Supporting Information

Photocatalytic Decarboxylative Amidosulfonation Enables Direct Transformation of Carboxylic Acids to Sulfonamides

Vu T. Nguyen,⁺ Graham C. Haug,⁺ Viet D. Nguyen, Ngan H. T. Vuong, Hadi D. Arman,

and Oleg V. Larionov*

Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas

78249, United States

oleg.larionov@utsa.edu

Contents

Materials and experimental details	S2
General procedures	S3
Additional experiemental and computational studies	S5
Figure S1	S8
Figures S2-S3	S9
Figures S4-S7	S9
Acridine synthesis	S13
Sulfonamide products	S14
Sulfonyl azides	S80
Computational data	S102
X-ray crystallographic data	S172
NMR spectroscopic data	S190
References	S368

Materials and experimental details

Materials: Acridines **A1**, **A2**,¹ as well as DABSO,² compounds 5-oxo-5-((3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)amino)pentanoic acid (**S8**),³ 5-(5-

+ V.T.N. and G.C.H. contributed equally

methylthiophen-2-yl)-5-oxopentanoic acid (**S9**),⁴ 9,10,16-triacetoxyhexadecanoic acid (**S10**),⁵ 3,13-di-*O*-acetylgibberellic acid (**S11**),⁶ 3α , 7α -diacetoxy-5 β -cholanic acid (**S12**),⁷ 5-oxo-5-(((3aS,5aR,8aR,8bS)-2,2,7,7-tetramethyltetrahydro-3aH-bis([1,3]dioxolo)[4,5-b:4',5'-d]pyran-3a-yl)methoxy)pentanoic acid (**S13**),⁸ and cholic acid 3,7,12-triacetate (**S14**)⁷ were prepared as previously described. All other chemicals were used as commercially available.

Experimental equipment: Reactions were set up by purging vigorously stirred reaction mixtures with argon for 3 min prior to irradiation, or in a glovebox. Borosilicate glass test-tubes (9- and 10-mL capacity) fitted with GL14 and GL18 screw-caps were used, and the sealed reaction test-tubes were placed in a test-tube rack on a magnetic stirplate that was flanked by two 400 nm 36W LED lights. The temperature in the test-tube rack was 35 °C. Eight parallel reactions arranged in two rows of four tubes were typically carried out in one test-tube rack.

Glovebox work was carried out in a nitrogen-filled LC Technology Solutions LCPW-220 glovebox.

Purification: Column chromatography was performed using CombiFlash Rf-200 (Teledyne-Isco) automated flash chromatography system, as well as manually. Thin layer chromatography was carried out on silica gel-coated glass plates (Merck Kieselgel 60 F254). Plates were visualized under ultraviolet light (254 nm) and using a potassium permanganate stain.

Characterization: ¹H, ¹³C, ¹¹B, and ¹⁹F NMR spectra were recorded at 500 MHz (¹H), 125 MHz (¹³C), 202 MHz (³¹ P), 470 MHz (¹⁹ F), and 160 MHz (¹¹B) on Bruker AVANCE III 500 instruments in CDCl₃ or other specified deuterated solvents with and without tetramethylsilane (TMS) as an internal standard at 25 °C, unless specified otherwise. Chemical shifts (δ) are reported in parts per million (ppm) from tetramethylsilane (¹H) and ¹³C), BF₃·OEt₂ (¹¹B), and CFCl₃ (¹⁹F). Coupling constants (*J*) are in Hz. Proton

multiplicity is assigned using the following abbreviations: singlet (s), doublet (d), triplet (t), quartet (q), quintet (quint.), septet (sept.), multiplet (m), broad (br).

Infrared measurements were carried out neat on a Bruker Vector 22 FT-IR spectrometer fitted with a Specac diamond attenuated total reflectance (ATR) module. EPR Spectra were collected on a Bruker EMX X-band EPR spectrometer.

General Procedures

General procedure for the visible light-induced, dual catalytic decarboxylative amidosulfonation with *O*-benzoylhydroxylamines (GP1)

To a 10 mL test-tube, carboxylic acid (0.3 mmol), DABSO (79 mg, 0.33 mmol, 1.1 equiv.), *O*-benzoylhydroxylamine (0.6 mmol, 2 equiv.), acridine catalyst **A1** (9 mg, 0.03 mmol, 10 mol%), copper difluoride (3 mg, 0.03 mmol, 10 mol%), and degassed dichloromethane (6 mL) were added. The test-tube was capped and the reaction mixture was irradiated with LED light ($\lambda = 400$ nm) while stirring for 12 h. The reaction mixture was then quenched with saturated solution of sodium hydrogen carbonate (3 mL) and extracted with ethyl acetate (3 × 10 mL). The organic layer was collected, dried over anhydrous sodium sulfate, concentrated under reduced pressure, and the remaining material was purified by flash chromatography on silica gel to give the sulfonamide product.

General procedure for the visible light-induced, dual catalytic decarboxylative amidosulfonation with anilines (GP2)

To a 10 mL test-tube, aniline (0.3 mmol), carboxylic acid (0.75 mmol, 2.5 equiv.), DABSO (108 mg, 0.45 mmol, 1.5 equiv.), acridine catalyst (0.02–0.03 mmol, 7–10 mol%), *tert*-butyl peroxybenzoate (87 mg, 0.45 mmol, 1.5 equiv.), copper salt (0.03 mmol, 10 mol%), and degassed dichloromethane (3 mL) were added. The test-tube was capped and the reaction mixture was irradiated with LED light (λ = 400 nm) while stirring for 12 h. The reaction

mixture was then quenched with saturated solution of sodium hydrogen carbonate (3 mL), extracted with ethyl acetate (3 × 10 mL). The organic layer was collected, dried over anhydrous sodium sulfate, concentrated under reduced pressure, and the remaining material was purified by flash chromatography on silica gel to give the sulfonamide product.

General procedure for the visible light-induced, dual catalytic decarboxylative azinosulfonation (GP3)

To a 10 mL test-tube, carboxylic acid (0.3 mmol), DABSO (108 mg, 0.45 mmol, 1.5 equiv.), acridine catalyst **A1** (9 mg, 0.03 mmol, 10 mol%), sodium or potassium azide (0.9 mmol, 3.0 equiv.), *tert*-butyl peroxybenzoate (145 mg, 0.75 mmol, 2.5 equiv.), copper salt (0.03 mmol, 10 mol%) and degassed PhCF₃/MeCN (3mL, 3 : 1 v/v) were added. The test-tube was capped and the reaction mixture was irradiated with LED light (λ = 400 nm) while stirring at room temperature for 12 h. The reaction mixture was treated with saturated solution of sodium carbonate (3 mL) and extracted with DCM (3 × 10 mL). The organic layer was collected, dried over anhydrous sodium sulfate, concentrated under reduced pressure, and the remaining material was purified by flash chromatography on silica gel to give the sulfonyl azide product.

Additional experiemental and computational studies

 Table S1. Catalyst Performance in the Photocatalytic Direct Decarboxylative N-Alkyl

 Aminosulfonation.^a

H ₂₅ C ₁₀	$\begin{array}{c} O \\ O \\ O \\ O \\ O \\ \end{array}$	H ₂₁ C ₁₀
Entry	Photocatalyst	Yield, %
1	Eosin Y at 450 nm	0
2	Eosin Y at 420 nm	0
3	Eosin Y at 400 nm	0
4	Eosin Y disodium salt at 450 nm	0
5	4CzIPN at 450 nm	0
6	4CzIPN at 420 nm	0
7	4CzIPN at 400 nm	0
8	[Acr-Mes] ⁺ (ClO ₄) ⁻ at 400 nm	0
9	[Acr-Mes] ⁺ (ClO ₄) ⁻ at 450 nm	0^b
10	Ir(ppy)₃ at 450 nm	0^b
11	Ir(ppy)2(pq) at 450 nm	0^b
12	(Ir[dF(CF ₃)ppy] ₂ (dtbpy))PF ₆ at 450 nm	m 0 ^b
13	Ru(bpm)2Cl2 at 450 nm	0^b
14	Ru(<i>p</i> -CF ₃ -bpy) ₃ (BF ₄) ₂ at 450 nm	O^b
15	TiO ₂ , anatase	0°

^{*a*} Reaction conditions: carboxylic acid (0.3 mmol), DABSO (0.33 mmol), DABSO (0.33 mmol), acridine **A1**(10 mol%), CuF₂ (10 mol%) *O*-benzoylhydroxylamine (0.6 mmol), CH₂Cl cx₂ (6 mL), LED light (400 nm), 12 h. Yield was determined by ¹H NMR spectroscopy with 1,4-dimethoxybenzene as an internal standard. ^{*b*} 2 mol% photocatalyst was used. ^{*c*} nanopowder, <25 nm particle size, 30 mg. 4CzIPN: 1,2,3,5-Tetrakis(carbazol-9-yl)-4,6-dicyanobenzene, [Acr-Mes]⁺(ClO₄)⁻: 10-Methyl-9-(2,4,6-trimethylphenyl)acridinium perchlorate, Ir(ppy)₃: Tris(2-phenylpyridine)iridium(III), Ir(ppy)₂(pq): bis(2-phenylpyridine)(2-phenyl-quinoline)iridium(III), (Ir[dF(CF₃)ppy]₂(dtbpy))PF₆: [4,4'-Bis(1,1-dimethylethyl)-2,2'-bipyridine-*N1,N1'*]bis[3,5-difluoro-2-[5-(trifluoromethyl)-2-pyridinyl-*N*]phenyl-C]Iridium(III) hexafluoro-phosphate, Ru(bpm)₂Cl₂: Tris(2,2'-bipyrimide)ruthenium(II) dichloride, Ru(*p*-CF₃-bpy)₃(BF₄)₂: Tris(2,2'-(*p*CF₃)bipyridine)-ruthenium(II) tetrafluoroborate.

 Table S2. Reaction Conditions for the Photocatalytic Direct Decarboxylative N-Alkyl

 Aminosulfonation ^a

10	O OH $ \begin{array}{c} \text{A1 (10 mol\%) CuF}_{2} (10 mol\%) \\ \text{OH} \\ \begin{array}{c} \text{A1 (10 mol\%) CuF}_{2} (10 mol\%) \\ \text{OH} \\ \begin{array}{c} \text{H}_{21}C_{10} \\ \text{OH} \\ \end{array} $	0 5 1a	-0
Entry	Variations from standard conditions	Yield, %	
1	none	92 (89 ^b)	
2	Cu(OAc)2 instead of CuF2	88	
3	CuOAc instead of CuF2	87	
4	CuCl instead of CuF2	82	
5	MeCN instead of CH ₂ Cl ₂	46	
6	PhCF3 instead of CH2Cl2	64	
7	EtOAc instead of CH2Cl2	58	
	Entry 1 2 3 4 5 6	Image: Arr (10 mol%) CuF2 (10 mol%) Image: Arr (10 mol%) CuF2 (10 mol%)	Image: Arr (10 mol/s) Cur ₂ (10 mol/s) Image: Arr (10 mol/s) Image: Arr (10 mol/s) Image: Arr (10 mol/s) Image: Arr (10 mol/s) Image: Arr (10 mol/s) Image: Arr (10 mol/s) Image: Arr (10 mol/s) Image: Arr (10 mol/s) Image: Arr (10 mol/s) Image: Arr (10 mol/s) Image: Arr (10 mol/s) Image: Arr (10 mol/s) Image: Arr (10 mol/s) Image: Arr (10 mol/s) Image: Arr (10 mol/s) Image: Arr (10 mol/s) Image: Arr (10 mol/s) Image: Arr (10 mol/s) Image: Arr (10 mol/s) Image: Arr (10 mol/s) Image: Arr (10 mol/s) Image: Arr (10 mol/s) Image: Arr (10 mol/s) Image: Arr (10 mol/s) Image: Arr (10 mol/s) Image: Arr (10 mol/s) Image: Arr (10 mol/s) Image: Arr (10 mol/s) Image: Arr (10 mol/s) Image: Arr (10 mol/s) Image: Arr (10 mol/s) Image: Arr (10 mol/s) Image: Arr (10 mol/s) Image: Arr (10 mol/s) Image: Arr (10 mol/s) Image: Arr (10 mol/s) Image: Arr (10 mol/s) Image: Arr (10 mol/s) Image: Arr (10 mol/s) Image: Arr (10 mol/s) Image: Arr (10 mol/s) Image: Arr (10 mol/s) Image: Arr (10 mol/s) Image: Arr (10 mol/s) Image: Arr (10 mol/s)

^{*a*} Reaction conditions: carboxylic acid (0.3 mmol), DABSO (0.33 mmol), DABSO (0.33 mmol), acridine **A1**(10 mol%), CuF₂ (10 mol%) *O*-benzoylhydroxylamine (0.6 mmol), CH₂Cl cx₂ (6 mL), LED light (400 nm), 12 h. Yield was determined by ¹H NMR spectroscopy with 1,4-dimethoxybenzene as an internal standard. ^{*b*} Isolated yield.

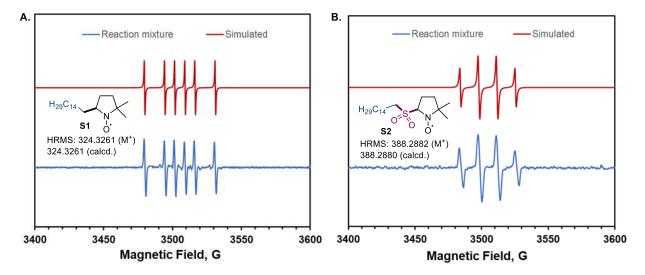
Table S3. Reaction Conditions for the Photocatalytic Direct Decarboxylative Aminosulfonation with Anilines ^a

	O H A2 (7 mol%) CuOTf (10 mol%) O H Ar NHR DABSO, CH ₂ Cl ₂ Ba	Me
Entry	Variations from standard conditions	Yield, %
1	none	$81(79^{b})$
2	CuOTf2·1/2PhH instead of CuOTf-1/2PhCH3	76
3	Cu(acac)2 instead of CuOTf·1/2PhCH3	51
4	PhCF ₃ instead of CH ₂ Cl ₂	48
5	EtOAc instead of CH ₂ Cl ₂	25
6	DTBP instead of <i>t</i> BuO ₂ Bz	0
7	TBHP (70% w/w in water) instead of <i>t</i> BuO ₂ Bz	0
8	Bz ₂ O ₂ instead of <i>t</i> BuO ₂ Bz	18
9	DCP instead of tBuO ₂ Bz	0

^a Reaction conditions: aniline (0.3 mmol), carboxylic acid (0.75 mmol), DABSO (0.45 mmol), acridine A2 (7 mol%), CuOTf·½PhCH₃ (10 mol%), *t*BuO₂Bz (0.45 mmol), CH₂Cl₂ (3 mL), LED light

(400 nm), 12 h. Yield was determined by ¹H NMR spectroscopy with 1,4-dimethoxybenzene as an internal standard. ^{*b*} Isolated yield. DTBP = Di-*tert*-butyl peroxide, TBHP = *tert*-Butyl hydroperoxide, DCP = dicumyl peroxide.

TableS4.ReactionConditionsforthePhotocatalyticDirectDecarboxylativeAzinosulfonation^a


H ₂₁ C	210	O A1 (10 mol%) CuTC (10 mol%) ►	H ₂₁ C ₁₀	,,0 S↓N3
		DABSO, NaN ₃ , tBuO ₂ Bz PhCF ₃ /MeCN 3:1	9g	
	Entry	Variations from standard conditions	Yield, %	
	1	none	78 (75 ^b)	
	2	Cu(hfac)2 instead of CuTC	52	
	3	CuOAc instead of CuTC	70	
	4	DTBP instead of tBuO2Bz	0	
	5	Na ₂ S ₂ O ₈ instead of <i>t</i> BuO ₂ Bz	40	
	6	TMSN3 instead of NaN3	44	
	7	PhCF3 instead of PhCF3/MeCN	54	
	7	EtOAc instead of PhCF ₃ /MeCN	5	

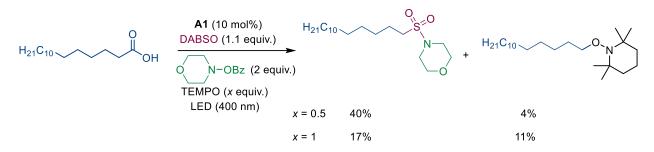
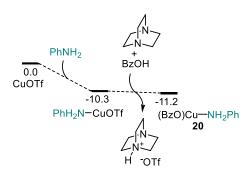
^{*a*} Reaction conditions: carboxylic acid (0.3 mmol), CuTC (10 mol%), DABSO (0.45 mmol), acridine **A1** (10 mol%), NaN₃ (0.9 mmol), *t*BuO₂Bz (0.75 mmol), PhCF₃/MeCN (3:1 v/v 3 mL), LED light (400 nm), 12 h. Yield was determined by ¹H NMR spectroscopy with 1,4-dimethoxybenzene as an internal standard. ^{*b*} Isolated yield. CuTC = copper 2-thiophenecarboxylate; hfac = hexafluoroacetylacetonate. DTBP = di-*tert*-butyl peroxide.

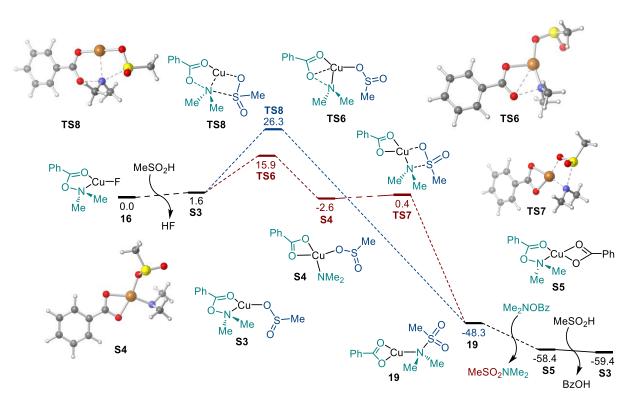
Cyclic voltammetry studies

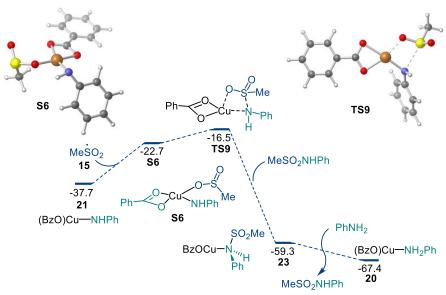
Cyclic voltammetry (CV) measurements were performed on a CHI 650D potentiostat using a three-electrode cell with a glassy-carbon working electrode, a Ag | AgCl (1M KCl) reference electrode and a platinum counter electrode. CV was conducted at a scan rate of 100 mV s⁻¹ for tetrabutalammonium methanesulfinate and tetrabutalammonium methanesulfinate (0.4 mM) and 50 mV s⁻¹ for copper difluoride (0.2 mM) in anhydrous degassed acetonitrile with tetrabutylammonium hexafluorophosphate (0.2M) as an electrolyte. Inflection-point potentials (*E*_{red}) were used to characterize irreversible redox

processes, since they were shown to provide the best approximation of standard electrochemical potentials for irreversible redox systems.^[9] The measured oxidation potentials vs SCE were 0.30 V for tetrabutylammonium methanesulfinate and 1.28 V for tetrabutylammonium acetate. The Cu^{II}/Cu^I reduction potential of copper difluoride was 0.70 V vs SCE.

Figure S1. Room temperature X-band EPR spectroscopic spin-trapping studies of the direct decarboxylative reaction with palmitic acid as a substrate and DMPO as a spin trap. **A.** Experimental and simulated EPR spectra as well as high resolution mass spectrometry data of the alkyl-DMPO spin adduct **S1** (g = 2.0058, $a_N = 14.7$ G, $a_H = 22.0$ G) observed in the reaction with DABSO as a sulfur dioxide source. **B.** Experimental and simulated EPR spectra as well as high resolution mass spectrometry data of the alkyl-spin adduct **S2** (g = 2.0059, $a_N = 13.6$ G, $a_H = 14.2$ G) observed in the reaction with sulfur dioxide. The use of DABSO allowed for successful spin trapping of the alkyl spin adduct due to the lower solubility of DABSO and lower concentration of sulfur dioxide, while the use of sulfur dioxide allowed for the detection of the alkylsulfonyl spin adduct.


Figure S2. Alkyl radical trapping studies with TEMPO.


Figure S3. A computed energy profile for the formation of copper-ligated aniline intermediate **20**, ΔG , kcal/mol. Benzoate was selected as a spectator ligand because it is formed as a by-product of the reduction of *t*BuO₂Bz and a similar reactivity is expected with aliphatic carboxylates.

Investigation of the reaction pathways proceeding via O-bound Cu sulfinate intermediates

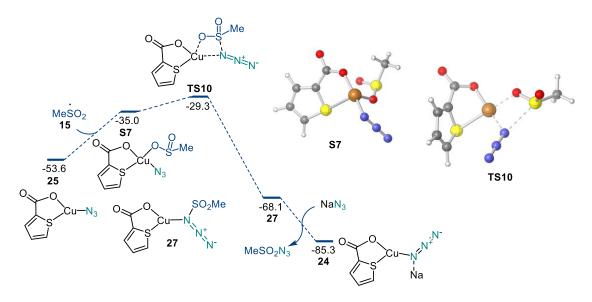

In addition to the described pathways that proceed via S-bound Cu sulfinate complexes, the energy profiles of the pathways with the O-bound Cu sulfinate intermediates were studied (Figures S4-S6). The *O*-benzoylhydroxylamine-mediated aminosulfonation proceeds over a 1.9 kcal/mol lower barrier with the O-bound sulfinate intermediates than with the S-bound Cu sulfinate intermediates, retaining the kinetic preference of the stepwise mechanism. In contrast, the pathways proceeding via S-bound Cu sulfinate intermediates are substantially more favored for the aniline aminosulfonation and the azinosulfonation reactions.

Figure S4. A computed energy profile for the radical copper-catalyzed *N*-alkyl aminosulfonation proceeding via oxygen-bound copper sulfinate intermediates **S3** and **S4**, ΔG , kcal/mol.

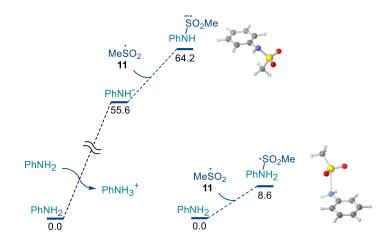
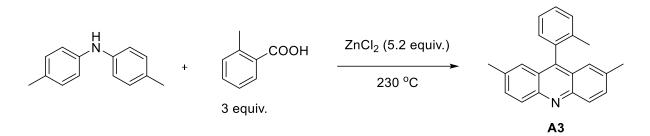
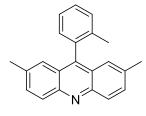

Figure S5. A computed energy profile for the radical copper-catalyzed *N*-aryl aminosulfonation proceeding via oxygen-bound copper sulfinate intermediate **S6**, ΔG , kcal/mol.

Figure S6. A computed energy profile for the radical copper-catalyzed azinosulfonation proceeding via oxygen-bound copper sulfinate intermediate **S7**, ΔG , kcal/mol.

Investigation of alternative mechanistic pathways for the amidosulfonation with Nnucleophiles

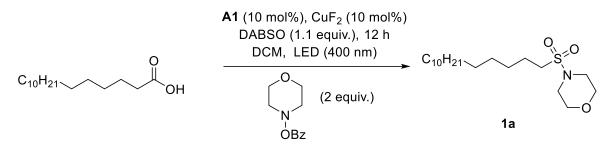

An alternative mechanism that involves the initial N-nucleophile addition to sulfonyl radical **11** was also investigated computationally with aniline as a typical nucleophile (Figure S7). The addition of aniline to sulfonyl radical **11** was found to be substantially exergonic by 8.6 kcal/mol. We also studied the pathway that involves the addition of the deprotonated aniline to sulfonyl radical **11**. Because of the absence of a strong base under the reaction conditions, the deprotonation was modeled with aniline, and was found to be prohibitively endergonic ($\Delta G = 55.6$ kcal/mol). Furthermore, the addition of the aniline anion to sulfonyl radical **11** was also significantly thermodynamically unfavorable by 14.3 kcal/mol. Given that the pathway involves subsequent biomolecular oxidation of the transient addition intermediate, in contrast to the low-barrier unimolecular reductive elimination steps in the pathway presented in Figure 4, and the high endergonicity of the addition to sulfonyl radicals is not operative under the present reaction conditions.


Figure S7. Computed energy profiles for the addition of aniline and the deprotonated aniline to sulfonyl radical **11**, ΔG , kcal/mol.

Acridine synthesis

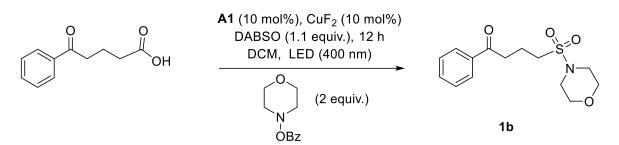
2,7-Dimethyl-9-(o-tolyl)acridine (A3)

According to the known procedure for synthesis of **A1**,¹ the reaction was carried out with di-*p*-tolylamine (1.42 g, 7.2 mmol), 2-methylbenzoic acid (2.94 g, 21.6 mmol, 3 equiv.), zinc chloride (5.10 g, 37.4 mmol, 5.2 equiv.) in a sand bath at 230 °C for 14 h. After completion, the reaction was quenched with a saturated solution of ammonium hydroxide (50 mL) and then extracted with ethyl acetate (3 x 75 mL). The organic layer was washed with brine, separated, and dried over Na₂SO₄. Removal of the solvent and purification by silica gel chromatography (hexane/ ethyl acetate 9 : 1 v/v) afforded acridine **A3** as a yellow solid (1.39 g, 65%).



m.p.: 158–160 °C. – ¹H NMR (500 MHz, CDCl₃): 8.16 (2 H, d, *J* = 8.8 Hz), 7.57 (2 H, dd, *J* = 8.9, 1.9 Hz), 7.53–7.43 (2 H, m), 7.41 (1 H, td, *J* = 7.3, 1.5 Hz), 7.24–7.19 (3 H, m), 2.43 (6 H, s), 1.88 (3 H, s) ppm. – ¹³C NMR (125 MHz, CDCl₃): 147.4, 144.7, 137.1, 136.1, 135.6, 132.6,

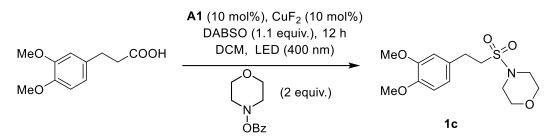
130.4, 130.3, 129.5, 128.5, 126.0, 125.4, 124.5, 22.1, 19.9 ppm. – IR: 3025, 2956, 1610, 1560, 1523, 1436, 1370, 1008, 856 cm⁻¹. – HRMS: calcd for C₂₂H₂₀N: 298.1590, found 298.1590 [M+H⁺].


Sulfonamides

4-(Pentadecylsulfonyl)morpholine (1a)

According to **GP1**, the reaction was carried out with palmitic acid (77 mg, 0.3 mmol), DABSO (79 mg, 0.33 mmol, 1.1 equiv.), *N*-(benzoyloxy)morpholine (124 mg, 0.6 mmol, 2 equiv.), acridine catalyst **A1** (9 mg, 0.03 mmol, 10 mol%), copper difluoride (3 mg, 0.03 mmol, 10 mol%), and degassed dichloromethane (6 mL). The test-tube was capped and the reaction mixture was irradiated with LED light (λ = 400 nm) while stirring for 12 h. The reaction mixture was then quenched with saturated solution of sodium hydrogen carbonate (3 mL) and extracted with ethyl acetate (3 × 10 mL). The organic layer was collected, dried over anhydrous sodium sulfate, concentrated under reduced pressure, and the remaining material was purified by flash chromatography on silica gel (hexane/ ethyl acetate 9 : 1 v/v) to give the sulfone product **1a** (96 mg, 89%) as a colorless solid.

ppm. – ¹³C NMR (125 MHz, CDCl₃): 66.8, 49.0, 46.0, 32.0, 29.8, 29.8, 29.7, 29.6, 29.5, 29.4, 29.4, 29.2, 28.6, 23.1, 22.8, 14.2 ppm. – IR: 3053, 2985, 2310, 1416, 1264, 895 cm⁻¹. – HRMS: calcd for C₁₉H₄₀NO₃S: 362.2729, found 362.2731 [M+H⁺].

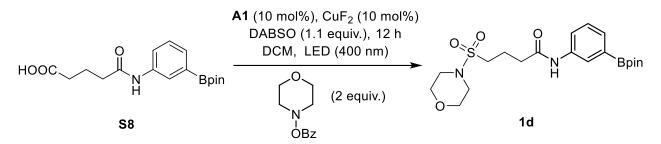


4-(Morpholinosulfonyl)-1-phenylbutan-1-one (1b)

According to **GP1**, the reaction was carried out with 5-oxo-5-phenylpentanoic acid (58 mg, 0.3 mmol), DABSO (79 mg, 0.33 mmol, 1.1 equiv.), *N*-(benzoyloxy)morpholine (124 mg, 0.6 mmol, 2 equiv.), acridine catalyst **A1** (9 mg, 0.03 mmol, 10 mol%), copper difluoride (3 mg, 0.03 mmol, 10 mol%), and degassed dichloromethane (6 mL). The test-tube was capped and the reaction mixture was irradiated with LED light (λ = 400 nm) while stirring for 12 h. The reaction mixture was then quenched with saturated solution of sodium hydrogen carbonate (3 mL) and extracted with ethyl acetate (3 × 10 mL). The organic layer was collected, dried over anhydrous sodium sulfate, concentrated under reduced pressure, and the remaining material was purified by flash chromatography on silica gel (hexane/ ethyl acetate 4 : 1 v/v) to give the sulfone product **1b** (63 mg, 71%) as a colorless solid.

$\begin{array}{c} 0 & 0 & \text{m.p.: 51-53 °C. - 1H NMR (300 MHz, CDCl_3): 7.97-7.89 (2 H, m),} \\ N & & & & \\ 0 & & & \\ 0 & & & \\ 0 & & & \\ 0 & & & \\ 0 & & & \\ \end{array}$

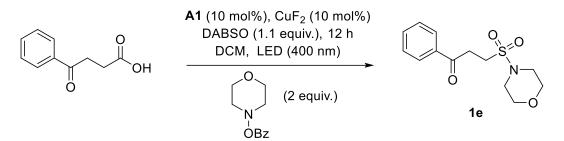
ppm. – ¹³C NMR (75 MHz, CDCl₃): 198.6, 136.5, 133.4, 128.7, 128.0, 66.6, 47.9, 45.8, 36.3, 17.7 ppm. – IR: 2974, 2918, 2904, 2857, 1681, 1597, 1448, 1339, 1259, 1149, 1111, 1073, 947, 734, 691 cm⁻¹. – HRMS: calcd for C₁₄H₁₉NNaO₄S: 320.0927, found 320.0928 [M+Na⁺].


4-((3,4-Dimethoxyphenethyl)sulfonyl)morpholine (1c)

According to **GP1**, the reaction was carried out with 3-(3,4-dimethoxyphenyl)propanoic acid 0.3 mmol), DABSO (79 0.33 mmol, (63 mg, mg, 1.1 equiv.), N-(benzoyloxy)morpholine (124 mg, 0.6 mmol, 2 equiv.), acridine catalyst A1 (9 mg, 0.03 mmol, 10 mol%), copper difluoride (3 mg, 0.03 mmol, 10 mol%) in degassed dichloromethane (6 mL). The test-tube was capped and the reaction mixture was irradiated with LED light (λ = 400 nm) while stirring for 12 h. The reaction mixture was then quenched with saturated solution of sodium hydrogen carbonate (3 mL) and extracted with ethyl acetate (3 × 10 mL). The organic layer was collected, dried over anhydrous sodium sulfate, concentrated under reduced pressure, and the remaining material was purified by flash chromatography on silica gel (hexane/ethyl acetate 1 : 1 v/v) to give the sulfonamide product 1c (57 mg, 60%) as a white solid.

MHz, CDCl₃): 149.3, 148.2, 130.5, 120.4, 111.7, 111.6, 66.7, 56.1, 50.6, 45.9, 29.0 ppm. – IR: 3002, 2966, 2922, 2856, 1603, 1589, 1515, 1462, 1443, 1342, 1292, 1135, 1107, 1068, 1024, 938, 850, 791, 740, 704 cm⁻¹. – HRMS: calcd for C₁₄H₂₁NO₅S: 315.1140, found 315.1138 [M⁺].

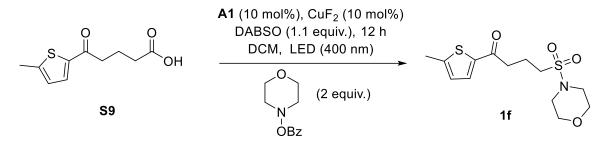
N-(3-(Morpholinosulfonyl)propyl)-3-(4,4,5,5-tetramethyl-1,3,2-

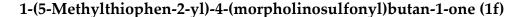

dioxaborolan-2-yl)benzamide (1d)

According to **GP1**, the reaction was carried out with acid **S8** (100 mg, 0.3 mmol), DABSO (79 mg, 0.33 mmol, 1.1 equiv.), *N*-(benzoyloxy)morpholine (124 mg, 0.6 mmol, 2 equiv.), acridine catalyst **A1** (9 mg, 0.03 mmol, 10 mol%), copper difluoride (3 mg, 0.03 mmol, 10 mol%) in degassed dichloromethane (6 mL). The test-tube was capped and the reaction mixture was irradiated with LED light (λ = 400 nm) while stirring for 12 h. The reaction mixture was then quenched with saturated solution of sodium hydrogen carbonate (3 mL) and extracted with ethyl acetate (3 × 10 mL). The organic layer was collected, dried over anhydrous sodium sulfate, concentrated under reduced pressure, and the remaining material was purified by flash chromatography on silica gel (hexane/ethyl acetate 7 : 3 v/v) to give the sulfonamide product **1d** (95 mg, 72%) as a white solid.

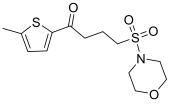
 $\begin{array}{c} & & & \\ &$

H, t, J = 7.1 Hz), 2.56 (2 H, t, J = 6.8 Hz), 2.21 (2 H, p, J = 7.0 Hz), 1.30 (12 H, s) ppm. – ¹³C NMR (125 MHz, CDCl₃): 170.0, 137.4, 130.8, 128.6, 125.9, 123.1, 84.0, 66.5, 47.4, 45.8, 34.8, 24.9, 19.2 ppm. ¹¹B NMR (160 MHz, CDCl₃): 35.44 ppm. – IR: 3055, 2985, 2320, 1422, 1357, 1264, 1145, 895 cm⁻¹. – HRMS: calcd for C₂₀H₃₁BN₂O₆SNa: 461.1892, found 461.1888 [M+Na⁺]

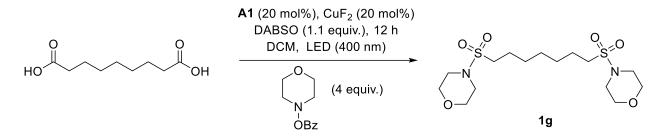


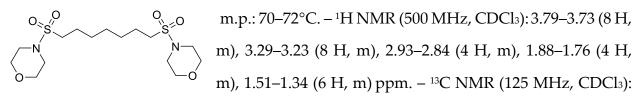

3-(Morpholinosulfonyl)-1-phenylpropan-1-one (1e)

According to **GP1**, the reaction was carried out with 4-oxo-4-phenylbutanoic acid (53 mg, 0.3 mmol), DABSO (79 mg, 0.33 mmol, 1.1 equiv.), *N*-(benzoyloxy)morpholine (124 mg, 0.6 mmol, 2 equiv.), acridine catalyst **A1** (9 mg, 0.03 mmol, 10 mol%), copper difluoride (3 mg, 0.03 mmol, 10 mol%), and degassed dichloromethane (6 mL). The test-tube was capped and the reaction mixture was irradiated with LED light (λ = 400 nm) while stirring for 12 h. The reaction mixture was then quenched with saturated solution of sodium hydrogen carbonate (3 mL) and extracted with ethyl acetate (3 × 10 mL). The organic layer was collected, dried over anhydrous sodium sulfate, concentrated under reduced pressure, and the remaining material was purified by flash chromatography on silica gel (hexane/ ethyl acetate 4 : 1 v/v) to give the sulfone product **1e** (49 mg, 58%) as a colorless solid.


$\begin{array}{c} & \text{m.p.: } 128-130 \ ^\circ\text{C.} - \ ^1\text{H NMR} \ (500 \ \text{MHz}, \ \text{CDCl}_3): 8.00-7.94 \ (2 \ \text{H}, \ \text{m}), \\ & \text{m.p.: } 128-130 \ ^\circ\text{C.} - \ ^1\text{H NMR} \ (500 \ \text{MHz}, \ \text{CDCl}_3): 8.00-7.94 \ (2 \ \text{H}, \ \text{m}), \\ & \text{m.p.: } 128-130 \ ^\circ\text{C.} - \ ^1\text{H NMR} \ (500 \ \text{MHz}, \ \text{CDCl}_3): 8.00-7.94 \ (2 \ \text{H}, \ \text{m}), \\ & \text{m.p.: } 128-130 \ ^\circ\text{C.} - \ ^1\text{H NMR} \ (500 \ \text{MHz}, \ \text{CDCl}_3): 8.00-7.94 \ (2 \ \text{H}, \ \text{m}), \\ & \text{m.p.: } 128-130 \ ^\circ\text{C.} - \ ^1\text{H NMR} \ (500 \ \text{MHz}, \ \text{CDCl}_3): 8.00-7.94 \ (2 \ \text{H}, \ \text{m}), \\ & \text{m.p.: } 128-130 \ ^\circ\text{C.} - \ ^1\text{H NMR} \ (500 \ \text{MHz}, \ \text{CDCl}_3): 8.00-7.94 \ (2 \ \text{H}, \ \text{m}), \\ & \text{m.p.: } 128-130 \ ^\circ\text{C.} - \ ^1\text{H NMR} \ (500 \ \text{MHz}, \ \text{CDCl}_3): 8.00-7.94 \ (2 \ \text{H}, \ \text{m}), \\ & \text{m.p.: } 128-130 \ ^\circ\text{C.} - \ ^1\text{H NMR} \ (500 \ \text{MHz}, \ \text{CDCl}_3): 8.00-7.94 \ (2 \ \text{H}, \ \text{m}), \\ & \text{m.p.: } 128-130 \ ^\circ\text{C.} - \ ^1\text{H NMR} \ (500 \ \text{MHz}, \ \text{CDCl}_3): 8.00-7.94 \ (2 \ \text{H}, \ \text{m}), \\ & \text{m.p.: } 128-130 \ ^\circ\text{C.} - \ ^1\text{H NMR} \ (500 \ \text{MHz}, \ \text{CDCl}_3): 8.00-7.94 \ (2 \ \text{H}, \ \text{m}), \\ & \text{m.p.: } 128-130 \ ^\circ\text{C.} - \ ^1\text{H NMR} \ (500 \ \text{MHz}, \ \text{CDCl}_3): 8.00-7.94 \ (2 \ \text{H}, \ \text{m}), \\ & \text{m.p.: } 128-130 \ ^\circ\text{C.} - \ ^1\text{H NMR} \ (500 \ \text{MHz}, \ \text{CDCl}_3): 8.00-7.94 \ (2 \ \text{H}, \ \text{m}), \\ & \text{m.p.: } 128-130 \ ^\circ\text{C.} - \ ^1\text{H NMR} \ (500 \ \text{MHz}, \ \text{CDCl}_3): 8.00-7.94 \ (2 \ \text{H}, \ \text{m}), \\ & \text{m.p.: } 128-130 \ ^\circ\text{C.} - \ ^1\text{H NMR} \ (500 \ \text{MHz}, \ \text{MHz}, \ (500 \ \text$

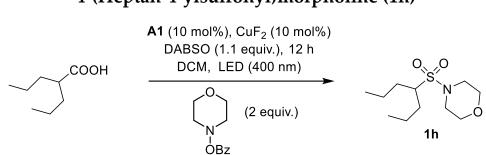
H, m) ppm. – ¹³C NMR (125 MHz, CDCl₃): 196.0, 136.0, 134.0, 129.0, 128.2, 66.5, 45.8, 43.4, 32.1 ppm. – IR: 3062, 2956, 2914, 2893, 2856, 1682, 1596, 1580, 1447, 1417, 1359, 1341, 1259, 1147, 1111, 1072, 973, 951, 920, 846, 797, 746, 706, 693 cm⁻¹. – HRMS: calcd for C₁₃H₁₈NO₄S: 284.0951 found 284.0963 [M+H⁺].


According to **GP1**, the reaction was carried out with acid **S9** (64 mg, 0.3 mmol), DABSO (79 mg, 0.33 mmol, 1.1 equiv.), *N*-(benzoyloxy)morpholine (124 mg, 0.6 mmol, 2 equiv.), acridine catalyst **A1** (9 mg, 0.03 mmol, 10 mol%), copper difluoride (3 mg, 0.03 mmol, 10 mol%), and degassed dichloromethane (6 mL). The test-tube was capped and the reaction mixture was irradiated with LED light (λ = 400 nm) while stirring for 12 h. The reaction mixture was then quenched with saturated solution of sodium hydrogen carbonate (3 mL) and extracted with ethyl acetate (3 × 10 mL). The organic layer was collected, dried over anhydrous sodium sulfate, concentrated under reduced pressure, and the remaining material was purified by flash chromatography on silica gel (hexane/ ethyl acetate 3 : 2 v/v) to give the sulfone product **1f** (75 mg, 79%) as a yellow solid.


m.p.: 80–83 °C. – ¹H NMR (500 MHz, CDCl₃): 7.52 (1 H, d, *J* = 3.7 Hz), 6.77 (1 H, d, *J* = 3.7 Hz), 3.71 (4 H, t, *J* = 4.7 Hz), 3.27–3.18 (4 H, m), 3.04 (4 H, dt, *J* = 14.7, 7.1 Hz), 2.50 (3 H, s), 2.21 (2 H, quint., *J* = 7.0, 6.5 Hz) ppm. – ¹³C NMR (125 MHz, CDCl₃):

191.2, 150.1, 141.5, 132.8, 127.0, 66.6, 47.9, 45.8, 36.3, 18.0, 16.1 ppm. – IR: 2974, 2925, 2901, 2857, 2253, 1651, 1452, 1339, 1324, 1259, 1151, 1112, 1072, 949, 915, 807, 729 cm⁻¹. – HRMS: calcd for C₁₃H₁₉NNaO₄S₂: 340.0648, found 340.0650 [M+Na⁺].

1,7-Bis(morpholinosulfonyl)heptane (1g)



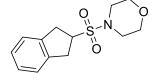
According to **GP1**, the reaction was carried out with azelaic acid (28 mg, 0.15 mmol), DABSO (79 mg, 0.33 mmol, 1.1 equiv.), *N*-(benzoyloxy)morpholine (124 mg, 0.6 mmol, 4 equiv.), acridine catalyst **A1** (9 mg, 0.03 mmol, 20 mol%), copper difluoride (3 mg, 0.03 mmol, 20 mol%), and degassed dichloromethane (6 mL). The test-tube was capped and the reaction mixture was irradiated with LED light (λ = 400 nm) while stirring for 12 h. The reaction mixture was then quenched with saturated solution of sodium hydrogen carbonate (3 mL) and extracted with ethyl acetate (3 × 10 mL). The organic layer was collected, dried over anhydrous sodium sulfate, concentrated under reduced pressure, and the remaining material was purified by flash chromatography on silica gel (hexane/ ethyl acetate 1 : 4 v/v) to give the sulfone product **1g** (30 mg, 50%) as a yellow solid.

66.7, 48.7, 46.0, 28.7, 28.2, 23.0 ppm. – IR: 2985, 2926, 2906, 2858, 1734, 1727, 1452, 1403, 1337, 1264, 1222, 1154, 1120, 1068, 1068, 953, 856, 736 cm⁻¹. – HRMS: calcd for C₁₅H₃₀N₂NaO₆S₂: 421.1427, found 421.1443 [M+H⁺].

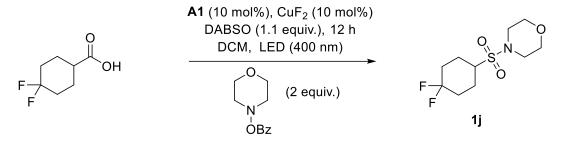
S20

4-(Heptan-4-ylsulfonyl)morpholine (1h)

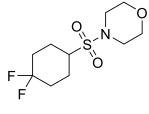
According to **GP1**, the reaction was carried out with 2-propylpentanoic acid (43 mg, 0.3 mmol), DABSO (79 mg, 0.33 mmol, 1.1 equiv.), *N*-(benzoyloxy)morpholine (124 mg, 0.6 mmol, 2 equiv.), acridine catalyst **A1** (9 mg, 0.03 mmol, 10 mol%), copper difluoride (3 mg, 0.03 mmol, 10 mol%) in degassed dichloromethane (6 mL). The test-tube was capped and the reaction mixture was irradiated with LED light (λ = 400 nm) while stirring for 12 h. The reaction mixture was then quenched with saturated solution of sodium hydrogen carbonate (3 mL) and extracted with ethyl acetate (3 × 10 mL). The organic layer was collected, dried over anhydrous sodium sulfate, concentrated under reduced pressure, and the remaining material was purified by flash chromatography on silica gel (hexane/ethyl acetate 9 : 1 v/v) to give the sulfonamide product **1h** (61 mg, 82%) as a yellow liquid.


¹H NMR (500 MHz, CDCl₃): 3.77–3.68 (4 H, m), 3.39–3.26 (4 H, m), 2.90
 (1 H, tt, J = 7.2, 4.7 Hz), 1.80 (2 H, dddd, J = 14.1, 10.6, 5.9, 4.8 Hz), 1.62
 (2 H, dddd, J = 14.1, 10.4, 7.2, 5.1 Hz), 1.58–1.36 (4 H, m), 0.94 (6 H, t, J)

= 7.3 Hz) ppm. – ¹³C NMR (125 MHz, CDCl₃): 67.1, 61.8, 46.4, 30.9, 20.1, 14.2 ppm. – IR: 3062, 2935, 2873, 2864, 1462, 1263, 1138, 1114, 1066 cm⁻¹. – HRMS: calcd for C₁₁H₂₃NO₃SNa: 272.1291, found 272.1291 [M+Na⁺]

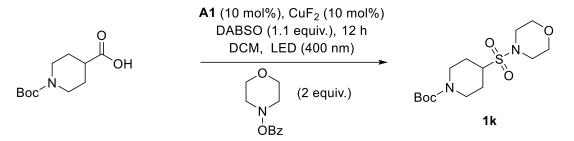

4-((2,3-Dihydro-1H-inden-2-yl)sulfonyl)morpholine (1i)

According to **GP1**, the reaction was carried out with 2,3-dihydro-1*H*-indene-2-carboxylic acid (49 mg, 0.3 mmol), DABSO (79 mg, 0.33 mmol, 1.1 equiv.), *N*-(benzoyloxy)morpholine (124 mg, 0.6 mmol, 2 equiv.), acridine catalyst **A1** (9 mg, 0.03 mmol, 10 mol%), copper difluoride (3 mg, 0.03 mmol, 10 mol%), and degassed dichloromethane (6 mL). The test-tube was capped and the reaction mixture was irradiated with LED light (λ = 400 nm) while stirring for 12 h. The reaction mixture was then quenched with saturated solution of sodium hydrogen carbonate (3 mL) and extracted with ethyl acetate (3 × 10 mL). The organic layer was collected, dried over anhydrous sodium sulfate, concentrated under reduced pressure, and the remaining material was purified by flash chromatography on silica gel (hexane/ ethyl acetate 4 : 1 v/v) to give the sulfone product **1i** (50 mg, 62%) as a colorless solid.


m.p.: 92–95 °C. – ¹H NMR (500 MHz, CDCl₃): 7.30–7.11 (5 H, m), 3.99 (1 H, quint., *J* = 7.9 Hz), 3.64 (4 H, t, *J* = 4.6 Hz), 3.43 (2 H, dd, *J* = 16.4, 7.1 Hz), 3.37–3.20 (6 H, m) ppm. – ¹³C NMR (125 MHz,

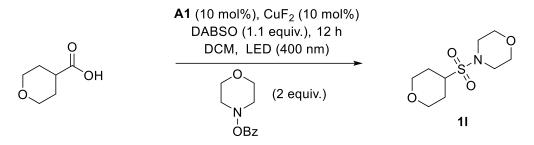
CDCl₃): 139.8, 127.4, 124.5, 66.9, 60.5, 46.4, 34.7 ppm. – IR: 3077, 3036, 2959, 2906, 2859, 1721, 1482, 1442, 1364, 1319, 1296, 1246, 1141, 1107, 1076, 1017, 952, 917, 842, 760, 739, 711 cm⁻¹. – HRMS: calcd for C₁₃H₁₇NNaO₃S: 290.0821, found 290.0813 [M+Na⁺].

4-((4,4-Difluorocyclohexyl)sulfonyl)morpholine (1j)


According to **GP1**, the reaction was carried out with 4,4-difluorocyclohexane-1carboxylic acid (49 mg, 0.3 mmol), DABSO (79 mg, 0.33 mmol, 1.1 equiv.), *N*-(benzoyloxy)morpholine (124 mg, 0.6 mmol, 2 equiv.), acridine catalyst **A1** (9 mg, 0.03 mmol, 10 mol%), copper difluoride (3 mg, 0.03 mmol, 10 mol%), and degassed dichloromethane (6 mL). The test-tube was capped and the reaction mixture was irradiated with LED light (λ = 400 nm) while stirring for 12 h. The reaction mixture was then quenched with saturated solution of sodium hydrogen carbonate (3 mL) and extracted with ethyl acetate (3 × 10 mL). The organic layer was collected, dried over anhydrous sodium sulfate, concentrated under reduced pressure, and the remaining material was purified by flash chromatography on silica gel (hexane/ ethyl acetate 4 : 1 v/v) to give the sulfone product **1j** (65 mg, 81%) as a colorless solid.

m.p.: 73–75 °C. – ¹H NMR (500 MHz, CDCl₃): 3.74–3.66 (4 H, m), 3.36–3.30 (4 H, m), 2.97 (1 H, ttd, *J* = 11.5, 3.7, 1.3 Hz), 2.32–2.10 (4H, m), 1.89 (2 H, qd, *J* = 12.8, 3.6 Hz), 1.82–1.69 (2 H, m) ppm. – ¹³C NMR (125 MHz, CDCl₃): 122.9 (d, ¹*J*_{C-F} = 241.0 Hz), 67.1, 58.7, 46.5,

32.3 (t, ²*J*_{C-*F*} = 25.0 Hz), 23.3 (d, ³*J*_{C-*F*} = 9.3 Hz) ppm. – ¹⁹F NMR (470 MHz, CDCl₃): –94.38 (d, *J* = 240.2 Hz), -102.01 (d, *J* = 240.1 Hz) ppm. – IR: 2969, 2930, 2860, 1455, 1322, 1261, 1148, 1108, 1074, 953, 743, 714 cm⁻¹. – HRMS: calcd for C₁₀H₁₇F₂NO₃S: 269.0897, found 269.0903 [M⁺].


Go back to table of contents

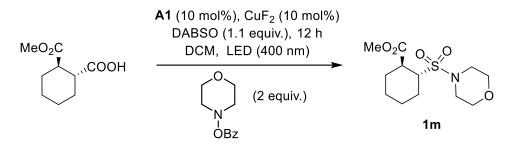
tert-Butyl 4-(morpholinosulfonyl)piperidine-1-carboxylate (1k)

According to **GP1**, the reaction was carried out with 1-(*tert*-butoxycarbonyl)piperidine-4-carboxylic acid (69 mg, 0.3 mmol), DABSO (79 mg, 0.33 mmol, 1.1 equiv.), *N*-(benzoyloxy)morpholine (124 mg, 0.6 mmol, 2 equiv.), acridine catalyst **A1** (9 mg, 0.03 mmol, 10 mol%), copper difluoride (3 mg, 0.03 mmol, 10 mol%), and degassed dichloromethane (6 mL). The test-tube was capped and the reaction mixture was irradiated with LED light (λ = 400 nm) while stirring for 12 h. The reaction mixture was then quenched with saturated solution of sodium hydrogen carbonate (3 mL) and extracted with ethyl acetate (3 × 10 mL). The organic layer was collected, dried over anhydrous sodium sulfate, concentrated under reduced pressure, and the remaining material was purified by flash chromatography on silica gel (hexane/ ethyl acetate 1 : 1 v/v) to give the sulfone product **1k** (70 mg, 70%) as a colorless solid.

m.p.: 105–107 °C. – ¹H NMR (500 MHz, CDCl₃): 4.29–4.11 (2 H, m), 3.72–3.62 (4 H, m), 3.30 (4 H, dd, J = 5.6, 3.8 Hz), 3.01 (1 H, tt, J = 12.0, 3.7 Hz), 2.75–2.55 (2 H, m), 2.03–1.91 (2 H, m), 1.65 (2 H, qd, J = 12.5, 4.6 Hz), 1.41 (9 H, s) ppm. – ¹³C NMR (125 MHz, CDCl₃): 154.4, 80.1, 67.0, 59.4, 46.4, 42.6, 28.4, 26.0 ppm. – IR: 2980, 2959, 2925, 2865, 1676, 1460, 1406, 1364, 1314, 1284, 1142, 1111, 1076, 1006, 982, 948, 874, 779, 720 cm⁻¹. – HRMS: calcd for C₁₄H₂₆N₂NaO₅S: 357.1455, found 357.1462 [M+Na⁺].

4-((Tetrahydro-2H-pyran-4-yl)sulfonyl)morpholine (11)

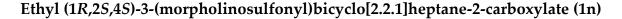
According to **GP1**, the reaction was carried out with tetrahydro-2H-pyran-4-carboxylic acid (39 mg, 0.3 mmol), DABSO (79 mg, 0.33 mmol, 1.1 equiv.), *N*-(benzoyloxy)morpholine (124 mg, 0.6 mmol, 2 equiv.), acridine catalyst **A1** (9 mg, 0.03 mmol, 10 mol%), copper difluoride (3 mg, 0.03 mmol, 10 mol%), and degassed dichloromethane (6 mL). The test-tube was capped and the reaction mixture was irradiated with LED light (λ = 400 nm) while stirring for 12 h. The reaction mixture was then quenched with saturated solution of sodium hydrogen carbonate (3 mL) and extracted with ethyl acetate (3 × 10 mL). The organic layer was collected, dried over anhydrous sodium sulfate, concentrated under reduced pressure, and the remaining material was purified by flash chromatography on silica gel (hexane/ ethyl acetate 1 : 4 v/v) to give the sulfone product **11** (51 mg, 72%) as a colorless solid.

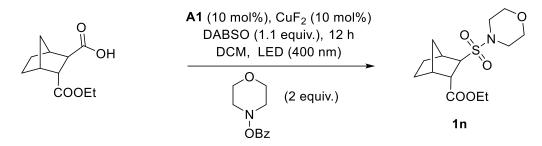

m.p.: 80–82 °C. – ¹H NMR (500 MHz, CDCl₃): 4.05 (2 H, ddd, *J* = 11.6, 4.7, 1.8 Hz), 3.73–3.66 (4 H, m), 3.41–3.29 (6 H, m), 3.13 (1 H, tt, *J* = 11.8, 4.0 Hz), 1.99–1.75 (4 H, m) ppm. – ¹³C NMR (125 MHz, CDCl₃): 67.1, 66.6, 58.4, 46.5, 26.7 ppm. – IR: 2957, 2920, 2851, 1717, 1444, 1366, 1317, 1298, 1261, 1233, 1137, 1108, 1077, 1019, 984, 888, 788, 717 cm⁻¹. – HRMS: calcd for C₉H₁₇NNaO₄S: 258.0770, found

Go back to table of contents

258.0771 [M+H⁺].

S25

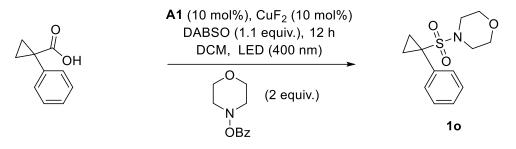

Methyl (1S,2R)-2-(morpholinosulfonyl)cyclohexane-1-carboxylate (1m)



According GP1, the reaction carried with (1R, 2R)-2to was out (methoxycarbonyl)cyclohexane-1-carboxylic acid (56 mg, 0.3 mmol), DABSO (79 mg, 0.33 mmol, 1.1 equiv.), N-(benzoyloxy)morpholine (124 mg, 0.6 mmol, 2 equiv.), acridine catalyst A1 (9 mg, 0.03 mmol, 10 mol%), copper difluoride (3 mg, 0.03 mmol, 10 mol%) in degassed dichloromethane (6 mL). The test-tube was capped and the reaction mixture was irradiated with LED light (λ = 400 nm) while stirring for 12 h. The reaction mixture was then quenched with saturated solution of sodium hydrogen carbonate (3 mL) and extracted with ethyl acetate (3 × 10 mL). The organic layer was collected, dried over anhydrous sodium sulfate, concentrated under reduced pressure, and the remaining material was purified by flash chromatography on silica gel (hexane/ethyl acetate 7 : 3 v/v) to give the sulfonamide product **1m** (59 mg, 68%) as a yellow liquid.

$$\begin{array}{c} \text{MeO}_2\text{C} & \text{IH NMR (500 MHz, CDCl_3): 3.74 (7 H, tq, J = 9.2, 4.5 Hz), 3.44 (1 H, td, J = 11.7, 5.4 Hz), 3.31 (4 H, q, J = 5.4 Hz), 2.67 (1 H, ddd, J = 15.8, 9.6, 3.9 Hz), 2.12 (2 H, ddt, J = 47.0, 13.7, 4.1 Hz), 1.97-1.86 (1 H, m), \end{array}$$

1.82–1.72 (1 H, m), 1.71–1.45 (2 H, m), 1.41–1.21 (2 H, m) ppm. – ¹³C NMR (125 MHz, CDCl₃): 174.8, 68.1, 67.0, 61.0, 52.3, 46.3, 43.7, 30.5, 25.7, 25.7, 24.4, 24.1 ppm. – IR: 2985, 2922, 2860, 1732, 1453, 1322, 1261, 1221, 1149, 1114, 1074, 952, 737 cm⁻¹. – HRMS: calcd for C₁₂H₂₁NO₅SNa: 314.1033, found 314.1031 [M+Na⁺].

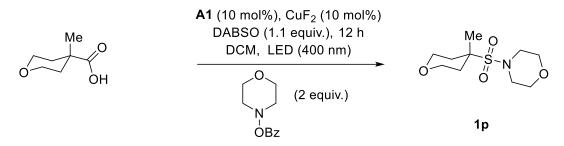


According GP1, the reaction carried to was out with (1S, 3R, 4R)-3-(ethoxycarbonyl)bicyclo[2.2.1]heptane-2-carboxylic acid (64 mg, 0.3 mmol), DABSO (79 mg, 0.33 mmol, 1.1 equiv.), N-(benzoyloxy)morpholine (124 mg, 0.6 mmol, 2 equiv.), acridine catalyst A1 (9 mg, 0.03 mmol, 10 mol%), copper difluoride (3 mg, 0.03 mmol, 10 mol%), and degassed dichloromethane (6 mL). The test-tube was capped and the reaction mixture was irradiated with LED light ($\lambda = 400$ nm) while stirring for 12 h. The reaction mixture was then quenched with saturated solution of sodium hydrogen carbonate (3 mL) and extracted with ethyl acetate (3 × 10 mL). The organic layer was collected, dried over anhydrous sodium sulfate, concentrated under reduced pressure, and the remaining material was purified by flash chromatography on silica gel (hexane/ ethyl acetate 1 : 1 v/v) to give the sulfone product **1n** (75 mg, 79%) as a colorless oil.

¹H NMR (500 MHz, CDCl₃): 4.21 (2 H, q, J = 7.1 Hz), 3.67 (4 H, ddd, J = 5.3, 3.9, 1.3 Hz), 3.45 (1 H, dd, J = 5.8, 1.4 Hz), 3.32–3.25 (2 H, m), 3.25–3.19 (2 H, m), 3.11 (1 H, ddd, J = 6.0, 4.3, 1.9 Hz), 2.79 (1 H, dd, J = 4.4, 1.5 Hz), 2.69 (1 H, td, J = 4.2, 1.6 Hz), 2.02 (1 H, dt, J = 10.4, 1.9 Hz, 1.68)

(1 H, tt, *J* = 12.5, 4.7 Hz), 1.49 (1 H, ttd, *J* = 12.6, 4.2, 1.9 Hz), 1.39–1.31 (2 H, m), 1.29 (3 H, t, *J* = 7.1 Hz), 1.22 (1 H, dddd, *J* = 1.8, 8.9, 4.5, 2.2 Hz) ppm. – ¹³C NMR (125 MHz, CDCl₃): 172.3, 66.9, 63.5, 61.4, 50.1, 45.9, 40.6, 40.1, 38.4, 29.3, 24.0, 14.5 ppm. – IR: 2975, 2930, 2860, 1727, 1454, 1325, 1296, 1260, 1220, 1187, 1151, 1114, 1074, 951, 733 cm⁻¹. – HRMS: calcd for C₁₄H₂₄NO₅S: 318.1370, found 318.1360 [M+H⁺].

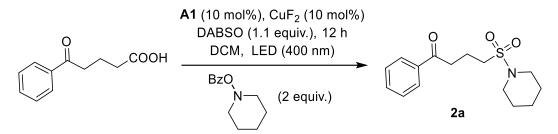
COOEt



4-((1-Phenylcyclopropyl)sulfonyl)morpholine (10)

According to **GP1**, the reaction was carried out with 1-phenylcyclopropane-1-carboxylic acid (49 mg, 0.3 mmol), DABSO (79 mg, 0.33 mmol, 1.1 equiv.), *N*-(benzoyloxy)morpholine (124 mg, 0.6 mmol, 2 equiv.), acridine catalyst **A1** (9 mg, 0.03 mmol, 10 mol%), copper difluoride (3 mg, 0.03 mmol, 10 mol%), and degassed dichloromethane (6 mL). The test-tube was capped and the reaction mixture was irradiated with LED light (λ = 400 nm) while stirring for 12 h. The reaction mixture was then quenched with saturated solution of sodium hydrogen carbonate (3 mL) and extracted with ethyl acetate (3 × 10 mL). The organic layer was collected, dried over anhydrous sodium sulfate, concentrated under reduced pressure, and the remaining material was purified by flash chromatography on silica gel (hexane/ ethyl acetate 4 : 1 v/v) to give the sulfone product **10** (48 mg, 60%) as a colorless solid.

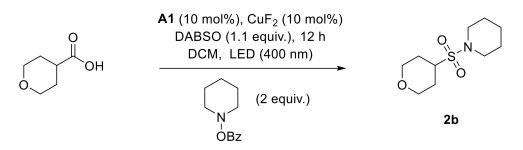
m.p.: 78–80 °C. – ¹H NMR (500 MHz, CDCl₃): 7.59–7.53 (2 H, m), 7.40–7.32
(3 H, m), 3.56–3.50 (2 H, m), 3.03–2.95 (2 H, m), 1.75–1.70 (2 H, m), 1.23 (2 H, m) ppm. – ¹³C NMR (125 MHz, CDCl₃): 134.6, 132.0, 129.2, 128.6, 66.9, 46.5, 44.3, 12.4 ppm. – IR: 2984, 2914, 2857, 1496, 1447, 1334, 1313, 1260,


1215, 1138, 1115, 1069, 1043, 952, 932, 903, 804, 770, 720, 702 cm⁻¹. – HRMS: calcd for C₁₃H₁₈NO₃S: 268.1002, found 268.1009 [M+H⁺].

4-((4-Methyltetrahydro-2H-pyran-4-yl)sulfonyl)morpholine (1p)

According to **GP1**, the reaction was carried out with 4-methyltetrahydro-2*H*-pyran-4carboxylic acid (43 mg, 0.3 mmol), DABSO (79 mg, 0.33 mmol, 1.1 equiv.), *N*-(benzoyloxy)morpholine (124 mg, 0.6 mmol, 2 equiv.), acridine catalyst **A1** (9 mg, 0.03 mmol, 10 mol%), copper difluoride (3 mg, 0.03 mmol, 10 mol%), and degassed dichloromethane (6 mL). The test-tube was capped and the reaction mixture was irradiated with LED light (λ = 400 nm) while stirring for 12 h. The reaction mixture was then quenched with saturated solution of sodium hydrogen carbonate (3 mL) and extracted with ethyl acetate (3 × 10 mL). The organic layer was collected, dried over anhydrous sodium sulfate, concentrated under reduced pressure, and the remaining material was purified by flash chromatography on silica gel (hexane/ ethyl acetate 1 : 4 v/v) to give the sulfone product **1p** (50 mg, 67%) as a slightly yellow solid.

Me o

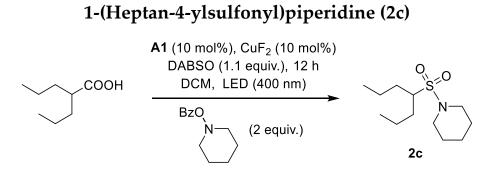


1-Phenyl-4-(piperidin-1-ylsulfonyl)butan-1-one (2a)

According to **GP1**, the reaction was carried out with 5-oxo-5-phenylpentanoic acid (58 mg, 0.3 mmol), DABSO (79 mg, 0.33 mmol, 1.1 equiv.), *N*-(benzoyloxy)piperidine (123 mg, 0.6 mmol, 2 equiv.), acridine catalyst **A1** (9 mg, 0.03 mmol, 10 mol%), copper difluoride (3 mg, 0.03 mmol, 10 mol%) in degassed dichloromethane (6 mL). The test-tube was capped and the reaction mixture was irradiated with LED light (λ = 400 nm) while stirring for 12 h. The reaction mixture was then quenched with saturated solution of sodium hydrogen carbonate (3 mL) and extracted with ethyl acetate (3 × 10 mL). The organic layer was collected, dried over anhydrous sodium sulfate, concentrated under reduced pressure, and the remaining material was purified by flash chromatography on silica gel (hexane/ethyl acetate 7 : 3 v/v) to give the sulfonamide product **2a** (55 mg, 62%) as a yellow liquid.

¹H NMR (500 MHz, CDCl₃): 7.98–7.93 (2 H, m), 7.61–7.52 (1 H, m), 7.46 (2 H, dd, *J* = 8.4, 7.1 Hz), 3.28–3.16 (6 H, m), 3.03 (2 H, dd, *J* = 8.0, 6.7 Hz), 2.30–2.18 (2 H, m), 1.70–1.51 (6 H, m) ppm. –

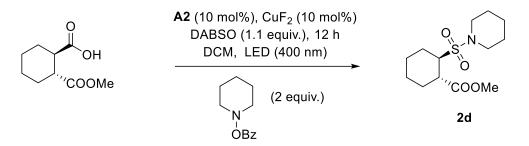
¹³C NMR (125 MHz, CDCl₃): 198.9, 136.7, 133.5, 128.8, 128.1, 48.3, 46.8, 36.5, 25.8, 23.9, 17.9
ppm. – IR: 2986, 2945, 2850, 1739, 1685, 1558, 1332, 1265, 1161, 1143 cm⁻¹. – HRMS: calcd
for C₁₅H₂₁NO₃SNa: 318.1134, found 318.1133 [M+Na⁺].

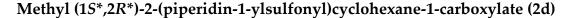


1-((Tetrahydro-2*H*-pyran-4-yl)sulfonyl)piperidine (2b)

According to **GP1**, the reaction was carried out with tetrahydro-2*H*-pyran-4-carboxylic acid (39 mg, 0.3 mmol), DABSO (79 mg, 0.33 mmol, 1.1 equiv.), *N*-(benzoyloxy)piperidine (123 mg, 0.6 mmol, 2 equiv.), acridine catalyst **A1** (9 mg, 0.03 mmol, 10 mol%), copper difluoride (3 mg, 0.03 mmol, 10 mol%), and degassed dichloromethane (6 mL). The test-tube was capped and the reaction mixture was irradiated with LED light (λ = 400 nm) while stirring for 12 h. The reaction mixture was then quenched with saturated solution of sodium hydrogen carbonate (3 mL) and extracted with ethyl acetate (3 × 10 mL). The organic layer was collected, dried over anhydrous sodium sulfate, concentrated under reduced pressure, and the remaining material was purified by flash chromatography on silica gel (hexane/ ethyl acetate 3 : 2 v/v) to give the sulfone product **2b** (56 mg, 80%) as a colorless solid.

m.p.: 65–67 °C. – ¹H NMR (500 MHz, CDCl₃): ¹H NMR (499 MHz, Chloroform-*d*) δ 4.09–3.99 (2 H, m), 3.38–3.24 (4 H, m), 3.09 (1 H, tt, *J* = 11.8, 4.0 Hz), 1.95–1.90 (2 H, m), 1.85 (2 H, qd, *J* = 12.3, 4.6 Hz), 1.62-

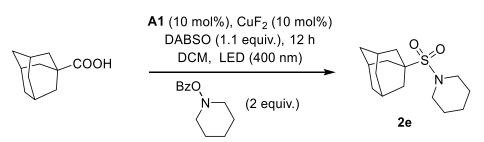

1.54(6 H, m) ppm. – ¹³C NMR (125 MHz, CDCl₃): ¹³C NMR (75 MHz, CDCl₃) δ 66.79, 58.44, 47.38, 26.90, 26.30, 24.05 ppm. – IR: 2970, 2938, 2875, 2853, 1745, 1468, 1379, 1329, 1240, 1138, 1089, 1055, 953, 895, 738, 712 cm⁻¹. – HRMS: calcd for C₁₀H₂₀NO₃S: 234.1158, found 234.1160 [M+H⁺].



According to **GP1**, the reaction was carried out with 2-propylpentanoic acid (43 mg, 0.3 mmol), DABSO (79 mg, 0.33 mmol, 1.1 equiv.), N-(benzoyloxy)piperidine (123 mg, 0.6 mmol, 2 equiv.), acridine catalyst **A1** (9 mg, 0.03 mmol, 10 mol%), copper difluoride (3 mg, 0.03 mmol, 10 mol%) in degassed dichloromethane (6 mL). The test-tube was capped and the reaction mixture was irradiated with LED light (λ = 400 nm) while stirring for 12 h. The reaction mixture was then quenched with saturated solution of sodium hydrogen carbonate (3 mL) and extracted with ethyl acetate (3 × 10 mL). The organic layer was collected, dried over anhydrous sodium sulfate, concentrated under reduced pressure, and the remaining material was purified by flash chromatography on silica gel (hexane/ethyl acetate 7 : 3 v/v) to give the sulfonamide product **2c** (54 mg, 73%) as a yellow liquid.

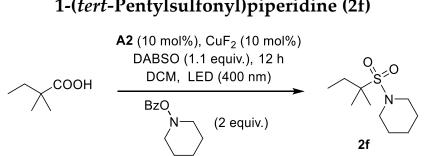
¹H NMR (500 MHz, CDCl₃): 3.34–3.27 (4 H, m), 2.88 (1 H, tt, *J* = 7.1, 4.8 Hz), 1.82 (2 H, dddd, *J* = 13.9, 10.4, 5.9, 4.7 Hz), 1.67–1.40 (12 H, m), 0.95 (6 H, t, *J* = 7.3 Hz) ppm. – ¹³C NMR (125 MHz, CDCl₃): 61.6, 47.1, 31.0, 26.3, 24.1, 20.2, 14.2 ppm. – IR: 2958, 2936, 2872, 2855, 1764, 1465, 1330, 1319, 1161, 1134

cm⁻¹. – HRMS: calcd for C₁₂H₂₆NO₂S: 248.1679, found 248.1679 [M+H⁺].



According GP1, to the reaction was carried out with $(1R^*, 2R^*)$ -2-(methoxycarbonyl)cyclohexane-1-carboxylic acid (56 mg, 0.3 mmol), DABSO (79 mg, 0.33 mmol, 1.1 equiv.), N-(benzoyloxy)piperidine (123 mg, 0.6 mmol, 2 equiv.), acridine catalyst A1 (9 mg, 0.03 mmol, 10 mol%), copper difluoride (3 mg, 0.03 mmol, 10 mol%), and degassed dichloromethane (6 mL). The test-tube was capped and the reaction mixture was irradiated with LED light ($\lambda = 400$ nm) while stirring for 12 h. The reaction mixture was then quenched with saturated solution of sodium hydrogen carbonate (3 mL) and extracted with ethyl acetate (3 × 10 mL). The organic layer was collected, dried over anhydrous sodium sulfate, concentrated under reduced pressure, and the remaining material was purified by flash chromatography on silica gel (hexane/ ethyl acetate 3 : 2 v/v) to give the sulfone product 2d (65 mg, 80%) as a colorless liquid.

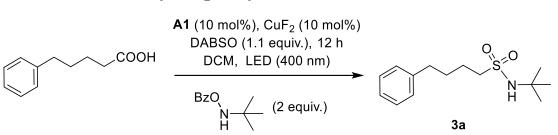
¹H NMR (500 MHz, CDCl₃): 3.69 (3 H, s), 3.34 (1 H, td, *J* = 11.5, 4.1 Hz), 3.27–3.13 (4 H, m), 2.62 (1 H, td, *J* = 11.4, 4.2 Hz), 2.10 (1 H, dd, *J* = 13.6, 4.0 Hz), 2.06–1.99 (1 H, m), 1.86–1.79 (1 H, m), 1.77–1.66 (1 H, m), 1.61– 1.51 (7 H, m), 1.50–1.40 (1 H, m), 1.35–1.16 (2 H, m) ppm. – ¹³C NMR (125 MHz, CDCl₃): 174.9, 60.9, 52.2, 47.0, 43.7, 30.1, 26.1, 25.7, 24.4, 24.2, 24.0 ppm. – IR: 3014, 2959, 2862, 1737, 1445, 1365, 1322, 1278, 1217, 1163, 1138, 1053, 1023, 938 cm⁻¹. – HRMS: calcd for C₁₃H₂₃NNaO₄S: 312.1240, found 312.1241 [M+H⁺].


S33

1-Adamantan-1-yl)sulfonyl)piperidine (2e)

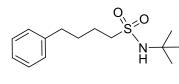
According to **GP1**, the reaction was carried out with adamantane-1-carboxylic acid (54 mg, 0.3 mmol), DABSO (79 mg, 0.33 mmol, 1.1 equiv.), N-(benzoyloxy)piperidine (123 mg, 0.6 mmol, 2 equiv.), acridine catalyst **A1** (9 mg, 0.03 mmol, 10 mol%), copper difluoride (3 mg, 0.03 mmol, 10 mol%) in degassed dichloromethane (6 mL). The test-tube was capped and the reaction mixture was irradiated with LED light (λ = 400 nm) while stirring for 12 h. The reaction mixture was then quenched with saturated solution of sodium hydrogen carbonate (3 mL) and extracted with ethyl acetate (3 × 10 mL). The organic layer was collected, dried over anhydrous sodium sulfate, concentrated under reduced pressure, and the remaining material was purified by flash chromatography on silica gel (hexane/ethyl acetate 7 : 3 v/v) to give the sulfonamide product **2e** (58 mg, 68%) as a yellow solid.

24.0 ppm. – IR: 2950, 2914, 2855, 1738, 1455, 1365, 1306, 1264, 1216, 1142, 1062, 943 cm⁻¹. – HRMS: calcd for C₁₅H₂₅NO₂SNa: 306.1498, found 306.1497 [M+Na⁺].

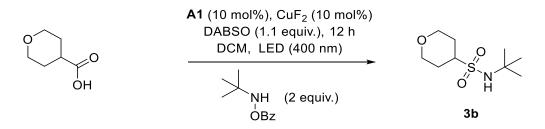


1-(*tert*-Pentylsulfonyl)piperidine (2f)

According to GP1, the reaction was carried out with 2,2-dimethylbutanoic acid (35 mg, 0.3 mmol), DABSO (79 mg, 0.33 mmol, 1.1 equiv.), N-(benzoyloxy)piperidine (123 mg, 0.6 mmol, 2 equiv.), acridine catalyst A1 (9 mg, 0.03 mmol, 10 mol%), copper difluoride (3 mg, 0.03 mmol, 10 mol%) in degassed dichloromethane (6 mL). The test-tube was capped and the reaction mixture was irradiated with LED light (λ = 400 nm) while stirring for 12 h. The reaction mixture was then quenched with saturated solution of sodium hydrogen carbonate (3 mL) and extracted with ethyl acetate (3 × 10 mL). The organic layer was collected, dried over anhydrous sodium sulfate, concentrated under reduced pressure, and the remaining material was purified by flash chromatography on silica gel (hexane/ethyl acetate 7 : 3 v/v) to give the sulfonamide product 2f (49 mg, 74%) as a yellow liquid.


¹H NMR (500 MHz, CDCl₃): 3.43–3.25 (4 H, m), 1.78 (2 H, q, *J* = 7.6 Hz), 1.67–1.56 (6 H, m), 1.29 (6 H, s), 0.97 (3 H, t, J = 7.6 Hz) ppm. – ¹³C NMR (125 MHz, CDCl₃): 64.8, 48.6, 28.9, 26.61, 24.1, 21.0, 8.5 ppm. - IR: 3014,

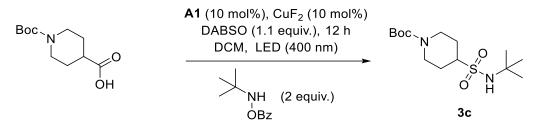
2975, 2953, 2901, 2862, 1712, 1478, 1315, 1261, 1180, 1116, 1067, 952, 715 cm⁻¹. – HRMS: calcd for C10H21NO2SNa: 242.1185, found 242.1185 [M+Na⁺].

