126.6 (CH), 126.1 (CH), 125.9 (CH), 101.7 (C-1', ${}^{1}J_{1CH} = 154.1$ Hz, from coupled HSQC), 97.9 (C-1, ${}^{1}J_{1CH} = 169.1$ Hz, from coupled HSQC), 82.4 (C-3'), 82.3 (C-3), 80.0 (C-2), 77.8 (C-4), 76.1 (C-5'), 75.8 (PhCH₂), 75.3 (PhCH₂), 75.1 (C-4'), 74.8 (PhCH₂), 73.82 (PhCH₂), 73.72 (C-2'), 73.69 (PhCH₂), 73.5 (PhCH₂), 71.7 (PhCH₂), 69.9 (C-5), 69.8 (C-6'), 68.4 (C-6), 55.2 (OCH₃).

α-anomer

¹H NMR (500 MHz, Chloroform-*d*): δ 4.98 (d, J = 1.9 Hz, 1H, H-1'), 3.30 (s, 3H, OCH₃). ¹³C NMR (126 MHz, Chloroform-*d*) from short HSQC: δ 98.5 (C-1').

Methyl (2,3,4-tri-*O*-benzyl-6-*O-tert*-butyldiphenylsilyl-β-D-mannopyranosyl)-(1→6)-2,3,4-tri-*O*benzyl-α-D-glucopyranoside 2f

Following the general procedure A, hemiacetal **1f** (69 mg, 0.10 mmol) and acceptor **3a** (32 mg, 0.069 mmol) were used. The reaction was stirred at 45 °C for 18 h. ¹H NMR spectroscopy of the crude reaction mixture gave an α/β = 9:91. Purification by column chromatography (100:0 to 97:3; CH₂Cl₂/Et₂O) gave **2f** as a white solid (74 mg, 95% yield). ESI-HRMS for C₇₁H₈₂O₁₁SiN⁺ (M+NH₄)⁺ calculated: 1152.5652; found: 1152.5654.

β-anomer

¹H NMR (500 MHz, Chloroform-*d*): δ 7.83 – 7.76 (m, 2H, ArCH), 7.77 – 7.66 (m, 2H, ArCH), 7.49 – 7.12 (m, 36H, ArCH), 5.03 (d, *J* = 10.9 Hz, 1H, *CH*HPh), 4.96 (d, *J* = 12.2 Hz, 1H, *CH*HPh), 4.93 (d, *J* = 10.8 Hz, 1H, *CH*HPh), 4.89 – 4.75 (m, 4H, 4 x *CH*HPh), 4.68 (d, *J* = 12.1 Hz, 1H, *CH*HPh), 4.64 – 4.53 (m, 5H, H-1, 4 x *CH*HPh), 4.19 (dd, *J* = 10.6, 2.0 Hz, 1H, H-6a), 4.15 (s, 1H, H-1'), 4.05 (t, *J* = 9.2 Hz, 1H, H-3), 4.02 (t, *J* = 9.5 Hz, 1H, H-4'), 3.98 (dd, *J* = 11.1, 4.8 Hz, 1H, H-6a'), 3.95 (dd, *J* = 11.1, 2.3 Hz, 1H, H-6b'), 3.82 (ddd, *J* = 10.0, 5.2, 2.0 Hz, 1H, H-5), 3.76 (d, *J* = 3.1 Hz, 1H, H-2'), 3.54 – 3.45 (m, 3H, H-2, H-4, H-6b), 3.46 (dd, *J* = 9.4, 2.9 Hz, 1H, H-3'), 3.37 (s, 3H, OCH₃), 3.29 (ddd, *J* = 9.6, 4.9, 2.2 Hz, 1H, H-5'), 1.03 (s, 9H, SiC(*CH*₃)₃). ¹³C NMR (126 MHz, Chloroform-*d*): δ 139.1 (C), 138.9 (C), 138.6 (C), 138.5 (C), 138.4 (C), 138.2 (C), 136.0 (CH), 128.45 (CH), 128.3 (CH), 128.19 (CH), 128.16 (CH), 128.10 (CH), 128.05 (CH), 127.76 (CH), 127.75 (CH), 127.73 (CH), 127.67 (CH),

127.3 (CH), 101.8 (C-1', ${}^{1}J_{1CH} = 154.3$ Hz, from coupled HSQC), 98.0 (C-1, ${}^{1}J_{1CH} = 169.7$ Hz, from coupled HSQC), 82.3 (C-3'), 82.3 (C-3), 80.1 (C-2), 77.7 (C-4), 77.0 (C-5'), 75.9 (Ph*C*H₂), 75.4 (Ph*C*H₂), 74.9 (C-4'), 74.8 (Ph*C*H₂), 74.2 (C-2'), 73.8 (Ph*C*H₂), 73.5 (Ph*C*H₂), 71.7 (Ph*C*H₂), 69.9 (C-5), 68.1 (C-6), 63.4 (C-6'), 55.2 (OCH₃), 26.8 (SiC(*C*H₃)₃), 19.4 (Si*C*(CH₃)₃).

α-anomer

¹H NMR (500 MHz, Chloroform-*d*): δ 3.33 (s, 3H, OCH₃), 1.05 (s, 9H, SiC(CH₃)₃). ¹³C NMR (126 MHz, Chloroform-*d*): δ 98.2 (C-1'), 97.9 (C-1), 26.9 (SiC(CH₃)₃).

Methyl (2,3,6-tri-*O*-benzyl-4-*O*-*tert*-butyldimethylsilyl-β-D-mannopyranosyl)-(1→6)-2,3,4-tri-*O*-benzyl-α-D-glucopyranoside 2g

Following the general procedure A, hemiacetal **1g** (56 mg, 0.10 mmol), Ph₃PO (28 mg, 0.10 mmol, 1 eq) and acceptor **3a** (32 mg, 0.069 mmol) were used. The reaction was stirred at 45 °C for 24 h. ¹H NMR spectroscopy of the crude reaction mixture gave an α/β = 5:95. Purification by column chromatography (97:3; CH₂Cl₂/Et₂O) gave **2g** as a white solid (31 mg, 44% yield). ESI-HRMS for C₆₁H₇₄O₁₁SiNa⁺ (M+Na)⁺ calculated: 1033.4893; found: 1033.4897.

β-anomer

¹H NMR (500 MHz, Chloroform-*d*): δ 7.40 – 7.11 (m, 30H, ArCH), 5.00 (d, *J* = 10.9 Hz, 1H, C*H*HPh), 4.89 (d, *J* = 12.4 Hz, 1H, C*H*HPh), 4.82 (d, *J* = 11.0 Hz, 1H, C*H*HPh), 4.81 (d, *J* = 11.2 Hz, 1H, C*H*HPh), 4.78 (d, *J* = 12.1 Hz, 1H, C*H*HPh), 4.65 (d, *J* = 12.1 Hz, 1H, C*H*HPh), 4.64 (d, *J* = 12.0 Hz, 1H, C*H*HPh), 4.65 (d, *J* = 3.5 Hz, 1H, H-1), 4.51 (d, *J* = 11.4 Hz, 1H, C*H*HPh), 4.64 (d, *J* = 12.1 Hz, 1H, C*H*HPh), 4.57 (d, *J* = 3.5 Hz, 1H, H-1), 4.51 (d, *J* = 11.4 Hz, 1H, C*H*HPh), 4.50 (d, *J* = 12.1 Hz, 1H, C*H*HPh), 4.49 (d, *J* = 11.9 Hz, 1H, C*H*HPh), 4.39 (d, *J* = 11.9 Hz, 1H, C*H*HPh), 4.23 (d, *J* = 0.9 Hz, 1H, H-1'), 4.18 (dd, *J* = 10.5, 2.0 Hz, 1H, H-6a), 4.01 (t, *J* = 9.3 Hz, 1H, H-3), 3.88 (t, *J* = 9.1 Hz, 1H, H-4'), 3.82 (dd, *J* = 10.7, 1.9 Hz, 1H, H-6a'), 3.81 – 3.76 (m, 1H, H-5), 3.71 (d, *J* = 2.8 Hz, 1H, H-2'), 3.62 (dd, *J* = 10.7, 7.4 Hz, 1H, H-6b'), 3.53 – 3.46 (m, 2H, H-2, H-6b), 3.44 (dd, *J* = 10.0, 8.9 Hz, 1H, H-4), 3.35 (ddd, *J* = 9.3, 7.4, 1.9 Hz, 1H, H-5'), 3.31 (s, 3H, OCH₃), 3.20 (dd, *J* = 9.0, 2.8 Hz, 1H, H-3'), 0.79 (s, 9H, SiC(C*H*₃)₃), -0.028 (s, 3H, SiCH₃), -0.035 (s, 3H, SiCH₃). ¹³C NMR (126 MHz, Chloroform-*d*): δ 139.1 (C), 139.0 (C), 138.7 (C), 138.4 (C), 138.23 (C), 138.21 (C), 128.6 (CH), 128.53 (CH), 128.49 (CH), 127.79 (CH), 127.76 (CH), 127.7 (CH), 127.64 (CH), 127.55 (CH), 127.5 (CH), 127.4 (CH), 101.4 (C-1', ¹*J*_{1CH} = 155.4 Hz, from coupled HSQC), 97.9 (C-1, ¹*J*_{1CH} = 170.2

Hz, from coupled HSQC), 82.4 (C-3'), 82.3 (C-3), 80.0 (C-2), 77.9 (C-4), 77.7 (C-5'), 75.9 (PhCH₂), 74.9 (PhCH₂), 74.02 (C-2'), 73.98 (PhCH₂), 73.6 (PhCH₂), 73.5 (PhCH₂), 71.2 (PhCH₂), 70.4 (C-6'), 70.0 (C-5), 68.4 (C-4'), 68.3 (C-6), 55.1 (OCH₃), 26.1 (SiC(CH₃)₃), 18.2 (SiC(CH₃)₃), -3.6 (SiCH₃), -4.8 (SiCH₃).

α-anomer

¹H NMR (500 MHz, Chloroform-*d*): δ 3.30 (s, 3H, OCH₃).

Methyl (2,3,4-tri-*O*-benzyl-6-*O*-(benzoyl)- α/β -D-mannopyranosyl)-(1 \rightarrow 6)-2,3,4-tri-*O*-benzyl- α -D-glucopyranoside 2h

Following the general procedure A, hemiacetal **1h** (55 mg, 0.10 mmol), Ph₃PO (28 mg, 0.10 mmol, 1 eq) and acceptor **3a** (32 mg, 0.069 mmol) were used. The reaction was stirred at 45 °C for 44 h. ¹H NMR spectroscopy of the crude reaction mixture gave an $\alpha/\beta = 15:85$. Purification by column chromatography (97:3; CH₂Cl₂/Et₂O) gave **2h** as a white solid (23 mg, 37% yield).

β-anomer

¹H NMR (500 MHz, Chloroform-*d*): δ 8.05 – 7.98 (m, 2H, ArCH), 7.52 – 7.46 (m, 1H, ArCH), 7.45 – 7.41 (m, 2H, ArCH), 7.39 – 7.11 (m, 30H, ArCH), 4.99 (d, J = 10.9 Hz, 1H, CHHPh), 4.94 (d, J = 12.3 Hz, 1H, CHHPh), 4.93 (d, J = 10.7 Hz, 1H, CHHPh), 4.80 (d, J = 10.9 Hz, 1H, CHHPh), 4.80 (d, J = 11.5 Hz, 1H, CHHPh), 4.78 (d, J = 12.3 Hz, 1H, CHHPh), 4.76 (d, J = 12.2 Hz, 1H, CHHPh), 4.64 (d, J = 12.1 Hz, 1H, CHHPh), 4.61 (dd, J = 11.7, 2.3 Hz, 1H, H-6a'), 4.59 (d, J = 10.7 Hz, 1H, CHHPh), 4.64 (d, J = 12.1 Hz, 1H, CHHPh), 4.61 (dd, J = 11.7, 2.3 Hz, 1H, H-6a'), 4.59 (d, J = 10.7 Hz, 1H, CHHPh), 4.55 (d, J = 3.6 Hz, 1H, H-1), 4.52 (d, J = 11.8 Hz, 1H, CHHPh), 4.49 (d, J = 11.5 Hz, 1H, CHHPh), 4.48 (dd, J = 11.7, 5.5 Hz, 1H, H-6b'), 4.19 (s, 1H, H-1'), 4.12 (dd, J = 10.5, 2.0 Hz, 1H, H-6a), 3.99 (t, J = 9.4 Hz, 1H, H-4'), 3.98 (t, J = 9.2 Hz, 1H, H-3), 3.81 – 3.76 (m, H-1, H-5), 3.78 (d, J = 3.0 Hz, 1H, H-2'), 3.52 (ddd, J = 9.6, 5.5, 2.3 Hz, 1H, H-5'), 3.50 – 3.43 (m, 3H, H-3', H-2, H-6b), 3.39 (dd, J = 10.1, 8.8 Hz, 1H, H-4), 3.28 (s, 3H, OCH₃). ¹³C NMR (126 MHz, Chloroform-*d*): δ 166.5 (C=O), 138.92 (C), 138.85 (C), 138.3 (C), 138.2 (C), 138.13 (C), 138.10 (C), 133.0 (CH), 130.2 (C), 129.9 (CH), 128.60 (CH), 128.57 (CH), 128.56 (CH), 128.54 (CH), 128.51 (CH), 128.4 (CH), 128.34 (CH), 128.31 (CH), 128.29 (CH), 128.14 (CH), 128.10 (CH), 128.08 (CH), 127.88 (CH), 127.79 (CH), 127.76 (CH), 127.5 (CH), 101.9 (C-1'), 97.9 (C-1), 82.2 (C-3 and C-3'), 80.0 (C-2), 77.9 (C-4), 75.9 (PhCH₂), 75.4 (PhCH₂), 74.9 (PhCH₂), 74.8 (C-4'), 73.9 (PhCH₂, C-2'

and C-5'), 73.5 (PhCH₂), 71.7 (PhCH₂), 69.9 (C-5), 68.6 (C-6), 64.2 (C-6'), 55.1 (OCH₃). NMR data were consistent with literature data.

