Generation and application of Cu-bound alkyl nitrene for the

catalyst-controlled synthesis of cyclic β-amino acids

Raj K. Tak, Fuyuki Amemiya, Hidetoshi Noda, and Masakatsu Shibasaki*

Institute of Microbial Chemistry (BIKAKEN), Tokyo, Japan

Email: hnoda@bikaken.or.jp; mshibasa@bikaken.or.jp ‡These authors equally contributed to this work.

Table of Contents

1. General information	
1-1. Reactions and purifications	
1-2. Characterizations	
1-3. Solvents and reagents	
2. Synthesis of substituted isoxazolidin-5-ones	
2-1. Structure of substrate precursors	
2-2. Substrate synthesis	
3. Initial ligand screening	
4. Synthesis of cyclic β-amino acid	
4-1. Scope of benzo-fused β-amino acid synthesis	
4-2. Mechanistic investigation	
4-3. Kinetic study	
5. Catalytic asymmetric desymmetrization of 8	
5-1. Catalyst screening	
5-2. Copper catalyzed asymmetric desymmetrization	
5-3. Nonlinear effect	
6. Computational study	
6-1. Computational details	
6-2. Evaluation of interaction energies	
7. References	
8. Optimized coordinates	
9. NMR spectra	

1. General information

1-1. Reactions and purifications

Unless otherwise noted, all reactions were carried out under an argon atmosphere and were stirred with Tefloncoated magnetically stirred bars. All work-up and purification procedures were carried out with reagent-grade solvents under ambient atmosphere. Thin layer chromatography (TLC) was performed on Merck TLC plates (0.25 mm) pre-coated with silica gel 60 F254 and visualized by UV quenching and staining with ninhydrin or KMnO₄. Flash column chromatography was performed on a Biotage Isolera Spektra One.

1-2. Characterizations

Infrared (IR) spectra were recorded on a HORIBA FT210 Fourier transform infrared spectrophotometer. NMR spectra were recorded on a Bruker AVANCE III HD400 NMR spectrometers at 298K. Chemical shifts (δ) are given in ppm relative to residual solvent peaks.¹ Data for ¹H NMR are reported as follows: chemical shift (multiplicity, coupling constants where applicable, number of hydrogens). Abbreviations are as follows: s (singlet), d (doublet), t (triplet), dd (doublet of doublet), dt (doublet of triplet), ddd (doublet of doublet), q (quartet), m (multiplet), br (broad). Optical rotation was measured using a 1.0 mL cell with a 1.0 dm path length on a JASCO polarimeter P-1030. Single-crystal X-ray data were collected on a Rigaku R-AXIS RAPID II imaging plate area detector with graphite-monochromated Cu-Ka radiation. Melting points were measured on a Yanagimoto Seisakusho Micro Melting Point Apparatus. High-resolution mass spectra (ESI TOF (+)) were measured on a Thermo Fisher Scientific LTQ Orbitrap XL. Normal phase HPLC analysis was conducted on a JASCO HPLC system equipped with Daicel chiral-stationary-phase column (ϕ 0.46 cm x 25 cm).

1-3. Solvents and reagents

Unless otherwise noted, materials were purchased from commercial suppliers and were used without further purification. Anhydrous MeOH were purchased from commercial suppliers. THF and CH_2Cl_2 were purified by passing through a solvent purification system (Glass Contour). TFE and L4 were purchased from TCI Co., Ltd., and used as received. HFIP and CuOTf•0.5C₆H₆ were purchased from Sigma-Aldrich, and used as received. Benzaldehyde- d_5 was purchased from CDI Isotope.

2. Synthesis of substituted isoxazolidin-5-ones

2-1. Structure of substrate precursors

Substituted isoxazolidin-5-ones S2a, S2d, and S2j-t are known.^{2,3}

2-2. Substrate synthesis

General procedure A:² To a solution of *ortho*-phenylenediamine (1.0 equiv) in EtOH (0.05 M) at 23 °C were added aldehyde (2.0 equiv), Meldrum's acid (1.0 equiv), and (DL)-proline (20 mol%). The resulting solution was stirred for 24 h and evaporated under reduced pressure to give the residue, which was dissolved in CHCl₃, washed with 1M aq HCl. The resulting mixture was filtered through a pad of Celite and washed with CHCl₃, and the filtrates were extracted with CHCl₃ (3x). The combined organic layers were washed with water, dried over Na₂SO₄, filtered and concentrated in vacuo to afford crude **S1**, which was used directly in the next step without further purification.

General procedure B:³ Meldrum's acid (1.0 equiv), aldehyde (1.0 equiv), (DL)-proline (20 mol%) and diethyl 2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate (1.0 equiv) were dissolved in MeOH (0.3 M). The solution was vigorously stirred until full conversion at room temperature, and then concentrated under reduced pressure. The obtained crude residue was purified directly by silica gel column chromatography, eluting with hexane/EtOAc to provide the corresponding Meldrum's acid derivatives **S1**.

5-(4-((*tert***-Butyldimethylsilyl)oxy)phenethyl)-2,2-dimethyl-1,3-dioxane-4,6-dione (S1u):** Prepared by the general procedure B from 2-(4-((*tert* butyldimethylsilyl)oxy)phenyl)acetaldehyde⁴ (4.50 g, 18.0 mmol) and isolated as a white solid (3.70 g, 55% yield). **m.p.** 92–94 °C;

¹**H** NMR (400 MHz, CDCl₃): δ 7.08 – 7.05 (m, 2H), 6.78 – 6.75 (m, 2H), 3.44 (t, J = 5.4 Hz, 1H), 2.79 (dd, J = 8.6, 6.8 Hz, 2H), 2.39 – 2.34 (m, 2H), 1.74 (s, 3H), 1.71 (s, 3H), 0.97 (s, 9H), 0.17 (s, 6H); ¹³C NMR (101 MHz, CDCl₃): δ 165.5, 154.2, 132.9, 129.6, 120.2, 104.9, 44.9, 31.6, 28.5, 28.1, 26.6, 25.7, 18.2, -4.43; **IR** (thin film): 2955, 2930, 1792, 1752, 1608, 1509, 1379, 1255, 1055, 919, 838, 780 cm⁻¹; **HRMS (ESI)** *m/z* calc'd for $C_{20}H_{30}O_5NaSi [M + Na]^+$: 401.1755, found: 401.1759.

General procedure C:² To a solution of **S1** in THF (0.1 M) were added *tert*-butyl hydroxy((phenylsulfonyl)methyl)carbamate² (1.0 equiv) and K_2CO_3 (2.5 equiv) at 23 °C. After being stirred at 23 °C for 24 h, the mixture was filtered through a pad of Celite and washed with EtOAc, and the filtrates were evaporated under reduced pressure to give the crude residue, which was purified by silica gel column chromatography, eluting with hexane/EtOAc to afford **S2**.

tert-Butyl 4-hexyl-5-oxoisoxazolidine-2-carboxylate (S2b): Prepared by the general procedure B and C from

hexanal (0.85 mL, 6.9 mmol), and isolated as a colourless liquid (1.3 g, 67% yield for 2 steps). ¹**H NMR** (400 MHz, CDCl₃): δ 4.27 (dd, *J* = 11.0, 8.6 Hz, 1H), 3.65 (dd, *J* = 11.0, 9.1 Hz, 1H), 2.84 (qd, *J* = 8.9, 5.2 Hz, 1H), 1.91 – 1.82 (m, 1H), 1.58 - 153 (m, 1H), 1.51

(s, 9H), 1.40 - 1.28(m, 8H), 0.88 (t, J = 6.8 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 174.02, 155.06, 83.01, 52.53, 39.31, 30.43, 27.85, 27.77, 27.03, 26.01, 21.48, 12.97; **IR** (thin film): 2959, 2931, 1800, 1716, 1458, 1371, 1335, 1216, 1146, 847, 756 cm⁻¹; **HRMS** (ESI) *m/z* calc'd for C₁₅H₂₉O₅NNa [M+Na+MeOH]⁺: 326.1938, found: 326.1938.

tert-Butyl 5-oxo-4-phenethylisoxazolidine-2-carboxylate (S2c): Prepared by the general procedure A and C from 2-phenylacetaldehyde (2.5 g, 21.3 mmol), and isolated as a pale yellow liquid (65% yield for 2 steps).¹H NMR (400 MHz, CDCl₃): δ 7.33 – 7.29 (m, 2H), 7.24 – 7.17 (m, 3H), 4.22 (dd, *J* = 11.0, 8.6 Hz, 1H), 3.62 (dd, *J* = 11.0, 9.4 Hz, 1H), 2.86 – 2.70 (m, 3H), 2.28 – 2.17 (m, 1H), 1.91 – 1.81 (m, 1H), 1.51 (s, 9H); ¹³C NMR (101 MHz, CDCl₃): δ 174.80, 155.98, 139.86, 129.01, 128.72, 128.40, 126.58, 84.14, 53.59, 39.48, 33.03, 30.43, 28.04; **IR** (thin film): 2981, 2934, 1799, 1718, 1455,

1371, 1336, 1142, 847, 756 cm⁻¹; **HRMS** (ESI) m/z calc'd for C₁₇H₂₅O₅NNa [M+Na+MeOH]⁺: 346.1625, found: 346.1628.