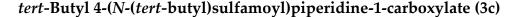

*N-(tert-*Butyl)-4-phenylbutane-1-sulfonamide (3a)

According to **GP1**, the reaction was carried out with 5-phenylpentanoic acid (53 mg, 0.3 mmol), DABSO (79 mg, 0.33 mmol, 1.1 equiv.), *O*-benzoyl-*N*-(*tert*-butyl)hydroxylamine (116 mg, 0.6 mmol, 2 equiv.), acridine catalyst **A1** (9 mg, 0.03 mmol, 10 mol%), copper difluoride (3 mg, 0.03 mmol, 10 mol%) in degassed dichloromethane (6 mL). The test-tube was capped and the reaction mixture was irradiated with LED light (λ = 400 nm) while stirring for 12 h. The reaction mixture was then quenched with saturated solution of sodium hydrogen carbonate (3 mL) and extracted with ethyl acetate (3 × 10 mL). The organic layer was collected, dried over anhydrous sodium sulfate, concentrated under reduced pressure, and the remaining material was purified by flash chromatography on silica gel (hexane/ethyl acetate 7 : 3 v/v) to give the sulfonamide product **3a** (74 mg, 92%) as a yellow liquid.

¹H NMR (500 MHz, CDCl₃): 7.30–7.26 (2 H, m), 7.22–7.15 (3 H, m), 4.30 (1 H, s), 3.10–2.97 (2 H, m), 2.65 (2 H, t, *J* = 7.5 Hz), 1.90–1.81 (2 H, m), 1.80–1.71 (2 H, m), 1.34 (9 H, s) ppm. – ¹³C

NMR (125 MHz, CDCl₃): 141.6, 128.5, 128.5, 126.1, 56.1, 54.6, 35.5, 30.4, 30.1, 23.8 ppm. – IR: 3460, 3277, 3071, 3016, 2970, 2944, 2873, 1739, 1434, 1365, 1228, 1217, 1138, 1092, 900 cm⁻¹. – HRMS: calcd for C₁₄H₂₃NO₂SNa: 292.1342, found 292.1339 [M+Na⁺].

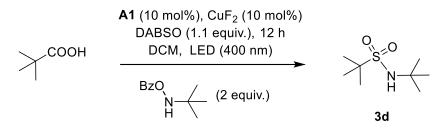



*N-(tert-*Butyl)tetrahydro-2*H*-pyran-4-sulfonamide (3b)

According to **GP1**, the reaction was carried out with tetrahydro-2*H*-pyran-4-carboxylic acid (39 mg, 0.3 mmol), DABSO (79 mg, 0.33 mmol, 1.1 equiv.), *O*-benzoyl-*N*-(*tert*-butyl)hydroxylamine (116 mg, 0.6 mmol, 2 equiv.), acridine catalyst **A1** (9 mg, 0.03 mmol, 10 mol%), copper difluoride (3 mg, 0.03 mmol, 10 mol%), and degassed dichloromethane (6 mL). The test-tube was capped and the reaction mixture was irradiated with LED light ($\lambda = 400$ nm) while stirring for 12 h. The reaction mixture was then quenched with saturated solution of sodium hydrogen carbonate (3 mL) and extracted with ethyl acetate (3 × 10 mL). The organic layer was collected, dried over anhydrous sodium sulfate, concentrated under reduced pressure, and the remaining material was purified by flash chromatography on silica gel (hexane/ ethyl acetate 7 : 3 v/v) to give the sulfone product **3b** (52 mg, 78%) as a slightly yellow solid.

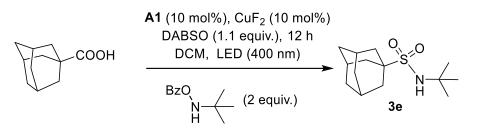
 $\begin{array}{c} \begin{array}{c} & \text{m.p.: } 117-119 \ ^{\circ}\text{C.} \ - \ ^{1}\text{H} \ \text{NMR} \ (500 \ \text{MHz}, \ \text{CDCl}_{3}): \ 4.49 \ (1 \ \text{H}, \ \text{s}), \ 4.10-4.03 \\ (2 \ \text{H}, \ \text{m}), \ 3.34 \ (2 \ \text{H}, \ \text{td}, \ J = 12.0, \ 2.1 \ \text{Hz}), \ 2.99 \ (1 \ \text{H}, \ \text{tt}, \ J = 11.9, \ 3.8 \ \text{Hz}), \ 2.00 \\ (2 \ \text{H}, \ \text{ddt}, \ J = 12.8, \ 4.1, \ 2.0 \ \text{Hz}), \ 1.84 \ (2 \ \text{H}, \ \text{dtd}, \ J = 13.4, \ 12.0, \ 4.7 \ \text{Hz}), \ 1.35 \end{array}$

(9 H, s) ppm. – ¹³C NMR (125 MHz, CDCl₃): 66.7, 60.5, 54.9, 30.5, 26.8 ppm. – IR: 3193, 2968, 2942, 2857, 1472, 1446, 1385, 1311, 1300, 1263, 1234, 1127, 1005, 921, 889, 787, 733 cm⁻ ¹. – HRMS: calcd for C₉H₁₉NNaO₃S: 244.0978, found 244.0976 [M+Na⁺].



According to **GP1**, the reaction was carried out with 1-(*tert*-butoxycarbonyl)piperidine-4-carboxylic acid (69 mg, 0.3 mmol), DABSO (79 mg, 0.33 mmol, 1.1 equiv.), *O*-benzoyl-*N*-(*tert*-butyl)hydroxylamine (116 mg, 0.6 mmol, 2 equiv.), acridine catalyst **A1** (9 mg, 0.03 mmol, 10 mol%), copper difluoride (3 mg, 0.03 mmol, 10 mol%), and degassed dichloromethane (6 mL). The test-tube was capped and the reaction mixture was irradiated with LED light (λ = 400 nm) while stirring for 12 h. The reaction mixture was then quenched with saturated solution of sodium hydrogen carbonate (3 mL) and extracted with ethyl acetate (3 × 10 mL). The organic layer was collected, dried over anhydrous sodium sulfate, concentrated under reduced pressure, and the remaining material was purified by flash chromatography on silica gel (hexane/ ethyl acetate 3 : 2 v/v) to give the sulfone product **3c** (70 mg, 73%) as a colorless solid.

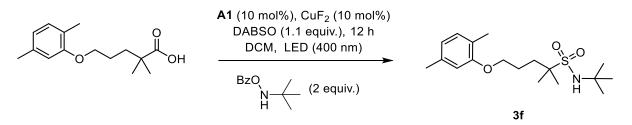
m.p.: 128–130 °C. – ¹H NMR (500 MHz, CDCl₃): 4.31 (1 H, s), 4.23 (1 H, s), 2.90 (1 H, tt, *J* = 11.9, 3.7 Hz), 2.75–2.55 (2 H, m), 2.08 (2 H, ddd, *J* = 12.6, 4.0, 2.1 Hz), 1.67 (2 H, qd, *J* = 12.5, 4.6 Hz), 1.43 (9 H,


s), 1.35 (9H, s) ppm. – ¹³C NMR (125 MHz, CDCl₃): 154.5, 80.0, 61.7, 55.0, 42.8, 30.5, 28.5, 26.2 ppm. – IR: 3295, 2972, 2961, 2928, 2872, 1709, 1670, 1421, 1363, 1316, 1222, 1133, 1002, 880, 731 cm⁻¹. – HRMS: calcd for C₁₄H₂₈N₂NaO₄S: 343.1662, found 343.1656 [M+Na⁺].

*N-(tert-*Butyl)-2-methylpropane-2-sulfonamide (3d)

According to **GP1**, the reaction was carried out with pivalic acid (31 mg, 0.3 mmol), DABSO (79 mg, 0.33 mmol, 1.1 equiv.), *O*-benzoyl-*N*-(*tert*-butyl)hydroxylamine (116 mg, 0.6 mmol, 2 equiv.), acridine catalyst **A1** (9 mg, 0.03 mmol, 10 mol%), copper difluoride (3 mg, 0.03 mmol, 10 mol%) in degassed dichloromethane (6 mL). The test-tube was capped and the reaction mixture was irradiated with LED light (λ = 400 nm) while stirring for 12 h. The reaction mixture was then quenched with saturated solution of sodium hydrogen carbonate (3 mL) and extracted with ethyl acetate (3 × 10 mL). The organic layer was collected, dried over anhydrous sodium sulfate, concentrated under reduced pressure, and the remaining material was purified by flash chromatography on silica gel (hexane/ethyl acetate 7 : 3 v/v) to give the sulfonamide product **3d** (37 mg, 63%) as a yellow liquid.

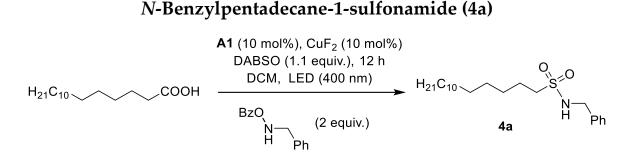
^O¹H NMR (500 MHz, CDCl₃): 3.50 (1 H, s), 1.43–1.40 (18 H, m) ppm. – ¹³C ^N^N^H NMR (125 MHz, CDCl₃): 59.6, 56.0, 30.9, 24.5 ppm. – IR: 3055, 2985, 2326, 2260, 1738, 1367, 1304, 1264, 1122, 907 cm⁻¹. – HRMS: calcd for C₈H₁₉NO₂SNa: 216.1029, found 216.1028 [M+Na⁺].


*N-(tert-*Butyl)adamantane-1-sulfonamide (3e)

According to **GP1**, the reaction was carried out with adamantane-1-carboxylic acid (54 mg, 0.3 mmol), DABSO (79 mg, 0.33 mmol, 1.1 equiv.), *O*-benzoyl-*N*-(*tert*-butyl)hydroxylamine (116 mg, 0.6 mmol, 2 equiv.), acridine catalyst **A1** (9 mg, 0.03 mmol, 10 mol%), copper difluoride (3 mg, 0.03 mmol, 10 mol%) in degassed dichloromethane (6 mL). The test-tube was capped and the reaction mixture was irradiated with LED light (λ = 400 nm) while stirring for 12 h. The reaction mixture was then quenched with saturated solution of sodium hydrogen carbonate (3 mL) and extracted with ethyl acetate (3 × 10 mL). The organic layer was collected, dried over anhydrous sodium sulfate, concentrated under reduced pressure, and the remaining material was purified by flash chromatography on silica gel (hexane/ethyl acetate 7 : 3 v/v) to give the sulfonamide product **3e** (49 mg, 60%) as a white solid.

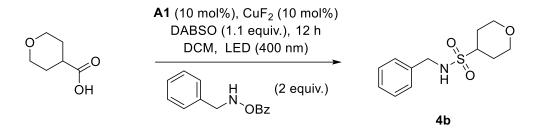
ppm. – IR: 3288, 2994, 2960, 2897, 2852, 1737, 1455, 1426, 1288, 1228, 1133, 982 cm⁻¹. – HRMS: calcd for C₁₄H₂₅NO₂SNa: 294.1498, found 294.1496 [M+Na⁺].

N-(tert-Butyl)-5-(2,5-dimethylphenoxy)-2-methylpentane-2-sulfonamide

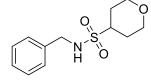

(3f)

According to **GP1**, the reaction was carried out with gemfibrozil (75 mg, 0.3 mmol), DABSO (79 mg, 0.33 mmol, 1.1 equiv.), *O*-benzoyl-*N*-(*tert*-butyl)hydroxylamine (116 mg, 0.6 mmol, 2 equiv.), acridine catalyst **A1** (9 mg, 0.03 mmol, 10 mol%), copper difluoride (3 mg, 0.03 mmol, 10 mol%) in degassed dichloromethane (6 mL). The test-tube was capped and the reaction mixture was irradiated with LED light (λ = 400 nm) while stirring for 12 h. The reaction mixture was then quenched with saturated solution of sodium hydrogen carbonate (3 mL) and extracted with ethyl acetate (3 × 10 mL). The organic layer was collected, dried over anhydrous sodium sulfate, concentrated under reduced pressure, and the remaining material was purified by flash chromatography on silica gel (hexane/ethyl acetate 7 : 3 v/v) to give the sulfonamide product **3f** (58 mg, 57%) as a yellow solid.

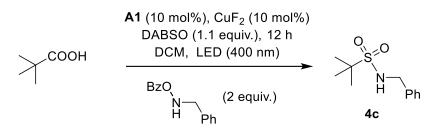
$$\begin{array}{c} & \text{m.p.: } 50-52^{\circ}\text{C.}-^{1}\text{H NMR (500 MHz, CDCl_3): } 7.01 (1 \text{ H, d, J} \\ = 7.5 \text{ Hz}), 6.67 (1 \text{ H, dd, J} = 7.6, 1.6 \text{ Hz}), 6.62 (1 \text{ H, d, J} = 1.6 \\ \text{Hz}), 3.97 (2 \text{ H, t, J} = 5.9 \text{ Hz}), 3.58 (1 \text{ H, s}), 2.31 (3 \text{ H, s}), 2.18 \end{array}$$


(3 H, s), 1.97 (2 H, qd, *J* = 6.3, 2.6 Hz), 1.93–1.84 (2 H, m), 1.40 (9 H, s), 1.39 (6 H, s)ppm. – ¹³C NMR (125 MHz, CDCl₃): 156.9, 136.6, 130.5, 123.7, 121.0, 112.1, 67.8, 62.5, 56.1, 32.8, 30.9, 24.6, 21.6, 21.5, 15.9 ppm. – IR: 3295, 2977, 2929, 2862, 1732, 1670, 1422, 1392, 1317, 1285, 1229, 1166, 1134, 1070, 1002, 880, 787 cm⁻¹. – HRMS: calcd for C₁₈H₃₁NNaO₃S: 364.1917, found 364.1915 [M+Na⁺].

According to **GP1**, the reaction was carried out with palmitic acid (77 mg, 0.3 mmol), DABSO (79 mg, 0.33 mmol, 1.1 equiv.), *O*-benzoyl-*N*-benzylhydroxylamine (136 mg, 0.6 mmol, 2 equiv.), acridine catalyst **A1** (9 mg, 0.03 mmol, 10 mol%), copper difluoride (3 mg, 0.03 mmol, 10 mol%) in degassed dichloromethane (6 mL). The test-tube was capped and the reaction mixture was irradiated with LED light (λ = 400 nm) while stirring for 12 h. The reaction mixture was then quenched with saturated solution of sodium hydrogen carbonate (3 mL) and extracted with ethyl acetate (3 × 10 mL). The organic layer was collected, dried over anhydrous sodium sulfate, concentrated under reduced pressure, and the remaining material was purified by flash chromatography on silica gel (hexane/ethyl acetate 3 : 2 v/v) to give the sulfonamide product **4a** (62 mg, 54%) as a white solid.


 $H_{21}C_{10} \xrightarrow{O} M_{H} = 0.1 \text{ Hz}, CDCl_3 = 7.43 - 7.27 (5)$ $H_{21}C_{10} \xrightarrow{O} H_{H} = 0.1 \text{ Hz}, 4.29 (2 \text{ H}, d, J = 6.1 \text{ Hz}), 4.29 (2 \text{ H}, d$

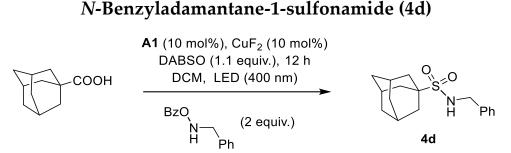
0.88 (3 H, t, *J* = 6.9 Hz) ppm. – ¹³C NMR (125 MHz, CDCl₃): 137.1, 129.0, 128.2, 128.2, 53.5, 47.4, 32.1, 29.8, 29.8, 29.7, 29.7, 29.5, 29.4, 29.2, 28.4, 23.7, 22.8, 14.3 ppm. – IR: 2985, 2836, 2154, 2015, 1265, 1189, 895 cm⁻¹. – HRMS: calcd for C₂₂H₄₀NO₂S: 382.2780, found 382.2755 [M+H⁺].


N-Benzyltetrahydro-2*H*-pyran-4-sulfonamide (4b)

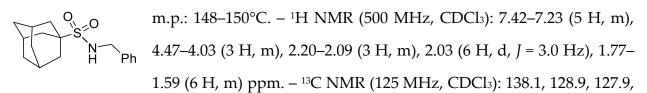
According to **GP1**, the reaction was carried out with tetrahydro-2*H*-pyran-4-carboxylic acid (39 mg, 0.3 mmol), DABSO (79 mg, 0.33 mmol, 1.1 equiv.), *O*-benzoyl-*N*-benzylhydroxylamine (136 mg, 0.6 mmol, 2 equiv.), acridine catalyst **A1** (9 mg, 0.03 mmol, 10 mol%), copper difluoride (3 mg, 0.03 mmol, 10 mol%), and degassed dichloromethane (6 mL) were added. The test-tube was capped and the reaction mixture was irradiated with LED light (λ = 400 nm) while stirring for 12 h. The reaction mixture was then quenched with saturated solution of sodium hydrogen carbonate (3 mL) and extracted with ethyl acetate (3 × 10 mL). The organic layer was collected, dried over anhydrous sodium sulfate, concentrated under reduced pressure, and the remaining material was purified by flash chromatography on silica gel (hexane/ ethyl acetate 3 : 2 v/v) to give the sulfone product **4b** (44 mg, 57%) as a colorless solid.

m.p.: 100–103 °C. – ¹H NMR (500 MHz, CDCl₃): 7.39–7.23 (5 H, m), 4.92 (1 H, brs), 4.28 (2 H, d, *J* = 6.0 Hz), 4.00 (2 H, dt, *J* = 11.9, 3.0 Hz), 3.24 (2 H, td, *J* = 11.9, 2.2 Hz), 2.92 (1 H, tt, *J* = 11.9, 3.9 Hz), 1.91 (2

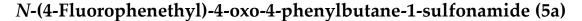
H, ddd, *J* = 12.9, 4.3, 2.1 Hz), 1.81 (2 H, qd, *J* = 12.3, 4.6 Hz) ppm. – ¹³C NMR (125 MHz, CDCl₃): 137.3, 128.9, 128.1, 128.0, 66.6, 58.9, 47.6, 26.6 ppm. – IR: 3282, 3250, 3063, 2976, 2948, 2921, 2850, 1605, 1494, 1451, 1423, 1380, 1299, 1238, 1133, 1063, 1009, 859, 730 cm⁻¹. – HRMS: calcd for C₁₂H₁₇NNaO₃S: 278.0821, found 278.0817 [M+Na⁺].

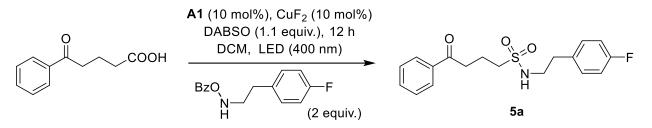


N-Benzyl-2-methylpropane-2-sulfonamide (4c)


According to **GP1**, the reaction was carried out with pivalic acid (31 mg, 0.3 mmol), DABSO (79 mg, 0.33 mmol, 1.1 equiv.), *O*-benzoyl-*N*-benzylhydroxylamine (136 mg, 0.6 mmol, 2 equiv.), acridine catalyst **A1** (9 mg, 0.03 mmol, 10 mol%), copper difluoride (3 mg, 0.03 mmol, 10 mol%) in degassed dichloromethane (6 mL). The test-tube was capped and the reaction mixture was irradiated with LED light (λ = 400 nm) while stirring for 12 h. The reaction mixture was then quenched with saturated solution of sodium hydrogen carbonate (3 mL) and extracted with ethyl acetate (3 × 10 mL). The organic layer was collected, dried over anhydrous sodium sulfate, concentrated under reduced pressure, and the remaining material was purified by flash chromatography on silica gel (hexane/ethyl acetate 7 : 3 v/v) to give the sulfonamide product **4c** (34 mg, 50%) as a white solid.

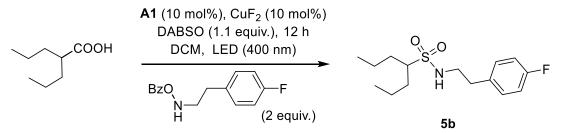
 $\begin{array}{l} \begin{array}{l} & \text{m.p.: 83-85^{\circ}C. - ^{1}H \ NMR \ (500 \ MHz, \ CDCl_{3}): 7.38-7.28 \ (5 \ H, \ m), \ 4.36 \ (2 \ H, \ m), \ 4.36 \ (2$


3025, 2971, 1875, 1606, 1495, 1474, 1453, 1395, 1364, 1296, 1202, 1118, 1094 cm⁻¹. – HRMS: calcd for C₁₁H₁₇NO₂SNa: 250.0872, found 250.0872 [M+Na⁺].



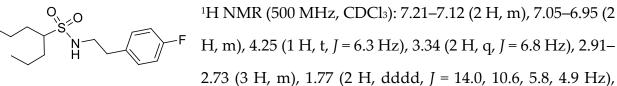
According to GP1, the reaction was carried out with adamantane-1-carboxylic acid (54 DABSO (79 mg, 0.33 mmol, 0.3 mmol), 1.1 equiv.), O-benzoyl-Nmg, benzylhydroxylamine (136 mg, 0.6 mmol, 2 equiv.), acridine catalyst A1 (9 mg, 0.03 mmol, 10 mol%), copper difluoride (3 mg, 0.03 mmol, 10 mol%) in degassed dichloromethane (6 mL). The test-tube was capped and the reaction mixture was irradiated with LED light (λ = 400 nm) while stirring for 12 h. The reaction mixture was then guenched with saturated solution of sodium hydrogen carbonate (3 mL) and extracted with ethyl acetate (3 × 10 mL). The organic layer was collected, dried over anhydrous sodium sulfate, concentrated under reduced pressure, and the remaining material was purified by flash chromatography on silica gel (hexane/ethyl acetate 7 : 3 v/v) to give the sulfonamide product 4d (38 mg, 41%) as a white solid.

127.8, 61.3, 48.6, 36.0, 35.9, 28.3 ppm. – IR: 3054, 2985, 2865, 1265, 896, 737, 703 cm⁻¹. – HRMS: calcd for C₁₇H₂₃NO₂SNa: 328.1342, found 328.1343 [M+Na⁺].

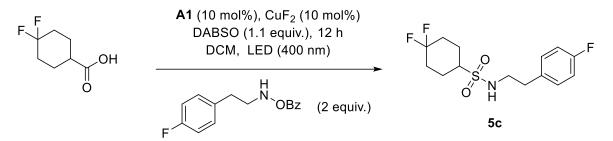


According to **GP1**, the reaction was carried out with 5-oxo-5-phenylpentanoic acid (58 mg, 0.3 mmol), DABSO (79 mg, 0.33 mmol, 1.1 equiv.), *O*-benzoyl-*N*-(4-fluorophenethyl)hydroxylamine (155 mg, 0.6 mmol, 2 equiv.), acridine catalyst **A1** (9 mg, 0.03 mmol, 10 mol%), copper difluoride (3 mg, 0.03 mmol, 10 mol%) in degassed dichloromethane (6 mL). The test-tube was capped and the reaction mixture was irradiated with LED light (λ = 400 nm) while stirring for 12 h. The reaction mixture was then quenched with saturated solution of sodium hydrogen carbonate (3 mL) and extracted with ethyl acetate (3 × 10 mL). The organic layer was collected, dried over anhydrous sodium sulfate, concentrated under reduced pressure, and the remaining material was purified by flash chromatography on silica gel (hexane/ethyl acetate 2 : 3 v/v) to give the sulfonamide product **5a** (52 mg, 50%) as a white solid.

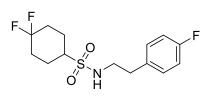
 $\begin{array}{c} 0 & 0 \\ N & N \\$


H, t, J = 6.3 Hz), 3.38 (2 H, q, J = 6.8 Hz), 3.15 (2 H, t, J = 6.7 Hz), 3.11–3.01 (2 H, m), 2.86 (2 H, t, J = 7.0 Hz), 2.17 (2 H, dq, J = 8.8, 6.8 Hz) ppm. – ¹³C NMR (125 MHz, CDCl₃): 198.8, 161.9 (d, J = 244.9 Hz), 136.6, 133.7 (d, J = 3.3 Hz), 133.5, 130.5 (d, J = 8.1 Hz), 128.8, 128.1, 115.7 (d, J = 21.4 Hz), 51.7, 44.6, 36.3, 36.0, 18.3 ppm. – ¹⁹F NMR (470 MHz, CDCl₃): -116.04 (tt, J = 9.2, 5.3 Hz). – IR: 3233, 2937, 1672, 1598, 1510, 1449, 1374, 1313, 1247, 1226, 1149, 1139, 1065 cm⁻¹. – HRMS: calcd for C₁₈H₂₀FNO₃SNa: 372.1040, found 372.1041 [M+Na⁺].

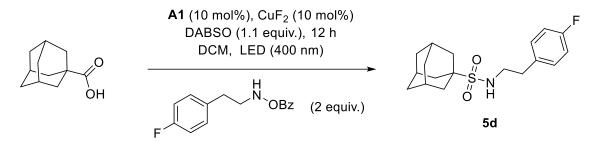
Go back to table of contents


N-(4-Fluorophenethyl)heptane-4-sulfonamide (5b)

According to GP1, the reaction was carried out with 2-propylpentanoic acid (43 mg, 0.3 DABSO (79)0.33 mmol), mg, mmol, 1.1 equiv.), O-benzoyl-N-(4fluorophenethyl)hydroxylamine (155 mg, 0.6 mmol, 2 equiv.), acridine catalyst A1 (9 mg, 0.03 mmol, 10 mol%), copper difluoride (3 mg, 0.03 mmol, 10 mol%) in degassed dichloromethane (6 mL). The test-tube was capped and the reaction mixture was irradiated with LED light (λ = 400 nm) while stirring for 12 h. The reaction mixture was then quenched with saturated solution of sodium hydrogen carbonate (3 mL) and extracted with ethyl acetate (3 × 10 mL). The organic layer was collected, dried over anhydrous sodium sulfate, concentrated under reduced pressure, and the remaining material was purified by flash chromatography on silica gel (hexane/ethyl acetate 7 : 3 v/v) to give the sulfonamide product **5b** (61 mg, 67%) as a yellow liquid.


1.61–1.31 (6 H, m), 0.91 (6 H, t, *J* = 7.3 Hz) ppm. – ¹³C NMR (125 MHz, CDCl₃): 161.9 (d, *J* = 245.1 Hz), 133.8 (d, *J* = 3.5 Hz), 130.4 (d, *J* = 7.9 Hz), 115.7 (d, *J* = 21.4 Hz), 62.2, 45.0, 36.3, 31.1, 20.2, 14.2 ppm. – ¹⁹F NMR (470 MHz, CDCl₃): -116.10 (td, *J* = 8.6, 4.4 Hz). – IR: 3025, 2962, 2865, 1737, 1510, 1420, 1365, 1318, 1264, 1223, 1136, 1081, 895 cm⁻¹. – HRMS: calcd for C₁₅H₂₅FNO₂S: 302.1585, found 302.1589 [M+H⁺].

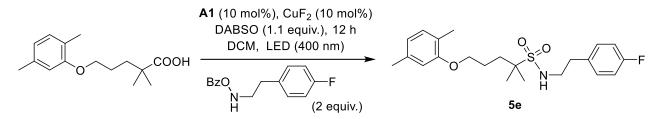
S47


4,4-Difluoro-N-(4-fluorophenethyl)cyclohexane-1-sulfonamide (5c)

According to **GP1**, the reaction was carried out with 4,4-difluorocyclohexane-1carboxylic acid (49 mg, 0.3 mmol), DABSO (79 mg, 0.33 mmol, 1.1 equiv.), *O*-benzoyl-*N*-(4-fluorophenethyl)hydroxylamine (156 mg, 0.6 mmol, 2 equiv.), acridine catalyst **A1** (9 mg, 0.03 mmol, 10 mol%), copper difluoride (3 mg, 0.03 mmol, 10 mol%), and degassed dichloromethane (6 mL) were added. The test-tube was capped and the reaction mixture was irradiated with LED light (λ = 400 nm) while stirring for 12 h. The reaction mixture was then quenched with saturated solution of sodium hydrogen carbonate (3 mL) and extracted with ethyl acetate (3 × 10 mL). The organic layer was collected, dried over anhydrous sodium sulfate, concentrated under reduced pressure, and the remaining material was purified by flash chromatography on silica gel (hexane/ ethyl acetate 3 : 1 v/v) to give the sulfone product **5c** (70 mg, 73%) as a colorless solid.

m.p.: 45–47 °C. – ¹H NMR (500 MHz, CDCl₃): 7.22–7.14 (2 H, m), 7.05–6.95 (2 H, m), 4.39 (1 H, t, *J* = 6.3 Hz), 3.37 (2 H, q, *J* = 6.8 Hz), 2.90–2.74 (3 H, m), 2.20 (2 H, tdd, *J* = 10.8, 5.6,

3.0 Hz), 2.15–2.07 (2 H, m), 1.89–1.77 (2 H, m), 1.70 (2 H, dtt, J = 31.2, 13.4, 3.9 Hz) ppm. – ¹³C NMR (125 MHz, CDCl₃) 162.0 (d, ¹*J*_{C-F} = 245.3 Hz), 133.6 (d, ⁴*J*_{C-F} = 3.5 Hz), 130.5 (d, ³*J*_{C-F} = 8.1 Hz), 122.0 (dd, ¹*J*_{C-F} = 242.9, 240.9 Hz), 115.7 (d, ²*J*_{C-F} = 21.4 Hz), 59.0, 45.1, 36.4, 32.3 (t, ²*J*_{C-F} = 25.1 Hz), 23.2 (d, ³*J*_{C-F} = 9.6 Hz) ppm. – ¹⁹F NMR (470 MHz, CDCl₃): –94.40 (d, J = 239.8 Hz), –102.00 (d, J = 238.7 Hz), –115.71 (q, J = 7.9, 7.2 Hz) ppm. – IR: 3281, 3089, 2967, 2934, 2857, 1601, 1509, 1452, 1311, 1269, 1221, 1141, 1081, 894, 834 cm⁻¹. – HRMS: calcd for C₁₄H₁₈F₃NNaO₂S: 344.0903, found 344.0900 [M+Na⁺].

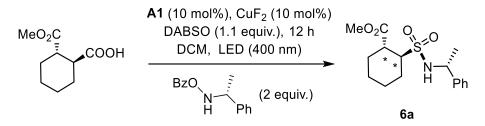

N-(4-Fluorophenethyl)adamantane-1-sulfonamide (5d)

According to **GP1**, the reaction was carried out with adamantane-1-carboxylic acid (54 mg, 0.3 mmol), DABSO (79 mg, 0.33 mmol, 1.1 equiv.), *O*-benzoyl-*N*-(4-fluorophenethyl)hydroxylamine (156 mg, 0.6 mmol, 2 equiv.), acridine catalyst **A1** (9 mg, 0.03 mmol, 10 mol%), copper difluoride (3 mg, 0.03 mmol, 10 mol%), and degassed dichloromethane (6 mL) were added. The test-tube was capped and the reaction mixture was irradiated with LED light (λ = 400 nm) while stirring for 12 h. The reaction mixture was then quenched with saturated solution of sodium hydrogen carbonate (3 mL) and extracted with ethyl acetate (3 × 10 mL). The organic layer was collected, dried over anhydrous sodium sulfate, concentrated under reduced pressure, and the remaining material was purified by flash chromatography on silica gel (hexane/ ethyl acetate 3 : 2 v/v) to give the sulfone product **5d** (53 mg, 52%) as a colorless solid.

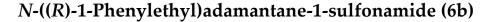
F m.p.: 65–67 °C. – ¹H NMR (500 MHz, CDCl₃): 7.20–7.13 (2 H, m), 7.03–6.96 (2 H, m), 4.06 (1 H, t, *J* = 6.2 Hz), 3.37 (2 H, q, *J* = 6.8 Hz), 2.83 (2 H, t, *J* = 7.0 Hz), 2.13–2.07 (3 H, m), 1.94 (6 H, s), 1.70 (3 H, dt, *J* = 12.6, 2.9 Hz), 1.62 (3 H, dq, *J* = 12.7, 2.1 Hz) ppm. – ¹³C NMR (125 MHz, CDCl₃): 161.7 (d, ¹*J*_{C-F} = 245.0 Hz), 134.0 (d, ⁴*J*_{C-F} = 3.5 Hz), 130.5 (d, ³*J*_{C-F} = 8.0 Hz), 115.6 (d, *J*_{C-F} = 21.4 Hz), 61.2, 46.1, 37.0, 35.9, 35.8, 28.2 ppm. – ¹⁹F NMR (470 MHz, CDCl₃): -116.13– -116.26 (m) ppm. – IR: 3271, 2910, 2851, 1598, 1508, 1440, 1417, 1375, 1287, 1215, 1165, 1142, 1102, 1080, 1052, 976, 909, 820, 796 cm⁻¹. – HRMS: calcd for C₁₈H₂₄FNNaO₂S: 360.1404, found 360.1403 [M+Na⁺].

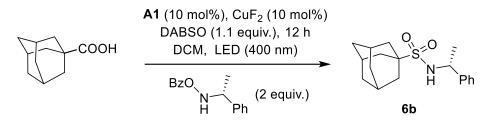
5-(2,5-Dimethylphenoxy)-N-(4-fluorophenethyl)-2-methylpentane-2-

sulfonamide (5e)


According to **GP1**, the reaction was carried out with 5-(2,5-dimethylphenoxy)-2,2dimethylpentanoic acid (75 mg, 0.3 mmol), DABSO (79 mg, 0.33 mmol, 1.1 equiv.), *O*benzoyl-*N*-(4-fluorophenethyl)hydroxylamine (155 mg, 0.6 mmol, 2 equiv.), acridine catalyst **A1** (9 mg, 0.03 mmol, 10 mol%), copper difluoride (3 mg, 0.03 mmol, 10 mol%) in degassed dichloromethane (6 mL). The test-tube was capped and the reaction mixture was irradiated with LED light (λ = 400 nm) while stirring for 12 h. The reaction mixture was then quenched with saturated solution of sodium hydrogen carbonate (3 mL) and extracted with ethyl acetate (3 × 10 mL). The organic layer was collected, dried over anhydrous sodium sulfate, concentrated under reduced pressure, and the remaining material was purified by flash chromatography on silica gel (hexane/ethyl acetate 2 : 3 v/v) to give the sulfonamide product **5e** (75 mg, 61%) as a white solid.

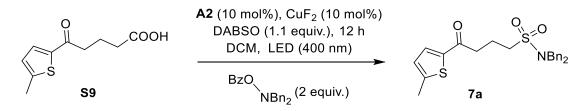
m.p.: 40–41°C. – ¹H NMR (500 MHz, CDCl₃): 7.20–7.13 (2 H, m), 7.04–6.96 (3 H, m), 6.70–6.64 (1 H, m), 6.61 (1 H, d, *J* = 1.5 Hz), 3.94 (2 H, t, *J* = 5.6


Hz), 3.86 (1 H, t, J = 6.3 Hz), 3.41 (2 H, q, J = 6.7 Hz), 2.85 (2 H, t, J = 6.9 Hz), 2.31 (3 H, s), 2.16 (3 H, s), 1.97–1.81 (4 H, m), 1.35 (6 H, s) ppm. – ¹³C NMR (125 MHz, CDCl₃): 162.0 (d, J = 245.2 Hz), 156.9, 136.7, 133.7, 130.5 (d, J = 3.4 Hz), 130.5, 123.6, 121.1, 115.8 (d, J = 21.1 Hz), 112.1, 67.8, 63.0, 46.2, 37.0, 33.0, 24.5, 21.7, 21.5, 15.9 ppm. – ¹⁹F NMR (470 MHz, CDCl₃): -116.05 (td, J = 8.6, 4.3 Hz) ppm. – IR: 2956, 2924, 2873, 2859, 2216, 2062, 1462, 1381 cm⁻¹. – HRMS: calcd for C₂₂H₃₀FNO₃SNa: 430.1823, found 430.1801 [M+Na⁺].

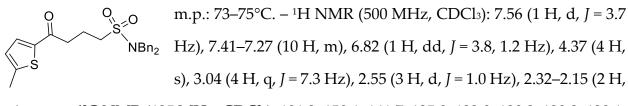

Methyl (1R*,2S*)-2-(N-((R)-1-phenylethyl)sulfamoyl)cyclohexane-1-

carboxylate (6a)

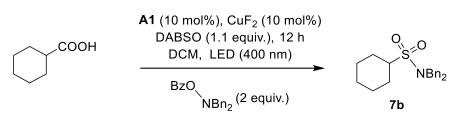
According GP1, with to the reaction was carried out (1S, 2S)-2-(methoxycarbonyl)cyclohexane-1-carboxylic acid (56 mg, 0.3 mmol), DABSO (79 mg, 0.33 mmol, 1.1 equiv.), (R)-O-benzoyl-N-(1-phenylethyl)hydroxylamine (145 mg, 0.6 mmol, 2 equiv.), acridine catalyst A1 (9 mg, 0.03 mmol, 10 mol%), copper difluoride (3 mg, 0.03 mmol, 10 mol%) in degassed dichloromethane (6 mL). The test-tube was capped and the reaction mixture was irradiated with LED light (λ = 400 nm) while stirring for 12 h. The reaction mixture was then quenched with saturated solution of sodium hydrogen carbonate (3 mL) and extracted with ethyl acetate (3 × 10 mL). The organic layer was collected, dried over anhydrous sodium sulfate, concentrated under reduced pressure, and the remaining material was purified by flash chromatography on silica gel (hexane/ethyl acetate 3:2 v/v) to give the inseparable diasisomer sulfonamide products **6a** (85 mg, 87%, 1 : 1 ratio) as a yellow liquid.



According to **GP1**, the reaction was carried out with adamantane-1-carboxylic acid (54 mg, 0.3 mmol), DABSO (79 mg, 0.33 mmol, 1.1 equiv.), (*R*)-O-benzoyl-*N*-(1-phenylethyl)hydroxylamine (145 mg, 0.6 mmol, 2 equiv.), acridine catalyst **A1** (9 mg, 0.03 mmol, 10 mol%), copper difluoride (3 mg, 0.03 mmol, 10 mol%) in degassed dichloromethane (6 mL). The test-tube was capped and the reaction mixture was irradiated with LED light (λ = 400 nm) while stirring for 12 h. The reaction mixture was then quenched with saturated solution of sodium hydrogen carbonate (3 mL) and extracted with ethyl acetate (3 × 10 mL). The organic layer was collected, dried over anhydrous sodium sulfate, concentrated under reduced pressure, and the remaining material was purified by flash chromatography on silica gel (hexane/ethyl acetate 2 : 3 v/v) to give the sulfonamide product **6b** (81 mg, 85%) as a yellow solid.

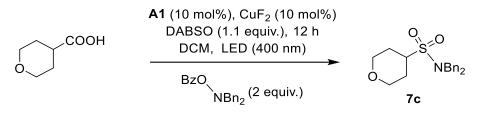

$$\begin{array}{c} \begin{array}{c} 0 \\ N \\ H \end{array} \begin{array}{c} 0 \\ N \\ H \end{array} \begin{array}{c} 0 \\ Ph \end{array} \end{array} \begin{array}{c} \text{m.p.: } 78-80^{\circ}\text{C.} - {}^{1}\text{H} \text{ NMR} (500 \text{ MHz, CDCl}_{3}) : 7.44-7.32 (4 \text{ H, m}), 7.31-7.25 (1 \text{ H, m}), 4.65 (1 \text{ H, dq}, J = 9.0, 6.9 \text{ Hz}), 4.38 (1 \text{ H, d}, J = 8.9 \text{ Hz}), 2.09 (3 \text{ H, p}, J = 3.2 \text{ Hz}), 2.01-1.89 (6 \text{ H, m}), 1.69 (3 \text{ H, d}, J = 12.8 \text{ Hz}), \end{array}$$

1.64–1.56 (6 H, m) ppm. – ¹³C NMR (125 MHz, CDCl₃): 143.7, 128.7, 127.4, 125.9, 60.9, 54.2, 35.8, 35.6, 28.1, 25.5 ppm. – IR: 3028, 2971, 2907, 2850, 2678, 1603, 1453, 1433, 1298, 1147 cm⁻¹. – HRMS: calcd for C₁₈H₂₅NO₂SNa: 342.1498, found 342.1497 [M+Na⁺].


N,N-Dibenzyl-4-(5-methylthiophen-2-yl)-4-oxobutane-1-sulfonamide (7a)

According to **GP1**, the reaction was carried out with acid **S9** (64 mg, 0.3 mmol), DABSO (79 mg, 0.33 mmol, 1.1 equiv.), *O*-benzoyl-*N*,*N*-dibenzylhydroxylamine (190 mg, 0.6 mmol, 2 equiv.), acridine catalyst **A1** (9 mg, 0.03 mmol, 10 mol%), copper difluoride (3 mg, 0.03 mmol, 10 mol%) in degassed dichloromethane (6 mL). The test-tube was capped and the reaction mixture was irradiated with LED light ($\lambda = 400$ nm) while stirring for 12 h. The reaction mixture was then quenched with saturated solution of sodium hydrogen carbonate (3 mL) and extracted with ethyl acetate (3 × 10 mL). The organic layer was collected, dried over anhydrous sodium sulfate, concentrated under reduced pressure, and the remaining material was purified by flash chromatography on silica gel (hexane/ethyl acetate 2 : 3 v/v) to give the sulfonamide product **7a** (77 mg, 60%) as a white solid.

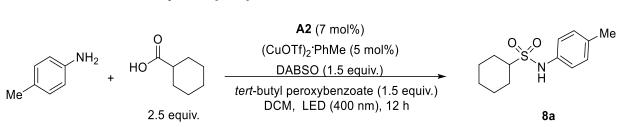
m) ppm. – ¹³C NMR (125 MHz, CDCl₃): 191.3, 150.1, 141.7, 135.8, 132.9, 130.3, 129.3, 129.1, 128.8, 128.7, 128.6, 128.0, 127.0, 52.5, 50.3, 36.5, 18.6, 16.1 ppm. – IR: 3062, 2920, 2784, 2737, 2597, 1655, 1606, 1570, 1516, 1494, 1455, 1320, 1142 cm⁻¹. – HRMS: calcd for C₂₃H₂₅NO₃S₂Na: 450.1168, found 450.1163 [M+Na⁺].


N,*N*-Dibenzylcyclohexanesulfonamide (7b)

According to **GP1**, the reaction was carried out with cyclohexanecarboxylic acid (38 mg, equiv.), 0.3 mmol), DABSO (79 mg, 0.33 mmol, 1.1 O-benzoyl-N,Ndibenzylhydroxylamine (190 mg, 0.6 mmol, 2 equiv.), acridine catalyst A1 (9 mg, 0.03 mmol, 10 mol%), copper difluoride (3 mg, 0.03 mmol, 10 mol%) in degassed dichloromethane (6 mL). The test-tube was capped and the reaction mixture was irradiated with LED light (λ = 400 nm) while stirring for 12 h. The reaction mixture was then quenched with saturated solution of sodium hydrogen carbonate (3 mL) and extracted with ethyl acetate (3 × 10 mL). The organic layer was collected, dried over anhydrous sodium sulfate, concentrated under reduced pressure, and the remaining material was purified by flash chromatography on silica gel (hexane/ethyl acetate 2 : 3 v/v) to give the sulfonamide product 7b (69 mg, 67%) as a white solid.

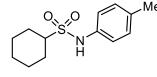
MBn₂
MBn₂
m.p.: 85–87°C. – ¹H NMR (500 MHz, CDCl₃): 7.49–7.08 (10 H, m), 4.36 (4 H, s), 2.78 (1 H, tt, *J* = 12.1, 3.4 Hz), 2.08 (2 H, dd, *J* = 12.4, 3.2 Hz), 1.85 (2 H, dt, *J* = 13.6, 3.7 Hz), 1.70–1.45 (3 H, m), 1.23 – 1.07 (3 H, m) ppm. – ¹³C

NMR (125 MHz, CDCl₃): 136.3, 128.8, 128.0, 63.1, 50.9, 26.7, 25.4, 25.3 ppm. – IR: 3029, 2936, 2854, 2616, 1711, 1602, 1583, 1494, 1452, 1379, 1265, 1228, 1142, 1053 cm⁻¹. – HRMS: calcd for C₂₀H₂₆NO₂S: 344.1684, found 344.1683 [M+H⁺].

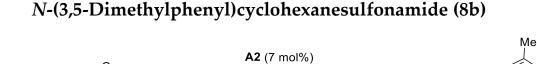


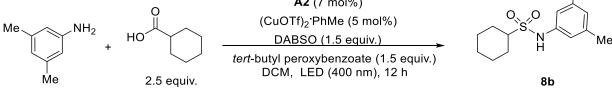
According to **GP1**, the reaction was carried out with tetrahydro-2*H*-pyran-4-carboxylic acid (39 mg, 0.3 mmol), DABSO (79 mg, 0.33 mmol, 1.1 equiv.), *O*-benzoyl-*N*,*N*-dibenzylhydroxylamine (190 mg, 0.6 mmol, 2 equiv.), acridine catalyst **A1** (9 mg, 0.03 mmol, 10 mol%), copper difluoride (3 mg, 0.03 mmol, 10 mol%) in degassed dichloromethane (6 mL). The test-tube was capped and the reaction mixture was irradiated with LED light (λ = 400 nm) while stirring for 12 h. The reaction mixture was then quenched with saturated solution of sodium hydrogen carbonate (3 mL) and extracted with ethyl acetate (3 × 10 mL). The organic layer was collected, dried over anhydrous sodium sulfate, concentrated under reduced pressure, and the remaining material was purified by flash chromatography on silica gel (hexane/ethyl acetate 2 : 3 v/v) to give the sulfonamide product **7c** (59 mg, 57%) as a white solid.

_{>O} m.p.: 89–90°C. – ¹H NMR (500 MHz, CDCl₃): 7.43–7.24 (10 H, m), 4.40 (4 NBn₂ H, s), 4.06 (2 H, ddd, *J* = 11.8, 4.5, 1.9 Hz), 3.24 (2 H, td, *J* = 11.6, 2.5 Hz),


2.96 (1 H, tt, *J* = 11.6, 4.2 Hz), 2.02–1.83 (4 H, m) ppm. – ¹³C NMR (125 MHz, CDCl₃): 136.1, 128.9, 128.8, 128.2, 66.8, 60.2, 51.0, 26.9 ppm. – IR: 3053, 2951, 2310, 2174, 1468, 1426, 1366, 1264, 1123, 894 cm⁻¹. – HRMS: calcd for C₁₉H₂₄NO₃S: 346.1477, found 346.1475 [M+H⁺].

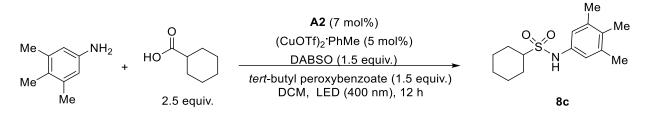
S55


N- (*p-*Tolyl)cyclohexanesulfonamide (8a)


According to **GP2**, the reaction was carried out with *p*-toluidine (32 mg, 0.3 mmol), cyclohexanecarboxylic acid (96 mg, 0.75 mmol, 2.5 equiv.), DABSO (108 mg, 0.45 mmol, 1.5 equiv.), acridine **A2** (6 mg, 0.02 mmol, 7 mol%), *tert*-butyl peroxybenzoate (87 mg, 0.45 mmol, 1.5 equiv.), (CuOTf)₂•PhMe (7 mg, 0.015 mmol, 5 mol%) in degassed dichloromethane (3 mL). The test-tube was capped and the reaction mixture was irradiated with LED light (λ = 400 nm) while stirring for 12 h. The reaction mixture was then quenched with saturated solution of sodium hydrogen carbonate (3 mL), extracted with ethyl acetate (3 × 10 mL). The organic layer was collected, dried over anhydrous sodium sulfate, concentrated under reduced pressure, and the remaining material was purified by flash chromatography on silica gel (hexane/ ethyl acetate 3 : 2 v/v) to give the sulfonamide **8a** (60 mg, 79%) as a yellow oil.

¹H NMR (500 MHz, CDCl₃): 7.03 (2 H, dd, *J* = 7.0, 5.3 Hz), 6.97– 6.91 (2 H, m), 2.90 (1 H, tt, *J* = 11.3, 3.8 Hz), 2.29 (3 H, s), 2.20–2.12 (1 H, m), 2.10–2.00 (1 H, m), 1.94–1.79 (2 H, m), 1.73–1.62 (1 H, m),

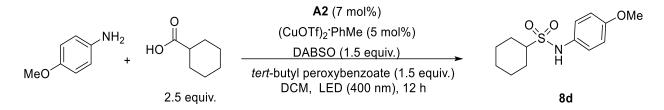
1.59–1.21 (5 H, m) ppm. – ¹³C NMR (125 MHz, CDCl₃): 139.4, 132.3, 129.9, 118.6, 62.7, 26.6, 26.4, 25.6, 25.2, 25.1, 20.7 ppm. – IR: 3455, 3015, 2969, 2945, 2887, 1783, 1693, 1517, 1424, 1366, 1228, 1216, 1018, 908, 732 cm⁻¹. – HRMS: calcd for C₁₃H₂₀NO₂S: 254.1209, found 254.1203 [M+H⁺].

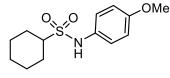

According to **GP2**, the reaction was carried out with 3,5-dimethylaniline (36 mg, 0.3 mmol), cyclohexanecarboxylic acid (96 mg, 0.75 mmol, 2.5 equiv.), DABSO (108 mg, 0.45 mmol, 1.5 equiv.), acridine **A2** (6 mg, 0.02 mmol, 7 mol%), *tert*-butyl peroxybenzoate (87 mg, 0.45 mmol, 1.5 equiv.), (CuOTf)₂•PhMe (7 mg, 0.015 mmol, 5 mol%) in degassed dichloromethane (3 mL). The test-tube was capped and the reaction mixture was irradiated with LED light (λ = 400 nm) while stirring for 12 h. The reaction mixture was then quenched with saturated solution of sodium hydrogen carbonate (3 mL), extracted with ethyl acetate (3 × 10 mL). The organic layer was collected, dried over anhydrous sodium sulfate, concentrated under reduced pressure, and the remaining material was purified by flash chromatography on silica gel (hexane/ ethyl acetate 3 : 2 v/v) to give the sulfonamide **8b** (65 mg, 81%) as a yellow oil.

Gram scale for compound 13b: According to GP2, the reaction was carried out in two parallel test tubes with the same amount of starting materials: 3,5-dimethylaniline (0.61 g, 5 mmol), cyclohexanecarboxylic acid (1.60 g, 12.5 mmol, 2.5 equiv.), DABSO (1.80 g, 7.5 mmol, 1.5 equiv.), acridine A2 (104 mg, 0.35 mmol, 7 mol%), *tert*-butyl peroxybenzoate (1.46 g, 7.5 mmol, 1.5 equiv.), (CuOTf)₂•PhMe (129.3 mg, 0.25 mmol, 5 mol%) in degassed dichloromethane (30 mL). The test-tube was capped and the reaction mixture was irradiated with LED light (λ = 400 nm) while stirring for 16 h. The reaction mixtures were combined and then quenched with saturated solution of sodium hydrogen carbonate (30 mL), extracted with ethyl acetate (3 × 50 mL). The organic layer was collected, dried over anhydrous sodium sulfate, concentrated under reduced pressure, and the remaining

material was purified by flash chromatography on silica gel (hexane/ ethyl acetate 3:2 v/v) to give the sulfonamide **8b** (1.73 g, 65%) as a yellow oil.

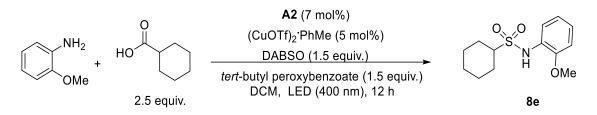
Me ¹H NMR (500 MHz, CDCl₃): 6.97–6.84 (1 H, m), 6.70–6.61 (3 H, m), 2.90 (1 H, ddt, *J* = 14.8, 11.2, 3.5 Hz), 2.34–2.16 (7H, m), 2.09–2.01 (1 H, m), 1.98–1.75 (2 H, m), 1.74–1.62 (1 H, m), 1.59–1.21 (5 H, m) ppm. – ¹³C NMR (125 MHz, CDCl₃): 141.9, 139.2, 124.6, 115.9, 62.8, 26.6, 26.4, 25.6, 25.3, 25.2, 21.4 ppm. – IR: 3455, 3015, 2969, 2937, 2855, 1738, 1601, 1448, 1365, 1228, 1216, 1157, 1047, 895, 734 cm⁻¹. – HRMS: calcd for C₁₄H₂₂NO₂S: 268.1366, found 286.1364 [M+H⁺].

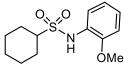

N-(3,4,5-Trimethylphenyl)cyclohexanesulfonamide (8c)


According to **GP2**, the reaction was carried out with 3,4,5-trimethylaniline (41 mg, 0.3 mmol), cyclohexanecarboxylic acid (96 mg, 0.75 mmol, 2.5 equiv.), DABSO (108 mg, 0.45 mmol, 1.5 equiv.), acridine **A2** (6 mg, 0.02 mmol, 7 mol%), *tert*-butyl peroxybenzoate (87 mg, 0.45 mmol, 1.5 equiv.), (CuOTf)²•PhMe (7 mg, 0.015 mmol, 5 mol%) in degassed dichloromethane (3 mL). The test-tube was capped and the reaction mixture was irradiated with LED light (λ = 400 nm) while stirring for 12 h. The reaction mixture was then quenched with saturated solution of sodium hydrogen carbonate (3 mL), extracted with ethyl acetate (3 × 10 mL). The organic layer was collected, dried over anhydrous sodium sulfate, concentrated under reduced pressure, and the remaining material was purified by flash chromatography on silica gel (hexane/ ethyl acetate 3 : 2 v/v) to give the sulfonamide **8c** (58 mg, 69%) as a yellow oil.

^{Me} ^{Me} ^H NMR (300 MHz, CDCl₃): 6.69 (2 H, s), 6.36 (1 H, s), 2.81 (1 H, tt, J = 11.2, 3.7 Hz), 2.20–2.02 (11 H, m), 1.97–1.61 (3 H, m), 1.61–1.18 (5 H, m) ppm. – ¹³C NMR (125 MHz, CDCl₃): 138.8, 137.6, 129.9, 118.1, 62.9, 26.5, 26.3, 25.7, 25.3, 25.0, 20.7, 14.8 ppm. – IR: 3454, 3015, 2969, 2928, 2853, 1738, 1485, 1448, 1365, 1227, 1216, 1162, 1047, 995, 894, 767 cm⁻¹. – HRMS: calcd for C₁₅H₂₃NO₂S: 281.1450, found 281.1445 [M⁺].

N-(4-Methoxyphenyl)cyclohexanesulfonamide (8d)

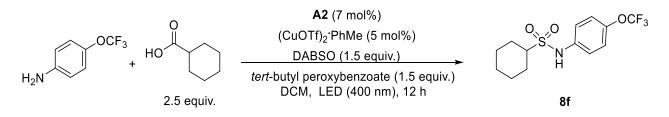

According to **GP2**, the reaction was carried out with 3,4,5-trimethylaniline (41 mg, 0.3 mmol), cyclohexanecarboxylic acid (96 mg, 0.75 mmol, 2.5 equiv.), DABSO (108 mg, 0.45 mmol, 1.5 equiv.), acridine **A2** (6 mg, 0.02 mmol, 7 mol%), *tert*-butyl peroxybenzoate (87 mg, 0.45 mmol, 1.5 equiv.), (CuOTf)²•PhMe (7 mg, 0.015 mmol, 5 mol%) in degassed dichloromethane (3 mL). The test-tube was capped and the reaction mixture was irradiated with LED light (λ = 400 nm) while stirring for 12 h. The reaction mixture was then quenched with saturated solution of sodium hydrogen carbonate (3 mL), extracted with ethyl acetate (3 × 10 mL). The organic layer was collected, dried over anhydrous sodium sulfate, concentrated under reduced pressure, and the remaining material was purified by flash chromatography on silica gel (hexane/ ethyl acetate 3 : 2 v/v) to give the sulfonamide **8d** (53 mg, 66%) as a yellow oil.


¹H NMR (300 MHz, CDCl₃): 7.03–6.93 (2 H, m), 6.83–6.73 (2 H, m), 6.38 (1 H, brs), 3.75 (3 H, s), 2.79 (1 H, tt, *J* = 11.4, 3.8 Hz), 2.15–2.02 (2 H, m), 1.93–1.76 (2 H, m), 1.67 (1 H, dd, *J* = 11.2, 4.4

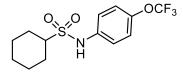
Hz), 1.57–1.20 (5 H, m) ppm. – ¹³C NMR (125 MHz, CDCl₃): 156.3, 134.7, 121.6, 114.7, 62.7, 55.7, 26.4, 26.4, 25.7, 25.3, 25.2 ppm. – IR: 3452, 3009, 2980, 2937, 2867, 1762, 1622, 1504, 1442, 1352, 1214, 1120, 912 cm⁻¹. – HRMS: calcd for C₁₃H₁₉NO₃S: 269.1086, found 269.1490 [M+H⁺].

N-(2-Methoxyphenyl)cyclohexanesulfonamide (8e)

According to **GP2**, the reaction was carried out with 2-methoxyaniline (37 mg, 0.3 mmol), cyclohexanecarboxylic acid (96 mg, 0.75 mmol, 2.5 equiv.), DABSO (108 mg, 0.45 mmol, 1.5 equiv.), acridine **A2** (6 mg, 0.02 mmol, 7 mol%), *tert*-butyl peroxybenzoate (87 mg, 0.45 mmol, 1.5 equiv.), (CuOTf)₂•PhMe (7 mg, 0.015 mmol, 5 mol%) in degassed dichloromethane (3 mL). The test-tube was capped and the reaction mixture was irradiated with LED light (λ = 400 nm) while stirring for 12 h. The reaction mixture was then quenched with saturated solution of sodium hydrogen carbonate (3 mL), extracted with ethyl acetate (3 × 10 mL). The organic layer was collected, dried over anhydrous sodium sulfate, concentrated under reduced pressure, and the remaining material was purified by flash chromatography on silica gel (hexane/ ethyl acetate 3 : 2 v/v) to give the sulfonamide **8e** (57 mg, 71%) as a yellow oil.



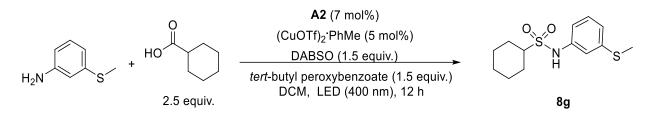
¹H NMR (300 MHz, CDCl₃): 7.21 (1 H, dd, *J* = 7.6, 1.9 Hz), 7.08–6.77 (3 H, m), 6.28 (1 H, s), 3.83 (3 H, s), 2.77 (1 H, tt, *J* = 11.3, 3.7 Hz), 2.24– 2.01 (2 H, m), 1.90 (2 H, tq, *J* = 11.7, 3.5 Hz), 1.78–1.64 (1 H, m), 1.63–


1.18 (5 H, m) ppm. – ¹³C NMR (75 MHz, CDCl₃): 148.7, 131.4, 122.8, 121.2, 116.8, 110.9, 63.1, 55.8, 26.0, 25.7, 25.4, 25.2 ppm. – IR: 3377, 2964, 2931, 2854, 2624, 1703, 1601, 1504,

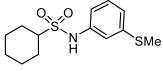
1466, 1453, 1328, 1293, 1266, 1223, 1160, 1128, 1046, 1027, 995, 760 cm⁻¹. – HRMS: calcd for C₁₃H₁₉NO₃S: 269.1086, found 269.1082 [M⁺].

N-(4-(Trifluoromethoxy)phenyl)cyclohexanesulfonamide (8f)

According to **GP2**, the reaction was carried out with 4-(trifluoromethoxy)aniline (53 mg, 0.3 mmol), cyclohexanecarboxylic acid (96 mg, 0.75 mmol, 2.5 equiv.), DABSO (108 mg, 0.45 mmol, 1.5 equiv.), acridine **A2** (6 mg, 0.02 mmol, 7 mol%), *tert*-butyl peroxybenzoate (87 mg, 0.45 mmol, 1.5 equiv.), (CuOTf)₂•PhMe (7 mg, 0.015 mmol, 5 mol%) in degassed dichloromethane (3 mL). The test-tube was capped and the reaction mixture was irradiated with LED light (λ = 400 nm) while stirring for 12 h. The reaction mixture was then quenched with saturated solution of sodium hydrogen carbonate (3 mL), extracted with ethyl acetate (3 × 10 mL). The organic layer was collected, dried over anhydrous sodium sulfate, concentrated under reduced pressure, and the remaining material was purified by flash chromatography on silica gel (hexane/ ethyl acetate 3 : 2 v/v) to give the sulfonamide **8f** (52 mg, 54%) as a yellow oil.

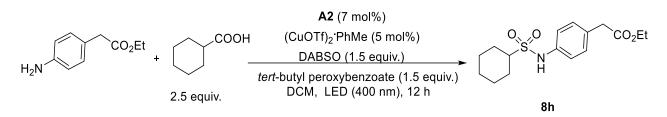


¹H NMR (500 MHz, CDCl₃): 7.61 (1 H, s), 7.02 (2 H, d, *J* = 8.8 Hz), 7.00–6.95 (2 H, m), 2.93 (1 H, tt, *J* = 11.3, 3.8 Hz), 2.16–2.07 (1 H, m), 2.04–1.96 (1 H, m), 1.92–1.76 (2 H, m), 1.72–1.62 (1 H,

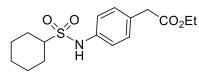

m), 1.55–1.45 (1 H, m), 1.44–1.35 (1 H, m), 1.34–1.16 (3 H, m) ppm. – ¹³C NMR (125 MHz, CDCl₃): 144.4, 141.1, 122.3, 120.6 (d, ¹*J*_{C-F} = 256.6 Hz), 118.7, 62.9, 26.7, 26.4, 25.5, 25.2, 25.1 ppm. – ¹⁹F NMR (470 MHz, CDCl₃): -58.33 (s). – IR: 3129, 3050, 2939, 2857, 1607, 1505, 1447,

1254, 1220, 1159, 1036, 883, 842, 723 cm⁻¹. – HRMS: calcd for C₁₃H₁₇F₃NO₃S: 324.0876, found 324.0855 [M+H⁺].

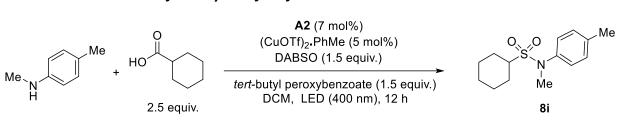
N-(3-(Methylthio)phenyl)cyclohexanesulfonamide (8g)



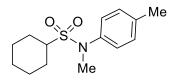
According to **GP2**, the reaction was carried out with 3-(methylthio)aniline (42 mg, 0.3 mmol), cyclohexanecarboxylic acid (96 mg, 0.75 mmol, 2.5 equiv.), DABSO (108 mg, 0.45 mmol, 1.5 equiv.), acridine **A2** (6 mg, 0.02 mmol, 7 mol%), *tert*-butyl peroxybenzoate (87 mg, 0.45 mmol, 1.5 equiv.), (CuOTf)₂•PhMe (7 mg, 0.015 mmol, 5 mol%) in degassed dichloromethane (3 mL). The test-tube was capped and the reaction mixture was irradiated with LED light (λ = 400 nm) while stirring for 12 h. The reaction mixture was then quenched with saturated solution of sodium hydrogen carbonate (3 mL), extracted with ethyl acetate (3 × 10 mL). The organic layer was collected, dried over anhydrous sodium sulfate, concentrated under reduced pressure, and the remaining material was purified by flash chromatography on silica gel (hexane/ ethyl acetate 3 : 2 v/v) to give the sulfonamide **8g** (51 mg, 60%) as a yellow oil.


¹H NMR (300 MHz, CDCl₃): 7.11 (1 H, t, *J* = 7.9 Hz), 7.00 (1 H, s),
6.90–6.80 (2 H, m), 6.77 (1 H, ddd, *J* = 8.0, 2.2, 0.9 Hz), 2.87 (1 H, tt, *J* = 11.2, 3.7 Hz), 2.41 (3 H, s), 2.15 (1 H, d, *J* = 14.0 Hz), 2.07–

1.97 (1 H, m), 1.85 (2 H, ddd, *J* = 15.7, 6.4, 3.2 Hz), 1.58–1.14 (6 H, m) ppm. – ¹³C NMR (75 MHz, CDCl₃): 142.7, 140.1, 129.7, 120.7, 115.6, 114.5, 63.0, 26.6, 26.3, 25.6, 25.25, 25.15, 15.6 ppm. – IR: 3061, 2995, 2919, 2857, 1709, 1592, 1499, 1382, 1266, 1222, 1149, 1046, 911, 859, 734, 703 cm⁻¹. – HRMS: calcd for C₁₃H₂₀NO₂S₂: 286.0930, found 286.0929 [M+H⁺].

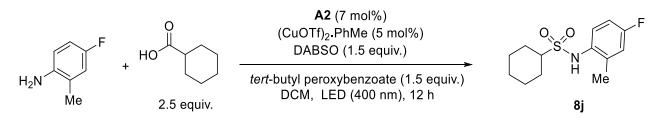

Ethyl 2-(4-(cyclohexanesulfonamido)phenyl)acetate (8h)

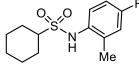
According to **GP2**, the reaction was carried out with ethyl 2-(4-aminophenyl)acetate (54 mg, 0.3 mmol), cyclohexanecarboxylic acid (96 mg, 0.75 mmol, 2.5 equiv.), DABSO (108 mg, 0.45 mmol, 1.5 equiv.), acridine **A2** (6 mg, 0.02 mmol, 7 mol%), *tert*-butyl peroxybenzoate (87 mg, 0.45 mmol, 1.5 equiv.), (CuOTf)₂•PhMe (7 mg, 0.015 mmol, 5 mol%) in degassed dichloromethane (3 mL). The test-tube was capped and the reaction mixture was irradiated with LED light (λ = 400 nm) while stirring for 12 h. The reaction mixture was then quenched with saturated solution of sodium hydrogen carbonate (3 mL), extracted with ethyl acetate (3 × 10 mL). The organic layer was collected, dried over anhydrous sodium sulfate, concentrated under reduced pressure, and the remaining material was purified by flash chromatography on silica gel (hexane/ ethyl acetate 2 : 3 v/v) to give the sulfonamide product **8h** (50 mg, 51%) as a yellow liquid.


¹H NMR (500 MHz, CDCl₃): 7.18–7.10 (2 H, m), 7.02–6.92 (2 H, m), 6.70 (1 H, s), 4.13 (2 H, q, J = 7.1 Hz), 3.52 (2 H, s), 2.83 (1 H, tt, J = 11.2, 3.7 Hz), 2.24–1.12 (13 H, m) ppm. – ¹³C NMR

(125 MHz, CDCl₃): 171.8, 141.1, 130.2, 128.4, 118.2, 62.7, 60.9, 40.7, 26.6, 26.3, 25.5, 25.2, 25.0, 14.2 ppm. – IR: 2979, 2932, 2854, 2630, 1732, 1614, 1514, 1450, 1368, 1226, 1150, 1031 cm⁻¹. – HRMS: calcd for C₁₆H₂₃NO₄SNa: 348.1240, found 348.1237 [M+Na⁺].

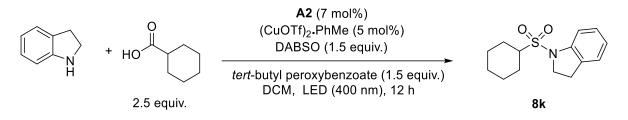
N-Methyl-*N*-(*p*-tolyl)cyclohexanesulfonamide (8i)


According to **GP2**, the reaction was carried out with *N*,4-dimethylaniline (36 mg, 0.3 mmol), cyclohexanecarboxylic acid (96 mg, 0.75 mmol, 2.5 equiv.), DABSO (108 mg, 0.45 mmol, 1.5 equiv.), acridine **A2** (6 mg, 0.02 mmol, 7 mol%), *tert*-butyl peroxybenzoate (87 mg, 0.45 mmol, 1.5 equiv.), (CuOTf)²•PhMe (7 mg, 0.015 mmol, 5 mol%) in degassed dichloromethane (3 mL). The test-tube was capped and the reaction mixture was irradiated with LED light (λ = 400 nm) while stirring for 12 h. The reaction mixture was then quenched with saturated solution of sodium hydrogen carbonate (3 mL), extracted with ethyl acetate (3 × 10 mL). The organic layer was collected, dried over anhydrous sodium sulfate, concentrated under reduced pressure, and the remaining material was purified by flash chromatography on silica gel (hexane/ ethyl acetate 3 : 2 v/v) to give the sulfonamide **8i** (50 mg, 63%) as a brown solid.


m.p.: 60–62 °C. – ¹H NMR (500 MHz, CDCl₃): 7.11 (2 H, d, J = 8.3 Hz), 7.07–7.03 (2 H, m), 3.10 (3 H, s), 2.77 (1 H, tt, J = 11.1, 3.8 Hz), 2.30 (3 H, s), 2.19–2.06 (1 H, m), 1.89 (1 H, dt, J = 12.8, 4.0 Hz),

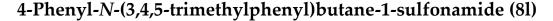
1.84–1.76 (2 H, m), 1.71–1.62 (1 H, m), 1.46 (1 H, dtd, *J* = 12.9, 11.4, 3.6 Hz), 1.37–1.17 (4 H, m) ppm. – ¹³C NMR (125 MHz, CDCl₃): 144.1, 133.6, 129.8, 121.1, 60.4, 31.2, 27.3, 26.4, 25.6, 25.3, 25.3, 20.8 ppm. – IR: 2969, 2930, 2852, 2702, 2488, 1737, 1623, 1516, 1452, 1378, 1225, 1199 cm⁻¹. – HRMS: calcd for C₁₄H₂₁NO₂S: 267.1293, found 267.1298 [M+H⁺].

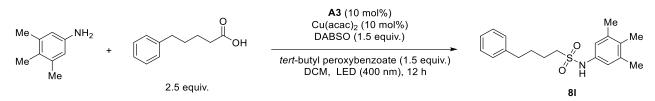
N-(4-Fluoro-2-methylphenyl)cyclohexanesulfonamide (8j)


According to **GP2**, the reaction was carried out with 4-fluoro-2-methylaniline (38 mg, 0.3 mmol), cyclohexanecarboxylic acid (96 mg, 0.75 mmol, 2.5 equiv.), DABSO (108 mg, 0.45 mmol, 1.5 equiv.), acridine **A2** (6 mg, 0.02 mmol, 7 mol%), *tert*-butyl peroxybenzoate (87 mg, 0.45 mmol, 1.5 equiv.), (CuOTf)²•PhMe (7 mg, 0.015 mmol, 5 mol%) in degassed dichloromethane (3 mL). The test-tube was capped and the reaction mixture was irradiated with LED light (λ = 400 nm) while stirring for 12 h. The reaction mixture was then quenched with saturated solution of sodium hydrogen carbonate (3 mL), extracted with ethyl acetate (3 × 10 mL). The organic layer was collected, dried over anhydrous sodium sulfate, concentrated under reduced pressure, and the remaining material was purified by flash chromatography on silica gel (hexane/ ethyl acetate 3 : 2 v/v) to give the sulfonamide **8j** (43 mg, 53%) as a yellow oil.

¹H NMR (500 MHz, CDCl₃): 7.18 (1 H, dd, J = 8.7, 5.1 Hz), 6.86 (2 H, ddd, J = 17.9, 8.8, 4.2 Hz), 6.02 (1 H, s), 2.86 (1 H, tt, J = 11.4, 3.8 Hz), 2.27 (3 H, s), 2.11 (2 H, dt, J = 12.6, 3.8 Hz), 1.90 (2 H, tt, J = 12.0, 4.1

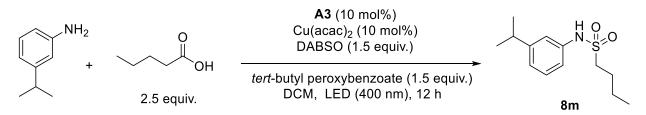
Hz), 1.71 (1 H, dq, *J* = 10.5, 5.3, 4.6 Hz), 1.58–1.22 (5 H, m) ppm. – ¹³C NMR (125 MHz, CDCl₃): 159.6 (d, ¹*J*_{C-F} = 242.9 Hz), 135.8, 132.0 (d, ³*J*_{C-F} = 8.0 Hz), 122.6 (d, ³*J*_{C-F} = 8.4 Hz), 117.5 (d, ²*J*_{C-F} = 22.7 Hz), 113.5 (d, ²*J*_{C-F} = 22.1 Hz), 63.2, 26.5, 26.4, 25.6, 25.4, 25.2, 18.3 ppm. – ¹⁹F NMR (470 MHz, CDCl₃): -119.34 (m). – IR: 3045, 2938, 2855, 2642, 1648, 1601, 1551, 1501, 1443, 1322, 1273, 1157, 1128, 1049, 994, 955, 811, 722 cm⁻¹. – HRMS: calcd for C₁₃H₁₈FNO₂S: 271.1042, found 271.1040 [M⁺].


1-(Cyclohexylsulfonyl)indoline (8k)

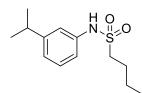


According to **GP2**, the reaction was carried out with indoline (36 mg, 0.3 mmol), cyclohexanecarboxylic acid (96 mg, 0.75 mmol, 2.5 equiv.), DABSO (108 mg, 0.45 mmol, 1.5 equiv.), acridine **A2** (6 mg, 0.02 mmol, 7 mol%), *tert*-butyl peroxybenzoate (87 mg, 0.45 mmol, 1.5 equiv.), (CuOTf)²•PhMe (7 mg, 0.015 mmol, 5 mol%) in degassed dichloromethane (3 mL). The test-tube was capped and the reaction mixture was irradiated with LED light (λ = 400 nm) while stirring for 12 h. The reaction mixture was then quenched with saturated solution of sodium hydrogen carbonate (3 mL), extracted with ethyl acetate (3 × 10 mL). The organic layer was collected, dried over anhydrous sodium sulfate, concentrated under reduced pressure, and the remaining material was purified by flash chromatography on silica gel (hexane/ ethyl acetate 7 : 3 v/v) to give the sulfonamide product **8k** (53 mg, 67%) as a yellow liquid.

¹H NMR (500 MHz, CDCl₃): 7.17–7.09 (2 H, m), 6.99 (1 H, d, *J* = 7.7 Hz), 6.90 (1 H, td, *J* = 7.4, 1.0 Hz), 4.25–4.13 (1 H, m), 3.54 (1 H, td, *J* = 10.0, 5.3 Hz), 3.22 (1 H, ddd, *J* = 15.7, 10.5, 5.3 Hz), 3.11 (1 H, ddd, *J* = 15.6, 10.2, 8.4 Hz), 2.85 (1 H, tt, *J* = 11.1, 3.9 Hz), 2.26–2.15 (1 H, m), 1.98–1.79 (3 H, m), 1.75–1.65 (1 H, m), 1.59–1.20 (5 H, m) ppm. – ¹³C NMR (125 MHz, CDCl₃): 147.7, 131.0, 127.7, 125.3, 122.5, 111.7, 60.4, 40.6, 28.9, 27.4, 26.4, 25.6, 25.4, 25.2 ppm. – IR: 2960, 2931, 2871, 1646, 1456, 1264, 1167, 1046 cm⁻¹. – HRMS: calcd for C₁₄H₂₀NO₂S: 266.1209, found 266.1208 [M+H⁺]. – HRMS: calcd for C₁₄H₂₂NO₂S: 268.1366, found 268.1365 [M+H⁺].

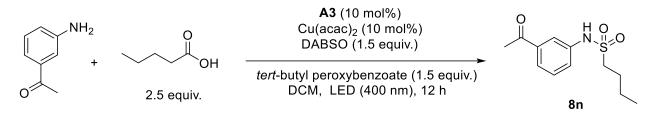

Go back to table of contents

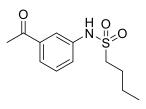
According to **GP2**, the reaction was carried out with 3,4,5-trimethylaniline (41 mg, 0.3 mmol), 5-phenylpentanoic acid (134 mg, 0.75 mmol, 2.5 equiv.), DABSO (108 mg, 0.45 mmol, 1.5 equiv.), acridine **A3** (9 mg, 0.03 mmol, 10 mol%), *tert*-butyl peroxybenzoate (87 mg, 0.45 mmol, 1.5 equiv.), Cu(acac)² (8 mg, 0.03 mmol, 10 mol%) in degassed dichloromethane (3 mL). The test-tube was capped and the reaction mixture was irradiated with LED light (λ = 400 nm) while stirring for 12 h. The reaction mixture was then quenched with saturated solution of sodium hydrogen carbonate (3 mL), extracted with ethyl acetate (3 × 10 mL). The organic layer was collected, dried over anhydrous sodium sulfate, concentrated under reduced pressure, and the remaining material was purified by flash chromatography on silica gel (hexane/ ethyl acetate 1 : 4 v/v) to give the sulfonamide **81** (87 mg, 71%) as a yellow oil.