α-anomer

¹H NMR (500 MHz, Chloroform-*d*): δ 3.31 (s, 3H, OCH₃).

Methyl (2,3,4-tri-*O-p*-methylbenzyl-6-*O*-(pivaloyl)-β-D-mannopyranosyl)-(1→6)-2,3,4-tri-*O*benzyl-α-D-glucopyranoside 2i

Following general procedure A, hemiacetal 1i (58 mg, 0.10 mmol), iPr₂NEt (70 µL, 0.4 mmol) and acceptor 3a (33 mg, 0.07 mmol) were used. The reaction was stirred at 45 °C for 24 h. ¹H NMR spectroscopy of the crude reaction mixture showed β -only product. Purification by column chromatography (6:4; pentane/ Et₂O) afforded the desired product 2i as a colourless syrup (72 mg, quantitative yield). $R_{\rm f} = 0.5$ (4:1; cyclohexane/ EtOAc); ¹H NMR (600 MHz, Chloroform-d) δ 7.39 – 7.08 (m, 27H, Ar-CH), 5.01 (d, J = 10.8 Hz, 1H, PhCH₂), 4.92 – 4.70 (m, 6H, 4 x PhCH₂), 4.67 (d, J =12.1 Hz, 1H, PhCH₂), 4.60 – 4.57 (m, 1H, H-1), 4.53 – 4.43 (m, 4H, 4 x PhCH₂), 4.41 (d, *J* = 11.8 Hz, 1H, H-6a'), 4.17 (dd, J = 11.6, 6.9 Hz, 1H, H-6b'), 4.14 – 4.11 (m, 2H, H-6a, H-1'), 4.00 (t, J = 9.3 Hz, 1H, H-3), 3.82 - 3.73 (m, 2H, H-4', H-5'), 3.70 (br s, 1H, H-2'), 3.51 (ddd, J = 9.7, 3.5, 1.6 Hz, 1H, H-2), 3.48 – 3.34 (m, 4H, H-6b, H-4, H-3', H-5), 3.30 (s, 3H, OCH₃), 2.35 – 2.31 (m, 9H, CH₃), 1.15 (d, J = 1.7 Hz, 9H, CH₃). ¹³C NMR (126 MHz, Chloroform-*d*) δ 178.2 (C=O), 138.8 (4°C), 138.3 (4°C), 138.1 (4°C), 137.6 (4°C), 137.4 (4°C), 137.0 (4°C), 135.6 (4°C), 135.1 (4°C), 135.0 (4°C), 129.13 (Ar-CH), 129.09 (Ar-CH), 128.8 (Ar-CH), 128.50 (Ar-CH), 128.48 (Ar-CH), 128.42 (Ar-CH), 128.39 (Ar-CH), 128.3 (Ar-CH), 128.2 (Ar-CH), 128.1 (Ar-CH), 128.0 (Ar-CH), 127.8 (Ar-CH), 127.7 (Ar-CH), 127.7 (Ar-CH), 101.5 (C-1', ${}^{1}J_{1CH} = 156.0$ Hz, from coupled HSQC), 97.8 (C-1, ${}^{1}J_{1CH} = 170.5$ Hz, from coupled HSQC), 82.2 (C-3), 82.1 (C-3'), 79.9 (C-2), 77.7 (C-4), 75.8 (PhCH₂), 75.2 (PhCH₂), 74.8 (C-4', PhCH₂), 73.9 (C-5), 73.40 (PhCH₂), 73.36 (PhCH₂), 73.1 (C-2'), 71.5 (PhCH₂), 69.7 (C-5'), 68.1 (C-6), 63.7 (C-6'), 55.0 (OCH₃), 38.8 (C(CH₃)₃), 27.2 (2 x CH₃), 21.2 (CH₃). ESI-HRMS for C₆₃H₇₄O₁₂Na⁺ (M+Na)⁺ calculated: 1045.5072; found: 1045.5074.

Following general procedure D, hemiacetal 1j (50 mg, 0.12 mmol), Ph₃PO (33.4 mg, 0.120 mmol), (COCl)₂ (12 µL, 0.14 mmol), LiI (64 mg, 0.48 mmol), iPr₂NEt (52 µL, 0.30 mmol) and acceptor 3a (40.0 mg, 0.084 mmol) were used. The reaction was stirred at 45 °C for 15 h. ¹H NMR spectroscopy of the crude reaction mixture showed β -only product. Purification by column chromatography (4:1; cyclohexane/ EtOAc) afforded the desired product 2i as a colourless syrup (74 mg, quantitative yield). $R_{\rm f} = 0.7$ (7:3; cyclohexane/ EtOAc); ¹H NMR (600 MHz, Chloroform-d) δ 7.43 – 7.19 (m, 30H, Ar-CH), 4.98 - 4.93 (m, 3H, $3 \times PhCH_2$), 4.86 (d, J = 11.6 Hz, 2H, $2 \times PhCH_2$), 4.80 (d, J = 12.2 Hz, 1H, PhCH₂), 4.79 - 4.74 (m, 2H, 2 × PhCH₂), 4.66 (d, J = 12.2 Hz, 1H, PhCH₂), 4.62 (d, J = 10.9 Hz, 1H, PhCH₂), 4.60 (d, *J* = 3.5 Hz, 1H, H-1), 4.53 (d, *J* = 11.9 Hz, 1H, PhCH₂), 4.46 (d, *J* = 11.9 Hz, 1H, PhCH₂), 4.42 (s, 1H, H-1'), 4.28 (dd, J = 11.1, 3.2 Hz, 1H, H-6a), 3.98 (t, J = 9.3 Hz, 1H, H-3), 3.95 (d, J = 3.0 Hz, 1H, H-2'), 3.76 - 3.71 (m, 1H, H-5), 3.65 - 3.60 (m, 2H, H-4, H-6b), 3.58 (t, J = 9.3 Hz, 1H, H-4'), 3.48 (dd, *J* = 9.6, 3.5 Hz, 1H, H-2), 3.44 (dd, *J* = 9.4, 3.0 Hz, 1H, H-3'), 3.35 (s, 3H, OCH₃), 3.31 (dq, J = 9.2, 6.1 Hz, 1H, H-5'), 1.34 (d, J = 6.1 Hz, 3H, H-6'). ¹³C NMR (151 MHz, Chloroformd) δ 138.9 (4°C), 138.8 (4°C), 138.6 (4°C), 138.4 (4°C), 138.23 (4°C), 138.21 (4°C), 128.5 (Ar-CH), 128.36 (Ar-CH), 128.35 (Ar-CH), 128.34 (Ar-CH), 128.31 (Ar-CH), 128.23 (Ar-CH), 128.16 (Ar-CH), 128.11 (Ar-CH), 128.09 (Ar-CH), 128.06 (Ar-CH), 127.89 (Ar-CH), 127.88 (Ar-CH), 127.67 (Ar-CH), 127.66 (Ar-CH), 127.58 (Ar-CH), 127.57 (Ar-CH), 127.54 (Ar-CH), 127.4 (Ar-CH), 101.4 (C-1', ¹J_{1CH}) = 156.1 Hz, from coupled HSQC), 98.3 (C-1, ${}^{1}J_{1CH}$ = 169.2 Hz, from coupled HSQC), 82.0 (C-3'), 81.8 (C-3), 80.2 (C-4), 79.9 (C-2), 77.8 (C-4'), 75.7 (PhCH₂), 75.4 (PhCH₂), 75.2 (PhCH₂), 74.3 (C-2'), 74.0 (PhCH₂), 73.5 (PhCH₂), 72.0 (C-5'), 71.3 (PhCH₂), 70.0 (C-5), 67.2 (C-6), 55.2 (OCH₃), 18.0 (C-6'). NMR data were consistent with the literature. $^{[34]}$ ESI-HRMS for $C_{55}H_{64}NO_{10}{}^+$ $(M+NH_4)^+$ calculated: 898.4525; found: 898.4531.

Methyl 2,3,4-tri-*O*-benzyl-6-*O*-(2,3-di-*O*-benzyl-4-*O*-*p*-methylbenzyl-β-L-rhamnosyl)-α-Dglucopyranoside 2k

Following general procedure D, hemiacetal 1k (45 mg, 0.1 mmol), Ph₃PO (28 mg, 0.1 mmol), (COCl)₂ (10 µL, 0.12 mmol), LiI (54 mg, 0.4 mmol), iPr₂NEt (44 µL, 0.25 mmol) and acceptor **3a** (33 mg, 0.07 mmol) were used. The reaction was stirred at 30 °C for 20 h. ¹H NMR spectroscopy of the crude reaction mixture showed β -only product. Purification by column chromatography (9:1 to 6:4; pentane/ Et₂O) afforded the desired product 2j as a colourless syrup (64 mg, quantitative yield). $R_{\rm f} = 0.4$ (4:1; cyclohexane/EtOAc); Reaction at 45 °C gave desired disaccharide 2j as an α : β anomeric mixture (α/β 18:82). ¹H NMR (600 MHz, Chloroform-d) δ 7.45 – 7.40 (m, 2H, Ar-CH), 7.40 – 7.17 (m, 25H, Ar-CH), 7.12 (d, J = 7.8 Hz, 2H, Ar-CH), 4.97 (s, 1H, PhCH₂), 4.96 – 4.94 (m, 1H, PhCH₂), 4.90 (d, J = 10.6 Hz, 1H, PhCH₂), 4.86 (d, J = 11.6 Hz, 2H, 2 × PhCH₂), 4.80 (d, J = 12.1 Hz, 1H, PhCH₂), 4.78 -10.6 Hz, 1H, PhCH₂), 4.53 (d, *J* = 11.9 Hz, 1H, PhCH₂), 4.47 (d, *J* = 11.9 Hz, 1H, PhCH₂), 4.42 (s, 1H, H-1'), 4.27 (dd, J = 11.1, 3.2 Hz, 1H, H-6a), 3.98 (t, J = 9.3 Hz, 1H, H-3), 3.94 (d, J = 3.0 Hz, 1H, H-2'), 3.73 (ddd, J = 10.1, 3.2, 1.9 Hz, 1H, H-5), 3.65 – 3.60 (m, 2H, H-4, H-6b), 3.58 (t, J = 9.3 Hz, 1H, H-4'), 3.50 - 3.46 (m, 1H, H-2), 3.43 (dd, J = 9.4, 3.0 Hz, 1H, H-3'), 3.34 (s, 3H, OCH₃), 3.29 (dq, J =9.2, 6.2 Hz, 1H, H-5'), 2.32 (s, 3H, CH₃), 1.34 (d, J = 6.1 Hz, 3H, H-6'). ¹³C NMR (151 MHz, Chloroform-d) δ 138.9 (4°C), 138.8 (4°C), 138.4 (4°C), 138.3 (4°C), 138.2 (4°C), 137.4 (4°C), 135.5 (4°C), 129.0 (Ar-CH), 128.5 (Ar-CH), 128.37 (Ar-CH), 128.35 (Ar-CH), 128.31 (Ar-CH), 128.25 (Ar-CH), 128.22 (Ar-CH), 128.17 (Ar-CH), 128.12 (Ar-CH), 128.09 (Ar-CH), 127.90 (Ar-CH), 127.89 (Ar-CH), 127.7 (Ar-CH), 127.58 (Ar-CH), 127.56 (Ar-CH), 127.54 (Ar-CH), 127.4 (Ar-CH), 101.4 (C-1', ${}^{1}J_{1CH} = 154.0$ Hz, from coupled HSQC), 98.3 (C-1, ${}^{1}J_{1CH} = 170.8$ Hz, from coupled HSQC), 82.0 (C-3'), 81.9 (C-3), 80.1 (C-4'), 79.9 (C-2), 77.8 (C-4), 75.7 (PhCH₂), 75.3 (PhCH₂), 75.2 (PhCH₂), 74.4 (C-2'), 74.0 (PhCH₂), 73.5 (PhCH₂), 72.0 (C-5'), 71.4 (PhCH₂), 70.0 (C-5), 67.2 (C-6), 55.2 (OCH₃), 21.2 (CH₃), 18.0 (C-6'). ESI-HRMS C₅₆H₆₆NO₁₀⁺ (M+NH₄)⁺ calculated: 912.4681; found: 913.4725.

Methyl glucopyranoside 21

Following general procedure E, hemiacetal 11 (45 mg, 0.1 mmol), Ph₃PO (14 mg, 0.05 mmol), (COCl)₂ (10 µL, 0.12 mmol), LiI (54 mg, 0.4 mmol), iPr₂NEt (70 µL, 0.4 mmol) and acceptor 3a (33 mg, 0.07 mmol) were used. The reaction was stirred at 45 °C for 24 h. ¹H NMR spectroscopy of the crude reaction mixture showed β -only product. Purification by column chromatography (9:1 to 7:3; pentane/ Et₂O) afforded the desired product 2k as a colourless syrup (27 mg, 43% yield). $R_f = 0.5$ (7:3; cyclohexane/ EtOAc); ¹H NMR (500 MHz, Chloroform-*d*) δ 8.00 (dd, J = 8.3, 1.4 Hz, 2H, Ar-CH), 7.61 – 7.55 (m, 1H, Ar-CH), 7.48 – 7.03 (m, 27H, Ar-CH), 5.43 (t, J = 9.6 Hz, 1H, H-4'), 4.99 – 4.95 (m, 2H, 2 × PhCH₂), 4.91 - 4.86 (m, 2H, 2 × PhCH₂), 4.83 - 4.73 (m, 3H, 3 × PhCH₂), 4.68 (d, J = 12.2 Hz, 1H, PhCH₂), 4.62 (d, J = 3.6 Hz, 1H, H-1), 4.51 (s, 1H, H-1'), 4.47 (d, J = 12.6 Hz, 1H, PhCH₂), 4.31 (dd, *J* = 11.1, 3.2 Hz, 1H, H-6a), 4.26 (d, *J* = 12.6 Hz, 1H, PhCH₂), 4.02 (d, *J* = 3.1 Hz, 1H, H-2'), 4.01 – 3.95 (m, H-3), 3.79 - 3.72 (m, 1H, H-5), 3.68 - 3.63 (m, 2H, H-4, H-6b), 3.54 - 3.45 (m, 3H, H-3', H-2, H-5'), 3.36 (s, 3H, OCH₃), 1.26 (d, J = 6.2 Hz, 3H, H-6'). ¹³C NMR (126 MHz, Chloroform-*d*) δ 165.6 (C=O), 138.9 (4°C), 138.6 (4°C), 138.4 (4°C), 138.2 (4°C), 137.7 (4°C), 133.1 (4°C), 130.1 (4°C), 129.8 (Ar-CH), 128.5 (Ar-CH), 128.38 (Ar-CH), 128.35 (Ar-CH), 128.31 (Ar-CH), 128.24 (Ar-CH), 128.18 (Ar-CH), 128.17 (Ar-CH), 128.13 (Ar-CH), 127.92 (Ar-CH), 127.89 (Ar-CH), 127.7 (Ar-CH), 127.63 (Ar-CH), 127.58 (Ar-CH), 127.57 (Ar-CH), 127.4 (Ar-CH), 101.3 (C-1', ¹*J*_{1CH} = 155.0 Hz, from coupled HSQC), 98.4 (C-1, ${}^{1}J_{1CH} = 174.0$ Hz, from coupled HSQC), 81.9 (C-3), 79.8 (C-2), 78.4 (C-3'), 77.8 (C-4), 75.7 (PhCH₂), 75.2 (PhCH₂), 74.1 (PhCH₂), 73.7 (C-2'), 73.49 (PhCH₂), 73.45 (C-4'), 70.9 (C-5'), 70.7 (PhCH₂), 70.0 (C-5), 67.2 (C-6), 55.2 (OCH₃), 17.7 (C-6'). ESI-HRMS for C₅₅H₆₂NO₁₁⁺ (M+NH₄)⁺ calculated: 912.4317; found: 912.4318.