tert-Butyl 5-oxo-4-(pent-4-en-1-yl)isoxazolidine-2-carboxylate (S2g): Prepared by the general procedure A and C from pent-4-enal (2.0 g, 20.2 mmol), and isolated as a pale yellow liquid (63% yield for 2 steps). ¹H NMR (400 MHz, CDCl₃): δ 5.76 (ddt, J = 16.9, 10.2, 6.7 Hz, 1H), 5.04 – 4.97 (m, 2H), 4.28 (dd, J = 11.0, 8.6 Hz, 1H), 3.65 (dd, J = 11.0, 9.2 Hz, 1H), 2.89 – 2.81 (m, Page S4 of S129 1H), 2.12 - 2.06 (m, 2H), 1.92 - 1.82 (m, 1H), 1.60 - 1.53 (m, 2H), 1.51 (s, 9H), 1.49 - 1.44 (m, 1H); ¹³C **NMR** (101 MHz, CDCl₃): δ 174.87, 156.05, 137.48, 115.51, 84.09, 53.55, 40.22, 33.23, 28.20, 28.05, 26.25; **IR** (thin film): 3031, 2983, 2935, 1801, 1716, 1458, 1371, 1336, 1216, 1145, 916, 847, 757 cm⁻¹; **HRMS** (ESI) *m/z* calc'd for C₁₄H₂₅O₅NNa [M+Na+MeOH]⁺: 310.1625, found: 310.1628.

tert-Butyl 4-(4-((*tert*-butyldimethylsilyl)oxy)phenethyl)-5-oxoisoxazolidine-2-carboxylate (S2u): Prepared ^{TBSO} $\xrightarrow{\text{VBOC}}$ by the general procedure A from S1u (2.70 g, 7.14 mmol) and isolated as a colorless liquid (2.70 g, 90% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.04 – 7.01 (m, 2H), 6.78 – 6.75 (m, 2H), 4.22 (dd, J = 11.0, 8.6 Hz, 1H), 3.62 (dd, J = 11.0, 9.4 Hz, 1H), 2.84 – 2.75 (m, 1H), 2.73 – 2.62 (m, 2H), 2.37 – 2.15 (m, 1H), 1.86-1.76 (m, 1H), 1.51 (s, 9H), 0.97 (s, 9H), 0.18 (s, 6H); ¹³C NMR (101 MHz, CDCl₃): δ 174.9, 156.0, 154.3, 132.4, 129.3, 120.2, 84.1, 53.6, 39.4, 32.2, 30.6, 28.0, 25.7, 18.2, -4.4; IR (thin film): 2955, 2931, 2858, 1800, 1749, 1719, 1609, 1509, 1461, 1370, 1258, 1142, 1007, 916, 814, 781, 690 cm⁻¹; HRMS (ESI) *m/z* calc'd for C₂₂H₃₄O₅NSi [M - H]⁻: 420.2212, found: 420.2214.

General procedure D: To a solution of **S2** (1.0 equiv) in THF (0.3 M) was slowly added LiHMDS (1M in THF, 1.6 equiv) at -78 °C and the resulting solution was stirred for 1h at -78 °C. To the mixture, alkyl halide (2 equiv) was added at the same temperature, and the solution was gradually warmed to an ambient temperature. The reaction progress was monitored by TLC, and the reaction was quenched after completion by the addition of saturated aqueous NH₄Cl solution. The aqueous phase was extracted with EtOAc (3x) and the organic phase was concentrated under reduced pressure. The obtained crude residue was purified by flash column chromatography, eluting with hexane/EtOAc to provide the **S3**.²

tert-Butyl 4-benzyl-4-methyl-5-oxoisoxazolidine-2-carboxylate (3a): Prepared by the general procedure D from S2a (1.50 g, 5.15 mmol) and methyl iodide (673 μ L, 10.8 mmol), and isolated as a white solid (1.29 g, 82% yield). m.p. 100–102 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.15 – 7.10 (m, 3H), 6.99-6.97 (m, 2H), 3.86 (d, J = 11.2 Hz, 1H), 3.49 (d, J = 11.2 Hz, 1H), 2.79 (d, J = 13.6

Hz, 1H), 2.64 (d, J = 13.6 Hz, 1H), 1.32 (s, 9H), 1.08 (s, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 177.16, 156.05, 135.06, 130.19, 128.68, 127.43, 84.03, 57.64, 45.27, 40.82, 28.06, 20.79; **IR** (thin film): 2980, 2936, 1802, 1747, 1722, 1448, 1371, 1150, 1064, 763, 698 cm⁻¹; **HRMS (ESI)** *m/z* calc'd for C₁₆ H₂₁O₄NNa [M + Na]⁺: 314.1363, found: 314.1362.

tert-Butyl 4-benzyl-4-hexyl-5-oxoisoxazolidine-2-carboxylate (3b): Prepared by the general procedure D from

O NBoc **S2b** (500 mg, 1.84 mmol) and benzyl bromide (438 μL, 3.68 mmol), and isolated as a white solid (450 mg, 69% yield). **m.p.** 52–54 °C; ¹**H NMR** (400 MHz, CDCl₃): δ 7.31–7.26 (m, 3H), 7.17 – 7.15 (m, 2H), 3.96 (d, *J* = 11.2 Hz, 1H), 3.86 (d, *J* = 11.2 Hz, 1H), 3.05 (d, *J* = 13.6 Hz, 1H), 2.84 (d, *J* = 14.0 Hz, 1H), 1.68-1.59 (m, 2H), 1.48 (s, 9H), 1.32 – 1.27 (m, 8H), 0.89 – 0.85

(m, 3H); ¹³C **NMR** (101 MHz, CDCl₃): δ 176.39, 155.72, 135.23, 130.12, 128.70, 127.40, 83.76, 55.16, 49.38, 40.21, 35.18, 31.49, 29.44, 28.07, 24.01, 22.51, 13.98; **IR** (thin film): 3020, 2932, 2859, 1791, 1712, 1456, 1371, 1215, 1147, 1030, 847, 759 cm⁻¹; **HRMS** (ESI) *m/z* calc'd for C₂₁H₃₁O₄NNa [M + Na]⁺: 384.2145, found: 384.2147.

tert-Butyl 4-benzyl-5-oxo-4-phenethylisoxazolidine-2-carboxylate (3c): Prepared by the general procedure D

from **S2c** (400 mg, 1.37 mmol) and benzyl bromide (327 μ L, 2.75 mmol), and isolated as a pale pink liquid (340 mg, 65% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.34 – 7.25 (m, 5H), 7.22-7.18 (m, 3H), 7.15 – 7.13 (m, 2H), 4.03 (d, *J* = 11.2 Hz, 1H), 3.93 (d, *J* = 11.2 Hz, 1H), 3.12 (d, *J* = 14.0 Hz, 1H), 2.93 (d, *J* = 14.0 Hz, 1H), 2.73 – 2.68 (m, 2H), 2.04-1.87 (m, 2H), 1.48 (s, 9H);

¹³**C NMR** (101 MHz, CDCl₃): δ 175.99, 155.73, 140.45, 134.94, 130.40, 130.12, 128.80, 128.62, 128.28, 127.53, 126.37, 84.00, 55.35, 49.41, 40.09, 36.83, 30.47, 28.06; **IR** (thin film): 3029, 2982, 2933, 1792, 1715, 1459, 1455, 1370, 1221, 1146, 1030, 847, 752 cm⁻¹; **HRMS** (ESI) *m/z* calc'd for C₂₃H₂₇O₄NNa [M + Na]⁺: 404.1832, found: 404.1831.

tert-Butyl 4-benzyl-5-oxo-4-(pent-4-en-1-yl)isoxazolidine-2-carboxylate (3g): Prepared by the general procedure D from S2g (700 mg, 2.74 mmol) and benzyl bromide (652 μ L, 5.48 mmol), and isolated as a light brown liquid (520 mg, 55% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.33 – 7.27 (m, 3H), 7.17 – 7.15 (m, 2H), 5.75 (ddt, *J* = 16.9, 10.2, 6.7 Hz, 1H), 5.04 – 4.96 (m, 2H), 3.96 (d, *J* = 11.2 Hz, 1H), 3.85 (d, *J* = 10.8 Hz, 1H), 3.06 (d, *J* = 14.0 Hz, 1H), 2.84 (d, *J* = 14.0 Hz, 1H), 3.85 (d, *J* = 10.8 Hz, 1H), 3.85 (d, *J* = 14.0 Hz, 1H), 3.85 (d, *J* = 10.8 Hz, 1H), 3.85 (d, *J* = 14.0 Hz, 1H), 3.85 (d, J = 10.8 Hz, 1H), 3.85 (d, J = 10.8 Hz, 1H), 3.85 (d, J = 10.8 Hz, 1H), 3.85 (d, J = 10

1H), 2.09 – 2.03 (m, 2H), 1.73-1.58 (m, 2H), 1.54 – 1.50 (m, 2H), 1.48 (s, 9H); ¹³C NMR (101 MHz, CDCl₃): δ 181.06, 137.63, 135.74, 129.32, 129.16, 127.80, 115.48, 55.51, 49.19, 41.52, 35.52, 33.75, 23.50; **IR** (thin film): 3030, 2980, 2936, 1796, 1716, 1456, 1370, 1147, 916, 755 cm⁻¹; **HRMS** (ESI) *m/z* calc'd for C₂₁H₃₁O₅NNa [M + Na + MeOH]⁺: 400.2094, found: 400.2098.