- ¹³C NMR (125 MHz, CDCl₃): 138.3, 137.6, 129.9, 118.1, 56.0, 32.1, 29.82, 29.79, 29.76, 29.7, 29.52, 29.49, 29.4, 28.8, 23.5, 22.8, 20.7, 14.8, 14.2 ppm. – IR: 3063, 3029, 2939, 2919, 2865, 2631, 1706, 1596, 1552, 1485, 1453, 1265, 1169, 1037, 909, 736, 701 cm⁻¹. – HRMS: calcd for C₁₉H₂₅NO₂S: 331.1606, found 331.1598 [M⁺].

N-(3-Isopropylphenyl)butane-1-sulfonamide (8m)

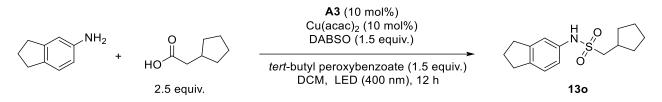
According to **GP2**, the reaction was carried out with 3-isopropylaniline (41 mg, 0.3 mmol), valeric acid (77 mg, 0.75 mmol, 2.5 equiv.), DABSO (108 mg, 0.45 mmol, 1.5 equiv.), acridine **A3** (9 mg, 0.03 mmol, 10 mol%), *tert*-butyl peroxybenzoate (70 mg, 0.36 mmol, 1.2 equiv.), Cu(acac)² (8 mg, 0.03 mmol, 10 mol%) in degassed dichloromethane (3 mL). The test-tube was capped and the reaction mixture was irradiated with LED light (λ = 400 nm) while stirring for 12 h. The reaction mixture was then quenched with saturated solution of sodium hydrogen carbonate (3 mL), extracted with ethyl acetate (3 × 10 mL). The organic layer was collected, dried over anhydrous sodium sulfate, concentrated under reduced pressure, and the remaining material was purified by flash chromatography on silica gel (hexane/ ethyl acetate 3 : 2 v/v) to give the sulfonamide **8m** (53 mg, 69%) as a yellow oil.


Gram scale for compound 13m: According to **GP2**, the reaction was carried out with 3isopropylaniline (1.08 g, 8 mmol), valeric acid (2.04 g, 20 mmol, 2.5 equiv.), DABSO (2.88 g, 12 mmol, 1.5 equiv.), acridine **A3** (238 mg, 0.8 mmol, 10 mol%), *tert*-butyl peroxybenzoate (1.86 mg, 0.36 mmol, 1.2 equiv.), Cu(acac)₂ (211 mg, 0.8 mmol, 10 mol%) in degassed dichloromethane (80 mL). The test-tube was capped and the reaction mixture was irradiated with LED light (λ = 400 nm) while stirring for 12 h. The reaction mixture was then quenched with saturated solution of sodium hydrogen carbonate (30 mL), extracted with ethyl acetate (3 × 50 mL). The organic layer was collected, dried over anhydrous sodium sulfate, concentrated under reduced pressure, and the remaining material was purified by flash chromatography on silica gel (hexane/ ethyl acetate 3 : 2 v/v) to give the sulfonamide **8m** (1.34 g, 66%) as a yellow oil.


¹H NMR (500 MHz, CDCl₃): 7.36–7.22 (1 H, m), 7.14 (1 H, t, *J* = 7.8 Hz), 6.92–6.81 (3 H, m), 3.05–2.94 (2 H, m), 2.82 (1 H, dq, *J* = 13.9, 6.9 Hz), 1.69 (2 H, quint., *J* = 7.6 Hz), 1.50–1.34 (2 H, m), 1.20 (6 H, dd, *J*

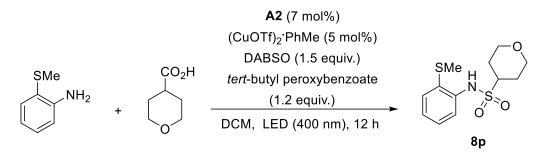
= 6.9, 3.3 Hz), 0.92 (3 H, t, *J* = 7.3 Hz) ppm. – ¹³C NMR (125 MHz, CDCl₃): 150.6, 141.6, 129.4, 121.1, 116.4, 115.6, 55.7, 34.2, 25.5, 24.0, 21.9, 13.8 ppm. – IR: 3438, 2960, 2929, 2872, 1737, 1607, 1591, 1539, 1499, 1319, 1157, 1036, 791, 733 cm⁻¹. – HRMS: calcd for C₁₃H₂₂NO₂S: 256.1366, found 256.1375 [M+H⁺].

N-(3-Acetylphenyl)butane-1-sulfonamide (8n)


According to **GP2**, the reaction was carried out with 1-(3-aminophenyl)ethan-1-one (41 mg, 0.3 mmol), valeric acid (77 mg, 0.75 mmol, 2.5 equiv.), DABSO (108 mg, 0.45 mmol, 1.5 equiv.), acridine **A3** (9 mg, 0.03 mmol, 10 mol%), *tert*-butyl peroxybenzoate (87 mg, 0.45 mmol, 1.5 equiv.), Cu(acac)² (8 mg, 0.03 mmol, 10 mol%) in degassed dichloromethane (3 mL). The test-tube was capped and the reaction mixture was irradiated with LED light (λ = 400 nm) while stirring for 12 h. The reaction mixture was then quenched with saturated solution of sodium hydrogen carbonate (3 mL), extracted with ethyl acetate (3 × 10 mL). The organic layer was collected, dried over anhydrous sodium sulfate, concentrated under reduced pressure, and the remaining material was purified by flash chromatography on silica gel (hexane/ ethyl acetate 3 : 2 v/v) to give the sulfonamide **8n** (41 mg, 53%) as a yellow oil.

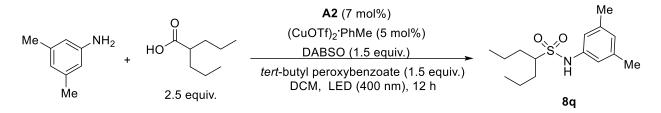
¹H NMR (500 MHz, CDCl₃): 7.82 (1 H, s), 7.53 (1 H, t, *J* = 2.0 Hz), 7.48 (1 H, dt, *J* = 7.6, 1.4 Hz), 7.23 (1 H, t, *J* = 7.8 Hz), 7.18 (1 H, ddd, *J* = 8.0, 2.4, 1.1 Hz), 3.10–3.00 (2 H, m), 2.48 (3 H, s), 1.70 (2 H, quint., *J* = 7.6 Hz, 2H), 1.51–1.35 (2 H, m), 0.91 (3 H, t, *J* = 7.4 Hz) ppm. – ¹³C

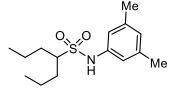
NMR (125 MHz, CDCl₃): 197.8, 142.3, 138.2, 129.7, 122.7, 122.1, 117.2, 55.6, 26.7, 25.4, 21.9, 13.8 ppm. – IR: 3365, 3076, 3053, 3008, 2967, 2901, 1712, 1423, 1361, 1272, 1222, 1157, 916, 735 cm⁻¹. – HRMS: calcd for C₁₂H₁₈NO₃S: 256.1002, found 256.1009 [M+H⁺].


1-Cyclopentyl-N-(2,3-dihydro-1H-inden-5-yl)methanesulfonamide (80)

According to **GP2**, the reaction was carried out with 2,3-dihydro-1*H*-inden-5-amine (40 mg, 0.3 mmol), 2-cyclopentylacetic acid (96 mg, 0.75 mmol, 2.5 equiv.), DABSO (108 mg, 0.45 mmol, 1.5 equiv.), acridine **A3** (9 mg, 0.03 mmol, 10 mol%), *tert*-butyl peroxybenzoate (87 mg, 0.45 mmol, 1.5 equiv.), Cu(acac)² (8 mg, 0.03 mmol, 10 mol%) in degassed dichloromethane (3 mL). The test-tube was capped and the reaction mixture was irradiated with LED light (λ = 400 nm) while stirring for 12 h. The reaction mixture was then quenched with saturated solution of sodium hydrogen carbonate (3 mL), extracted with ethyl acetate (3 × 10 mL). The organic layer was collected, dried over anhydrous sodium sulfate, concentrated under reduced pressure, and the remaining material was purified by flash chromatography on silica gel (hexane/ ethyl acetate 3 : 2 v/v) to give the sulfonamide **80** (66 mg, 79%) as a yellow solid.

H, o, m.p.: 50–52 °C. – ¹H NMR (500 MHz, CDCl₃): 7.14 (1 H, s), 7.05 (1 H, d, *J* = 7.9 Hz), 6.92 (1 H, d, *J* = 2.1 Hz), 6.80 (1 H, dd, *J* = 8.0, 2.1 Hz), 3.10–2.93 (2 H, m), 2.80 (4 H, tq, *J* = 15.8, 8.4, 7.3 Hz), 2.23 (1 H, quint., *J* = 7.9 Hz), 2.09–1.90 (3 H, m), 1.87–1.76 (1 H, m), 1.72–1.50 (4 H, m), 1.33–1.19 (2 H, m) ppm. – ¹³C NMR (125 MHz, CDCl₃): 145.7, 139.7, 139.0, 124.9, 116.9, 115.1, 62.1, 35.3, 33.0, 32.6, 32.2, 25.7, 25.1, 25.0 ppm. – IR: 2949, 2927, 2867, 2849, 1613, 1490, 1451, 1326, 1266, 1154, 1037, 907, 733 cm⁻¹. – HRMS: calcd for C₁₅H₂₂NO₂S: 280.1366, found 280.1371 [M+H⁺].

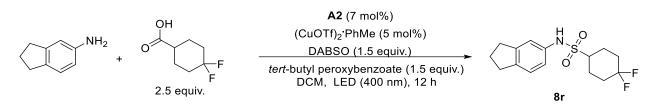

N-(2-(Methylthio)phenyl)tetrahydro-2H-pyran-4-sulfonamide (8p)


According to **GP2**, the reaction was carried out with 2-(methylthio)aniline (42 mg, 0.3 mmol), tetrahydro-2*H*-pyran-4-carboxylic acid (98 mg, 0.75 mmol, 2.5 equiv.), DABSO (108 mg, 0.45 mmol, 1.5 equiv.), acridine **A2** (6 mg, 0.02 mmol, 7 mol%), *tert*-butyl peroxybenzoate (87 mg, 0.45 mmol, 1.5 equiv.), (CuOTf)₂•PhMe (7 mg, 0.015 mmol, 5 mol%) in degassed dichloromethane (3 mL). The test-tube was capped and the reaction mixture was irradiated with LED light (λ = 400 nm) while stirring for 12 h. The reaction mixture was then quenched with saturated solution of sodium hydrogen carbonate (3 mL), extracted with ethyl acetate (3 × 10 mL). The organic layer was collected, dried over anhydrous sodium sulfate, concentrated under reduced pressure, and the remaining material was purified by flash chromatography on silica gel (hexane/ ethyl acetate 3 : 2 v/v) to give the sulfonamide **8p** (48 mg, 56%) as a yellow oil.

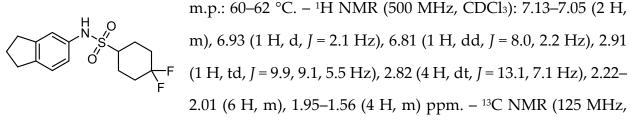
¹H NMR (500 MHz, CDCl₃): 7.44 (1 H, d, J = 7.8 Hz), 7.29–7.17 (2 H, m), ^{SMe} H ^N S ^S O ¹H NMR (500 MHz, CDCl₃): 7.44 (1 H, d, J = 7.8 Hz), 7.29–7.17 (2 H, m), 7.06–6.94 (1 H, m), 6.91 (1 H, brs), 4.19–4.00 (3 H, m), 3.45 (2 H, td, J = 1.17, 2.6 Hz), 3.04 (1 H, tt, J = 11.8, 4.2 Hz), 2.34 (3 H, d, J = 1.3 Hz), 2.06 (1 H, d, J = 13.5 Hz), 2.00–1.69 (3 H, m) ppm. – ¹³C NMR (125 MHz, CDCl₃): 142.2, 133.8, 129.4, 126.1, 123.8, 117.6, 67.0, 66.9, 60.4, 26.4, 26.1, 19.3 ppm. – IR: 3418, 2956, 2850, 1626, 1479, 1447, 1318, 1268, 1238, 1199, 1159, 1130, 1105, 1085, 1048, 1012 cm⁻¹. – HRMS: calcd for C₁₂H₁₆NO₃S₂: 286.0577, found 286.0578 [M-H]⁻.

N-(3,5-Dimethylphenyl)heptane-4-sulfonamide (8q)

According to **GP2**, the reaction was carried out with 3,5-dimethylaniline (36 mg, 0.3 mmol), valproic acid (108 mg, 0.75 mmol, 2.5 equiv.), DABSO (108 mg, 0.45 mmol, 1.5 equiv.), acridine **A2** (6 mg, 0.02 mmol, 7 mol%), *tert*-butyl peroxybenzoate (87 mg, 0.45 mmol, 1.5 equiv.), (CuOTf)²•PhMe (7 mg, 0.015 mmol, 5 mol%) in degassed dichloromethane (3 mL). The test-tube was capped and the reaction mixture was irradiated with LED light (λ = 400 nm) while stirring for 12 h. The reaction mixture was then quenched with saturated solution of sodium hydrogen carbonate (3 mL), extracted with ethyl acetate (3 × 10 mL). The organic layer was collected, dried over anhydrous sodium sulfate, concentrated under reduced pressure, and the remaining material was purified by flash chromatography on silica gel (hexane/ ethyl acetate 3 : 2 v/v) to give the sulfonamide **8q** (43 mg, 51%) as a yellow oil.

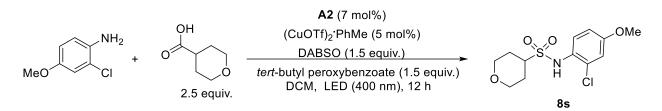


¹H NMR (500 MHz, CDCl₃): 6.66–6.61 (3 H, m), 6.56 (1 H, s), 2.86 (1 H, ddd, *J* = 12.1, 7.4, 5.0 Hz), 2.23 (6 H, s), 1.92–1.64 (3 H, m), 1.62–1.35 (5 H, m), 1.00–0.90 (6 H, m) ppm. – ¹³C NMR (125 MHz,

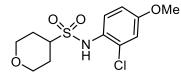

CDCl₃): 141.9, 139.2, 124.7, 116.0, 64.1, 30.1, 28.8, 21.4, 20.2, 19.5, 14.3, 14.2 ppm. – IR: 2958, 2930, 2872, 2655, 1722, 1604, 1546, 1463, 1384, 1335, 1227, 1191, 1157, 1034, 856, 691 cm⁻¹. – HRMS: calcd for C₁₅H₂₅NO₂S: 283.1606, found 283.1599 [M+H⁺].

N-(2,3-Dihydro-1H-inden-5-yl)-4,4-difluorocyclohexane-1-sulfonamide

(8r)

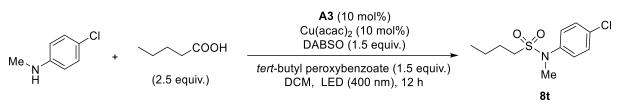


According to **GP2**, the reaction was carried out with 2,3-dihydro-1*H*-inden-5-amine (40 mg, 0.3 mmol), 4,4-difluorocyclohexane-1-carboxylic acid (123 mg, 0.75 mmol, 2.5 equiv.), DABSO (108 mg, 0.45 mmol, 1.5 equiv.), acridine **A2** (6 mg, 0.02 mmol, 7 mol%), *tert*-butyl peroxybenzoate (87 mg, 0.45 mmol, 1.5 equiv.), (CuOTf)₂•PhMe (7 mg, 0.015 mmol, 5 mol%) in degassed dichloromethane (3 mL). The test-tube was capped and the reaction mixture was irradiated with LED light ($\lambda = 400$ nm) while stirring for 12 h. The reaction mixture was then quenched with saturated solution of sodium hydrogen carbonate (3 mL), extracted with ethyl acetate (3 × 10 mL). The organic layer was collected, dried over anhydrous sodium sulfate, concentrated under reduced pressure, and the remaining material was purified by flash chromatography on silica gel (hexane/ ethyl acetate 3 : 2 v/v) to give the sulfonamide **8r** (79 mg, 83%) as a yellow solid.

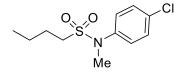


CDCl₃): 145.9, 139.5, 139.4, 125.0, 122.3 (t, ${}^{1}J_{C-F}$ = 241.3 Hz), 116.8, 114.9, 60.1, 32.9, 32.2 (q, ${}^{2}J_{C-F}$ = 24.7 Hz), 32.1, 25.6, 23.1 (dd, ${}^{2}J_{C-F}$, ${}^{3}J_{C-F}$ = 32.8, 8.3 Hz) ppm. – 19 F NMR (470 MHz, CDCl₃): –95.38 (d, *J* = 235.9 Hz), –101.25 (d, *J* = 242.2 Hz) ppm. – IR: 3156, 2940, 2870, 2845, 1717, 1613, 1596, 1489, 1448, 1374, 1292, 1269, 1122, 1106, 1051, 960, 857, 816 cm⁻¹. – HRMS: calcd for C₁₅H₂₀F₂NO₂S: 316.1177, found 316.1182 [M+H⁺].

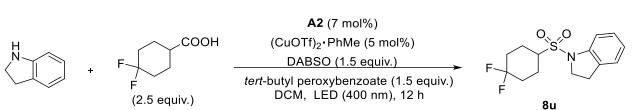
N-(2-Chloro-4-methoxyphenyl)tetrahydro-2H-pyran-4-sulfonamide (8s)



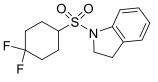
According to **GP2**, the reaction was carried out with 2,3-dihydro-1*H*-inden-5-amine (40 mg, 0.3 mmol), 4,4-difluorocyclohexane-1-carboxylic acid (123 mg, 0.75 mmol, 2.5 equiv.), DABSO (108 mg, 0.45 mmol, 1.5 equiv.), acridine **A2** (6 mg, 0.02 mmol, 7 mol%), *tert*-butyl peroxybenzoate (87 mg, 0.45 mmol, 1.5 equiv.), (CuOTf)₂•PhMe (7 mg, 0.015 mmol, 5 mol%) in degassed dichloromethane (3 mL). The test-tube was capped and the reaction mixture was irradiated with LED light (λ = 400 nm) while stirring for 12 h. The reaction mixture was then quenched with saturated solution of sodium hydrogen carbonate (3 mL), extracted with ethyl acetate (3 × 10 mL). The organic layer was collected, dried over anhydrous sodium sulfate, concentrated under reduced pressure, and the remaining material was purified by flash chromatography on silica gel (hexane/ ethyl acetate 3 : 2 v/v) to give the sulfonamide **8s** (75 mg, 82%) as a yellow oil.


¹H NMR (500 MHz, CDCl₃): 7.08 (1 H, d, J = 2.7 Hz), 6.95–6.87 (2 H, m), 6.77 (1 H, d, J = 8.8 Hz), 4.12–4.00 (2 H, m), 3.84 (3 H, s), 3.36 (2 H, dtd, J = 22.8, 11.5, 2.4 Hz), 3.04 (1 H, tt, J = 11.7, 4.2

Hz), 2.05–1.66 (4 H, m) ppm. – ¹³C NMR (125 MHz, CDCl₃): 151.8, 135.0, 123.2, 121.9, 118.9, 113.0, 66.9, 66.7, 59.9, 56.6, 26.9, 26.4 ppm. – IR: 3058, 3024, 2982, 2844, 1796, 1573, 1504, 1460, 1264, 1152, 1064, 909, 731, 705 cm⁻¹. – HRMS: calcd for C₁₂H₁₆ClNO₄S: 305.0489, found 305.0489 [M⁺].


N-(4-Chlorophenyl)-*N*-methylbutane-1-sulfonamide (8t)

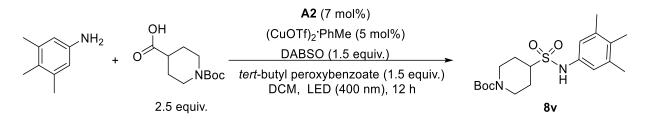
According to **GP2**, the reaction was carried out with 4-chloro-*N*-methylaniline (42 mg, 0.3 mmol), pentanoic acid (77 mg, 0.75 mmol, 2.5 equiv.), DABSO (108 mg, 0.45 mmol, 1.5 equiv.), acridine **A3** (9 mg, 0.03 mmol, 10 mol%), *tert*-butyl peroxybenzoate (87 mg, 0.45 mmol, 1.5 equiv.), Cu(acac)² (8 mg, 0.03 mmol, 10 mol%) in degassed dichloromethane (3 mL). The test-tube was capped and the reaction mixture was irradiated with LED light (λ = 400 nm) while stirring for 12 h. The reaction mixture was then quenched with saturated solution of sodium hydrogen carbonate (3 mL), extracted with ethyl acetate (3 × 10 mL). The organic layer was collected, dried over anhydrous sodium sulfate, concentrated under reduced pressure, and the remaining material was purified by flash chromatography on silica gel (hexane/ ethyl acetate 7 : 3 v/v) to give the sulfonamide product **8t** (42 mg, 54%) as a yellow liquid.


¹H NMR (500 MHz, CDCl₃): 7.32–7.27 (2 H, m), 7.14–7.08 (2 H, m), 3.11 (3 H, s), 2.81 (2 H, ddt, *J* = 8.7, 6.3, 4.6 Hz), 1.60 (2 H, ddt, *J* = 40.6, 13.5, 6.9 Hz), 1.45 (2 H, h, *J* = 7.4 Hz), 0.93 (3 H, t, *J*

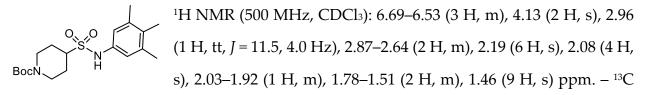
= 7.4 Hz) ppm. – ¹³C NMR (125 MHz, CDCl₃): 144.5, 129.7, 129.4, 122.6, 53.4, 31.5, 25.4, 22.1, 13.9 ppm. – IR: 3055, 2972, 2308, 1739, 1421, 1264, 895 cm⁻¹. – HRMS: calcd for C₁₁H₁₆ClNO₂S: 361.0590, found 361.0592 [M⁺].

1-((4,4-Difluorocyclohexyl)sulfonyl)indoline (8u)

According to **GP2**, the reaction was carried out with indoline (36 mg, 0.3 mmol), 4,4difluorocyclohexane-1-carboxylic acid (123 mg, 0.75 mmol, 2.5 equiv.), DABSO (108 mg, 0.45 mmol, 1.5 equiv.), acridine **A2** (6 mg, 0.02 mmol, 7 mol%), *tert*-butyl peroxybenzoate (87 mg, 0.45 mmol, 1.5 equiv.), (CuOTf)₂•PhMe (7 mg, 0.015 mmol, 5 mol%) in degassed dichloromethane (3 mL). The test-tube was capped and the reaction mixture was irradiated with LED light (λ = 400 nm) while stirring for 12 h. The reaction mixture was then quenched with saturated solution of sodium hydrogen carbonate (3 mL), extracted with ethyl acetate (3 × 10 mL). The organic layer was collected, dried over anhydrous sodium sulfate, concentrated under reduced pressure, and the remaining material was purified by flash chromatography on silica gel (hexane/ ethyl acetate 3 : 2 v/v) to give the sulfonamide product **8u** (61 mg, 68%) as a white solid.

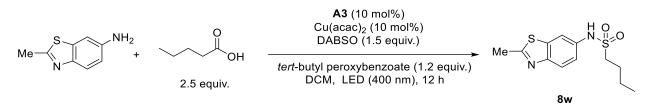


m.p.: 45–47 °C. – ¹H NMR (500 MHz, CDCl₃): 7.63 (1 H, d, *J* = 7.8 Hz), 7.44–7.34 (3 H, m), 3.98 (2 H, t, *J* = 7.7 Hz), 3.33 (2 H, t, *J* = 7.7 Hz), 2.66 (1 H, td, *J* = 10.9, 5.4 Hz), 2.13–2.02 (4 H, m), 1.77–1.55 (4


H, m) ppm. – ¹³C NMR (125 MHz, CDCl₃): 136.2, 135.0, 129.8, 128.4, 125.8, 122.8 (t, *J* = 241.2 Hz), 120.0, 56.4, 46.0, 32.5 (t, *J* = 24.5 Hz), 29.3, 24.0 (d, *J* = 9.5 Hz) ppm. – ¹⁹F NMR (470 MHz, CDCl₃): –94.00 (d, *J* = 241.8 Hz), –102.07 (d, *J* = 238.1 Hz), ppm. – IR: 2960, 2922, 2853, 2522, 1723, 1621, 1593, 1466, 1466, 1375, 1207, 1149 cm⁻¹. – HRMS: calcd for C₁₄H₁₈F₂NO₂S: 302.1021, found 302.1021 [M+H⁺].

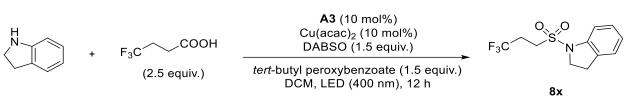
tert-Butyl 4-(N-(3,4,5-trimethylphenyl)sulfamoyl)piperidine-1-

carboxylate (8v)

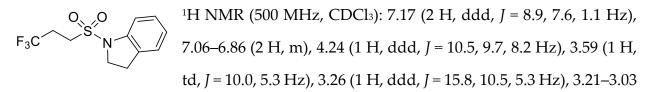


According to **GP2**, the reaction was carried out with 3,4,5-trimethylaniline (41 mg, 0.3 mmol), 1-(*tert*-butoxycarbonyl)piperidine-4-carboxylic acid (172 mg, 0.75 mmol, 2.5 equiv.), DABSO (108 mg, 0.45 mmol, 1.5 equiv.), acridine **A2** (6 mg, 0.02 mmol, 7 mol%), *tert*-butyl peroxybenzoate (87 mg, 0.45 mmol, 1.5 equiv.), (CuOTf)₂•PhMe (7 mg, 0.015 mmol, 5 mol%) in degassed dichloromethane (3 mL). The test-tube was capped and the reaction mixture was irradiated with LED light (λ = 400 nm) while stirring for 12 h. The reaction mixture was then quenched with saturated solution of sodium hydrogen carbonate (3 mL), extracted with ethyl acetate (3 × 10 mL). The organic layer was collected, dried over anhydrous sodium sulfate, concentrated under reduced pressure, and the remaining material was purified by flash chromatography on silica gel (hexane/ ethyl acetate 3 : 2 v/v) to give the sulfonamide **8v** (85 mg, 74%) as a yellow oil.

NMR (125 MHz, CDCl₃): 154.7, 138.3, 137.8, 130.3, 118.2, 80.1, 61.1, 43.2, 28.5, 26.3, 25.8, 20.7, 14.9 ppm. – IR: 3055, 2956, 2308, 1738, 1424, 1365, 1265, 1216, 908 cm⁻¹. – HRMS: calcd for C₁₉H₃₁N₂O₄S: 383.1999, found 383.2010 [M+H⁺].

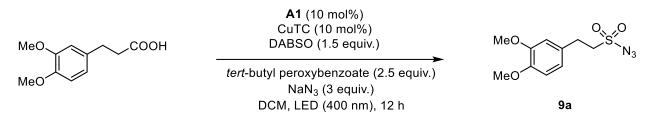

N-(2-Methylbenzo[d]thiazol-6-yl)butane-1-sulfonamide (8w)

According to **GP2**, the reaction was carried out with 2-methylbenzo[*d*]thiazol-6-amine (49 mg, 0.3 mmol), valeric acid (77 mg, 0.75 mmol, 2.5 equiv.), DABSO (108 mg, 0.45 mmol, 1.5 equiv.), acridine **A3** (9 mg, 0.03 mmol, 10 mol%), *tert*-butyl peroxybenzoate (70 mg, 0.36 mmol, 1.2 equiv.), Cu(acac)² (8 mg, 0.03 mmol, 10 mol%) in degassed dichloromethane (3 mL). The test-tube was capped and the reaction mixture was irradiated with LED light (λ = 400 nm) while stirring for 12 h. The reaction mixture was then quenched with saturated solution of sodium hydrogen carbonate (3 mL), extracted with ethyl acetate (3 × 10 mL). The organic layer was collected, dried over anhydrous sodium sulfate, concentrated under reduced pressure, and the remaining material was purified by flash chromatography on silica gel (hexane/ ethyl acetate 3 : 2 v/v) to give the sulfonamide **8w** (60 mg, 70%) as a yellow oil.


$$Me \xrightarrow{N}_{N} \underbrace{\stackrel{H}{\stackrel{\cup}{}_{S}}_{N} O}_{N} \underbrace{\stackrel{H}{\stackrel{\cup}{}_{S}}_{N} O}_{I} H NMR (500 \text{ MHz, CDCl}_{3}): 8.77 (1 \text{ H, s}), 7.93-7.76 (2 \text{ H, m}), 7.50 (1 \text{ H, d}, J = 2.2 \text{ Hz}), 7.16 (1 \text{ H, dd}, J = 8.8, 2.3 \text{ Hz}), 3.07 (2 \text{ H, ddd}, J = 9.3, 6.5, 1.6 \text{ Hz}), 1.73 (2 \text{ H, quint., } J = 7.6 \text{ Hz}), 1.53-1.36 (2 \text{ H, d})$$

m), 0.92 (3 H, t, *J* = 7.3 Hz) ppm. – ¹³C NMR (125 MHz, CDCl₃): 152.5, 149.4, 139.8, 135.2, 124.1, 117.8, 110.2, 55.7, 25.5, 21.9, 13.8 ppm. – IR: 3346, 2958, 2930, 2872, 2637, 1738, 1606, 1560, 1526, 1464, 1433, 1378, 1322, 1204, 1163, 1041, 817, 736 cm⁻¹. – HRMS: calcd for C₁₂H₁₆N₂O₂S₂: 284.0653, found 284.0649 [M⁺].

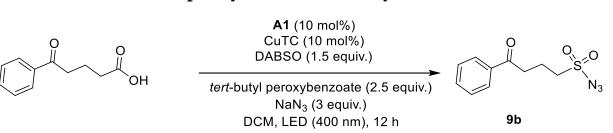
1-((3,3,3-Trifluoropropyl)sulfonyl)indoline (8x)


According to **GP2**, the reaction was carried out with indoline (36 mg, 0.3 mmol), 4,4,4trifluorobutanoic acid (107 mg, 0.75 mmol, 2.5 equiv.), DABSO (108 mg, 0.45 mmol, 1.5 equiv.), acridine **A3** (9 mg, 0.03 mmol, 10 mol%), *tert*-butyl peroxybenzoate (87 mg, 0.45 mmol, 1.5 equiv.), Cu(acac)² (8 mg, 0.03 mmol, 10 mol%) in degassed dichloromethane (3 mL). The test-tube was capped and the reaction mixture was irradiated with LED light (λ = 400 nm) while stirring for 12 h. The reaction mixture was then quenched with saturated solution of sodium hydrogen carbonate (3 mL), extracted with ethyl acetate (3 × 10 mL). The organic layer was collected, dried over anhydrous sodium sulfate, concentrated under reduced pressure, and the remaining material was purified by flash chromatography on silica gel (hexane/ ethyl acetate 7 : 3 v/v) to give the sulfonamide product **8x** (52 mg, 62%) as a yellow liquid.

(3 H, m), 2.67–2.40 (2 H, m) ppm. – ¹³C NMR (125 MHz, CDCl₃): 146.5, 131.3, 127.9, 126.1 (q, *J* = 276.4 Hz), 125.6, 123.4, 112.3, 53.6, 46.0, 40.4, 28.9 (q, *J* = 30.8 Hz), 28.9 ppm. – ¹⁹F NMR (470 MHz, CDCl₃) –66.6 ppm. – IR: 3053, 3002, 2944, 2885, 1750, 1419, 1265, 911, 750 cm⁻¹. – HRMS: calcd for C₁₁H₁₂NO₂F₃S: 279.0541, found 279.0542 [M⁺].

Sulfonyl azides

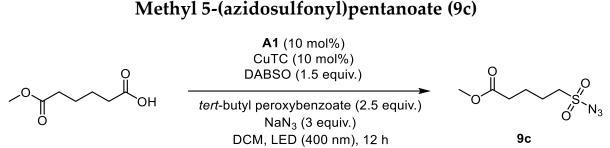
2-(3,4-Dimethoxyphenyl)ethane-1-sulfonyl azide (9a)



According to **GP3**, the reaction was carried out with 3-(3,4-dimethoxyphenyl)propanoic acid (63 mg, 0.3 mmol), DABSO (108 mg, 0.45 mmol, 1.5 equiv.), acridine catalyst **A1** (9 mg, 0.03 mmol, 10 mol%), potassium azide (73 mg, 0.9 mmol, 3.0 equiv.), *tert*-butyl peroxybenzoate (145 mg, 0.75 mmol, 2.5 equiv.), CuOTf·0.5PhMe (8 mg, 0.03 mmol, 10 mol%) in degassed PhCF₃/MeCN (3 mL, 3 : 1 v/v). The test-tube was capped, and the reaction mixture was irradiated with LED light (λ = 400 nm) while stirring at room temperature for 12 h. The reaction mixture was treated with saturated solution of sodium carbonate (3 mL) and extracted with DCM (3 × 10 mL). The organic layer was collected, dried over anhydrous sodium sulfate, concentrated under reduced pressure, and the remaining material was purified by flash chromatography on silica gel (hexane/ ethyl acetate 4 : 1 v/v) to give the sulfonyl azide product **9a** (73 mg, 90%) as a colorless oil.

MeO MeO MeO MeO MeO N₃ 1 H NMR (500 MHz, CDCl₃): 6.83 (1 H, d, J = 8.2 Hz), 6.76 (1 H, d, J = 8.2 Hz), 6.72 (1 H, d, J = 2.1 Hz), 3.87 (6 H, d, J = 8.5 Hz), 3.66-3.52 (2 H, m), 3.21-3.11 (2 H, m) ppm. – ¹³C NMR (125)

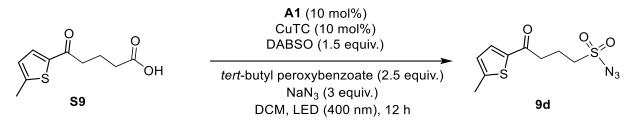
MHz, CDCl₃): 149.5, 148.5 128.8, 120.5, 111.7, 111.6, 57.4, 56.1, 29.3 ppm. – IR: 2983, 2941, 2907, 2876, 1737, 1478, 1446, 1372, 1237, 1045 cm⁻¹. – HRMS: calcd for C₁₀H₁₃N₃O₄SNa: 294.0519, found 294.0514 [M+Na⁺].


S80

4-Oxo-4-phenylbutane-1-sulfonyl azide (9b)

According to **GP3**, the reaction was carried out with 5-oxo-5-phenylpentanoic acid (58 mg, 0.3 mmol), DABSO (108 mg, 0.45 mmol, 1.5 equiv.), acridine catalyst **A1** (9 mg, 0.03 mmol, 10 mol%), sodium azide (59 mg, 0.9 mmol, 3.0 equiv.), *tert*-butyl peroxybenzoate (145 mg, 0.75 mmol, 2.5 equiv.), copper(I) thiophene-2-carboxylate (5 mg, 0.03 mmol, 10 mol%) in degassed PhCF₃/MeCN (3 mL, 3 : 1 v/v). The test-tube was capped, and the reaction mixture was irradiated with LED light (λ = 400 nm) while stirring at room temperature for 12 h. The reaction mixture was treated with saturated solution of sodium carbonate (3 mL) and extracted with DCM (3 × 10 mL). The organic layer was collected, dried over anhydrous sodium sulfate, concentrated under reduced pressure, and the remaining material was purified by flash chromatography on silica gel (hexane/ ethyl acetate 7 : 3 v/v) to give the sulfonyl azide product **9b** (51 mg, 67%) as a colorless solid.

(125 MHz, CDCl₃): 198.1, 136.4, 133.7, 128.9, 128.1, 55.0, 35.7, 18.1 ppm. – IR: 2136, 1683, 1597, 1449, 1361, 1251, 1226, 1192, 1158 cm⁻¹. – HRMS: calcd for C₁₀H₁₁N₃O₃SNa: 276.0413, found 276.0413 [M+Na⁺].

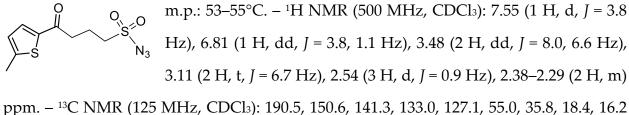


According to **GP3**, the reaction was carried out with 6-methoxy-6-oxohexanoic acid (58 mg, 0.3 mmol), DABSO (108 mg, 0.45 mmol, 1.5 equiv.), acridine catalyst **A1** (9 mg, 0.03 mmol, 10 mol%), sodium azide (59 mg, 0.9 mmol, 3.0 equiv.), *tert*-butyl peroxybenzoate (145 mg, 0.75 mmol, 2.5 equiv.), copper(I) thiophene-2-carboxylate (5 mg, 0.03 mmol, 10 mol%) in degassed PhCF₃/MeCN (3 mL, 3 : 1 v/v). The test-tube was capped, and the reaction mixture was irradiated with LED light (λ = 400 nm) while stirring at room temperature for 12 h. The reaction mixture was treated with saturated solution of sodium carbonate (3 mL) and extracted with DCM (3 × 10 mL). The organic layer was collected, dried over anhydrous sodium sulfate, concentrated under reduced pressure, and the remaining material was purified by flash chromatography on silica gel (hexane/ ethyl

¹H NMR (500 MHz, CDCl₃): 3.67 (3 H, s), 3.36–3.30 (2 H, m), 2.38 $^{\circ}$ (2 H, t, *J* = 7.2 Hz), 2.00–1.88 (2 H, m), 1.85–1.73 (2 H, m) ppm. – ¹³C NMR (125 MHz, CDCl₃): 173.1, 55.6, 51.9, 33.2, 23.3, 23.0 ppm. – IR: 2990, 2956, 2927, 2854, 2331, 2139, 1736, 1486, 1371, 1267, 1204, 1060, 898, 793 cm⁻¹. – HRMS: calcd for C₆H₁₁N₃NaO₄S: 244.0362, found 244.0363 [M+Na⁺].

acetate 9 : 1 v/v) to give the sulforyl azide product 9c (50 mg, 75%) as a colorless solid.

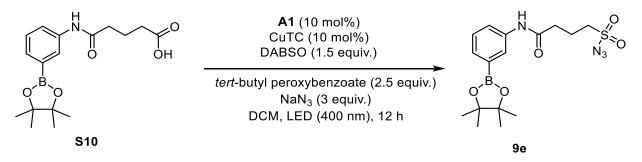
S82



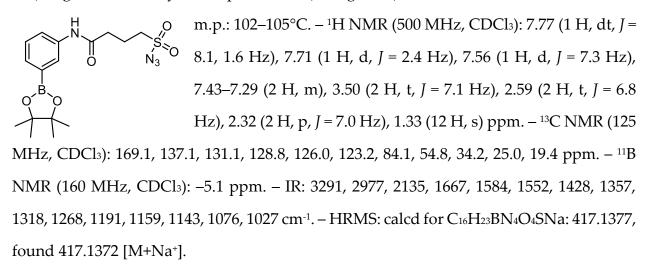
4-(5-Methylthiophen-2-yl)-4-oxobutane-1-sulfonyl azide (9d)

According to **GP3**, the reaction was carried out with acid **S9** (64 mg, 0.3 mmol), DABSO (108 mg, 0.45 mmol, 1.5 equiv.), acridine catalyst **A1** (9 mg, 0.03 mmol, 10 mol%), sodium azide (59 mg, 0.9 mmol, 3.0 equiv.), *tert*-butyl peroxybenzoate (145 mg, 0.75 mmol, 2.5 equiv.), copper(I) thiophene-2-carboxylate (5 mg, 0.03 mmol, 10 mol%) in degassed PhCF₃/MeCN (3mL, 3 : 1 v/v). The test-tube was capped, and the reaction mixture was irradiated with LED light (λ = 400 nm) while stirring at room temperature for 12 h. The reaction mixture was treated with saturated solution of sodium carbonate (3 mL) and extracted with DCM (3 × 10 mL). The organic layer was collected, dried over anhydrous sodium sulfate, concentrated under reduced pressure, and the remaining material was purified by flash chromatography on silica gel (hexane/ ethyl acetate 7 : 3 v/v) to give the sulfonyl azide product **9d** (59 mg, 72%) as a colorless solid.

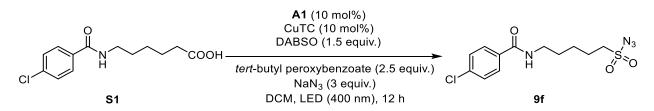
Gramscale synthesis of compound 14*d*: According to GP3, the reaction was carried out with acid S9 (1.49 g, 7 mmol), DABSO (2.52 g, 10.5 mmol, 1.5 equiv.), acridine catalyst A2 (210 mg, 0.07 mmol, 10 mol%), sodium azide (1.38 g, 21 mmol, 3.0 equiv.), *tert*-butyl peroxybenzoate (3.38 g, 17.5 mmol, 2.5 equiv.), copper(I) thiophene-2-carboxylate (98 mg, 0.07 mmol, 10 mol%) in degassed PhCF₃/MeCN (70 mL, 3 : 1 v/v). The test-tube was capped, and the reaction mixture was irradiated with LED light (λ = 400 nm) while stirring at room temperature for 12 h. The reaction mixture was treated with saturated solution of sodium carbonate (20 mL) and extracted with DCM (3 × 50 mL). The organic layer was collected, dried over anhydrous sodium sulfate, concentrated under reduced pressure, and the remaining material was purified by flash chromatography on silica gel


(hexane/ ethyl acetate 7 : 3 v/v) to give the sulfonyl azide product **9d** (1.05 mg, 55%) as a colorless solid.

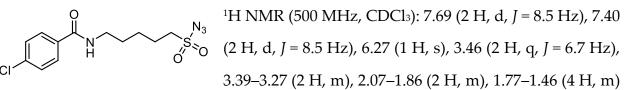
ppm. – IR: 2922, 2134, 1655, 1455, 1360, 1241, 1158, 1072 808 cm⁻¹. – HRMS: calcd for C₉H₁₁N₃O₃S₂Na: 296.0134, found 296.0134 [M+Na⁺].


4-Oxo-4-((3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-

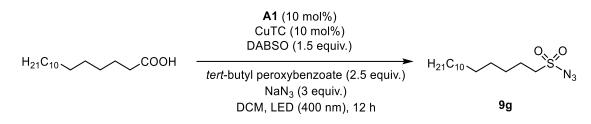
yl)phenyl)amino)butane-1-sulfonyl azide (9e)



According to **GP3**, the reaction was carried out with acid **S10** (50 mg, 0.15 mmol), DABSO (54 mg, 0.23 mmol, 1.5 equiv.), acridine catalyst **A1** (4.5 mg, 0.015 mmol, 10 mol%), sodium azide (30 mg, 0.45 mmol, 3.0 equiv.), *tert*-butyl peroxybenzoate (73 mg, 0.38 mmol, 2.5 equiv.), copper(I) thiophene-2-carboxylate (5 mg, 0.03 mmol, 10 mol%) in degassed PhCF₃/MeCN (3 mL, 3 : 1 v/v). The test-tube was capped, and the reaction mixture was irradiated with LED light (λ = 400 nm) while stirring at room temperature for 12 h. The reaction mixture was treated with saturated solution of sodium carbonate (3 mL) and extracted with DCM (3 × 10 mL). The organic layer was collected, dried over anhydrous sodium sulfate, concentrated under reduced pressure, and the remaining

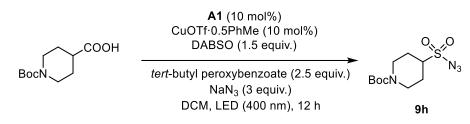

material was purified by flash chromatography on silica gel (hexane/ ethyl acetate 2 : 1 v/v) to give the sulfonyl azide product **9e** (49 mg, 83%) as a colorless solid.

5-(4-Chlorobenzamido)pentane-1-sulfonyl azide (9f)



According to **GP3**, the reaction was carried out with acid **S1** (81 mg, 0.3 mmol), DABSO (108 mg, 0.45 mmol, 1.5 equiv.), acridine catalyst **A1** (9 mg, 0.03 mmol, 10 mol%), potassium azide (73 mg, 0.9 mmol, 3.0 equiv.), *tert*-butyl peroxybenzoate (145 mg, 0.75 mmol, 2.5 equiv.), copper(I) thiophene-2-carboxylate (5 mg, 0.03 mmol, 10 mol%) in degassed PhCF₃/MeCN (3 mL, 3 : 1 v/v). The test-tube was capped, and the reaction mixture was irradiated with LED light (λ = 400 nm) while stirring at room temperature for 12 h. The reaction mixture was treated with saturated solution of sodium carbonate (3 mL) and extracted with DCM (3 × 10 mL). The organic layer was collected, dried over anhydrous sodium sulfate, concentrated under reduced pressure, and the remaining material was purified by flash chromatography on silica gel (hexane/ ethyl acetate 1 : 1 v/v) to give the sulfonyl azide product **9f** (61 mg, 62%) as a colorless oil.

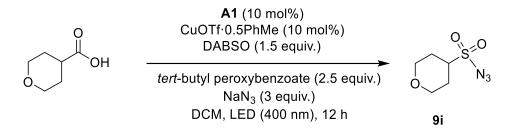
ppm. – ¹³C NMR (125 MHz, CDCl₃): 166.7, 137.9, 133.0, 129.0, 128.4, 55.8, 39.7, 29.2, 25.4, 23.2 ppm. – IR: 2983, 2942, 2908, 2256, 2030, 1885, 1736, 1558, 1465, 1446, 1393, 1372, 1300, 1235, 1097, 1044, 938, 917 cm⁻¹. – HRMS: calcd for C₁₂H₁₅ClN₄O₃SNa: 353.0446, found 353.0444 [M+Na⁺].


Pentadecane-1-sulfonyl azide (9g)

According to **GP3**, the reaction was carried out with palmitic acid (77 mg, 0.3 mmol), DABSO (108 mg, 0.45 mmol, 1.5 equiv.), acridine catalyst **A1** (9 mg, 0.03 mmol, 10 mol%), potassium azide (73 mg, 0.9 mmol, 3.0 equiv.), *tert*-butyl peroxybenzoate (145 mg, 0.75 mmol, 2.5 equiv.), copper(I) thiophene-2-carboxylate (5 mg, 0.03 mmol, 10 mol%) in degassed PhCF₃/MeCN (3 mL, 3 : 1 v/v). The test-tube was capped, and the reaction mixture was irradiated with LED light (λ = 400 nm) while stirring at room temperature for 12 h. The reaction mixture was treated with saturated solution of sodium carbonate (3 mL) and extracted with DCM (3 × 10 mL). The organic layer was collected, dried over anhydrous sodium sulfate, concentrated under reduced pressure, and the remaining material was purified by flash chromatography on silica gel (hexane/ ethyl acetate 9 : 1 v/v) to give the sulfonyl azide product **9g** (71 mg, 75%) as a white solid.

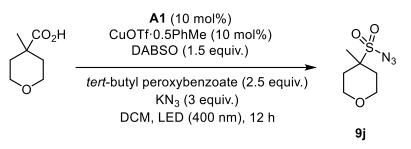
 (2 H, t, *J* = 6.9 Hz) ppm. – ¹³C NMR (125 MHz, CDCl₃): 56.1, 32.1, 29.8, 29.8, 29.8, 29.7, 29.6, 29.5, 29.3, 29.1, 28.1, 23.5, 22.8, 14.3 ppm. – IR: 3466, 2984, 2941, 2908, 2877, 2256, 1982, 1736, 1464, 1392, 1300, 1233, 1097, 1043 cm⁻¹. – HRMS: calcd for C₁₅H₃₂N₃O₂S: 318.2215, found 318.2214 [M+H⁺].

tert-Butyl 4-(azidosulfonyl)piperidine-1-carboxylate (9h)


According to **GP3**, the reaction was carried out with 1-(*tert*-butoxycarbonyl)piperidine-4-carboxylic acid (69 mg, 0.3 mmol), DABSO (108 mg, 0.45 mmol, 1.5 equiv.), acridine catalyst **A1** (9 mg, 0.03 mmol, 10 mol%), potassium azide (73 mg, 0.9 mmol, 3.0 equiv.), *tert*-butyl peroxybenzoate (145 mg, 0.75 mmol, 2.5 equiv.), CuOTf·0.5PhMe (8 mg, 0.03 mmol, 10 mol%) in degassed PhCF₃/MeCN (3 mL, 3 : 1 v/v). The test-tube was capped, and the reaction mixture was irradiated with LED light (λ = 400 nm) while stirring at room temperature for 12 h. The reaction mixture was treated with saturated solution of sodium carbonate (3 mL) and extracted with DCM (3 × 10 mL). The organic layer was collected, dried over anhydrous sodium sulfate, concentrated under reduced pressure, and the remaining material was purified by flash chromatography on silica gel (hexane/ ethyl acetate 4 : 1 v/v) to give the sulfonyl azide product **9h** (48 mg, 55%) as a colorless oil.

^ON^O ¹H NMR (500 MHz, CDCl₃): 4.30 (2 H, s), 3.34 (1 H, tt, *J* = 12.0, 3.7 Hz), ^SN₃ 2.89–2.68 (2 H, m), 2.23–2.04 (2 H, m), 1.81 (2 H, qd, *J* = 12.4, 4.6 Hz), 1.46 (9 H, s) ppm. – ¹³C NMR (125 MHz, CDCl₃): 154.3, 80.6, 63.7, 42.5, 28.5, 25.8 ppm. – IR:

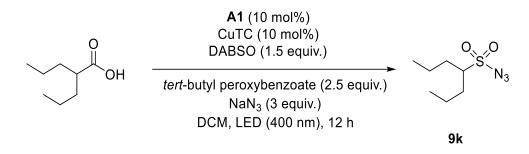
S87


2983, 2941, 2908, 2515, 2203, 1741, 1465, 1447, 1373, 1300, 1241, 1046, 917 cm⁻¹. – HRMS: calcd for C₁₀H₁₈N₄O₄SNa: 313.0941, found 313.0939 [M+Na⁺].

Tetrahydro-2H-pyran-4-sulfonyl azide (9i)

According to **GP3**, the reaction was carried out with tetrahydro-2*H*-pyran-4-carboxylic acid (39 mg, 0.3 mmol), DABSO (108 mg, 0.45 mmol, 1.5 equiv.), acridine catalyst **A1** (9 mg, 0.03 mmol, 10 mol%), sodium azide (59 mg, 0.9 mmol, 3.0 equiv.), *tert*-butyl peroxybenzoate (145 mg, 0.75 mmol, 2.5 equiv.), CuOTf·0.5PhMe (8 mg, 0.03 mmol, 10 mol%) in degassed PhCF₃/MeCN (3 mL, 3 : 1 v/v). The test-tube was capped, and the reaction mixture was irradiated with LED light (λ = 400 nm) while stirring at room temperature for 12 h. The reaction mixture was treated with saturated solution of sodium carbonate (3 mL) and extracted with DCM (3 × 10 mL). The organic layer was collected, dried over anhydrous sodium sulfate, concentrated under reduced pressure, and the remaining material was purified by flash chromatography on silica gel (hexane/ ethyl acetate 4 : 1 v/v) to give the sulfonyl azide product **9i** (37 mg, 65%) as a colorless oil.

⁰ ¹H NMR (500 MHz, CDCl₃): 4.13 (2 H, ddd, J = 12.0, 4.8, 1.9 Hz), 3.50–3.37
¹N₃ (3 H, m), 2.12 (2 H, ddq, J = 12.8, 4.2, 2.2 Hz), 1.99 (2 H, dtd, J = 13.1, 11.8, 4.7 Hz) ppm. – ¹³C NMR (125 MHz, CDCl₃): 66.3, 62.5, 26.4 ppm. – IR: 2933, 2855, 2133, 1732, 1449, 1361, 1306, 1240, 1195, 1155, 1108, 1083, 1023, 1008 cm⁻¹. – HRMS: calcd for C₅H₁₁N₃O₃S: 192.0443, found 192.0438 [M+H⁺].

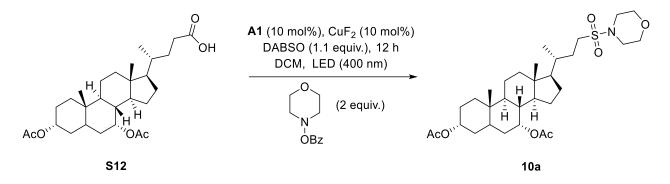


4-Methyltetrahydro-2*H*-pyran-4-sulfonyl azide (9j)

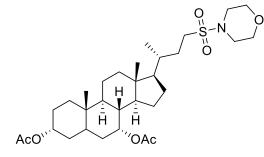
According to **GP3**, the reaction was carried out with 4-methyltetrahydro-2*H*-pyran-4carboxylic acid (43 mg, 0.3 mmol), DABSO (108 mg, 0.45 mmol, 1.5 equiv.), acridine catalyst **A1** (9 mg, 0.03 mmol, 10 mol%), potassium azide (73 mg, 0.9 mmol, 3.0 equiv.), *tert*-butyl peroxybenzoate (145 mg, 0.75 mmol, 2.5 equiv.), CuOTf·0.5PhMe (8 mg, 0.03 mmol, 10 mol%) in degassed PhCF₃/MeCN (3 mL, 3 : 1 v/v). The test-tube was capped, and the reaction mixture was irradiated with LED light (λ = 400 nm) while stirring at room temperature for 12 h. The reaction mixture was treated with saturated solution of sodium carbonate (3 mL) and extracted with DCM (3 × 10 mL). The organic layer was collected, dried over anhydrous sodium sulfate, concentrated under reduced pressure, and the remaining material was purified by flash chromatography on silica gel (hexane/ ethyl acetate 4 : 1 v/v) to give the sulfonyl azide product **9j** (31 mg, 50%) as a colorless oil.

Me N_3 ¹H NMR (500 MHz, CDCl₃): 4.00 (2 H, ddd, *J* = 12.1, 5.2, 2.5 Hz), 3.56 (2 H, dd, *J* = 13.2, 2.5 Hz), $1.64 (3 H, s) ppm. - ^{13}C NMR (125 MHz, CDCl₃): 65.7, 63.1, 30.9, 17.8 ppm. - IR: 2865, 2133, 1693, 1475, 1392, 1344, 1266, 1223, 1174, 1144, 1104, 1038, 1010 cm⁻¹. - HRMS: calcd for C₆H₁₂N₃O₃S: 206.0599, found 206.0606 [M+H⁺].$

Heptane-4-sulfonyl azide (9k)

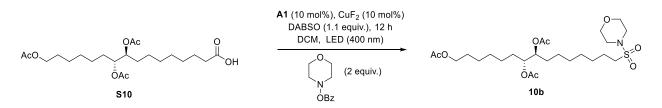

According to **GP3**, the reaction was carried out with 2-propylpentanoic acid (43 mg, 0.3 mmol), DABSO (108 mg, 0.45 mmol, 1.5 equiv.), acridine catalyst **A1** (9 mg, 0.03 mmol, 10 mol%), potassium azide (73 mg, 0.9 mmol, 3.0 equiv.), *tert*-butyl peroxybenzoate (145 mg, 0.75 mmol, 2.5 equiv.),

CuOTf·0.5PhMe (8 mg, 0.03 mmol, 10 mol%) in degassed dichloromethane (3 mL). The test-tube was capped, and the reaction mixture was irradiated with LED light (λ = 400 nm) while stirring at room temperature for 12 h. The reaction mixture was treated with saturated solution of sodium carbonate (3 mL) and extracted with DCM (3 × 10 mL). The organic layer was collected, dried over anhydrous sodium sulfate, concentrated under reduced pressure, and the remaining material was purified by flash chromatography on silica gel (hexane/ ethyl acetate 9 : 1 v/v) to give the sulfonyl azide product **9k** (40 mg, 65%) as a colorless oil.


¹H NMR (500 MHz, DMSO): 3.20 (1 H, tt, *J* = 7.0, 5.1 Hz), 1.95 (2 H, dddd, *J* = 14.3, 10.1, 6.1, 5.1 Hz), 1.74 (2 H, dddd, *J* = 14.3, 10.2, 7.0, 5.5 Hz), 1.62–1.43 (4 H, m), 0.97 (6 H, t, *J* = 7.4 Hz) ppm. – ¹³C NMR (125 MHz, DMSO): 66.8, 31.0, 20.0, 14.0 ppm. – IR: 3054, 3015, 2988, 2969, 2876, 2252, 2134, 1738, 1365, 1265, 1228, 1216, 1205, 908 cm⁻¹. – HRMS: calcd for C₇H₁₆N₃O₂S: 206.0963, found 206.0961 [M+H⁺].

(3R,7R,8R,9S,10S,13R,14S,17R)-10,13-Dimethyl-17-((R)-4-(morpholinosulfonyl)butan-

According to **GP1**, the reaction was carried out with **S12** (71 mg, 0.3 mmol), DABSO (40 mg, 0.165 mmol, 1.1 equiv.), *N*-(benzoyloxy)morpholine (62 mg, 0.3 mmol, 2 equiv.), acridine catalyst **A1** (5 mg, 0.015 mmol, 10 mol%), copper difluoride (1.5 mg, 0.015 mmol, 10 mol%), and degassed dichloromethane (6 mL). The test-tube was capped and the reaction mixture was irradiated with LED light (λ = 400 nm) while stirring for 12 h. The reaction mixture was then quenched with saturated solution of sodium hydrogen carbonate (3 mL) and extracted with ethyl acetate (3 × 10 mL). The organic layer was collected, dried over anhydrous sodium sulfate, concentrated under reduced pressure, and the remaining material was purified by flash chromatography on silica gel (hexane/ ethyl acetate 2 : 3 v/v) to give the sulfone product **10a** (52 mg, 60%) as a colorless solid.

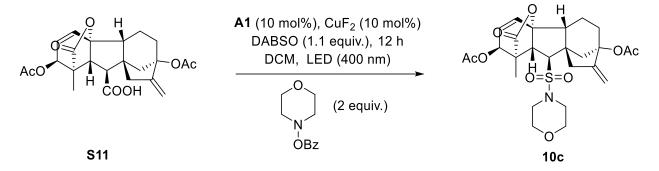


m.p.: 107–110 °C. – $[\alpha]_D^{23}$ = + 20.0 (c 0.1, CHCl₃). – ¹H NMR (500 MHz, CDCl₃): 4.86 (1 H, q, *J* = 3.1 Hz), 4.57 (1 H, tt, *J* = 11.4, 4.5 Hz), 3.76–3.70 (4 H, m), 3.28–3.22 (4 H, m), 2.96 (1 H, ddd, *J* = 13.6, 11.8, 4.2 Hz), 2.81 (1 H, ddd, *J* = 13.5, 11.0, 4.9 Hz), 2.09–1.99

(7 H, m), 1.98–1.78 (5 H, m), 1.74–1.66 (1 H, m), 1.63–1.21 (12 H, m), 1.21–1.00 (4 H, m), 0.98–0.81 (7 H, m), 0.65 (3 H, s) ppm. – ¹³C NMR (125 MHz, CDCl₃): 170.7, 170.5, 74.2, 71.3, 66.8, 55.6, 50.5, 46.6, 46.0, 42.9, 41.0, 39.6, 38.0, 35.1, 35.0, 34.9, 34.7, 34.2, 31.7, 31.4, 28.9, 28.2, 26.9, 23.6, 22.8, 21.7, 21.6, 20.7, 18.5, 11.9 ppm. – IR: 2974, 2936, 2865, 1725, 1447, 1375,

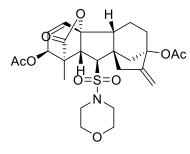
1362, 1342, 1232, 1141, 1112, 1067, 1019. 848, 795, 731 cm⁻¹. – HRMS: calcd for C₃₁H₅₁NNaO₇S: 604.3278, found 604.3283 [M+H⁺].

15-(Morpholinosulfonyl)pentadecane-1,7,8-triyl triacetate (10b)


According to **GP1**, the reaction was carried out with acid **S10** (65 mg, 0.3 mmol), DABSO (40 mg, 0.165 mmol, 1.1 equiv.), *N*-(benzoyloxy)morpholine (62 mg, 0.3 mmol, 2 equiv.), acridine catalyst **A1** (5 mg, 0.015 mmol, 10 mol%), copper difluoride (1.5 mg, 0.015 mmol, 10 mol%), and degassed dichloromethane (6 mL). The test-tube was capped and the reaction mixture was irradiated with LED light (λ = 400 nm) while stirring for 12 h. The reaction mixture was then quenched with saturated solution of sodium hydrogen carbonate (3 mL) and extracted with ethyl acetate (3 × 10 mL). The organic layer was collected, dried over anhydrous sodium sulfate, concentrated under reduced pressure, and the remaining material was purified by flash chromatography on silica gel (hexane/ ethyl acetate 1 : 1 v/v) to give the sulfone product **10b** (52 mg, 65%) as a colorless liquid.

¹H NMR (500 MHz, CDCl₃): 4.99–4.89 (2 H, m), 4.00 (2 H, td, *J* = 6.7, 1.4 Hz), 3.74–3.69 (4 H, m), 3.24–3.20 (4 H, m), 2.90–2.79 (2 H, m,), 2.05 (6

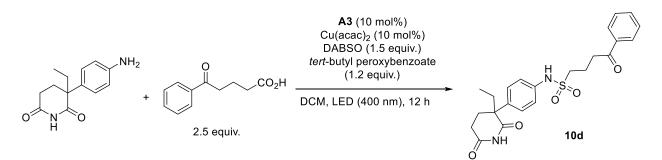
H, s), 2.00 (3 H, s), 1.81–1.70 (2 H, m), 1.57 (2 H, quint., *J* = 6.9 Hz), 1.52–1.15 (18 H, .m) ppm. – ¹³C NMR (125 MHz, CDCl₃): 171.2, 170.7, 73.7, 66.7, 64.5, 48.8, 45.9, 30.7, 29.1, 28.9, 28.5, 28.4, 25.8, 25.14, 25.11, 22.9, 21.1, 21.0 ppm. – IR: 3063, 3003, 2964, 2933, 1711, 1418, 1361, 1270, 1221, 1188, 1152, 1091, 961, 901, 736, 703 cm⁻¹. – HRMS: calcd for C₂₅H₄₅NNaO₉S: 558.2707, found 558.2719 [M+H⁺].


0-

(1*S*,2*S*,4*aR*,4*bR*,7*S*,9*aS*,10*S*,10*aR*)-1-Methyl-8-methylene-10-(morpholinosulfonyl)-13oxo-1,2,5,6,8,9,10,10a-octahydro-4a,1-(epoxymethano)-7,9a-methanobenzo[*a*]azulene-

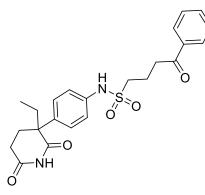
2,7(4bH)-diyl diacetate (10c)

According to **GP1**, the reaction was carried out with **S11** (71 mg, 0.3 mmol), DABSO (40 mg, 0.165 mmol, 1.1 equiv.), *N*-(benzoyloxy)morpholine (62 mg, 0.3 mmol, 2 equiv.), acridine catalyst **A1** (5 mg, 0.015 mmol, 10 mol%), copper difluoride (1.5 mg, 0.015 mmol, 10 mol%), and degassed dichloromethane (6 mL). The test-tube was capped and the reaction mixture was irradiated with LED light (λ = 400 nm) while stirring for 12 h. The reaction mixture was then quenched with saturated solution of sodium hydrogen carbonate (3 mL) and extracted with ethyl acetate (3 × 10 mL). The organic layer was collected, dried over anhydrous sodium sulfate, concentrated under reduced pressure, and the remaining material was purified by flash chromatography on silica gel (hexane/ ethyl acetate 1 : 4 v/v) to give the sulfone product **10c** (72 mg, 89%) as a colorless solid.



m.p.: 157–160 °C. – $[\alpha]_D^{23}$ = + 81.8 (c 0.55, CHCl₃). – ¹H NMR (500 MHz, CDCl₃): 6.45 (1 H, d, *J* = 9.3 Hz), 5.87 (1 H, dd, *J* = 9.2, 3.7 Hz), 5.41 (1 H, d, *J* = 3.7 Hz), 5.07 (1 H, d, *J* = 2.8 Hz), 5.00 (1 H, dd, *J* = 3.4, 1.5 Hz), 3.87–3.62 (5 H, m), 3.43–3.26 (5 H, m), 3.26–3.19 (2 H, m), 2.79 (1 H, s), 2.63–2.53 (2 H, m), 2.22

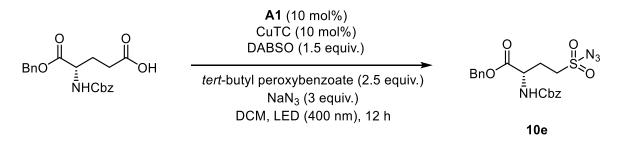
(1 H, dd, *J* = 10.3, 3.1 Hz), 2.17–2.08 (4 H, m), 2.04–1.93 (4 H, m), 1.72 (1 H, ddt, *J* = 12.1, 6.2, 2.8 Hz), 1.33 (3 H, s) ppm. – ¹³C NMR (125 MHz, CDCl₃): 176.7, 169.8, 169.6, 149.5, 133.9, 129.5, 106.4, 90.1, 83.9, 71.8, 67.0, 66.4, 64.8, 54.0, 52.3, 52.1, 47.1, 46.4, 46.0, 45.0, 41.5,


36.3, 22.2, 21.0, 17.9, 15.3 ppm. – IR: 2957, 2921, 2867, 2850, 1652, 1455, 1408, 1361, 1334, 1260, 1240, 1161, 1128, 1107, 1073, 945, 913, 873, 802, 785, 770, 710 cm⁻¹. – HRMS: calcd for C₂₆H₃₃NNaO₉S: 558.1768, found 558.1767 [M+Na⁺].

N-(4-(3-Ethyl-2,6-dioxopiperidin-3-yl)phenyl)-4-oxo-4-phenylbutane-1sulfonamide (10d)

According to **GP2**, the reaction was carried out with DL-aminoglutethimide (70 mg, 0.3 mmol), 5-oxo-5-phenylpentanoic acid (144 mg, 0.75 mmol, 2.5 equiv.), DABSO (108 mg, 0.45 mmol, 1.5 equiv.), acridine **A3** (9 mg, 0.03 mmol, 10 mol%), *tert*-butyl peroxybenzoate (87 mg, 0.45 mmol, 1.5 equiv.), Cu(acac)² (8 mg, 0.03 mmol, 10 mol%) in degassed dichloromethane (3 mL). The test-tube was capped and the reaction mixture was irradiated with LED light (λ = 400 nm) while stirring for 12 h. The reaction mixture was then quenched with saturated solution of sodium hydrogen carbonate (3 mL), extracted with ethyl acetate (3 × 10 mL). The organic layer was collected, dried over anhydrous sodium sulfate, concentrated under reduced pressure, and the remaining material was purified by flash chromatography on silica gel (DCM/ MeOH 19 : 1 v/v) to give the sulfonamide **10d** (81 mg, 61%) as a white solid.

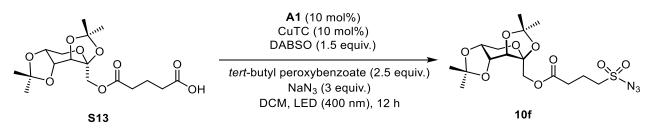
Go back to table of contents



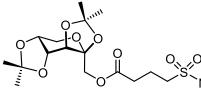
m.p.: 135–137 °C. – ¹H NMR (500 MHz, CDCl₃, rotamers): 8.94–8.61 (1 H, m), 7.94 (2 H, dt, *J* = 8.3, 1.5 Hz), 7.56 (1 H, td, *J* = 7.2, 1.4 Hz), 7.45 (2 H, td, *J* = 7.9, 1.6 Hz), 7.31–7.19 (1 H, m), 7.15–7.07 (2 H, m), 7.04–6.97 (2 H, m), 3.25–3.04 (4 H, m), 2.62–2.51 (1 H, m), 2.46–2.11 (5 H, m), 2.06–1.93 (1 H, m), 1.92–1.77 (1 H, m), 0.94–0.78 (3 H, m) ppm. – ¹³C

NMR (125 MHz, CDCl₃, rotamers): 198.8, 175.7, 175.5, 172.9, 172.7, 140.9, 136.6, 133.7, 133.5, 133.4, 128.8, 128.1, 127.5, 119.0, 118.7, 54.98, 54.95, 50.7, 50.6, 36.8, 33.0, 32.9, 29.41, 29.37, 27.3, 27.0, 17.8, 9.2, 9.1 ppm. – IR: 3224, 2926, 1683, 1597, 1514, 1494, 1449, 1409, 1353, 1269, 1223, 1189, 1151, 1038 cm⁻¹. – HRMS: calcd for C₂₃H₂₆N₂O₅SNa: 465.1455, found 465.1417 [M+Na⁺].

Benzyl (S)-4-(azidosulfonyl)-2-(((benzyloxy)carbonyl)amino)butanoate


(10e)

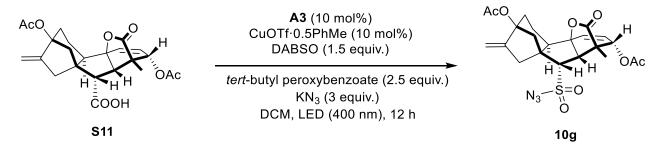
According to **GP3**, the reaction was carried out with (*S*)-5-(benzyloxy)-4-(((benzyloxy)carbonyl)amino)-5-oxopentanoic acid (111 mg, 0.3 mmol), DABSO (108 mg, 0.45 mmol, 1.5 equiv.), acridine catalyst **A1** (9 mg, 0.03 mmol, 10 mol%), sodium azide (59 mg, 0.9 mmol, 3.0 equiv.), *tert*-butyl peroxybenzoate (145 mg, 0.75 mmol, 2.5 equiv.), copper(I) thiophene-2-carboxylate (5 mg, 0.03 mmol, 10 mol%) in degassed PhCF₃/MeCN (3 mL, 3 : 1 v/v). The test-tube was capped, and the reaction mixture was irradiated with LED light (λ = 400 nm) while stirring at room temperature for 12 h. The reaction mixture was treated with saturated solution of sodium carbonate (3 mL) and extracted with DCM $(3 \times 10 \text{ mL})$. The organic layer was collected, dried over anhydrous sodium sulfate, concentrated under reduced pressure, and the remaining material was purified by flash chromatography on silica gel (hexane/ ethyl acetate 4 : 1 v/v) to give the sulfonyl azide product **10e** (74 mg, 57%) as a colorless oil.


((3aS,5aR,8aR,8bS)-2,2,7,7-Tetramethyltetrahydro-3aHbis([1,3]dioxolo)[4,5-b:4',5'-d]pyran-3a-yl)methyl 4-

(azidosulfonyl)butanoate (10f)

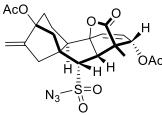
According to **GP3**, the reaction was carried out with acid **S13** (112 mg, 0.3 mmol), DABSO (108 mg, 0.45 mmol, 1.5 equiv.), acridine catalyst **A1** (9 mg, 0.03 mmol, 10 mol%), sodium azide (59 mg, 0.9 mmol, 3.0 equiv.), *tert*-butyl peroxybenzoate (145 mg, 0.75 mmol, 2.5 equiv.), copper(I) thiophene-2-carboxylate (5 mg, 0.03 mmol, 10 mol%) in degassed PhCF₃/MeCN (3 mL, 3 : 1 v/v). The test-tube was capped, and the reaction mixture was irradiated with LED light (λ = 400 nm) while stirring at room temperature for 12 h. The

reaction mixture was treated with saturated solution of sodium carbonate (3 mL) and extracted with DCM (3×10 mL). The organic layer was collected, dried over anhydrous sodium sulfate, concentrated under reduced pressure, and the remaining material was purified by flash chromatography on silica gel (hexane/ ethyl acetate 4 : 1 v/v) to give the sulfonyl azide product **10f** (74 mg, 57%) as a colorless oil.



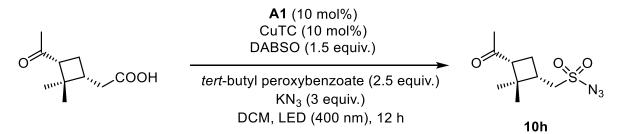
[α]_D²³ = -20.0 (c 0.4, CHCl₃).-¹H NMR (500 MHz, CDCl₃): 4.59 (1 H, dq, J = 8.3, 2.7 Hz), 4.44 (1 H, dd, J = 11.6, 6.2 Hz), 4.24 (2 H, ddd, J = 14.2, 7.1, 4.3 Hz), 4.06 (1 H, dd, J

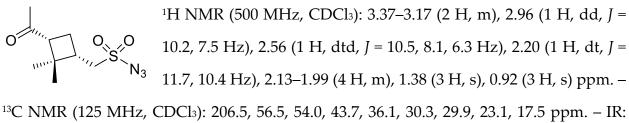
= 11.6, 6.2 Hz), 3.88 (1 H, ddd, J = 13.0, 6.2, 2.1 Hz), 3.75 (1 H, dd, J = 13.1, 5.8 Hz), 3.45 (2 H, dt, J = 8.3, 6.0 Hz), 2.60 (2 H, q, J = 6.6 Hz), 2.23 (2 H, hex, J = 6.9 Hz), 1.53 (3 H, d, J = 5.6 Hz), 1.47 (3 H, d, J = 5.9 Hz), 1.38 (2 H, d, J = 5.7 Hz), 1.33 (2 H, d, J = 5.5 Hz) ppm. –
¹³C NMR (125 MHz, CDCl₃): 171.3, 109.3, 109.0, 101.5, 70.8, 70.1, 66.0, 61.4, 54.7, 31.6, 26.6, 26.0, 25.3, 24.2, 19.0 ppm. – IR: 3428, 3014, 2334, 2145, 1743, 1657, 1364, 1267, 1214, 911, 744 cm⁻¹. – HRMS: calcd for C₁₆H₂₅N₃NaO₉S: 458.1204, found 458.1200 [M+Na⁺].


(1*S*,2*S*,4*aR*,4*bR*,7*S*,9*aS*,10*S*,10*aR*)-10-(Azidosulfonyl)-1-methyl-8methylene-13-oxo-1,2,5,6,8,9,10,10a-octahydro-4a,1-(epoxymethano)-7,9a-

methanobenzo[a]azulene-2,7(4bH)-diyl diacetate (10g)

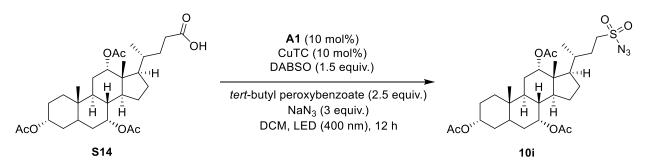
According to **GP3**, the reaction was carried out with acid **S11** (129 mg, 0.3 mmol), DABSO (108 mg, 0.45 mmol, 1.5 equiv.), acridine catalyst **A3** (9 mg, 0.03 mmol, 10 mol%), potassium azide (73 mg, 0.9 mmol, 3.0 equiv.), *tert*-butyl peroxybenzoate (145 mg, 0.75


mmol, 2.5 equiv.), CuOTf·0.5PhMe (8 mg, 0.03 mmol, 10 mol%) in degassed PhCF₃/MeCN (3 mL, 3 : 1 v/v). The test-tube was capped, and the reaction mixture was irradiated with LED light (λ = 400 nm) while stirring at room temperature for 12 h. The reaction mixture was treated with saturated solution of sodium carbonate (3 mL) and extracted with DCM (3 × 10 mL). The organic layer was collected, dried over anhydrous sodium sulfate, concentrated under reduced pressure, and the remaining material was purified by flash chromatography on silica gel (hexane/ ethyl acetate 4 : 1 v/v) to give the sulfonyl azide product **10g** (102 mg, 69%) as a colorless oil.

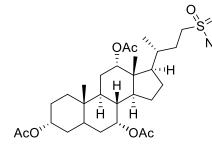

 $[\alpha]_D^{23} = -20.0 (c 0.4, CHCl_3). - {}^{1}H NMR (500 MHz, CDCl_3): 6.46 (1 H, d, J = 9.3 Hz), 5.89 (1 H, dd, J = 9.3, 3.7 Hz), 5.42 (1 H, d, J = 3.6 Hz), 5.12-5.05 (1 H, m), 5.04 (1 H, dd, J = 3.5, 1.6 Hz), 3.58 (1 H, d, J = 7.4 Hz), 3.42 (1 H, dt, J = 15.7, 3.1 Hz), 3.33 (1 H, d, J = 3.5, 1.6 Hz), 3.53 (1 Hz),$

7.4 Hz), 2.66–2.53 (2 H, m), 2.33 (1 H, dd, *J* = 10.5, 3.1 Hz), 2.20–2.08 (5 H, m), 2.03–1.88 (5 H, m), 1.73 (1 H, ddt, *J* = 12.1, 7.4, 2.6 Hz), 1.39 (3 H, s) ppm. – ¹³C NMR (125 MHz, CDCl₃): 175.9, 169.9, 169.5, 148.7, 133.6, 129.7, 107.2, 89.8, 83.7, 71.5, 69.8, 54.8, 52.6, 51.9, 47.4, 44.8, 41.4, 36.0, 22.1, 20.8, 17.8, 14.9 ppm. – IR: 2974, 2878, 2136, 1780, 1736, 1710, 1463, 1364, 1221, 1157, 1088, 1022, 911, 732 cm⁻¹. – HRMS: calcd for C₂₂H₂₅N₃NaO₈S: 514.1255, found 514.1250 [M+Na⁺].