(2,3,4,6-tetra-*O*-benzyl-β-D-mannopyranosyl)-(1→4)-2,3,6-tri-*O*-benzyl-α-D-

glucopyranoside 4b

Methyl

Following the general procedure C, hemiacetal **1a** (54 mg, 0.10 mmol) and acceptor **3b** (32 mg, 0.069 mmol) were used. The reaction was stirred at 45 °C for 24 h. ¹H NMR spectroscopy of the crude reaction mixture gave an α/β = 5:95. Purification by column chromatography (97:3; CH₂Cl₂/Et₂O) gave **4b** as a yellow oil (41 mg, 60% yield).

β-anomer

¹H NMR (500 MHz, Chloroform-*d*): δ 7.43 – 7.11 (m, 35H, ArCH), 5.14 (d, *J* = 11.3 Hz, 1H, C*H*HPh), 4.85 (d, J = 10.9 Hz, 1H, CHHPh), 4.84 (d, J = 12.1 Hz, 1H, CHHPh), 4.81 (d, J = 12.1 Hz, 1H, CHHPh), 4.77 (d, J = 12.2 Hz, 1H, CHHPh), 4.75 (d, J = 11.3 Hz, 1H, CHHPh), 4.60 (d, J = 12.1 Hz, 1H, CHHPh), 4.58 (d, *J* = 3.6 Hz, 1H, H-1), 4.57 (d, *J* = 12.1 Hz, 1H, CHHPh), 4.53 (d, *J* = 10.8 Hz, 1H, CHHPh), 4.48 (d, J=11.9 Hz, 1H, CHHPh), 4.45 (d, J=11.8 Hz, 1H, CHHPh), 4.44 (d, J=12.1 Hz, 1H, CHHPh), 4.42 (s, 1H, H-1'), 4.37 (d, J = 12.1 Hz, 1H, CHHPh), 4.36 (d, J = 12.2 Hz, 1H, CHHPh), 3.93 – 3.89 (m, 2H, H-3, H-4), 3.87 (t, J = 9.5 Hz, 1H, H-4'), 3.76 – 3.69 (m, 1H, H-5), 3.70 (d, J = 3.1 Hz, 1H, H-2'), 3.67 (dd, *J* = 11.2, 1.8 Hz, 1H, H-6a'), 3.59 – 3.55 (m, 2H, H-6a, H-6b), 3.54 (dd, *J* = 11.2, 5.4 Hz, 1H, H-6b'), 3.49 – 3.43 (m, 1H, H-2), 3.37 (s, 3H, OCH₃), 3.31 – 3.24 (m, 1H, H-5'), 3.28 (dd, *J* = 9.5, 3.1 Hz, 1H, H-3'). ¹³C NMR (126 MHz, Chloroform-*d*): δ 139.8 (C), 139.04 (C), 138.98 (C), 138.7 (C), 138.48 (C), 138.46 (C), 137.9 (C), 128.7 (CH), 128.5 (CH), 128.4 (CH), 128.30 (CH), 128.25 (CH), 128.2 (CH), 128.13 (CH), 128.08 (CH), 128.06 (CH), 127.98 (CH), 127.95 (CH), 127.91 (CH), 127.85 (CH), 127.8 (CH), 127.73 (CH), 127.68 (CH), 127.6 (CH), 127.4 (CH), 127.3 (CH), 127.1 (CH), 101.0 (C-1'), 98.5 (C-1), 82.7 (C-3'), 80.5 (C-3), 79.3 (C-2), 77.3 (C-4), 76.3 (C-5'), 75.4 (PhCH₂), 75.2 (C-2'), 75.1 (PhCH₂), 75.0 (C-4'), 74.2 (PhCH₂), 73.8 (PhCH₂), 73.7 (PhCH₂), 73.6 (PhCH₂), 71.8 (PhCH₂), 69.8 (C-5), 69.7 (C-6'), 68.9 (C-6), 55.4 (OCH₃). NMR data were consistent with literature data.^[35]

α-anomer

¹H NMR (500 MHz, Chloroform-*d*): δ 3.39 (s, 3H, OCH₃).

(2,3,4,6-tetra-*O*-benzyl-β-D-mannopyranosyl)-(1→3)-2,4,6-tri-*O*-benzyl-α-D-

glucopyranoside 4c

Methyl

Following the general procedure C, hemiacetal **1a** (54 mg, 0.10 mmol), Ph₃PO (14 mg, 0.050 mmol, 0.5 eq) and acceptor **3c** (32 mg, 0.069 mmol) were used. The reaction was stirred at 45 °C for 24 h. ¹H NMR spectroscopy of the crude reaction mixture gave an α/β = 1:99. Purification by column chromatography (97:3; CH₂Cl₂/Et₂O) gave **4c** as a yellow oil (58 mg, 84% yield). ESI-HRMS for C₆₂H₆₆O₁₁Na⁺ (M+Na)⁺ calculated: 1009.4497; found: 1009.4496.

β-anomer

¹H NMR (500 MHz, Chloroform-*d*): δ 7.49 – 7.44 (m, 2H, ArCH), 7.33 – 7.06 (m, 33H, ArCH), 5.27 (d, *J* = 11.1 Hz, 1H, C*H*HPh), 4.92 (s, 2H, 2 x C*H*HPh), 4.85 (d, *J* = 10.7 Hz, 1H, C*H*HPh), 4.79 (s, 1H, H-1'), 4.68 (d, *J* = 3.4 Hz, 1H, H-1), 4.55 (d, *J* = 12.2 Hz, 1H, C*H*HPh), 4.54 (d, *J* = 10.8 Hz, 1H, C*H*HPh), 4.51 – 4.43 (m, 3H, 3 x C*H*HPh), 4.43 (s, 2H, 2 x C*H*HPh), 4.41 – 4.36 (m, 3H, 3 x C*H*HPh), 4.18 (dd, *J* = 9.6, 8.6 Hz, 1H, H-3), 3.97 (t, *J* = 9.6 Hz, 1H, H-4'), 3.77 (d, *J* = 2.9 Hz, 1H, H-2'), 3.75 – 3.66 (m, 4H, H-5, H-6a', H-6b', H-6a), 3.66 – 3.60 (m, 1H, H-6b), 3.55 (dd, *J* = 9.9, 8.6 Hz, 1H, H-4), 3.46 (dd, *J* = 9.7, 3.4 Hz, 1H, H-2), 3.39 – 3.32 (m, 2H, H-3', H-5'), 3.35 (s, 3H, OCH₃). ¹³C NMR (126 MHz, Chloroform-*d*): δ 139.3 (C), 139.1 (C), 138.9 (C), 138.64 (C), 138.56 (C), 138.1 (C), 138.0 (C), 128.7 (CH), 128.48 (CH), 128.46 (CH), 128.4 (CH), 128.22 (CH), 128.20 (CH), 128.16 (CH), 128.13 (CH), 128.11 (CH), 128.0 (CH), 127.8 (CH), 127.74 (CH), 127.68 (CH), 127.4 (CH), 127.3 (CH), 102.6 (C-1', ¹*J*_{1CH} = 158.3 Hz, from coupled HSQC), 97.5 (C-1, ¹*J*_{1CH} =170.0 Hz, from coupled HSQC), 83.0 (C-3'), 80.9 (C-2), 80.6 (C-3), 76.3 (C-4), 76.0 (C-5'), 75.3 (PhCH₂), 75.1 (C-4'), 75.0 (C-2'), 74.9 (PhCH₂), 74.0 (PhCH₂), 73.6 (PhCH₂), 73.5 (PhCH₂), 73.1 (PhCH₂), 72.0 (PhCH₂), 70.0 (C-5), 69.7 (C-6'), 68.8 (C-6), 55.2 (OCH₃).

α-anomer

¹H NMR (500 MHz, Chloroform-*d*): δ 3.31 (s, 3H, OCH₃).

 $Methyl ~(2,3,4,6-tetra-\textit{O}-benzyl-\beta-D-mannopyranosyl)-(1\rightarrow 3)-2-\textit{O}-benzyl-4,6-\textit{O}-benzylidene-\alpha-D-glucopyranoside~4d$

Following the general procedure B, hemiacetal 1a (54 mg, 0.10 mmol), acceptor 3d (26 mg, 0.070 mmol) and iPr₂NEt (84 µL, 0.50 mmol) were used. The reaction was stirred at 60 °C for 24 h. ¹H NMR spectroscopy of the crude reaction mixture showed β-only product. Purification by column chromatography (97:3; CH₂Cl₂/Et₂O) gave 4d as a yellowish oil (33 mg, 52% yield). ¹H NMR (600 MHz, Chloroform-d): δ 7.50 – 7.41 (m, 4H, ArCH), 7.32 – 7.12 (m, 26H, ArCH), 5.50 (s, 1H, PhCH), 4.93 (d, *J* = 12.2 Hz, 1H, C*H*HPh), 4.87 (d, *J* = 12.2 Hz, 1H, C*H*HPh), 4.82 (d, *J* = 10.7 Hz, 1H, C*H*HPh), 4.70 (s, 1H, H-1'), 4.57 (d, J = 11.7 Hz, 1H, CHHPh), 4.57 (d, J = 3.7 Hz, 1H, H-1), 4.52 (d, J = 10.7 Hz, 1H, CHHPh), 4.51 (s, 2H, 2 x CHHPh), 4.47 (d, J = 11.8 Hz, 1H, CHHPh), 4.44 (d, J = 11.9 Hz, 1H, C*H*HPh), 4.41 (d, *J* = 11.8 Hz, 1H, C*H*HPh), 4.22 (dd, *J* = 10.2, 4.8 Hz, 1H, H-6a), 4.19 (t, *J* = 9.3 Hz, 1H, H-3), 3.93 (t, J = 9.6 Hz, 1H, H-4'), 3.85 (d, J = 2.9 Hz, 1H, H-2'), 3.80 (td, J = 9.9, 4.7 Hz, 1H, H-5), 3.72 (dd, J = 11.3, 4.7 Hz, 1H, H-6a'), 3.70 – 3.66 (m, 2H, H-6b', H-6b), 3.63 (t, J = 9.4 Hz, 1H, H-4), 3.53 (dd, J = 9.3, 3.7 Hz, 1H, H-2), 3.38 (dd, J = 9.5, 2.9 Hz, 1H, H-3'), 3.37 (s, 3H, OCH₃), 3.30 (ddd, J = 9.7, 4.7, 2.1 Hz, 1H, H-5'). ¹³C NMR (151 MHz, Chloroform-*d*): δ 139.4 (C), 138.9 (C), 138.6 (C), 138.5 (C), 138.0 (C), 137.5 (C), 128.9 (CH), 128.7 (CH), 128.5 (CH), 128.4 (CH), 128.24 (CH), 128.20 (CH), 128.18 (CH), 128.14 (CH), 128.12 (CH), 128.09 (CH), 127.7 (CH), 127.7 (CH), 127.4 (CH), 127.3 (CH), 126.3 (CH), 102.1 (C-1'), 101.6 (PhCH), 98.7 (C-1), 82.8 (C-3'), 80.33 (C-2), 80.29 (C-4), 77.4 (C-3), 76.2 (C-5'), 75.2 (PhCH₂), 74.92 (C-2'), 74.88 (C-4'), 74.0 (PhCH₂), 73.7 (PhCH₂), 73.5 (PhCH₂), 71.8 (PhCH₂), 69.6 (C-6), 69.1 (C-6'), 62.6 (C-5), 55.5 (OCH₃). NMR data were consistent with literature data.^[36]

Phenyl 2,3,4,6-tetra-O-benzyl-β-D-mannopyranoside 4e

Following the general procedure B, hemiacetal **1a** (54 mg, 0.10 mmol), acceptor **3e** (7 mg, 0.07 mmol) and iPr_2NEt (42 μ L, 0.25 mmol) were used. The reaction was stirred at 25 °C for 24 h. ¹H NMR

spectroscopy of the crude reaction mixture gave an $\alpha/\beta = 3:97$. Purification by column chromatography (CH₂Cl₂) gave **4e** as a white solid (39 mg, 91% yield).

Reaction at 30 °C gave $\alpha/\beta = 6:94$.