tert-Butyl 4-benzyl-4-(cyanomethyl)-5-oxoisoxazolidine-2-carboxylate (3h): Prepared by the general procedure D from S2a (500 mg, 1.80 mmol) and bromoacetonitrile (251 μ L, 3.60 mmol), and isolated as a colourless liquid (239 mg, 42% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.39 – 7.33 (m, 3H), 7.22 – 7.20 (m, 2H), 4.22 (d, J = 11.6 Hz, 1H), 3.91 (d, J = 11.6 Hz, 1H), 3.08 (q,

J = 14.1 Hz, 2H), 2.66 (q, J = 17.1 Hz, 2H), 1.53 (s, 9H); ¹³C NMR (101 MHz, CDCl₃): δ 172.91, 155.33, 132.87, 130.13, 129.16, 128.29, 115.29, 84.98, 55.55, 47.41, 38.94, 28.03, 22.52; **IR** (thin film): 3025, 2984, 2935, 2253, 1800, 1719, 1456, 1372, 1216, 1147, 910, 844, 771 cm⁻¹; **HRMS** (ESI) *m/z* calc'd for C₁₇H₂₁O₄N₂ [M + H]⁺: 317.1496, found: 317.1494.

tert-Butyl 4-benzyl-5-oxo-4-(prop-2-yn-1-yl)isoxazolidine-2-carboxylate (3i): Prepared by the general procedure D from S2a (400 mg, 1.44 mmol) and propargyl bromide (217 μ L, 2.88 mmol), and isolated as a pale yellow liquid (227 mg, 50% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.35 – 7.29 (m, 3H), 7.21 – 7.18 (m, 2H), 4.06 (q, *J* = 11.3 Hz, 2H), 3.04 (dd, *J* = 37.2, 13.9 Hz, 2H), 2.54 (ddd, *J* = 50.0, 17.0, 2.7 Hz, 2H), 2.16 (t, *J* = 2.6 Hz, 1H), 1.51 (s, 9H); ¹³C NMR (101 MHz, CDCl₃): δ 174.75,

155.70, 134.30, 130.24, 128.87, 127.78, 84.19, 78.10, 72.74, 55.19, 49.06, 39.28, 28.11, 24.41; **IR** (thin film): 3308, 3019, 2984, 1796, 1716, 1371, 1215, 1147, 1078, 846, 757 cm⁻¹; **HRMS** (ESI) m/z calc'd for C₁₈H₂₁O₄NNa [M + Na]⁺: 338.1363, found: 338.1363.

tert-Butyl 4-methyl-4-(4-methylbenzyl)-5-oxoisoxazolidine-2-carboxylate (3j): Prepared by the general procedure D from 2j (500 mg, 1.71 mmol) and methyl iodide (213 μ L, 3.41 mmol), and isolated as a colorless liquid (408 mg, 78% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.13 (d, *J* = 7.6 Hz, 2H), 7.06 (d, *J* = 8.0 Hz, 2H), 4.06 (d, *J* = 11.2 Hz, 1H), 3.67 (d, *J* = 11.2 Hz, 1H), 2.94 (d, *J* = 14.0 Hz, 1H), 2.79 (d, *J* = 14.0 Hz, 1H), 2.33 (s, 3H), 1.51 (s, 9H), 1.27 (s, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 177.26, 156.04, 137.08, 131.93, 130.06, 129.35, 83.97, 57.64, 45.30, 40.44, 28.05, 21.04, 20.78; IR (thin film): 3023, 2981, 2935, 1798, 1718, 1515, 1371, 1150, 1071, 847, 757 cm⁻¹; HRMS (ESI) *m/z* calc'd for C₁₈H₂₇O₅NNa

[M + Na + MeOH]⁺: 360.1781, found: 360.1777.

tert-Butyl 4-methyl-4-(2-methylbenzyl)-5-oxoisoxazolidine-2-carboxylate (3k): Prepared by the general procedure D from S2k (400 mg, 1.37 mmol) and methyl iodide (169 μ L, 2.74 mmol), and isolated as a colorless liquid (339 mg, 81% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.19 – 7.17 (m, 2H), 7.16 – 7.13 (m, 2H), 3.93 (d, *J* = 10.8 Hz, 1H), 3.78 (d, *J* = 11.2 Hz, 1H), 3.00 (s, 2H), 2.31 (s, 3H), 1.51 (s, 9H), 1.31 (s, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 177.05, 155.97, 137.01, 133.77, 130.86, 130.55, 127.48, 126.31, 84.03, 57.94, 45.93, 36.96, 28.05, 21.13, 20.10; **IR** (thin film): 3022, 2981, 2936, 1795, 1718, 1457, 1371, 1216, 1149, 1072, 847, 756 cm⁻¹; **HRMS** (ESI) *m/z* calc'd for C₁₇H₂₃O₄NNa [M + Na]⁺: 328.1519, found: 328.1523.

tert-Butyl 4-(4-bromobenzyl)-4-methyl-5-oxoisoxazolidine-2-carboxylate (3l): Prepared by the general procedure D from S2l (500 mg, 1.40 mmol) and methyl iodide (174 μ L, 2.80 mmol), and isolated as a white solid (400 mg, 77% yield). m.p. 102–104 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.47 – 7.43 (m, 2H), 7.07 – 7.04 (m, 2H), 4.00 (d, *J* = 11.2 Hz, 1H), 3.70 (d, *J* = 11.2 Hz, 1H)

1H), 2.94 (d, J = 14.0 Hz, 1H), 2.79 (d, J = 13.6 Hz, 1H), 1.51 (s, 9H), 1.28 (s, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 176.78, 155.93, 134.00, 131.85, 131.82, 121.65, 84.20, 57.50, 45.19, 40.33, 28.05, 20.90; **IR** (thin film): 3020, 2983, 2936, 1795, 1715, 1589, 1489, 1371, 1215, 1149, 1073, 1012, 844, 759 cm⁻¹; **HRMS** (ESI) *m/z* calc'd for C₁₇H₂₄O₅NBrNa [M+Na+MeOH]⁺ 424.0730, found: 424.0735.

tert-Butyl 4-(2-chlorobenzyl)-4-methyl-5-oxoisoxazolidine-2-carboxylate (3m): Prepared by the general

procedure D from **S2m** (500 mg, 1.60 mmol) and methyl iodide (199 μ L, 3.21 mmol), and isolated as a white solid (412 mg, 79% yield). **m.p.** 65–67 °C; ¹**H NMR** (400 MHz, CDCl₃): δ 7.40 – 7.36 (m, 1H), 7.31 – 7.27 (m, 1H), 7.24 – 7.20 (m, 2H), 3.92 – 3.86 (m, 2H), 3.17 (dd, J

= 45.9, 14.1 Hz, 2H), 1.50 (s, 9H), 1.36 (s, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 176.72, 155.93, 134.99, 133.44, 132.10, 129.83, 128.96, 127.27, 84.01, 57.75, 45.92, 37.31, 28.04, 21.63; **IR** (thin film): 3062, 2980, 2936, 1796, 1371, 1259, 1149, 1072, 847, 755 cm⁻¹; **HRMS** (ESI) *m/z* calc'd for C₁₆H₂₀O₄NClNa [M + Na]⁺: 348.0973, found: 348.0975.

tert-Butyl 4-methyl-4-(3-methylbenzyl)-5-oxoisoxazolidine-2-carboxylate (3n): Prepared by the general procedure D from S2n (400 mg, 1.37 mmol) and methyl iodide (171 μ L, 2.74 mmol), and isolated as a white solid (327 mg, 78% yield). m.p. 78–80 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.23 – 7.19 (m, 1H), 7.10 – 7.08 (m, 1H), 6.97 (d, *J* = 7.2 Hz, 2H), 4.05 (d, *J* = 11.2 Hz,

1H), 3.69 (d, J = 11.2 Hz, 1H), 2.95 (d, J = 14.0 Hz, 1H), 2.79 (d, J = 13.6 Hz, 1H), 2.34 (s, 3H), 1.51 (s, 9H), 1.27 (s, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 177.24, 156.04, 138.33, 134.99, 130.90, 128.54, 128.17, 127.22, 83.99, 57.68, 45.25, 40.77, 28.05, 21.40, 20.86; **IR** (thin film): 3023, 2981, 2936, 1795, 1717, 1458, 1371, 1216, 1149, 1072, 847, 756 cm⁻¹; **HRMS** (ESI) *m/z* calc'd for C₁₇H₂₃O₄NNa [M + Na]⁺: 328.1519, found: 328.1521.

tert-Butyl 4-(3-methoxybenzyl)-4-methyl-5-oxoisoxazolidine-2-carboxylate (30): Prepared by the general

procedure D from S20 (500 mg, 1.62 mmol) and methyl iodide (202 μ L, 3.25 mmol), and isolated as a colorless liquid (340 mg, 65% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.26 – 7.21 (m, 1H), 6.84-6.81 (m, 1H), 6.76 – 6.71 (m, 2H), 4.06 (d, *J* = 11.2 Hz, 1H), 3.80 (s, 3H),