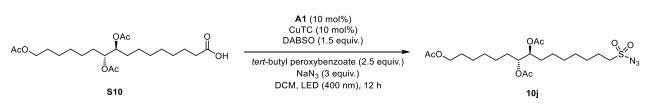
((1*S*,3*R*)-3-Acetyl-2,2-dimethylcyclobutyl)methanesulfonyl azide (10h)



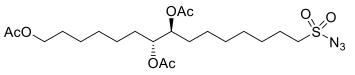
According to **GP3**, the reaction was carried out with 2-((1*R*,3*R*)-3-acetyl-2,2dimethylcyclobutyl)acetic acid (55 mg, 0.3 mmol), DABSO (108 mg, 0.45 mmol, 1.5 equiv.), acridine catalyst **A1** (9 mg, 0.03 mmol, 10 mol%), potassium azide (73 mg, 0.9 mmol, 3.0 equiv.), *tert*-butyl peroxybenzoate (145 mg, 0.75 mmol, 2.5 equiv.), copper(I) thiophene-2-carboxylate (5 mg, 0.03 mmol, 10 mol%) in degassed PhCF₃/MeCN (3 mL, 3 : 1 v/v). The test-tube was capped, and the reaction mixture was irradiated with LED light (λ = 400 nm) while stirring at room temperature for 12 h. The reaction mixture was treated with saturated solution of sodium carbonate (3 mL) and extracted with DCM (3 × 10 mL). The organic layer was collected, dried over anhydrous sodium sulfate, concentrated under reduced pressure, and the remaining material was purified by flash chromatography on silica gel (hexane/ ethyl acetate 4 : 1 v/v) to give the sulfonyl azide product **10h** (53 mg, 72%) as a colorless oil.


3041, 2955, 2926, 2869, 2257, 2135, 1704, 1358, 1186, 1159, 735 cm⁻¹. – HRMS: calcd for C₉H₁₆N₃O₃S: 246.0912, found 246.0921 [M+H⁺].

(3*R*,7*R*,8*R*,9*S*,10*S*,12*S*,13*R*,14*S*,17*R*)-17-((*R*)-4-(Azidosulfonyl)butan-2-yl)-10,13-dimethylhexadecahydro-1*H*-cyclopenta[*a*]phenanthrene-3,7,12-triyl


triacetate (10i)

According to **GP3**, the reaction was carried out with acid **S14** (80 mg, 0.15 mmol), DABSO (54 mg, 0.23 mmol, 1.5 equiv.), acridine catalyst **A1** (4.5 mg, 0.015 mmol, 10 mol%), sodium azide (30 mg, 0.45 mmol, 3.0 equiv.), *tert*-butyl peroxybenzoate (73 mg, 0.37 mmol, 2.5 equiv.), copper(I) thiophene-2-carboxylate (5 mg, 0.03 mmol, 10 mol%) in degassed PhCF₃/MeCN (3 mL, 3 : 1 v/v). The test-tube was capped, and the reaction mixture was irradiated with LED light (λ = 400 nm) while stirring at room temperature for 12 h. The reaction mixture was treated with saturated solution of sodium carbonate (3 mL) and extracted with DCM (3 × 10 mL). The organic layer was collected, dried over anhydrous sodium sulfate, concentrated under reduced pressure, and the remaining material was purified by flash chromatography on silica gel (hexane/ ethyl acetate 4 : 1 v/v) to give the sulfonyl azide product **10i** (110 mg, 62%) as a colorless solid.


 $\begin{array}{l} \text{m.p.: } 75-77 \ ^{\circ}\text{C.} - [\alpha]_D^{23} = + 23.3 \ (\text{c} \ 0.14, \ \text{CHCl}_3). - {}^{1}\text{H} \ \text{NMR} \\ \text{N}_3 \ (500 \ \text{MHz}, \ \text{CDCl}_3): 5.08 \ (1 \ \text{H}, \ \text{t}, \ J = 2.9 \ \text{Hz}), \ 4.92 \ (1 \ \text{H}, \ \text{q}, \ J \\ = 3.1 \ \text{Hz}), \ 4.58 \ (1 \ \text{H}, \ \text{tt}, \ J = 11.4, \ 4.3 \ \text{Hz}), \ 3.36 \ (1 \ \text{H}, \ \text{ddd}, \ J = 14.0, \ 11.5, \ 4.4 \ \text{Hz}), \ 3.21 \ (1 \ \text{H}, \ \text{ddd}, \ J = 14.0, \ 11.0, \ 5.0 \ \text{Hz}), \\ 2.15 \ (3 \ \text{H}, \ \text{s}), \ 2.12-1.84 \ (10 \ \text{H}, \ \text{m}), \ 1.83-1.41 \ (13 \ \text{H}, \ \text{m}), \end{array}$

1.39–1.02 (5 H, m), 0.99–0.82 (6 H, m), 0.76 (3 H, s) ppm. – ¹³C NMR (125 MHz, CDCl₃): 170.6, 170.5, 170.4, 75.3, 74.1, 70.7, 53.6, 47.3, 45.3, 43.5, 41.0, 37.9, 34.8, 34.7, 34.4, 34.2, 31.3, 29.2, 29.0, 27.3, 27.0, 25.7, 22.9, 22.7, 21.7, 21.59, 21.55, 17.7, 12.4 ppm. – IR: 2948, 2111, 1714, 1653, 1510, 1474, 1241, 1056, 801 cm⁻¹. – HRMS: calcd for C₂₉H₄₅N₃NaO₈S: 618.2820, found 618.2816 [M+H⁺].

15-(Azidosulfonyl)pentadecane-1,7,8-triyl triacetate (10j)

According to **GP3**, the reaction was carried out with acid **S10** (65 mg, 0.15 mmol), DABSO (54 mg, 0.23 mmol, 1.5 equiv.), acridine catalyst **A1** (4.5 mg, 0.015 mmol, 10 mol%), sodium azide (30 mg, 0.45 mmol, 3.0 equiv.), *tert*-butyl peroxybenzoate (73 mg, 0.37 mmol, 2.5 equiv.), copper(I) thiophene-2-carboxylate (5 mg, 0.03 mmol, 10 mol%) in degassed PhCF₃/MeCN (3 mL, 3 : 1 v/v). The test-tube was capped, and the reaction mixture was irradiated with LED light (λ = 400 nm) while stirring at room temperature for 12 h. The reaction mixture was treated with saturated solution of sodium carbonate (3 mL) and extracted with DCM (3 × 10 mL). The organic layer was collected, dried over anhydrous sodium sulfate, concentrated under reduced pressure, and the remaining material was purified by flash chromatography on silica gel (hexane/ ethyl acetate 4 : 1 v/v) to give the sulfonyl azide product **10** (38 mg, 52%) as a colorless oil.

¹H NMR (500 MHz, CDCl₃): 5.01–4.93 (2 H, m), 4.02 (2 H, t, *J* = 6.7 Hz), 3.32– 3.25 (2 H, m), 2.07 (6 H, s), 2.02 (3 H,

s), 1.88 (2 H, p, *J* = 7.7 Hz), 1.63–1.37 (8 H, m), 1.37–1.24 (12 H, m) ppm. – ¹³C NMR (125 MHz, CDCl₃): 171.3, 170.7, 73.8, 64.5, 56.0, 30.8, 30.8, 29.1, 29.0, 28.8, 28.6, 27.9, 25.8, 25.2, 25.1, 23.4, 21.1, 21.0 ppm. – IR: 3647, 2936, 2136, 1738, 1369, 1239, 1160, 1026 cm⁻¹. – HRMS: calcd for C₂₁H₃₇N₃O₈SNa: 514.2194, found 514.2186 [M+Na⁺].

Computational Data

Software

All geometry optimizations, vertical excitations, vibrational frequency calculations, and IRCs were conducted using the Gaussian 16 program.¹⁰ Quantum chemical calculations were performed using the Stampede2 supercomputer at the Texas Advanced Computing Center (TACC) hosted by the University of Texas in Austin, Texas.¹¹ The CREST utility¹² of the xTB software suite^{13,14} was used in conjunction with manual conformational searching to locate initial starting geometries for optimization via DFT. General day-to-day visualization and monitoring of calculations was performed with Chemcraft.¹⁵ The quasi-harmonic approximation from Grimme¹⁶ was applied via GoodVibes¹⁷ to all structures to correct for potential errors associated with low magnitude vibrational frequencies using a cut-off frequency of 50 cm⁻¹. Final images of minima and transition state geometries were rendered using CYLview.¹⁸ Spin density images were generated from the optimized .chk files (converted to .fch) with the Gaussian Cubegen utility (with spin=SCF and npts = 300). VMD¹⁹ was used to render the final images from the generated .cube files with a green isosurface and an isovalue of 0.03 au for all radical species.

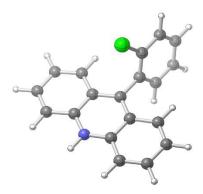
Details of Gaussian DFT calculations

Geometries of ground state minima and transition states were optimized without constraints using the D3(BJ)^{20,21} dispersion-corrected PW6B95²² DFA. The PW6B95-D3(BJ) DFA was selected on the basis of its excellent general performance in both thermochemical and NCI benchmarking studies.²³ DFT calculations were performed using the def2-TZVP²⁴ basis set in the SMD solvation model²⁵ using the "dichloromethane" keyword. Convergence criteria for these calculations was set to "tight" and an ultrafine grid was selected. Frequency calculations at the same level of

theory were used to confirm the nature of the isolated stationary points. Geometries with zero imaginary frequencies were deemed minima whereas those with exactly one imaginary frequency along the chemical path of interest were deemed transition states. IRC calculations were performed to further corroborate that the located transition states connected reactants to products. Single point calculations were performed at the def2-TZVP-optimized stationary points at the PW6B95-D3(BJ) / def2-TZVPPD / SMD (DCM) level of theory. The electronic energy calculated at the def2-TZVPPD level replaced that calculated at the def2-TZVPPD basis set was implemented in G16 by appending diffuse functions obtained from the EMSL BSE²⁶ to the G16-available def2-TZVPP basis set.

4. Calculation of Reduction Potential of HA1⁺/HA1

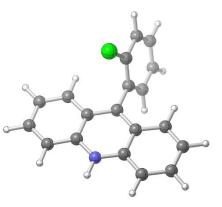
The standard potential of the HA⁺/HA redoc couple was calculated at the PW6B95-D3(BJ) / def2-TZVP // def2-TZVPPD / SMD (MeCN) level of theory relative to the absolute hydrogen potential in MeCN (4.43 V vs SCE).²⁷


HA1⁺ (MeCN)

E(RPW6B95D3) = -1248.42706771

charge i manuphenty i	Charge = 1	Multiplicity = 1
-----------------------	------------	------------------

- C -7.9418585362 -1.3235911305 -0.7662815109
- C -6.8099935092 -1.7880630874 -0.1683675303
- C -5.7553462106 -0.8972552283 0.0775471654
- C -5.8575341068 0.4718253461 -0.2795137085
- C -7.0505630163 0.9047916643 -0.9090507387
- C -8.0632731981 0.0299230088 -1.1438092199
- C -4.7784433498 1.323031213 -0.0125994616


С	-3.6197697224	0.8206836395	0.5931005449
С	-3.5605915665	-0.5564502907	0.9236964259
С	-2.418825345	-1.106062717	1.5251040254
Η	-2.4042928695	-2.1584736009	1.7622755298
С	-1.3582230232	-0.2955909095	1.7934125796
С	-1.3956418221	1.0797912533	1.4822607975
С	-2.4955915035	1.625080683	0.900556561
Η	-8.7575197402	-2.0020558751	-0.9599371333
Η	-6.7027809366	-2.8223782726	0.1184295574
Η	-7.1389709476	1.9372365436	-1.2027552287
Η	-8.9672031126	0.3659629733	-1.6253142252
Η	-0.4758918205	-0.7097219461	2.2550015612
Η	-0.5431258743	1.6976962055	1.7130935557
Η	-2.5279652204	2.6770705941	0.6693273185
Ν	-4.6229908711	-1.3346489432	0.653918827
С	-4.8736092634	2.7591803007	-0.3493731614
С	-4.1956699339	3.3089248796	-1.4297039579
С	-5.6599118172	3.5980818926	0.4318738382
С	-4.2868114248	4.6551206542	-1.727854417
С	-5.7522500337	4.9468217254	0.1482959831
Η	-6.1939055253	3.1790967295	1.2704434256
С	-5.0651408529	5.4740613336	-0.9314192232
Η	-3.7546907691	5.0523802708	-2.5766735174
Η	-6.361929765	5.5835130949	0.7691774238
Η	-5.134807222	6.5254584304	-1.1614508001
Cl	-3.2300552513	2.2920804794	-2.4506623806
Η	-4.5655083431	-2.31548848	0.8992554125
			6404

HA1 (MeCN)

E(UPW6B95D3) = -1248.56334669

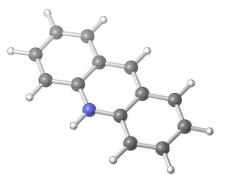
Charge = 0Multiplicity = 2-7.9997188128 -1.3146341236 -0.7522645474 С -6.8396255511 -1.7706163625 -0.1566789414 C -5.7843471678 -0.8983740306 0.077024311 С -5.8759433836 0.4691296437 -0.2794341948 C -7.0678700471 0.8923985634 -0.8948741759 C -8.1092673621 0.0210935784 -1.1248920097 С С -4.7728531576 1.3257674102 -0.0242746304 С -3.599296355 0.8085056021 0.5849731395-3.5434913713 -0.564926179 0.9209921744 C C -2.4125738759 -1.1103158586 1.5155621036 H -2.4049193278 -2.163587951 1.7550195926 C -1.3209566969 -0.311390867 1.7948738937 -1.3557751666 1.0444777211 1.4848945052 С C -2.4730777592 1.5910779734 0.8943942013 H -8.8144239108 -1.9989278466 -0.9301336574 H -6.7349703755 -2.8060468985 0.1322848249 H -7.1588671785 1.9243213262 -1.19380791 -9.0105558885 0.3777412725 Η -1.5988239771 -0.4464921653 -0.7425922249 2.2564537652 Η Η -0.5067756259 1.6716932915 1.7083834341 -2.4935831412 2.6441163194 0.6613463199 Η Ν -4.6305121463 -1.3509195513 0.6545240111

С	-4.8631724031	2.7587431658	-0.3583541686
С	-4.1442219563	3.3382603742	-1.3997818231
С	-5.6950486175	3.5991979544	0.3790779378
С	-4.227847663	4.6876363216	-1.6917965828
С	-5.7940609602	4.9488136534	0.100944701
Η	-6.266701741	3.1711928222	1.1885925893
С	-5.0557010125	5.4954506082	-0.9353527325
Η	-3.6534590749	5.0954035331	-2.5077775419
Η	-6.4433085073	5.5733187975	0.6943742814
Η	-5.1231283748	6.5482109861	-1.1607443839
Cl	-3.1186886149	2.3485000398	-2.3944003108
Н	-4.5781529374	-2.3260628851	0.8999770519

5. Calculation of the pK_{BH^+} of the lowest singlet excited state of acridine

The ground electronic states of acridinium cation, **AcrH**⁺, and acridine, **Acr**, were optimized without constraints at the PW6B95-D3(BJ) / def2-TZVP / SMD (MeCN) level of theory. TD-DFT calculations were employed to optimize the first singlet excited state of both acridinium cation, **AcrH**^{+*}, and acridine, **Acr**^{*}. Frequency calculations at the same level of theory confirmed the nature of the isolated stationary points.

The Förster equation was used²⁸ to estimate the $pK_{BH^+}^*$ of the first singlet excited state of acridine according to equation 1:

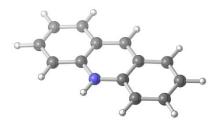

$$pK_{BH^+}^* = pK_{BH^+} - (hv_1 - hv_2)/2.3RT$$
(1)

where $pK_{BH^+} = 12.7$ (ground state acidity of acridinium in MeCN)²⁹, hv_1 is the computed Gibbs free energy of the 0–0 electronic transition of **AcrH**⁺ to the first singlet excited state **AcrH**^{+*}, and hv_2 is the computed Gibbs free energy of the 0–0 electronic transition of **Acr** to the first singlet excited state **Acr**^{*}.

AcrH⁺

E(RPW6B95D3) = -556.993480131

	Charge = 0	Multiplicity = 1
С	-7.9226881823	-1.3275996813 -0.8335494745
С	-6.806156719	-1.8109775053 -0.2190830222
С	-5.7505292837	-0.930310867 0.05522086
С	-5.8415121	0.4395342933 -0.2997351241
С	-7.0199765955	0.8967313209 -0.9363138852
С	-8.035158194	0.0322705777 -1.1962096763
С	-4.770582814	1.2728924383 -0.0078786448
С	-3.6283185652	0.7906659383 0.6162402582
С	-3.5718072656	-0.5848758976 0.956435713
С	-2.4391217959	-1.1187992826 1.5869057256
Η	-2.4168233042	-2.1680552 1.8367208245
С	-1.3921357345	-0.2925360453 1.8674752394
С	-1.4264044443	1.079919521 1.5379966799
С	-2.5174693432	1.6107681961 0.9271868689
Η	-8.740034693	-1.997613357 -1.0489916374
Η	-6.7159145506	-2.8492823677 0.0589749207
Η	-0.5164221731	-0.6943954719 2.3522737789
Η	-2.56476682	2.6563812957 0.66653653
Ν	-4.6286898169	-1.3647864237 0.6599994454
Η	-8.9340954168	0.3764122577 -1.6813154923
Η	-0.5781625626	1.7008393643 1.7763697562
Η	-4.8270578204	2.3185214495 -0.272960859
Η	-7.0847152539	1.9393851524 -1.2049726214



Н -4.5761537315 -2.3450421659 0.9087310065

AcrH^{+*}

E(RPW6B95D3) = -556.985211426

	Charge = 0	Multiplicity = 1	
С	3.6179	94 -0.72835 0.0)7355
С	2.385	16 -1.38441 0.0)7815
С	1.2032	23 -0.6497 0.0	735
С	1.2192	71 0.76442 0.0	6426
С	2.4662	29 1.38736 0.0	5976
С	3.6563	35 0.64723 0.0	6433
С	-0.000	01 1.46713 0.0)5991
С	-1.219	72 0.76439 0.0	6424
С	-1.2032	21 -0.64973 0.0)7347
С	-2.385	13 -1.38446 0.0)7809
Η	-2.334	1 -2.4628 0.08	8541
С	-3.617	92 -0.72843 0.0)7347
С	-3.656	35 0.64715 0.0)6426
С	-2.466	31 1.38731 0.0)5972
Η	4.527	51 -1.30551 0.0)7709
Η	2.334	16 -2.46275 0.0	08548
Η	-4.527	47 -1.30561 0.0	07698
Η	-2.507	25 2.46567 0.0)5235
Ν	0.000	02 -1.28533 0.0)7813
Η	4.600	14 1.16769 0.0)604
Η	-4.600	016 1.16759 0.0)6031

Η	-0.00002	2.54517	0.0535
Н	2.5072	2.46572	0.05239
Н	0.00003	-2.29614	0.08319

Acr

E(RPW6B95D3) = -556.530476251

	Charge = 0	Multiplicity = 1	
С	-7.9118610261	-1.3330171753	-0.8267851625
С	-6.790673068	-1.79672161 -	0.2159680708
С	-5.7102729722	-0.9219549039	0.070124274
С	-5.8327352086	0.453858284	-0.3001337671
С	-7.0195820138	0.8990156355	-0.9366469403
С	-8.0309332565	0.0304034908	-1.192885049
С	-4.7714721148	1.298604301	-0.0156307854
С	-3.6377741405	0.8021048365	0.6082363443
С	-3.6114129542	-0.5890823838	0.9386716161
С	-2.4558465797	-1.1094376904	1.5776899722
Η	-2.444665191	-2.1601976917	1.8234461718
С	-1.4027890203	-0.3012819451	1.865694408
С	-1.4309202353	1.0765491691	1.5372866418
С	-2.5179948829	1.6128349334	0.9261766974
Η	-8.7272834268	-2.0072547279	-1.0394926316
Η	-6.689898809	-2.8333266498	0.0667864555
Η	-0.5290720317	-0.7079289483	2.3515147964
Η	-2.5531783192	2.6614483985	0.6704515384
Ν	-4.6254947161	-1.4124635022	0.6708272464

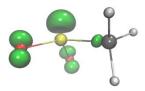


Η	-8.9325787907	0.3713678822	-1.67725628
Η	-0.5803880919	1.6950488322	1.7779610834
Η	-4.8279772273	2.344981082	-0.2806436647
Η	-7.0966417136	1.940880093	-1.2102078142

Acr*

E(RPW6B95D3) = -556.521138939

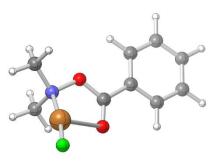
	Charge = 0 Multiplicity = 1
С	3.60349 -0.74524 -0.09507
С	2.36537 -1.39916 -0.11067
С	1.16226 -0.6868 -0.0936
С	1.21485 0.74245 -0.05956
С	2.46039 1.36824 -0.04445
С	3.65158 0.62913 -0.06212
С	0.00000 1.44632 -0.04297
С	-1.21484 0.74243 -0.05955
С	-1.16223 -0.68682 -0.0936
С	-2.36532 -1.39921 -0.11065
Η	-2.31606 -2.47723 -0.13651
С	-3.60346 -0.74531 -0.09505
С	-3.65157 0.62906 -0.0621
С	-2.46039 1.36819 -0.04443
Η	4.51258 -1.32509 -0.10895
Η	2.31613 -2.47718 -0.13652
Η	-4.51253 -1.32518 -0.10892
Η	-2.50044 2.44733 -0.01856



Ν	0.00002 -1.37043	-0.11003
Η	4.5983 1.14527	-0.04972
Н	-4.5983 1.14518	-0.04969
Н	-0.00002 2.52633	-0.01797
Н	2.50041 2.44738	-0.01858

E(UPW6B95D3) = -589.147663368

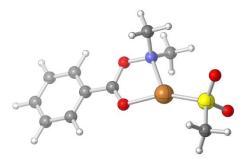
	Charge = 0	Multiplicity = 2	2
S	0.4239244662	2.5686412502	-0.0171923999
0	1.8293933433	2.6031427341	0.34951688
0	-0.3894414089	3.7649801265	0.1185446536
С	0.3144596886	2.0231343337	-1.7204794792
Η	0.8476154663	1.0834128967	-1.801226835
Η	-0.7355208223	1.9135115998	-1.9644632167
Η	0.7831186866	2.7995308091	-2.3195526728



16

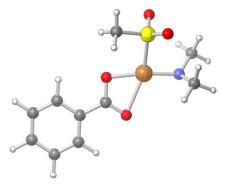
E(RPW6B95D3) = -2297.12450657

Charge = 0Multiplicity = 1Cu-1.27857005481.35162273690.5179281706O-3.62617655750.06281041580.8623485524O-3.31064860430.4186232806-1.3330957346C-3.7910656596-0.2747364669-0.2792024706C-4.5358615106-1.4702791494-0.7176945926


С	-4.6811748327	-1.8062689403	-2.0592256135
С	-5.1025244168	-2.270837931	0.2668786997
С	-5.391096969	-2.9389437995	-2.4080131093
Η	-4.2425427513	-1.1868606732	-2.8236015963
С	-5.8104797489	-3.4016698264	-0.0878956174
Η	-4.9792944753	-1.9958146969	1.3020732692
С	-5.9554196751	-3.7357614555	-1.4250852685
Η	-5.5043975816	-3.200854345	-3.44822177
Η	-6.2495903766	-4.0231309095	0.6765120729
Η	-6.5095574532	-4.6193890116	-1.7018729966
Ν	-2.5325364863	1.5851132994	-0.9931568049
С	-3.4870024696	2.6669257943	-0.7264394053
Η	-2.9109403811	3.5698062157	-0.5545529274
Η	-4.1471057451	2.8052159803	-1.5811917691
Η	-4.0578117467	2.4319198306	0.1625704624
С	-1.7828282009	1.8465144097	-2.2243230872
Η	-1.1829921866	2.7334492796	-2.0534855717
Η	-1.1332915927	1.0050968414	-2.4306075421
Η	-2.4629883109	2.0145633034	-3.0581838417
F	0.0099425874	1.3056774376	1.8225697418

E(RPW6B95D3) = -2786.30600663

Charge = 0 Multiplicity = 1 Cu -0.7457822168 -0.1214502144 0.1941405497 O -2.3850536542 -0.7393910319 -0.9500723087


0	-1.6402009823	0.637305068	-2.5607843163
С	-2.4829358784	-0.2719533159	-2.0678991818
С	-3.5368942715	-0.6459148267	-3.0179348644
С	-3.5855768265	-0.1177002 -	4.3039432601
С	-4.4984909086	-1.5582997731	-2.5973616834
С	-4.5952036495	-0.5055585391	-5.162153134
Η	-2.8390163108	0.5874121973	-4.6292372673
С	-5.5056775495	-1.9393082925	-3.4600696083
Η	-4.4456057122	-1.9579744937	-1.5976559384
С	-5.5537391885	-1.4137198654	-4.7416881218
Η	-4.6350873458	-0.100337706	-6.1607369963
Η	-6.2529872953	-2.6456767928	-3.1352241914
Η	-6.3412149727	-1.7135073847	-5.4156974268
Ν	-0.5826338673	1.0167207144	-1.6542034577
С	-0.7534889911	2.4483209756	-1.439086549
Η	0.047407628	2.7700836554	-0.7815402548
Η	-0.7022969691	2.9983007745	-2.3783140965
Η	-1.7051565155	2.6265555916	-0.9513118161
С	0.654740827	0.7094867381	-2.3618905118
Η	1.4741853359	1.0107083482	-1.7176777193
Η	0.7139708193	-0.3593595236	-2.5330267784
Η	0.7133450425	1.2471638712	-3.3077265149
S	0.6740770243	-0.1397661267	1.8716459316
0	1.0316415726	1.2381780365	2.2659263953
0	1.8337877777	-1.005673442	1.5811162335
С	-0.027563973	-0.8403024201	3.3616170208
Η	0.7422133038	-0.7901630668	4.1293563805

H -0.8950346038 -0.2563209722 3.655144101

Н -0.3107632887 -1.871537943 3.1725816449

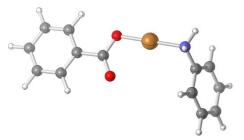
18

E(RPW6B95D3) = -2786.30980720 Charge = 0Multiplicity = 1Cu -1.3151733783 0.6558420073 -0.3660863476 \mathbf{O} -2.4343036424 -0.9099575279 -0.5233703723 -2.3151651852 0.1870525822 -2.4158522062 Ο C -2.7470190269 -0.7742294199 -1.7596662043 -3.6263046128 -1.7985210515 -2.3709251251 С С -4.0043395797 -1.6712334641 -3.7012826707 С -4.0696362568 -2.8845282475 -1.6268774577 -4.8199624719 -2.622991301 -4.2831994631 C H -3.6520091888 -0.8227636015 -4.2658118032 С -4.8842758287 -3.8365266609 -2.2109778908 H -3.7708415901 -2.9735921094 -0.5948960854 C -5.2597042447 -3.7062199208 -3.53853467 H -5.1133656378 -2.5224939557 -5.316617951 Н -5.2268604974 -4.680543632 -1.6326449792 H -5.8958135393 -4.4499437747 -3.9936177554 N -0.4828265812 2.2753440304 -0.4102219825 С -0.4714207289 3.1158121968 0.7543785183 H 0.4180582614 2.9735040036 1.3744896535 Н -0.4674990353 4.1549655675 0.4128936866 -1.3641009421 2.9627718086 Η 1.351128638 C 0.7807067875 2.2761514751 -1.0896052071

Η	1.5995879234	1.9599384638	-0.436216381
Η	0.7466052722	1.6447786994	-1.9717827828
Η	0.9979939499	3.3004866401	-1.405348047
S	-0.0427388605	0.0596785075	1.3852946101
0	-0.65962438	0.6193163536	2.5701587777
0	1.3766163948	0.2686457796	1.1867162066
С	-0.3032105058	-1.697022522	1.4152141779
Η	0.2820295149	-2.0565784158	2.2584069971
Η	-1.3590369719	-1.8915016432	1.5509487546
Η	0.0595597027	-2.1135144783	0.4826650632

E(RPW6B95D3) = -2786.36719013

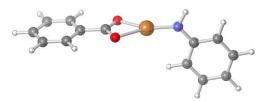
	Charge = 0	Multiplicity = 1	
Cu	-2.3878588935	-0.7991634935	0.9716063654
0	-3.7148663016	-1.8787990245	0.1632969635
0	-4.4616335524	-0.006884972	-0.7862702496
С	-4.5222174794	-1.2197174048	-0.5808863943
С	-5.6045829639	-2.0313821312	-1.2278166575
С	-6.5110611654	-1.4123852275	-2.0783008969
С	-5.7183234873	-3.3946715348	-0.9879986201
С	-7.5167875806	-2.1447390019	-2.6821176073
Η	-6.4133056743	-0.3532229596	-2.2558222313
С	-6.7251222187	-4.1283871774	-1.5896119826
Η	-5.0123491855	-3.8688909899	-0.3258303342
С	-7.6256817116	-3.5046440283	-2.4380098725

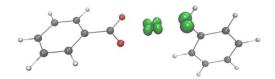

• .

Η	-8.2170563254	-1.656710995	-3.3427333031
Η	-6.8087212832	-5.1871286771	-1.3969491131
Η	-8.4111388971	-4.0768711213	-2.9078470093
Ν	-0.9365074625	0.3172672271	1.766848124
S	-1.5514798067	1.8804393248	2.1534259016
0	-0.4445427362	2.737248842	2.4625941573
0	-2.5601684965	1.6648235994	3.1453735653
С	-2.2984895215	2.3898234087	0.6526684828
Η	-1.538627839	2.5662341052	-0.0994725054
Η	-3.0222685766	1.6439996392	0.3292049285
Η	-2.7990790801	3.3242964836	0.894158036
С	0.1787131159	0.4061504859	0.7998129086
Η	0.5206404089	-0.6039714707	0.6054116016
Η	-0.1663149713	0.8407489615	-0.1303703278
Η	0.996094858	0.9955421502	1.209583648
С	-0.4647300802	-0.3210989298	3.0195271827
Η	-1.2835172598	-0.3960516072	3.7230138827
Η	-0.1163117468	-1.3145186374	2.7626253335
Η	0.3554325043	0.2471144064	3.4553572434

E(RPW6B95D3) = -2350.50110917

Charge = 0Multiplicity = 1Cu-1.1784377153-0.62771781830.6855533559O-3.5374861456-1.93688625021.5004279524O-2.7603443224-0.9153871627-0.3207302511

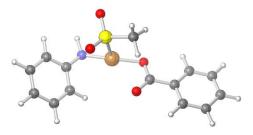



S116

С	-3.6547256989	-1.5554720034	0.336339632
С	-4.9245527695	-1.8389797559	-0.411889571
С	-5.0940827035	-1.428086002	-1.7275720603
С	-5.9501414707	-2.5273078612	0.2226583793
С	-6.2728668267	-1.7018417571	-2.3987324148
Η	-4.2939721592	-0.8949386984	-2.2150511257
С	-7.1289613321	-2.8015037254	-0.4461252366
Η	-5.8048124196	-2.841507375	1.2439880324
С	-7.2921631811	-2.3887438087	-1.7591312009
Η	-6.3976763636	-1.3800363593	-3.421467526
Η	-7.9213014691	-3.3368487884	0.0545621174
Η	-8.2116500956	-2.6024383451	-2.2827157943
Ν	0.463683592	-0.3401327945	1.7151231553
Η	0.2581225674	0.3707086467	2.4070390453
Η	1.1702665057	0.0352701953	1.0946234694
С	0.9225511567	-1.5406170482	2.3423094901
С	0.4134579476	-1.9090727586	3.5766480805
С	1.8500339298	-2.3464886095	1.7031044135
С	0.8369064685	-3.084012423	4.1702487209
Η	-0.3162345552	-1.2797412911	4.0638438022
С	2.2665173805	-3.5215809378	2.3029281057
Η	2.2398708599	-2.0540297518	0.7393309061
С	1.7634990096	-3.8960205368	3.5374562978
Η	0.4373035364	-3.3651902388	5.1322935614
Η	2.9898595978	-4.1452382361	1.8006742864
Η	2.090220126	-4.8127801045	4.0023230767

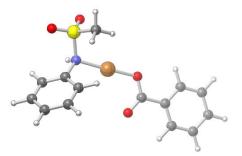
E(UPW6B95D3) = -2349.86283224

	Charge = 0	Multiplicity = 2	
Cu	-1.4756524341	0.3107474418	0.9961379614
0	-3.111388565	-0.0990954704	-0.2217896356
0	-1.4328007282	1.1174573774	-0.8967632775
С	-2.5477826705	0.5737831641	-1.1265056626
С	-3.1807574073	0.7259732967	-2.4573215831
С	-2.5664319915	1.5054231553	-3.4293814599
С	-4.3813926795	0.0877929526	-2.7401816139
С	-3.1492542411	1.6465438927	-4.6744388378
Η	-1.6342766893	1.9945388429	-3.1965316124
С	-4.9614481056	0.2271909502	-3.9873159663
Η	-4.8476570056	-0.5153960543	-1.9776686476
С	-4.3463369952	1.0065886476	-4.9543000314
Η	-2.6712469142	2.2535013751	-5.4276929456
Η	-5.8925458929	-0.2716491608	-4.2073876544
Η	-4.8000807568	1.1151471272	-5.9275579186
Ν	-0.6811315962	0.1459813387	2.6423327044
Η	-0.8453528752	0.8576263473	3.3428891168
С	0.1021157185	-0.8524702927	3.1283868145
С	0.5924006115	-0.8317125981	4.4454529151
С	0.4356641585	-1.9452733516	2.3103582643
С	1.3784089611	-1.8603645647	4.9167097584
Η	0.3394586501	0.0032270006	5.0828414266
С	1.2223933215	-2.9663788818	2.791593742



Η	0.0576138376	-1.9660738218	1.2979207013
С	1.6998474282	-2.9333969008	4.0965112871
Η	1.744275949	-1.8295018507	5.9316153005
Η	1.4681871572	-3.7983623892	2.1496587665
Η	2.3153363452	-3.7366851735	4.4696221777

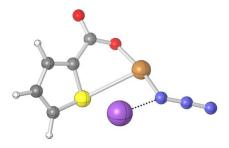
E(RPW6B95D3) = -2939.02963014


	Charge = 0	Multiplicity = 1	
Cu	-0.8319047715	0.1856034429	0.6235819614
0	-1.9696599969	-0.0477034092	-0.8671314613
0	-1.9215790353	2.1670703935	-0.9105549336
С	-2.2846231106	1.0908183974	-1.3807900457
С	-3.1434475138	1.0334186205	-2.599084589
С	-3.5008608997	2.2145732059	-3.2358002474
С	-3.5902211743	-0.1810905517	-3.1040033517
С	-4.2960122564	2.1825868812	-4.3660572093
Η	-3.1466538452	3.1498217512	-2.8324746619
С	-4.3876911148	-0.2126707102	-4.2335204349
Η	-3.3073511752	-1.0935880768	-2.6048165727
С	-4.7405537609	0.9685852195	-4.8658674199
Η	-4.5699134208	3.102716678	-4.8588418514
Η	-4.7335904008	-1.1581302159	-4.6221062963
Η	-5.3615164995	0.9434073613	-5.7483360605
Ν	0.4535224346	0.1979002884	1.9244240314
S	-2.27848172 0	0.4975894996 2	.3715778454

0	-2.0314848715	1.7649637683	3.0222924008
0	-2.3304493548	-0.7080666165	3.1736364169
С	-3.8277122465	0.6478939641	1.5130559837
Η	-3.7780553345	1.5267746952	0.881744753
Η	-3.9925212885	-0.2549724248	0.9383026145
Η	-4.5762196393	0.7647692404	2.2936364194
С	0.8670690962	1.3654136219	2.4905156374
С	1.1002062985	2.4818634935	1.6710502809
С	1.067085776	1.4812189274	3.874969506
С	1.5072251365	3.6726111875	2.2244197384
Η	0.9505145654	2.3859603119	0.6056861479
С	1.5049146434	2.6690124445	4.4135778609
Η	0.8679579935	0.6269968589	4.5050052096
С	1.7188580067	3.769913727	3.5944504868
Η	1.6741164304	4.52947183	1.5909242006
Η	1.6653033741	2.7493795315	5.4772771325
Η	2.0507091459	4.7027710696	4.0224984945
Η	0.3311381095	-0.5221661861	2.6292257135

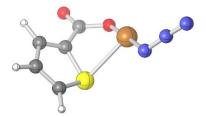
E(RPW6B95D3) = -2939.07278236

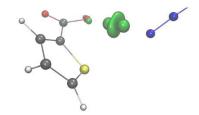
Charge = 0Multiplicity = 1Cu-1.51194797721.0742226949-0.1747295544O-2.3042457263-0.607483139-0.5215221609O-3.29717723990.3275590383-2.2832856418C-3.0802780374-0.6288326385-1.5414520561



С	-3.752031188	-1.945262277	-1.8012352066
С	-4.639700961	-2.0645353055	-2.8621831413
С	-3.5041377024	-3.0484490414	-0.9945248009
С	-5.2730551875	-3.2681034617	-3.1132130119
Η	-4.8235050488	-1.2009914602	-3.481468943
С	-4.1352401869	-4.2538374751	-1.2454231599
Η	-2.8138946384	-2.949243976	-0.1726064679
С	-5.021222392	-4.3653839738	-2.3047828047
Η	-5.9629391222	-3.35248588	-3.9390161056
Η	-3.9368118257	-5.1071700786	-0.614911674
Η	-5.5147280377	-5.3053418847	-2.5001101045
Ν	-0.6073012182	2.8143754882	0.2256980791
S	-0.0112340855	2.9124888708	1.8455839564
0	0.3369256863	4.269745078	2.1274893435
0	0.9904240232	1.8938226092	1.911119479
С	-1.4128133174	2.4599834992	2.7897712992
Η	-1.0906179757	2.4968092653	3.8272052848
Η	-2.2056219595	3.1806709082	2.6236296159
Η	-1.716452922	1.4547938799	2.5177552334
Η	0.2448379076	2.7495515578	-0.3325282689
С	-1.389108815	3.9518227667	-0.2112151924
С	-2.7632252485	3.9171355113	-0.0620549645
С	-0.7602289333	5.0479246806	-0.7737100624
С	-3.5185384012	4.9994228546	-0.4757706584
Η	-3.2303949175	3.0372392859	0.3568980155
С	-1.5233350012	6.1201705147	-1.1980268898
Η	0.3135439293	5.0562822201	-0.8813181523

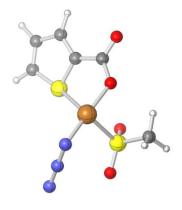
С	-2.899873451	6.0997738313	-1.0445405007
Η	-4.5910306958	4.9746393566	-0.3655674278
Η	-1.0399053857	6.9738465498	-1.6461788398
Η	-3.4911002904	6.9391149312	-1.3755519685


E(RPW6B95D3) = -2710.34829951


	Charge = 0	Multiplicity = 1	
Cu	-0.2907046406	-0.7214379863	-0.5046487652
0	-1.777361211	0.4297139874	-0.6256680555
С	-2.4694628015	0.6105106225	-1.6897387177
0	-3.6839048997	0.7398726285	-1.7244187007
S	-0.0199594024	0.9604386048	-3.0574747465
С	-1.7235280913	0.6994452795	-2.9842095048
С	-2.2488471224	0.6520433427	-4.2388599982
С	-1.2822514278	0.7944409599	-5.2611833612
Η	-1.5091391287	0.7777962725	-6.3143364218
С	-0.0268916418	0.9694447509	-4.7703104714
Η	0.8864775131	1.1324794011	-5.3151216874
Η	-3.3041413858	0.5191991182	-4.4089858289
Ν	2.3946014281	-3.1039828133	0.8015488022
Ν	1.7669884749	-2.525461167	0.0493718726
Ν	1.1353331177	-1.9370904329	-0.775450007
Na	0.9656582193	-1.8140911487	-3.0521659185

E(UPW6B95D3) = -2547.77031162

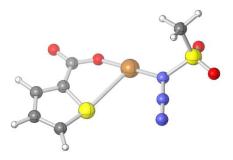
	Charge = 0	Multiplicity = 2	2
Cu	-0.3632655039	-0.2693976265	-0.9349602137
0	-1.9975253366	0.5556254884	-0.5130425785
С	-2.7478122045	0.872464448	-1.5271264859
0	-3.9409383948	1.0674437873	-1.4721182506
S	-0.3692334655	1.5666274383	-2.7917175872
С	-1.996081437	0.9590734597	-2.8073326531
С	-2.3257889617	0.5028601223	-4.0415816601
С	-1.2603126562	0.6151844147	-4.9681873756
Η	-1.3296505262	0.3134938467	-6.0001244831
С	-0.1326442044	1.1464775111	-4.4270492518
Η	0.8008942626	1.3659781721	-4.913337843
Η	-3.2875655131	0.0735815407	-4.2676455661
Ν	1.2955905439	-1.0292141746	-1.3994981799
Ν	1.7223397024	-1.9820395347	-0.8116681582
Ν	2.188514555	-2.8834410735	-0.2993593632



26

E(RPW6B95D3) = -3136.93280048

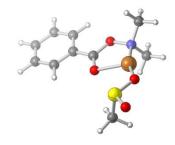
	Charge = 0	Multiplicity = 1	
Cu	0.0237390754	-0.582227709	-0.9737585513
0	-1.7364722847	-0.0159493288	-0.8452991622
С	-2.559671176	0.2245658883	-1.8296827835



S123

0	-3.7634600504	0.1508775519	-1.6889741995
S	-0.3594729816	1.1137188131	-3.3352368683
С	-1.9866337201	0.6032804465	-3.1370258977
С	-2.6419035896	0.6105218098	-4.3341826536
С	-1.8211437564	1.0092694884	-5.4082307615
Η	-2.1542696969	1.0834479796	-6.4298930274
С	-0.5507309032	1.3030264809	-5.0143302982
Η	0.2716070598	1.6496764029	-5.614609605
Η	-3.6775192158	0.3289515136	-4.4240086984
Ν	1.6695356402	-1.3809773553	-0.9655806331
Ν	2.7409222394	-0.8448501584	-1.001399253
Ν	3.7810307398	-0.3991120464	-1.0257134844
S	0.585916265 1	.1227065085	0.4656340088
0	0.0057195059	2.2901822972	-0.123047402
0	1.9768709476	1.1027352977	0.8066059613
С	-0.376295145	0.5258068815	1.8264911776
Η	-0.2414822726	1.2648379924	2.6148346093
Η	-1.40528944 ().4620834417	1.4953742757
Η	0.0333504895	-0.4369882961	2.1119898363

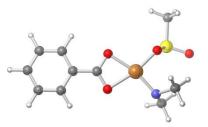
E(RPW6B95D3) = -3136.97570826


Charge = 0 Multiplicity = 1 Cu -1.1507227266 -0.6265385763 -0.4442329463 O -2.7364325236 0.1660609278 -1.0424234432 C -3.1723352056 0.4351537684 -2.2195817688

0	-4.3544919587	0.585318085	-2.4940170691
S	-0.4770842364	0.6116964722	-3.0394137313
С	-2.1723376478	0.592015474	-3.3128211764
С	-2.4410818117	0.7599922951	-4.6395007006
С	-1.2810650514	0.8899565686	-5.4323672494
Η	-1.2897409852	1.0274018897	-6.5010679065
С	-0.1380319248	0.8269418214	-4.6953019681
Η	0.8796769734	0.9040837728	-5.0350415713
Η	-3.4495697874	0.7864989015	-5.0165139326
Ν	0.5085771604	-1.4991070772	0.1067144128
Ν	1.5472196795	-1.3482209215	-0.5604725212
Ν	2.4569323571	-1.1757883787	-1.1719142544
S	0.6763657818	-2.6465927103	1.4074629529
0	-0.1214097383	-2.100067046	2.4489150442
0	2.0762287355	-2.8613453896	1.5708875981
С	-0.0982602331	-4.0553820465	0.7236152822
Η	-0.0779023506	-4.8174552357	1.4993206716
Η	-1.1205264175	-3.7960909318	0.4705143731
Η	0.462756881	-4.377986043	-0.146885096

E(RPW6B95D3) = -2786.30321878

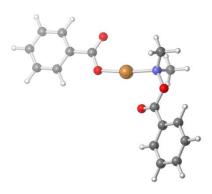
	Charge = 0	Multiplicity = 1	
Cu	0.7929297244	0.3745244982	0.5369577767
0	-1.4766371484	-0.3090145502	0.3875328634
0	-1.3902218525	1.2650438512	-1.2166944365


С	-2.0356414421	0.4101623007	-0.4016048131
С	-3.494280973	0.4655862255	-0.5968874647
С	-4.0860704998	1.2869984455	-1.5502931073
С	-4.2809063997	-0.3480516807	0.2104280239
С	-5.460308727	1.2900182568	-1.690475984
Η	-3.4765407256	1.9157962628	-2.1775560741
С	-5.6534082519	-0.3395475684	0.0656827405
Η	-3.8051351697	-0.9790086043	0.9438013615
С	-6.2430247779	0.4788876975	-0.8847878586
Η	-5.9220425764	1.9253919827	-2.4296385622
Η	-6.2641908204	-0.9703575197	0.6919671022
Η	-7.3160365562	0.4840155881	-0.9985873925
Ν	0.0490757266	1.2537594765	-1.1176933902
С	0.4129696968	2.6706760014	-1.1651693684
Η	1.4958689352	2.7264370119	-1.1498711839
Η	0.0315900762	3.1353083667	-2.0733892708
Η	0.0147080863	3.1702082085	-0.2904580983
С	0.5099832265	0.5471893026	-2.3158438007
Η	1.5944254158	0.5730579377	-2.3113872607
Η	0.1765621327	-0.4830757629	-2.2750276308
Η	0.1312455338	1.0329130167	-3.2138368984
S	1.3379350218	-1.0450939737	3.1150345352
0	2.475032967	-1.5020872533	3.9484201941
0	1.9133710484	-0.227980407	1.9290143214
С	0.8419255586	-2.5424108136	2.2397792815
Η	1.7226849803	-2.9168355878	1.7225372065
Η	0.4901950575	-3.2696216223	2.9669038031

Н 0.0486747326 -2.3076870873 1.5346093854

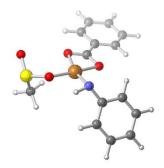
S4

E(RPW6B95D3) = -2786.28907255


	Charge = 0 N	Multiplicity = 1	
Cu	-0.7217651504	0.414257556	-0.6415475556
0	-1.7008372754	-1.3449292458	-0.6773624432
0	-2.2139878736	0.2861939466	-2.0076071402
С	-2.4269601381	-0.8969808643	-1.6109706389
С	-3.482054442 -	-1.7259364372	-2.2148148306
С	-4.2598902463	-1.2205655066	-3.2489628997
С	-3.696902862 -	-3.0157894231	-1.7452602641
С	-5.2489687593	-2.004886322	-3.810658683
Η	-4.0812739234	-0.2177384921	-3.6027811038
С	-4.6873337296	-3.7965946522	-2.3087120825
Η	-3.0846111849	-3.3932131628	-0.9420229106
С	-5.4624914169	-3.2913734516	-3.3407950077
Η	-5.8541067402	-1.6155563016	-4.6143449526
Η	-4.8560297159	-4.7982571987	-1.9454480643
Η	-6.2356716631	-3.9024137212	-3.78071362
Ν	-0.070573273	2.0995837837	-1.0539457634
С	-0.782649675	3.0831693556	-0.2861512587
Η	-0.4035726889	3.1945874703	0.7323576584
Η	-0.640707381	4.046106833	-0.7889033498
Η	-1.8480379651	2.872060211	-0.2792680708
С	1.3512921094	2.2583269379	-0.9503514593

Η	1.6998557378	2.4296765486	0.0683891108
Η	1.8649203135	1.40846318	-1.3868813262
Η	1.6024939289	3.1415373791	-1.5484917879
S	0.0937029994	0.6458162826	2.1651735471
0	0.9562336537	1.7799831373	2.5481007718
0	0.4896063899	0.1550808395	0.7224837349
С	0.7779280037	-0.764178233	3.0295660742
Η	1.825615088	-0.84183576	2.7517609978
Η	0.6754144426	-0.5750320875	4.0941263068
Η	0.2301494373	-1.6573246012	2.7463790109

E(RPW6B95D3) = -2618.06018254


	Charge = 0	Multiplicity = 1	L
Cu	-1.4017348177	1.3653953674	0.6365944416
0	0.7375354472	3.1598544183	1.3873806644
0	-0.2302657362	1.2915347543	2.1259893539
С	0.6302660116	2.2363651879	2.1936064768
С	1.5625961377	2.1696367783	3.3696724927
С	1.4565485239	1.1600995432	4.317534662
С	2.550399128	3.1348784056	3.5136594683
С	2.3255466087	1.1174070796	5.3936726431
Η	0.6877290901	0.4136116419	4.200571257
С	3.4208074532	3.0932586256	4.5874571945
Η	2.6223726444	3.9134971664	2.7710267486
С	3.3092209077	2.0836486333	5.5303543176

2.2361769439	0.3302218675	6.1268565095
4.1864176317	3.8470937381	4.691074053
3.9872606982	2.0499269503	6.3696415732
-3.4931729408	-0.0062100408	0.8384686883
-3.3036304536	0.4263036503	-1.3560616424
-3.728343042	-0.3026763026	-0.3045215906
-4.5045874899	-1.4790822508	-0.7338416691
-4.7558511055	-1.7555454207	-2.0733402247
-4.9932367304	-2.322683893	0.2569053876
-5.4927816087	-2.8732606805	-2.4139024633
-4.3793389987	-1.1012798563	-2.8418710808
-5.7284641756	-3.4381615373	-0.0900462253
-4.7893004754	-2.0923984982	1.2902080448
-5.9785754256	-3.7135231135	-1.4251110462
-5.6889831398	-3.0895314483	-3.4522049989
-6.1072839445	-4.093062589	0.6786554503
-6.5541603594	-4.5852488154	-1.6957320806
-2.5336034506	1.5931953682	-1.0026807988
-3.5002790263	2.6757665399	-0.797476353
-2.9363954959	3.578277627	-0.5869776245
-4.107392657	2.8170246116	-1.6902584196
-4.1263482867	2.43903532	0.0542566392
-1.7139958745	1.8334236635	-2.1898235839
-1.1232603843	2.7221867626	-1.9971584563
-1.0536065094	0.9889897735	-2.3433364195
-2.340963095	1.988622972	-3.0667683889
	4.1864176317 3.9872606982 -3.4931729408 -3.3036304536 -3.728343042 -4.5045874899 -4.7558511055 -4.9932367304 -4.9932367304 -5.4927816087 -4.3793389987 -5.7284641756 -4.7893004754 -5.9785754256 -5.6889831398 -6.1072839445 -5.6889831398 -6.1072839445 -5.6889831398 -6.1072839445 -5.6889831398 -6.5541603594 -2.5336034506 -3.5002790263 -2.9363954959 -4.107392657 -4.1263482867 -1.7139958745 -1.1232603843 -1.0536065094	4.18641763173.84709373813.98726069822.0499269503-3.4931729408-0.0062100408-3.30363045360.4263036503-3.728343042-0.3026763026-4.5045874899-1.4790822508-4.7558511055-1.7555454207-4.9932367304-2.322683893-5.4927816087-2.8732606805-4.3793389987-1.1012798563-5.7284641756-3.4381615373-4.7893004754-2.0923984982-5.9785754256-3.7135231135-5.6889831398-3.0895314483-6.1072839445-4.093062589-6.5541603594-4.5852488154-2.53360345061.5931953682-3.50027902632.6757665399-2.93639549593.578277627-4.1073926572.8170246116-4.12634828672.43903532-1.71399587451.8334236635-1.05360650940.9889897735

E(RPW6B95D3) = -2939.01193791

	Charge = 0	Multiplicity = 1
Cu	0.3656969222	-0.7207227415 0.0381641203
0	-1.5238213806	-1.3075222839 0.2979308973
0	-0.9491385416	-0.0089207499 -1.3379521449
С	-1.850406907	-0.6654500375 -0.7481600562
С	-3.229797976	-0.6982892791 -1.2557161107
С	-3.5635386907	0.026039692 -2.3933849589
С	-4.191239681	-1.4618709581 -0.6056272281
С	-4.8564780632	-0.0146689694 -2.8781125872
Η	-2.8046797013	0.6113462006 -2.887633912
С	-5.4828026369	-1.5006758553 -1.0942342937
Η	-3.9159813126	-2.0206513336 0.274536863
С	-5.8147006409	-0.7779421471 -2.2295364308
Η	-5.1183522524	0.5457432648 -3.7618737369
Η	-6.2311339195	-2.0948066268 -0.5935384969
Η	-6.8236911833	-0.8107954054 -2.6109996466
Ν	1.2713883162	-1.7709375197 1.3215145514
Η	2.1839598827	-1.3227678065 1.3430136749
С	0.7245310203	-1.745791645 2.5692986039
С	1.3298900391	-1.0471170106 3.6325202796
С	-0.4436248348	-2.4909535599 2.8211998712
С	0.7950709642	-1.1077643966 4.8964788759
Η	2.22218889999	-0.4716091817 3.4341620109
С	-0.9764173715	-2.5318115572 4.0876448124

Η	-0.8933517918	-3.0336578159	2.0071456212
С	-0.3624357343	-1.8434988648	5.1269481712
Η	1.2691549705	-0.5806773689	5.7093760783
Η	-1.867394441	-3.1092146047	4.2778554662
Η	-0.7821815687	-1.8847077884	6.1199037575
S	2.3007478905	1.3875611608	-1.0529636225
0	2.0669750202	0.0414324881	-0.3152984542
0	1.8343855209	1.3566857022	-2.4461958026
С	1.1289646988	2.4441418228	-0.1954168313
Η	1.3539561596	2.4328301057	0.8666736292
Η	1.2348959277	3.4491236128	-0.5926076829
Η	0.1303503964	2.0648754576	-0.3960892881

E(RPW6B95D3) = -3136.91069658

	Charge = 0	Multiplicity = 1	
Cu	0.3035023118	-0.5020030109	-0.6710483788
0	-1.3163639755	0.3758250344	-0.4882924585
С	-2.1171007224	0.884393129	-1.3810221972
0	-3.2560983872	1.2014301375	-1.1000776804
S	0.027985631	1.0260743023	-3.2149273905
С	-1.6313656147	1.0391771221	-2.768247868
С	-2.4240089775	1.1677410631	-3.8724012306
С	-1.6904559671	1.2340371975	-5.0737062103
Η	-2.1337623686	1.3377932678	-6.0499179335
С	-0.3459727277	1.1581954756	-4.8671949463

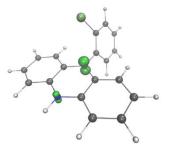


Η	0.4440913988	1.2031165148	-5.5957449289
Η	-3.4984580862	1.1986629914	-3.8062451456
Ν	1.7528087061	-1.6237341826	-0.8882681479
Ν	2.8802640519	-1.2377547385	-0.79252319
Ν	3.9650229703	-0.9132016149	-0.7117934036
S	0.9664014261	2.295160257	0.3852919703
0	1.4636886377	0.9809365649	-0.1563354804
0	0.0753325364	3.0574840953	-0.4653448204
С	0.1221576775	1.9042116741	1.9070346342
Η	-0.7508240367	1.3194637385	1.6283455307
Η	0.8137464175	1.3489646305	2.5305590676
Η	-0.1588330514	2.8458943911	2.3657041883

$HA1^+$

E(RPW6B95D3) = -1248.42422538

	Charge = 1	Multiplicity = 1	
С	-7.9428478785	-1.3211033737	-0.7664793289
С	-6.8123268605	-1.7857480325	-0.1656122015
С	-5.7569147963	-0.8967149859	0.0802412081
С	-5.8568902398	0.4718776889	-0.2791555469
С	-7.0480559417	0.9048951974	-0.9120852234
С	-8.061734952	0.0312686265	-1.1472275797
С	-4.7766763885	1.3226596278	-0.0133005536
С	-3.6175471237	0.8197428729	0.5920453778
С	-3.559914826	-0.5566948543	0.9261007578
С	-2.4189315581	-1.1060541341	1.5283064333


Η	-2.4040443391	-2.1579380588	1.7684313871
С	-1.3566387381	-0.2963335343	1.7933395708
С	-1.3918775864	1.0777357845	1.4778722298
С	-2.4914876318	1.6229075088	0.8954945922
Η	-8.7585257608	-1.9993760858	-0.9605924719
Η	-6.7091528684	-2.8202166213	0.122216982
Η	-7.133112578	1.9365391568	-1.2092969096
Η	-8.9636078257	0.3673585766	-1.6323483189
Η	-0.4745536513	-0.7104986703	2.2552624746
Η	-0.5377960978	1.6946870197	1.7050545965
Η	-2.5219028732	2.6736848267	0.6589614294
Ν	-4.6247469379	-1.3340787172	0.6590606827
С	-4.8731719438	2.7591403828	-0.348822053
С	-4.1940513766	3.3104827759	-1.4278598309
С	-5.662632841	3.5960680411	0.4317123999
С	-4.2880148767	4.6568584219	-1.7247769566
С	-5.7569274914	4.9447355685	0.149159584
Η	-6.1977330276	3.1761885512	1.2691737756
С	-5.069050128	5.4737210101	-0.9290755659
Η	-3.7559580098	5.0552223968	-2.5730359397
Η	-6.3687183649	5.5798120801	0.7695015773
Η	-5.1405351632	6.5250831619	-1.1584463192
Cl	-3.2263711487	2.2959389565	-2.4477027334
Η	-4.5682346787	-2.3138187308	0.9058867919

HA1

E(UPW6B95D3) = -1248.56334669

	Charge = 0	Multiplicity = 2	2
С	-8.0003303956	-1.3126863304	-0.7524693466
С	-6.8409264465	-1.7687007243	-0.1557495129
С	-5.7852085222	-0.8977571906	0.0780534727
С	-5.8753618892	0.4694145728	-0.2792650641
С	-7.0662372146	0.8926393157	-0.8962628123
С	-8.1081819992	0.0223791164	-1.1263006767
С	-4.7719054923	1.325474141	-0.0235768285
С	-3.598312903	0.8079710015	0.5855550829
С	-3.5428686034	-0.5650621928	0.9223017121
С	-2.4121950064	-1.110347076	1.5163682665
Η	-2.4035419293	-2.1635717601	1.7565005154
С	-1.319969259	-0.3120197262	1.7946300702
С	-1.3545395503	1.0432751243	1.484020674
С	-2.4717142535	1.589794174	0.8939109657
Η	-8.8152066829	-1.9966274479	-0.9305481342
Η	-6.7386188739	-2.8044046008	0.1334091304
Η	-7.1551049304	1.9240338205	-1.1972252108
Η	-9.0084096494	0.3793437883	-1.6018586221
Η	-0.4453315161	-0.7434262594	2.255552415
Η	-0.5050291627	1.6702104137	1.7059796196
Η	-2.4921458407	2.6424215313	0.6596159978
Ν	-4.6315416654	-1.3502384444	0.6570910814
С	-4.8623803511	2.7586027008	-0.3576354433
С	-4.1436022045	3.3383107956	-1.3993589983
С	-5.6950402468	3.5983817414	0.379531088

С	-4.2298959285	4.6876484336	-1.6912885094
С	-5.7961525546	4.9476527424	0.1010244382
Η	-6.2656970138	3.1695582916	1.1892462403
С	-5.058850317	5.4947027455	-0.9355729354
Η	-3.6559511016	5.0951816718	-2.5076437451
Η	-6.4460061434	5.5714315221	0.6945323372
Η	-5.127931306	6.5472376842	-1.1615118399
Cl	-3.1161108839	2.3507679686	-2.3921851666
Η	-4.5790884925	-2.3249353645	0.9014309888

NaN₃

E(RPW6B95D3) = -326.982037351

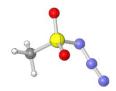
	Charge = 0	Multiplicity = 1	l
Ν	-0.3001636274	0.3370935541	1.4317159644
Ν	0.846065844	0.5421730688	1.5871540705
Ν	1.9726925196	0.7434783161	1.7398998803
Na	-2.4087338562	-0.013259469	1.1617228948

NaOBz

E(RPW6B95D3) = -583.476036956

Charge = 0Multiplicity = 1C-1.18605764123.19303073250.7011325236C-0.53686498941.84528663820.5606563864C-1.31287989490.70962931820.371914094C0.84489729131.722728640.6183380997

S135



С	-0.7167459261	-0.5320586068	0.2426758468
Η	-2.3849731249	0.817050946	0.3288134043
С	1.4435792999	0.4822472603	0.4891753895
Η	1.4373029072	2.6117015156	0.7651593104
С	0.6630945137	-0.6474236594	0.3010879349
Η	-1.3262079309	-1.4108745758	0.0962635685
Η	2.5184882368	0.3944755199	0.5347886534
Η	1.1294133928	-1.6157325843	0.2000904757
0	-0.4423532842	4.1912903119	0.8744981757
0	-2.4398482824	3.2538458393	0.6382732776
Na	-2.2822295678	5.4701937045	0.9381628594

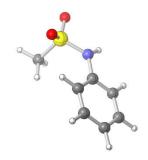
MeSO₂N₃

E(RPW6B95D3) = -753.632418892

	Charge = 0	Multiplicity = 2	1
S	0.5939091706	2.3341077126	0.1161365338
0	2.0004024962	2.5206330245	0.241802793
0	-0.320227738	3.2954208173	0.6511020931
С	0.1861212227	1.993563626	-1.5526232353
Η	0.8134348415	1.181942276	-1.9036764076
Η	-0.8660102941	1.7355782454	-1.6118070468
Η	0.3864073155	2.9036793309	-2.1120392011
Ν	0.3072411023	0.8375801277	0.8695227408
Ν	-0.8332519374	0.7052377379	1.3176538014
Ν	-1.8350601794	0.5051541018	1.7610329287

$MeSO_2NMe_2$

E(RPW6B95D3) = -723.985046360


	Charge = 0	Multiplicity = 1	
S	0.4130438969	2.5512468419	-0.0153193732
0	1.7965155521	2.6040055903	0.3606127867
0	-0.3992443349	3.7256196171	0.1233272531
С	0.3298195112	2.0338710543	-1.6973915083
Η	0.8761334525	1.1030165897	-1.8108061228
Η	-0.7106744509	1.90934049	-1.979733668
Η	0.7885896147	2.8106373533	-2.3013593706
Ν	-0.2842223688	1.3745477338	0.8750156159
С	-1.7257039749	1.2214069686	0.7505229856
Η	-1.9993805307	0.6339150481	-0.1284398698
Η	-2.0882900146	0.706408728	1.635503848
Η	-2.1973209936	2.1944940796	0.6981901572
С	0.4407562603	0.1182680952	0.9892161733
Η	0.0780797183	-0.4014595399	1.8713623034
Н	0.2843201947	-0.5238743984	0.119828511
Н	1.4986943377	0.3126166985	1.1117969187


MeSO₂NHPh

E(RPW6B95D3) = -876.693466911

Charge = 0 Multiplicity = 1

- $S \quad 1.0379182079 \quad 2.0616131631 \quad 0.3069542454$
- $O \quad 2.1849289657 \quad 1.5803613758 \quad \text{-}0.4036218391 \\$

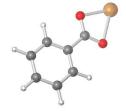
0	1.2129457666	2.7484594342	1.5509682896
С	0.0921424282	3.0952064593	-0.752951508
Η	-0.0731411624	2.5773673821	-1.6914814901
Η	-0.8497159595	3.3311539298	-0.2677571714
Η	0.6658665759	4.0034406864	-0.9116514647
Ν	0.1216337827	0.7295781639	0.5647385317
Η	0.3321256886	-0.0044509365	-0.0953789292
С	-1.1779719621	0.7028337275	1.1011224717
С	-1.6627260197	1.6882044252	1.9523547421
С	-1.9895137505	-0.3765952505	0.7683455762
С	-2.9499075317	1.5865157759	2.4516632596
Η	-1.0404790177	2.5197012895	2.2358307292
С	-3.2674318834	-0.4704612217	1.2832755242
Η	-1.610887263	-1.1409420379	0.1055981157
С	-3.7591579488	0.5130125395	2.1258058501
Η	-3.3157959825	2.3587065024	3.1108404167
Η	-3.8824585651	-1.3165044277	1.0177402204
Η	-4.7586695892	0.4410118597	2.5243985701

MeSO₂H

E(RPW6B95D3) = -589.781494852

Charge = 0Multiplicity = 1S-0.58743895932.16943173840.0412973061O0.97349478521.8586404008-0.3561569044O-1.27660422932.686230697-1.1449597032C-0.99282262490.4408940070.1283504227

Η	-2.0616776009	0.3735451344	0.3073192712
Η	-0.7356324869	-0.0129970869	-0.8248159422
Η	-0.4441679617	-0.0189518925	0.9442267836
Η	1.4949784577	2.6563745617	-0.1920464938


CuOBz

E(RPW6B95D3) = -2062.35333283

	Charge = 0	Multiplicity = 1	
Cu	-2.1258657771	-0.2683748098	1.1617188466
0	-3.6518662287	-1.6857241966	1.0148894424
0	-3.451544875	-0.263900443	-0.6580351908
С	-4.0169303461	-1.2349494449	-0.1072113415
С	-5.1675662426	-1.8925314744	-0.7963093878
С	-5.5347907242	-1.4883951792	-2.0732687501
С	-5.8771088316	-2.9089392065	-0.1704583093
С	-6.5966044163	-2.0953082902	-2.718680566
Η	-4.9762338189	-0.6980849671	-2.5486527186
С	-6.9435753522	-3.5117510155	-0.8128494626
Η	-5.584195087	-3.2158660023	0.8207211218
С	-7.3034880693	-3.1068527328	-2.0883000203
Η	-6.8740929638	-1.7801655853	-3.7129604251
Η	-7.4947313101	-4.2982662935	-0.3204812741
Η	-8.133842077	-3.5791545291	-2.5908510447

E(RPW6B95D3) = -2383.31824229

	Charge = 0	Multiplicity = 1	
Cu	-0.1555170837	-0.6751860911	-0.7113634955
0	-1.7821456914	0.3502678093	-0.6307785127
С	-2.4976031079	0.6293933925	-1.6585134803
0	-3.6949690253	0.8800044835	-1.6294051264
S	-0.0845099323	0.5877993073	-3.0721684663
С	-1.7966166329	0.6649709188	-2.9742661348
С	-2.3410368305	0.768666699	-4.2183849037
С	-1.3747573404	0.7672411915	-5.2499041947
Η	-1.6093305972	0.8429824628	-6.2990145284
С	-0.1028853264	0.6658799628	-4.7768909573
Η	0.8180419698	0.6583779836	-5.3321381661
Η	-3.4044309019	0.8368005401	-4.3757219038

$PhNH_2$

E(RPW6B95D3) = -288.108815802

Charge = 0 Multiplicity = 1

C -0.6814176689 1.184318352 -0.074406804
--

- C 0.7066847329 1.2184799337 0.0626465414
- C 1.3349626975 2.4608240223 0.1563207284
- C 0.5945031746 3.6268678545 0.1158089083
- C -0.7844311729 3.5889779878 -0.0189105559
- C -1.4119343297 2.3567356648 -0.1138807579
- H -1.1805150728 0.2289231773 -0.1487060542
- H 2.409413501 2.5018378885 0.2625313941

Η	1.1036450481	4.5763666794	0.1887299254
Η	-1.3585865763	4.5013964879	-0.0509521099
Η	-2.4850400572	2.3045159939	-0.2226994826
Ν	1.435962484	0.0494520394	0.1590375843
Η	1.0032191163	-0.7657513996	-0.2392712206
Η	2.4096734954	0.124304789	-0.079027208

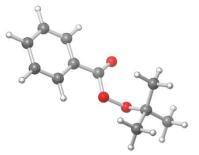
BzOH

E(RPW6B95D3) = -421.539540494

	Charge = 0	Multiplicity = 1	
С	-1.2455510036	3.1390775623	0.6794979151
С	-0.5514812129	1.8413881246	0.55123079
С	-1.3239761931	0.6995860239	0.3779255169
С	0.8339872918	1.7425789945	0.6000112626
С	-0.7154829064	-0.5334556423	0.2532828002
Η	-2.3975007483	0.7944064796	0.3424602201
С	1.4391845782	0.5061468719	0.475490636
Η	1.4312560126	2.6291215378	0.7352070378
С	0.6664393291	-0.6304522385	0.3020667725
Η	-1.3158899046	-1.4193818194	0.1180712895
Η	2.5144499902	0.4286157597	0.5135681341
Η	1.1420070171	-1.5942501778	0.2044635316
0	-0.4087548633	4.1724409546	0.8278319918
0	-2.4425070295	3.2800584661	0.655822122
Η	-0.9434946272	4.9759823427	0.9055884996

HF

E(RPW6B95D3) = -100.602577177

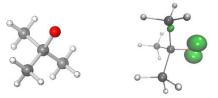

	Charge = 0	Multiplicity	= 1
F	-0.5693549466	1.173134	0.02310689

Н -1.4944581934 1.173134 0.02310689

tBuO₂Bz

E(RPW6B95D3) = -654.298568104

	Charge = 0	Multiplicity = 1	
С	-1.6105658961	3.3045679898	-0.0710394326
С	-0.7611445054	2.2166935891	0.4682102611
С	-1.3944086072	1.0341661115	0.8296559758
С	0.615250522	2.3427383328	0.62071536
С	-0.6581059398	-0.0158513653	1.3416737485
Η	-2.4621774669	0.953269868	0.7039092251
С	1.3476430655	1.2881755421	1.1323423019
Η	1.1112358631	3.2562966018	0.3379273276
С	0.7134725768	0.1106089499	1.4932455276
Η	-1.1524149167	-0.9327169941	1.6221599959
Η	2.4156498376	1.3851567974	1.2489109832
Η	1.2892839391	-0.710121569	1.8924343452
0	-0.8620089348	4.4082723925	-0.3048458939
0	-2.7872933232	3.227980205	-0.2745153608
С	-1.7263901234	6.5485456969	0.0733186212
С	-2.5271817791	7.5613261549	-0.7195130046



Η	-3.5029527085	7.1613256891	-0.9821052507
Η	-2.6705140814	8.4537334567	-0.1165733745
Η	-2.0027575651	7.840735058	-1.629618589
С	-2.4700887175	6.1025141598	1.3146319462
Η	-2.607093133	6.9516918892	1.9794847124
Η	-3.4453390053	5.7013363632	1.0550495664
Η	-1.9106126579	5.344833197	1.8580894452
С	-0.3413990561	7.0669446475	0.4001048422
Η	-0.4196866433	7.9495290223	1.0299304691
Η	0.2381770518	6.3203128291	0.9357315026
Η	0.1890422215	7.3375785981	-0.509507049
0	-1.6334956468	5.4576877168	-0.8791756421

tBuO Radical

E(UPW6B95D3) = -233.390589832

	Charge = 0	Multiplicity = 2	2
0	-0.4875714228	4.4196324795	0.9547522457
С	-1.0600196365	5.5217686673	0.3898609742
С	-1.4287410413	5.2716191077	-1.067936132
Η	-2.0751699904	4.4019533871	-1.1503420489
Η	-1.943578719	6.1332364123	-1.4860733824
Η	-0.5297712125	5.0934404227	-1.6535509984
С	-2.3509964261	5.6926431905	1.2314685645
Η	-2.8759741856	6.5621673711	0.8433379494
Η	-2.9862661996	4.8178451049	1.1382054992
Η	-2.1069240467	5.85670066	2.2760102434

С	-0.1757226273	6.7526947994	0.5528219929
Η	-0.6718651016	7.6359319448	0.157841525
Η	0.0525016267	6.9178115288	1.6023975222
Н	0.7574685527	6.6142863639	0.0116651952

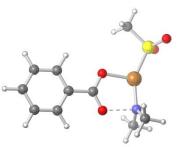
tBuOH

E(RPW6B95D3) = -234.066727416

	Charge = 0	Multiplicity = 1	1
0	-0.4100383995	4.4314479017	1.0181893764
С	-1.0774575818	5.5568522667	0.435252363
С	-1.3822767005	5.2630922106	-1.0238070453
Η	-1.9934906021	4.3675668784	-1.1090406545
Η	-1.9159659169	6.0909267038	-1.485574016
Η	-0.4601872745	5.1049487344	-1.5820120072
С	-2.3551613419	5.7223353918	1.2312464992
Η	-2.9339998006	6.561832157	0.8548283535
Η	-2.9639273884	4.8238800386	1.160563692
Η	-2.1273487903	5.9025759329	2.2792929092
С	-0.1962586899	6.787728621	0.5626945425
Η	-0.6894612232	7.6654928686	0.1508001513
Η	0.0351266762	6.9801355924	1.6078223876
Η	0.7397306283	6.644509085	0.0238620052
Η	0.413515845	4.2977656773	0.5393364131

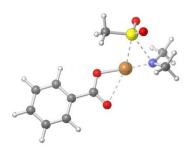
A1

E(RPW6B95D3) = -1247.96760393


	Charge = 0	Multiplicity = 1
С	U	-1.3268358786 -0.7669072648
С	-6.803945557 -	-1.7766712762 -0.16670795
С	-5.721067333 -	-0.896537858 0.0935284215
С	-5.8476853263	0.4782942227 -0.2802285898
С	-7.0441570563	0.905293237 -0.9141807869
С	-8.0552355729	0.0302729443 -1.1495558175
С	-4.7771352669	1.3344054275 -0.0155293525
С	-3.6313061258	0.8173627722 0.5922391302
С	-3.6084164929	-0.5742938721 0.917538606
С	-2.4471013676	-1.1124496658 1.5313570506
Η	-2.4498243572	-2.1650981159 1.7680242398
С	-1.3781526629	-0.3224620816 1.8048332166
С	-1.402403183	1.0563611654 1.4869669203
С	-2.4950326221	1.6094238809 0.9010795748
Η	-8.7510118798	-2.0055952898 -0.9611647163
Η	-6.6899700475	-2.8085619794 0.1270841847
Η	-7.137126932	1.937424022 -1.211943432
Η	-8.9583321822	0.3663373179 -1.6346609732
Η	-0.4998808535	-0.7425149737 2.2703352705
Η	-0.543740793	1.6681656429 1.7155169445
Η	-2.5109820953	2.6615757758 0.6639162039
Ν	-4.6302078094	-1.3923717232 0.6731609312
С	-4.8670007089	2.7731536129 -0.3526496461
С	-4.2073320626	3.324457055 -1.4440680747
С	-5.6328697428	3.623807419 0.4374169308
		•··

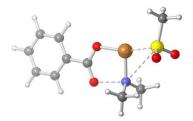
С	-4.2958326234	4.671678968	-1.7432080096
С	-5.7289481256	4.9725730252	0.1533648052
Η	-6.153404637	3.2098125915	1.2872213838
С	-5.0584602812	5.4966693867	-0.9383348215
Η	-3.7728990441	5.0641399376	-2.6000391298
Η	-6.3262051146	5.6122136452	0.7836478519
Η	-5.1275931826	6.5480364836	-1.1692743129
Cl	-3.2539759499	2.3090115106	-2.4797310886

 $\mathrm{E}(\mathrm{RPW6B95D3}) = -2786.27577992$


	Charge = 0	Multiplicity = 1	
Cu	1.9943157407	2.2445122407	0.6300881457
0	0.4209071584	1.320135665	-0.1792898051
0	0.5456761339	2.9825698046	-1.6673252057
С	0.0260849147	1.9420981547	-1.2011902793
С	-1.165164487	1.4035009153	-1.9234213156
С	-1.6416556537	2.0445233297	-3.0598432471
С	-1.8009512914	0.2622467682	-1.4527404372
С	-2.7480162422	1.5464178081	-3.7209771116
Η	-1.1408721026	2.9297796088	-3.4160444419
С	-2.9080049282	-0.2327200882	-2.1165682978
Η	-1.42214008	-0.2258064563	-0.569798447
С	-3.3821055195	0.4081283854	-3.2498177394
Η	-3.1168583884	2.0459868083	-4.6032674793
Η	-3.4021202163	-1.1187858597	-1.7494802116