β-anomer

¹H NMR (500 MHz, Chloroform-*d*): δ 7.58 – 7.43 (m, 2H, ArCH), 7.38 – 7.18 (m, 20H, ArCH), 7.08 – 6.92 (m, 3H, ArCH), 5.09 (d, J = 12.3 Hz, 1H, C*H*HPh), 5.00 (d, J = 12.4 Hz, 1H, C*H*HPh), 4.98 (d, J = 0.8 Hz, 1H, H-1), 4.93 (d, J = 10.9 Hz, 1H, C*H*HPh), 4.60 (d, J = 11.9 Hz, 1H, C*H*HPh), 4.59 (d, J = 11.9 Hz, 1H, C*H*HPh), 4.58 (d, J = 10.9 Hz, 1H, C*H*HPh), 4.55 (d, J = 11.9 Hz, 1H, C*H*HPh), 4.53 (d, J = 11.9 Hz, 1H, C*H*HPh), 4.09 (dd, J = 3.0, 0.8 Hz, 1H, H-2), 3.97 (t, J = 9.4 Hz, 1H, H-4), 3.87 (dd, J = 10.9, 2.0 Hz, 1H, H-6a), 3.77 (dd, J = 10.9, 6.2 Hz, 1H, H-6b), 3.64 – 3.58 (m, 1H, H-5), 3.60 (dd, J = 9.2, 3.0 Hz, 1H, H-3). ¹³C NMR (126 MHz, Chloroform-*d*): δ 157.4 (C), 138.7 (C), 138.6 (C), 138.4 (C), 138.2 (C), 129.58 (CH), 128.57 (CH), 128.55 (CH), 128.5 (CH), 128.4 (CH), 128.3 (CH), 128.2 (CH), 127.9 (CH), 127.78 (CH), 127.7 (CH), 127.6 (CH), 122.5 (CH), 116.5 (CH), 99.5 (C-1), 82.3 (C-3), 76.3 (C-5), 75.3 (PhCH₂), 74.9 (C-4), 74.3 (PhCH₂ and C-2), 73.6 (PhCH₂), 71.9 (PhCH₂), 69.7 (C-6). NMR data were consistent with literature data.^[37]

α-anomer

¹H NMR (500 MHz, Chloroform-*d*): δ 5.59 (d, *J* = 2.0 Hz, 1H, H-1).

1-Naphthyl 2,3,4,6-tetra-O-benzyl-β-D-mannopyranoside 4f

Following the general procedure B, hemiacetal **1a** (54 mg, 0.10 mmol), acceptor **3f** (10 mg, 0.069 mmol) and iPr₂NEt (42 μ L, 0.25 mmol) were used. The reaction was stirred at 25 °C for 24 h. ¹H NMR spectroscopy of the crude reaction mixture gave an $\alpha/\beta = 1:99$. Purification by column chromatography (CH₂Cl₂) gave **4f** as a white solid (38 mg, 83% yield). ESI-HRMS for C₄₄H₄₂O₆Na⁺ (M+Na)⁺ calculated: 689.2874; found: 689.2880.

β-anomer

¹H NMR (500 MHz, Chloroform-*d*): δ 8.13 (dd, *J* = 8.4, 1.3 Hz, 1H, ArCH), 7.82 – 7.77 (m, 1H, ArCH), 7.60 – 7.56 (m, 2H, ArCH), 7.51 (d, *J* = 8.2 Hz, 1H, ArCH), 7.47 (ddd, *J* = 8.2, 6.8, 1.4 Hz, 1H, ArCH), 7.42 (ddd, *J* = 8.2, 6.8, 1.4 Hz, 1H, ArCH), 7.37 – 7.20 (m, 19H, ArCH), 7.15 (dd, *J* = 7.8, 1.0 Hz, 1H, ArCH), 5.24 (d, *J* = 12.1 Hz, 1H, C*H*HPh), 5.17 (d, *J* = 0.9 Hz, 1H, H-1), 5.09 (d, *J* = 12.2 Hz, 1H, C*H*HPh), 4.93 (d, *J* = 10.9 Hz, 1H, C*H*HPh), 4.65 (d, *J* = 11.8 Hz, 1H, C*H*HPh), 4.61 (d, *J* = 10.9 Hz, 1H, C*H*HPh), 4.65 (d, *J* = 11.8 Hz, 1H, C*H*HPh), 4.61 (d, *J* = 10.9 Hz, 1H, C*H*HPh), 4.65 (d, *J* = 11.8 Hz, 1H, C*H*HPh), 4.61 (d, *J* = 10.9 Hz, 1H, C*H*HPh), 4.65 (d, *J* = 11.8 Hz, 1H, C*H*HPh), 4.61 (d, *J* = 10.9 Hz, 1H, C*H*HPh), 4.65 (d, *J* = 11.8 Hz, 1H, C*H*HPh), 4.61 (d, *J* = 10.9 Hz, 1H, C*H*HPh), 4.65 (d, *J* = 11.8 Hz, 1H, C*H*HPh), 4.61 (d, *J* = 10.9 Hz, 1H, C*H*HPh), 4.65 (d, *J* = 11.8 Hz, 1H, C*H*HPh), 4.61 (d, *J* = 10.9 Hz, 1H, C*H*HPh), 4.65 (d, *J* = 11.8 Hz, 1H, C*H*HPh), 4.61 (d, *J* = 10.9 Hz, 1H, C*H*HPh), 4.65 (d, *J* = 11.8 Hz, 1H, C*H*HPh), 4.61 (d, *J* = 10.9 Hz, 1H, C*H*HPh), 4.65 (d, *J* = 11.8 Hz, 1H, C*H*HPh), 4.61 (d, *J* = 10.9 Hz, 1H, C*H*HPh), 4.65 (d, *J* = 11.8 Hz, 1H, C*H*HPh), 4.61 (d, *J* = 10.9 Hz, 1H, C*H*HPh), 4.65 (d, *J* = 11.8 Hz, 1H, C*H*HPh), 4.61 (d, *J* = 10.9 Hz, 1H, C*H*HPh), 4.65 (d, *J* = 11.8 Hz, 1H, C*H*HPh), 4.61 (d, *J* = 10.9 Hz, 1H, C*H*HPh), 4.65 (d, *J* = 11.8 Hz, 1H, C*H*HPh), 4.61 (d, *J* = 10.9 Hz, 1H, C*H*HPh), 4.65 (d, *J* = 11.8 Hz, 1H, C*H*HPh), 4.61 (d, *J* = 10.9 Hz, 1H, C*H*HPh), 4.65 (d, *J* = 11.8 Hz, 1H, C*H*HPh), 4.61 (d, *J* = 10.9 Hz, 1H, C*H*HPh), 4.65 (d, *J* = 11.8 Hz, 1H, C*H*HPh), 4.61 (d, *J* = 10.9 Hz), 4.8 Hz, 4.8 H

1H, C*H*HPh), 4.59 (d, J = 11.9 Hz, 1H, C*H*HPh), 4.59 (d, J = 11.9 Hz, 1H, C*H*HPh), 4.54 (d, J = 11.9 Hz, 1H, C*H*HPh), 4.27 (dd, J = 2.9, 0.8 Hz, 1H, H-2), 4.03 (t, J = 9.2 Hz, 1H, H-4), 3.90 (dd, J = 10.8, 2.1 Hz, 1H, H-6a), 3.79 (dd, J = 10.9, 6.3 Hz, 1H, H-6b), 3.74 – 3.65 (m, 2H, H-3, H-5). ¹³C NMR (126 MHz, Chloroform-*d*): δ 153.5 (C), 138.8 (C), 138.6 (C), 138.4 (C), 138.2 (C), 134.6 (C), 128.6 (CH), 128.51 (CH), 128.45 (CH), 128.43 (CH), 128.38 (CH), 128.2 (CH), 127.9 (CH), 127.8 (CH), 127.74 (CH), 127.69 (CH), 127.5 (CH), 126.4 (CH), 126.1 (CH), 126.0 (CH), 125.6 (CH), 122.3 (CH), 122.2 (CH), 109.2 (CH), 100.0 (C-1, ¹ $J_{1CH} = 155.5$ Hz, from coupled HSQC), 82.3 (C-3), 76.4 (C-5), 75.2 (PhCH₂ and C-2), 75.0 (C-4), 74.7 (PhCH₂), 73.6 (PhCH₂), 72.1 (PhCH₂), 69.7 (C-6).

α-anomer

¹H NMR (500 MHz, Chloroform-*d*): δ 5.76 (d, *J* = 1.9 Hz, 1H, H-1).

p-Nitrophenyl 2,3,4,6-tetra-O-benzyl-β-D-mannopyranoside 4g

Following the general procedure B, hemiacetal **1a** (54 mg, 0.10 mmol), acceptor **3g** (9.7 mg, 0.070 mmol) and iPr₂NEt (42 μ L, 0.25 mmol) were used. The reaction was stirred at 45 °C for 24 h. ¹H NMR spectroscopy of the crude reaction mixture gave an α/β = 1:99. Purification by column chromatography (CH₂Cl₂) gave **4g** as a white solid (34 mg, 74% yield). ESI-HRMS for C₄₀H₃₉NO₈Na⁺ (M+Na)⁺ calculated: 684.2568; found: 684.2566.

β-anomer

¹H NMR (500 MHz, Chloroform-*d*): δ 8.16 – 8.09 (m, 2H, ArCH), 7.52 – 7.46 (m, 2H, ArCH), 7.40 – 7.17 (m, 18H, ArCH), 7.08 – 7.01 (m, 2H, ArCH), 5.06 (d, *J* = 1.0 Hz, 1H, H-1), 5.02 (d, *J* = 12.2 Hz, 1H, *CH*HPh), 4.97 (d, *J* = 12.3 Hz, 1H, *CH*HPh), 4.92 (d, *J* = 10.9 Hz, 1H, *CH*HPh), 4.63 (d, *J* = 11.9 Hz, 1H, *CH*HPh), 4.59 (d, *J* = 11.7 Hz, 1H, *CH*HPh), 4.58 (d, *J* = 10.9 Hz, 1H, *CH*HPh), 4.66 (d, *J* = 11.8 Hz, 1H, *CH*HPh), 4.50 (d, *J* = 11.8 Hz, 1H, *CH*HPh), 4.11 (dd, *J* = 2.9, 1.0 Hz, 1H, H-2), 3.96 (t, *J* = 9.2 Hz, 1H, H-4), 3.85 (dd, *J* = 10.6, 1.9 Hz, 1H, H-6a), 3.71 (dd, *J* = 10.6, 6.7 Hz, 1H, H-6b), 3.69 – 3.62 (m, 1H, H-5), 3.64 (dd, *J* = 9.1, 2.8 Hz, 1H, H-3). ¹³C NMR (126 MHz, Chloroform-*d*): δ 162.0 (C), 142.8 (C), 138.4 (C), 138.3 (C), 138.2 (C), 138.0 (C), 128.63 (CH), 128.56 (CH), 128.51 (CH), 128.47 (CH), 128.4 (CH), 128.2 (CH), 127.98 (CH), 127.97 (CH), 127.9 (CH), 127.8 (CH), 125.9 (CH), 116.5 (CH), 98.7 (C-1, ¹*J*_{1CH} = 159.0 Hz, from coupled HSQC), 82.0 (C-3), 76.4 (C-5), 75.3 (PhCH₂), 74.7 (C-4), 74.6 (PhCH₂), 74.3 (C-2), 73.6 (PhCH₂), 72.3 (PhCH₂), 69.4 (C-6).

α-anomer

¹H NMR (500 MHz, Chloroform-*d*): δ 5.64 (d, *J* = 2.2 Hz, 1H, H-1).

p-Methoxyphenyl (2,3,4,6-tetra-O-benzyl-β-D-mannopyranosyl)-(1→4)-2-azido-3,6-di-O-benzyl-β-D-glucopyranoside 4h

Following the general procedure B, hemiacetal **1a** (108 mg, 0.200 mmol), Ph₃PO (28 mg, 0.10 mmol), oxalyl chloride (20 μ L, 0.24 mmol), LiI (107 mg, 0.800 mmol), acceptor **3h** (49 mg, 0.10 mmol) and iPr₂NEt (0.14 mL, 0.80 mmol) were used. The reaction was stirred at 45 °C for 22 h. ¹H NMR spectroscopy of the crude reaction mixture showed β-only product. Purification by column chromatography (90:10 to 75:25; cyclohexane/Et₂O) gave **4h** as a colourless syrup (45 mg, 45% yield). ESI-HRMS for C₆₂H₆₉N₄O₁₁⁺ (M+NH₄)⁺ calculated: 1045.4957; found: 1045.4957.

¹H NMR (600 MHz, Chloroform-*d*): δ 7.41 – 7.38 (m, 2H, ArCH), 7.37 – 7.33 (m, 2H, ArCH), 7.33 – 7.13 (m, 26H, ArCH), 7.05 – 6.99 (m, 2H, ArCH), 6.83 – 6.77 (m, 2H, ArCH), 5.18 (d, J = 11.3 Hz, 1H, CHHPh), 4.86 (d, J = 12.0 Hz, 1H, CHHPh), 4.86 (d, J = 10.9 Hz, 1H, CHHPh), 4.83 (d, J = 12.0 Hz, 1H, CHHPh), 4.70 (d, J = 11.3 Hz, 1H, CHHPh), 4.67 (d, J = 8.2 Hz, 1H, H-1), 4.57 (d, J = 12.1 Hz, 1H, CHHPh), 4.53 (d, J = 10.9 Hz, 1H, CHHPh), 4.50 (s, 1H, H-1'), 4.50 (d, J = 11.9 Hz, 1H, CHHPh), 4.48 (d, J=11.9 Hz, 1H, CHHPh), 4.45 (d, J=12.1 Hz, 1H, CHHPh), 4.40 (d, J=12.1 Hz, 1H, CHHPh), 4.37 (d, *J* = 12.1 Hz, 1H, C*H*HPh), 4.00 (dd, *J* = 9.8, 8.8 Hz, 1H, H-4), 3.88 (t, *J* = 9.5 Hz, 1H, H-4'), 3.79 – 3.75 (m, 1H, H-2'), 3.77 (s, 3H, OCH₃), 3.73 – 3.67 (m, 2H, H-6a, H-6a'), 3.61 (dd, J = 11.1, 4.4 Hz, 1H, H-6b), 3.59 (dd, *J* = 9.9, 8.2 Hz, 1H, H-2), 3.53 (dd, *J* = 11.0, 5.6 Hz, 1H, H-6b'), 3.49 (ddd, *J* = 9.8, 4.3, 2.4 Hz, 1H, H-5), 3.44 (dd, *J* = 9.8, 8.8 Hz, 1H, H-3), 3.36 (dd, *J* = 9.4, 2.9 Hz, 1H, H-3'), 3.32 (ddd, J = 9.7, 5.6, 1.8 Hz, 1H, H-5'). ¹³C NMR (151 MHz, Chloroform-*d*): δ 155.7 (C), 151.3 (C), 138.9 (C), 138.81 (C), 138.76 (C), 138.5 (C), 138.4 (C), 137.9 (C), 128.62 (CH), 128.53 (CH), 128.44 (CH), 128.35 (CH), 128.28 (CH), 128.2 (CH), 128.104 (CH), 128.096 (CH), 128.0 (CH), 127.9 (CH), 127.82 (CH), 127.78 (CH), 127.75 (CH), 127.65 (CH), 127.64 (CH), 127.55 (CH), 127.47 (CH), 127.4 (CH), 118.9 (CH), 114.7 (CH), 101.7 (C-1, ${}^{1}J_{1CH} = 163.4$ Hz, from coupled HSQC), 101.0 (C-1', ${}^{1}J_{1CH}$ = 155.2 Hz, from coupled HSQC), 82.8 (C-3'), 81.2 (C-3), 77.0 (C-4), 76.2 (C-5'), 75.18 (C-5, C-2', PhCH₂), 75.1 (PhCH₂), 74.9 (C-4'), 74.4 (PhCH₂), 73.7 (PhCH₂), 73.5 (PhCH₂), 71.9 (PhCH₂), 69.7 (C-6'), 68.8 (C-6), 65.9 (C-2), 55.8 (OCH₃).