3.70 (d, J = 11.2 Hz, 1H), 2.96 (d, J = 13.6 Hz, 1H), 2.80 (d, J = 13.6 Hz, 1H), 1.51 (s, 9H), 1.29 (s, 3H); ¹³C **NMR** (101 MHz, CDCl₃): δ 177.22, 159.74, 156.02, 136.56, 129.66, 122.48, 115.94, 112.76, 84.02, 57.65, 55.21, 45.26, 40.89, 28.05; **IR** (thin film): 3019, 2983, 2938, 1794, 1714, 1585, 1490, 1371, 1215, 1151, 1051, 846, 756 cm⁻¹; **HRMS** (ESI) *m/z* calc'd for C₁₇H₂₃O₅NNa [M + Na]⁺: 344.1468, found: 344.1469.

tert-Butyl 4-(3-fluorobenzyl)-4-methyl-5-oxoisoxazolidine-2-carboxylate (3p): Prepared by the general procedure D from S2p (500 mg, 1.69 mmol) and methyl iodide (211 μ L, 3.39 mmol), and isolated as a white solid (319 mg, 61% yield). m.p. 88–90 °C; ¹H NMR (400 MHz, CDCl₃):

δ 7.30 (td, J = 8.0, 6.0 Hz, 1H), 7.01-6.95 (m, 2H), 6.91-6.88 (m, 1H), 4.01 (d, J = 10.8 Hz, 1H), 3.72 (d, J = 10.8 Hz, 1H), 2.98 (d, J = 13.6 Hz, 1H), 2.83 (d, J = 13.6 Hz, 1H), 1.51 (s, 9H), 1.29 (s, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 176.80, 163.0 (d, J = 247.7 Hz), 155.96, 137.5 (d, J = 7.2 Hz), 130.21 (d, J = 8.2 Hz), 125.85 (d, J = 2.9 Hz), 117.0 (d, J = 21.3 Hz), 114.5 (d, J = 21.1 Hz), 84.19, 57.61, 45.22, 40.55, 40.54, 28.04, 20.88; ¹⁹F NMR (376 MHz, CDCl₃): δ -112.4 ; **IR** (thin film): 3021, 2983, 2937, 1795, 1715, 1589, 1488, 1450, 1371, 1215, 1149, 1078, 846, 754 cm⁻¹; **HRMS** (ESI) *m/z* calc'd for C₁₇H₂₄O₅NFNa [M + Na + MeOH]⁺: 364.1531, found: 364.1532.

tert-Butyl 4-methyl-5-oxo-4-(4-(4,4,5,5-tetramethyl-1,3-dioxolan-2-yl)benzyl)isoxazolidine-2-carboxylate

(3q): Prepared by the general procedure D from S2q (600 mg, 1.48 mmol) and methyl iodide (184 μ L, 2.96 mmol), and isolated as a colorless liquid (290 mg, 47% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.46 (d, *J* = 8.0 Hz, 2H), 7.18 (d, *J* = 8.4 Hz, 2H), 5.95 (s, 1H), 4.02 (d, *J* = 11.2 Hz, 1H), 3.66 (d, *J* = 11.2 Hz, 1H), 2.97 (d, *J* = 14.0 Hz, 1H), 2.83

 $(d, J = 14.0 \text{ Hz}, 1\text{H}), 1.52 (s, 9\text{H}), 1.32 (s, 6\text{H}), 1.27 (s, 6\text{H}), 1.26 (s, 3\text{H}); {}^{13}\text{C}$ NMR (101 MHz, CDCl₃) δ 177.13, 156.08, 138.88, 135.52, 130.17, 126.78, 99.65, 84.07, 82.78, 57.61, 45.25, 40.38, 28.06, 24.40, 22.19, 20.65; IR (thin film): 3018, 2982, 2936, 1795, 1715, 1457, 1371, 1216, 1151, 1074, 991, 846, 750 cm⁻¹; HRMS (ESI) *m/z* calc'd for C₂₃H₃₃O₆NNa [M + Na]⁺: 442.2200, found: 442.2202.

tert-Butyl 4-methyl-5-oxo-4-(4-(4,4,5,5-tetramethyl-1,3-dioxolan-2-yl)benzyl)isoxazolidine-2-carboxylate

(3r): Prepared by the general procedure D from S2r (600 mg, 1.3 mmol) and methyl iodide (163 μ L, 2.62 mmol), and isolated as a colorless liquid (306 mg, 50% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.43 (d, *J* = 8.4 Hz, 2H), 7.11 (d, *J* = 8.0 Hz, 2H), 4.01 (d,

J = 11.2 Hz, 1H), 3.68 (d, J = 11.2 Hz, 1H), 2.98 (d, J = 13.6 Hz, 1H), 2.82 (d, J = 13.6 Hz, 1H), 1.50 (s, 9H), 1.27 (s, 3H), 1.12 (s, 21H); ¹³**C** NMR (101 MHz, CDCl₃): δ 176.89, 155.86, 135.30, 132.31, 130.01, 122.82, 106.49, 91.29, 84.11, 57.53, 45.32, 40.86, 28.05, 20.94, 18.66, 11.30; **IR** (thin film): 2943, 2865, 2156, 1796, 1718, 1507, 1461, 1370, 1222, 1150, 1071, 848, 755 cm⁻¹; **HRMS** (ESI) *m/z* calc'd for C₂₈ H₄₅O₅NNaSi [M + Na + MeOH]⁺: 526.2959, found: 526.2961.

tert-Butyl 4-(4-(tert-butoxy)benzyl)-4-methyl-5-oxoisoxazolidine-2-carboxylate (3t): Prepared by the general

procedure D from S2t (700 mg, 2.0 mmol) and methyl iodide (249 μ L, 4.0 mmol), and isolated as a white solid (567 mg, 78% yield). **m.p.** 83–85 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.08 – 7.04 (m, 2H), 6.95 – 6.92 (m, 2H), 4.04 (d, *J* = 11.2 Hz, 1H), 3.68 (d, *J* = 10.8 Hz,

1H), 2.93 (d, J = 14.0 Hz, 1H), 2.78 (d, J = 14.0 Hz, 1H), 1.52 (s, 9H), 1.34 (s, 9H), 1.26 (s, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 177.25, 156.15, 154.85, 130.65, 129.71, 124.12, 84.04, 78.56, 57.63, 45.33, 40.11, 28.85, 28.06, 20.73; **IR** (thin film): 2979, 2935, 1795, 1717, 1508, 1456, 1368, 1215, 1153, 1071, 895, 754 cm⁻¹; **HRMS** (ESI) m/z calc'd for C₂₀H₂₉O₅NNa [M + Na]⁺: 386.1938, found: 386.1937.

tert-Butyl 4-(4-((tert-butyldimethylsilyl)oxy)phenethyl)-4-methyl-5-oxoisoxazolidine-2-carboxylate (3u):

```
TBSO O
V
N
BC
```

Prepared by the general procedure D from S2u (1.0 g, 2.37 mmol) and isolated as a colorless liquid (610 mg, 60% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.01 (d, J = 8.4 Hz, 2H), 6.75 (d, J = 8.4 Hz, 2H), 4.00 (d, J = 11.1 Hz, 1H), 3.80 (d, J = 11.1 Hz, 1H),

2.72 – 2.64 (m, 1H), 2.55 – 2.48 (m, 1H), 1.96 – 1.81 (m, 2H), 1.52 (s, 9H), 1.36 (s, 3H), 0.97 (s, 9H), 0.17 (s, 6H); ¹³C NMR (101 MHz, CDCl₃): δ 177.2, 156.2, 154.1, 133.1, 129.1, 120.2, 84.0, 58.8, 44.1, 37.7, 29.7, 28.1, 25.7, 20.6, 18.2, -4.5; **IR** (thin film): 2955, 2932, 2858, 1799, 1748, 1718, 1609, 1509, 1461, 1392, 1370, 1258, 1150, 1072, 916, 841, 781, 694 cm⁻¹; **HRMS (ESI)** *m/z* calc'd for C₂₃H₃₇O₅NNaSi [M + Na]⁺: 458.2333, found: 458.2332.

4-Benzyl-2,4-dimethylisoxazolidin-5-one (10): Prepared by the general procedure D from 2,4dimethylisoxazolidin-5-one⁵ (150.9 mg, 1.31 mmol) and benzyl bromide (310 μ L, 2.62 mmol), and isolated as a colorless oil (73 mg, 48% yield). Due to the slow nitrogen inversion,⁶ spectra was obtained as a mixture of two conformational isomers. ¹H NMR δ 7.37–7.26 (m, 3H), 7.18

(br, 2H), 3.62–3.10 (br, 2H), 2.89–2.84 (br, 3H), 2.80–2.56 (br, 2H), 1.39–1.20 (br, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 178.3, 136.4, 130.8, 130.6, 130.0, 128.5, 127.1, 67.7, 67.2, 48.6, 46.9, 41.5, 39.9, 21.1, 19.4; **IR** (thin film): 3028, 2970, 1770, 1496, 1455, 1248, 1106, 938, 842, 769, 701 cm⁻¹; **HRMS** (ESI) *m/z* calc'd for C₁₂H₁₅O₂NNa [M+Na]⁺: 228.0995, found: 228.0995.