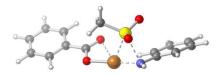
Η	-4.2469676348	0.0203957782	-3.7658992238
Ν	2.1971939253	3.6584986934	-0.5405284586
С	1.6197844386	4.9455914445	-0.2961619494
Η	1.3215500721	5.4435715389	-1.2153841391
Η	0.7928208402	4.8653019577	0.3992755894
Η	2.405154054	5.5413313715	0.1802246909
С	3.1032385096	3.618883622	-1.6486492878
Η	4.0272163347	4.0912194299	-1.2999320456
Η	3.3317327214	2.5940335015	-1.9158322281
Η	2.732997408	4.1809125314	-2.5024437604
S	2.590017976	1.1667438613	2.4838052295
0	2.4062649388	2.0108844503	3.6716541512
0	3.911159365	0.5398129135	2.3479531683
С	1.4515708058	-0.1928657146	2.7007726109
Η	1.7515344614	-0.7113290011	3.608785891
Η	0.4449665378	0.2003826902	2.7999741863
Η	1.5216052979	-0.8532705424	1.8424616563

E(RPW6B95D3) = -2786.30432234


Charge = 0Multiplicity = 1Cu-1.25306666750.8539608681-0.370810643O-2.4135495978-0.587006042-0.753096206O-2.36736772360.3208641701-2.7755484865C-2.741178274-0.5545599412-1.997958048C-3.6140449632-1.6702280511-2.4704347234

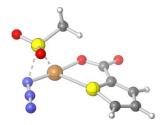
С	-3.9913246977	-1.7189662018	-3.8060819121
С	-4.0459597674	-2.6627353513	-1.6004688708
С	-4.789931686	-2.748444579	-4.2679859511
Η	-3.6476775392	-0.9422717804	-4.4705498253
С	-4.8460807625	-3.6924850667	-2.0620229974
Η	-3.7496845044	-2.6188695908	-0.5650210422
С	-5.2181614725	-3.7369076814	-3.3959314046
Η	-5.0785696243	-2.7820408294	-5.3073073893
Η	-5.1796692449	-4.4615808458	-1.3824495866
Η	-5.8412393271	-4.5413321135	-3.75606054
Ν	-0.1278564094	2.2233541899	0.0462474955
С	-0.320823208	3.0963709702	1.1709392005
Η	0.549352001	3.1426364396	1.8264703136
Η	-0.5039375107	4.0988170802	0.7751123579
Η	-1.1943475776	2.8032882912	1.7421773614
С	1.1300158228	2.3937992745	-0.6273724696
Η	1.9749647004	2.4381590044	0.0587842939
Η	1.2869821257	1.6054132893	-1.3555632452
Η	1.0792782186	3.3407498242	-1.1712081038
S	0.3345190376	0.1855736168	1.2929590875
0	-0.0586078872	0.671566432	2.5939346304
0	1.7311689287	0.1342768525	0.9344899923
С	-0.268453949	-1.4868286981	1.1662942471
Η	0.3055151556	-2.041302819	1.9060850536
Η	-1.3264336518	-1.494180927	1.3945278892
Η	-0.0752556547	-1.8490921244	0.1640246821

E(RPW6B95D3) = -2786.26523090


	Charge = 0	Multiplicity = 1	
Cu	1.5692513722	1.7714413633	0.3645342413
0	0.0772204611	1.1346889711	-0.8022474649
0	0.0262740203	3.0706677301	-1.941990607
С	-0.3633674655	1.9114610912	-1.7054522538
С	-1.4645956555	1.3706796354	-2.5688072115
С	-1.9597742273	2.1294367512	-3.6210407048
С	-1.9945744899	0.1120874787	-2.3205392444
С	-2.9743136111	1.6338142887	-4.4186877381
Η	-1.5406284674	3.1056613408	-3.8046516281
С	-3.0124041156	-0.3818166769	-3.1163428756
Η	-1.6023726052	-0.4685867437	-1.5015346952
С	-3.502654606	0.3777662009	-4.1663991789
Η	-3.3542272852	2.2260534579	-5.2369422474
Η	-3.4238107581	-1.3597599349	-2.9189050276
Η	-4.2958768658	-0.0087010569	-4.7880077306
Ν	1.6542047636	3.5021304349	-0.4440166425
С	1.1462044454	4.5957475909	0.3050495961
Η	1.7833269142	4.6815544299	1.2001307657
Η	1.2013149356	5.5373589188	-0.2369332216
Η	0.1385388496	4.3836409901	0.6483873411
С	2.7761957087	3.8138164195	-1.2606563099
Η	2.9674661232	3.0122946008	-1.9657624687
Η	2.6612855059	4.7728599757	-1.7626638161

Η	3.6487282034	3.8943415875	-0.5960692392
S	3.1224167061	2.0166652613	1.9227304029
0	2.745511332	3.1227158745	2.8087767044
0	4.4379797089	2.1276742292	1.2881908343
С	3.2046359753	0.5742428475	2.9688707582
Η	3.9800794534	0.7656229234	3.7069988911
Η	2.2409235226	0.4380329064	3.4481760622
Η	3.4583266081	-0.2843245873	2.3561937076

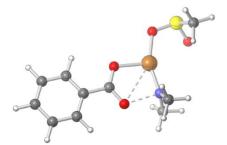
E(RPW6B95D3) = -2939.02508232


	Charge = 0	Multiplicity =	1
Cu	-2.004252321	-1.188145027	1.546089479
0	-3.494437993	-2.121380787	0.834981745
0	-3.521930147	-0.324211119	-0.460136633
С	-3.985777361	-1.414245695	-0.118603412
С	-5.187461883	-1.975337412	-0.802799824
С	-5.827617325	-1.22368209	-1.779568249
С	-5.679299472	-3.231627116	-0.47302785
С	-6.949060972	-1.719993004	-2.417512877
Η	-5.43491967	-0.249898966	-2.025217579
С	-6.79783182	-3.730903441	-1.115588772
Η	-5.177430486	-3.808823406	0.28652291
С	-7.434840124	-2.975189809	-2.086712356
Η	-7.445196356	-1.129904064	-3.172678824
Η	-7.174767499	-4.708950076	-0.858767371

Η	-8.309535883	-3.363962642	-2.585481415
Ν	-0.568387374	-0.303583129	2.277514385
S	-2.569616523	0.658252639	3.089522662
0	-2.329921076	1.984223621	2.583145485
0	-2.282508648	0.338237352	4.468596422
С	-4.289317242	0.294427522	2.798052829
Η	-4.493702948	0.477626037	1.750237815
Η	-4.475029876	-0.734927827	3.079508466
Η	-4.835023588	0.98562705	3.437717033
Η	-0.345821993	-0.418713608	3.258671068
С	0.074166597	0.760583595	1.700819446
С	0.88638162	1.610420283	2.458808054
С	-0.096414293	1.006056668	0.334310205
С	1.539506896	2.660043875	1.850454394
Η	0.998130988	1.42768319	3.517427451
С	0.532365409	2.079382756	-0.255189574
Η	-0.738770918	0.349851703	-0.235689625
С	1.359403756	2.903768077	0.496326613
Η	2.178156583	3.303599289	2.435016479
Η	0.388406964	2.272889004	-1.306566574
Η	1.860533088	3.736027688	0.027503714

E(RPW6B95D3) = -3136.92853840

Charge = 0 Multiplicity = 1 Cu -0.1153319829 -0.9437905853 -0.5199113439



S151

0	-1.8069345832	-0.1813694663	-0.4873758437
С	-2.647466509	0.0379742292	-1.4454051831
0	-3.8292497261	0.2642306502	-1.2542885897
S	-0.4718265629	-0.0453093507	-3.2533555581
С	-2.1396668608	0.030761702	-2.8422133346
С	-2.9013916293	0.1008152856	-3.9713924455
С	-2.1409520855	0.082522457	-5.159392575
Η	-2.5634813935	0.1273430628	-6.1493907788
С	-0.8029467337	0.0049406895	-4.9229349171
Η	0.0035279752	-0.0166851032	-5.6341711763
Η	-3.9758893661	0.1603022582	-3.9306504869
Ν	1.6707408902	-1.477055077	-0.5298810729
Ν	2.2377705111	-1.5530223868	-1.6044379434
Ν	2.8284119975	-1.6280630339	-2.5576594888
S	1.6874558113	0.7919058707	-0.137565526
0	2.4809490901	1.0902628984	-1.2871003603
0	2.2303775615	0.6139998091	1.1676358315
С	0.3507199449	1.962737072	-0.0467909824
Η	-0.1302332253	2.0112088461	-1.0152624479
Η	-0.3225540929	1.649620263	0.7409890839
Η	0.8519810696	2.8994932694	0.1988561388

E(RPW6B95D3) = -2786.27859772

Charge = 0 Multiplicity = 1 Cu 1.1029272001 1.4666494312 0.9937309473

0	-0.3934040166	0.8185435382	-0.1809663846
0	0.2792726157	2.5119520816	-1.4690009377
C	-0.4676777406	1.5368768027	-1.2074536185
C	-1.5301111318	1.2119598255	-2.2067607502
C			-3.3740665916
	-1.6548602198	1.9539716846	
С	-2.3982154243	0.156697977	-1.9596136535
С	-2.6427858756	1.6400357981	-4.288557471
Η	-0.9762440707	2.7711965129	-3.5566182597
С	-3.3855428548	-0.1535062916	-2.8757642553
Η	-2.2907620796	-0.4100491069	-1.0495170027
С	-3.508542399	0.5870525068	-4.0402399366
Η	-2.7379724669	2.2166480719	-5.195486512
Η	-4.0598350452	-0.9730307553	-2.6814588746
Η	-4.2799209635	0.3438946061	-4.754724242
N	1.7463052504	2.8635028369	0.0059989601
С	1.3169269889	4.2138237527	0.2184502422
Η	1.2690379465	4.7824322102	-0.7062910085
Η	0.3726284279	4.2322429452	0.7487917726
Η	2.0745306332	4.6640814171	0.8677065947
С	2.8207999975	2.7270091085	-0.932531116
Η	3.7218160525	3.0413071633	-0.3962036427
Η	2.9463208345	1.6893765718	-1.2175495431
Η	2.6948684492	3.3670653155	-1.8018334188
S	1.917717843	0.5581281037	3.7159030476
0	1.9894034046	2.0119008031	4.0082281607
0	1.0024000293	0.3026239269	2.4968644056
С	3.5200879484	0.2149675229	2.9747273593
			01=0

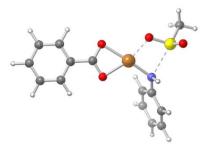
Η	3.638611836	0.9001158785	2.1353557835
Η	4.2942189693	0.3902279876	3.7165452748
Н	3.5494067815	-0.8168613468	2.6363967706

E(RPW6B95D3) = -2786.28375048

	Charge = 0	Multiplicity = 1	
Cu	-1.094162	0.581598	0.260502
0	-2.286171	-1.179606	0.292917
0	-1.98853	0.1157	-1.434992
С	-2.52161	-0.915715	-0.909447
С	-3.404909	-1.773969	-1.72559
С	-3.665426	-1.451375	-3.051405
С	-3.977257	-2.906951	-1.161537
С	-4.494707	-2.257982	-3.807553
Η	-3.214692	-0.569498	-3.477464
С	-4.805454	-3.712215	-1.91992
Η	-3.765236	-3.144457	-0.131376
С	-5.064543	-3.387826	-3.242325
Η	-4.697518	-2.007606	-4.837209
Η	-5.24964	-4.592494	-1.482004
Η	-5.711664	-4.017176	-3.833905
Ν	-0.261809	2.280858	0.005027
С	0.710995	2.344806	-1.049039
Η	0.239294	2.201101	-2.026838
Η	1.171012	3.335289	-1.066572

Η	1.477732	1.591585	-0.903826
С	-1.256113	3.314573	-0.122582
Η	-1.815742	3.204018	-1.056174
Η	-1.945068	3.285622	0.716697
Η	-0.774027	4.293336	-0.157319
S	0.601996	1.821461	2.276468
0	1.993668	1.443118	2.011048
0	-0.375564	0.67582	2.109534
С	0.4706	2.037052	4.061322
Η	0.790033	1.111132	4.53044
Η	1.125651	2.857384	4.333562
Η	-0.560268	2.267877	4.305363

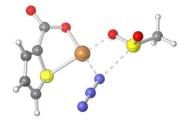
E(RPW6B95D3) = -2786.26209095


	Charge = 0	Multiplicity = 1	
Cu	1.4804661197	0.8026253346	0.810302858
0	0.1436510258	0.5074630062	-0.5270778753
0	0.3217722319	2.6168068879	-1.2662904985
С	-0.1789506138	1.4570308783	-1.2751932371
С	-1.2580718157	1.2185683824	-2.2782256307
С	-1.658795228	2.2281444738	-3.143904103
С	-1.8690014533	-0.027156082	-2.3393260099
С	-2.6638790355	1.9922331169	-4.0630042761
Η	-1.1794914169	3.1920445485	-3.0906214063
С	-2.8738371609	-0.2602293345	-3.2593314613

Η	-1.5497213073	-0.802439034	-1.6622030673
С	-3.2724305851	0.7487826108	-4.1213453021
Η	-2.9736649212	2.778205905	-4.7341220107
Η	-3.3472393743	-1.2287172825	-3.3044064754
Η	-4.0576161386	0.5661952052	-4.8388818523
Ν	1.7622136315	3.0075812279	0.02048252
С	1.1253233821	4.2235435296	0.4982340767
Η	1.8892255928	4.9357886698	0.7983973635
Η	0.550195912	4.6831359142	-0.3009087275
Η	0.4810558594	3.9939298037	1.3397700637
С	2.7322448271	3.2674590565	-1.0174286385
Η	2.9322164384	2.3540196991	-1.5654572
Η	2.4164677315	4.0612148247	-1.6907432497
Η	3.6593858222	3.5729275189	-0.5276040257
S	3.397390712	2.529356057 1	.92042405
0	4.7561175349	2.5051496223	1.3534604853
0	2.8273930504	1.1389599179	2.1542294409
С	3.6092107532	3.1023603387	3.6053845483
Η	4.2817856242	2.4044935261	4.0979924369
Η	4.0417064689	4.0972088148	3.5760064683
Η	2.6412048027	3.1187537124	4.0952620459

E(RPW6B95D3) = -2939.00099263

Charge = 0 Multiplicity = 1 Cu -1.1353421886 0.5663606698 0.0828562892



0	-2.0288199135	-1.3468278523	0.1496139962
0	-2.3444737836	0.0786737569	-1.4710923714
С	-2.5821440866	-1.0458977195	-0.9371981259
С	-3.5140828879	-1.9892224021	-1.5960274415
С	-4.1231506744	-1.6478203772	-2.7966745032
С	-3.784200341	-3.2182302233	-1.0080011655
С	-4.99686929	-2.5301658599	-3.4040532503
Η	-3.9048197396	-0.6908265675	-3.2428413891
С	-4.6580176328	-4.0992170114	-1.6167273117
Η	-3.3040501311	-3.4695824897	-0.0758623163
С	-5.2648435296	-3.7554878774	-2.8144431232
Η	-5.4699011864	-2.2641548392	-4.3366295178
Η	-4.8674024524	-5.0534155779	-1.1585922506
Η	-5.9476549537	-4.4435917019	-3.2889516505
Ν	-0.6433728118	2.4196853224	0.0785108047
S	0.77499361 1	.717538482 2	.0928093886
0	2.2146650237	1.776433622	1.8213245271
0	0.1257833297	0.4189674723	1.7231885206
С	0.5813187204	1.7358740479	3.8780018189
Η	1.1182532494	0.8764066954	4.2698925085
Η	1.0067585334	2.6635329976	4.2440987216
Η	-0.4773004771	1.676213255	4.1047021177
Η	0.244639591	2.5272437513	-0.4096209084
С	-1.4716034867	3.4399489873	-0.2798456681
С	-2.7973452849	3.4280641981	0.1861936792
С	-1.037532205	4.5082666812	-1.0829167495
С	-3.6562685758	4.4473119136	-0.148014667
			C1E7

Η	-3.1205890349	2.6009045759	0.8004602946
С	-1.9010241742	5.5314427116	-1.3974363892
Η	-0.0190303406	4.5105623105	-1.4424573266
С	-3.2111755655	5.503207231	-0.9353564586
Η	-4.6757174516	4.4303354109	0.2034886718
Η	-1.5635523748	6.352066249	-2.0107320322
Η	-3.8869284835	6.3044311577	-1.1903527218

E(RPW6B95D3) = -3136.90288346

	Charge = 0	Multiplicity = 1	
Cu	-0.3772762341	0.1260710399	-0.8788705435
0	-2.0910259295	0.8674874599	-0.4060273588
С	-2.9253067067	0.6112771315	-1.3564775215
0	-4.134475152	0.6241694519	-1.2756357691
S	-0.7989204439	1.1749858079	-3.0685784015
С	-2.2320382783	0.2613084837	-2.6331446462
С	-2.4382565771	-0.7419478086	-3.5225702173
С	-1.4528160882	-0.7868469643	-4.5373350449
Η	-1.4543295738	-1.5033961682	-5.3419755737
С	-0.4962194184	0.1761323087	-4.4081872446
Η	0.3361815338	0.3768791994	-5.0580018632
Η	-3.259240909	-1.4344423463	-3.4409720683
Ν	1.3000574779	-0.6501051449	-1.3125237825
Ν	1.5016380467	-1.2278732225	-2.347624655
Ν	1.7271719308	-1.7851738999	-3.3099293568

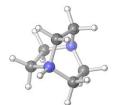
S	1.2179532191	-1.2508510117	1.2906674222
0	0.9705611206	-2.6730585675	1.4917294775
0	-0.0015553447	-0.4142353468	1.0471997245
С	1.7950538913	-0.5562695712	2.8503104413
Η	2.7089718064	-1.0801807134	3.1049220444
Η	1.9719941435	0.5009394285	2.6921502144
Η	1.0127873953	-0.7308474663	3.5828665727

DABCO

E(RPW6B95D3) = -345.917772549

	Charge = 0	Multiplicity =	1
С	-1.2483988393	0.8851799918	-0.0375017948
С	-1.7729443768	2.3369918865	0.0379336382
Η	-1.5627935762	0.4001806773	-0.9597323737
Η	-1.6168913339	0.2889287388	0.795076316
Η	-2.4375222353	2.5596413913	-0.7947162955
Η	-2.3245012202	2.5092039231	0.9602537429
С	0.7167452385	1.5947708627	-1.1683681456
Η	1.8031108317	1.6164948795	-1.1058030842
Η	0.4452967866	1.0333032144	-2.0603150962
С	0.1301241634	3.0241985622	-1.2065088136
Η	0.9183936384	3.7722382282	-1.266487875
Η	-0.5234524227	3.158876609	-2.0662705792
С	0.19204921	3.0471128713	1.1680797132
Η	1.0409663051	3.7253314495	1.1057089596
Η	-0.3760902632	3.30501868	2.0598500962

Go back to table of contents


S159

С	0.6550130356	1.5730376982	1.2063274682
Η	1.7393934688	1.5018084317	1.2660179906
Η	0.2387124682	1.0518133936	2.0662638985
Ν	-0.6536075066	3.2734419033	-0.0003810737
Ν	0.2113634279	0.8798450076	0.0002173084

*DABCO-H⁺

E(RPW6B95D3) = -346.383740101

	Charge = 1	Multiplicity = 1	
С	-0.1205497968	3.8568035179	0.7088539856
С	-0.542667199	5.3072554563	0.9886870518
Η	-0.3979797112	3.5220576678	-0.284699055
Η	-0.4970601482	3.1550229055	1.4438309259
Η	-1.2987272749	5.6140941689	0.2731842889
Η	-0.9608444598	5.3985708217	1.9864704908
С	1.9479461289	4.5760977474	-0.3779367958
Η	3.0198106244	4.6168768431	-0.2190270609
Η	1.7382287111	4.0108473094	-1.2784404514
С	1.290154223	5.9643480719	-0.3738991919
Η	2.0463947847	6.7285925454	-0.5217560736
Η	0.562426719	6.045846866	-1.1754497551
С	1.5231805339	5.9231792806	1.9896014501
Η	2.4297907717	6.4984756224	1.8286939361
Η	1.0754354512	6.2466266105	2.9237711104
С	1.8396948713	4.4217888097	2.0581807893
Η	2.899593034	4.2145399169	2.1477665718

Η	1.3062120574	3.9152578929	2.8544689474
Ν	0.6068935914	6.1965676261	0.8910888501
Ν	1.370880145	3.821902987	0.773608009
Η	1.6812453029	2.8561380326	0.7267847166

*Br⁻ anion

E(RPW6B95D3) = -2575.44819749

Charge = -1 Multiplicity = 1 Br -1.57958556 2.34217649 0.00000000

4-Bromo-1-(methylsulfonyl)butane-2-sulfinic acid

E(RPW6B95D3) = -3871.20157154

	Charge = 0	Multiplicity = 1	
S	-2.7765567174	-0.6094864324	-0.1033405084
0	-2.6698060909	-2.0118072768	-0.4190180606
0	-2.7031669691	0.3383801661	-1.1912280521
С	-1.5111681599	-0.166950412	1.0718055731
Η	-1.8804945602	0.6951802644	1.6206553168
Η	-1.4055100303	-1.0059156798	1.754543094
С	-0.1797655921	0.1639292268	0.4237542174
Η	0.5224278342	0.3239251689	1.2429094493
S	-0.2737735225	1.809494181	-0.4070362397
0	-1.067371286	2.6377038663	0.5069639666
0	1.2900132474	2.2105683204	-0.2245163007
Η	1.5476093966	2.2069301087	0.7118748123

С	0.3410092097	-0.9121512417	-0.5172740497
Η	-0.2724495476	-0.9367155292	-1.4193403948
Η	0.2081711592	-1.876850881	-0.0320193289
С	1.7701800619	-0.7729432618	-0.9749015913
Η	1.9706930168	0.1507507188	-1.4992769329
Η	2.0519570978	-1.6114863671	-1.5973904477
Br	3.0392567668	-0.7969866054	0.5212029675
С	-4.2709133103	-0.3471889485	0.7844409492
Η	-4.2677625555	-0.9675905689	1.6750210452
Η	-4.3581335181	0.7042229699	1.0351829737
Н	-5.0765271081	-0.648708468	0.120736985

$cis \hbox{-} 3 \hbox{-} ((Methyl sulf on yl) \hbox{-} 1, 2 \hbox{-} oxathiolane 2 \hbox{-} oxide$

E(RPW6B95D3) = -1295.71285890

	Charge = 1	Multiplicity = 1	l
С	0.7425663485	0.7846359492	-0.0112895446
S	1.353728182	-0.8874508889	-0.376240264
0	1.304893297	-1.4527618965	1.1048033954
Η	1.184520322	-2.418620742	1.0969097226
0	2.8266377647	-0.4250415282	-0.5871697401
С	3.1662002524	0.901210942	-0.0250411206
Η	3.4217751987	1.5110339054	-0.88292571
Η	4.027682124	0.7530696082	0.6122566635
С	1.9426192577	1.3831259722	0.7096521603
Η	1.8781369384	2.4658624481	0.6780847162
Η	1.9505714479	1.0612824928	1.7465074974

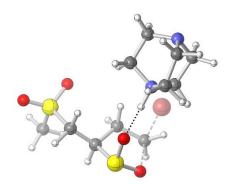


Η	0.6200778772	1.2254384039	-1.000465645
С	-0.5385623811	0.8150788817	0.7865788042
Η	-0.4092896053	0.3463548901	1.7586062761
Η	-0.8549481464	1.8457722591	0.9232833567
S	-1.8288276196	-0.0562603934	-0.0802644009
0	-2.2457305123	0.7241627844	-1.2118446624
0	-1.2907505154	-1.3798583103	-0.3265166928
С	-3.1404869436	-0.1725886958	1.0740856187
Η	-2.8037901179	-0.7195461976	1.9477848955
Η	-3.9364735393	-0.7143423018	0.5697692188
Η	-3.4719265252	0.8280236689	1.3314882983

trans-3-((Methylsulfonyl)methyl)-1,2-oxathiolane 2-oxide

E(RPW6B95D3) = -1295.71132693

С	0.6258237579	-0.7784335611	-0.339040461
S	1.2877795764	0.8051776636	0.3215745429
0	1.3160014231	1.587850145	-1.0556927925
Η	1.3236899077	2.5488210196	-0.8977256418
0	2.7483824549	0.2801677252	0.5290680778
С	3.0411548941	-0.926239392	-0.2598647269
Η	3.271424178	-0.6186538406	-1.2746588735
Η	3.9066616915	-1.3739267958	0.209443235
С	1.7845701143	-1.7442785948	-0.147790796
Η	1.7271600271	-2.2130209299	0.8302299385
Η	1.7457179708	-2.5118444071	-0.9146248688

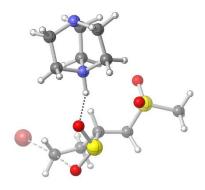


Η	0.4560482595	-0.5603953671	-1.3919399459
С	-0.6516721844	-1.1900093157	0.3569827929
Η	-0.9636623867	-2.1660800256	-0.0038279276
Η	-0.5352924255	-1.2315197231	1.4371736548
S	-1.9330630191	-0.0134934072	-0.0350275898
0	-2.408429815	-0.2675080935	-1.366287721
0	-1.3472572675	1.2835896121	0.2429275741
С	-3.2095278475	-0.3303497347	1.1215741776
Η	-2.8331827767	-0.16653538	2.1253791465
Η	-4.0054061671	0.3736950933	0.8932759291
Η	-3.5597236655	-1.3489022707	0.9884786153

TScis

E(RPW6B95D3) = -4217.12644010

	Charge = 0	Multiplicity =	1
0	-0.3045227022	0.0794667308	1.6522219157
С	-0.1994138983	2.1046319369	0.243316323
С	-1.6384392611	2.0248798606	0.7238839116
Η	0.4391916723	2.5026072942	1.0276228198
Η	-0.1606416007	2.7901073173	-0.5964883602
Η	-2.3116748633	1.8627437589	-0.1165674233
S	-1.768473558	0.4785223582	1.7473684043
С	-2.0382582125	3.25445784	1.5141433294
Η	-1.7288732998	3.1848343208	2.555840131
Η	-1.6243235534	4.1644185253	1.0869011854
S	-3.8048153696	3.4420091813	1.4886698329


0	-4.3899633243 2.1646255597 1.8280081238	
0	-4.1878517479 4.031315378 0.2282974427	
С	-4.14396942 4.5868926203 2.7777019869	
Η	-3.6083763784 5.5101415787 2.5817170091	
Η	-3.8465823938 4.1530175105 3.7262325379	
0	-2.5936813289 -0.421157164 0.8734868535	
Η	-4.0978729018 -0.1396807487 0.2008824818	
Η	-5.215727775 4.7635443741 2.7601475556	
Η	1.2979289742 0.4430161491 0.086433853	
Η	-0.3399668753 0.0527106722 -0.6362344353	
Br	1.1732686888 1.2271357097 -2.4539117155	
С	0.3051305015 0.7592614825 -0.1548917295	
С	-7.311502351 -0.4388715614 -0.7266352742	
С	-6.1972709667 -0.0837818059 0.2693575019	
Η	-8.1187263067 0.2833648458 -0.6502349388	
Η	-7.7179522574 -1.4241809638 -0.5169992773	
Η	-6.2606200562 0.937340681 0.6238794205	
Η	-6.1646667024 -0.7527978319 1.1221421368	
С	-6.076645413 0.8050957004 -2.3290887441	
Η	-5.8278483364 0.8815445263 -3.3831405871	
Η	-6.7362301346 1.6301109593 -2.0756326936	
С	-4.7960251107 0.8565413639 -1.4824995978	
Η	-3.9027272797 0.6458272505 -2.0613345577	
Η	-4.6715647104 1.8015914596 -0.9669208264	
С	-4.8301024362 -1.5452869937 -1.1099422114	
Η	-3.814204836 -1.6785278493 -1.463472976	
Η	-5.0364117765 -2.2842136075 -0.3431174335	

С	-5.8672973929	-1.5577210761	-2.242010665
Η	-5.3818169924	-1.4665812378	-3.2093393398
Η	-6.4217992483	-2.4911517206	-2.2274513211
Ν	-6.792808093	-0.4418666972	-2.0892116941
N	-4.906074912	-0.211841738	-0.4544910951

TStrans

E(RPW6B95D3) = -4217.12099351

Charge = 0	Multiplicity =	1
-0.3045227022	0.0794667308	1.6522219157
-0.1994138983	2.1046319369	0.243316323
-1.6384392611	2.0248798606	0.7238839116
0.4391916723	2.5026072942	1.0276228198
-0.1606416007	2.7901073173	-0.5964883602
-2.3116748633	1.8627437589	-0.1165674233
-1.768473558	0.4785223582	1.7473684043
-2.0382582125	3.25445784	1.5141433294
-1.7288732998	3.1848343208	2.555840131
-1.6243235534	4.1644185253	1.0869011854
-3.8048153696	3.4420091813	1.4886698329
-4.3899633243	2.1646255597	1.8280081238
-4.1878517479	4.031315378	0.2282974427
-4.14396942	4.5868926203	2.7777019869
-3.6083763784	5.5101415787	2.5817170091
-3.8465823938	4.1530175105	3.7262325379
-2.5936813289	-0.421157164	0.8734868535
	-0.3045227022 -0.1994138983 -1.6384392611 0.4391916723 -0.1606416007 -2.3116748633 -1.768473558 -2.0382582125 -1.7288732998 -1.6243235534 -3.8048153696 -4.3899633243 -4.1878517479 -4.14396942 -3.6083763784 -3.8465823938	-0.30452270220.0794667308-0.19941389832.1046319369-1.63843926112.02487986060.43919167232.5026072942-0.16064160072.7901073173-2.31167486331.8627437589-1.7684735580.4785223582-2.03825821253.25445784-1.72887329983.1848343208-1.62432355344.1644185253-3.80481536963.4420091813-4.38996332432.1646255597-4.18785174794.031315378-4.143969424.5868926203-3.60837637845.5101415787-3.84658239384.1530175105

Η	-4.0978729018	-0.1396807487	0.2008824818
Η	-5.215727775	4.7635443741	2.7601475556
Η	1.2979289742	0.4430161491	0.086433853
Η	-0.3399668753	0.0527106722	-0.6362344353
Br	1.1732686888	1.2271357097	-2.4539117155
С	0.3051305015	0.7592614825	-0.1548917295
С	-7.311502351	-0.4388715614	-0.7266352742
С	-6.1972709667	-0.0837818059	0.2693575019
Η	-8.1187263067	0.2833648458	-0.6502349388
Η	-7.7179522574	-1.4241809638	-0.5169992773
Η	-6.2606200562	0.937340681	0.6238794205
Η	-6.1646667024	-0.7527978319	1.1221421368
С	-6.076645413	0.8050957004	-2.3290887441
Η	-5.8278483364	0.8815445263	-3.3831405871
Η	-6.7362301346	1.6301109593	-2.0756326936
С	-4.7960251107	0.8565413639	-1.4824995978
Η	-3.9027272797	0.6458272505	-2.0613345577
Η	-4.6715647104	1.8015914596	-0.9669208264
С	-4.8301024362	-1.5452869937	-1.1099422114
Η	-3.814204836	-1.6785278493	-1.463472976
Η	-5.0364117765	-2.2842136075	-0.3431174335
С	-5.8672973929	-1.5577210761	-2.242010665
Η	-5.3818169924	-1.4665812378	-3.2093393398
Η	-6.4217992483	-2.4911517206	-2.2274513211
Ν	-6.792808093	-0.4418666972	-2.0892116941
Ν	-4.906074912	-0.211841738	-0.4544910951

Anilinium

E(RPW6B95D3) = -288.549609718

Charge = 1	Multiplicity = 1
churge i	manuplicity 1

- C -0.7004496776 1.1921768662 -0.0559599866
- C 0.6672518271 1.2743996801 0.077916682
- C 1.334361294 2.4779867638 0.1586576609
- C 0.5943163295 3.6446213364 0.1041781496
- C -0.7835593128 3.5896832188 -0.0283551592
- C -1.4289977229 2.3682959245 -0.1089245829
- H -1.1881799918 0.2310669072 -0.1158280501
- H 2.4080760309 2.5048898323 0.2617383089
- H 1.0972195912 4.5963381454 0.164506696
- $H \quad -1.3553573136 \quad 4.5030843992 \quad -0.0701287239$
- Н -2.5010582444 2.3250985511 -0.2144072305
- N 1.445630853 0.0351855082 0.155029104
- $H \quad 0.8854705201 \quad \text{-}0.7697577189 \quad \text{-}0.1233047472$

2.2622446612 0.0668448606

H 1.7821601561 -0.139236275 1.1030346802

-

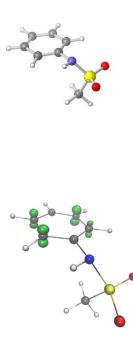
PhNH Anion

Η

E(RPW6B95D3) = -287.580271143

Charge = -1 Multiplicity = 1

- $C \quad -0.6769184853 \quad 1.1903995803 \quad -0.1267049428$
- C 0.7483156046 1.1731289609 0.0043767464

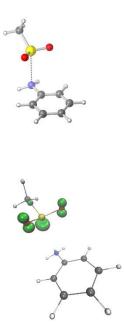

-0.4556229892

С	1.3376427404	2.4701851154	0.1322712661
С	0.5903454718	3.6259035689	0.1300064623
С	-0.7978822717	3.6039028799	0.0018237776
С	-1.4078222013	2.358825263	-0.1271517064
Η	-1.1882783774	0.2407954735	-0.2290425867
Η	2.4134699395	2.5228847258	0.2350531514
Η	1.1002718697	4.5753772247	0.232136925
Η	-1.3760157453	4.5146329083	0.001377137
Η	-2.4840076362	2.3001330824	-0.2300584171
Ν	1.5056422349	0.080081245	0.0143512859
Η	0.8994513864	-0.7288953181	-0.0867939285

MeSO₂NHPh radical anion

E(UPW6B95D3) = -876.724883577

	Charge = -1	Multiplicity =	2
S	1.0072846419	2.122504285	0.3059041389
0	2.194507939	1.6803153853	-0.3764675657
0	1.146883875	3.0648581468	1.3781889111
С	-0.1030074104	2.8167372306	-0.871492465
Η	-0.22664061	2.1199777613	-1.6931575071
Η	-1.0515553754	3.0068915149	-0.3797607544
Η	0.3348078804	3.74715344	-1.2192685947
Ν	0.2956951181	0.7610430275	0.8585842318
Η	0.5433399887	-0.0186843952	0.2653813565
С	-1.0783863444	0.7415975831	1.2652547022
С	-1.51708997	1.5882350547	2.2591742092

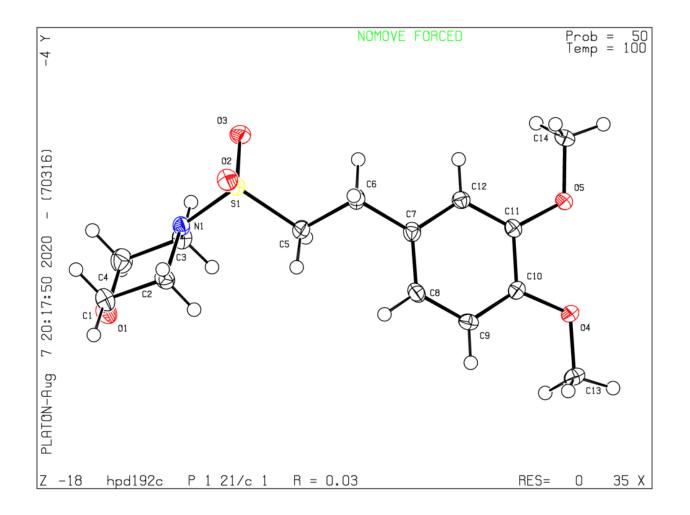


С	-1.9118928462	-0.167897569	0.614329288
С	-2.914271718	1.5495641203	2.6290157051
Η	-0.8182910611	2.2373195004	2.7598056569
С	-3.2879006647	-0.2554857259	1.0463322208
Η	-1.5283868735	-0.7666877943	-0.1983307319
С	-3.7440335084	0.6092763281	2.0221266735
Η	-3.2917010375	2.206442427	3.3972649383
Η	-3.9569129107	-0.96850192	0.5880852904
Η	-4.782744313	0.5535544395	2.3258244462

MeSO₂NH₂Ph radical

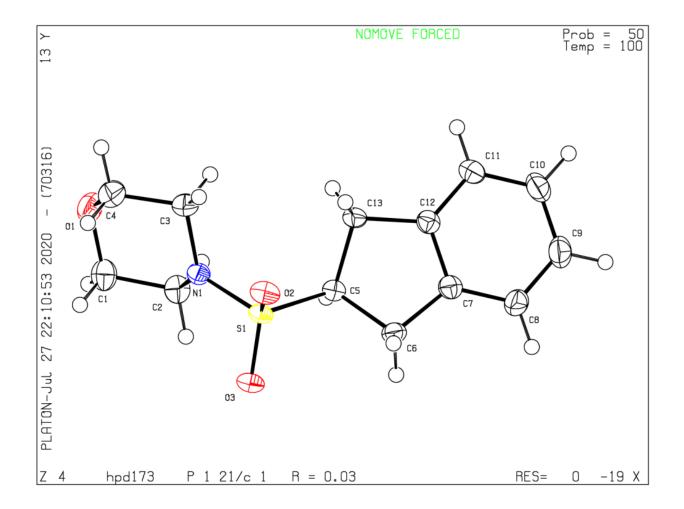
E(UPW6B95D3) = -877.260419517

	Charge = 0	Multiplicity = 2	2
S	1.2571284745	1.9083544959	0.1291602938
0	1.1830236344	2.7572816023	1.3091367944
0	0.2351722502	2.0408024867	-0.8984266819
С	2.8363492859	2.2470327914	-0.6599561343
Η	3.6167476963	2.0938561916	0.0761108337
Η	2.9410697288	1.569513617	-1.4992915149
Η	2.8019278774	3.2819434865	-0.9900799503
Ν	0.0705433929	-0.4633301788	1.4576752235
Η	0.1906104483	-1.2518609268	0.8462707
С	-1.217763773	0.0052930013	1.609676912
С	-1.5570945437	0.8030603073	2.7022140823
С	-2.1851513715	-0.2518009637	0.6383698401

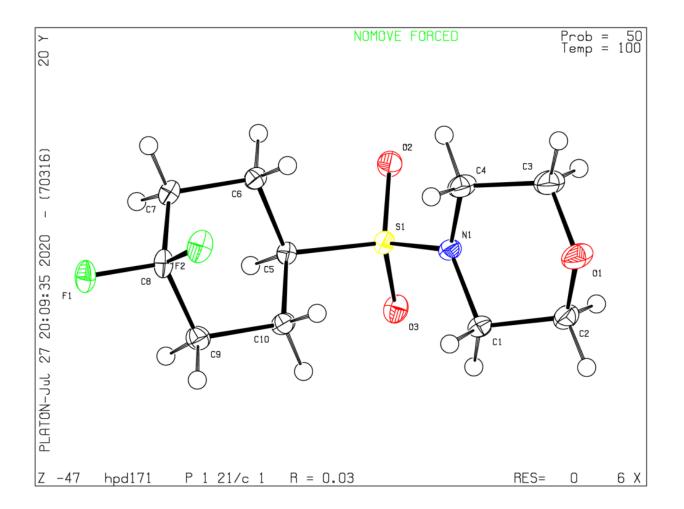

С	-2.8328175494	1.3199333371	2.8184253059
Η	-0.8115591889	1.0126898606	3.4551150219
С	-3.4576233199	0.2696597106	0.7659768136
Η	-1.9270013524	-0.8609996737	-0.2155584338
С	-3.7940486943	1.0596409606	1.8543148945
Η	-3.0770536385	1.934068626	3.6721296394
Η	-4.1931143897	0.0579849403	0.004511078
Η	-4.7886040356	1.4659927388	1.9491135645
Η	0.6278280684	-0.516810411	2.2923187176

X-Ray Crystallographic Data

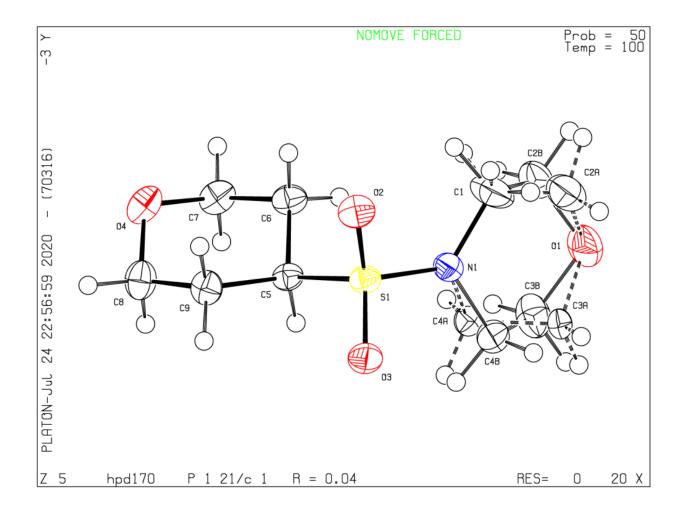
Bond precisio	on: C-C	= 0.0019 A	Wavelength = 1.54184
Cell:	a = 26.9877(4)	b = 5.7256(1)	c = 9.8987(2)
	$\alpha = 90$	$\beta = 90.078(2)$	$\gamma = 90$
Temperature	:100 K		
	Calcula	ited	Reported
Volume	1529.55	(5)	1529.55(5)
Space group	P 21/c		P 1 21/c 1
Hall group	-P 2ybc		-P 2ybc
Moiety form	ula C14H21N	JO₅S	$C_{14}H_{21}NO_5S$
Sum formula	$C_{14}H_{21}N$	JO₅S	$C_{14}H_{21}NO_5S$
Mr	315.38		315.38
D _x ,g cm ⁻³	1.370		1.370
Ζ	4		4
Mu (mm ⁻¹)	2.075		2.075
F000	672.0		672.0
F000'	675.38		
h,k,l _{max}	34,7,12		33,7,12
Nref	3203		2942
Tmin, Tmax	0.748,0	849	0.563,1.000
T _{min} '	0.624		
Correction m	nethod = # Rep	orted T Limits:	$T_{min} = 0.563 \ T_{max} = 1.000$
AbsCorr = G	AUSSIAN		
Data complet	teness = 0.919	Theta(m	ax) = 76.280
R(reflections)	= 0.0326(2713)	wR2(reflections) = 0.0863(2942)
S = 1.051	Npa	= 192	


CCDC 2042738

4-((3,4-Dimethoxyphenethyl)sulfonyl)morpholine (1c)


4-((2,3-Dihydro-1 <i>H</i> -inde	n-2-yl)sulfor	nyl)morp	holine (1i)
	<i>J i</i>	<i>J ′</i>	· · ·

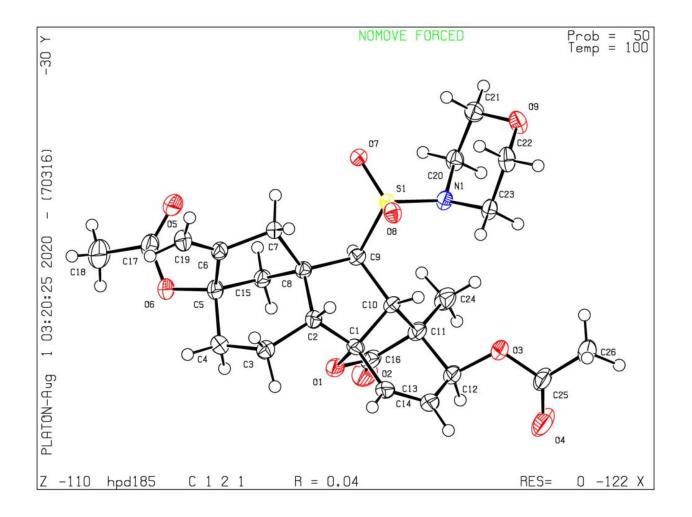
Bond precision	on:	С-С :	= 0.002	1 Å		Wavelength = 1.54184
Cell:	a = 23.	.1972(2)	b = 6	.10055(7)	c = 9	.24200(9)
	$\alpha = 90$		β=9	0.2932(9)	$\gamma = 9$	00
Temperature	:100 K					
		Calculat	ted			Reported
Volume		1307.87((2)			1307.87(2)
Space group		P 21/c				P 1 21/c 1
Hall group		-P 2ybc				-P 2ybc
Moiety form	ula	C13H17N	O ₃ S			C13H17NO3S
Sum formula	L	C13H17N	O ₃ S			C13H17NO3S
$M_{\rm r}$		267.34				267.33
D _x ,g cm ⁻³		1.358				1.358
Ζ		4				4
Mu (mm ⁻¹)		2.213				2.213
F000		568.0				568.0
F000'		570.92				
h,k,l _{max}		29,7,11				29,7,11
N_{ref}		2738				2668
T_{min} , T_{max}		0.658,0.8	385			0.515,1.000
T _{min} '		0.576				
Correction m	nethod	= # Repo	rted T	Limits:	$\Gamma_{\min} =$	$0.515 \mathrm{T_{max}} = 1.000$
AbsCorr = G	AUSSIA	AN				
Data comple	teness =	= 0.974		Theta(ma	ax) = 7	6.443
R(reflections) = 0.034	43(2450)		wR2(reflect	ions) = 0.0974(2668)
S = 1.090		Npar	= 163			



Bond precisio	on: $C-C =$	0.0020 Å	Wavelength = 1.54184
Cell:	a = 11.83783(11)	b 10.04452(10)	c = 10.01996(9)
	$\alpha = 90$	$\beta = 96.4304(8)$	$\gamma = 90$
Temperature	:100 K		
	Calculate	d	Reported
Volume	1183.931(19)	1183.93(2)
Space group	P 21/c		P 1 21/c 1
Hall group	-P 2ybc		-P 2ybc
Moiety form	ıla C10H17F2N	IO3S	$C_{10}H_{17}F_2NO_3S$
Sum formula	$C_{10}H_{17}F_{2}N_{10}$	IO3S	$C_{10}H_{17}F_2NO_3S$
Mr	269.31		269.30
D _x ,g cm ⁻³	1.511		1.511
Z	4		4
Mu (mm ⁻¹)	2.690		2.690
F000	568.0		568.0
F000'	571.29		
h,k,l _{max}	14,12,12		14,12,12
Nref	2486		2397
T_{min} , T_{max}	0.597,0.70	1	0.534,1.000
T _{min} '	0.497		
Correction m	ethod = # Report	ed T Limits:	$T_{min} = 0.534 \ T_{max} = 1.000$
AbsCorr = GA	AUSSIAN		
Data complet	eness = 0.964	Theta(m	ax) = 76.457
R(reflections)	= 0.0298(2287)	wR2(reflections) = 0.0759(2397)
S = 1.075	$N_{par} =$	154	

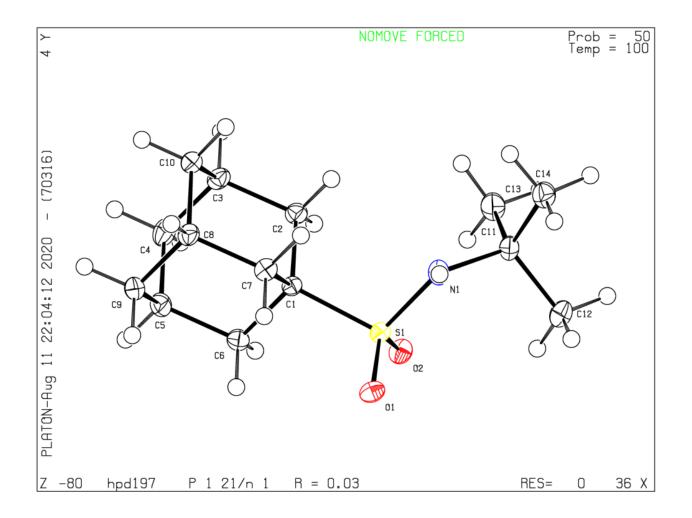
4-((4,4-Difluorocyclohexyl)sulfonyl)morpholine (1j)

Bond precisio	on:	C-C	= 0.0023 Å	Wavelength = 1.54184	
Cell:	a = 18.	4344(2)	b = 6.1010(1)	c = 9.7772(1)	
	$\alpha = 90$		$\beta = 91.605(1)$	$\gamma = 90$	
Temperature	:100 K				
		Calcula	ted	Reported	
Volume		1099.19	(2)	1099.19(2)	
Space group		P 21/c		P 1 21/c 1	
Hall group		-P 2ybc		-P 2ybc	
Moiety form	ula	C9H17N	D4S	C9H17NO4S	
Sum formula	L	C9H17N	D4S	C9H17NO4S	
Mr		235.30		235.29	
D _x ,g cm ⁻³		1.422		1.422	
Z		4		4	
Mu (mm ⁻¹)		2.613		2.613	
F000		504.0		504.0	
F000'		506.84			
h,k,l _{max}		23,7,12		22,7,12	
Nref		2315		2219	
T_{min} , T_{max}		0.532,0.2	760	0.397,1.000	
T _{min} '		0.434			
Correction m	nethod	= # Repo	rted T Limits:	$T_{min} = 0.397 T_{max} = 1.000$	
AbsCorr = G	AUSSIA	AN			
Data comple	teness =	= 0.959	Theta(m	nax) = 76.521	
R(reflections)) = 0.036	69(2062)	wR2((reflections) = 0.1034(2219)	
S = 1.094		N_{par}	= 163		


(1S,2S,4aR,4bR,7S,9aS,10S,10aR)-1-Methyl-8-methylene-10-

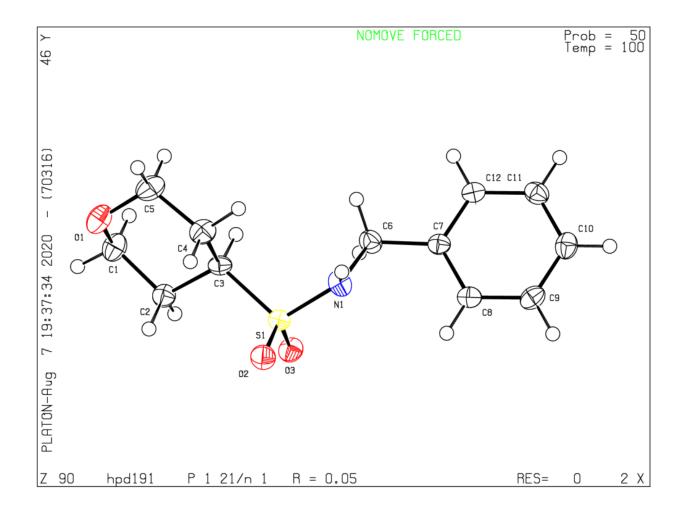
(morpholinosulfonyl)-13-oxo-1,2,5,6,8,9,10,10a-octahydro-4a,1-

(epoxymethano)-7,9a-methanobenzo[a]azulene-2,7(4bH)-diyl diacetate


(10c)

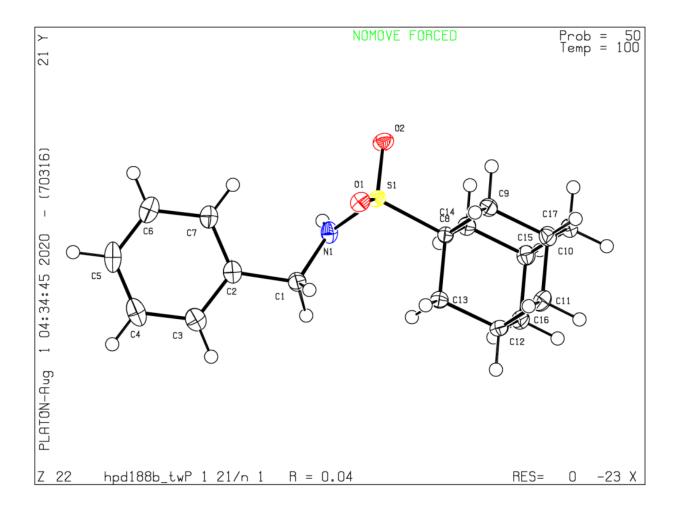
Bond precision: $C-C = 0$.		= 0.0042 Å	Wavelength = 1.54184	
Cell:	a = 22.5244(2) $b = 10.26708(10)$ $c = 2$		12.02634(11)	
	$\alpha = 90$	$\beta = 96.6693(9)$ $\gamma =$	90	
Temperature	:100 K			
	Calcula	ted	Reported	
Volume	2762.39	(4)	2762.38(5)	
Space group C 2			C 1 2 1	
Hall group C 2y			C 2y	
Moiety formula C ₂₆ H ₃₃ NO		JO9S [+ solvent]	C26H33NO9S	
Sum formula C ₂₆ H ₃₃ N		JO9S [+ solvent]	C26H33NO9S	
Mr	535.59		535.59	
D _x ,g cm ⁻³ 1.288			1.288	
Ζ	4		4	
Mu (mm ⁻¹)	1.482		1.482	
F000	1136.0		1136.0	
F000'	1140.99			
h,k,l _{max}	k,l _{max} 28,12,15		27,12,15	
Nref	5797[30	66]	4895	
Tmin, Tmax	0.771,0.	927	0.506,1.000	
T _{min} '	0.682			
Correction n	nethod = # Rep	orted T Limits: T _{min} =	$0.506 T_{max} = 1.000$	
AbsCorr = G	AUSSIAN			
Data complet	teness = 1.60/0.8	4 Theta(max) = 7	6.582	
R(reflections)	= 0.0355(4809)	wR2(reflect	ions) = 0.0944(4895)	
S = 1.012	Npa	r = 339		

Bond precisi	on:	C-C =	0.0018 A			Wavelength = 1.54184
Cell:	a = 6.47	31(1)	b = 19.8101	(2)	c = 11.04	28(1)
	$\alpha = 90$		$\beta = 94.993(1$)	γ = 90	
Temperature	e:100 K					
		Calculate	ed			Reported
Volume		1410.68(3	3)			1410.68(3)
Space group		P 21/n				P 1 21/n 1
Hall group		-P 2yn				-P 2yn
Moiety formula		$C_{14}H_{25}NO_2S$				$C_{14}H_{25}NO_2S$
Sum formula	a	$C_{14}H_{25}NO_2S$				$C_{14}H_{25}NO_2S$
Mr		271.41				271.41
D _x ,g cm ⁻³		1.278				1.278
Z		4				4
Mu (mm ⁻¹)		1.992				1.992
F000		592.0				592.0
F000'		594.80				
h,k,l _{max}		8,24,13				8,24,13
Nref		2956				2875
Tmin, Tmax		0.776,0.89	96			0.676,1.000
Tmin'		0.596				
Correction n	nethod =	# Repor	ted T Limit	s: [$\Gamma_{\min} = 0.67$	$6 T_{max} = 1.000$
AbsCorr = G	AUSSIA	N				
Data completeness = 0.973			Theta	Theta(max) = 76.467		
R(reflections) = 0.0321(2706)		wŀ	wR2(reflections) = 0.0871(2875)			
S = 1.048		N _{par} =	169			


CCDC 2042743

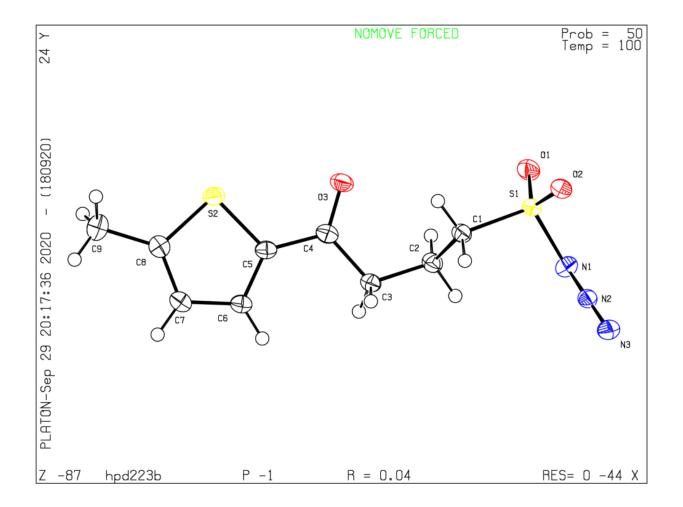
Bond precisio	n: C–C	= 0.0035 Å	Wavelength = 1.54184
Cell:	a = 5.4965(2)	b = 24.4849(12) c	= 9.7713(4)
	$\alpha = 90$	$\beta = 105.544(4) \gamma$	= 90
Temperature:	100 K		
	Calcula	ted	Reported
Volume	1266.94	(10)	1266.94(10)
Space group	P 21/n		P 1 21/n 1
Hall group	-P 2yn		-P 2yn
Moiety formu	la C12H17N	IO3S	C12H17NO3S
Sum formula	C12H17N	IO3S	C12H17NO3S
Mr 255.33			255.32
D _x ,g cm ⁻³ 1.339			1.339
Ζ	4		4
Mu (mm ⁻¹)	2.256		2.256
F000	544.0		544.0
F000'	546.85		
h,k,l _{max}	6,30,12		6,30,12
Nref	2666		2554
Tmin, Tmax	0.709,0.	906	0.533,1.000
Tmin'	0.643		
Correction me	ethod = # Repo	orted T Limits: Tmir	$n = 0.533 T_{max} = 1.000$
AbsCorr = GA	USSIAN		
Data complete	eness = 0.958	Theta(max)	= 76.662
R(reflections)	= 0.0486(2308)	wR2(ref	lections) = 0.1239(2554)
S = 1.084	Npar	= 157	

N-Benzyltetrahydro-2H-pyran-4-sulfonamide (4b)

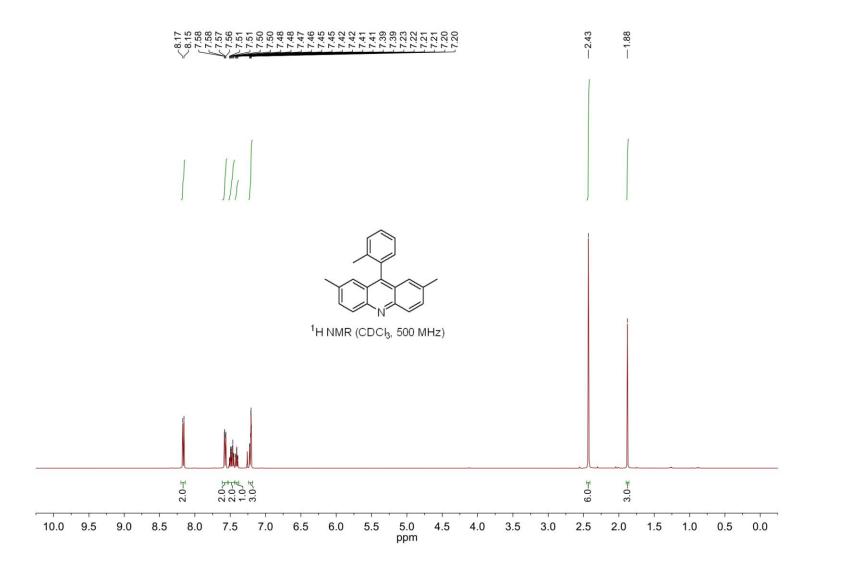

CCDC 2042744

C-C = 0.0033 Å Bond precision: Wavelength = 1.54184b = 6.2686(1)Cell: a = 14.0325(4)c = 18.2532(5) $\alpha = 90$ $\beta = 110.571(3)$ $\gamma = 90$ Temperature: 100 K Calculated Reported Volume 1503.25(7) 1503.25(7) Space group P 21/n P 1 21/n 1 Hall group -P 2yn -P 2yn Moiety formula $C_{17}H_{23}NO_2S$ $C_{17}H_{23}NO_2S$ Sum formula C17H23NO2S $C_{17}H_{23}NO_2S$ M_r 305.42 305.42 D_x,g cm⁻³ 1.349 1.350 Ζ 4 4 $Mu (mm^{-1})$ 1.941 1.941 F000 656.0 656.0 F000' 659.00 h,k,lmax 17,7,23 17,7,23 Nref 3159 5689 T_{min}, T_{max} 0.760,0.956 0.807,1.000 T_{min}' 0.746 Correction method = # Reported T Limits: T_{min} = 0.807 T_{max} = 1.000 AbsCorr = GAUSSIAN Theta(Max) = 76.687 Data completeness = 1.801R(reflections) = 0.0445(5110)wR2(reflections) = 0.1096(5689)S = 1.082 $N_{par} = 191$

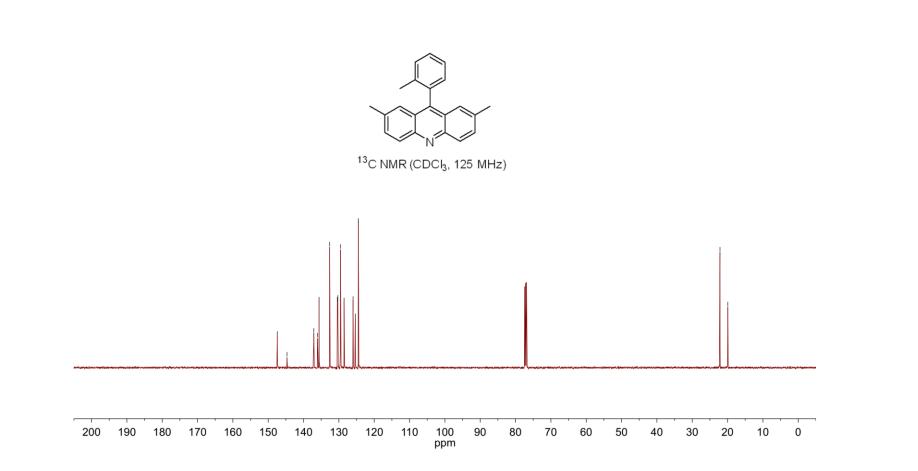
CCDC 2042745

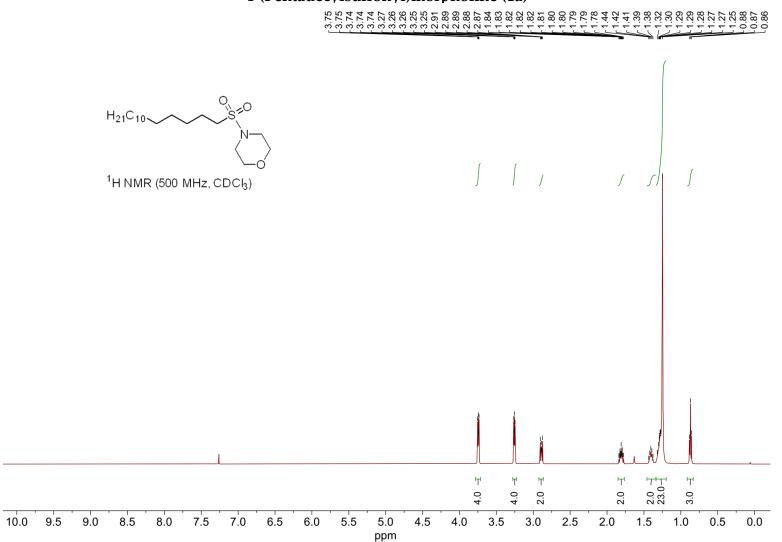

N-Benzyladamantane-1-sulfonamide (4d)

Bond precision:		C–C = 0.0024 A		Wavelength = 1.54184		
Cell:	a = 5.4	957(1)	b = 5.8614(2)	c = 18.6487(6)		
	$\alpha = 83$.542(3)	$\beta = 88.913(2)$	$\gamma = 82.753(2)$		
Temperature	:100 K					
		Calcula	ited	Reported		
Volume		592.13(3)	592.13(3)		
Space group		P -1		P -1		
Hall group		-P 1		-P 1		
Moiety formu	ıla	C9H11N	$_{3}O_{3}S_{2}$	$C_9H_{11}N_3O_3S_2$		
Sum formula		C9H11N	$_{3}O_{3}S_{2}$	$C_9H_{11}N_3O_3S_2$		
Mr		273.33		273.33		
D _x ,g cm ⁻³		1.533		1.533		
Ζ		2		2		
Mu (mm ⁻¹)		4.116		4.116		
F000		284.0		284.0		
F000'		286.10				
h,k,l _{max}		6,7,23		6,7,23		
Nref		2498		2363		
Tmin, Tmax		0.628,0.	913	0.568,1.000		
T _{min} '		0.495				
Correction m	ethod	= # Repo	orted T Limits:	$T_{min} = 0.568 T_{max} = 1.000$		
AbsCorr = GA	AUSSIA	AN				
Data complet	eness =	= 0.946	Theta(m	ax) = 76.591		
R(reflections) = 0.0375(2181)			wR2	wR2(reflections) = 0.1002(2363)		
S = 1.080		N_{par}	= 155			

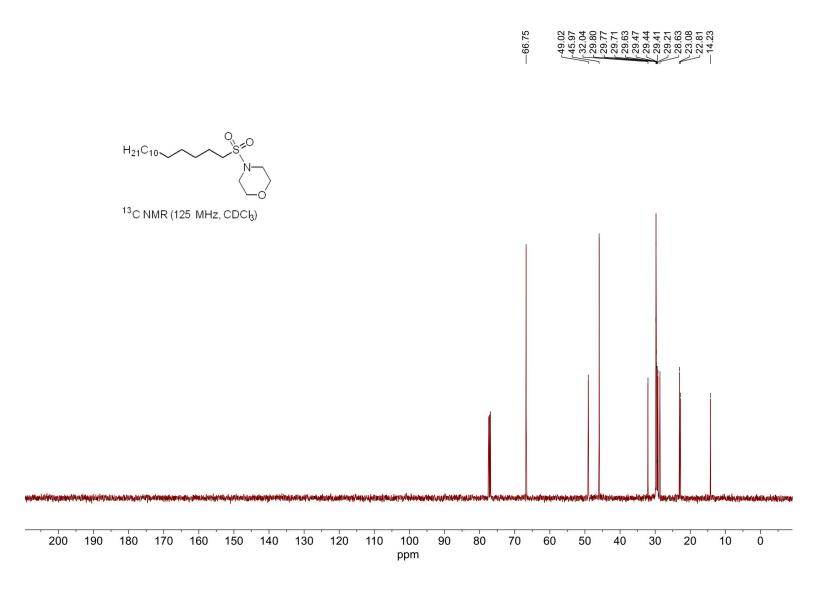

4-(5-Methylthiophen-2-yl)-4-oxobutane-1-sulfonyl azide (9d)

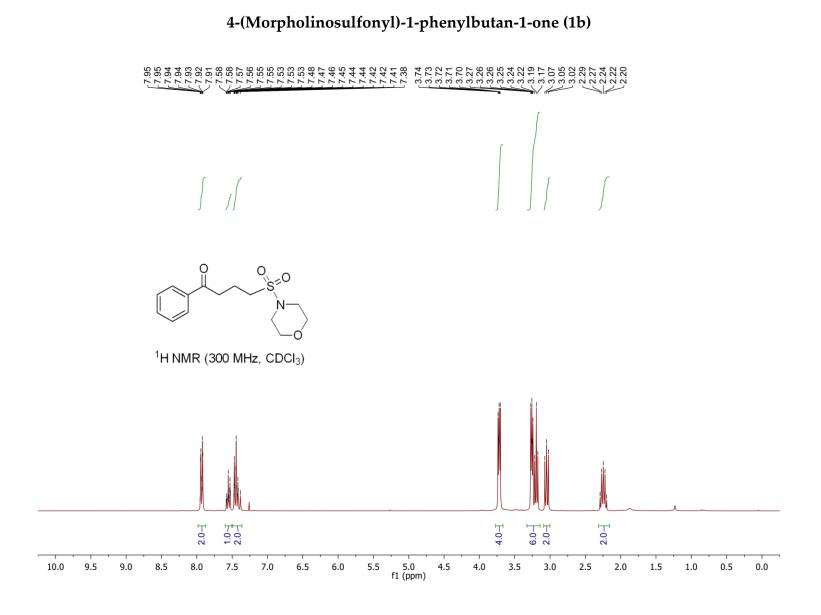
CCDC 2042746

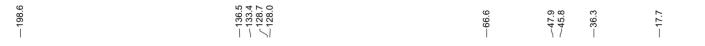

NMR Spectroscopic Data

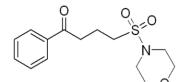

2,7-Dimethyl-9-(o-tolyl)acridine (A3)

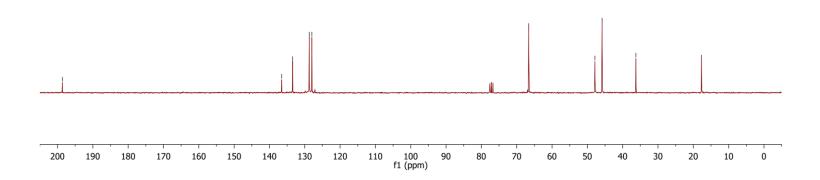
2,7-Dimethyl-9-(o-tolyl)acridine (A3)

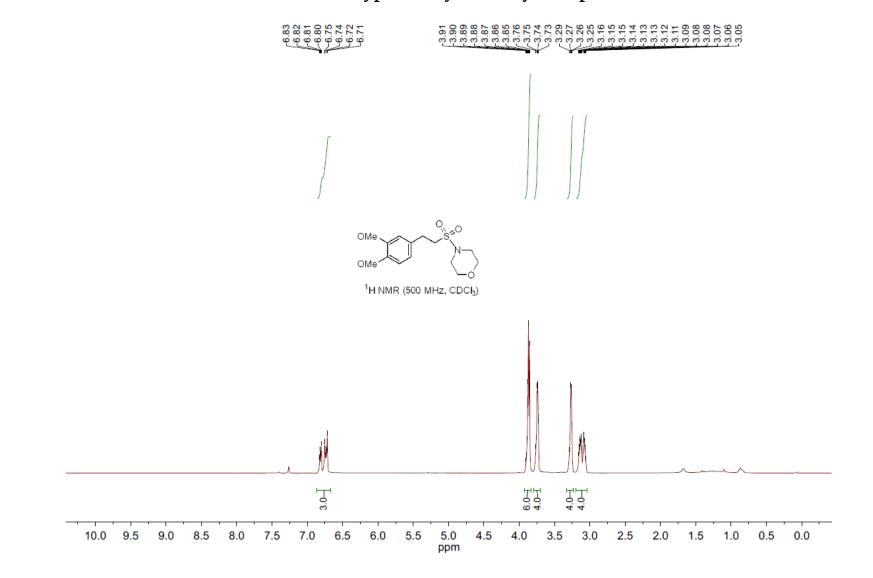


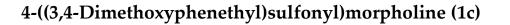


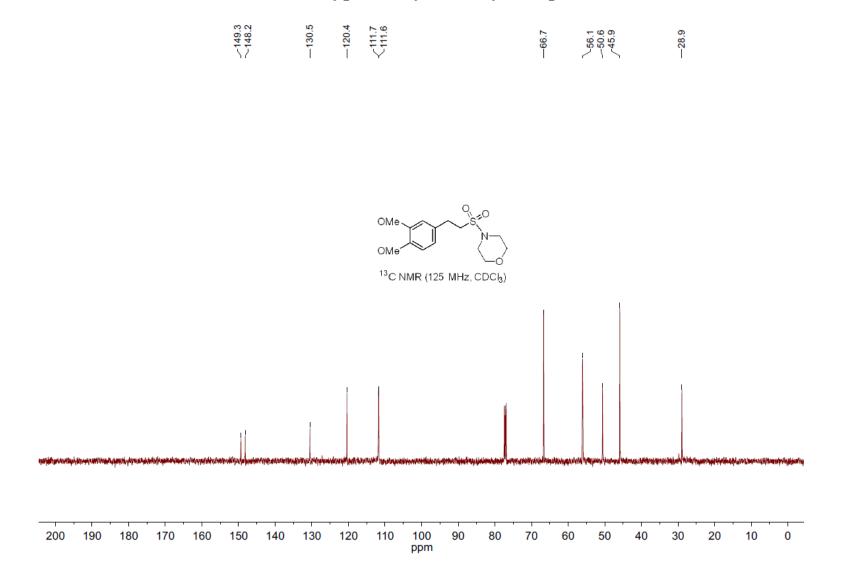

4-(Pentadecylsulfonyl)morpholine (1a)

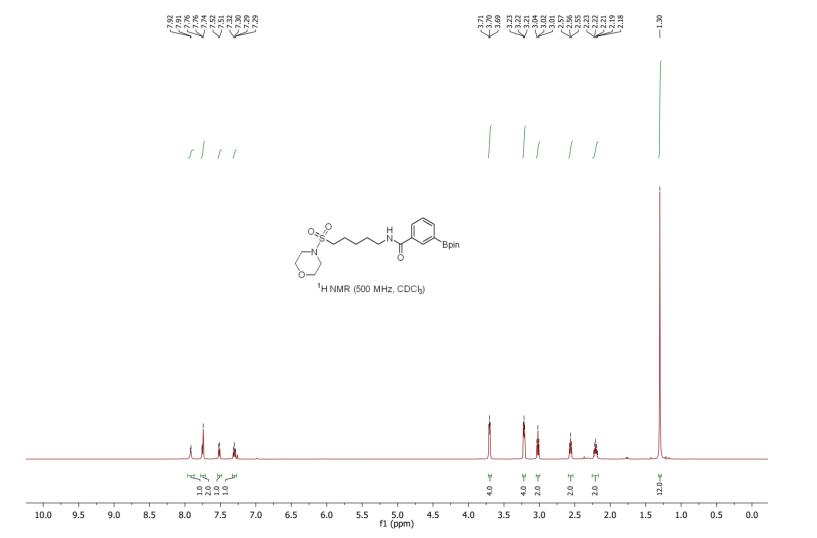

4-(Pentadecylsulfonyl)morpholine (1a)

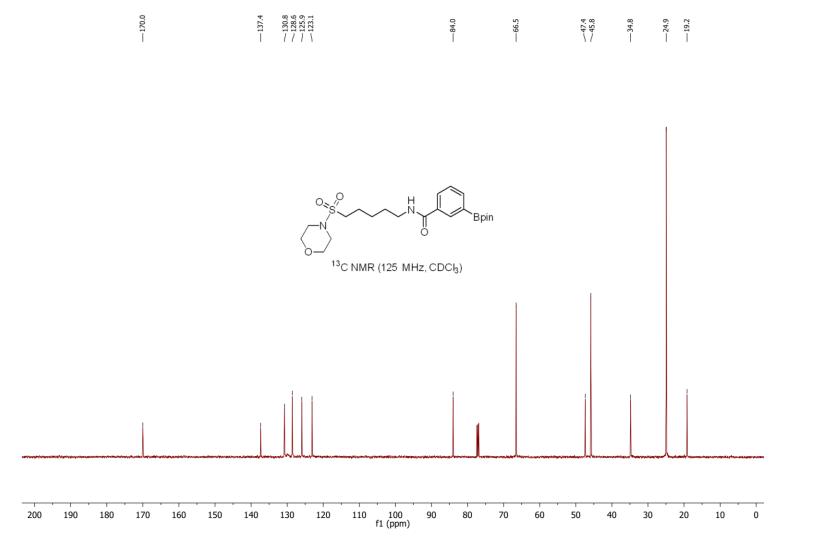


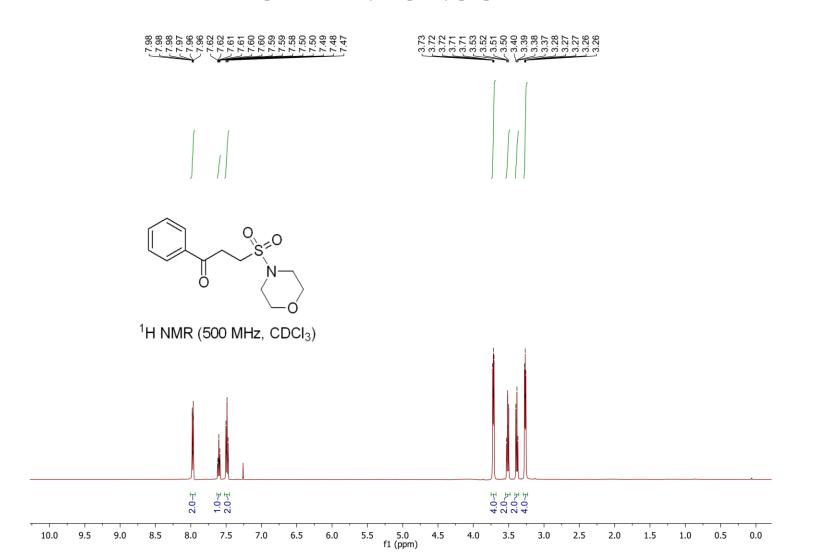

4-(Morpholinosulfonyl)-1-phenylbutan-1-one (1b)



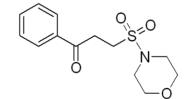

¹³C NMR (75 MHz, CDCl₃)