Methyl 2,3,6-tri-O-benzyl-4-O-(2,3,4-tri-O-benzyl-β-D-rhamnosyl)-α-D-glucopyranoside 5b

Following general procedure E, hemiacetal 1j (44 mg, 0.1 mmol), Ph₃PO (14 mg, 0.05 mmol), (COCl)₂ (10 µL, 0.12 mmol), LiI (54 mg, 0.4 mmol), iPr₂NEt (70 µL, 0.4 mmol) and acceptor **3b** (33 mg, 0.07 mmol) were used. The reaction was stirred at 45 °C for 24 h. ¹H NMR spectroscopy of the crude reaction mixture showed β -only product. Purification by column chromatography (9:1 to 6:4; pentane/ Et₂O) afforded the desired product **5b** as a colourless syrup (48.2 mg, 78% yield). $R_f = 0.6$ (4:1; cyclohexane/ EtOAc); ¹H NMR (500 MHz, Chloroform-d) δ 7.44 – 7.39 (m, 2H, Ar-CH), 7.37 – 7.16 (m, 26H, Ar-CH), 7.16 – 7.12 (m, 2H, Ar-CH), 4.96 (d, J = 11.6 Hz, 1H, PhCH₂), 4.88 (d, J = 10.7 Hz, 1H, PhCH₂), 4.81 (s, 2H, 2 × PhCH₂), 4.73 (d, J = 12.1 Hz, 1H, PhCH₂), 4.66 (d, J = 3.5 Hz, 1H, H-1), 4.65 - 4.61(m, 2H, $2 \times PhCH_2$), 4.61 (s, 1H, H-1'), 4.57 (d, J = 10.8 Hz, 1H, PhCH₂), 4.53 (d, J = 12.0 Hz, 1H, PhCH₂), 4.30 (d, J = 11.6 Hz, 1H, PhCH₂), 4.22 (d, J = 11.7 Hz, 1H, PhCH₂), 4.18 (d, J = 11.7 Hz, 1H, PhCH₂), 3.90 (dd, J = 10.6, 1.9 Hz, 1H, H-6a), 3.83 (t, J = 9.3 Hz, 1H, H-3), 3.80 - 3.70 (m, 2H, H-5, H-6b), 3.70 - 3.63 (m, 1H, H-4), 3.61 (d, J = 2.9 Hz, 1H, H-2'), 3.54 - 3.47 (m, 2H, H-2, H-4'), 3.44 (s, 3H, OCH₃), 3.23 – 3.14 (m, 1H, H-5'), 3.13 (dd, *J* = 9.5, 2.9 Hz, 1H, H-3'), 1.25 (d, *J* = 6.1 Hz, 3H, H-6'). ¹³C NMR (126 MHz, Chloroform-d) δ 138.84 (4°C), 138.79 (4°C), 138.6 (4°C), 138.42 (4°C), 138.35 (4°C), 138.0 (4°C), 128.49 (Ar-CH), 128.48 (Ar-CH), 128.44 (Ar-CH), 128.38 (Ar-CH), 128.30 (Ar-CH), 128.21 (Ar-CH), 128.17 (Ar-CH), 128.14 (Ar-CH), 128.13 (Ar-CH), 128.0 (Ar-CH), 127.7 (Ar-CH), 127.6 (Ar-CH), 127.53 (Ar-CH), 127.51 (Ar-CH), 127.50 (Ar-CH), 127.4 (Ar-CH), 127.3 (Ar-CH), 127.51 (Ar-CH), 127.50 (Ar-CH), 127.51 (Ar-CH), 127.51 (Ar-CH), 127.50 (Ar-CH), 127.51 (Ar-C CH), 127.1 (Ar-CH), 102.4 (C-1', ${}^{1}J_{1CH} = 159.0$ Hz, from coupled HSQC), 97.9 (C-1, ${}^{1}J_{1CH} = 170.0$ Hz, from coupled HSQC), 82.8 (C-3'), 82.1 (C-3), 80.0 (C-4'), 79.8 (C-2), 76.9 (C-4), 75.5 (PhCH₂), 75.4 (PhCH₂), 73.8 (C-2'), 73.7 (PhCH₂), 73.4 (PhCH₂), 73.1 (PhCH₂), 71.8 (C-5'), 71.5 (PhCH₂), 69.8 (C-5), 69.1 (C-6), 55.4 (OCH₃), 17.9 (C-6'). ESI-HRMS for C₅₅H₆₄NO₁₀⁺ (M+NH₄)⁺ calculated: 898.4525; found: 898.4567.
Methyl 2,4,6-tri-O-benzyl-3-O-(2,3,4-tri-O-benzyl-β-L-rhamnosyl)-α-D-glucopyranoside 5c

Following general procedure E, hemiacetal 1j (44 mg, 0.1 mmol), Ph₃PO (28 mg, 0.1 mmol), (COCl)₂ (10 µL, 0.12 mmol), LiI (54 mg, 0.4 mmol), iPr₂NEt (70 µL, 0.4 mmol) and acceptor **3c** (33 mg, 0.07 mmol) were used. The reaction was stirred at 45 °C for 20 h. ¹H NMR spectroscopy of the crude reaction mixture showed β-only product. Purification by column chromatography (9:1 to 6:4; pentane/ Et₂O) afforded the desired product 5c as a colourless syrup (54 mg, 88% yield). $R_f = 0.4$ (4:1; cyclohexane/ EtOAc); ¹H NMR (500 MHz, Chloroform-d) δ 7.45 – 7.40 (m, 2H, Ar-CH), 7.40 – 7.17 (m, 26H, Ar-CH), 7.04 – 7.01 (m, 2H, Ar-CH), 4.99 (d, J = 12.6 Hz, 1H, PhCH₂), 4.93 – 4.84 (m, 3H, 3 × PhCH₂), 4.77 (d, J = 12.6 Hz, 1H, PhCH₂), 4.65 – 4.64 (m, 2H, H-1', PhCH₂), 4.63 – 4.58 (m, 2H, H-1, PhCH₂), 4.48 (d, J = 12.0 Hz, 1H, PhCH₂), 4.44 (d, J = 11.8 Hz, 1H, PhCH₂), 4.30 (d, J = 11.8 Hz, 1H, PhCH₂), 4.26 – 4.19 (m, 2H, 2 × PhCH₂), 4.09 (t, J = 9.3 Hz, 1H, H-3), 3.74 – 3.61 (m, 4H, H-2', H-5, H-6a, H-6b), 3.60 - 3.44 (m, 3H, H-4', H-4, H-2), 3.36 (s, 3H, OCH_3), 3.25 (dd, J = 9.3, 6.1 Hz, 1H, H-5'), 3.20(dd, J = 9.4, 2.9 Hz, 1H, H-3'), 1.35 (d, J = 6.1 Hz, 3H, H-6'). ¹³C NMR (126 MHz, Chloroform-*d*) δ 139.1 (4°C), 139.0 (4°C), 138.5 (4°C), 138.4 (4°C), 138.3 (4°C), 137.8 (4°C), 128.5 (Ar-CH), 128.40 (Ar-CH), 128.36 (Ar-CH), 128.3 (Ar-CH), 128.23 (Ar-CH), 128.18 (Ar-CH), 128.15 (Ar-CH), 128.14 (Ar-CH), 128.11 (Ar-CH), 128.06 (Ar-CH), 127.8 (Ar-CH), 127.7 (Ar-CH), 127.50 (Ar-CH), 127.49 (Ar-CH), 127.46 (Ar-CH), 127.40 (Ar-CH), 127.35 (Ar-CH), 126.5 (Ar-CH), 102.6 (C-1', ${}^{1}J_{1CH} = 156.0$ Hz, from coupled HSQC), 99.2 (C-1, ${}^{1}J_{1CH} = 171.0$ Hz, from coupled HSQC), 83.0 (C-3'), 82.4 (C-3), 80.3 (C-4'), 78.6 (C-4), 77.1 (C-2), 75.5 (PhCH₂), 74.6 (C-2'), 74.1 (PhCH₂), 73.9 (PhCH₂), 73.7 (PhCH₂), 73.6 (PhCH₂), 71.8 (C-5'), 71.5 (PhCH₂), 69.6 (C-5), 68.5 (C-6), 55.2 (OCH₃), 18.1 (C-6'). ESI-HRMS for $C_{55}H_{64}NO_{10}^+$ (M+NH₄)⁺ calculated: 898.4525; found: 898.4529.

Methyl 2-*O*-benzyl-4,6-benzylidene-3-*O*-(2,3,4-tri-*O*-benzyl-β-L-rhamnosyl)-α-D-glucopyranoside 5d

Following general procedure E, hemiacetal 1j (44 mg, 0.1 mmol), Ph₃PO (28 mg, 0.1 mmol), (COCl)₂ (10 µL, 0.12 mmol), LiI (54 mg, 0.4 mmol), iPr₂NEt (70 µL, 0.4 mmol) and acceptor 3d (26 mg, 0.07 mmol) were used. The reaction was stirred at 45 °C for 24 h. ¹H NMR spectroscopy of the crude reaction mixture showed β -only product. Purification by column chromatography (9:1 to 6:4; pentane/ Et₂O) afforded the desired product 5d as a colourless syrup (24.3 mg, 44% yield). $R_{\rm f} = 0.6$ (4:1; cyclohexane/ EtOAc); Reaction gave similar results when 50 mol% Ph₃PO was used. ¹H NMR (500 MHz, Chloroform-d) & 7.43 – 7.19 (m, 25H, Ar-CH), 5.26 (s, 1H, PhCH), 5.04 (d, J = 12.2 Hz, 1H, PhCH₂), 4.89 (d, J = 10.8 Hz, 1H, PhCH₂), 4.87 (s, 2H, 2 × PhCH₂), 4.77 (d, J = 12.3 Hz, 1H, PhCH₂), 4.63 (s, 1H, H-1'), 4.60 (d, J = 10.8 Hz, 1H, PhCH₂), 4.57 (d, J = 3.8 Hz, 1H, H-1), 4.29 – 4.13 (m, 4H, 2 × PhCH₂, H-6a, H-3), 3.95 (d, J = 2.6 Hz, 1H, H-2'), 3.78 (td, J = 10.0, 4.8 Hz, 1H, H-5), 3.65 - 3.56 (m, 2H, H-4', H-6b), 3.53 (dd, J = 9.2, 3.8 Hz, 1H, H-2), 3.38 (s, 3H, OCH₃), 3.33 – 3.25 (m, 3H, H-3', H-4, H-5'), 1.37 (d, J = 6.2 Hz, 3H, H-6'). ¹³C NMR (126 MHz, Chloroform-d) δ 139.2 (4°C), 138.7 (4°C), 138.5 (4°C), 138.3 (4°C), 137.17 (4°C), 129.22 (Ar-CH), 128.4 (Ar-CH), 128.33 (Ar-CH), 128.30 (Ar-CH), 128.10 (Ar-CH), 128.09 (Ar-CH), 128.0 (Ar-CH), 127.69 (Ar-CH), 127.64 (Ar-CH), 127.59 (Ar-*C*H), 127.48 (Ar-*C*H), 127.46 (Ar-*C*H), 127.34 (Ar-*C*H), 126.0 (Ar-*C*H), 103.2 (C-1', ¹*J*_{1CH} = 157.0 Hz, from coupled HSQC), 101.66 (PhC*H*), 99.78 (C-1, ${}^{1}J_{1CH} = 171.0$ Hz, from coupled HSQC), 83.0 (C-3'), 81.7 (C-4), 79.9 (C-4', C-3), 77.8 (C-2), 75.4 (PhCH₂), 74.18 (PhCH₂), 74.15 (C-2'), 73.8 (PhCH₂), 72.1 (C-5'), 71.4 (PhCH₂), 69.1 (C-6), 61.9 (C-5), 55.41 (OCH₃), 18.1 (C-6'). ESI-HRMS for C₄₈H₅₆NO₁₀⁺ $(M+NH_4)^+$ calculated: 806.3899; found: 806.3920.