tert-Butyl 5-oxo-3-phenylisoxazolidine-2-carboxylate (S3):² To a solution of benzaldehyde (1.0 mL, 9.8 mmol, 1 equiv), Meldrum's acid (1.4 g, 9.8 mmol, 1 equiv) and *N*-Boc hydroxylamine (1.3 g, 9.8 mmol, 1 equiv) in EtOAc (39 mL, 0.25 M) was added DABCO (110 mg, 0.98 mmol, 10 mol%). The solution was stirred at 23 °C for 20 h and sat aq. NH₄Cl was added. The aqueous phase was extracted with EtOAc (3x). The combined organic layers were washed with brine, dried over Na₂SO₄, filtered, and concentrated under reduced pressure to give the residue, which was purified by silica gel column chromatography to give S3 as a white solid (1.99 g, 77% yield). **m.p.** 56–58 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.41 – 7.31 (m, 5H), 5.54 (dd, *J* = 9.3, 4.1 Hz, 1H), 3.33 (dd, *J* = 17.7, 9.3 Hz, 1H), 2.85 (dd, *J* = 17.7, 4.1 Hz, 1H), 1.44 (s, 9H); ¹³C NMR (101 MHz, CDCl₃): δ 171.71, 155.27, 138.87, 129.08, 128.51, 125.75, 84.26, 62.99, 37.56, 27.98; **IR** (thin film): 3033, 2981, 2935, 1807, 1720, 1604, 1456, 1370, 1297, 1146, 962, 850, 761 cm⁻¹; **HRMS** (ESI) *m/z* calc'd for C₁₅H₂₁O₅NNa [M + Na + MeOH]⁺: 318.1312, found: 318.1316.

tert-Butyl 4,4-dibenzyl-5-oxo-3-phenylisoxazolidine-2-carboxylate (S4): Prepared by the general procedure D from S3 (320 mg, 1.21 mmol) and benzyl bromide (289 μ L, 2.43 mmol), and isolated as a white solid (151 mg, 34% yield). **m.p.** 55–57 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.38 – 7.27 (m, 9H), 7.25 – 7.20 (m, 5H), 7.00 – 6.97 (m, 2H), 5.15 (s, 1H), 3.31 (d, *J* = 14.4 Hz, 1H), 3.06 (d, *J* = 14.4 Hz, 1H), 2.73 (d, *J* = 14.4 Hz, 1H), 2.43 (d, *J* = 14.4 Hz, 1H), 1.25 (s, 9H); ¹³C NMR (101 MHz, CDCl₃): δ 173.34, 154.79, 135.46, 135.36, 134.64, 130.76, 130.42, 129.19, 129.04, 128.92, 128.84, 128.59, 128.44, 128.01, 127.57, 127.45, 127.10, 125.66, 83.78, 69.39, 54.48, 39.94, 39.18, 27.76; **IR** (thin film): 3030, 2934, 1793, 1716, 1605, 1455, 1370, 1237, 1147, 1078, 847, 754 cm⁻¹; **HRMS** (ESI) *m/z* calc'd for C₂₈H₃₀O₄N [M + H]⁺: 444.2169, found: 444.2165.

$$\begin{array}{c} \begin{array}{c} 0 \\ R^2 \\ R^1 \\ \end{array} \begin{array}{c} 0 \\ N \\ N \\ N \\ \end{array} \begin{array}{c} TFA \\ \hline \\ CH_2Cl_2 \\ 0 \text{ to } 23 \ ^\circ C \end{array} \begin{array}{c} 0 \\ R^2 \\ R^1 \\ \end{array} \begin{array}{c} 0 \\ R^1 \\ NH \end{array}$$

General procedure E:² To a solution of Boc-protected isoxazolidin-5-ones in CH_2Cl_2 (0.1 M) was added TFA (0.2 M) at 0 °C, and the resulting mixture was stirred at room temperature for 1 h. The reaction mixture was concentrated under reduced pressure. The resulting residue was diluted with EtOAc, followed by the addition of sat aq NaHCO₃. The aqueous phase was extracted with EtOAc (3x). The combined organic layers were washed with brine, dried over Na₂SO₄, filtered, and concentrated under reduced pressure to give the crude product, which was purified by silica gel column chromatography to afford the corresponding unprotected isoxazolidin-5-ones.

4-Benzyl-4-methylisoxazolidin-5-one (1a): Prepared by the general procedure E from **3a** (1.2 g, 4.12 mmol) and isolated as a white solid (669 mg, 85% yield). **m.p.** 54–56 °C; ¹**H** NMR (400 MHz, CDCl₃): δ 7.36 – 7.30 (m, 3H), 7.23 – 7.21 (m, 2H), 3.63 (d, J = 11.6 Hz, 1H), 3.38 (d, J = 8.4 Hz, 1H), 3.10 (d, J = 13.6 Hz, 1H), 2.77 (d, J = 13.6 Hz, 1H), 1.35 (s, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 181.57, 135.81, 129.43, 129.01, 127.67, 57.93, 45.43, 42.58, 22.35; **IR** (thin film): 3250, 3028, 2975, 2937, 1767, 1449, 1455, 1381, 1214, 1096, 967, 872, 757, 702 cm⁻¹; **HRMS** (ESI) *m/z* calc'd for C₁₁H₁₄O₂N [M + H]⁺: 192.1019, found: 192.1020.

4-Benzyl-4-hexylisoxazolidin-5-one (1b): Prepared by the general procedure E from **3b** (400 mg, 1.10 mmol) and isolated as a colorless liquid (202mg, 70% yield). ¹**H** NMR (400 MHz, CDCl₃): δ 7.35 – 7.28 (m, 3H), 7.23 – 7.21 (m, 2H), 5.67 (s, 1H), 3.52 (s, 2H), 3.06 (d, *J* = 13.6 Hz, 1H), 2.82 (d, *J* = 13.6 Hz, 1H), 1.72 – 1.67 (m, 2H), 1.51 – 1.45 (m, 1H), 1.36 – 1.23 (m, 7H), 0.89 (t, *J* = 6.8 Hz, 3H); ¹³**C** NMR (101 MHz, CDCl₃): δ 181.23, 135.87, 129.35, 129.10, 127.71, 55.53, 49.27, 41.48,

36.11, 31.54, 29.53, 24.22, 22.53, 14.02; **IR** (thin film): 3252, 3019, 2931, 2859, 1770, 1495, 1455, 1215, 1175, 1029, 871, 756 cm⁻¹; **HRMS** (ESI) *m/z* calc'd for C₁₆H₂₄O₂N [M + H]⁺: 262.1802, found: 262.1804.

4-Benzyl-4-phenethylisoxazolidin-5-one (1c): Prepared by the general procedure E from **3c** (300 mg, 0.78 mmol) and isolated as a white solid (163 mg, 74% yield). **m.p.** 70–72 °C; ¹**H NMR** (400 MHz, CDCl₃): δ 7.36 – 7.29 (m, 5H), 7.25 – 7.19 (m, 5H), 3.56 (br, 2H), 3.15 (d, *J* = 13.6 Hz, 1H), 2.89 (d, *J* = 13.6 Hz, 1H), 2.85 – 2.80 (m, 1H), 2.72-264 (m, 1H), 2.07-1.99 (m, 2H); ¹³**C NMR** (101 MHz, CDCl₃): δ 180.82, 140.70, 135.61, 129.34, 129.20, 128.65, 128.31, 127.86, 126.37, 55.66, 49.26, 41.50, 37.88, 30.59; **IR** (thin film): 3250, 3064, 2927, 2861, 1769, 1602, 1496, 1455, 1348, 1216, 1167, 1040, 872, 756 cm⁻¹; **HRMS** (ESI) *m/z* calc'd for C₁₈H₂₀O₂N [M + H]⁺: 282.1489, found: 282.1486.

4-Benzyl-4-(pent-4-en-1-yl)isoxazolidin-5-one (1g): Prepared by the general procedure E from **3g** (400 mg, 1.15 mmol) and isolated as a light brown liquid (227 mg, 80% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.36 - 7.31 (m, 3H), 7.26 - 7.21 (m, 2H), 5.79 (ddt, J = 16.9, 10.2, 6.7 Hz, 1H), 5.21 (br, 1H), δ 5.06 - 4.98 (m, 2H), 3.53 (s, 2H), 3.07 (d, J = 13.6 Hz, 1H), 2.82 (d, J = 13.6 Hz, 1H), 2.13 - 2.07 (m, 2H), 1.74 - 1.67 (m, 2H), 1.65 - 1.60 (m, 1H), 1.48 - 1.39 (m, 1H); ¹³**C NMR** (101 MHz, CDCl₃): δ 181.07, 137.63, 135.74, 129.32, 129.15, 127.79, 115.47, 55.51, 49.18, 41.51, 35.51, 33.75, 23.50; **IR** (thin film): 3251, 3077, 3027, 2942, 2862, 1769, 1641, 1496, 1455, 1216, 1175, 997, 916, 869, 757 cm⁻¹; **HRMS** (ESI) *m/z* calc'd for C₁₅H₂₀O₂N [M+H]⁺: 246.1489, found: 246.1490.

2-(4-Benzyl-5-oxoisoxazolidin-4-yl)acetonitrile (1h): Prepared by the general procedure E from **3h** (300 mg, 0.94 mmol) and isolated as a colorless liquid (118 mg, 58% yield). **m.p.** 75–77 °C; ¹**H NMR** (400 MHz, CDCl₃): δ 7.39-7.35 (m, 3H), 7.26 – 7.24 (m, 2H), 3.75-3.67 (m, 2H), 3.17 (d, *J* = 13.6 Hz, 1H), 3.05 (d, *J* = 14.0 Hz, 1H), 2.73 (s, 2H); ¹³**C NMR** (101 MHz, CDCl₃): δ 177.76, 133.66, 129.43, 128.46, 115.99, 55.61, 47.34, 40.37, 28.62; **IR** (thin film): 3253, 3020, 2929, 2253, 1778, 1669, 1496, 1455, 1215, 1178, 1030, 927, 869, 754 cm⁻¹; **HRMS** (ESI) *m/z* calc'd for C₁₂H₁₃O₂N₂ [M + H]⁺: 217.0972, found: 217.0974.