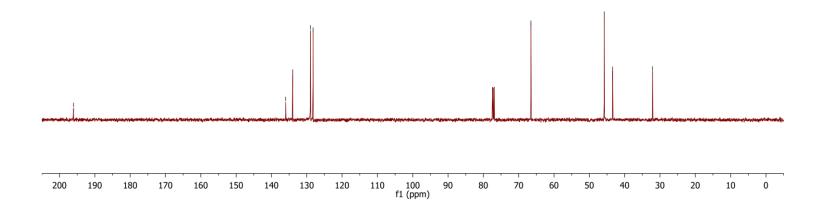


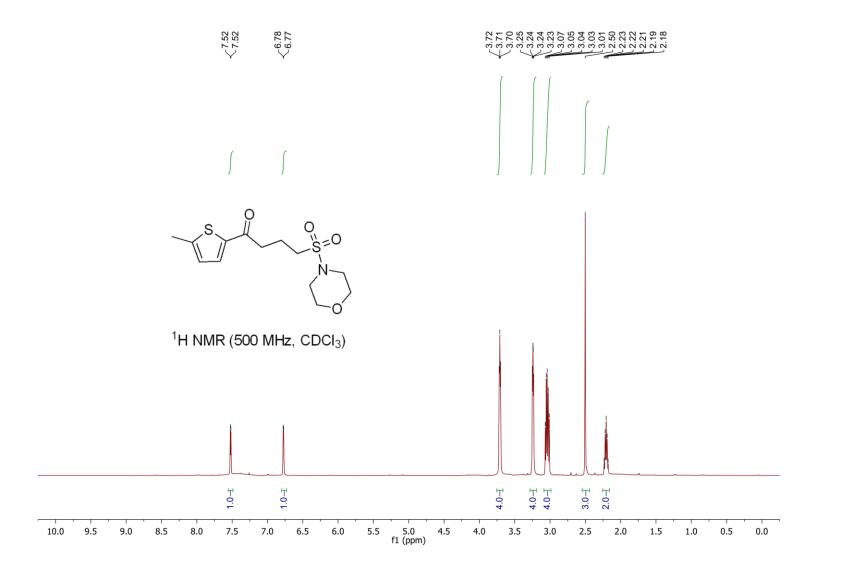

4-((3,4-Dimethoxyphenethyl)sulfonyl)morpholine (1c)

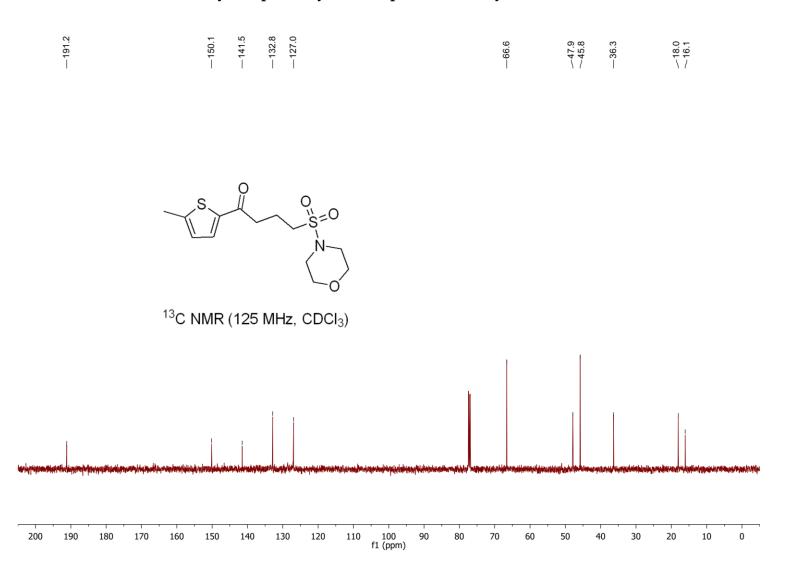


N-(3-(Morpholinosulfonyl)propyl)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzamide (1d)

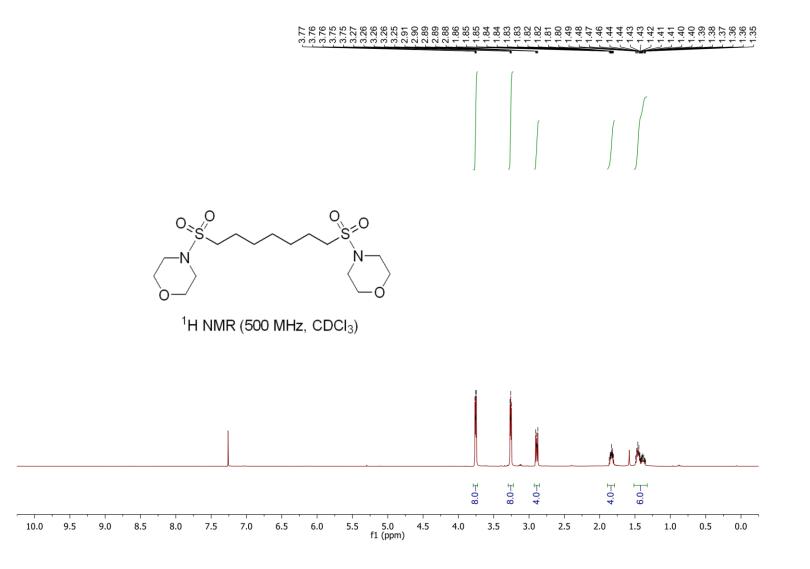

N-(3-(Morpholinosulfonyl)propyl)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzamide (1d)


3-(Morpholinosulfonyl)-1-phenylpropan-1-one (1e)

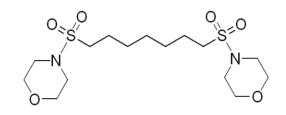

3-(Morpholinosulfonyl)-1-phenylpropan-1-one (1e)



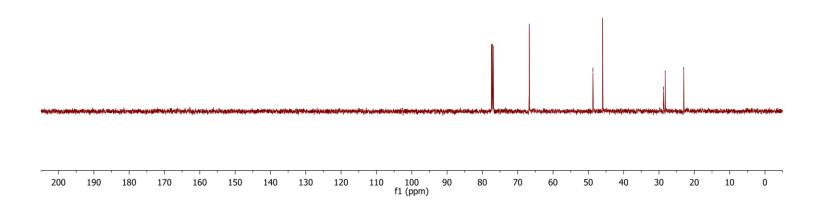
¹³C NMR (125 MHz, CDCl₃)

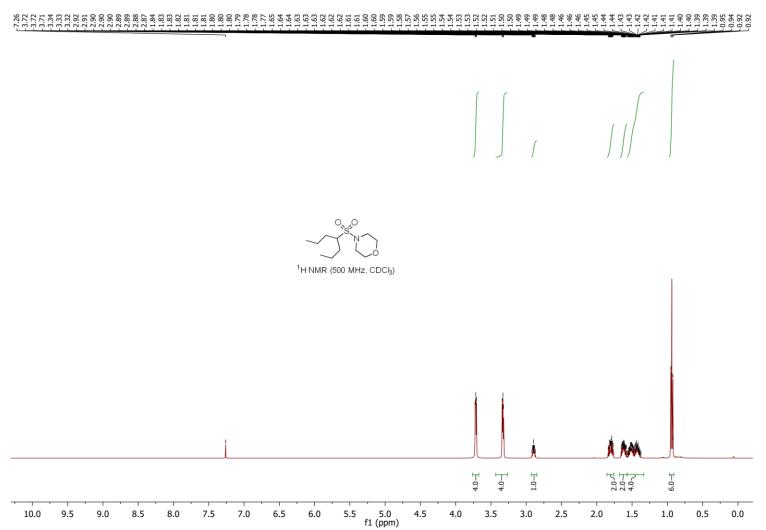


1-(5-Methylthiophen-2-yl)-4-(morpholinosulfonyl)butan-1-one (1f)

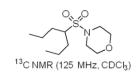

1-(5-Methylthiophen-2-yl)-4-(morpholinosulfonyl)butan-1-one (1f)

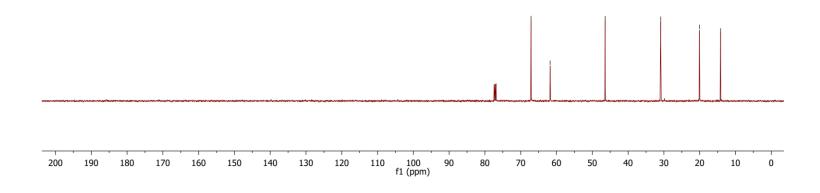
1,7-Bis(morpholinosulfonyl)heptane (1g)

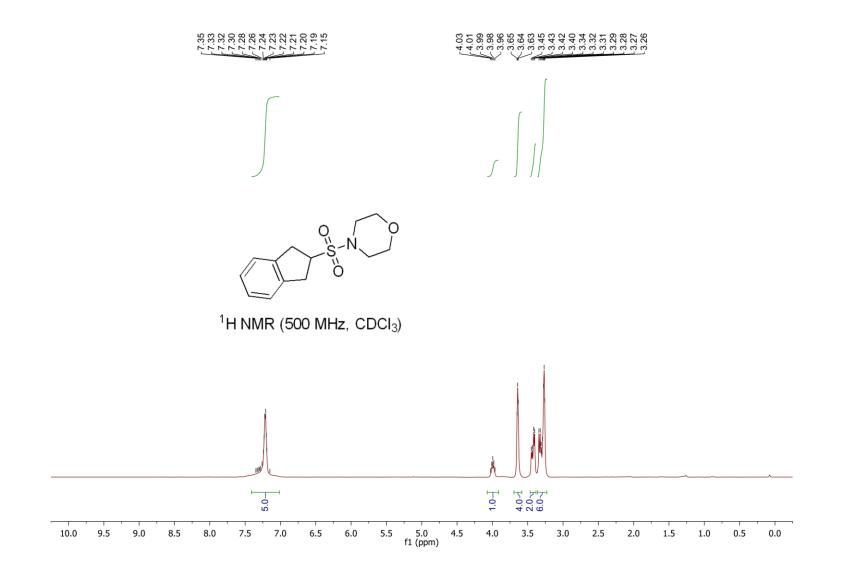



1,7-Bis(morpholinosulfonyl)heptane (1g)

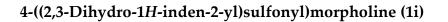
¹³C NMR (125 MHz, CDCl₃)

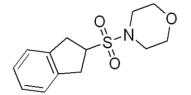


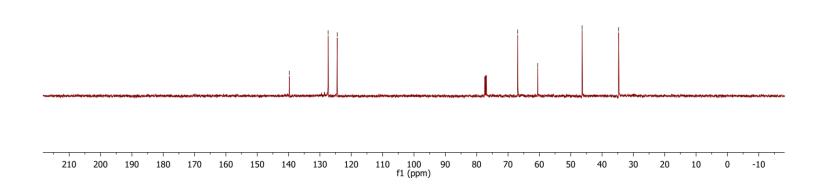


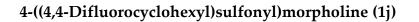

4-(Heptan-4-ylsulfonyl)morpholine (1h)

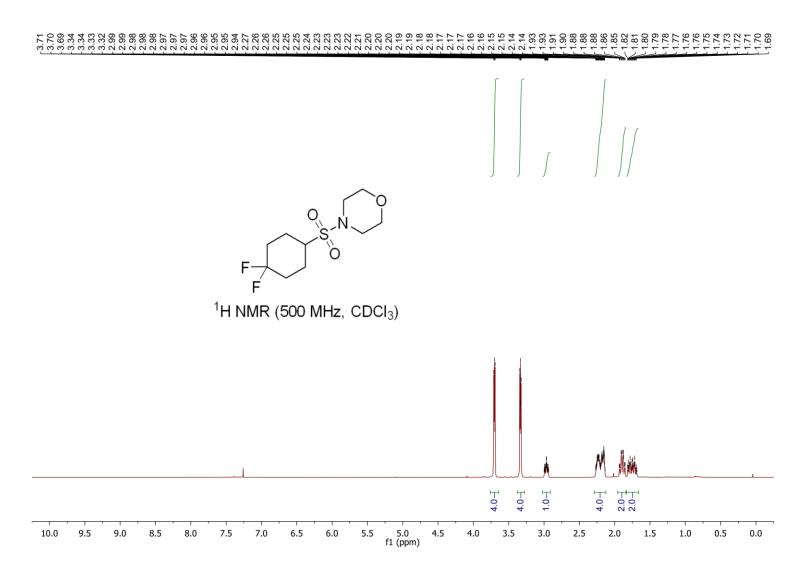
4-(Heptan-4-ylsulfonyl)morpholine (1h)



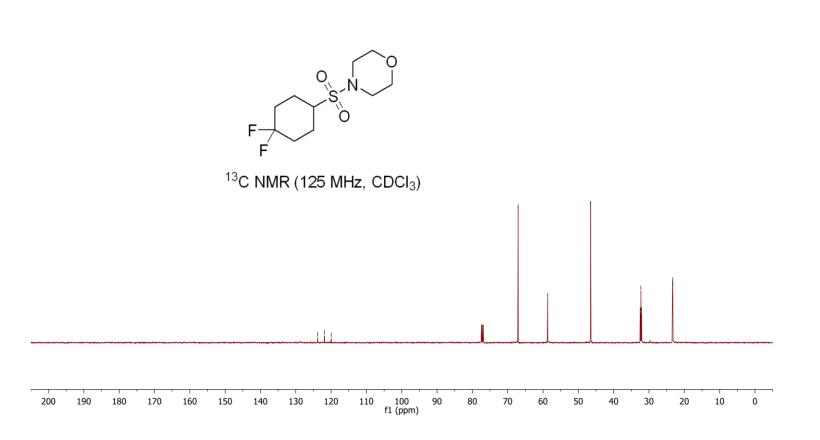


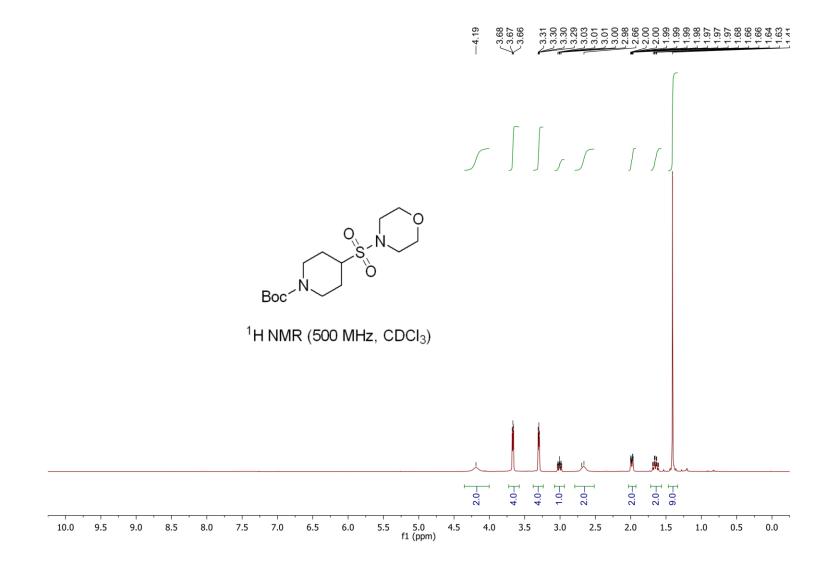

4-((2,3-Dihydro-1*H*-inden-2-yl)sulfonyl)morpholine (1i)

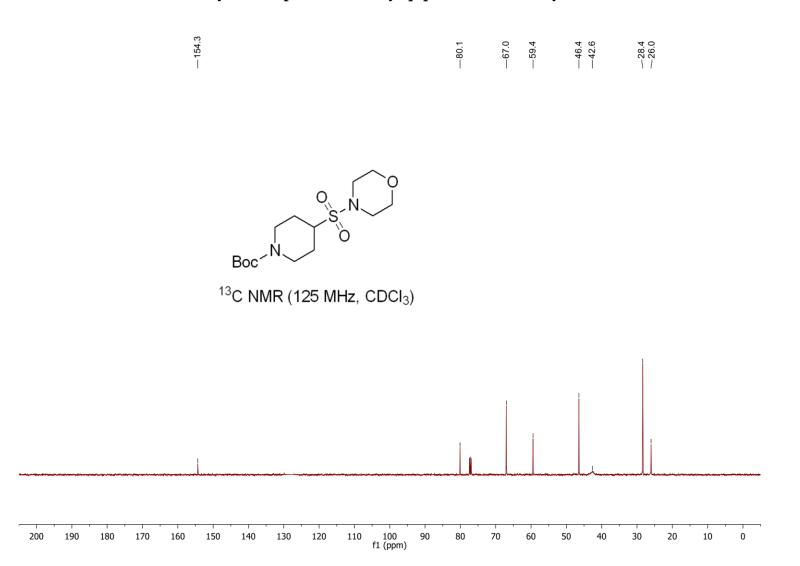


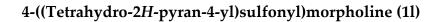


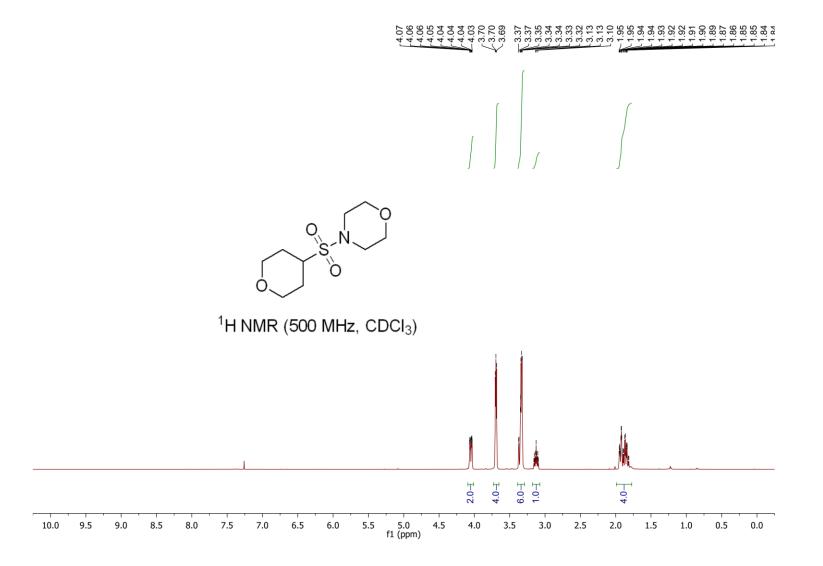
¹³C NMR (125 MHz, CDCl₃)



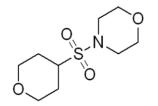



4-((4,4-Difluorocyclohexyl)sulfonyl)morpholine (1j)



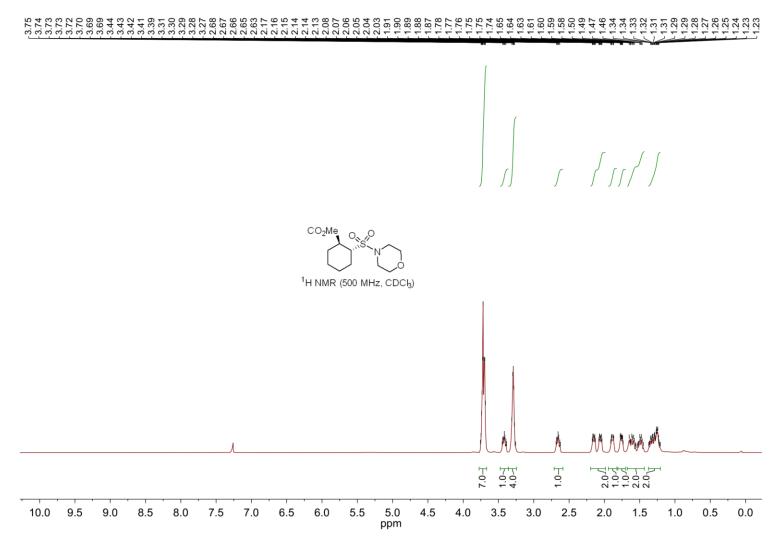


tert-Butyl 4-(morpholinosulfonyl)piperidine-1-carboxylate (1k)

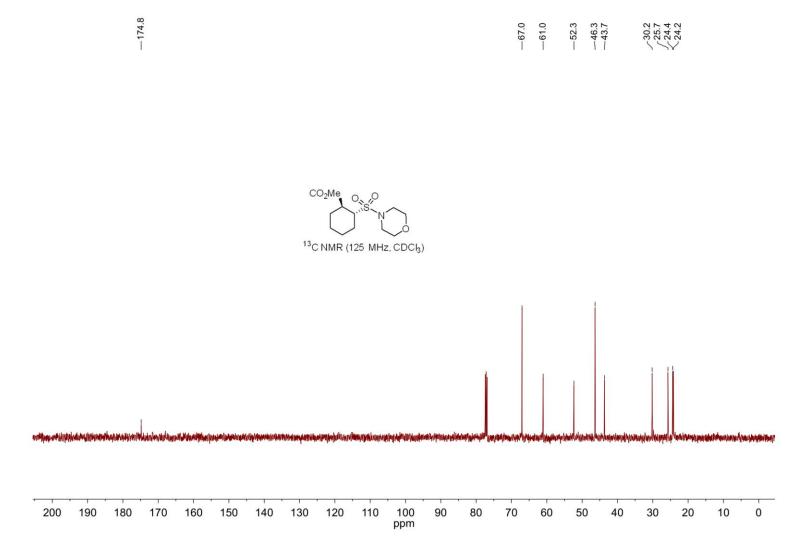


tert-Butyl 4-(morpholinosulfonyl)piperidine-1-carboxylate (1k)

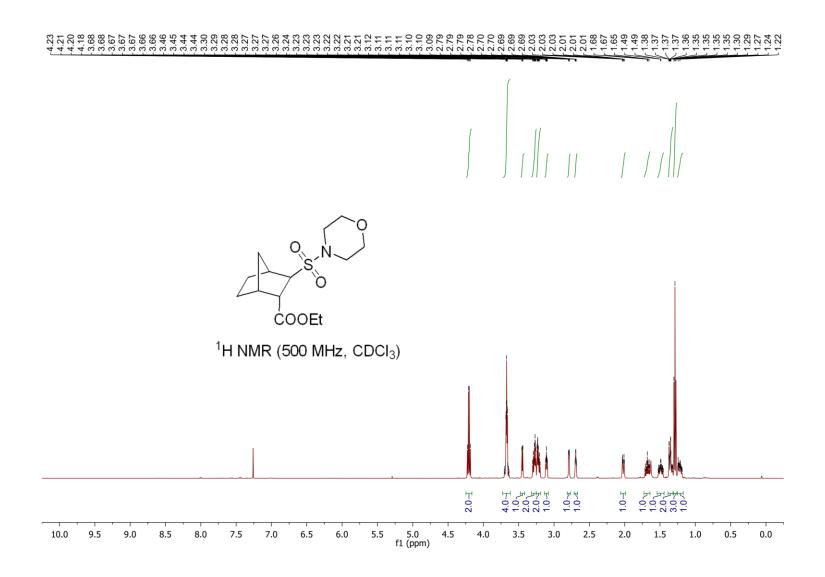


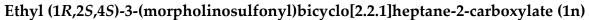


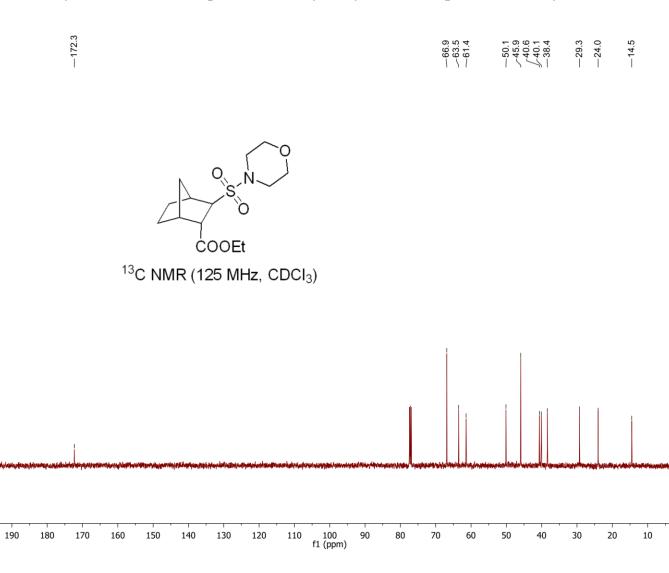
4-((Tetrahydro-2*H*-pyran-4-yl)sulfonyl)morpholine (11)



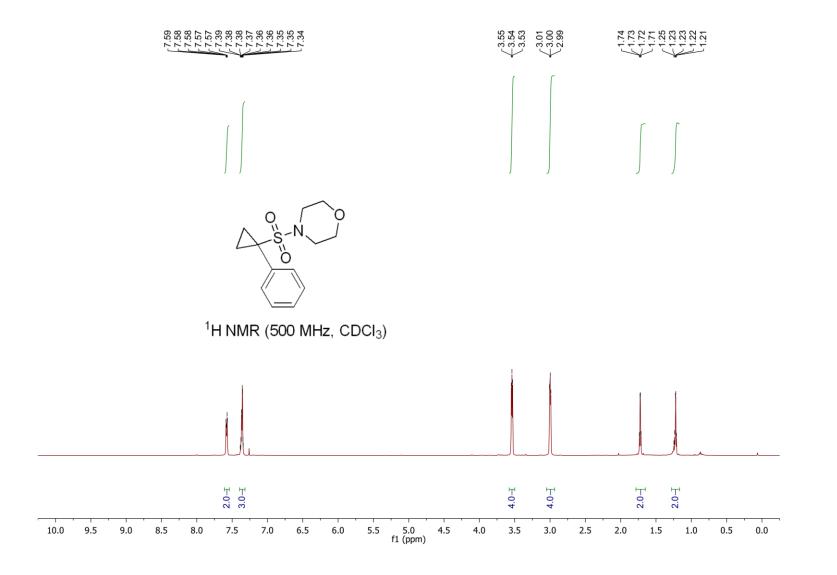
¹³C NMR (125 MHz, CDCl₃)





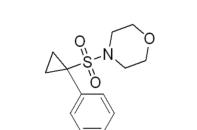

Methyl (1*S*,2*R*)-2-(morpholinosulfonyl)cyclohexane-1-carboxylate (1m)

Methyl (15,2R)-2-(morpholinosulfonyl)cyclohexane-1-carboxylate (1m)

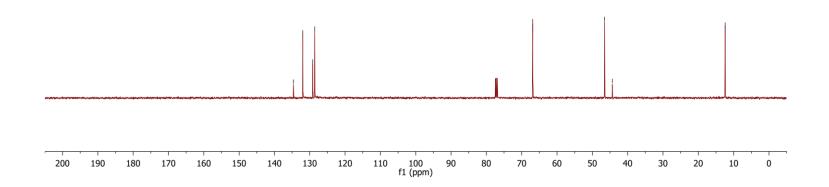

Ethyl (1*R*,2*S*,4*S*)-3-(morpholinosulfonyl)bicyclo[2.2.1]heptane-2-carboxylate (1n)

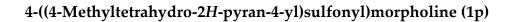
Go back to table of contents

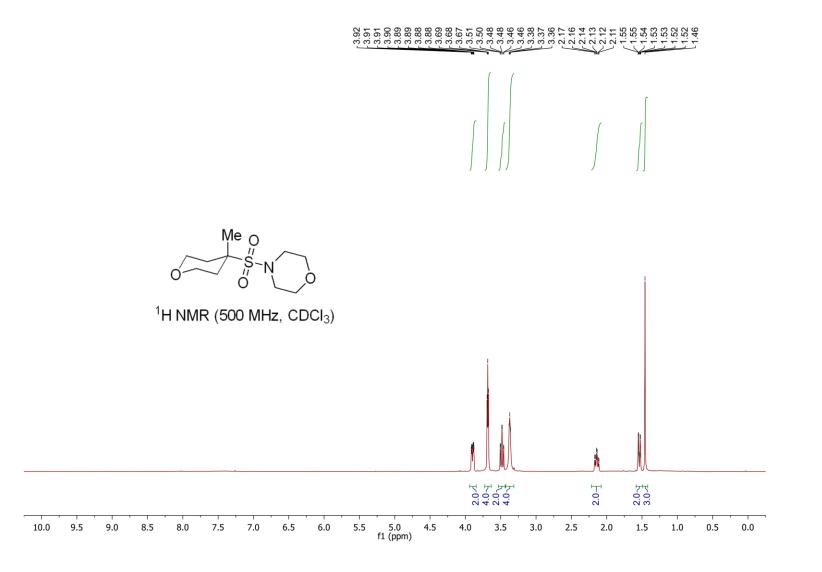
200


0

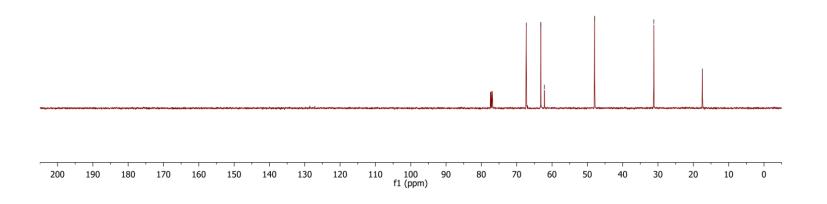
4-((1-Phenylcyclopropyl)sulfonyl)morpholine (10)

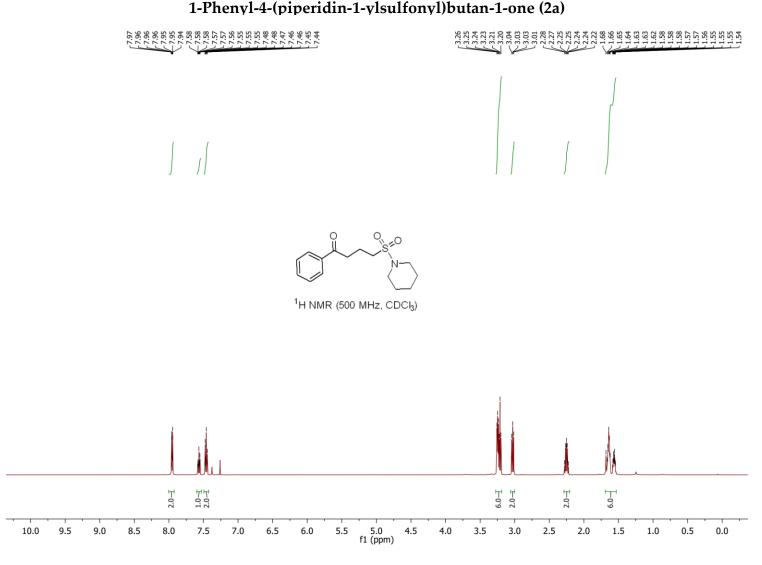



4-((1-Phenylcyclopropyl)sulfonyl)morpholine (10)

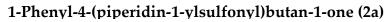


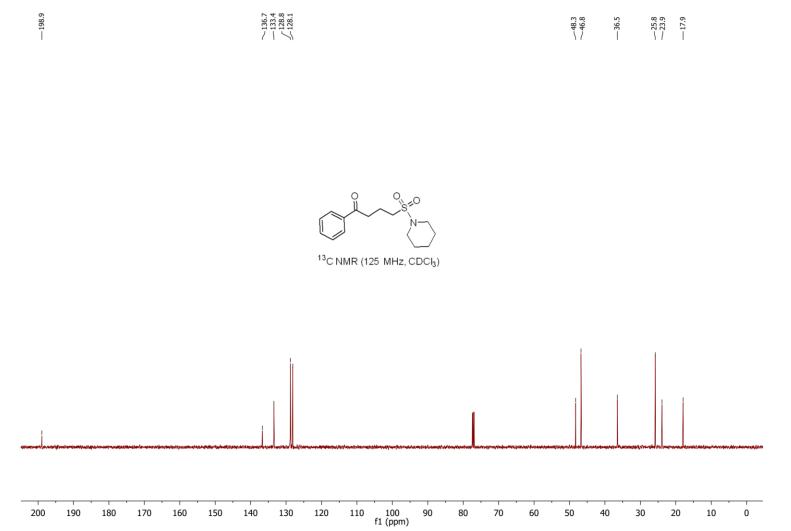
¹³C NMR (125 MHz, CDCI₃)

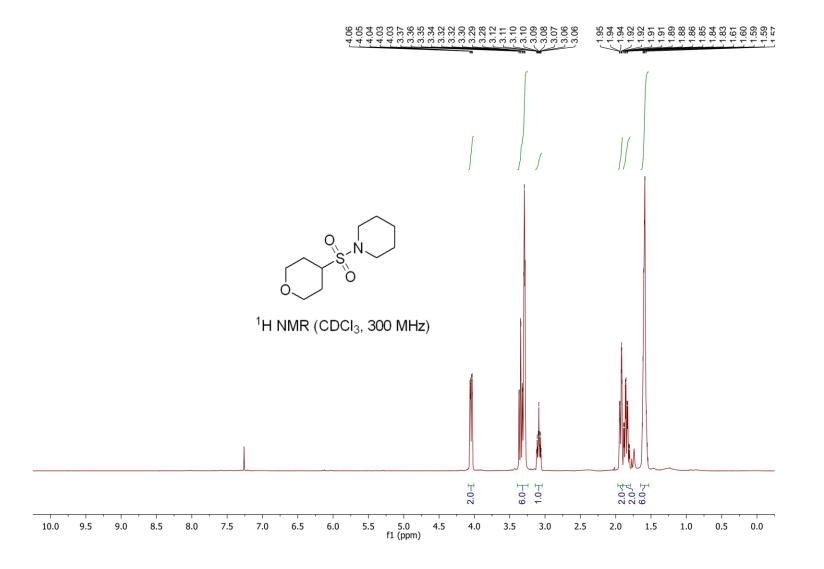



4-((4-Methyltetrahydro-2*H*-pyran-4-yl)sulfonyl)morpholine (1p)

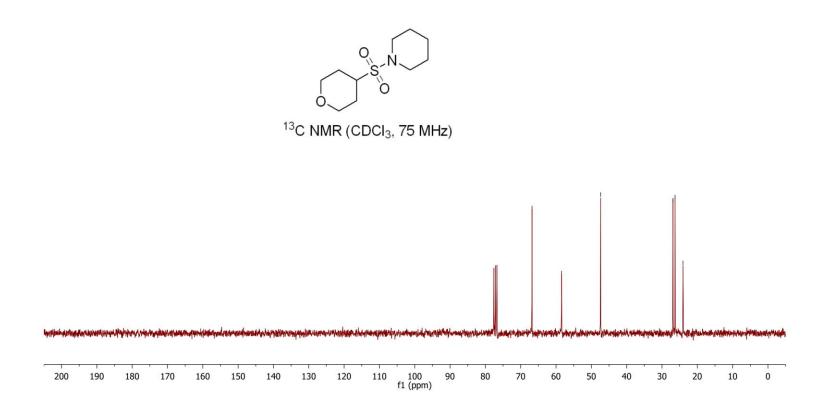
~67.3 ~63.2 ~62.2 ~62.2 ~62.2 ~62.2 ~62.2 ~62.2 ~63.2

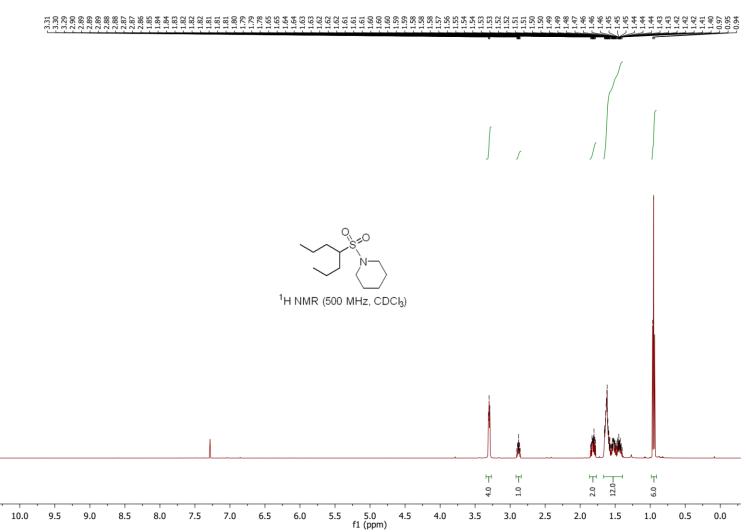

Me O S S O


 ^{13}C NMR (125 MHz, CDCl_3)

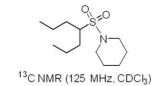


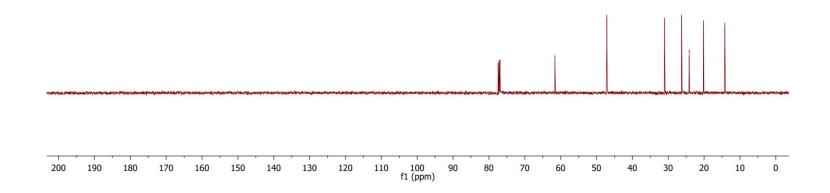
1-Phenyl-4-(piperidin-1-ylsulfonyl)butan-1-one (2a)

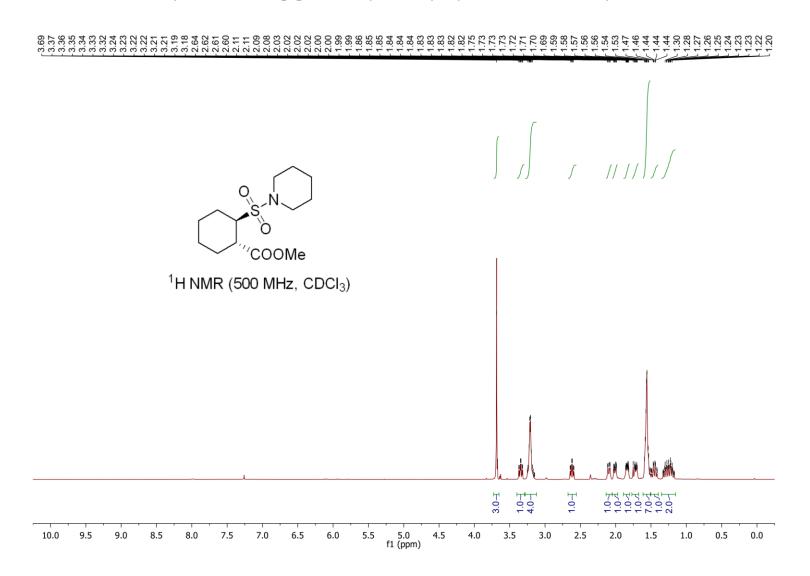



1-((Tetrahydro-2*H*-pyran-4-yl)sulfonyl)piperidine (2b)

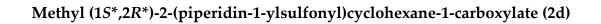
1-((Tetrahydro-2H-pyran-4-yl)sulfonyl)piperidine (2b)

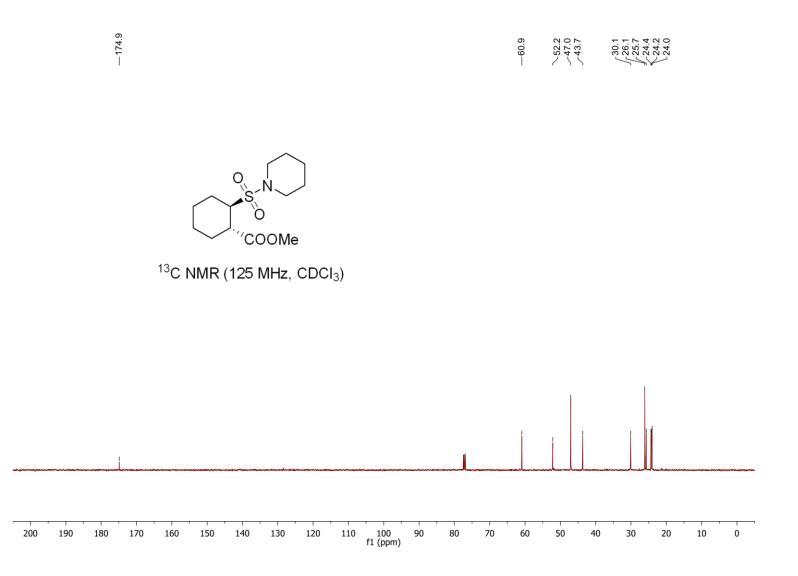






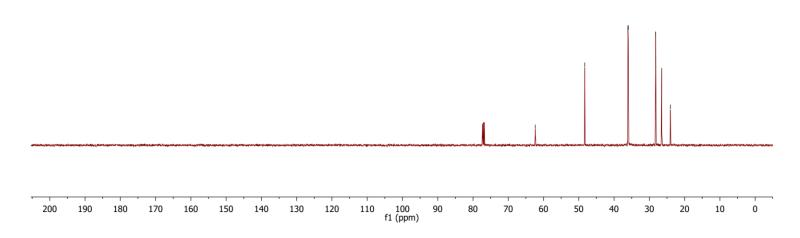
1-(Heptan-4-ylsulfonyl)piperidine (2c)

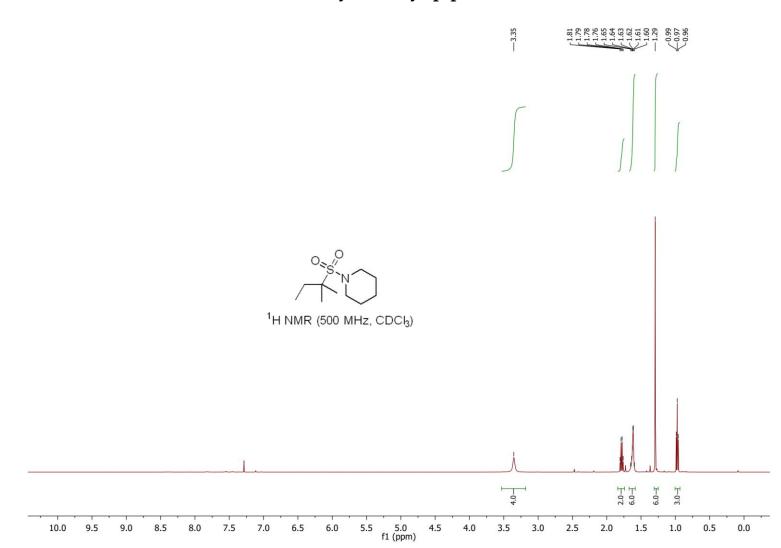

1-(Heptan-4-ylsulfonyl)piperidine (2c)



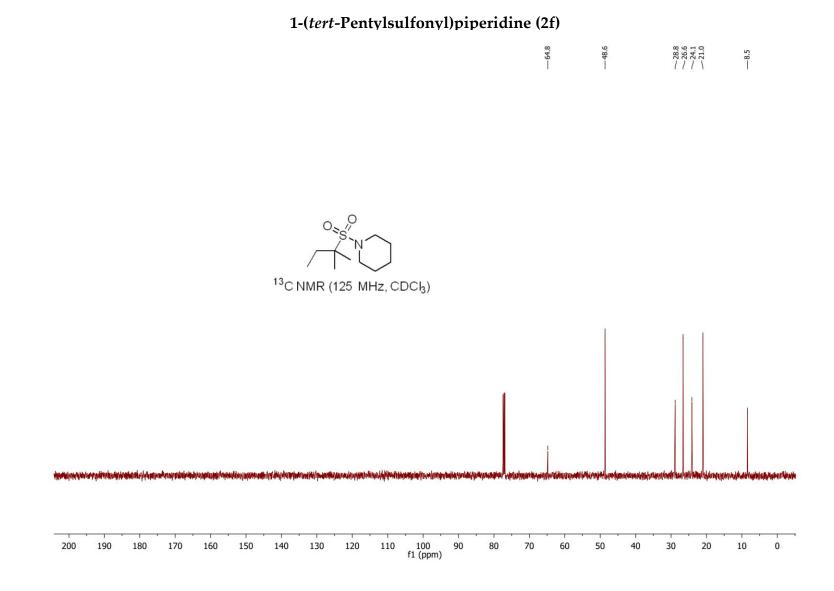


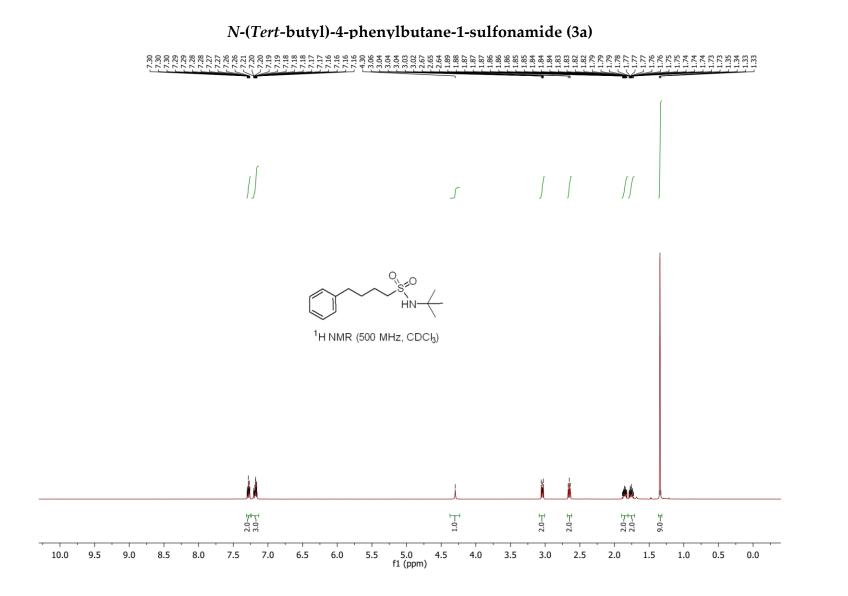
Methyl (1*S**,2*R**)-2-(piperidin-1-ylsulfonyl)cyclohexane-1-carboxylate (2d)

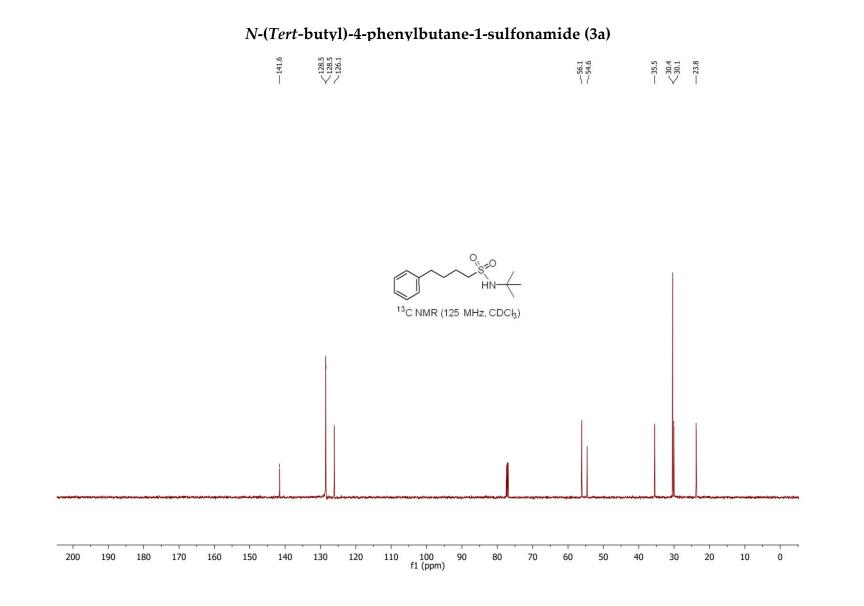


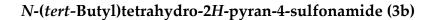

1-(((3*s*,5*s*,7*s*)-Adamantan-1-yl)sulfonyl)piperidine (2e)

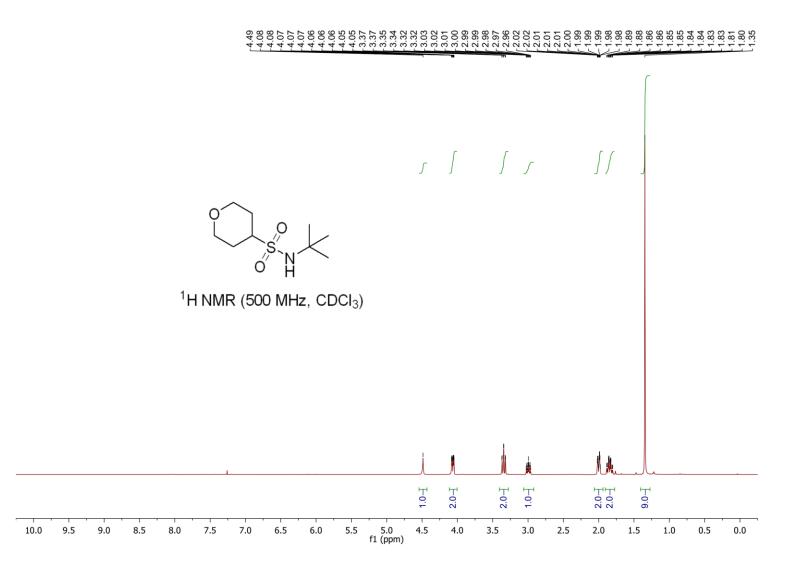
1-(((3*s*,5*s*,7*s*)-Adamantan-1-yl)sulfonyl)piperidine (2e)

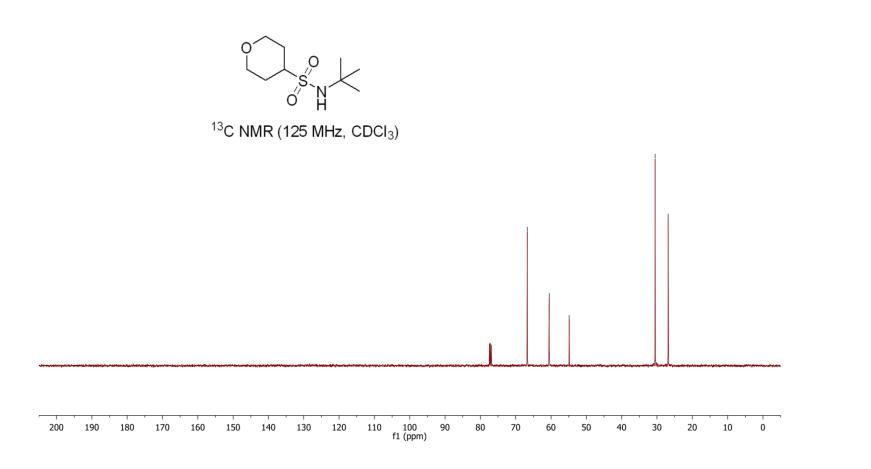

-62.4-48.3-48.3-6.0-28.2-28.2-24.0

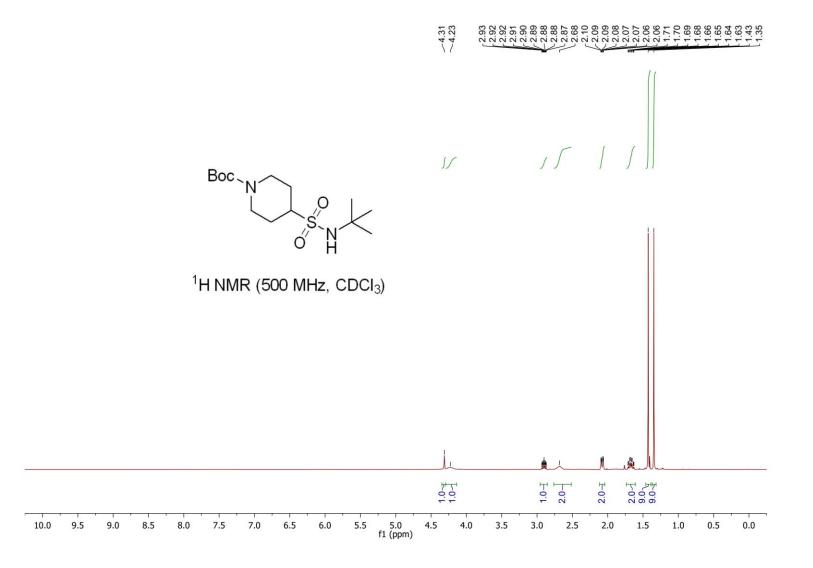

¹³C NMR (125 MHz, CDCl₃)

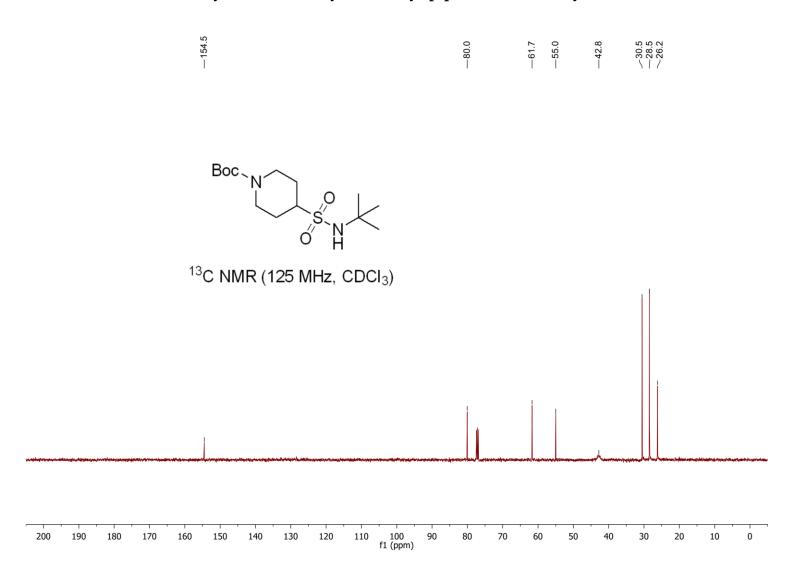




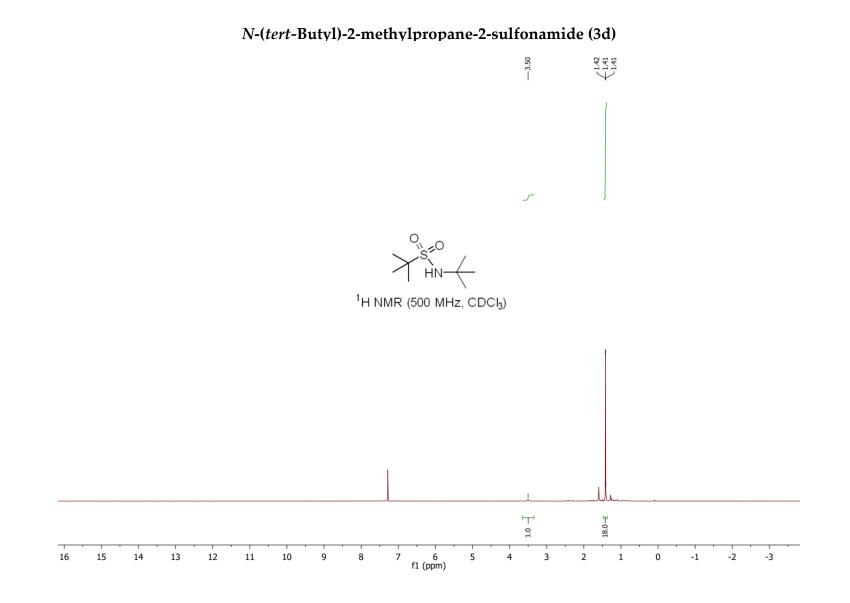

1-(*tert*-Pentylsulfonyl)piperidine (2f)



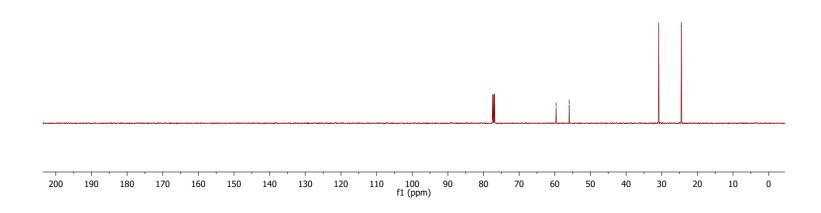


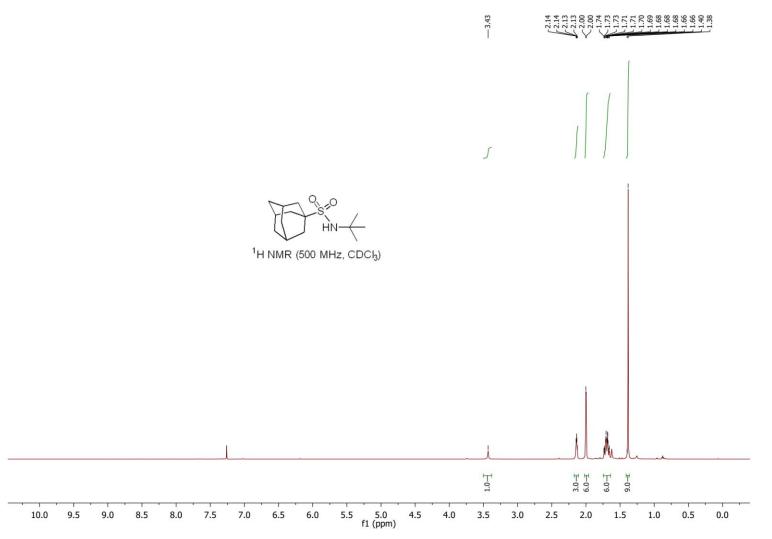

N-(tert-Butyl)tetrahydro-2H-pyran-4-sulfonamide (3b)

-66.7 -60.5 -54.9 -54.9 -30.5 -26.8



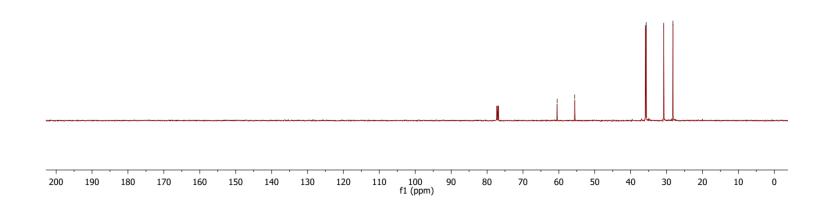
tert-Butyl 4-(N-(tert-butyl)sulfamoyl)piperidine-1-carboxylate (3c)

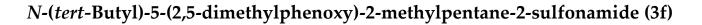


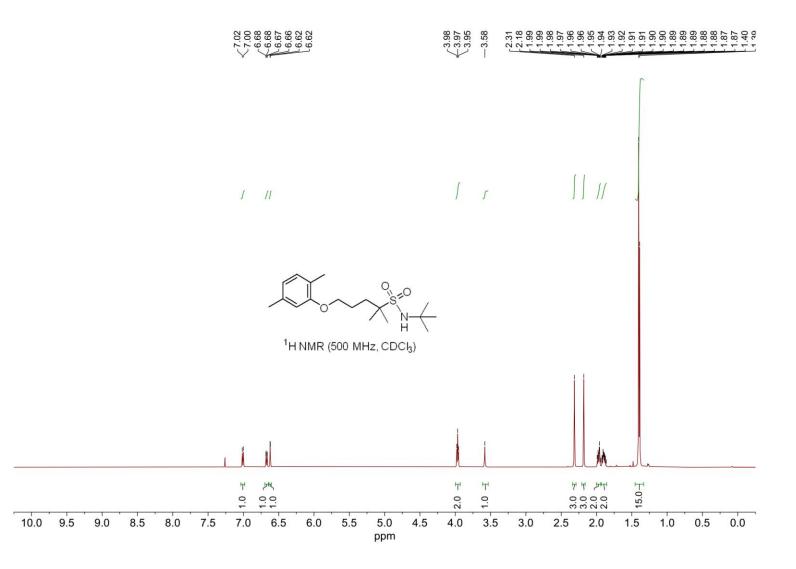

tert-Butyl 4-(N-(tert-butyl)sulfamoyl)piperidine-1-carboxylate (3c)

*N-(tert-*Butyl)-2-methylpropane-2-sulfonamide (3d)

¹³C NMR (125 MHz, CDCl₃)

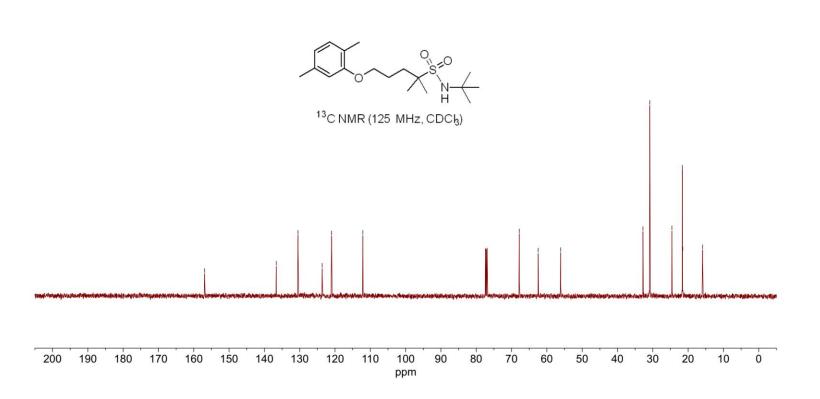


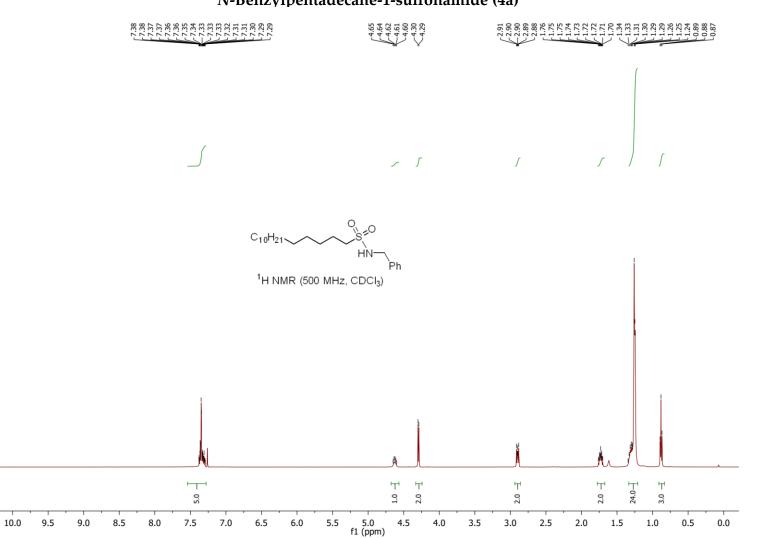

(3*s*,5*s*,7*s*)-N-(*tert*-Butyl)adamantane-1-sulfonamide (3e)

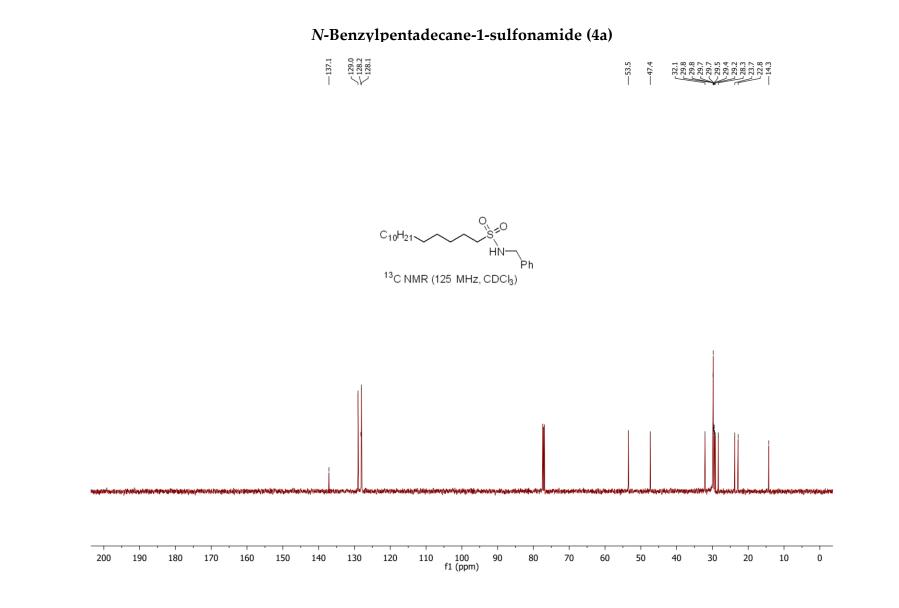

(3s,5s,7s)-N-(*tert*-Butyl)adamantane-1-sulfonamide (3e)

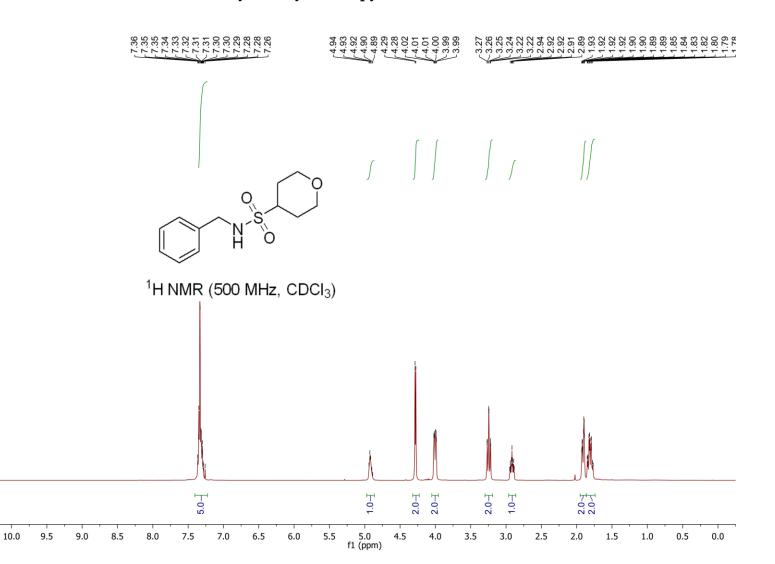
---60.5 ---55.6 $<^{35.9}_{35.7}$ -30.8-28.2

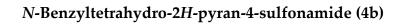
¹³C NMR (125 MHz, CDCl₃)



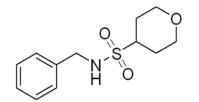


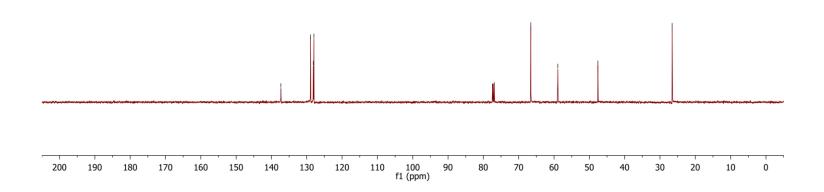

N-(tert-Butyl)-5-(2,5-dimethylphenoxy)-2-methylpentane-2-sulfonamide (3f)

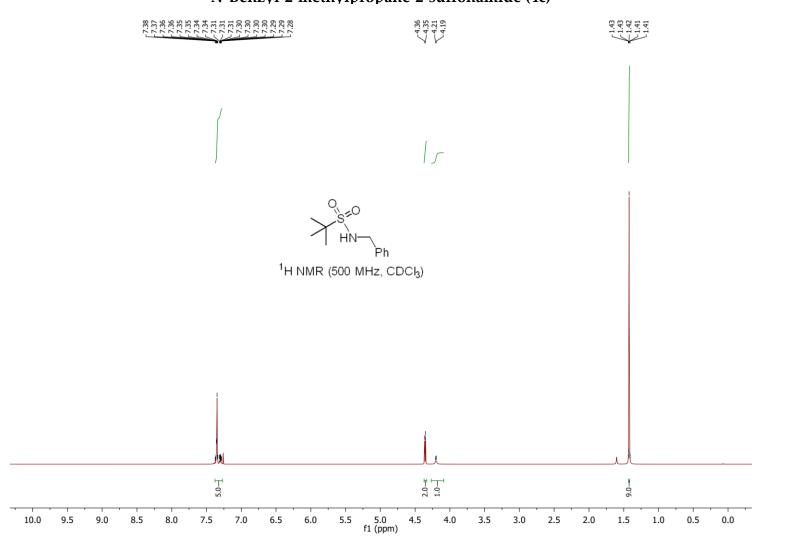


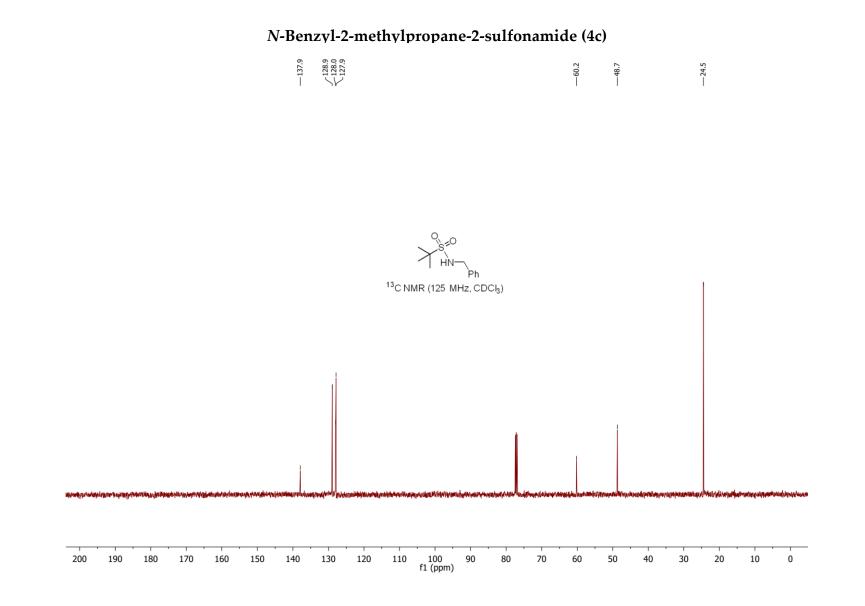


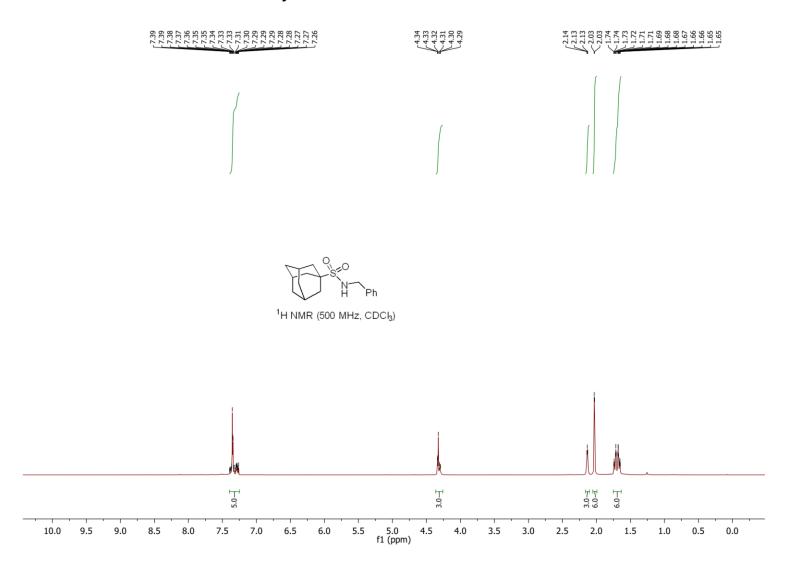
N-Benzylpentadecane-1-sulfonamide (4a)

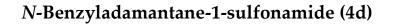


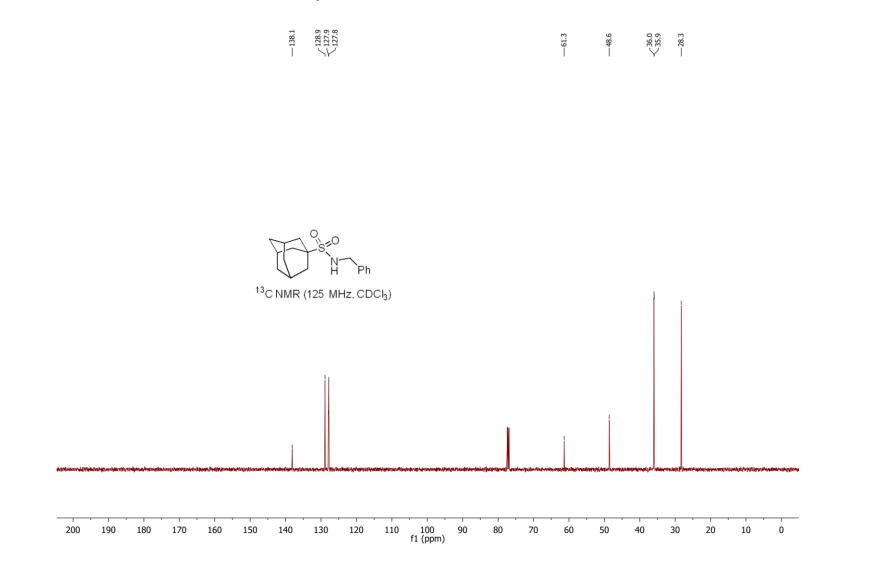

N-Benzyltetrahydro-2H-pyran-4-sulfonamide (4b)

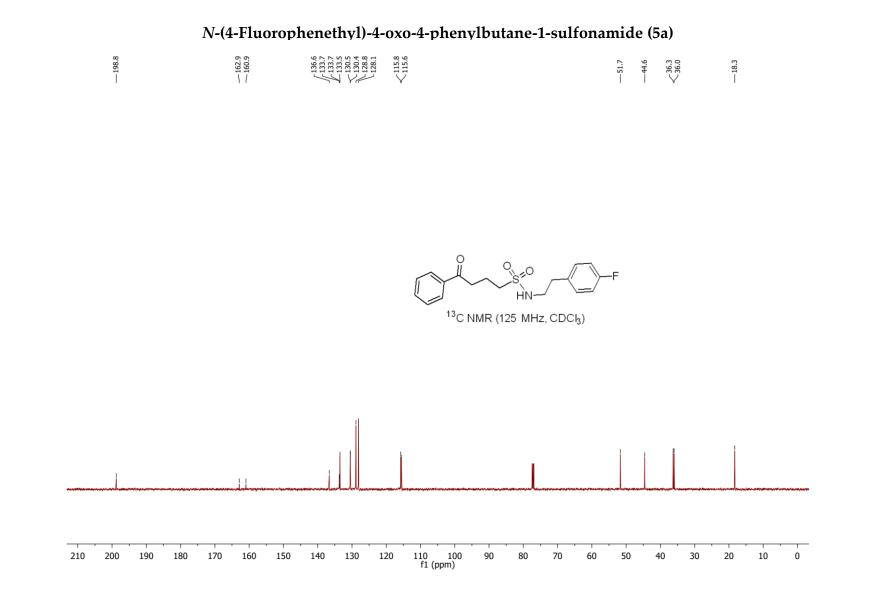


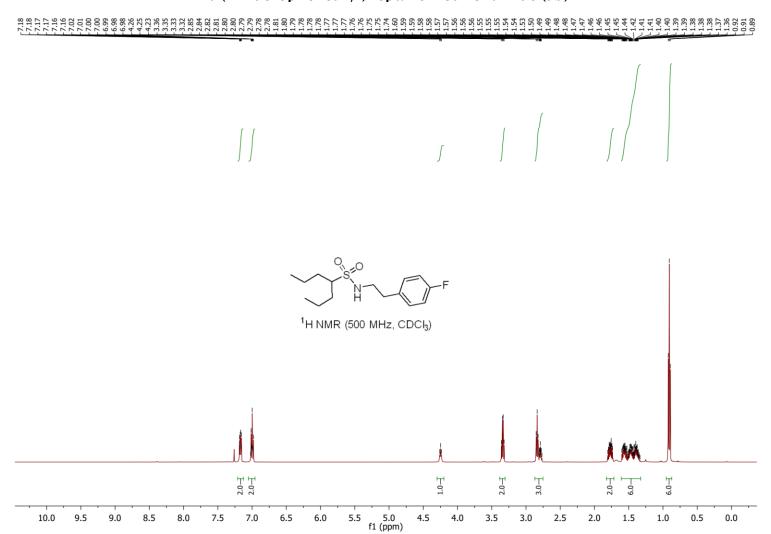


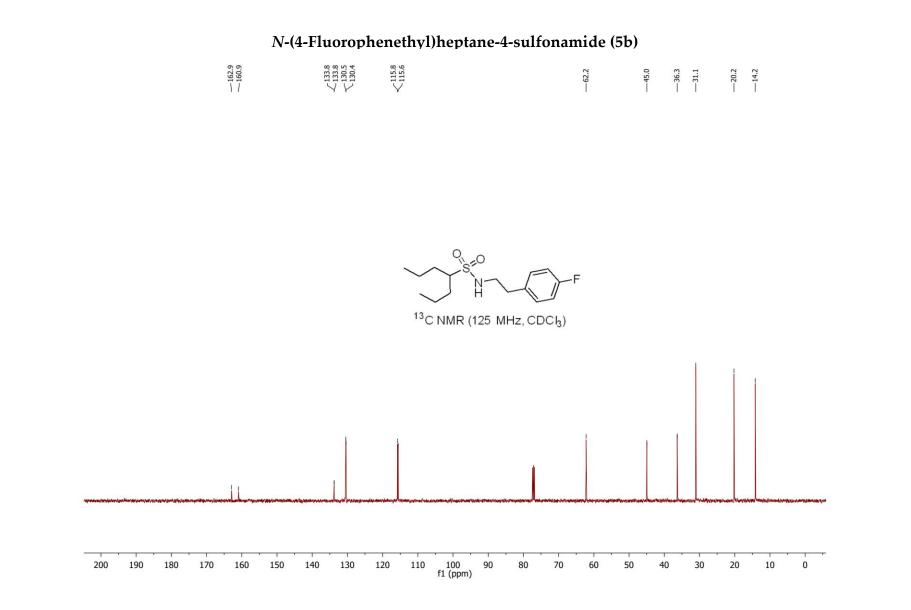

¹³C NMR (125 MHz, CDCl₃)