Phenyl 2,3,4-tri-O-benzyl-β-L-rhamnoside 5e

Following general procedure E, hemiacetal **1j** (44 mg, 0.1 mmol), Ph₃PO (28 mg, 0.1 mmol), (COCl)₂ (10 μ L, 0.12 mmol), LiI (54 mg, 0.4 mmol), iPr₂NEt (44 μ L, 0.25 mmol) and acceptor **3e** (0.007 mg,

0.07 mmol) were used. The reaction was stirred at rt for 20 h. ¹H NMR spectroscopy of the crude reaction mixture gave an $\alpha/\beta = 2:98$. Purification by column chromatography (9:1; pentane/ Et₂O) afforded the desired product 5e as a white solid (35.7 mg, quantitative yield). $R_{\rm f} = 0.6$ (4:1; cyclohexane/ EtOAc); Reaction gave anomeric mixture (α/β 17:83) when performed at 45 °C. ¹H NMR (500 MHz, Chloroform-*d*) δ 7.55 – 7.51 (m, 2H, Ar-CH), 7.38 – 7.20 (m, 15H, Ar-CH), 7.03 – 6.99 (m, 1H, Ar-CH), 6.99 – 6.96 (m, 2H, Ar-CH), 5.08 (d, J = 12.4 Hz, 1H, PhCH₂), 5.03 – 4.95 (m, 3H, 2 × PhCH₂, H-1), 4.70 – 4.66 (m, 1H, PhCH₂), 4.60 – 4.49 (m, 2H, 2 × PhCH₂), 4.07 (d, J = 2.8 Hz, 1H, H-2), 3.71 (t, J = 9.3 Hz, 1H, H-4), 3.55 (dd, J = 9.4, 3.0 Hz, 1H, H-3), 3.51 – 3.43 (m, 1H, H-5), 1.42 (d, J = 6.2 Hz, 3H, H-6). ¹³C NMR (126 MHz, Chloroform-*d*) δ 157.2 (4°C), 138.6 (4°C), 138.4 (4°C), 138.1 (4°C), 129.5 (Ar-CH), 128.5 (Ar-CH), 128.4 (Ar-CH), 128.2 (Ar-CH), 128.1 (Ar-CH), 127.8 (Ar-CH), 127.7 (Ar-CH), 127.64 (Ar-CH), 127.59 (Ar-CH), 122.4 (Ar-CH), 116.2 (Ar-CH), 99.1 (C-1, ¹J_{1CH} = 156.0 Hz, from coupled HSQC), 82.0 (C-3), 79.9 (C-4), 75.5 (PhCH₂), 74.34 (C-2), 74.29 (PhCH₂), 72.1 (C-5), 71.7 (PhCH₂), 18.1 (C-6). ESI-HRMS for C₃₃H₃₈NO₅⁺ (M+NH₄)⁺ calculated: 528.2744; found: 528.2745.

Naphthyl 2,3,4-tri-O-benzyl-β-L-rhamnoside 5f

Following general procedure E, hemiacetal **1j** (44 mg, 0.1 mmol), Ph₃PO (28 mg, 0.1 mmol), (COCl)₂ (10 μL, 0.12 mmol), LiI (54 mg, 0.4 mmol), iPr₂NEt (44 μL, 0.25 mmol) and acceptor **3f** (10 mg, 0.07 mmol) were used. The reaction was stirred at rt for 20 h. ¹H NMR spectroscopy of the crude reaction mixture showed β-only product. Purification by column chromatography (4:1; pentane/ Et₂O) afforded the desired product 5f as a brown solid (40 mg, quantitative yield). ¹H NMR (600 MHz, Chloroform-*d*) δ 8.12 (d, *J* = 8.3 Hz, 1H, Ar-CH), 7.79 (d, *J* = 8.0 Hz, 1H, Ar-CH), 7.59 (d, *J* = 7.0 Hz, 1H, Ar-CH), 7.53 – 7.41 (m, 3H, Ar-CH), 7.39 – 7.24 (m, 15H, Ar-CH), 7.03 (d, *J* = 7.5 Hz, 1H, Ar-CH), 5.24 (d, *J* = 12.2 Hz, 1H, PhCH₂), 5.13 (s, 1H, H-1), 5.11 (d, *J* = 12.2 Hz, 1H, PhCH₂), 5.00 (d, *J* = 10.8 Hz, 1H, PhCH₂), 4.65 – 4.56 (m, 2H, 2 × PhCH₂), 4.25 (d, *J* = 2.7 Hz, 1H, H-2), 3.77 (t, *J* = 9.3 Hz, 1H, H-4), 3.62 (dd, *J* = 9.4, 2.9 Hz, 1H, H-3), 3.55 (dq, *J* = 9.2, 6.2 Hz, 1H, H-5), 1.46 (d, *J* = 6.2 Hz, 3H, H-6). ¹³C NMR (151 MHz, Chloroform-*d*) δ 153.3 (4°C), 138.7 (4°C), 138.4 (4°C), 138.1 (4°C), 134.5 (4°C), 128.5 (Ar-CH), 127.65 (Ar-CH), 127.57 (Ar-CH), 128.3 (Ar-CH), 125.84 (Ar-CH), 125.80 (Ar-CH), 125.5 (Ar-CH), 122.2 (Ar-CH), 122.1 (Ar-CH), 108.6 (Ar-CH), 99.7 (C-1, ¹J_{1CH} = 156.0 Hz, from coupled HSQC), 82.3 (C-3), 78.0 (C-4), 75.5 (PhCH₂), 75.3 (C-2), 74.7 (PhCH₂),

72.2 (C-5), 71.9 (PhCH₂), 18.2 (C-6). ESI-HRMS for $C_{37}H_{40}NO_5^+$ (M+NH₄)⁺ calculated: 578.2901; found: 578.2907.

p-Nitrophenyl 2,3,4-tri-O-benzyl-β-L-rhamnoside 5g

Following general procedure E, hemiacetal **1j** (44 mg, 0.1 mmol), Ph₃PO (28 mg, 0.1 mmol), (COCl)₂ (10 µL, 0.12 mmol), LiI (54 mg, 0.4 mmol), iPr₂NEt (44 µL, 0.25 mmol) and acceptor **3g** (9.7 mg, 0.07 mmol) were used. The reaction was stirred at 45 °C for 24 h. ¹H NMR spectroscopy of the crude reaction mixture gave an α/β = 4:96. Purification by column chromatography (4:1; pentane/ Et₂O) afforded the desired product 5g as a white solid (34 mg, 87% yield). *R*_f = 0.8 (4:1; cyclohexane/ EtOAc); ¹H NMR (500 MHz, Chloroform-*d*) δ 8.18 (d, *J* = 9.3 Hz, 2H, Ar-CH), 7.53 – 7.49 (m, 2H, Ar-CH), 7.39 – 7.26 (m, 13H, Ar-CH), 6.99 (d, *J* = 9.3 Hz, 2H, Ar-CH), 5.06 – 5.05 (m, 1H, H-1), 5.04 – 4.97 (m, 3H, 3 × PhCH₂), 4.71 – 4.67 (m, 1H, PhCH₂), 4.65 – 4.56 (m, 2H, 2 × PhCH₂), 4.09 (d, *J* = 2.8 Hz, 1H, H-2), 3.72 (t, *J* = 9.2 Hz, 1H, H-4), 3.59 (dd, *J* = 9.3, 2.8 Hz, 1H, H-3), 3.52 (dq, *J* = 9.1, 6.2 Hz, 1H, H-5), 1.42 (d, *J* = 6.2 Hz, 3H, H-6). ¹³C NMR (126 MHz, Chloroform-*d*) δ 161.8 (4°C), 142.6 (4°C), 138.24 (4°C), 138.21 (4°C), 137.9 (4°C), 128.49 (Ar-CH), 127.79 (Ar-CH), 127.70 (Ar-CH), 125.8 (Ar-CH), 128.1 (Ar-CH), 127.9 (Ar-CH), 127.83 (Ar-CH), 127.79 (Ar-CH), 127.70 (Ar-CH), 125.8 (Ar-CH), 116.1 (Ar-CH), 98.3 (C-1, ¹*J*_{1CH} = 156.0 Hz, from coupled HSQC), 81.8 (C-3), 79.6 (C-4), 75.6 (PhCH₂), 74.6 (PhCH₂), 74.3 (C-2), 72.4 (C-5), 72.1 (PhCH₂), 18.0 (C-6). ESI-HRMS for C₃₃H₃₃NO₇Na⁺ (M+Na)⁺ calculated: 578.2149.

p-Methoxyphenyl 2-azido-3,6-di-*O*-benzyl-4-*O*-(2,3,4-tri-*O*-benzyl-β-L-rhamnosyl)-β-Dglucopyranoside 5h

Following general procedure E, hemiacetal **1j** (44 mg, 0.1 mmol), Ph₃PO (14 mg, 0.05 mmol), (COCl)₂ (10 μ L, 0.12 mmol), LiI (54 mg, 0.4 mmol), iPr₂NEt (70 μ L, 0.4 mmol) and acceptor **3h** (24.5 mg, 0.05

mmol) were used. The reaction was stirred at 45 °C for 15 h. ¹H NMR spectroscopy of the crude reaction mixture showed β -only product. Purification by column chromatography (9:1; cyclohexane/Et₂O) afforded the desired product **5h** as a colourless syrup (27 mg, 60% yield). $R_{\rm f} = 0.5$ (4:1; cyclohexane/ EtOAc); ¹H NMR (500 MHz, Chloroform-*d*) δ 7.40 (dd, J = 7.6, 1.6 Hz, 2H, Ar-CH), 7.35 – 7.21 (m, 21H, Ar-CH), 7.18 (d, J = 6.8 Hz, 2H, Ar-CH), 7.12 – 7.09 (m, 2H, Ar-CH), 6.82 – 6.78 (m, 2H, Ar-CH), 4.89 (d, J = 11.0 Hz, 2H, 2 × PhCH₂), 4.79 – 4.77 (m, 2H, 2 × PhCH₂), 4.76 (d, J = 8.1 Hz, 1H, H-1), 4.62 - 4.54 (m, 3H, $3 \times PhCH_2$), 4.53 (s, 1H, H-1'), 4.31 (s, 2H, $2 \times PhCH_2$), 4.26 (d, J = 11.5 Hz, 1H, PhCH₂), 4.16 – 4.10 (m, 1H, H-6a), 3.77 (s, 3H, OCH₃), 3.68 – 3.61 (m, 4H, H-2, H-4, H-5, H-6b), 3.58 (d, *J* = 2.7 Hz, 1H, H-2'), 3.52 (t, *J* = 9.4 Hz, 1H, H-4'), 3.30 – 3.24 (m, 1H, H-3), 3.23 – 3.14 (m, 2H, H-3', H-5'), 1.29 (d, J = 6.1 Hz, 3H, H-6'). ¹³C NMR (126 MHz, Chloroform-*d*) δ 155.5 (4°C), 151.3 (4°C), 138.7 (4°C), 138.6 (4°C), 138.4 (4°C), 138.3 (4°C), 138.0 (4°C), 128.6 (Ar-CH), 128.5 (Ar-CH), 128.4 (Ar-CH), 128.3 (Ar-CH), 128.2 (Ar-CH), 127.9 (Ar-CH), 127.8 (Ar-CH), 127.7 (Ar-CH), 127.6 (Ar-CH), 127.5 (Ar-CH), 127.4 (Ar-CH), 127.2 (Ar-CH), 101.9 (C-1', ${}^{1}J_{1CH} = 157.0$ Hz, from coupled HSQC), 101.5 (C-1, ${}^{1}J_{1CH} = 167.0$ Hz, from coupled HSQC), 83.4 (C-3), 82.7 (C-3'), 79.9 (C-4'), 76.3 (C-4), 75.5 (PhCH₂), 75.4 (PhCH₂), 75.0 (C-5), 74.0 (C-2'), 73.9 (PhCH₂), 73.4 (PhCH₂), 71.9 (C-5'), 71.8 (PhCH₂), 69.7 (C-6), 66.0 (C-2) 55.7 (OCH₃), 17.9 (C-6'). ESI-HRMS for C₅₅H₆₃N₄O₁₀ (M+Na)⁺ calculated: 944.4093; found: 944.2120.

Ethyl1-thiol2,3,4-tri-O-benzyl-6-O-(2,3,4-tri-O-p-methylbenzyl-β-L-rhamnosyl)-α-D-mannopyranoside 5i

Following general procedure E, hemiacetal **1j** (44 mg, 0.1 mmol), Ph₃PO (14 mg, 0.05 mmol), (COCl)₂ (10 µL, 0.12 mmol), LiI (54 mg, 0.4 mmol), iPr₂NEt (44 µL, 0.25 mmol) and acceptor **3i** (38 mg, 0.07 mmol) were used. The reaction was stirred at 45 °C for 15 h. ¹H NMR spectroscopy of the crude reaction mixture showed β-only product. Purification by column chromatography (9:1 to 7:3; cyclohexane/Et₂O) afforded the desired product **5i** as a colourless syrup (65.6 mg, 98% yield). $R_f = 0.55$ (4:1; cyclohexane/Et₂O) afforded the desired product **5i** as a colourless syrup (65.6 mg, 98% yield). $R_f = 0.55$ (4:1; cyclohexane/Et₂O) afforded the desired product **5i** as a colourless syrup (65.6 mg, 98% yield). $R_f = 0.55$ (4:1; cyclohexane/Et₂O) afforded the desired product **5i** as a colourless syrup (65.6 mg, 98% yield). $R_f = 0.717$ (m, 19H, Ar-CH), 7.14 (d, J = 7.7 Hz, 2H, Ar-CH), 7.10 (d, J = 7.7 Hz, 2H, Ar-CH), 7.03 (d, J = 7.7 Hz, 2H, Ar-CH), 5.33 (d, J = 1.6 Hz, 1H, H-1), 4.99 (d, J = 12.3 Hz, 1H, PhCH₂), 4.95 (d, J = 10.9 Hz, 1H, PhCH₂), 4.83 (d, J = 12.3 Hz, 1H, PhCH₂), 4.78 (d, J = 10.1 Hz, 1H, PhCH₂), 4.67 (d, J = 10.1 Hz, 1H, PhCH₂), 4.65 - 4.53 (m, 5H, 5 × PhCH₂), 4.52 (s, 1H, H-1'), 4.42 (d, J = 11.9 Hz, 1H, PhCH₂), 4.38 - 4.29 (m, 2H,