4-Benzyl-4-(prop-2-yn-1-yl)isoxazolidin-5-one (1i): Prepared by the general procedure E from **3i** (200 mg, 0.63 mmol) and isolated as a colorless liquid (68 mg, 50% yield). ¹**H** NMR (400 MHz, CDCl₃): δ 7.37-7.31 (m, 3H), 7.24-7.22 (m, 2H), 5.91 (s, 1H), 3.74 (d, *J* = 12.0 Hz, 1H), 3.64 (d, *J* = 12.0 Hz, 1H), 3.09 (d, *J* = 13.6 Hz, 1H), 2.99 (d, *J* = 13.6 Hz, 1H), 2.59 (qd, *J* = 16.9, 2.7 Hz, 2H), 2.16 (dd, *J* = 5.9, 3.2 Hz, 1H); ¹³**C** NMR (101 MHz, CDCl₃): δ 179.74, 134.98, 129.46, 129.17, 127.96, 78.76, 72.10, 55.58, 48.84, 40.98, 25.95; **IR** (thin film): 3292, 3029, 2944, 1773, 1495, 1455, 1176, 1082, 1031, 917, 869, 757 cm⁻¹; **HRMS** (ESI) *m/z* calc'd for C₁₃H₁₄O₂N [M + H]⁺: 216.1019, found: 216.1020.

4-Methyl-4-(4-methylbenzyl)isoxazolidin-5-one (1j): Prepared by the general procedure E from **3j** (400 mg, 1.31 mmol) and isolated as a white solid (209 mg, 78% yield). **m.p.** 40–42 °C; ¹**H NMR** (400 MHz, CDCl₃): δ 7.15-7.09 (m, 4H), 4.56 (br, 1H), 3.61 (d, J = 11.6 Hz, 1H), 3.39 (d, J = 11.6Hz, 1H), 3.06 (d, J = 13.6 Hz, 1H), 2.72 (d, J = 14.0 Hz, 1H), 2.33 (s, 3H), 1.34 (s, 3H); ¹³**C NMR** (101 MHz, CDCl₃): δ 181.71, 137.46, 132.63, 129.76, 129.73, 129.23, 57.97, 45.44, 42.37, 22.35, 21.06; **IR** (thin film): 3249, 3022, 2975, 2935, 1766, 1514, 1455, 1380, 1211, 1092, 997, 966, 872, 809, 757 cm⁻¹; **HRMS** (ESI) *m/z* calc'd for C₁₂H₁₆O₂N [M + H]⁺: 206.1176, found: 206.1177.

4-Methyl-4-(2-methylbenzyl)isoxazolidin-5-one (1k): Prepared by the general procedure E from **3k** (300 mg, 0.98 mmol) and isolated as a white solid (163 mg, 81% yield). **m.p.** 87–89 °C; ¹**H NMR** (400 MHz, CDCl₃): δ 7.20 – 7.16 (m, 4H), 3.59 (d, *J* = 11.6 Hz, 1H), 3.39 (d, *J* = 11.6 Hz, 1H), 3.11 (d, *J* = 14.4 Hz, 1H), 2.95 (d, *J* = 14.4 Hz, 1H), 2.35 (s, 3H), 1.38 (s, 3H); ¹³**C NMR** (101 MHz, CDCl₃): δ 181.71, 136.63, 134.28, 131.12, 130.02, 127.64, 126.53, 57.87, 45.57, 38.47, 22.37, 20.02; **IR** (thin film): 3248, 2973, 2935, 1767, 1607, 1455, 1380, 1247, 1100, 1092, 997, 872, 757 cm⁻¹; **HRMS** (ESI) *m/z* calc'd for C₁₂H₁₆O₂N [M + H]⁺: 206.1176, found: 206.1178. 4-(4-Bromobenzyl)-4-methylisoxazolidin-5-one (11): Prepared by the general procedure E from 31 (400 mg,

Br

1.08 mmol) and isolated as a white solid (244 mg, 84% yield). **m.p.** 73–75 °C; ¹**H** NMR (400 MHz, CDCl₃): δ 7.48 – 7.44 (m, 2H), 7.10 – 7.06 (m, 2H), 3.59 (d, *J* = 11.2 Hz, 1H), 3.36 (d, *J* = 11.2 Hz, 1H), 3.04 (d, *J* = 13.6 Hz, 1H), 2.76 (d, *J* = 14.0 Hz, 1H), 1.33 (s, 3H); ¹³C NMR

(101 MHz, CDCl₃): δ 180.93, 134.76, 132.06, 131.30, 121.71, 57.70, 45.29, 41.55, 21.78; **IR** (thin film): 3250, 3023, 2974, 2876, 1766, 1591, 1488, 1455, 1213, 1073, 1012, 802, 756 cm⁻¹; **HRMS** (ESI) *m/z* calc'd for C₁₁H₁₂O₂NBrNa [M+Na]⁺: 291.9944, found: 291.9944.

4-(2-Chlorobenzyl)-4-methylisoxazolidin-5-one (1m): Prepared by the general procedure E from **3m** (400 mg, 1.23 mmol) and isolated as a white solid (251 mg, 91% yield). **m.p.** 85–87 °C; ¹**H NMR** (400 MHz, CDCl₃): δ 7.42 – 7.38 (m, 1H), 7.32-7.28 (m, 1H), 7.25 – 7.22 (m, 2H), 3.66 (d, *J* = 11.6 Hz, 1H), 3.38 (d, *J* = 11.6 Hz, 1H), 3.21 – 3.12 (m, 2H), 1.40 (s, 3H); ¹³**C NMR** (101 MHz, CDCl₃): δ 181.12, 134.62, 133.88, 131.90, 129.93, 129.04, 127.45, 57.44, 45.86, 37.87, 21.90; **IR** (thin film): 3254, 3019, 2977, 2935, 2878, 1769, 1474, 1445, 1215, 1091, 1038, 872, 757 cm⁻¹; **HRMS** (ESI) *m/z* calc'd for C₁₁H₁₃O₂NCl [M + H]⁺: 226.0629, found: 226.0631.

4-Methyl-4-(3-methylbenzyl)isoxazolidin-5-one (1n): Prepared by the general procedure E from 3n (300 mg,

O NH

0.98 mmol) and isolated as a colorless liquid (159 mg, 79% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.22 (t, J = 7.4 Hz, 1H), 7.11 (d, J = 7.6 Hz, 1H), 7.02 (d, J = 7.2 Hz, 2H), 4.35 (br, 1H), 3.62 (d, J = 11.6 Hz, 1H), 3.39 (d, J = 11.6 Hz, 1H), 3.07 (d, J = 13.6 Hz, 1H), 2.72 (d, J = 13.6 Hz, H) $\lambda 25$ ($\lambda 20$) $\lambda 30$ (d, J = 11.6 Hz, 1H), $\lambda 30$ (d, J = 13.6 Hz, 1H), 2.72 (d, J = 13.6 Hz,

1H), 2.33 (s, 3H), 1.35 (s, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 181.71, 138.81, 135.73, 130.08, 128.91, 128.46, 126.37, 57.99, 45.41, 42.67, 22.40, 21.40; **IR** (thin film): 3248, 2972, 2935, 2874, 1766, 1607, 1488, 1455, 1380, 1247, 1203, 1099, 967, 871 cm⁻¹; **HRMS** (ESI) *m/z* calc'd for C₁₂H₁₆O₂N [M + H]⁺: 206.1176, found: 206.1176.

4-(3-Methoxybenzyl)-4-methylisoxazolidin-5-one (1o): Prepared by the general procedure E from 3o (300 mg, 0.93 mmol) and isolated as a colorless liquid (167 mg, 81% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.25 (t, J = 8.0 Hz, 1H), 6.85 (ddd, J = 8.3, 2.5, 0.7 Hz, 1H), 6.80 (d, J = 7.6 Hz, 1H), 6.75 (t, J = 2.0 Hz 1H), 3.79 (s, 3H), 3.63 (d, J = 11.6 Hz, 1H), 3.40 (d, J = 11.6 Hz, 1H), 3.08 (d, J = 13.6 Hz, 1H), 2.73 (d, J = 13.6 Hz, 1H), 1.36 (s, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 181.63, 159.95,

137.33, 130.05, 121.56, 115.13, 112.97, 58.01, 55.24, 45.43, 42.77, 22.42; **IR** (thin film): 3248, 3019, 2939, 2837, 1769, 1600, 1489, 1455, 1265, 1214, 1156, 1048, 872, 755 cm⁻¹; **HRMS** (ESI) m/z calc'd for C₁₂H₁₅O₃NNa [M + Na]⁺: 244.0944, found: 244.0946.