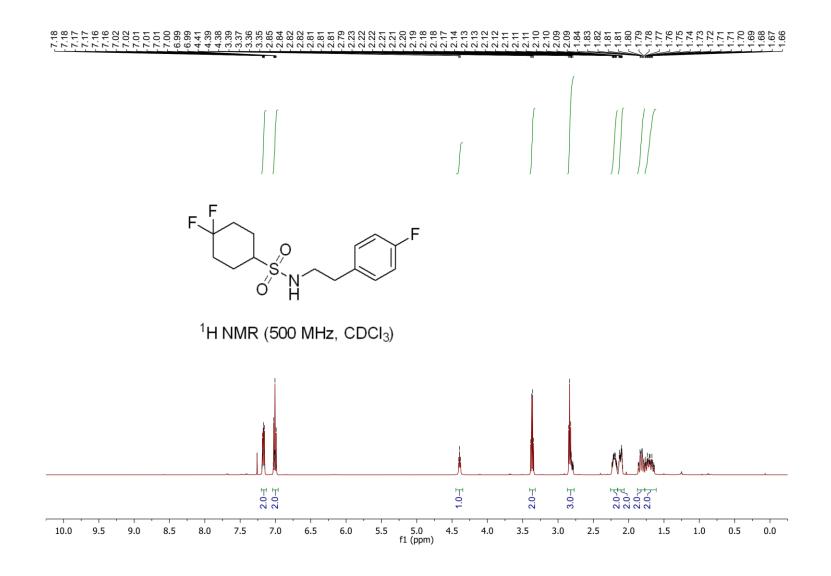



N-Benzyl-2-methylpropane-2-sulfonamide (4c)

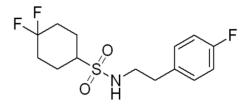


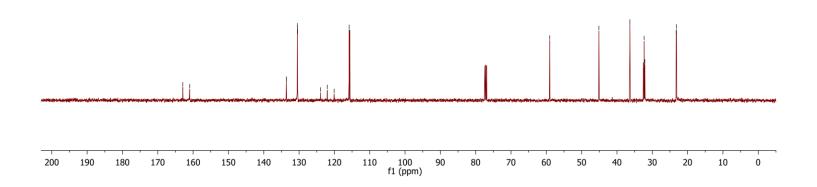

N-Benzyladamantane-1-sulfonamide (4d)

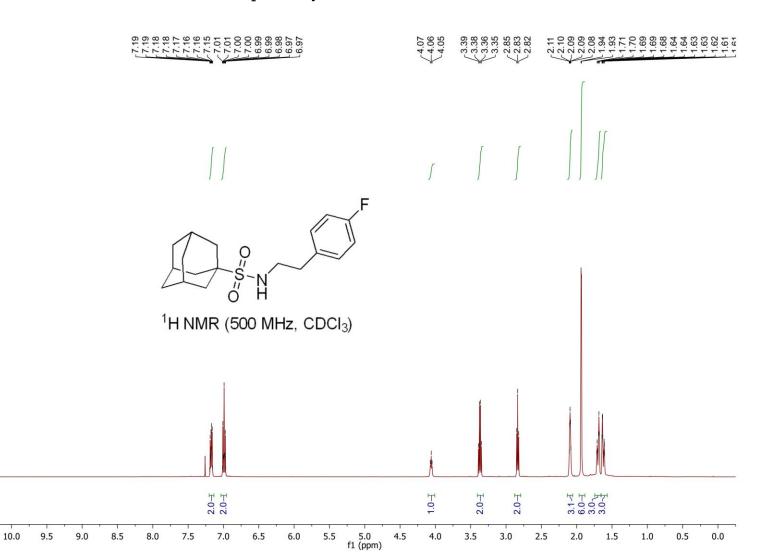




N-(4-Fluorophenethyl)heptane-4-sulfonamide (5b)

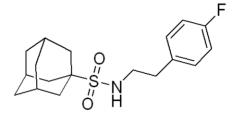


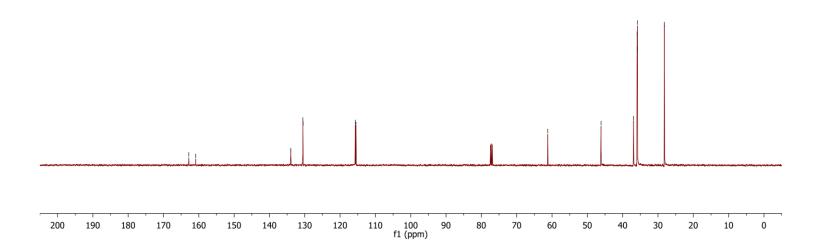

4,4-Difluoro-*N*-(4-fluorophenethyl)cyclohexane-1-sulfonamide (5c)

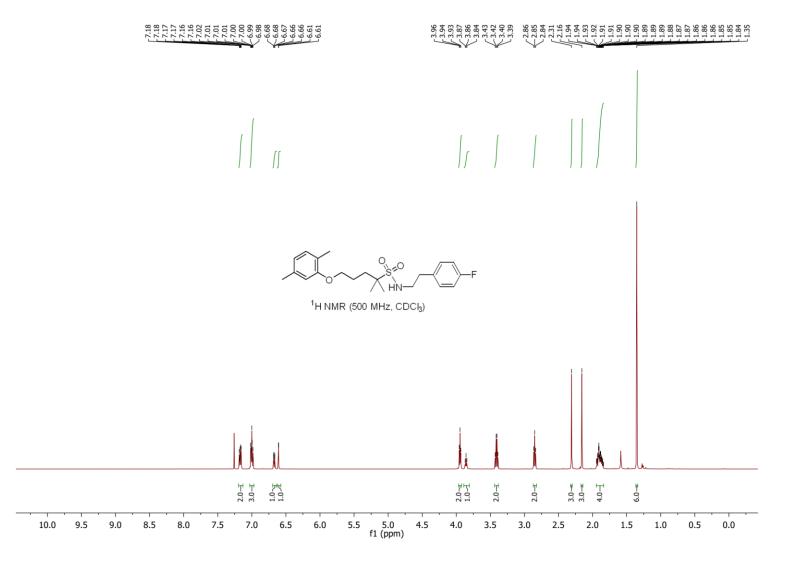

4,4-Difluoro-*N*-(4-fluorophenethyl)cyclohexane-1-sulfonamide (5c)

	~ 162.9 ~ 161.0	133.6 133.6 133.5 133.5 133.5 133.5 115.3 115.8 115.8	- 59.0	—45.1	36.4 32.5 32.3 32.1	n'
--	--------------------	---	--------	-------	------------------------------	----

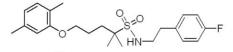
¹³C NMR (125 MHz, CDCl₃)

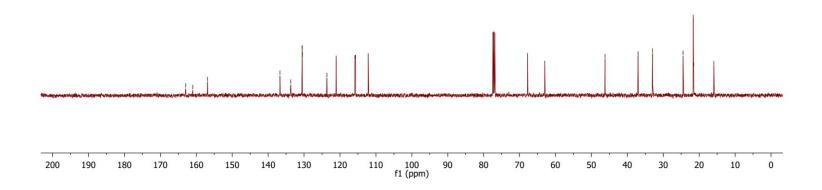


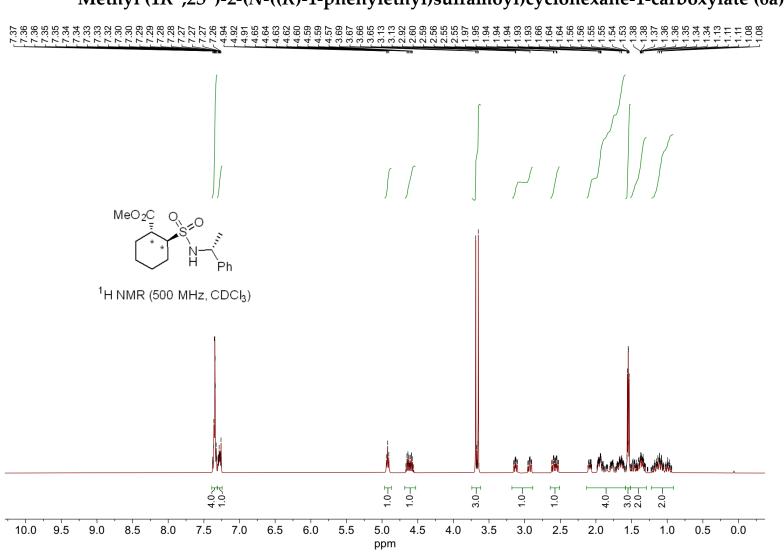

N-(4-Fluorophenethyl)adamantane-1-sulfonamide (5d)


N-(4-Fluorophenethyl)adamantane-1-sulfonamide (5d)

¹³C NMR (125 MHz, CDCl₃)

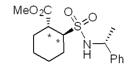


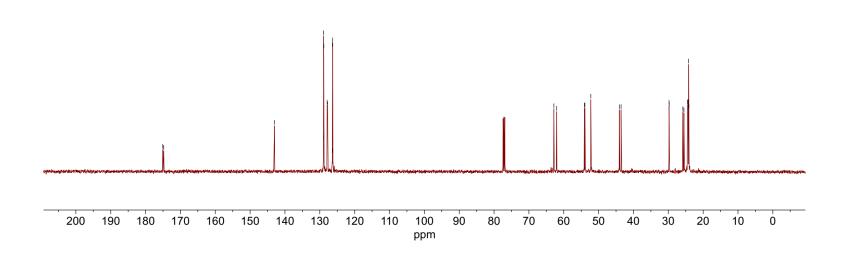

5-(2,5-Dimethylphenoxy)-N-(4-fluorophenethyl)-2-methylpentane-2-sulfonamide (5e)

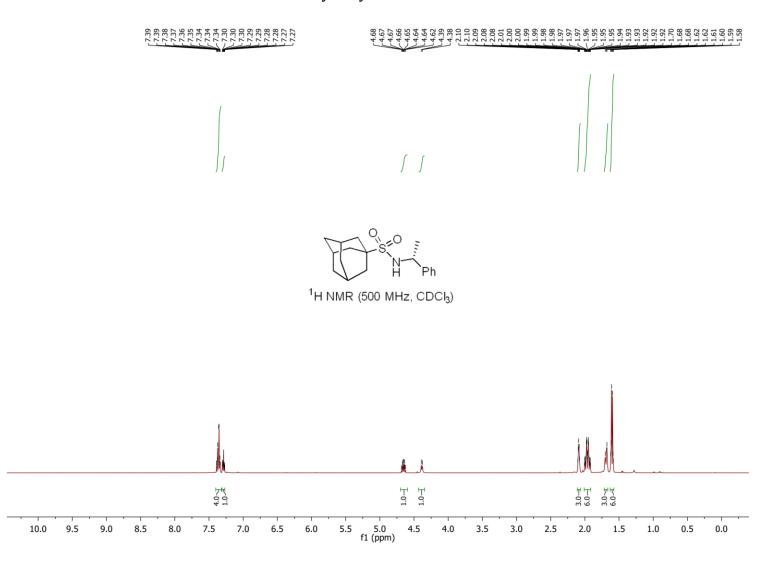

5-(2,5-dimethylphenoxy)-N-(4-fluorophenethyl)-2-methylpentane-2-sulfonamide (5e)

\sim 156.89 156.89 156.89 136.70 130.57 100.57 1000	— 67.75 — 63.00		— 37.02 — 32.97	∠ 24.49 < 21.66 < 21.53 — 15.92	
---	--------------------	--	--------------------	--	--

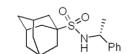
13C NMR (125 MHz, CDCl₃)

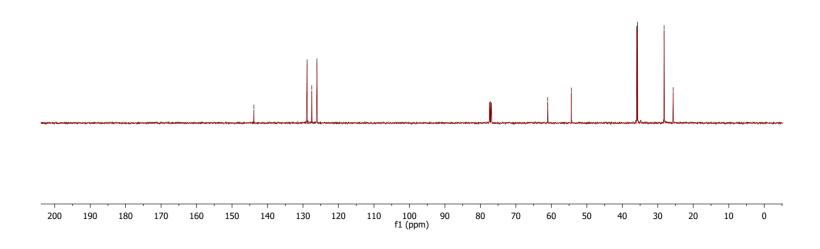


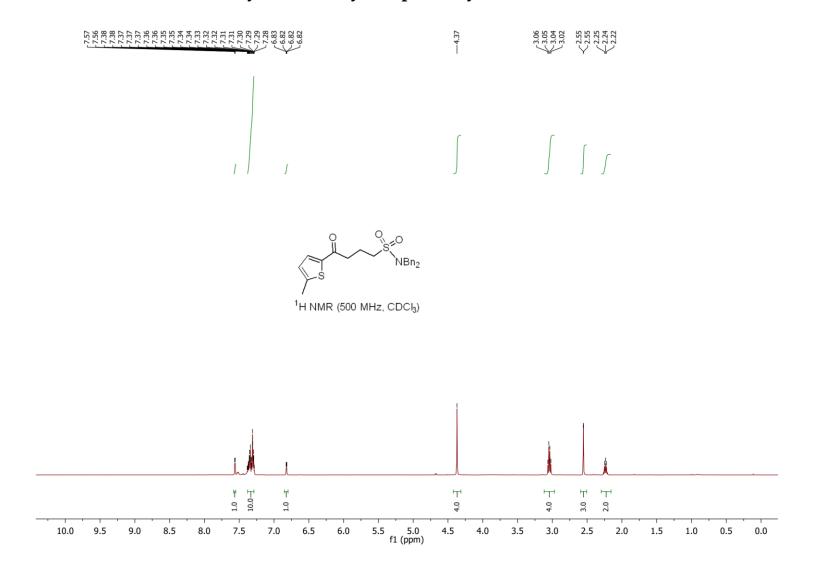

Methyl (1*R**,2*S**)-2-(*N*-((*R*)-1-phenylethyl)sulfamoyl)cyclohexane-1-carboxylate (6a)


Methyl (1*R**,2*S**)-2-(*N*-((*R*)-1-phenylethyl)sulfamoyl)cyclohexane-1-carboxylate (6a)

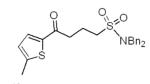
¹³C NMR (75 MHz, CDCb)

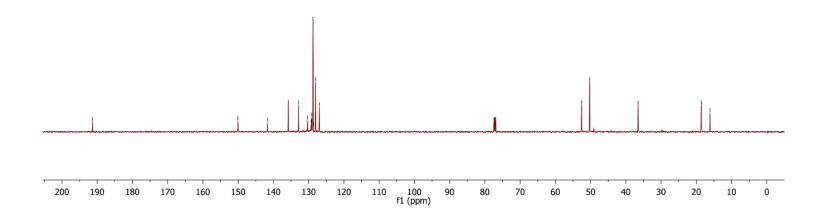



(3*S*,5*S*,7*S*)-*N*-((*R*)-1-Phenylethyl)adamantane-1-sulfonamide (6b)

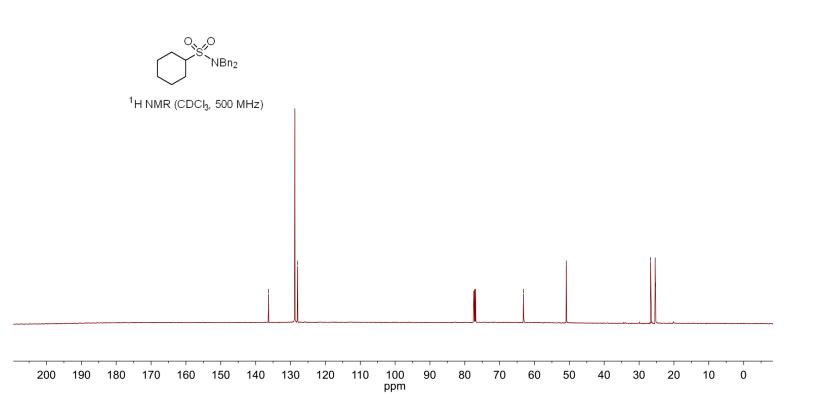

(3S,5S,7S)-N-((R)-1-Phenylethyl)adamantane-1-sulfonamide (6b)

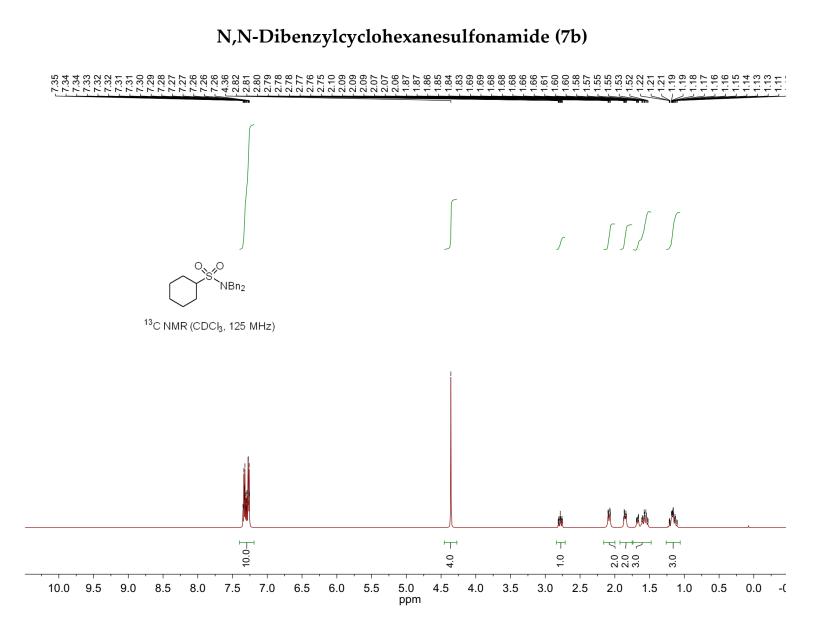
¹³C NMR (125 MHz, CDCl₃)

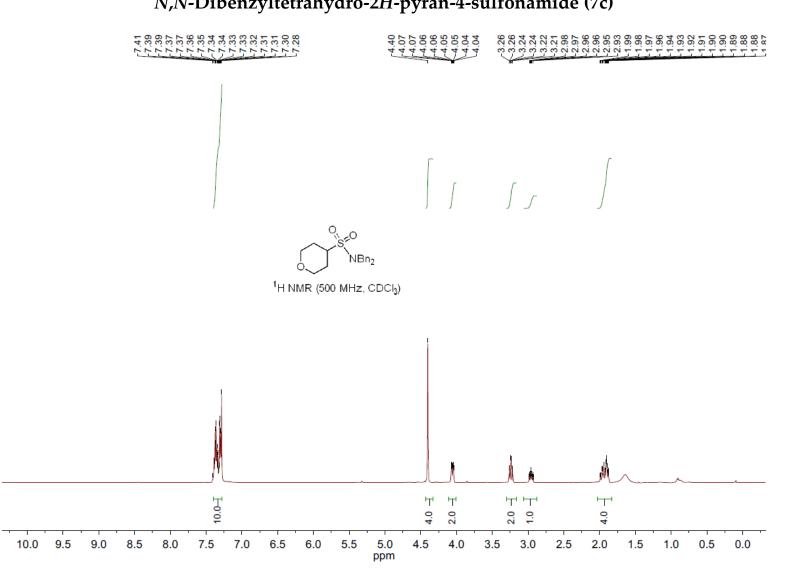



N,*N*-Dibenzyl-4-(5-methylthiophen-2-yl)-4-oxobutane-1-sulfonamide (7a)

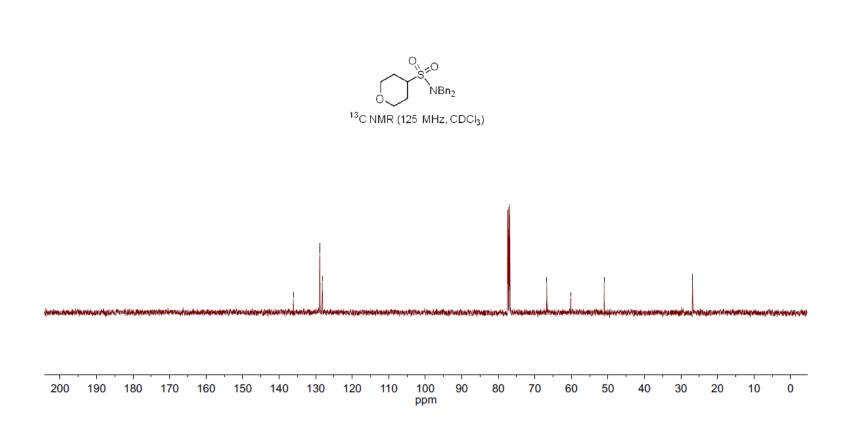
N,N-Dibenzyl-4-(5-methylthiophen-2-yl)-4-oxobutane-1-sulfonamide (7a)

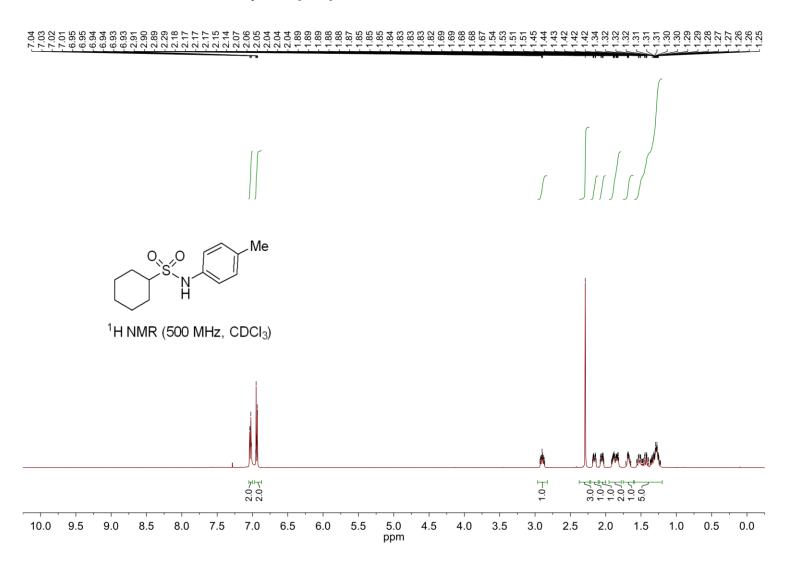



¹³C NMR (125 MHz, CDCl₃)

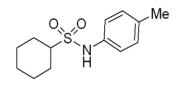


N,N-Dibenzylcyclohexanesulfonamide (7b)

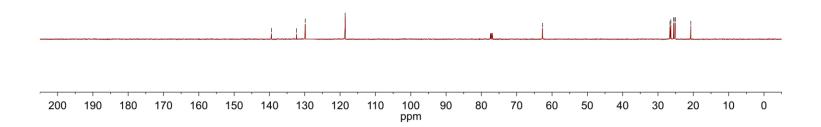


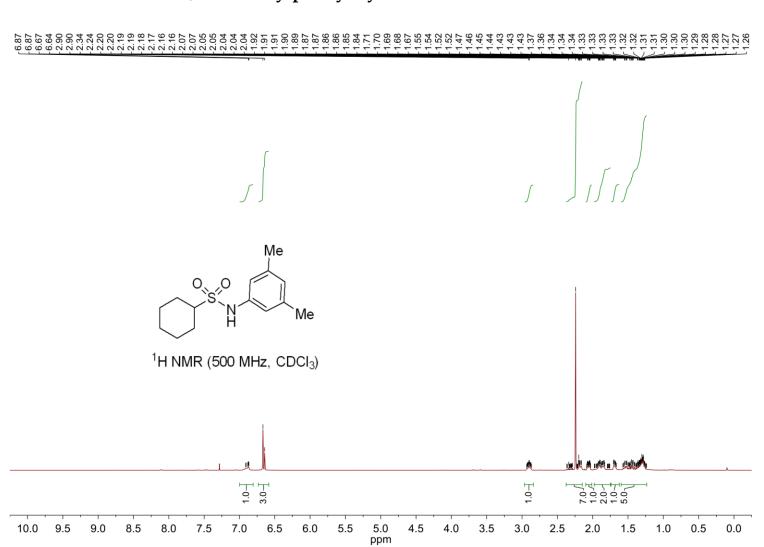

N,*N*-Dibenzyltetrahydro-2*H*-pyran-4-sulfonamide (7c)

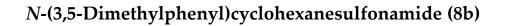
N,N-Dibenzyltetrahydro-2*H*-pyran-4-sulfonamide (7c)

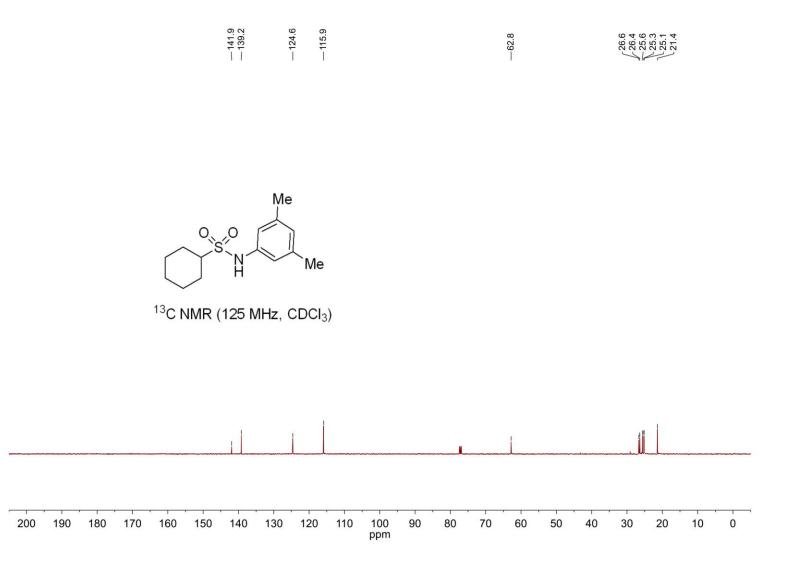


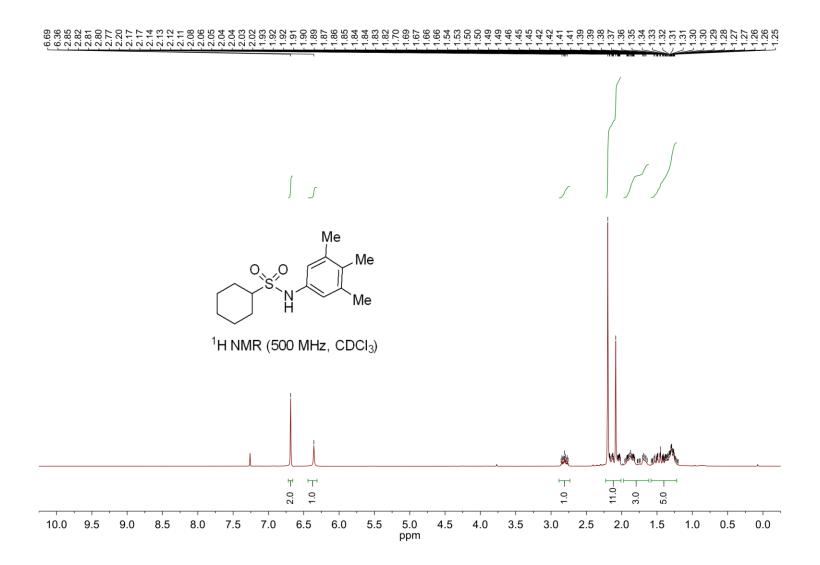
N- (*p-*Tolyl)cyclohexanesulfonamide (8a)

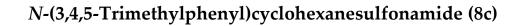


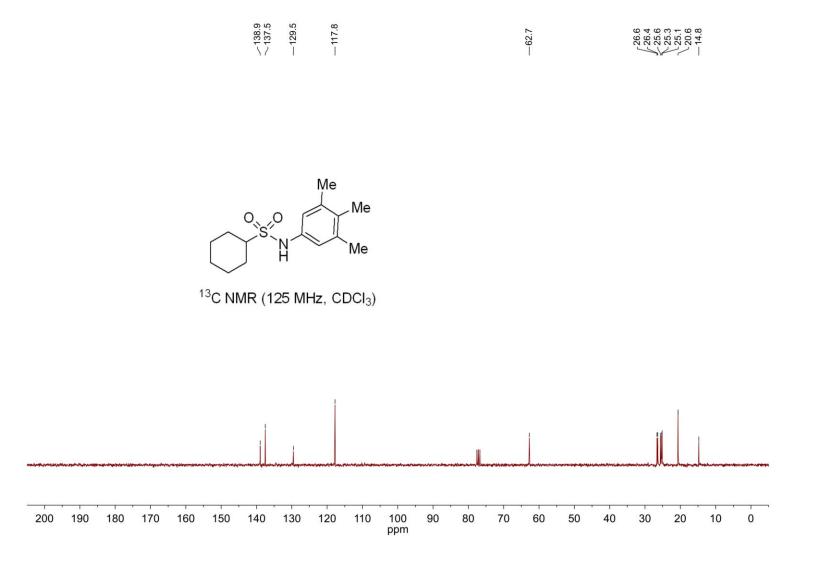

N- (*p-*Tolyl)cyclohexanesulfonamide (8a)

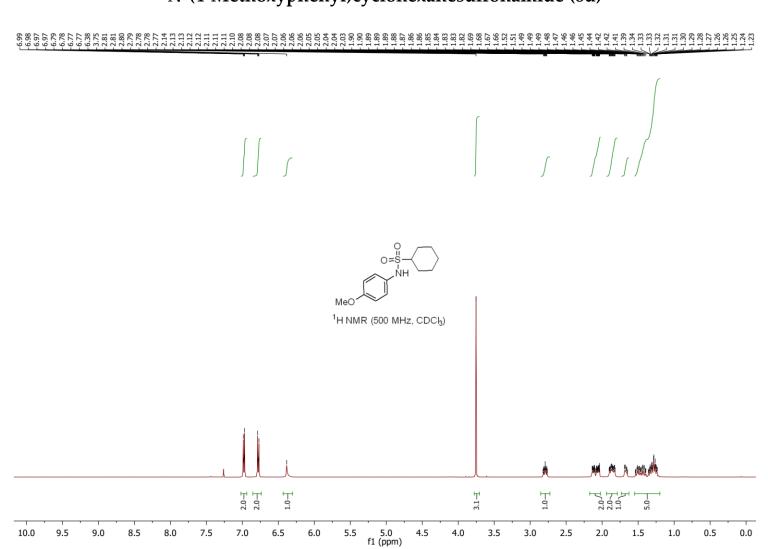


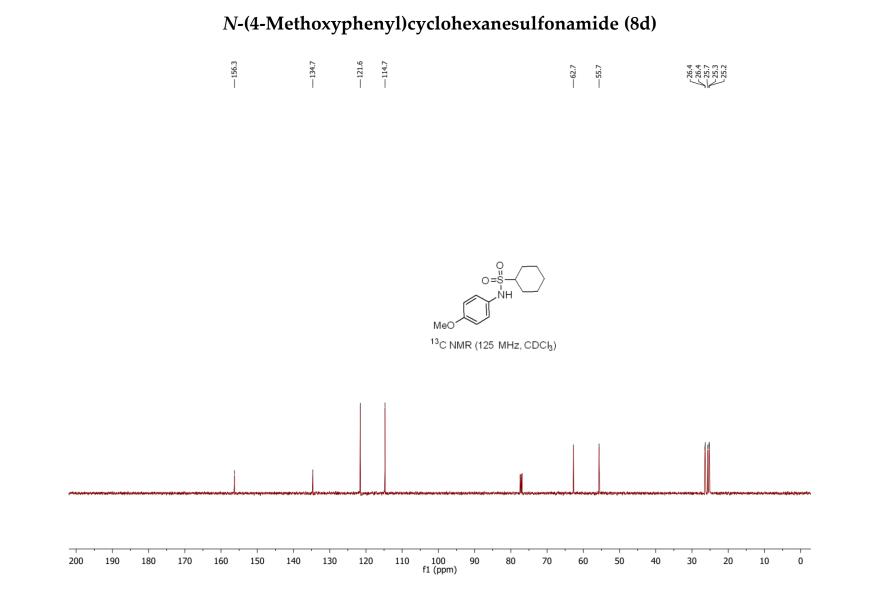

 13 C NMR (125 MHz, CDCl₃)

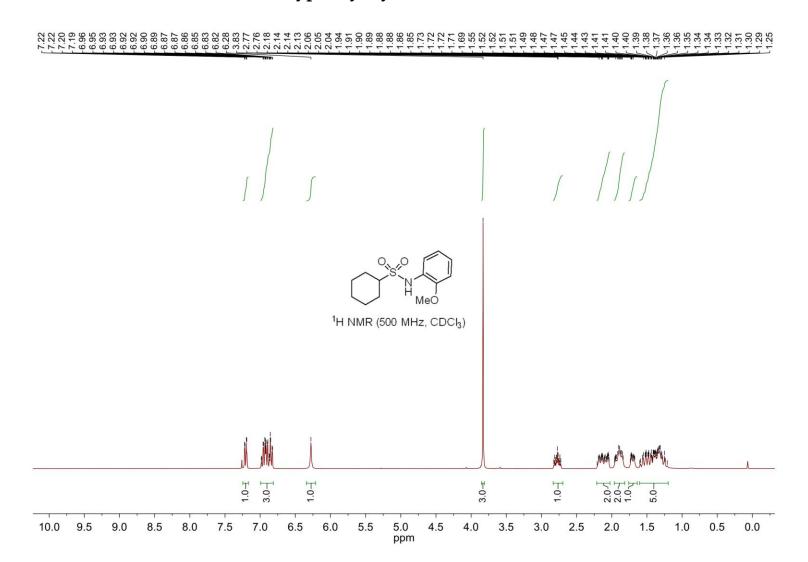



N-(3,5-Dimethylphenyl)cyclohexanesulfonamide (8b)

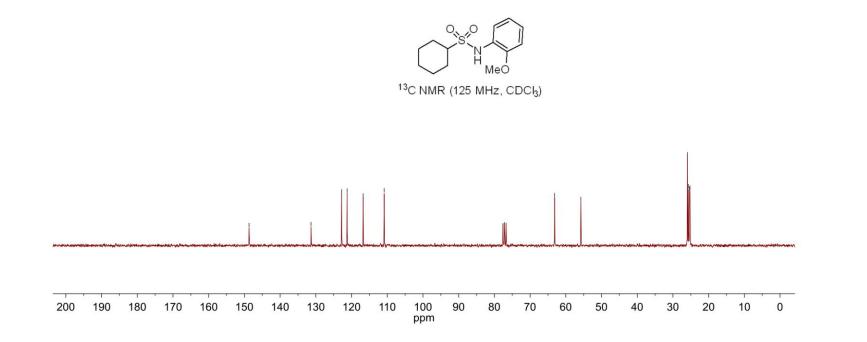


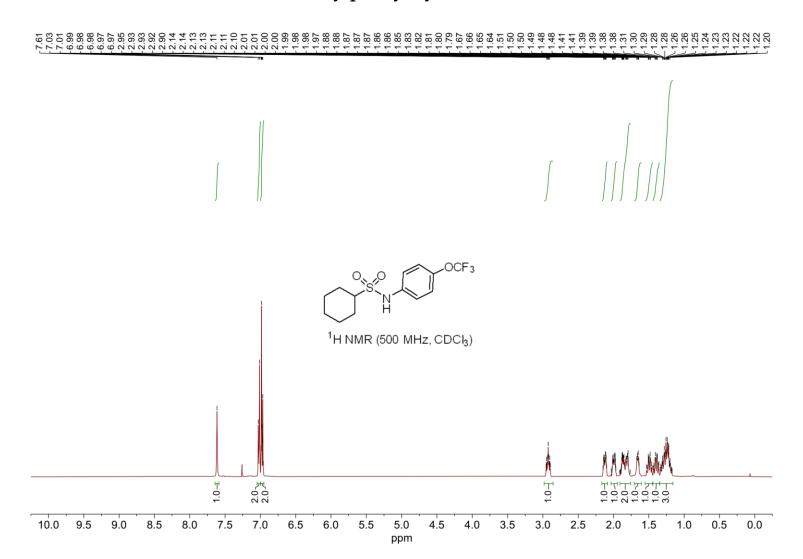



N-(3,4,5-Trimethylphenyl)cyclohexanesulfonamide (8c)



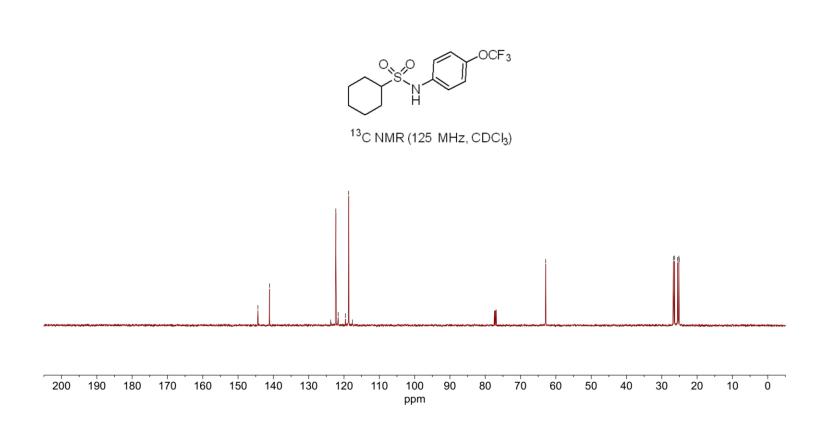
N-(4-Methoxyphenyl)cyclohexanesulfonamide (8d)

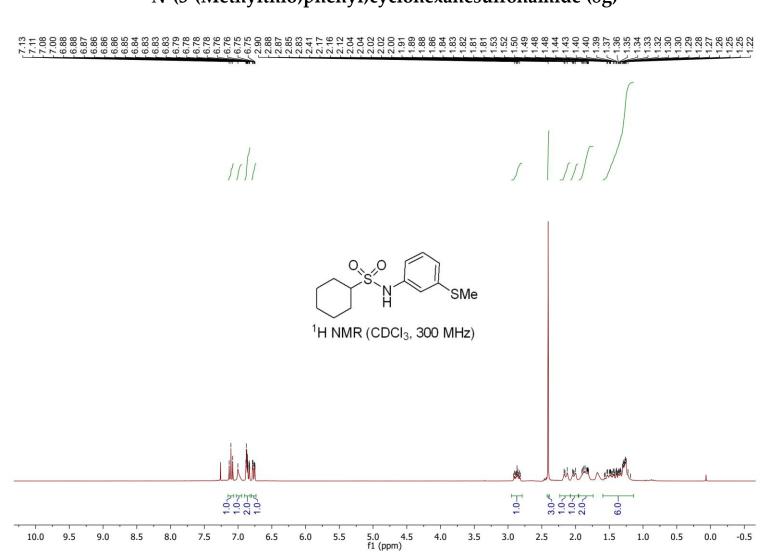




N-(2-Methoxyphenyl)cyclohexanesulfonamide (8e)

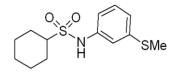
N-(2-Methoxyphenyl)cyclohexanesulfonamide (8e)

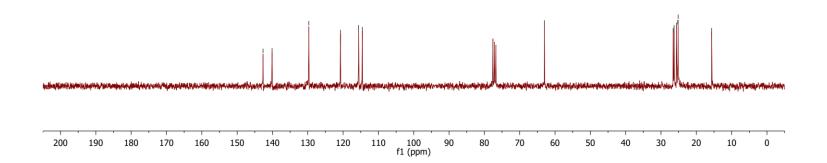


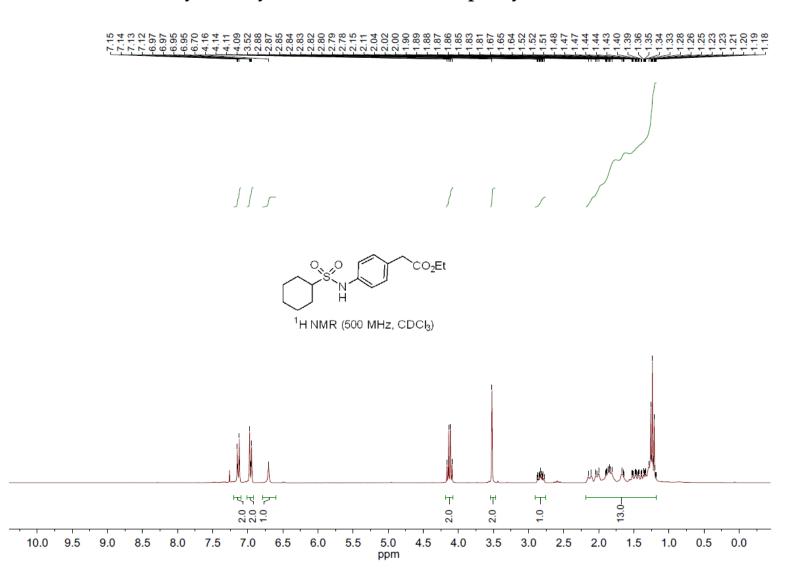


N-(4-(Trifluoromethoxy)phenyl)cyclohexanesulfonamide (8f)

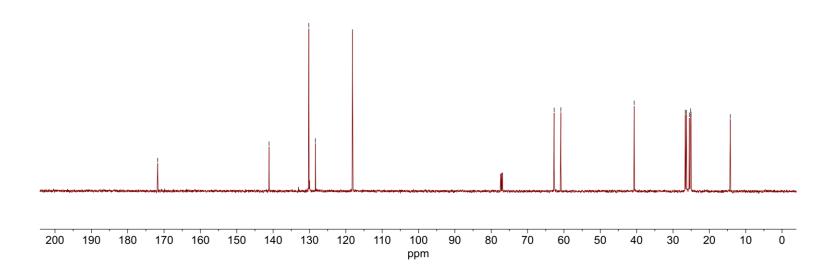
N-(4-(Trifluoromethoxy)phenyl)cyclohexanesulfonamide (8f)

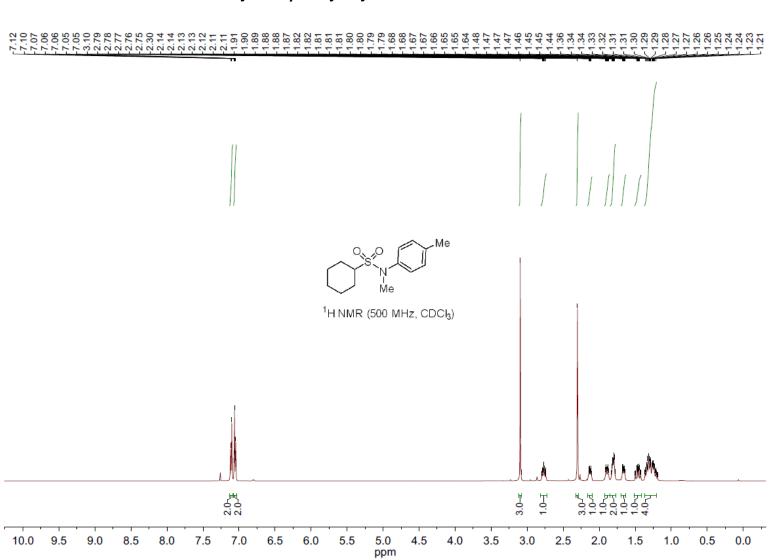



N-(3-(Methylthio)phenyl)cyclohexanesulfonamide (8g)


N-(3-(Methylthio)phenyl)cyclohexanesulfonamide (8g)

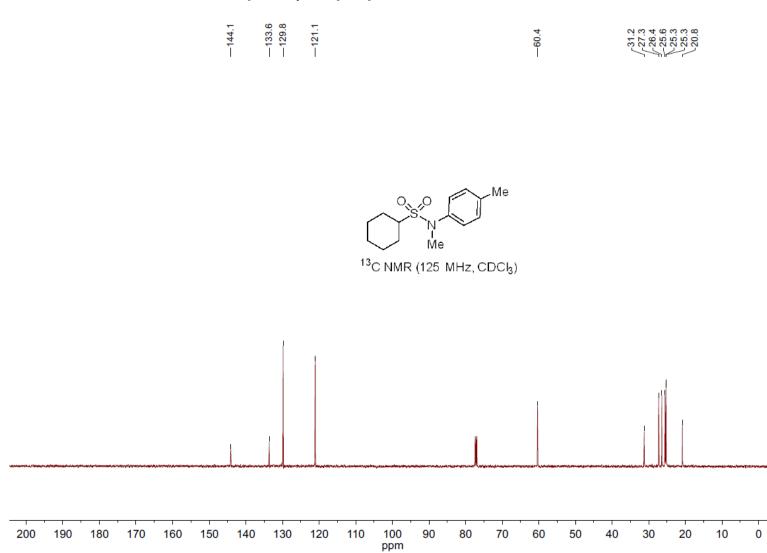
¹³C NMR (CDCI₃, 75 MHz)

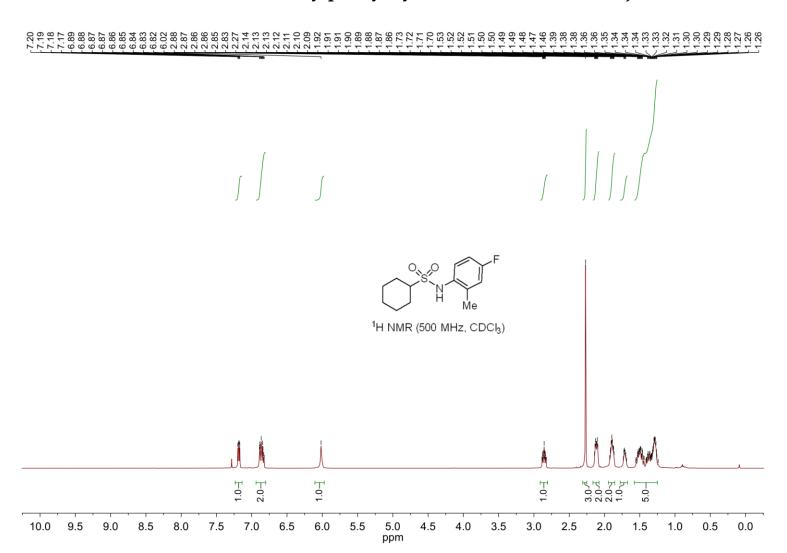



Ethyl 2-(4-(cyclohexanesulfonamido)phenyl)acetate (8h)

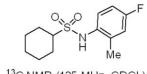
Ethyl 2-(4-(cyclohexanesulfonamido)phenyl)acetate (8h)

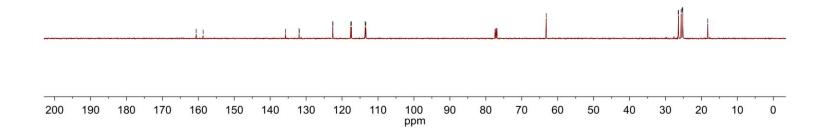
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	26.61 26.31 25.53 25.04 25.04
---	---


¹³C NMR (125 MHz, CDCl₃)

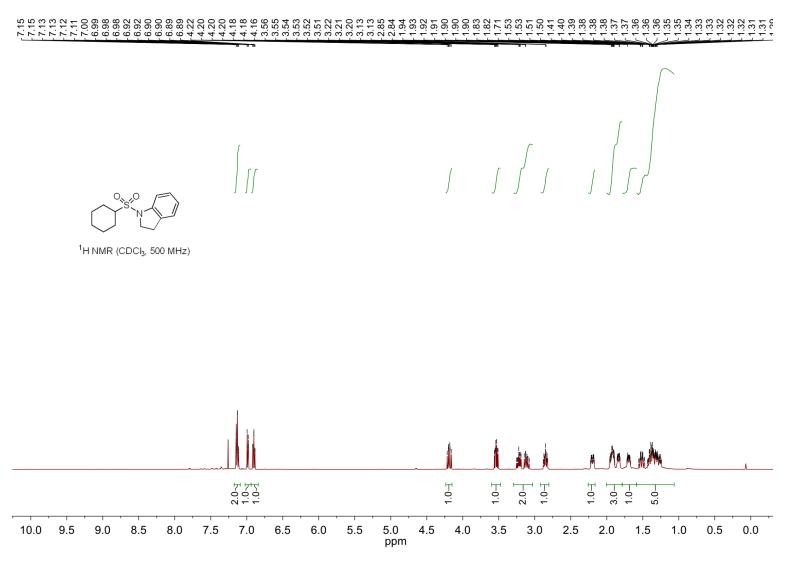


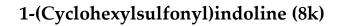
N-Methyl-*N*-(*p*-tolyl)cyclohexanesulfonamide (8i)

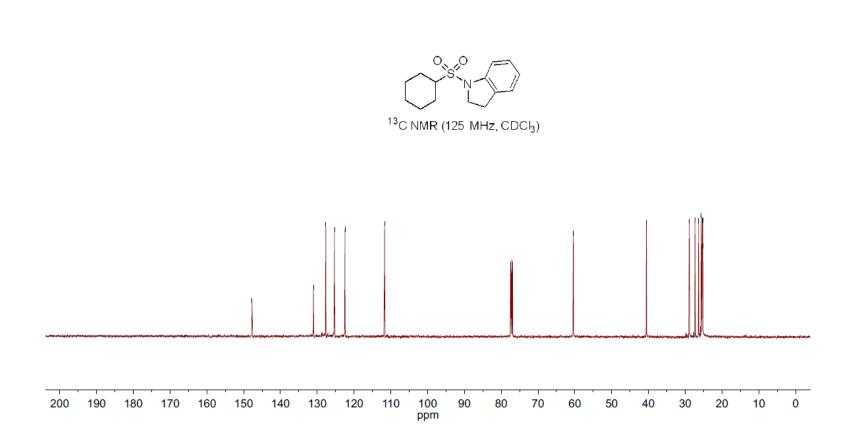


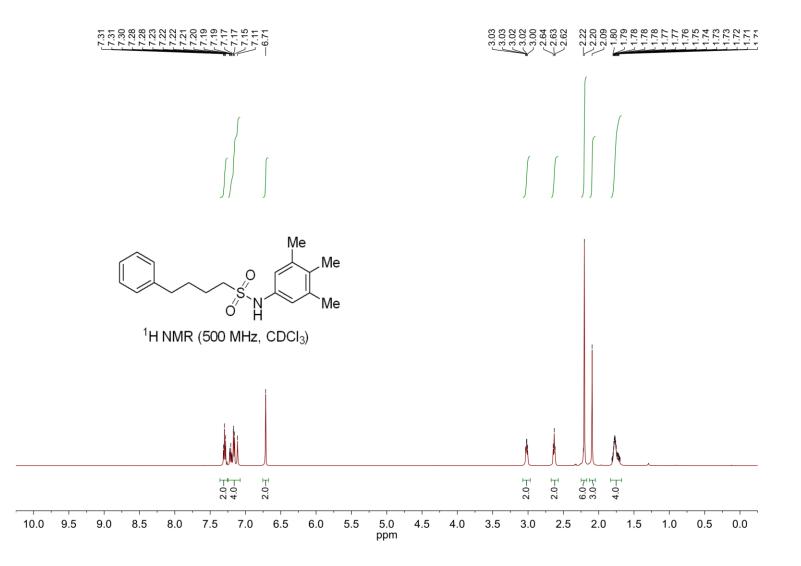

N-(4-Fluoro-2-methylphenyl)cyclohexanesulfonamide (8j)

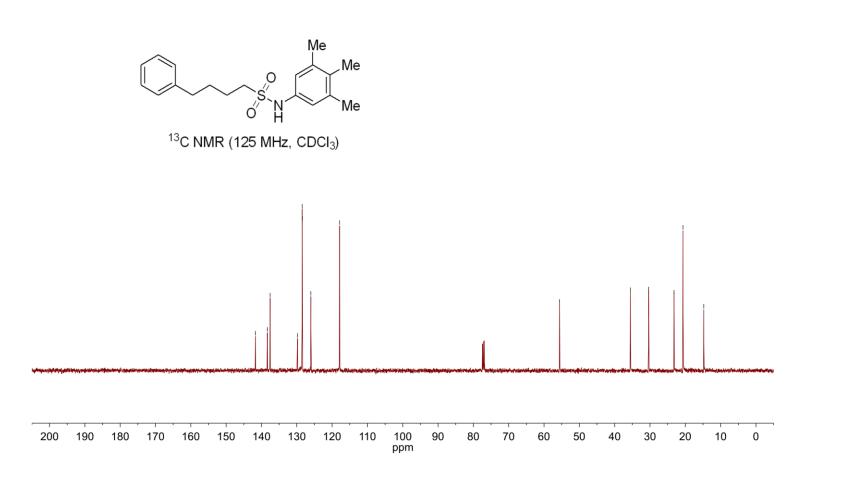
N-(4-Fluoro-2-methylphenyl)cyclohexanesulfonamide (8j)

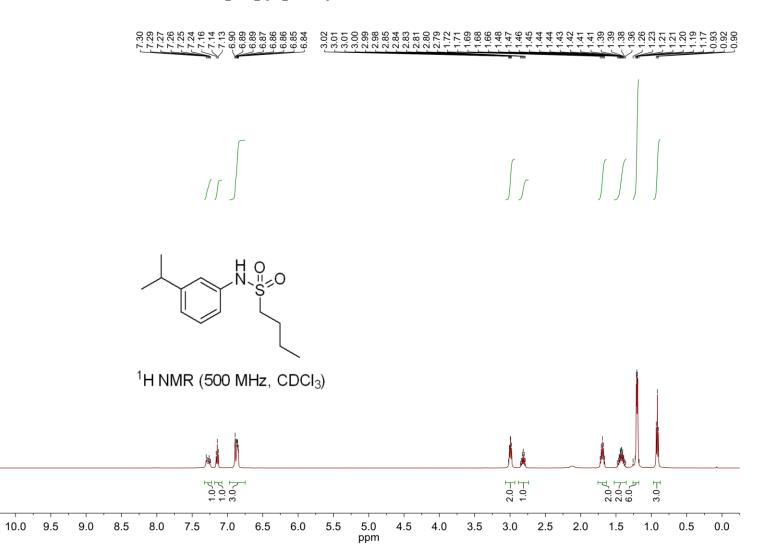

9.1	P00 909494		
60	332 332 332 332 332 332 332 332 332 332	N	040400
20	11122 1221	03	25 25 18 18
		<u> </u>	
) (\mathbf{Y} \mathbf{Y} \mathbf{Y} \mathbf{Y} \mathbf{Y}		






1-(Cyclohexylsulfonyl)indoline (8k)

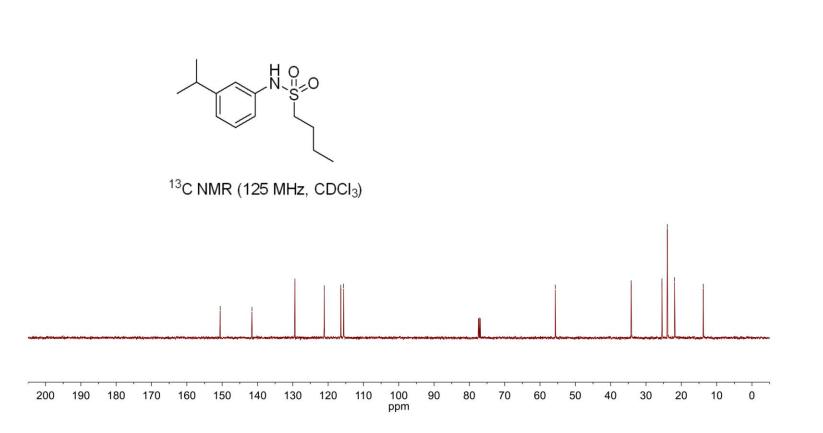


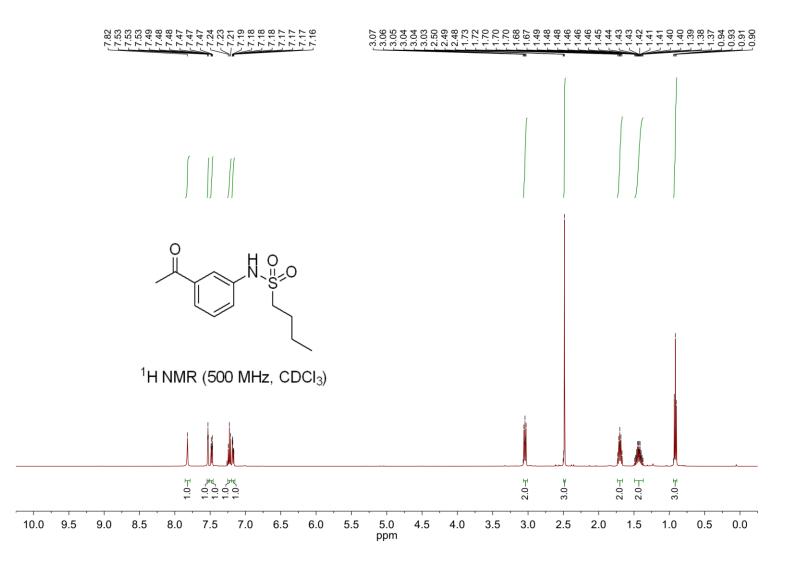


4-Phenyl-N-(3,4,5-trimethylphenyl)butane-1-sulfonamide (81)

4-Phenyl-N-(3,4,5-trimethylphenyl)butane-1-sulfonamide (8l)

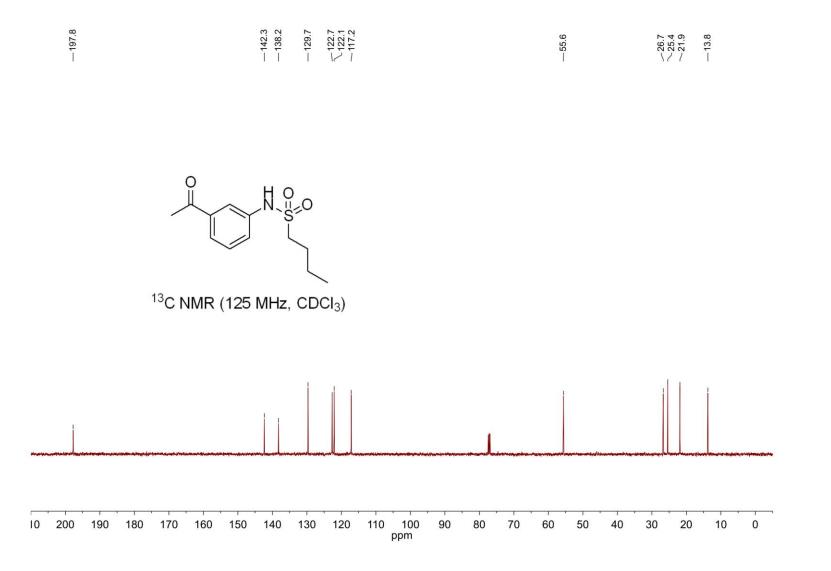
→ 141.7 → 138.3.7 → 138.5 → 138.5 → 138.5 → 129.8 → 129.8 → 129.8 → 120.8

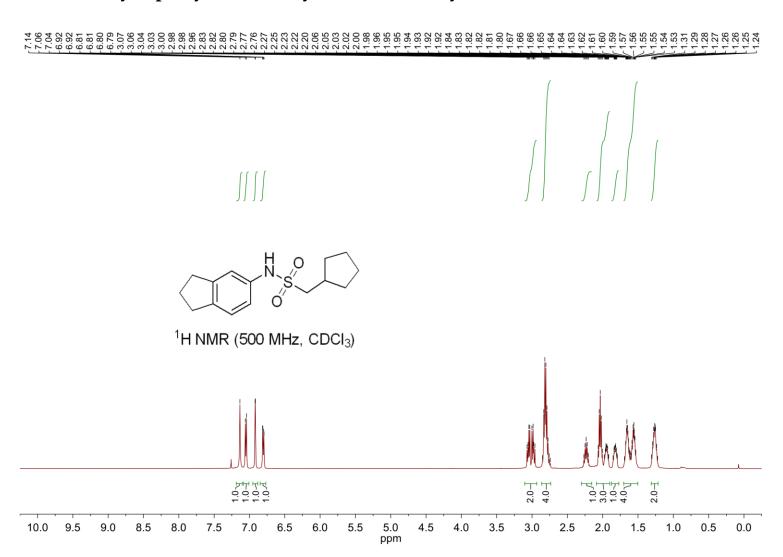




N-(3-isopropylphenyl)butane-1-sulfonamide (8m)

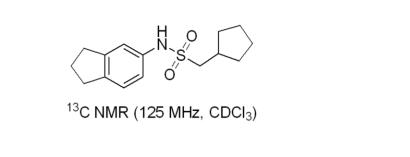
N-(3-isopropylphenyl)butane-1-sulfonamide (8m)

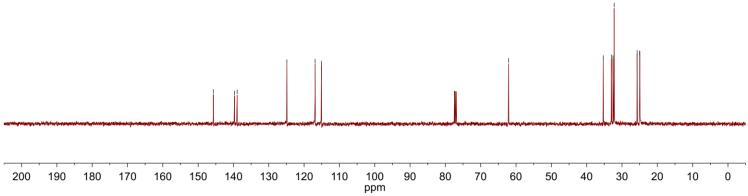


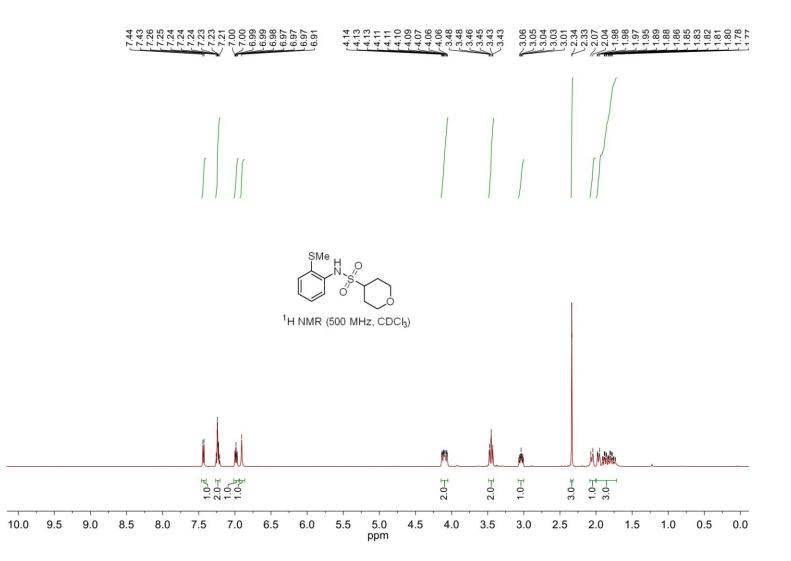


N-(3-acetylphenyl)butane-1-sulfonamide (8n)

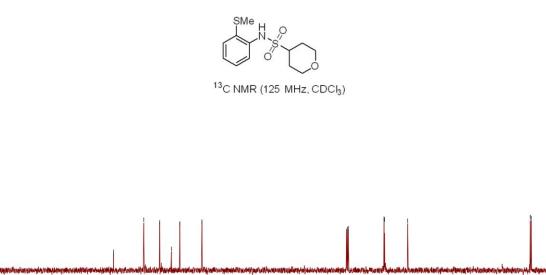
N-(3-acetylphenyl)butane-1-sulfonamide (8n)

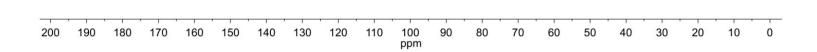


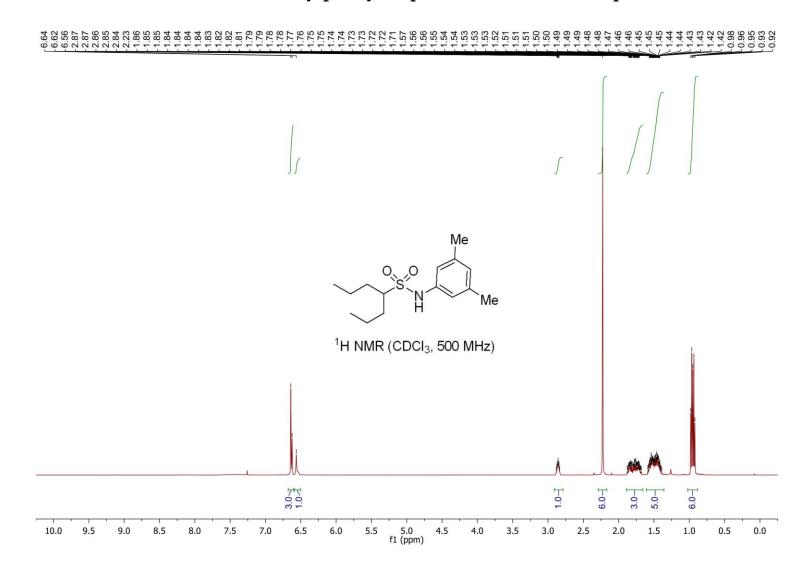



1-Cyclopentyl-N-(2,3-dihydro-1H-inden-5-yl)methanesulfonamide (80)

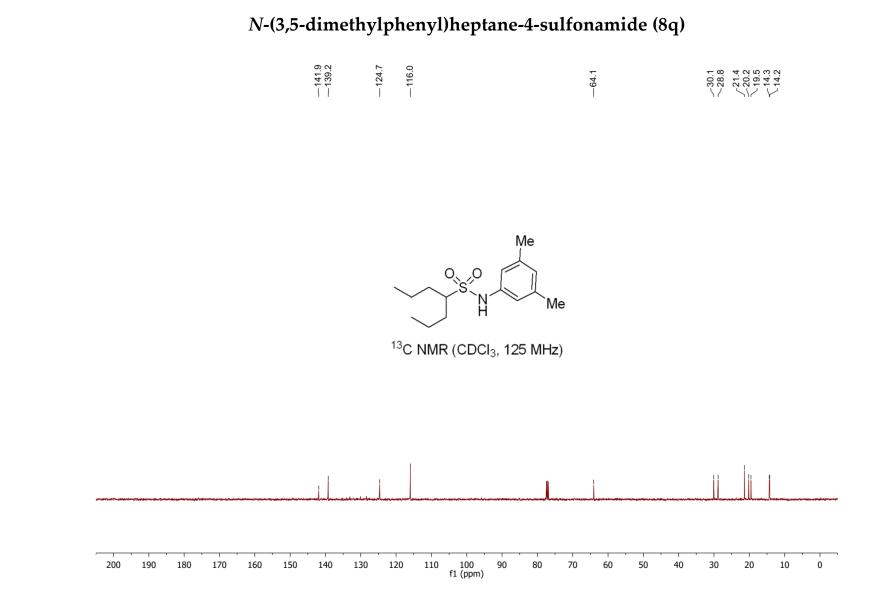
1-Cyclopentyl-N-(2,3-dihydro-1H-inden-5-yl)methanesulfonamide (80)

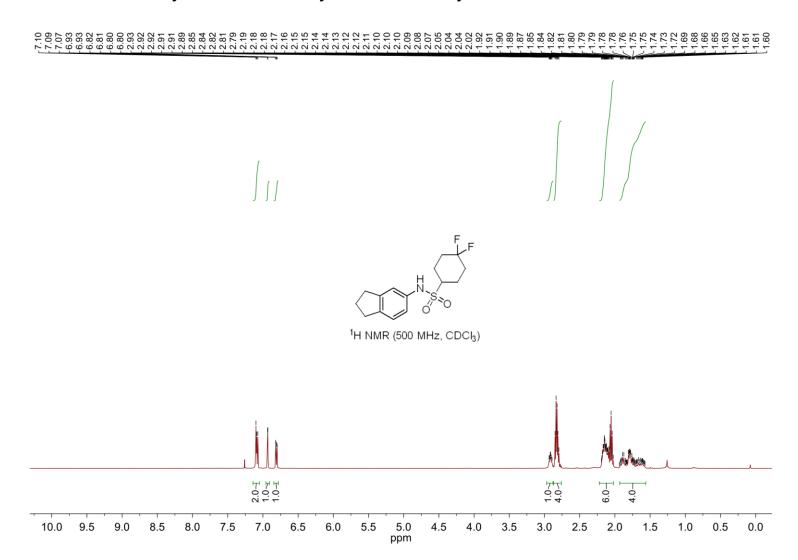




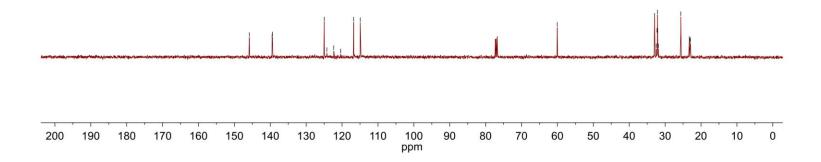

N-(2-(Methylthio)phenyl)tetrahydro-2H-pyran-4-sulfonamide (8p)

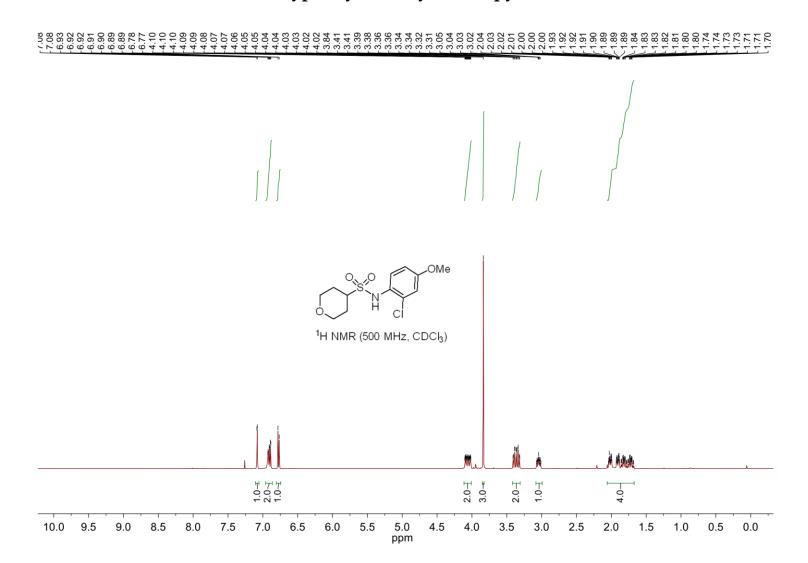
N-(2-(Methylthio)phenyl)tetrahydro-2*H*-pyran-4-sulfonamide (8p)


N	84 - 8	9						
N			400	00	4	4 -	3	
4	23 23 23 23	1		N 9	0.	0.0	6	
-				00	9	20	-	
1		1		5	- T		1	
	()			Y		Y		



N-(3,5-dimethylphenyl)heptane-4-sulfonamide (8q)

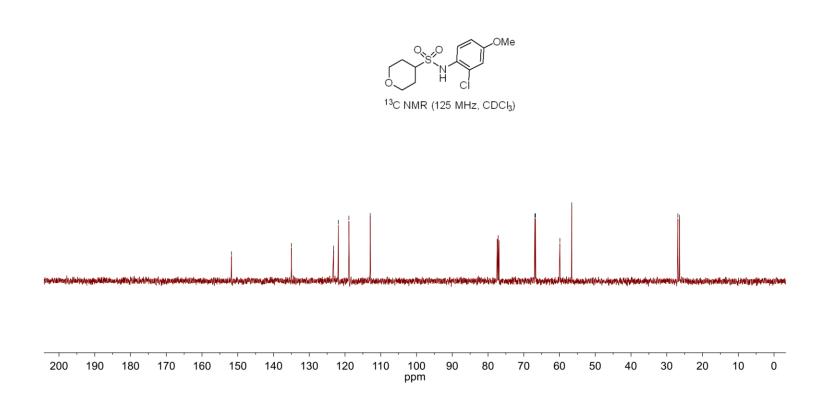

N-(2,3-dihydro-1H-inden-5-yl)-4,4-difluorocyclohexane-1-sulfonamide (8r)

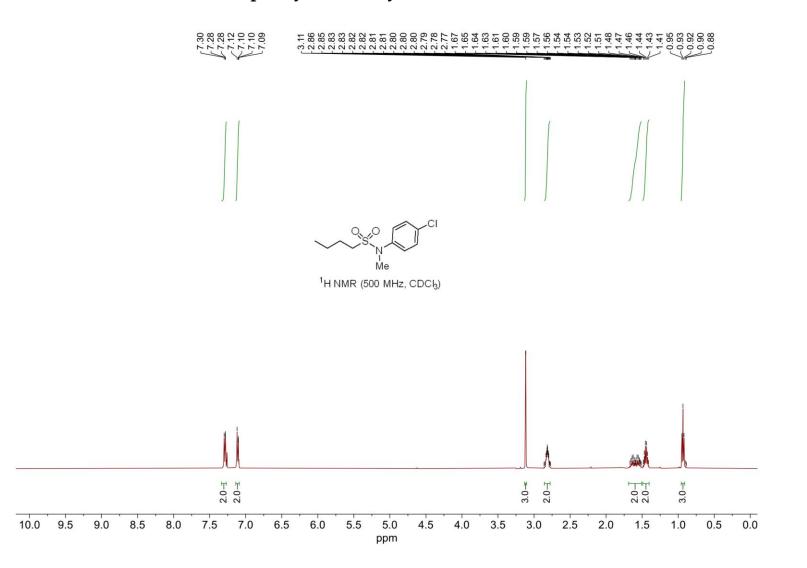

N-(2,3-dihydro-1H-inden-5-yl)-4,4-difluorocyclohexane-1-sulfonamide (8r)

-145.0 -145.0 -145.0 -139.5 -139.5 -125.0 -124.2 -124.2 -124.2 -124.2 -124.2 -124.2 -124.2 -124.2 -124.2 -124.2 -124.2 -225.6 -225.6 -225.6 -223.2 -225.6 -223.2

O

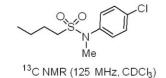
¹³C NMR (125 MHz, CDCl₃)

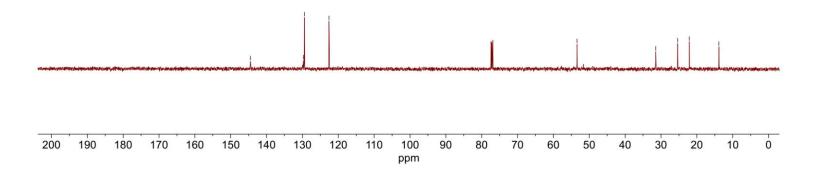


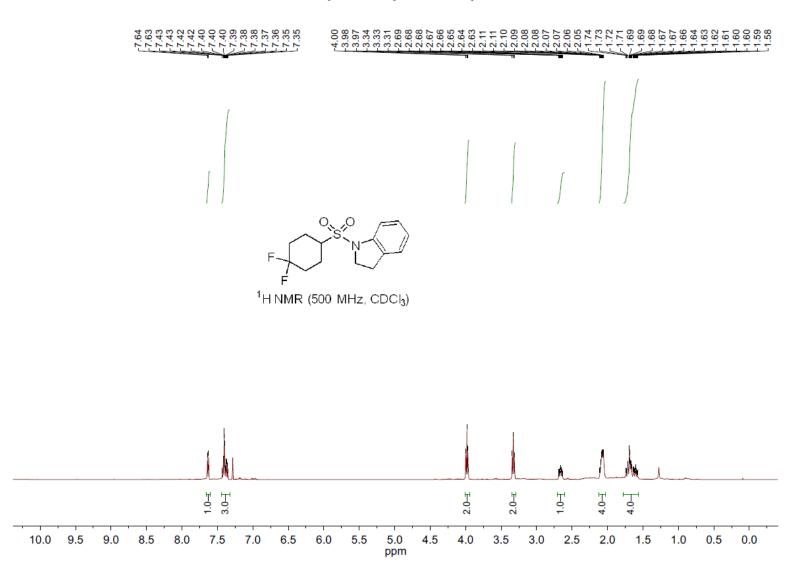


N-(2-chloro-4-methoxyphenyl)tetrahydro-2*H*-pyran-4-sulfonamide (8s)

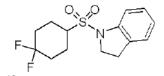
N-(2-chloro-4-methoxyphenyl)tetrahydro-2H-pyran-4-sulfonamide (8s)

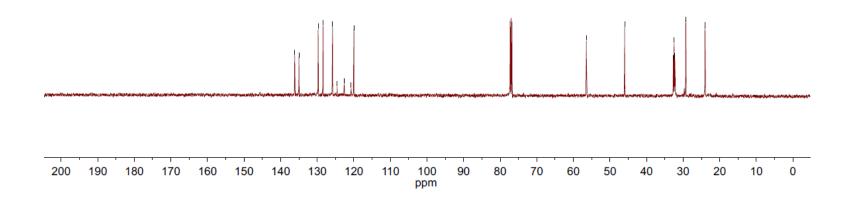


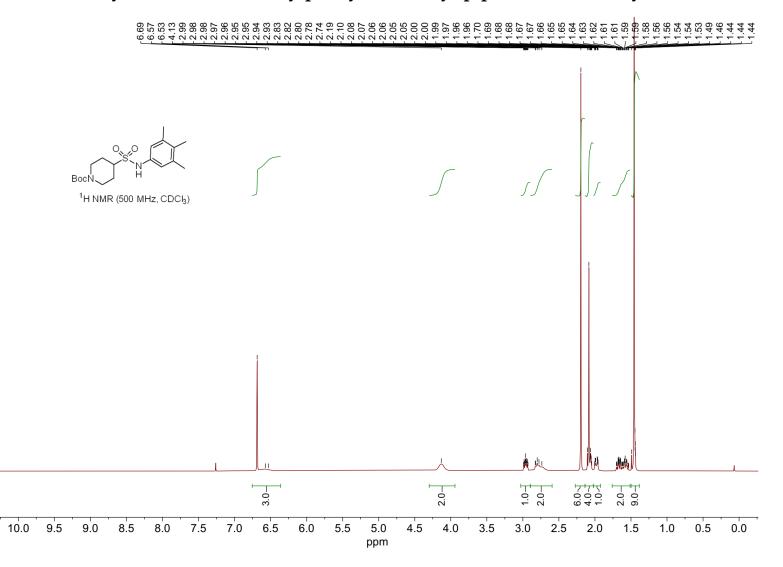


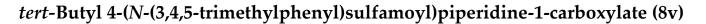

N-(4-Chlorophenyl)-*N*-methylbutane-1-sulfonamide (8t)