PhCH₂, H-6a), 4.14 (t, J = 9.5 Hz, 1H, H-4), 4.05 (ddd, J = 9.7, 3.6, 1.7 Hz, 1H, H-5), 3.99 (d, J = 3.0 Hz, 1H, H-2'), 3.82 (dd, J = 3.1, 1.6 Hz, 1H, H-2), 3.79 (dd, J = 9.3, 3.1 Hz, 1H, H-3), 3.68 (dd, J = 11.4, 1.8 Hz, 1H, H-6b), 3.58 (t, J = 9.3 Hz, 1H, H-4'), 3.42 (dd, J = 9.4, 3.1 Hz, 1H, H-3'), 3.32 (dq, J = 9.1, 6.1 Hz, 1H, H-5'), 2.63 – 2.44 (m, 2H, SCH₂CH₃), 2.35 (s, 3H, CH₃), 2.32 (s, 3H, CH₃), 2.25 (s, 3H, CH₃), 1.37 (d, J = 6.2 Hz, 3H, H-6'), 1.19 (t, J = 7.4 Hz, 3H, SCH₂CH₃). ¹³C NMR (126 MHz, Chloroform-*d*) δ 139.0 (4°C), 138.7 (4°C), 138.4 (4°C), 137.30 (4°C), 137.28 (4°C), 137.2 (4°C), 135.7 (4°C), 135.5 (4°C), 135.2 (4°C), 129.00 (Ar-CH), 128.97 (Ar-CH), 128.5 (Ar-CH), 128.40 (Ar-CH), 128.35 (Ar-CH), 128.3 (Ar-CH), 127.2 (Ar-CH), 101.5 (C-1', ¹ $J_{1CH} = 155.6$ Hz, from coupled HSQC), 82.5 (C-1, ¹ $J_{1CH} = 164.0$ Hz, from coupled HSQC), 81.9 (C-3'), 80.2 (C-4'), 80.1 (C-3), 76.6 (C-2), 75.4 (PhCH₂), 75.2 (PhCH₂), 74.7 (C-4), 74.13 (PhCH₂), 74.10 (C-2'), 72.3 (PhCH₂), 72.1 (PhCH₂, C-5), 71.9 (C-5'), 70.9 (PhCH₂), 67.5 (C-6), 25.4 (SCH₂CH₃), 21.3 (CH₃), 21.23 (CH₃), 21.16 (CH₃), 18.11 (C-6'), 15.05 (SCH₂CH₃). ESI-HRMS for C₅₉H₇₂NO₉S⁺ (M+NH₄)⁺ calculated: 970.4922; found: 970.4917.

Methyl3-O-benzyl-4,6-benzylidene-2-O-(2,3,4-tri-O-benzyl-β-L-rhamnosyl)-α-D-galactopyranoside 5j

Following general procedure E, hemiacetal **1j** (44 mg, 0.1 mmol), Ph₃PO (14 mg, 0.05 mmol), (COCl)₂ (10 μL, 0.12 mmol), LiI (54 mg, 0.4 mmol), iPr₂NEt (70 μL, 0.4 mmol) and **3j** (26 mg, 0.07 mmol) were used. The reaction was stirred at 45 °C for 24 h. ¹H NMR spectroscopy of the crude reaction mixture showed β-only product. Purification by column chromatography (4:1 to 1:1; pentane/ Et₂O) afforded the desired product **5j** as a colourless syrup (24.1 mg, 44% yield). $R_f = 0.3$ (7:3; cyclohexane/ EtOAc); ¹H NMR (500 MHz, Chloroform-*d*) δ 7.56 – 7.51 (m, 2H, Ar-CH), 7.45 – 7.19 (m, 23H, Ar-CH), 5.45 (s, 1H, PhCH), 4.99 (d, J = 12.3 Hz, 1H, PhCH₂), 4.94 – 4.91 (m, 2H, H-1, PhCH₂), 4.90 – 4.84 (m, 2H, 2 × PhCH₂), 4.71 (d, J = 12.3 Hz, 1H, PhCH₂), 4.64 – 4.60 (m, 2H, PhCH₂, H-1), 4.53 (d, J = 11.8 Hz, 1H, PhCH₂), 4.42 (dd, J = 10.1, 3.5 Hz, 1H, H-2), 4.23 (dd, J = 12.5, 1.6 Hz, 1H, H-6a), 4.14 (dd, J = 3.7, 1.2 Hz, 1H, H-4), 4.01 (dd, J = 12.5, 1.8 Hz, 1H, H-6b), 3.97 (dd, J = 10.1, 3.6 Hz, 1H, H-3), 3.92 (d, J = 3.0 Hz, 1H, H-2'), 3.63 – 3.58 (m, 2H, H-5, H-4'), 3.46 (dd, J = 9.4, 2.9 Hz, 1H, H-3'), 3.39 (s, 3H, OCH₃), 3.27 (dq, J = 9.2, 6.1 Hz, 1H, H-5'), 1.35 (d, J = 6.1 Hz, 3H,

H-6'). ¹³C NMR (126 MHz, Chloroform-*d*) δ 139.1 (4°C), 139.0 (4°C), 138.6 (4°C), 138.4 (4°C), 137.8 (4°C), 128.9 (Ar-CH), 128.33 (Ar-CH), 128.32 (Ar-CH), 128.2 (Ar-CH), 128.11 (Ar-CH), 128.08 (Ar-CH), 128.07 (Ar-CH), 128.06 (Ar-CH), 127.7 (Ar-CH), 127.6 (Ar-CH), 127.51 (Ar-CH), 127.45 (Ar-CH), 127.2 (Ar-CH), 126.3 (Ar-CH), 101.0 (PhCH), 99.5 (C-1', ¹*J*_{1CH} = 154.0 Hz, from coupled HSQC), 98.7 (C-1, ¹*J*_{1CH} = 170.0 Hz, from coupled HSQC), 82.3 (C-3'), 80.1 (C-4'), 75.4 (PhCH₂), 75.0 (C-3), 74.9 (C-4), 74.8 (C-2'), 74.1 (PhCH₂), 73.0 (C-2), 72.2 (C-5'), 72.1 (PhCH₂), 71.4 (PhCH₂), 69.3 (C-6), 62.6 (C-5), 55.4 (OCH₃), 18.0 (C-6'). ESI-HRMS for C₄₈H₅₆NO₁₀⁺ (M+NH₄)⁺ calculated: 806.3899; found: 806.3900.

Boc-L-tyrosine methyl ester 2,3,4-tri-O-benzyl-β-L-rhamnoside 5k

Following general procedure E, hemiacetal 1j (44 mg, 0.1 mmol), Ph₃PO (28 mg, 0.1 mmol), (COCl)₂ (10 µL, 0.12 mmol), LiI (54 mg, 0.4 mmol), iPr₂NEt (70 µL, 0.4 mmol) and acceptor **3k** (24 mg, 0.07 mmol) were used. The reaction was stirred at 45 °C for 24 h. ¹H NMR spectroscopy of the crude reaction mixture showed β -only product. Purification by column chromatography (9:1 to 7:3; pentane/ Et₂O) afforded the desired product 5k as a white solid (30 mg, 60% yield) along with hemiacetal 1j (15%). $R_{\rm f}$ = 0.6 (4:1; cyclohexane/ EtOAc); ¹H NMR (500 MHz, Chloroform-d) δ 7.52 (d, J = 6.9 Hz, 2H, Ar-CH), 7.39 – 7.26 (m, 13H, Ar-CH), 7.02 (d, J = 8.5 Hz, 2H, Ar-CH), 6.89 (d, J = 8.6 Hz, 2H, Ar-CH), $5.06 (d, J = 12.4 Hz, 1H, PhCH_2), 4.98 (d, J = 11.2 Hz, 2H, 2 \times PhCH_2), 4.93 (s, 1H, H-1), 4.67 (d, J = 12.4 Hz, 1H, PhCH_2), 4.98 (d, J = 11.2 Hz, 2H, 2 \times PhCH_2), 4.93 (s, 1H, H-1), 4.67 (d, J = 11.2 Hz, 2H, 2H)$ 10.8 Hz, 1H, PhCH₂), 4.61 - 4.49 (m, 3H, CH, $2 \times PhCH_2$), 4.05 (d, J = 2.7 Hz, 1H, H-2), 3.68 (br s, 4H, H-4, OCH₃), 3.54 (dd, *J* = 9.4, 2.9 Hz, 1H, H-3), 3.52 – 3.42 (m, 1H, H-5), 3.09 – 2.96 (m, 2H, PhCH₂), 1.44 – 1.38 (m, 12H, H-6, C(CH₃)₃). ¹³C NMR (101 MHz, Chloroform-d) & 172.3 (C=O), 156.3 (4°C), 138.5 (4°C), 138.4 (4°C), 138.0 (4°C), 130.3 (Ar-CH), 129.53 (4°C), 128.46 (Ar-CH), 128.4 (Ar-CH), 128.3 (Ar-CH), 128.2 (Ar-CH), 128.1 (Ar-CH), 127.6 (Ar-CH), 116.3 (Ar-CH), 99.1 (C-1, ¹J_{1CH}) = 154.9 Hz, from coupled HSQC), 82.0 (C-3), 80.0 ($C(CH_3)_3$), 79.9 (C-4), 75.5 (PhCH₂), 74.32 (C-2), 74.26 (PhCH₂), 72.1 (C-5), 71.7 (PhCH₂), 54.5 (CH), 52.2 (OCH₃), 37.5 (CH₂), 28.29 (C(CH₃)₃)), 18.06 (C-6). ESI-HRMS for $C_{42}H_{53}N_2O_9^+$ (M+NH₄)⁺ calculated: 729.3746; found: 729.3749.

Cholesteryl 2,3,4-tri-O-benzyl-α/β-L-rhamnoside S50

Following general procedure E, hemiacetal **1j** (44 mg, 0.1 mmol), Ph₃PO (28 mg, 0.1 mmol), (COCl)₂ (10 μ L, 0.12 mmol), LiI (54 mg, 0.4 mmol), iPr₂NEt (44 μ L, 0.25 mmol) and cholesterol (27 mg, 0.07 mmol) were used. The reaction was stirred at rt for 24 h. ¹H NMR spectroscopy of the crude reaction mixture gave an α/β = 1:1. Purification by column chromatography (9:1; pentane/ Et₂O) afforded the desired product S50 as a white solid (54 mg, quantitative yield). *R*_f = 0.8 (4:1; cyclohexane/ EtOAc); Reaction gave same anomeric mixture when performed at rt and when general procedure B was used. Signals observed for both anomers:

¹H NMR (500 MHz, Chloroform-*d*) δ 7.50 – 7.46 (m, 2H, Ar-CH), 7.40 – 7.24 (m, 28H, Ar-CH), 5.01 – 4.87 (m, 3H, 3 × PhCH₂), 4.78 (d, J = 12.3 Hz, 1H, PhCH₂), 4.73 – 4.69 (m, 1H, PhCH₂), 4.67 – 4.61 (m, 5H, 5 × PhCH₂), 4.53 – 4.40 (m, 2H, 2 × PhCH₂), 3.61 (td, J = 9.3, 2.0 Hz, 2H, H-4α, H-4β), 3.54 (dddd, J = 15.8, 11.2, 8.3, 3.4 Hz, 1H), 3.39 (ddd, J = 15.4, 7.7, 3.2 Hz, 1H), 2.53 – 2.43 (m, 1H), 2.42 – 2.32 (m, 1H), 2.20 (ddd, J = 13.1, 4.7, 1.9 Hz, 2H), 2.13 – 1.91 (m, 7H), 1.90 – 1.77 (m, 7H), 1.63 – 1.42 (m, 22H), 1.40 – 1.29 (m, 5H), 1.29 – 1.20 (m, 4H), 1.19 – 1.04 (m, 17H), 1.03 (s, 3H), 1.00 (dd, J = 7.1, 3.6 Hz, 4H), 0.97 (s, 3H), 0.93 – 0.89 (m, 8H), 0.88 – 0.84 (m, 11H), 0.69 – 0.66 (m, 5H). ¹³C NMR (126 MHz, Chloroform-d) δ 140.9 (4°C), 140.5 (4°C), 138.9 (4°C), 138.7 (4°C), 138.63 (4°C), 138.57 (4°C), 138.4 (4°C), 138.3 (4°C), 128.6 (Ar-CH), 128.37 (Ar-CH), 128.35 (Ar-CH), 128.33 (Ar-CH), 128.31 (Ar-CH), 127.54 (Ar-CH), 127.50 (Ar-CH), 127.47 (Ar-CH), 127.3 (Ar-CH), 78.3, 76.4, 75.4 (PhCH₂), 73.8 (PhCH₂), 72.8 (PhCH₂), 72.1 (PhCH₂), 71.3 (PhCH₂), 56.8, 56.7, 56.16, 56.15, 50.2, 50.1, 42.34, 42.32, 40.2, 39.81, 39.77, 39.5, 38.4, 37.3, 37.1, 36.74, 36.72, 36.2, 35.8, 31.95, 31.90, 31.89, 29.4, 28.2, 28.1, 28.0, 24.3, 23.8, 22.8, 22.6, 21.10, 21.05, 19.42, 19.36, 18.74, 18.73, 11.9. ESI-HRMS for C₅₄H₇₅O₅⁺ (M+H)⁺ calculated: 803.5609; found: 803.5616.

α-anomer:

¹H NMR (500 MHz, Chloroform-*d*) δ 5.33 – 5.29 (m, 1H, C=C*H*), 4.88 (d, *J* = 1.6 Hz, 1H, H-1), 3.88 (dd, *J* = 9.4, 3.1 Hz, 1H, H-3), 3.79 – 3.72 (m, 2H, H-5, H-2), 1.31 (d, *J* = 6.2 Hz, 3H, H-6). ¹³C NMR (126 MHz, Chloroform-*d*) δ 121.8 (C=CH), 96.0 (C-1, ¹*J*_{1CH} = 169.0 Hz, from coupled HSQC), 80.8 (C-4), 80.3 (C-3), 75.5 (C-2), 68.0 (C-5), 18.0 (C-6).