(s, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 180.97, 162.8 (d, J = 248.3 Hz), 138.2 (d, J = 7.2 Hz), 130.5 (d, J = 8.4

Hz), 125.3 (d, J = 2.9 Hz), 116.6 (d, J = 21.2 Hz), 114.6 (d, J = 21.0 Hz), 57.76, 45.35, 41.8 (d, J = 1.2 Hz), 30.93, 21.82; ¹⁹F NMR (376 MHz, CDCl₃): δ -112.02 ; **IR** (thin film): 3250, 2976, 2937, 1768, 1616, 1588, 1382, 1256, 1205, 1144, 1097, 945, 874, 793, 692 cm⁻¹; **HRMS** (ESI) *m/z* calc'd for C₁₁H₁₃O₂NF [M + H]⁺: 210.0925, found: 210.0926.

4-Methyl-4-(4-(4,4,5,5-tetramethyl-1,3-dioxolan-2-yl)benzyl)isoxazolidin-5-one (1q): Prepared by the general procedure E from **3q** (400 mg, 0.95 mmol) and isolated as a colorless liquid (106 mg, 35% yield). ¹**H NMR** (400 MHz, CDCl₃): δ 7.47 (d, J = 8.4 Hz, 2H), 7.21 (d, J = 8.0 Hz, 2H), 5.95 (s, 1H), 3.61 (d, J = 11.6 Hz, 1H), 3.35 (d, J = 10.4 Hz, 1H), 3.10 (d, J = 13.6 Hz, 1H), 2.78 (d, J = 13.6 Hz, 1H), 1.34 (s, 3H), 1.32 (s, 6H), 1.27 (d, J = 2.1 Hz, 6H); ¹³**C NMR** (101 MHz, CDCl₃): δ 181.51, 139.22, 136.23, 129.44, 127.06, 99.54, 82.83, 82.81, 75.06,

57.78, 45.40, 42.12, 24.86, 24.36, 22.19; **IR** (thin film): 3468, 3250, 2981, 2938, 2877, 1769, 1462, 1389, 1215, 1156, 1075, 994, 950, 882, 770 cm⁻¹; **HRMS** (ESI) m/z calc'd for C₁₈H₂₅O₄NNa [M+Na]⁺: 342.1676, found: 342.1678.

4-Methyl-4-(4-((triisopropylsilyl)ethynyl)benzyl)isoxazolidin-5-one (1r): Prepared by the general procedure E from **3r** (300 mg, 0.63 mmol) and isolated as a colorless liquid (118 mg, 50% yield); ¹H NMR (400 MHz, CDCl₃): δ 7.45 – 7.42 (m, 2H), 7.15 (d, J = 8.4 Hz, 2H), 3.60 (d, J= 11.6 Hz, 1H), 3.36 (d, J = 11.6 Hz, 1H), 3.08 (d, J = 13.6 Hz, 1H), 2.78 (d, J = 13.6 Hz, 1H), 1.34 (s, 3H), 1.13 (s, 21H); ¹³C NMR (101 MHz, CDCl₃): δ 181.15, 136.02, 132.55, 129.41, 123.00, 106.31, 91.56, 57.79, 45.42, 42.24, 21.98, 18.66, 11.30; **IR** (thin film): 3251, 3027, 2943, 2865, 2156, 1769, 1507, 1461, 1382, 1215, 1175, 997, 916, 882, 758 cm⁻¹; **HRMS** (ESI) *m/z* calc'd for C₂₂H₃₃O₂NNaSi [M+Na]⁺: 394.2173, found: 394.2170.

4-(4-Hydroxybenzyl)-4-methylisoxazolidin-5-one (15): Prepared by the general procedure E from 3t (500 mg, 1.37 mmol) and isolated as a white solid (256 mg, 90% yield). m.p. 138–140 °C; ¹H NMR (400 MHz, CD₃OD): δ 7.03 (d, J = 8.4 Hz, 2H), 6.74-6.71 (m, 2H), 3.60 (d, J = 11.2 Hz, 1H), 3.23 (d, J = 9.2 Hz, 1H), 2.93 (d, J = 13.6 Hz, 1H), 2.72 (d, J = 14.0 Hz, 1H), 1.25 (s, 3H); ¹³C

NMR (101 MHz, CD₃OD): δ 182.42, 156.35, 130.73, 126.77, 114.87, 56.65, 45.35, 39.98, 19.87; **IR** (thin film): 3414, 2965, 2932, 2841, 1768, 1455, 1215, 1091, 1016, 967, 873, 806, 755 cm⁻¹; **HRMS** (ESI) *m/z* calc'd for C₁₁H₁₃O₃NNa [M+Na]⁺: 230.0788, found: 230.0791.

4-(4-Hydroxyphenethyl)-4-methylisoxazolidin-5-one (18): In an oven-dried 25 mL round-bottom flask, a mixture of **3u** (500 mg, 1.14 mmol) and KHF₂ (223 mg, 2.85 mmol) in anhydrous MeOH (10.0 mL) was stirred at 23 °C for 2 h.⁷ The mixture was evaporated under reduced pressure to give crude sample of the free phenol,

which was dissolved in DCM (0.1 M). To this was added TFA at 0 °C, and the resulting mixture was stirred at 23 °C for 1 h. The reaction mixture was concentrated under reduced pressure. The resulting residue was diluted with EtOAc, followed by the addition of sat aq NaHCO₃. The aqueous phase was extracted with EtOAc (3x). The combined organic layers were washed with brine, dried over Na₂SO₄, filtered, and concentrated under reduced pressure to give the crude product, which was purified by silica gel column chromatography to afford the corresponding unprotected isoxazolidin-5-ones **18** as a white solid (140 mg, 55% yield). **m.p.** 120–122 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.06-7.03 (m, 2H), 6.78-6.74 (m, 2H), 3.56 (d, *J* = 11.2 Hz, 1H), 3.39 (d, *J* = 11.2 Hz, 1H), 2.73 (ddd, *J* = 13.6, 11.6, 5.4 Hz, 1H), 2.54 (ddd, *J* = 13.7, 11.6, 5.7 Hz, 1H), 2.04-1.84 (m, 2H), 1.37 (s, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 181.0, 154.0, 132.9, 115.4, 58.8, 43.8, 37.5, 29.7, 20.3; **IR** (KBr): 3246, 3030, 2978, 2936, 1767, 1558, 1517, 1455, 1383, 1237, 1106, 891, 829, 704 cm⁻¹; **HRMS (ESI)** *m/z* calc'd for C₁₂H₁₅O₃NNa [M + Na]⁺: 244.0944, found: 244.0945.

3-Phenylisoxazolidin-5-one (12): Prepared by the general procedure E from **S3** (300 mg, 1.14 mmol) and isolated as a colorless liquid (157 mg, 85% yield). ¹**H NMR** (400 MHz, CDCl₃) δ 7.42 – 7.38 (m, 5H), 5.02 (dd, *J* = 9.4, 7.4 Hz, 1H), 3.10 (dd, *J* = 17.1, 7.3 Hz, 1H), 2.95 (dd, *J* = 17.1, 9.5 Hz, 1H); ¹³**C NMR** (101 MHz, CDCl₃) δ 176.27, 135.92, 129.22, 129.14, 126.70, 62.55, 36.91; **IR** (thin film): 3236, 3033, 2927, 1784, 1495, 1455, 1411, 1310, 1181, 1105, 889, 757cm⁻¹; **HRMS** (ESI) *m/z* calc'd for C₉H₁₀O₂N [M+H]⁺: 164.0712, found: 164.0705.

3-Phenyl-3λ³-isoxazolidin-5-one-3-¹³C (¹³C-12): Prepared by the general procedure E from ¹³C-S3 (300 mg, 1.14 mmol) and isolated as a colorless liquid (155 mg, 83% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.44 - 7.36 (m, 5H), 5.00 (ddd, J = 144, 9.4, 7.4 Hz, 1H), 3.09 (ddd, J = 17.1, 7.3, 1.8 Hz, 1H), 2.94 (ddd, J = 17.1, 9.5, 4.0 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃): δ 66.5; IR (thin film): 3237, 3020, 2927, 1787, 1495, 1455, 1412, 1215, 1182, 1093, 889, 756 cm⁻¹.

4,4-Dibenzyl-3-phenylisoxazolidin-5-one (13): Prepared by the general procedure E from **S4** (90 mg, 0.20 mmol) and isolated as a colorless liquid (55 mg, 79% yield). **m.p.** 50–52 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.47–7.28 (m, 10H), 7.23–7.17 (m, 3H), 6.89 (d, J = 6.0 Hz, 2H), 4.81 (s, 1H), 3.43 (d, J = 14.4 Hz, 1H), 3.19 (d, J = 14.0 Hz, 1H), 2.83 (d, J = 14.4 Hz, 1H), 2.63 (d, J = 14.0 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃): δ 178.69, 135.97, 134.81, 134.23, 130.54, 130.27, 128.94, 128.86, 128.56, 128.19, 127.43, 127.30, 65.60, 53.76, 40.42, 39.33; **IR** (thin film): 3269, 3030, 2983, 2929, 1778, 1602, 1496, 1455, 1370, 1216, 1146, 1029, 850, 757 cm⁻¹; **HRMS** (ESI) *m/z* calc'd for C₂₃H₂₁O₂NNa [M + Na]⁺: 366.1465, found: 366.1465.

3. Initial ligand screening

Table S1. Screening of ligands.^a

^{*a*}**1a** (0.1 mmol). ^{*b*}Yields were determined by ¹H NMR analysis of the unpurified mixture.