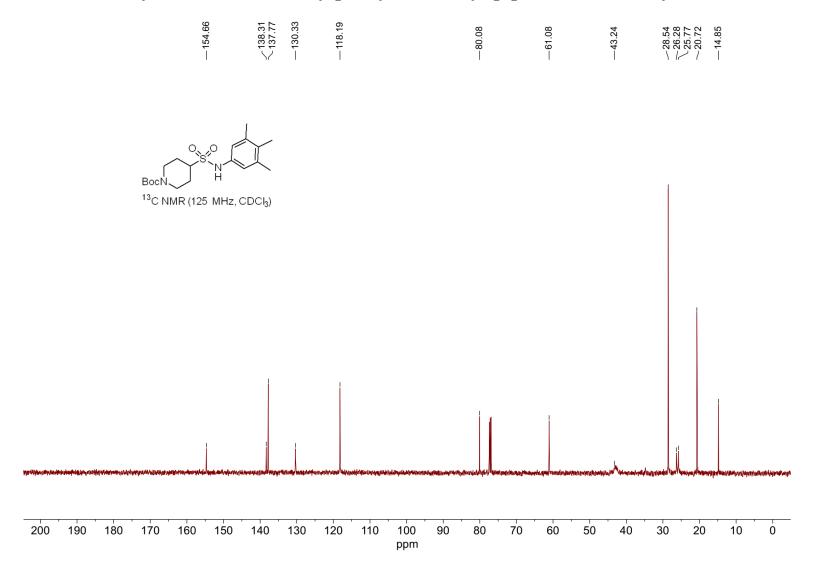
N-(4-Chlorophenyl)-*N*-methylbutane-1-sulfonamide (8t)

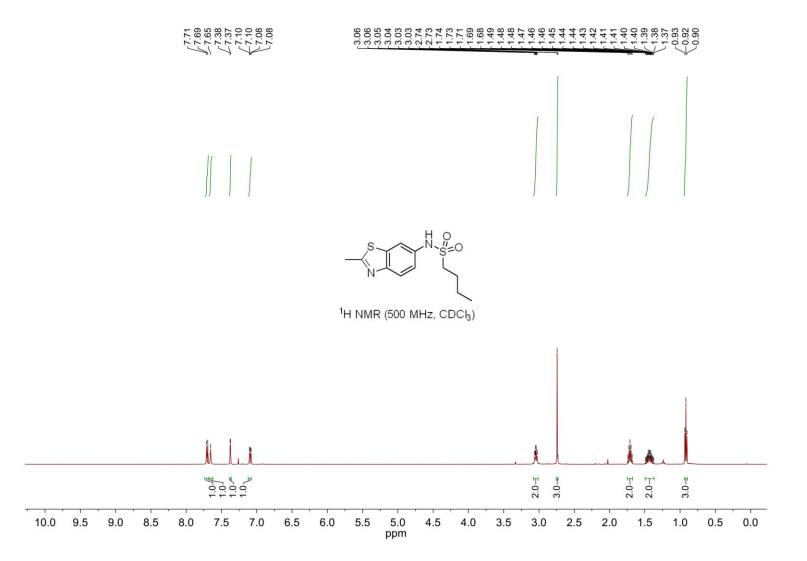



1-((4,4-Difluorocyclohexyl)sulfonyl)indoline (8u)

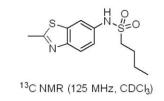

1-((4,4-Difluorocyclohexyl)sulfonyl)indoline (8u)

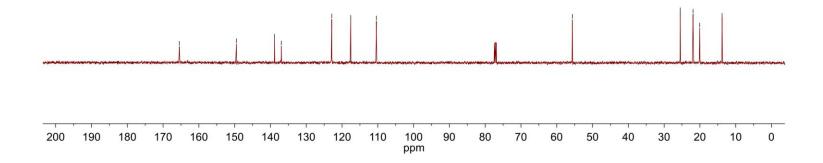


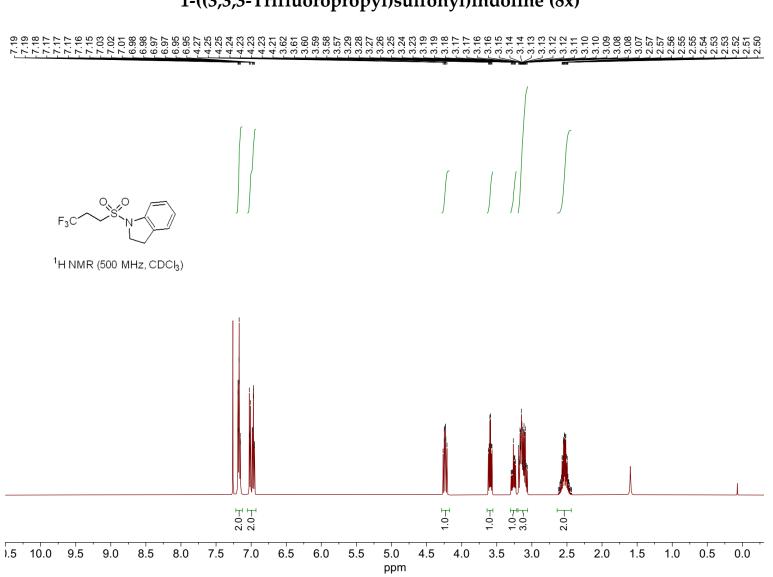

¹³C NMR (125 MHz, CDCl₃)


tert-Butyl 4-(*N*-(3,4,5-trimethylphenyl)sulfamoyl)piperidine-1-carboxylate (8v)

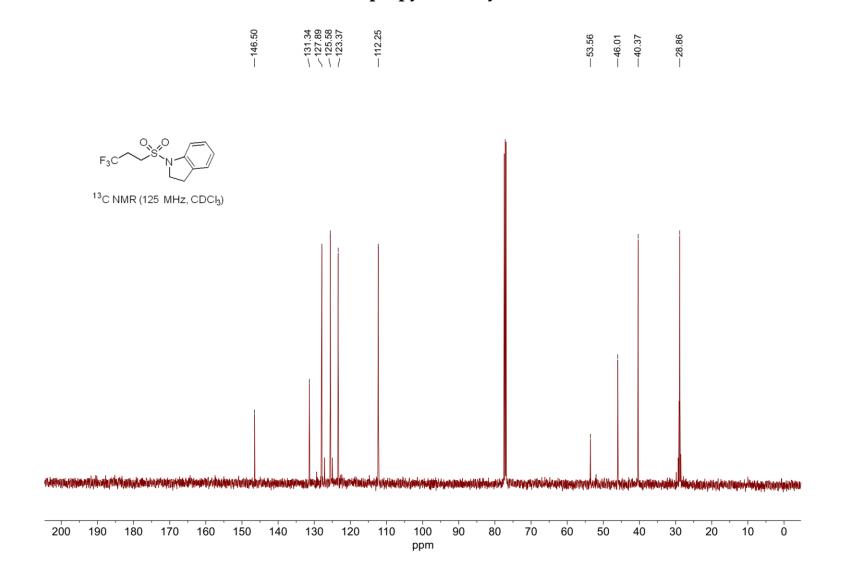
Go back to table of contents

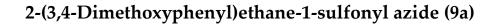

S319

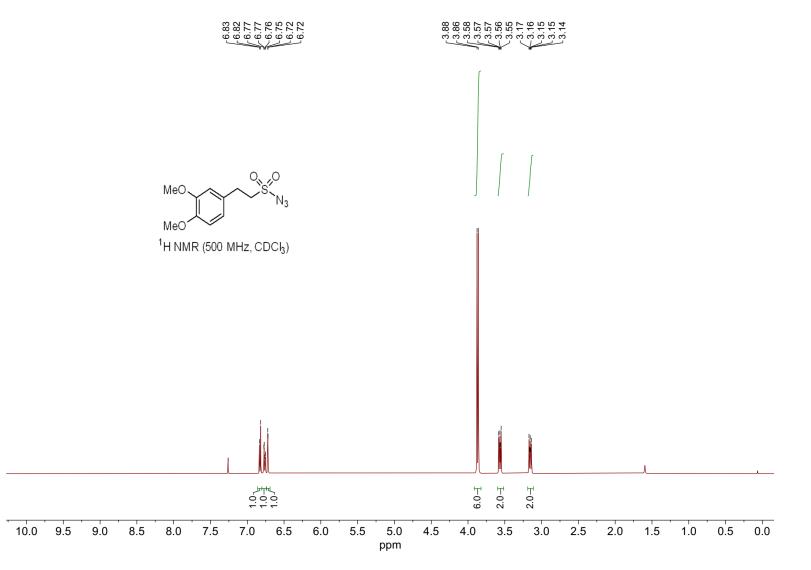



N-(2-methylbenzo[d]thiazol-6-yl)butane-1-sulfonamide (8w)

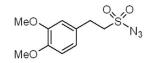
N-(2-methylbenzo[d]thiazol-6-yl)butane-1-sulfonamide (8w)

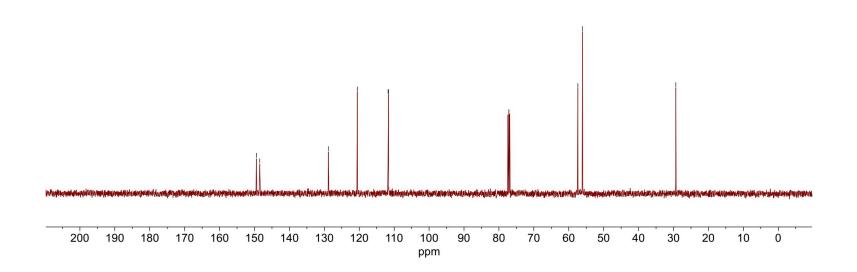


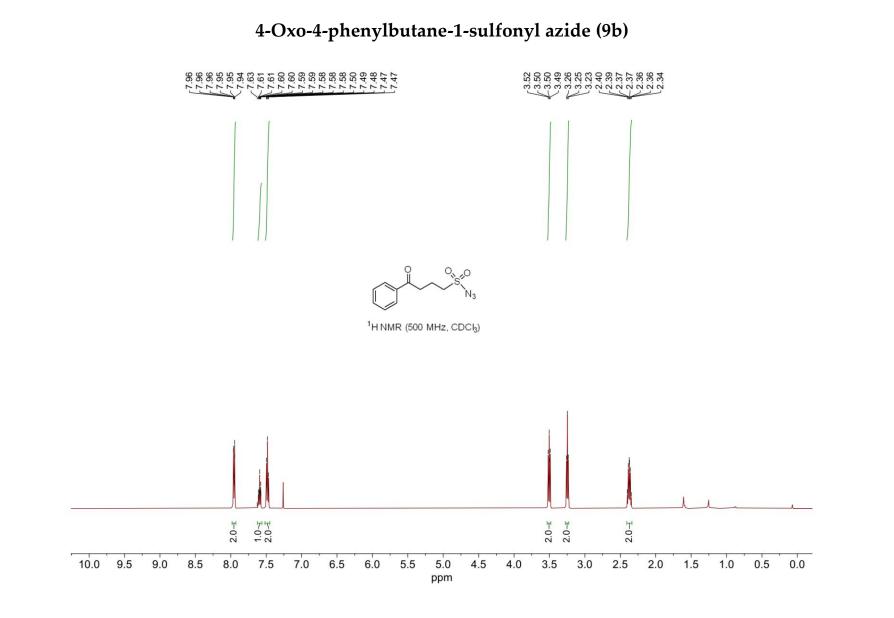


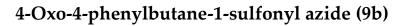

1-((3,3,3-Trifluoropropyl)sulfonyl)indoline (8x)

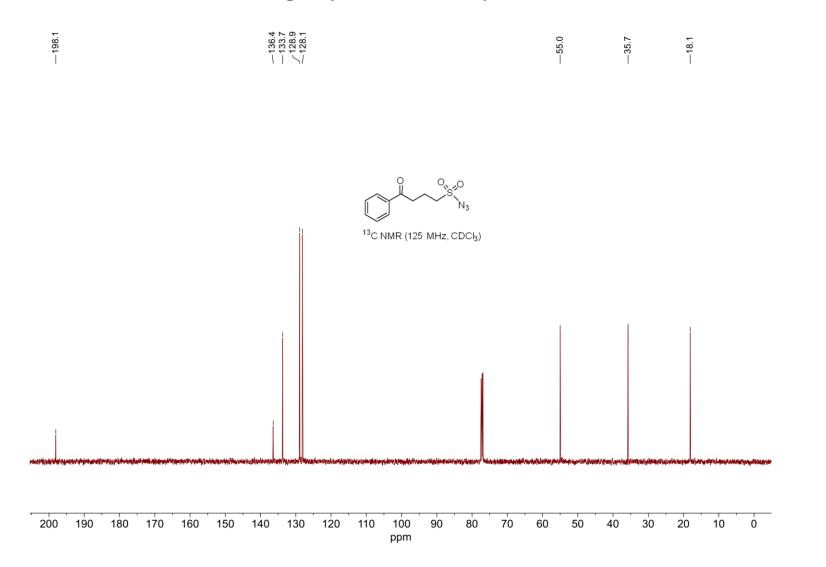
1-((3,3,3-Trifluoropropyl)sulfonyl)indoline (8x)

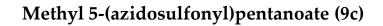

Evaluation Only. Created with Aspose.Pdf. Copyright 2002-2014 Aspose Pty Ltd.

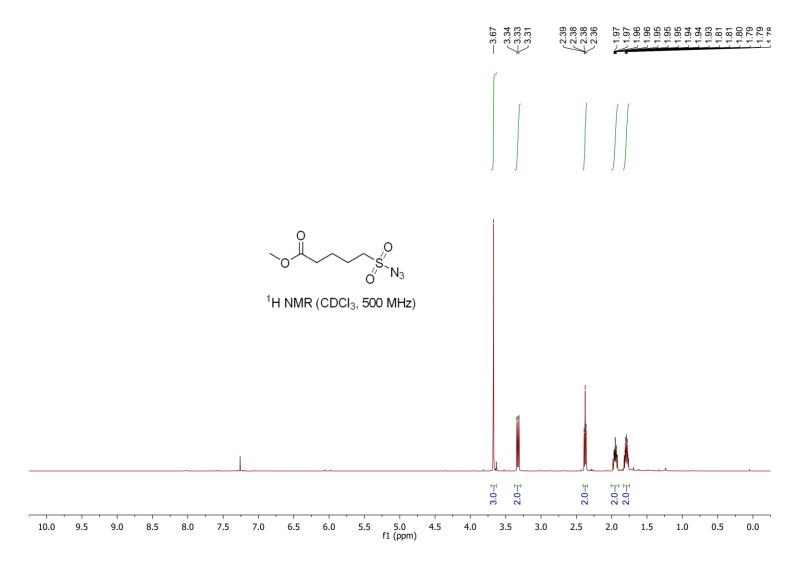


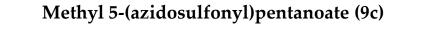

2-(3,4-Dimethoxyphenyl)ethane-1-sulfonyl azide (9a)

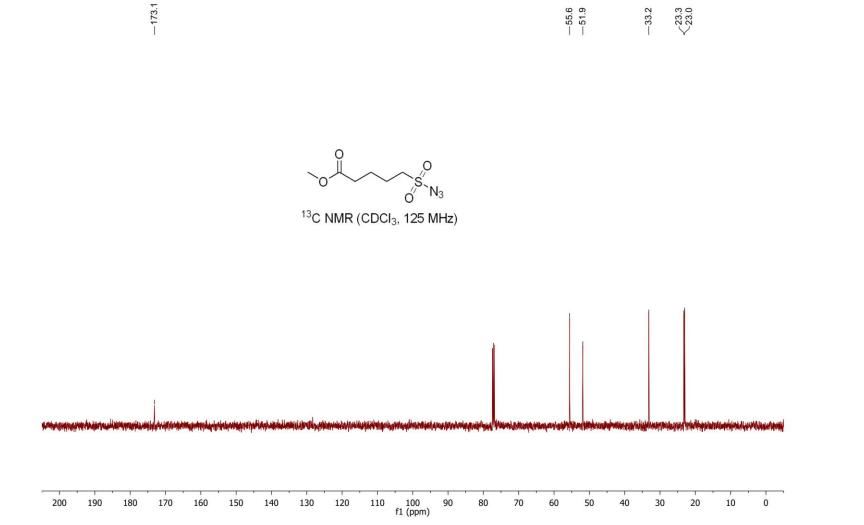


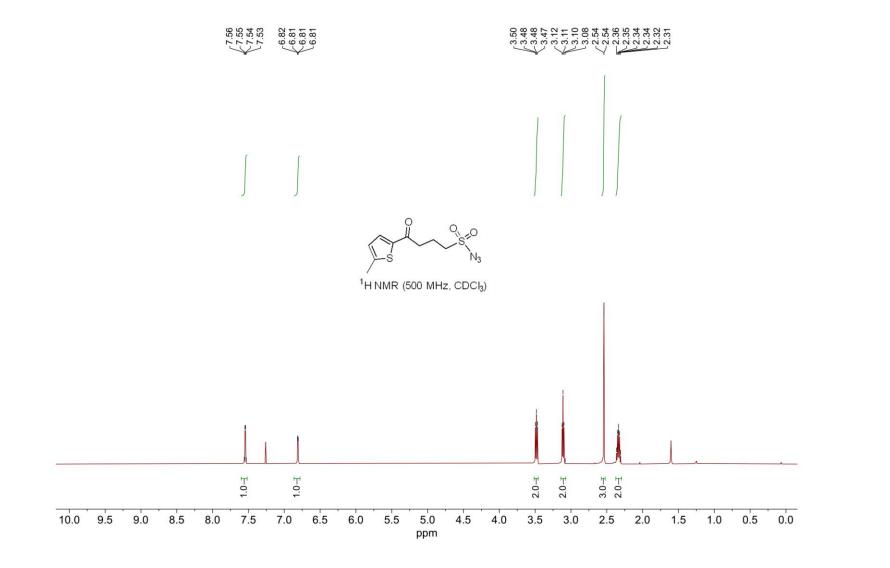


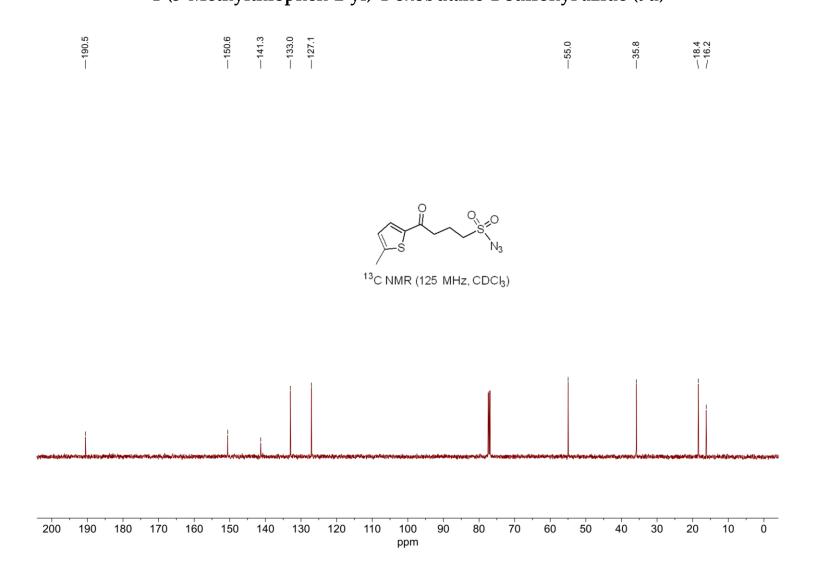

¹³C NMR (125 MHz, CDCl₃)

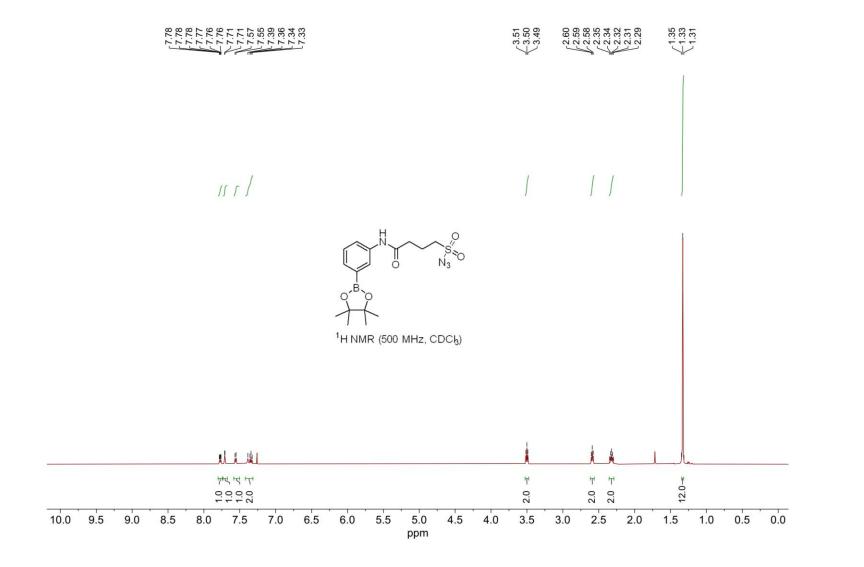


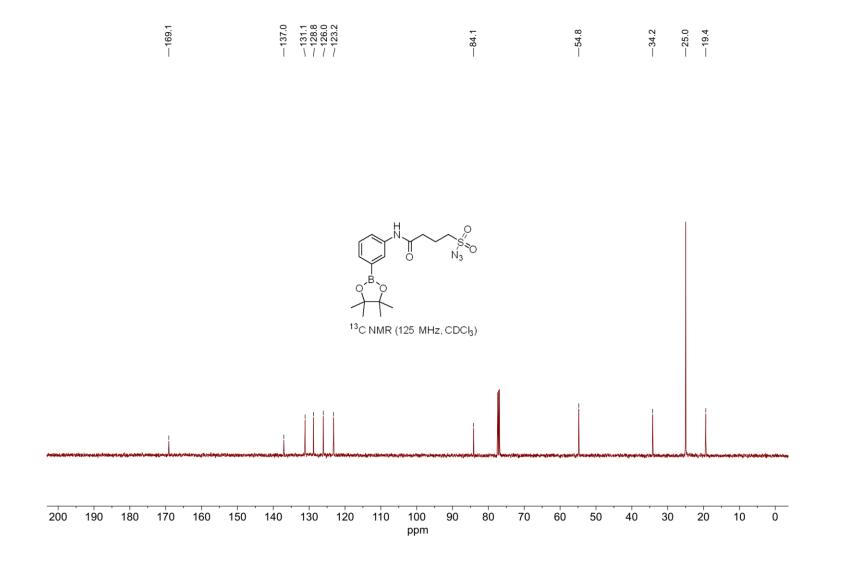


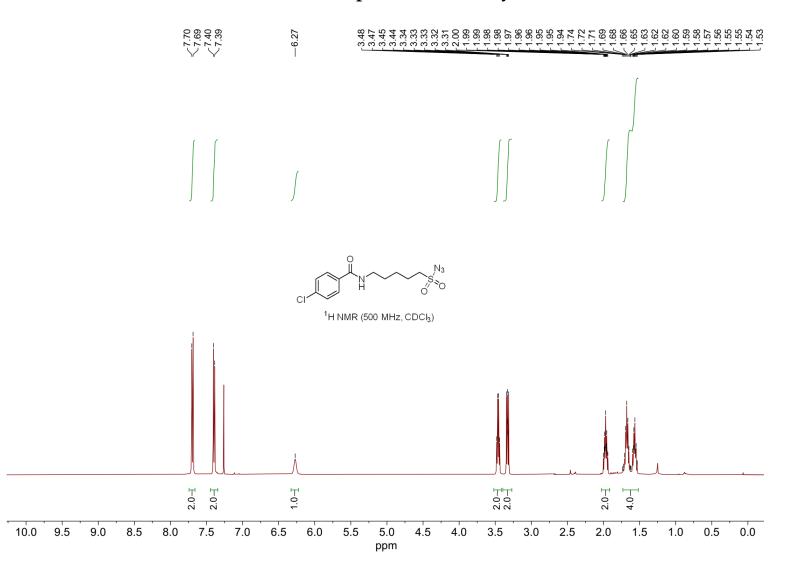




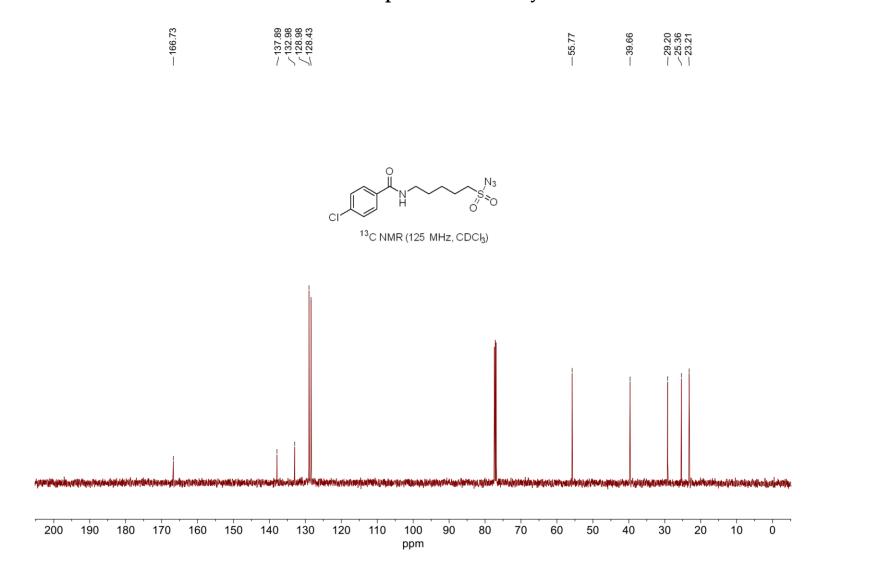



4-(5-Methylthiophen-2-yl)-4-oxobutane-1-sulfonyl azide (9d)

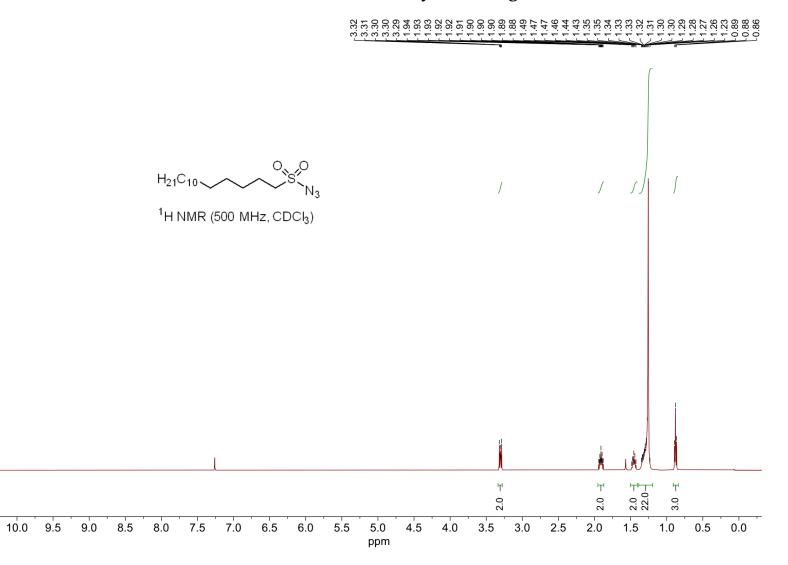



4-(5-Methylthiophen-2-yl)-4-oxobutane-1-sulfonyl azide (9d)

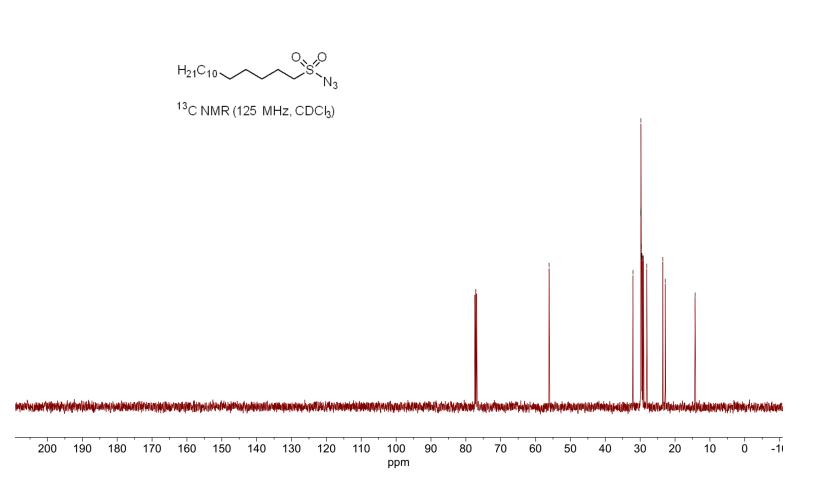
4-Oxo-4-((3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)amino)butane-1-sulfonyl azide (9e)

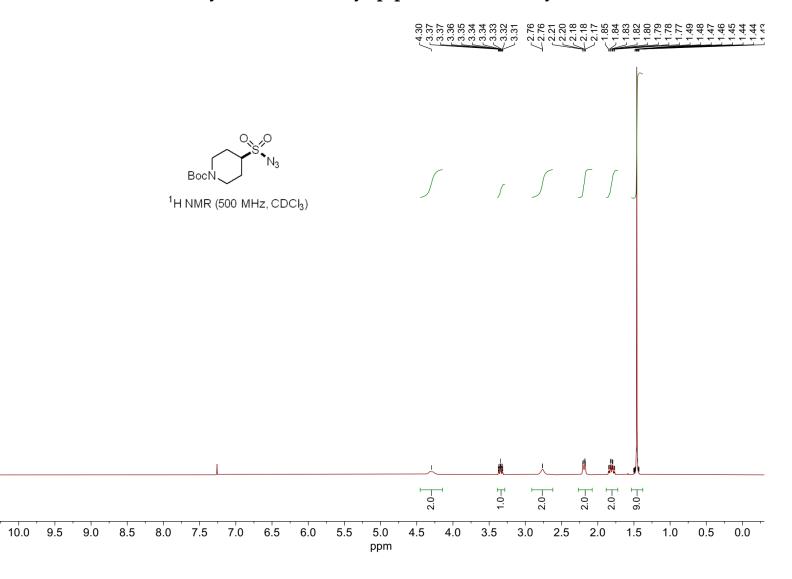

4-Oxo-4-((3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)amino)butane-1-sulfonyl azide (9e)

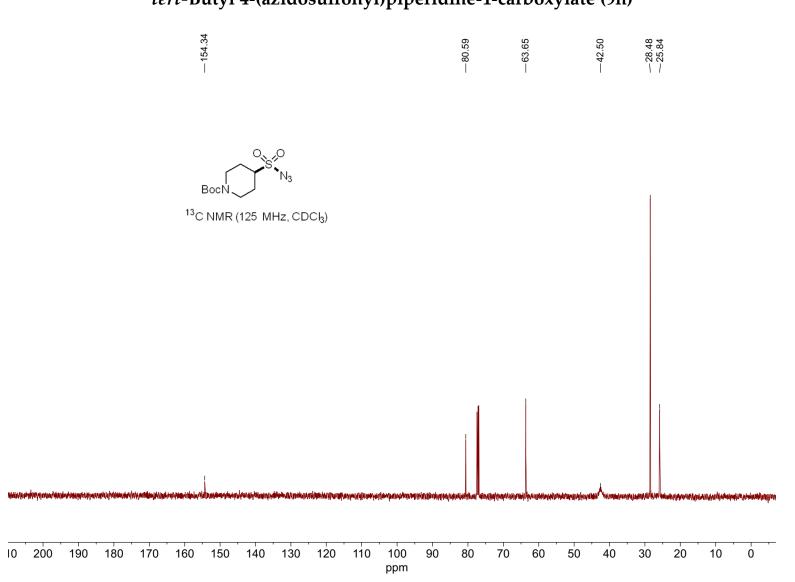
5-(4-Chlorobenzamido)pentane-1-sulfonyl azide (9f)


5-(4-Chlorobenzamido)pentane-1-sulfonyl azide (9f)

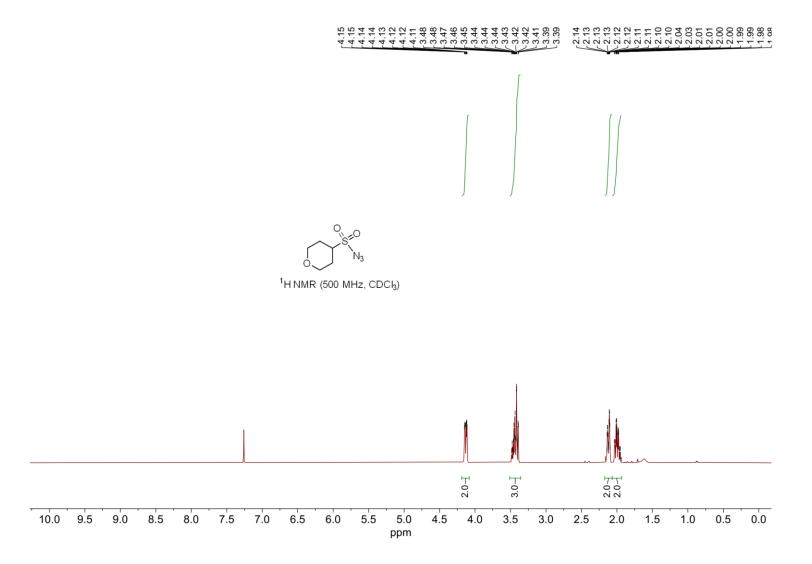
Go back to table of contents

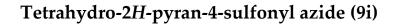

S336

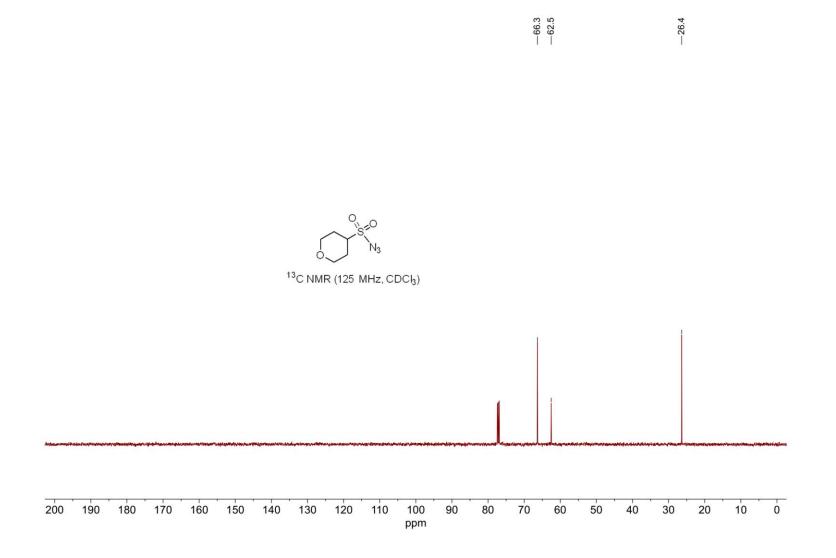

Pentadecane-1-sulfonyl azide (9g)


Pentadecane-1-sulfonyl azide (9g)

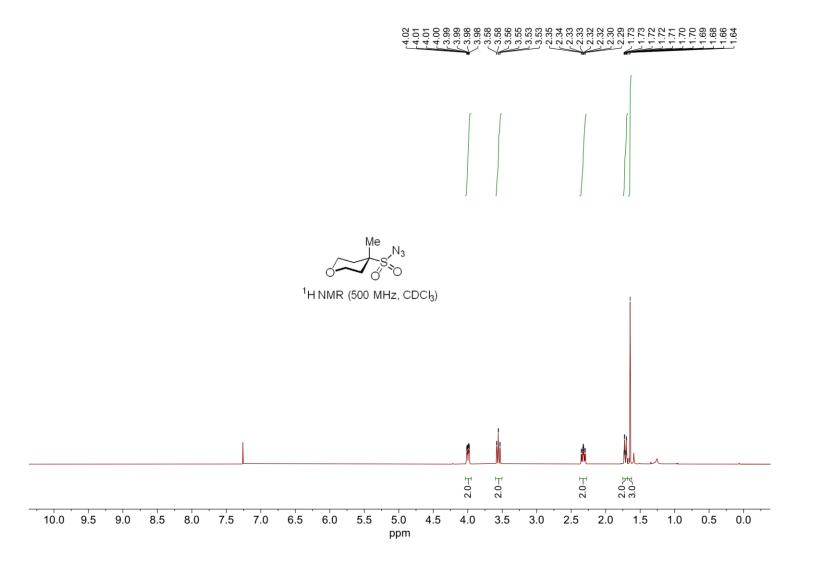
13	06 06 05 05 05 05 05 05 05 05 05 05 05 05 05
56	7 2 2 2 2 2 2 2 2 2 2 3 3

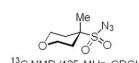


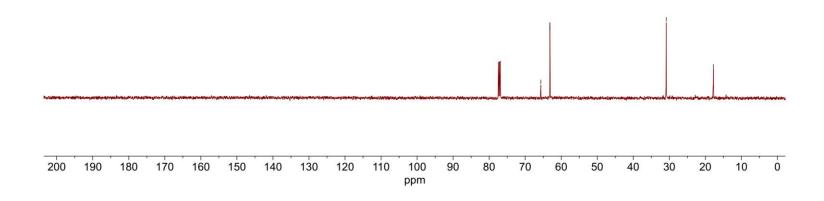

tert-Butyl 4-(azidosulfonyl)piperidine-1-carboxylate (9h)



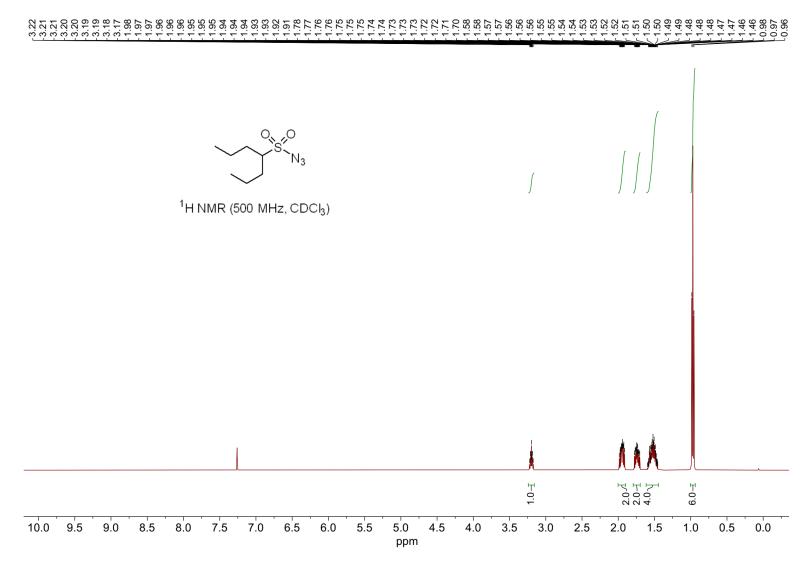
tert-Butyl 4-(azidosulfonyl)piperidine-1-carboxylate (9h)

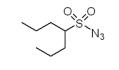

Tetrahydro-2*H*-pyran-4-sulfonyl azide (9i)

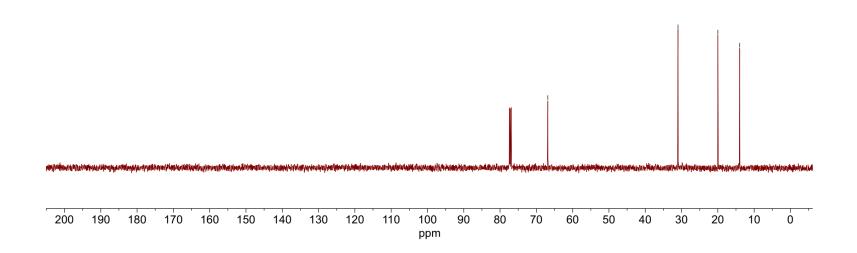




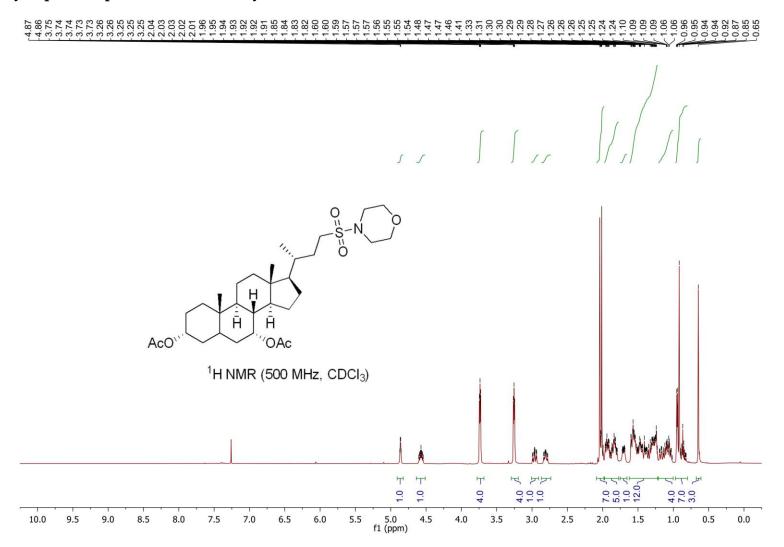
4-Methyltetrahydro-2*H*-pyran-4-sulfonyl azide (9j)



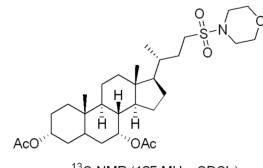




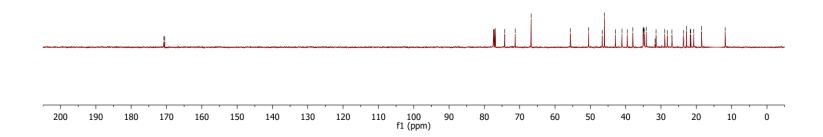
Heptane-4-sulfonyl azide (9k)

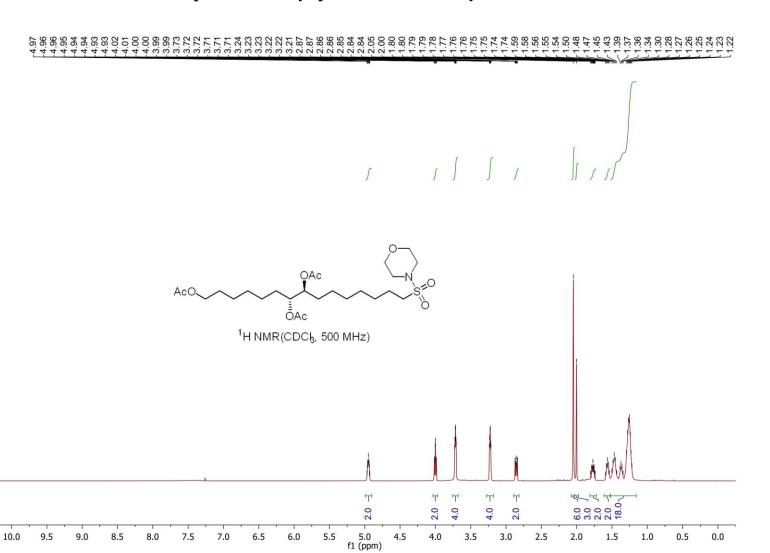

--66.83 --30.97 --19.98 --14.00

¹³C NMR (125 MHz, CDCl₃)

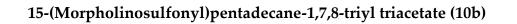


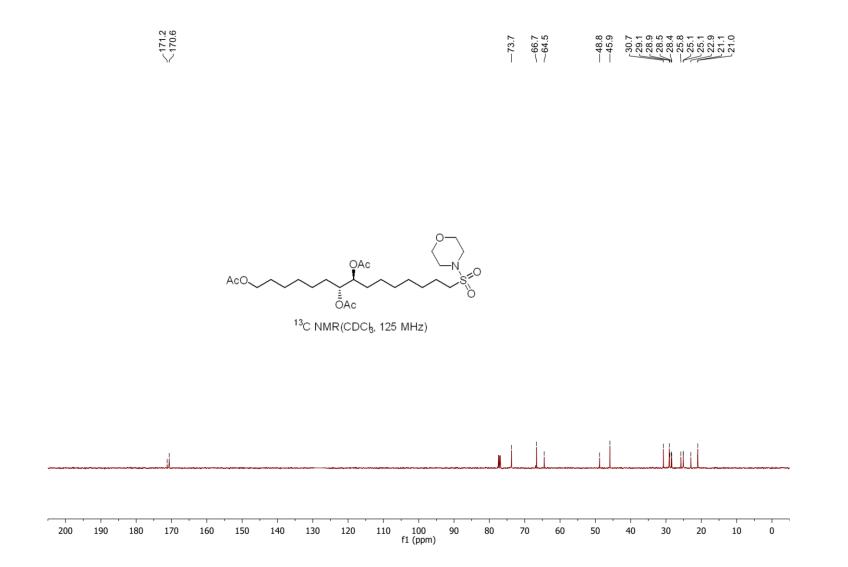
3*R*,7*R*,8*R*,9*S*,10*S*,13*R*,14*S*,17*R*)-10,13-Dimethyl-17-((*R*)-4-(morpholinosulfonyl)butan-2-yl)hexadecahydro-1*H*-cyclopenta[*a*]phenanthrene-3,7-diyl diacetate (10a)

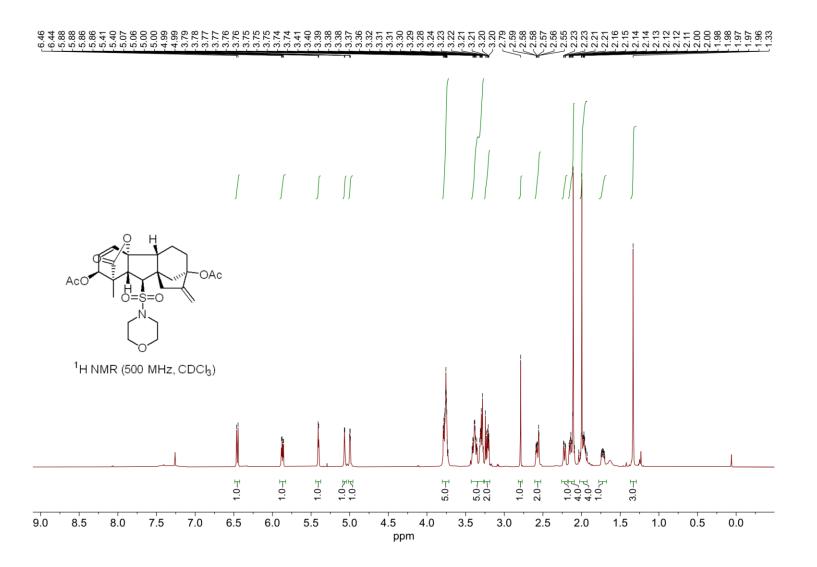



(3*R*,7*R*,8*R*,9*S*,10*S*,13*R*,14*S*,17*R*)-10,13-Dimethyl-17-((*R*)-4-(morpholinosulfonyl)butan-2-yl)hexadecahydro-1*H*cyclopenta[*a*]phenanthrene-3,7-diyl diacetate (10a)

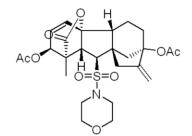
170.5	$\begin{array}{c} 1.333333333333333333333333333333333333$
$\overline{\checkmark}$	



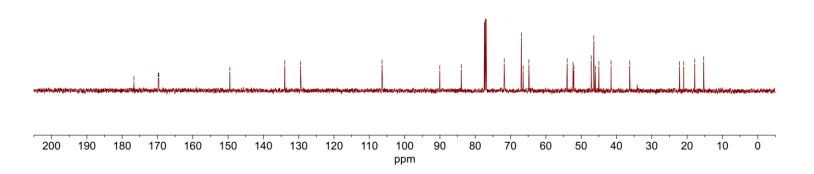

¹³C NMR (125 MHz, CDCl₃)



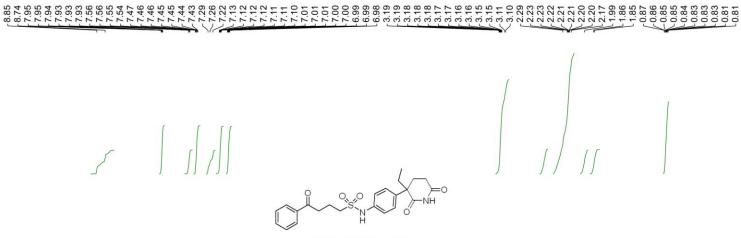
15-(Morpholinosulfonyl)pentadecane-1,7,8-triyl triacetate (10b)

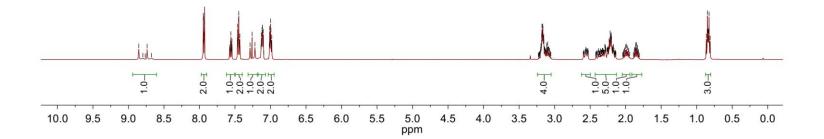


(1*S*,2*S*,4*aR*,4*bR*,7*S*,9*aS*,10*S*,10*aR*)-1-Methyl-8-methylene-10-(morpholinosulfonyl)-13-oxo-1,2,5,6,8,9,10,10a-octahydro-4a,1-(epoxymethano)-7,9a-methanobenzo[*a*]azulene-2,7(4*bH*)-diyl diacetate (10c)

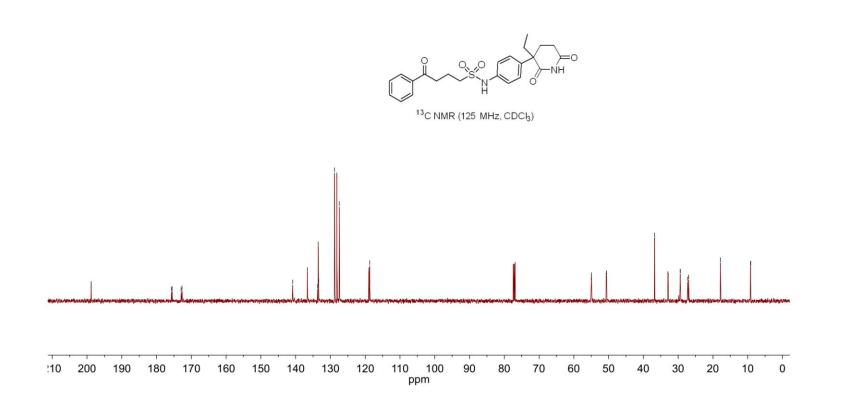


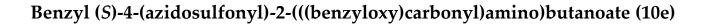
(1*S*,2*S*,4*aR*,4*bR*,7*S*,9*aS*,10*S*,10*aR*)-1-Methyl-8-methylene-10-(morpholinosulfonyl)-13-oxo-1,2,5,6,8,9,10,10a-octahydro-4a,1-(epoxymethano)-7,9a-methanobenzo[*a*]azulene-2,7(4*bH*)-diyl diacetate (10c)

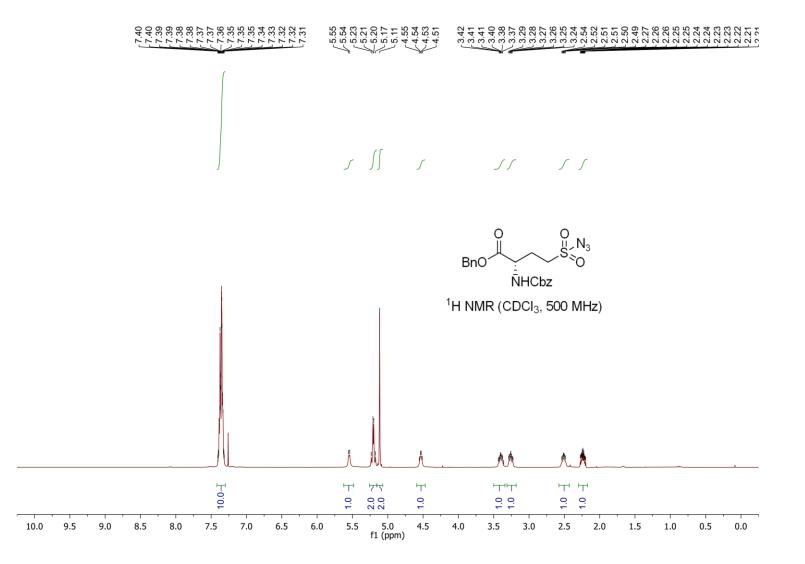

176.7	169.8 169.6	149.5	133.9 129.5	106.4	90.1	83.9	71.8 67.0 66.4 64.8	54.0 52.3 447.1 445.0 36.3 36.3	22.2 21.0 17.9 15.3
	\checkmark				1	ľ	$\langle \nabla \rangle$		5777


¹³C NMR (125 MHz, CDCl₃)

N-(4-(3-ethyl-2,6-dioxopiperidin-3-yl)phenyl)-4-oxo-4-phenylbutane-1-sulfonamide (10d)

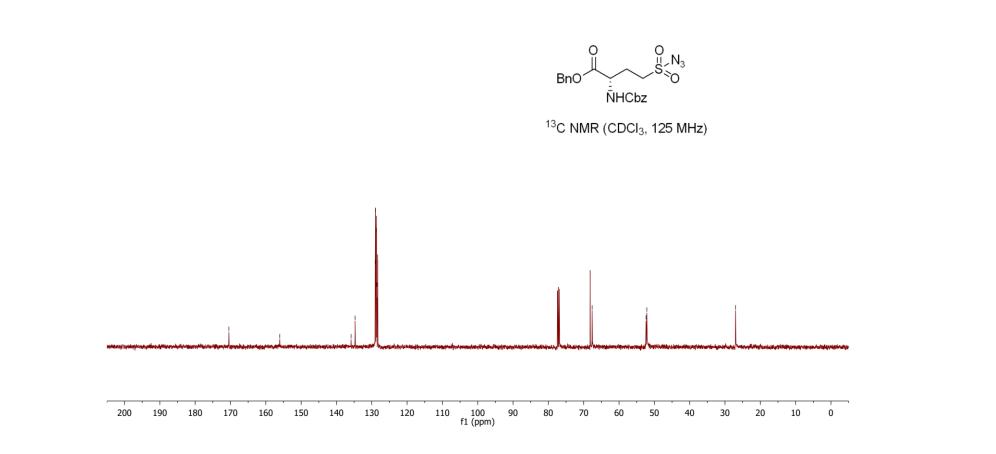


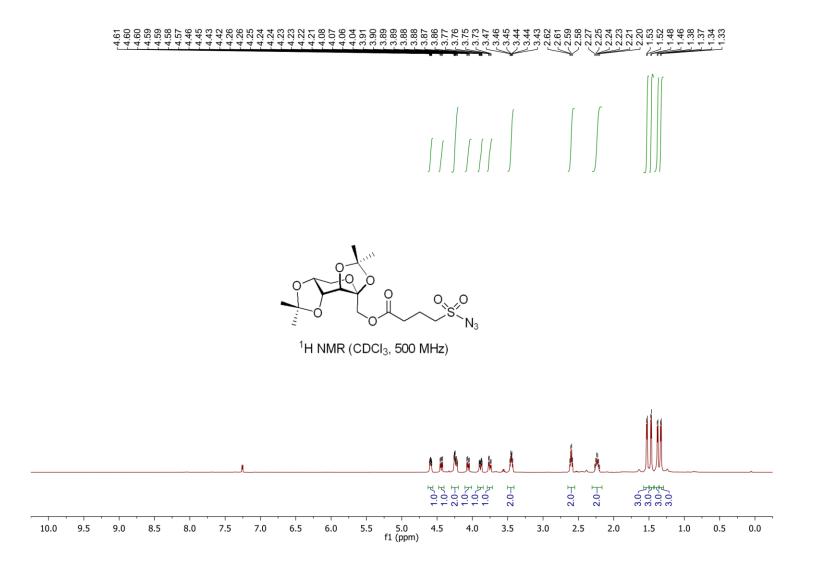

¹H NMR (500 MHz, CDCl₃)

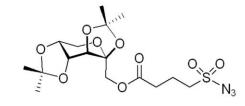


N-(4-(3-ethyl-2,6-dioxopiperidin-3-yl)phenyl)-4-oxo-4-phenylbutane-1-sulfonamide (10d)

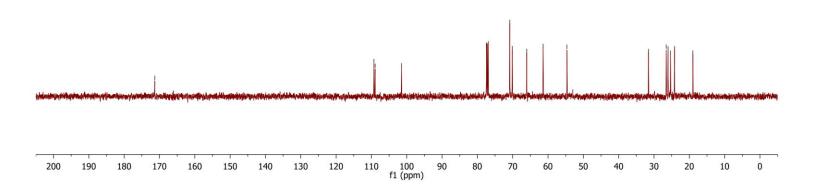
8 8	1001	0010481001	
88	5000	149 228 333 36 40	7.0 0.0 12 12 12 12 12 12 12 12 12 12 12 12 12
0 0	12121	4000000000000000	
\vee	VV	VYV VVV	
	1 F		



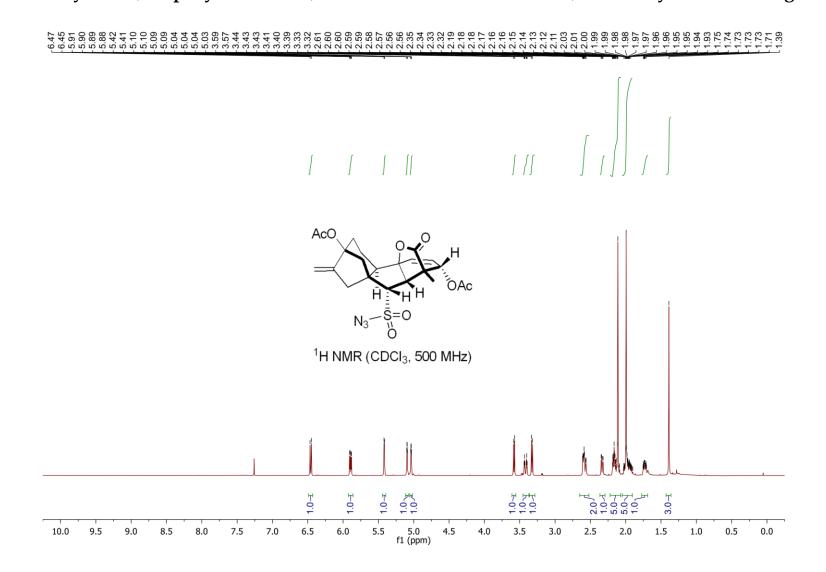

Benzyl (S)-4-(azidosulfonyl)-2-(((benzyloxy)carbonyl)amino)butanoate (10e)


((3aS,5aR,8aR,8bS)-2,2,7,7-Tetramethyltetrahydro-3aH-bis([1,3]dioxolo)[4,5-b:4',5'-d]pyran-3a-2bis([1,3]dioxolo)[4,5-b:4',5'-d]pyran-3a-2bis([1,3]dioxolo)[4,5-b:4',5'-d]pyran-3a-2bis([1,3]dioxolo)[4,5-b:4',5'-d]pyran-3a-2bis([1,3]dioxolo)[4,5-b:4',5'-d]pyran-3a-2bis([1,3]dioxolo)[4,5-b:4',5'-d]pyran-3a-2bis([1,3]dioxolo)[4,5-b:4',5'-d]pyran-3a-2bis([1,3]dioxolo)[4,5-b:4',5'-d]pyran-3a-2bis([1,3]dioxolo)[4,5-b:4',5'-d]pyran-3a-2bis([1,3]dioxolo)[4,5-b:4',5'-d]pyran-3a-2bis([1,3]dioxolo)[4,5-b:4',5'-d]pyran-3a-2bis([1,3]dioxolo)[4,5-b:4',5'-d]pyran-3a-2bis([1,3]dioxolo)[4,5-b:4',5'-d]pyran-3a-2bis([1,3]dioxolo)[4,5-b:4',5'-d]pyran-3a-2bis([1,3]dioxolo)[4,5-b:4',5'-d]pyran-3a-2bis([1,3]dioxolo)[4,5-b:4',5'-d]pyran-3a-2bis([1,3]dioxolo)[4,5-b:4',5'-d]pyran-3a-2bis([1,3]dioxolo)[4,5-b:4',5'-d]pyran-3a-2bis([1,3]dioxolo)[4,5-bis

yl)methyl 4-(azidosulfonyl)butanoate (10f)

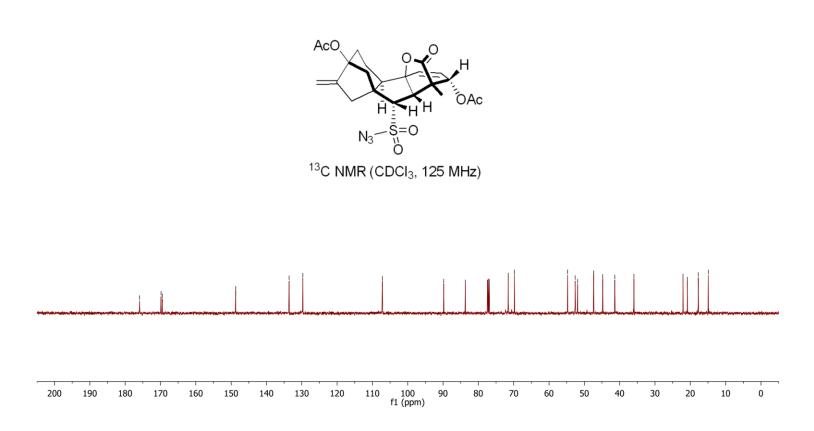


((3a*S*,5a*R*,8a*R*,8b*S*)-2,2,7,7-Tetramethyltetrahydro-3a*H*-bis([1,3]dioxolo)[4,5-*b*:4',5'-*d*]pyran-3ayl)methyl 4-(azidosulfonyl)butanoate (10f)



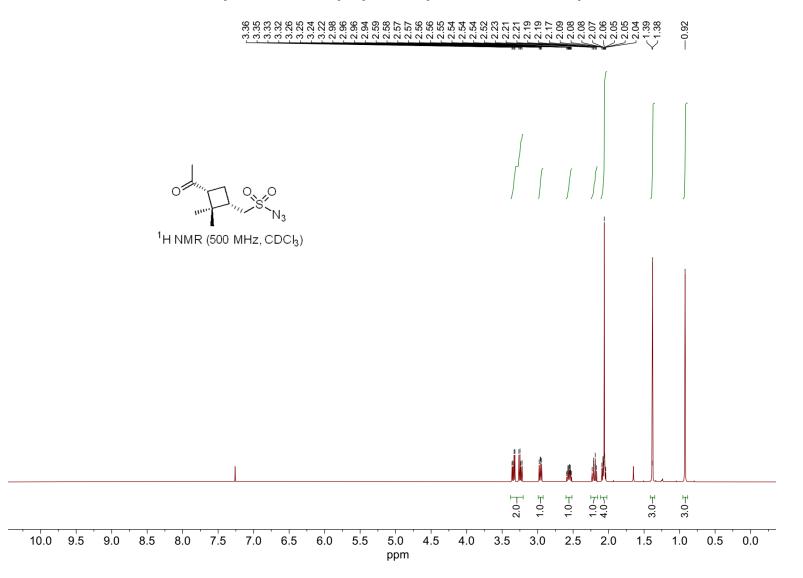
¹³C NMR (CDCI₃, 125 MHz)

(1*S*,2*S*,4*aR*,4*bR*,7*S*,9*aS*,10*S*,10*aR*)-10-(Azidosulfonyl)-1-methyl-8-methylene-13-oxo-1,2,5,6,8,9,10,10aoctahydro-4*a*,1-(epoxymethano)-7,9*a*-methanobenzo[*a*]azulene-2,7(4*bH*)-diyl diacetate (10g)

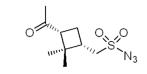


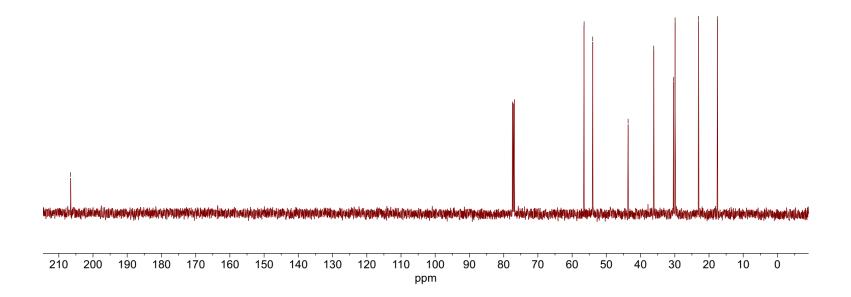
Go back to table of contents


S359

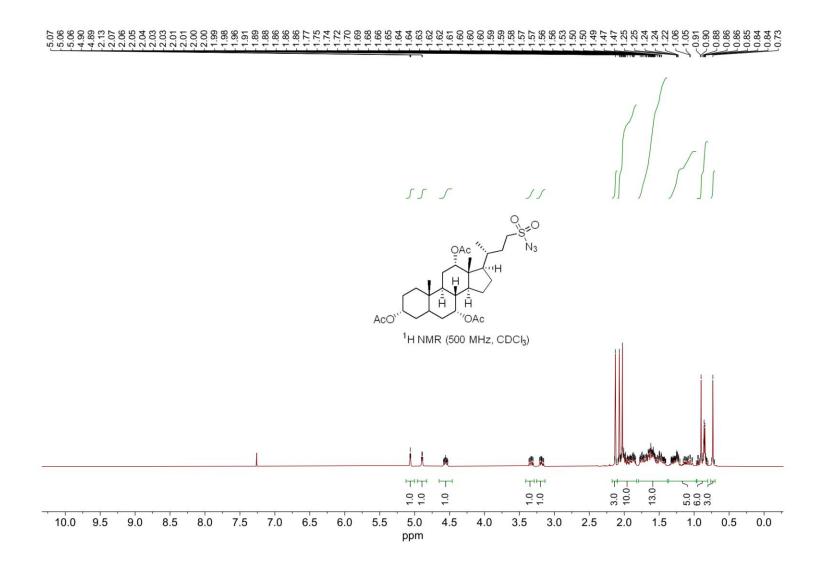

(1*S*,2*S*,4*aR*,4*bR*,7*S*,9*aS*,10*S*,10*aR*)-10-(Azidosulfonyl)-1-methyl-8-methylene-13-oxo-1,2,5,6,8,9,10,10aoctahydro-4*a*,1-(epoxymethano)-7,9*a*-methanobenzo[*a*]azulene-2,7(4*bH*)-diyl diacetate (10g)

> -175.9 -148.7 -148.7 -148.7 -133.6 -129.7 -22.1 -22.1 -22.1 -22.1 -22.1 -22.1 -22.1 -22.1 -22.1 -22.1 -23.6 -14.9 -24.9 -23.6 -24.13 -22.13 -22.14-22.14


Evaluation Only. Created with Aspose.Pdf. Copyright 2002-2014 Aspose Pty Ltd.

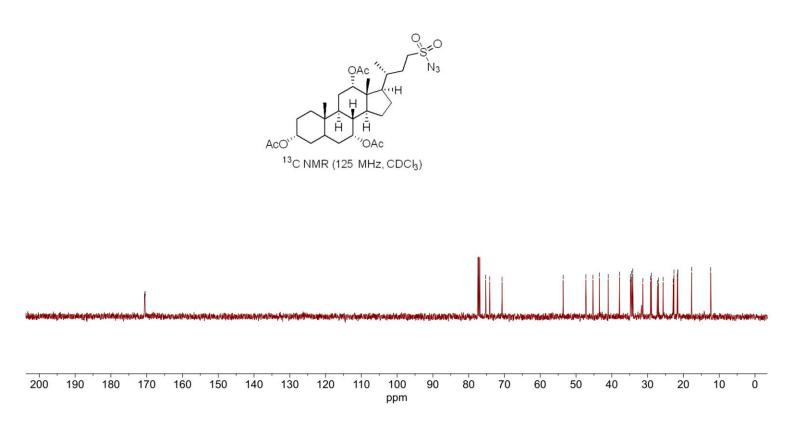


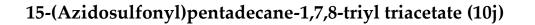
((1*S*,3*R*)-3-Acetyl-2,2-dimethylcyclobutyl)methanesulfonyl azide (10h)

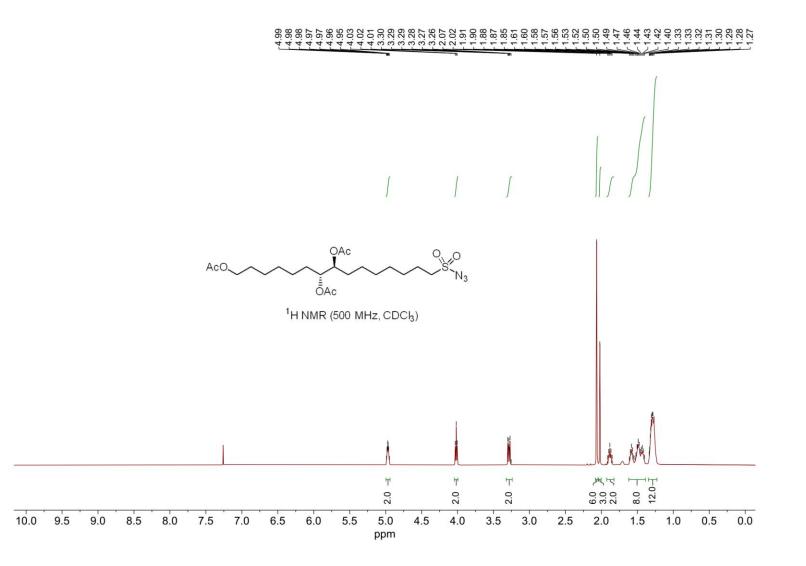


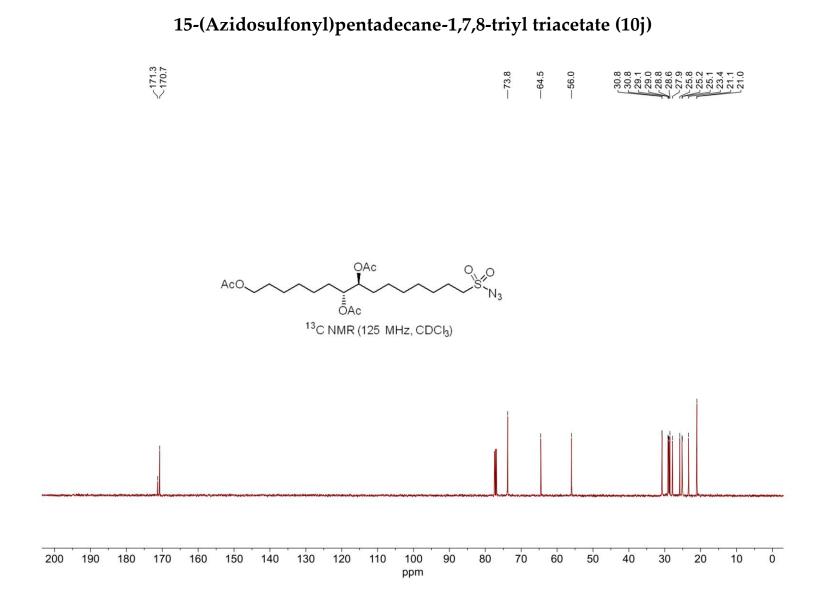
¹³C NMR (125 MHz, CDCl₃)

(3*R*,7*R*,8*R*,9*S*,10*S*,12*S*,13*R*,14*S*,17*R*)-17-((*R*)-4-(Azidosulfonyl)butan-2-yl)-10,13dimethylhexadecahydro-1*H*-cyclopenta[*a*]phenanthrene-3,7,12-triyl triacetate (10i)


Go back to table of contents


S364


170.6 170.5 170.4


(3*R*,7*R*,8*R*,9*S*,10*S*,12*S*,13*R*,14*S*,17*R*)-17-((*R*)-4-(Azidosulfonyl)butan-2-yl)-10,13dimethylhexadecahydro-1*H*-cyclopenta[*a*]phenanthrene-3,7,12-triyl triacetate (10i)

75.3 71.7 70.7	53.6	47.3 47.3 45.3 45.3 41.0 45.3 44.7 34.4 34.7 34.2 34.2 24.7 234.7 22.7 234.7 22.7 234.7 22.7 234.7 22.7 21.7 21.7 21.7 21.7 21.7 21.7 21
----------------	------	--

References

- V. T. Nguyen, V. D. Nguyen, G. C. Haug, H. T. Dang, S. Jin, Z. Li, C. Flores-Hansen,
 B. S. Benavides, H. D. Arman, O. V. Larionov, *ACS Catal.*, 2019, 9, 9485–9498.
- 2 S. Van Mileghem, W. M. De Borggraeve, Org. Process Res. Dev., 2017, 21, 785–787.
- 3 E. Brehm, R. Breinbauer, Org. Biomol. Chem., 2013, 11, 4750–4756.
- 4 H. Zhao, X. Guo, H. Tian, C. Li, Z. Xie, Y. Geng, F. Wang, J. Mater. Chem., 2010, 20, 3092–3097.
- 5 G. B. V. Subramanian, R. Sharma, Synth. Commun., 1989, 19, 1197–1202.
- 6 E. C. Liu, J. J. Topczewski, J. Am. Chem. Soc., 2019, 141, 5135-5138.
- R. Thakare, H. Gao, R. E. Kosa, Y. A. Bi, M. V. Varma, M. A. Cerny, R. Sharma, M. Kuhn, B. Huang, Y. Liu, A. Yu, *Drug Metab. Dispos.*, 2017, 45, 721–733.
- 8 H. T. Dang, G. C. Haug, V. T. Nguyen, N. T. H. Vuong, V. D. Nguyen, H. Arman, O.
 V. Larionov, ACS Catalysis, 2020, 10, 11448–11457.
- 9 E. M. Espinoza, J. A. Clark, J. Soliman, J. B. Derr, M. Morales, V. I. Vullev, J. *Electrochem. Soc.*, 2019, **116**, H3175–H3187.
- 10 Gaussian 16, Revision B.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J.

Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.

- 11 Texas Advanced Computing Center (TACC), The University of Texas at Austin
- 12 P. Pracht, F. Bohle, S. Grimme, Phys. Chem. Chem. Phys., 2020, 22, 7169-7192.
- 13 S. Grimme, C. Bannwarth, P. Shushkov, J Chem. Theory Comput., 2017, 13, 1989-2009.
- 14 C. Bannwarth, S. Ehlert, S. Grimme, J. Chem. Theory Comput., 2019, 15, 1652-1671.
- 15 Chemcraft graphical software for visualization of quantum chemistry computations. https://www.chemcraftprog.com
- 16 A. Hansen, C. Bannwarth, S. Grimme, P. Petrović, C. Werlé, J.-P. Djukic, *ChemistryOpen*, 2014, **3**, 177–189.
- 17 a) G. Luchini, J. V. Alegre-Requena, Y. Guan, I. Funes-Ardoiz, R. S. Paton, GoodVibes:
 GoodVibes v3.0.1 (2019); b) G. Luchini, J. V. Alegre-Requena, Y. Guan, I. FunesArdoiz, R. S. Paton, *F1000Research*, 2020, *9*, 291.
- 18 CYLview, 1.0b; C. Y. Legault, Université de Sherbrooke, 2009 (http://www.cylview.org).
- 19 W. Humphrey, A. Dalke, K. Schulten, J. Molec. Graphics, 1996, 14, 33–38.
- 20 S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phs., 2010, 132, 154104.
- 21 S. Grimme, S. Ehrlich, L. Goerigk, J. Comput. Chem., 2011, 32, 1456–1465.
- 22 Y. Zhao, D. G. Truhlar, J. Phys. Chem. A, 2005, 109, 5656–5667.
- 23 L. Goerigk, A. Hansen, C. Bauer, S. Ehrlich, A. Najibi, S. Grimme, *Phys. Chem. Chem. Phys.*, 2017, **19**, 32184.
- 24 F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys., 2005, 7, 3297–3305.
- 25 A. V. Marenich, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. B, 2009, 113, 6378–6396.

- 26 B. P. Pritchard, D. Altarawy, B. Didier, T. D. Gibson, T. L. Windus, J. Chem. Inf. Model., 2019, **59**, 4814–4820.
- 27 H. T. Dang, G. C. Haug, V. T. Nguyen, N. T. H. Vuong, V. D. Nguyen, H. D. Arman,
 O. V. Larionov, ACS Catal., 2020, 10, 11448–11457.
- 28 A. Weller, *Electrochem.*, 1952, 56, 662–668.
- 29 M. Lõkov, S. Tshepelevitsh, A. Heering, P. G. Plieger, R. Vianello, I. Leito, *Eur. J. Org. Chem.*, 2017, **2017**, 4475–4489.