β-anomer:

¹H NMR (500 MHz, Chloroform-*d*) δ 5.39 – 5.33 (m, 1H, C=C*H*), 4.47 (s, 1H, H-1), 3.84 (d, *J* = 3.0 Hz, 1H, H-2), 3.44 (dd, *J* = 9.4, 3.1 Hz, 1H, H-3), 3.29 (dq, *J* = 9.2, 6.1 Hz, 1H, H-5), 1.36 (d, *J* = 6.1

Hz, 3H, H-6). ¹³C NMR (126 MHz, Chloroform-*d*) δ 121.8 (C=*C*H), 99.3 (C-1, ¹*J*_{1CH} = 152.0 Hz, from coupled HSQC), 82.4 (C-3), 80.2 (C-4), 74.3 (C-2), 71.8 (C-5), 18.1 (C-6).

Donor and Acceptor Limitations

Peracetylated/4-OAc donors **S22**, **S24** and **S35**, were disarmed and no glycosylation was observed. 6-OTIPS donor **S23** led to the anhydro sugar. Benzylidene acceptors **S40** and **S46** were poor nucleophiles and no desired reaction was observed. Benzoylated acceptor **S49** led to complex mixtures due to ester migration. We confirmed that ester migration occurred on benzoylated acceptor **S49** with iPr₂NEt in CHCl₃ at 45 °C in the absence of other reagents. Acceptor **S43** gave a complex mixture in reactions with **1a**; there were trace amounts of the desired β -product (as evidenced by HSQC), and the major product was the donor elimination product. We suspect there was also acyl migration but it was difficult to be sure because of the complex mixture generated. **S43** is a poor nucleophile and so observation of elimination is not that surprising. Reaction with cholesterol gave the product **S50** in a very high yield but with no selectivity. When **S35** used as donor in the glycosylation reaction with acceptor **3a**, transesterification was observed giving product **S51** (see below).^[38]

Mechanistic Investigations

Entry	Route	Deviation from standard procedure	β/α^{a}
1	А	No Ph ₃ PO ^b	≥20:1
2	А	0.5 eq Ph ₃ PO	≥20:1
3	А	No LiI	No glycosylation
4	А	NaI in lieu of LiI	1:1
5	А	Filtration of insoluble LiCl/LiI salts	1:1
6	А	Filtration of insoluble LiCl/LiI salts; no Ph3POb	≥20:1
7	А	2 eq LiI in lieu of 4 eq LiI	2:3
8	А	2 eq Ph ₃ PO	1:1
9	А	2 eq Ph ₃ PO, 8 eq LiI	10:1
10	А	No Ph ₃ PO, ^b 4Å MS	≥20:1
11	В	0.5 eq Ph ₃ PO	2:3
12	В	4 eq LiI	3:1
13	В	4 eq LiCl	2:3
14	С	-	2:3
15	С	4 eq LiI	≥20:1

^a Determined by ¹H NMR spectroscopy of the reaction mixture.^b After synthesis of **6a**, the Ph₃PO was removed by chromatography.

Route A:

Following the general procedure A, hemiacetal **1a** (378 mg, 0.700 mmol), Ph₃PO (195 mg, 0.500 mmol) and oxalyl chloride (64 μ L, 0.77 mmol) were used. After 30 minutes, the solvent and excess oxalyl chloride were removed by applying vacuum. (For removal of Ph₃PO: The crude mannosyl chloride was subjected to flash column chromatography (R_f = 0.9, 96:4; CH₂Cl₂/Et₂O) to obtain the isolated mannosyl chloride **6a** as a yellowish syrup. A stock solution of **6a** in anhydrous CHCl₃ (0.4 M) was prepared).

Entry 1: Acceptor (0.7 eq), powdered LiI (4 eq) and iPr_2NEt (2.5 eq) were used (reaction was also performed for 5 h).

Entry 2: Ph₃PO (0.5 eq), acceptor (0.7 eq), powdered LiI (4 eq) and iPr₂NEt (2.5 eq) were used.

Entry 3: Ph₃PO (1 eq), acceptor (0.7 eq) and iPr₂NEt (2.5 eq) were used.

Entry 4: Ph₃PO (1 eq), acceptor (0.7 eq), NaI (4 eq) and iPr₂NEt (2.5 eq) were used (reaction gave same glycosylation outcome in both CHCl₃ and MeCN).

Entry 5: Ph₃PO (1 eq), powdered LiI (4 eq) and iPr₂NEt (2.5 eq) were used and the reaction left to stir for 3 h (glycosyl iodide formation); syringe filtration was carried out and then acceptor (0.7 eq) added. Entry 6: Isolated mannosyl chloride 6a (1 eq), powdered LiI (4 eq) and iPr₂NEt (2.5 eq) were used and the reaction left to stir for 3 h (glycosyl iodide formation); syringe filtration was carried out and then acceptor (0.7 eq) added. Entry 7: Acceptor (0.7 eq), powdered LiI (2 eq), iPr_2NEt (2.5 eq) and were used (reaction was carried out with and without Ph_3PO , leading to similar results in both cases).

Entry 8: Ph₃PO (2 eq), acceptor (0.7 eq), LiI (4 eq) and iPr₂NEt (2.5 eq) were used.

Entry 9: Ph₃PO (2 eq), acceptor (0.7 eq), LiI (8 eq) and iPr₂NEt (2.5 eq) were used.

Entry 10: Acceptor (0.7 eq), powdered LiI (4 eq), iPr₂NEt (2.5 eq) and 4Å MS (30 mg) were used. <u>Route B:</u>

In a solution of glycosyl acetate **8a** (57 mg, 0.1 mmol) in anhydrous CH_2Cl_2 (500 µL), freshly activated 4Å MS (59 mg) were added followed by the addition of TMSI (17 µL, 0.12 mmol). After 30 minutes, the solvent and excess reagent were removed by applying vacuum. The residue was redissolved in anhydrous $CHCl_3$ (250 µL).

Entry 11: Ph₃PO (0.5 eq), acceptor (0.7 eq) and iPr₂NEt (2.5 eq) were used.

Entry 12: Acceptor (0.7 eq), powdered LiI (4 eq) and iPr₂NEt (2.5 eq) were used.

Entry 13: Acceptor (0.7 eq), powdered LiCl (4 eq) and iPr₂NEt (2.5 eq) were used.

Route C:

Based on a modified literature procedure,^[39] hemiacetal **1a** (54 mg, 0.10 mmol), Ph₃P (26 mg, 0.10 mmol) and 1,2-diiodoethane (28 mg, 0.10 mmol) were dissolved in anhydrous CHCl₃ (300 μ L) and stirred at 45 °C for 40 minutes. Solvent was removed by applying vacuum and the residue was redissolved in anhydrous CHCl₃ (250 μ L).

Entry 14: Acceptor (0.7 eq) and iPr₂NEt (2.5 eq) were used.

Entry 15: Acceptor (0.7 eq), powdered LiI (4 eq) and iPr₂NEt (2.5 eq) were used.

The reactions were stirred at 45 °C for 24 h. The α/β ratio was determined by ¹H NMR spectroscopy of the crude reaction mixture.

	β anomer
DP-384-24-12_PROTON_20201103_01	Acceptor's Owie group
Entry 6	
 DP-399-36-12_PROTON_20201105_01	
Entry 7- No Ph₃PO	1. High Hiller,
DP-398-36-12_PROTON_20201105_01	
Entry 7- 50 mol% Ph ₃ PO	1. March March
DP-382-24-12_PROTON_20201103_01	
Entry 10	- I walker when at the all the limit of
DP-397-36-12_PROTON_20201104_01	
Entry 2 (5 h)	-s
DP-326-65-11-B_PROTON_20200728_02	
Entry 2	- Multill Mile will Mile and when when the when the
DP-327-6S-11_PROTON_20200727_02 DP-327-6S_11	
Entry 1	- I will have a free to be the second of the

Figure S1 Stacked ¹H NMR spectra (CDCl₃, 500 MHz) of experiments to probe mechanism.

Figure S2 Stacked ¹H NMR spectra (CDCl₃, 500 MHz) of experiments to probe mechanism.

Figure S3 Stacked ¹H NMR spectra (CDCl₃, 500 MHz) of experiments to probe mechanism.

References

- A. B. Pangborn, M. A. Giardello, R. H. Grubbs, R. K. Rosen, F. J. Timmers, *Organometallics* 1996, 15, 1518–1520.
- M. A. Hollas, S. J. Webb, S. L. Flitsch, A. J. Fielding, *Angew. Chem. Int. Ed.* 2017, 56, 9449–9453.
- O. Norberg, B. Wu, N. Thota, J. T. Ge, G. Fauquet, A. K. Saur, T. Aastrup, H. Dong, M. Yan,
 O. Ramström, *Carbohydr. Res.* 2017, 452, 35–42.
- [4] P. J. Garegg, I. Kvarnström, A. Niklasson, S. C. T. Svensson, J. Carbohydr. Chem. 1993, 12, 933–953.
- [5] L. Van Huy, C. Tanaka, T. Imai, S. Yamasaki, T. Miyamoto, ACS Med. Chem. Lett. 2019, 10, 44–49.
- [6] M. P. DeNinno, J. B. Etienne, K. C. Duplantier, *Tetrahedron Lett.* 1995, *36*, 669–672.
- [7] Y. Asahina, T. Kawakami, H. Hojo, Eur. J. Org. Chem. 2019, 1915–1920.
- [8] E. I. Balmond, D. M. Coe, M. C. Galan, E. M. McGarrigle, Angew. Chem. Int. Ed. 2012, 51, 9152–9155.
- [9] G. Lemanski, T. Ziegler, *Helv. Chim. Acta* **2000**, *83*, 2655–2675.
- [10] T. Shirahata, A. Kojima, S. Teruya, J. I. Matsuo, M. Yokoyama, S. Unagiike, T. Sunazuka, K. Makino, E. Kaji, S. Omura, Y. Kobayashi, *Tetrahedron* 2011, 67, 6482–6496.
- [11] J. López-Prados, F. Cuevas, N. C. Reichardt, J. L. De Paz, E. Q. Morales, M. Martín-Lomas, Org. Biomol. Chem. 2005, 3, 764–786.
- [12] J. Y. Baek, B. Y. Lee, M. G. Jo, K. S. Kim, J. Am. Chem. Soc. 2009, 131, 17705–17713.
- [13] S. Koto, N. Morishima, K. Takenaka, K. Kanemitsu, N. Shimoura, M. Kase, S. Kojiro, T. Nakamura, T. Kawase, S. Zeu, *Bull. Chem. Soc. Jpn.* **1989**, *62*, 3549–3566.
- [14] G. Wei, L. Zhang, C. Cai, S. Cheng, Y. Du, Tetrahedron Lett. 2008, 49, 5488–5491.
- [15] Q. Wang, G. Liu, S. Gong, Q. Sun, Adv. Mater. Res. 2014, 830, 155–158.
- [16] A. Subratti, N. K. Jalsa, *Tetrahedron Lett.* 2018, 59, 2082–2085.
- [17] M. Seepersaud, S. Seecharan, L. J. Lalgee, N. K. Jalsa, Synth. Commun. 2017, 47, 853–871.
- [18] E. Lee, N. Gavin, P. Mcardle, D. Cunningham, Carbohydr. Res. 1990, 197, 270–275.
- [19] J. Bourke, C. F. Brereton, S. V. Gordon, E. C. Lavelle, E. M. Scanlan, *Org. Biomol. Chem.* **2014**, *12*, 1114–1123.
- [20] D. A. Leigh, J. P. Smart, A. M. Truscello, *Carbohydr. Res.* 1995, 276, 417–424.
- [21] S. Dasgupta, B. Roy, B. Mukhopadhyay, *Carbohydr. Res.* 2006, 341, 2708–2713.
- [22] Y. Zhu, Z. Shen, W. Li, B. Yu, Org. Biomol. Chem. 2016, 14, 1536–1539.
- [23] Y. Liu, T. Song, W. Meng, Y. Xu, P. G. Wang, W. Zhao, *Tetrahedron Lett.* 2016, 57, 2758– 2762.
- [24] S. Boonyarattanakalin, X. Liu, M. Michieletti, B. Lepenies, P. H. Seeberger, J. Am. Chem.

Soc. 2008, 130, 16791–16799.

- [25] M. Matwiejuk, J. Thiem, Chem. Commun. 2011, 47, 8379–8381.
- [26] H. Paulsen, J. P. Lorentzen, Carbohydr. Res. 1985, 140, 155–162.
- [27] A. Français, D. Urban, J.-M. Beau, Angew. Chem. Int. Ed. 2007, 46, 8662–8665.
- [28] C. C. Wang, J. C. Lee, S. Y. Luo, S. S. Kulkarni, Y. W. Huang, C. C. Lee, K. L. Chang, S. C. Hung, *Nature* 2007, 446, 896–899.
- [29] S. C. Ranade, S. Kaeothip, A. V. Demchenko, Org. Lett. 2010, 12, 5628–5631.
- [30] E. Durantie, C. Bucher, R. Gilmour, Chem. Eur. J. 2012, 18, 8208–8215.
- [31] Z. Wang, *Comprehensive Organic Name Reactions and Reagents*, John Wiley & Sons, Ltd, Hoboken, **2010**.
- [32] F. Dasgupta, P. J. Garegg, *Synthesis* **1994**, 1121–1123.
- [33] J. Dinkelaar, A. R. De Jong, R. Van Meer, M. Somers, G. Lodder, H. S. Overkleeft, J. D. C. Codée, G. A. Van Der Marel, J. Org. Chem. 2009, 74, 4982–4991.
- [34] L. Meng, P. Wu, J. Fang, Y. Xiao, X. Xiao, G. Tu, X. Ma, S. Teng, J. Zeng, Q. Wan, J. Am. Chem. Soc. 2019, 141, 11775–11780.
- [35] P. Wen, D. Crich, Org. Lett. 2017, 19, 2402–2405.
- [36] F. Dasgupta, P. J. Garegg, Carbohydr. Res. 1990, 202, 225–238.
- [37] V. Dimakos, J. J. W. Liu, Z. Ge, M. S. Taylor, Org. Biomol. Chem. 2019, 17, 5671–5674.
- [38] A. Gurawa, M. Kumar, D. S. Rao, S. Kashyap, New J. Chem. 2020, 44, 16702–16707.
- [39] J. Chen, J. H. Lin, J. C. Xiao, Org. Lett. 2018, 20, 3061–3064.