4. Synthesis of cyclic β-amino acid

4-1. Scope of benzo-fused β-amino acid synthesis

General procedure F: To a flame-dried 10 mL test tube equipped with a magnetic stirring bar were added L4 (2.0 mg, 10 mol%) and Cu(OTf)•0.5C₆H₆ (90%, 1.4 mg, 5 mol%) in a glove box. After it was taken out from the glove box, HFIP (1.0 mL, 0.1 M) was added and the mixture was stirred for 10 minutes at an ambient temperature. Subsequently, the reaction was cooled with an ice bath, and substrate 1 (0.1 mmol) was added. After the bath was removed, the solution was stirred for the indicated time. The reaction mixture was quenched with aq EDTA and water. The aqueous layer was extracted with EtOAc (3x). The combined organic layers were concentrated under reduced pressure and the resulting residue was purified by silica gel column chromatography (0 to 20% MeOH in CHCl₃) to afford analytically pure products.

3-Methyl-1,2,3,4-tetrahydroquinoline-3-carboxylic acid (2a): Prepared by the general procedure F from **1a** (19.1 mg, 0.1 mmol) and isolated as a white solid (18.7 mg, 98% yield). **m.p.** 117–120 °C; ¹**H NMR** (400 MHz, CDCl₃): δ 7.01 (m, 2H), 6.68 (td, J = 7.2, 1.2 Hz, 1H), 6.54 (d, J = 7.6 Hz, 1H), 3.52 (dd, J = 11.6, 1.6 Hz, 1H), 3.20 – 3.10 (m, 2H), 2.68 (d, J = 16.4 Hz, 1H), 1.32 (s, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 181.50, 142.67, 129.75, 127.02, 119.57, 118.16, 114.55, 49.01, 40.27, 36.38, 22.58; **IR** (thin film): 3413, 3018, 2968, 2932, 1698, 1607, 1586, 1503, 1468, 1322, 1285, 1133, 1077, 916, 748 cm⁻¹; **HRMS** (ESI) m/z calc'd for C₁₁H₁₄O₂N [M + H]+: 192.1019, found: 192.1022.

1 mmol scale: To a flame-dried 25 mL flask equipped with a magnetic stirring bar were added L4 (11.8 mg, 6 mol%) and Cu(OTf)•0.5C₆H₆ (90%, 14.0 mg, 5 mol%) in a glove box. After it was taken out from the glove box, HFIP (5.0 mL, 0.2 M) was added and the mixture was stirred for 10 minutes at an ambient temperature. Subsequently, the reaction was cooled with an ice bath, and **1a** (191 mg, 1.0 mmol) was added. After the bath was removed, the solution was stirred for 12. The reaction mixture was quenched with aq EDTA and water. The aqueous layer was extracted with EtOAc (3x). The combined organic layers were concentrated under reduced pressure and the resulting residue was purified by silica gel column chromatography (0 to 20% MeOH in CHCl₃) to afford **2a** (178 mg, 93%).

3-Hexyl-1,2,3,4-tetrahydroquinoline-3-carboxylic acid (2b): Prepared by the general procedure F from 1b

(26.1 mg, 0.1 mmol) and isolated as a white solid (18.2 mg, 70% yield). **m.p.** 130–132 °C; ¹**H NMR** (400 MHz, CDCl₃): δ 7.00 – 6.97 (m, 2H), 6.67 (td, J = 7.4, 1.1 Hz, 1H), 6.52 (dd, J = 8.3, 1.1 Hz, 1H), 3.52 (dd, J = 11.6, 1.7 Hz, 1H), 3.17 (dd, J = 13.7, 9.1 Hz, 2H), 2.71 (d, J = 16.4 Hz, 1H), 1.66-1.60 (m, 2H), 1.32-1.24 (m, 8H), 0.87 (t, J = 6.8 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 179.84, 143.08, 129.74, 126.93, 119.72, 118.15, 114.51, 47.77, 44.26, 36.42,

35.21, 31.62, 29.62, 24.19, 22.57, 14.03; **IR** (thin film): 3424, 3012, 2931, 2848, 1691, 1603, 1508, 1465, 1244, 1218, 772 cm⁻¹; **HRMS** (ESI) *m/z* calc'd for C₁₆H₂₄O₂N [M + H]⁺: 262.1802, found: 262.1805.

3-Phenethyl-1,2,3,4-tetrahydroquinoline-3-carboxylic acid (2c): Prepared by the general procedure F from **1c** (28.1 mg, 0.1 mmol) and isolated as a white solid (20.2 mg, 72% yield). **m.p.** 143–145 °C; ¹**H NMR** (400 MHz, CDCl₃): δ 7.26-7.23 (m, 2H), 7.17-7.15 (m, 3H), 7.00 (t, J = 7.2 Hz, 2H), 6.68 (td, J = 7.5, 1.1 Hz, 1H), 6.53 (dd, J = 8.4, 1.1 Hz, 1H), 3.57 (dd, J = 11.6, 1.6 Hz, 1H), 3.25 (t, J = 12.7 Hz, 2H), 2.79 (d, J = 16.3 Hz, 1H), 2.71-2.61 (m, 2H), 2.04-1.89 (m, 2H); ¹³**C NMR** (101 MHz, CDCl₃): δ 179.70, 143.03, 141.46, 129.77, 128.41, 128.34, 127.04, 126.03, 119.39, 118.22, 114.52, 47.67, 44.31, 37.92, 35.27, 30.72. **IR** (thin film): 3403, 3057, 3024, 2927, 2855, 1701, 1606, 1497, 1452, 1280, 1241, 1219, 771 cm⁻¹; **HRMS** (ESI) *m/z* calc'd for C₁₈H₂₀O₂N [M + H]⁺: 282.1489, found: 282.1490.

3-(Cyclohexylmethyl)-1,2,3,4-tetrahydroquinoline-3-carboxylic acid (2d): Prepared by the general procedure F from **1d** (27.3 mg, 0.1 mmol) and isolated as a white solid (18.5 mg, 68% yield). **m.p.** 158– 160 °C; ¹**H NMR** (400 MHz, CDCl₃): δ 6.97 (t, J = 6.9 Hz, 2H), 6.66 (td, J = 7.4, 1.1 Hz, 1H), 6.50 (dd, J = 8.4, 1.0 Hz, 1H), 3.50 (dd, J = 11.5, 1.7 Hz, 1H), 3.16 (dd, J = 21.3, 13.9 Hz, 2H), 2.69 (d, J = 16.3 Hz, 1H), 1.70-1.45 (m, 8H), 1.26-1.09 (m, 3H), .98-0.90 (m, 2H); ¹³**C NMR** (101 MHz, CDCl₃): δ 181.25, 143.17, 129.67, 126.87, 119.80, 118.08, 114.44, 48.65, 43.72, 43.65, 35.54, 34.53, 34.14, 33.87, 26.32, 26.30, 26.17; **IR** (thin film): 3412, 2922, 2850, 1698, 1607, 1503, 1447, 1282, 1218, 771 cm⁻¹; **HRMS** (ESI) *m/z* calc'd for C₁₇H₂₄O₂N [M + H]⁺: 274.1802, found: 274.1803.

3-(3-(Benzyloxy)-3-oxopropyl)-1,2,3,4-tetrahydroquinoline-3-carboxylic acid (2e): Prepared by the general procedure F from **1e** (33.9 mg, 0.1 mmol) and isolated as a colorless liquid (27.1 mg, 80% yield). **H NMR** (400 MHz, CDCl₃): δ 7.38 – 7.30 (m, 5H), 7.00 – 6.95 (m, 2H), 6.66 (td, J = 7.4, 1.1 Hz, 1H), 6.51 – 6.49 (m, 1H), 5.08 (s, 2H), 3.50 (dd, J = 11.7, 1.4 Hz, 1H), 3.19 – 3.15 (m, 2H), 2.70 (d, J = 16.0 Hz, 1H), 2.54 – 2.41 (m, 2H), 2.09 – 1.95 (m, 2H); ¹³C NMR (101 MHz, CDCl₃): δ 179.75, 172.77, 142.86, 135.76, 129.78, 128.59, 128.37, 128.31, 127.12, 118.94, 118.23, 114.55, 66.50, 47.34, 43.49, 34.87, 30.39, 29.43. Spectroscopic data matched those reported.²

3-(2-(Phenylsulfonyl)ethyl)-1,2,3,4-tetrahydroquinoline-3-carboxylic acid (2f): Prepared by the general procedure F from **1f** (34.5 mg, 0.1 mmol) and isolated as a white solid (33.8 mg, 98% yield). ¹H **NMR** (400 MHz, CDCl₃) δ 7.88–7.86 (m, 2H), 7.66–7.62 (m, 1H), 7.56-7.52 (m, 2H), 7.03–6.96 (m, 2H), 6.78 (t, *J* = 7.4 Hz, 1H), 6.64 (d, *J* = 8.0 Hz, 1H), 3.50 (d, *J* = 12.0 Hz, 1H), 3.23 – 3.08 (m, 4H), 2.66 (d, *J* = 16.4 Hz, 1H), 2.11–1.98 (m, 2H); ¹³C **NMR** (101 MHz, CDCl₃): δ

177.27, 138.59, 133.93, 129.79, 129.40, 128.01, 127.51, 120.49, 119.88, 116.25, 77.33, 77.01, 76.70, 51.69, 47.09, 42.86, 34.82, 28.09. Spectroscopic data matched those reported.²

3-(Pent-4-en-1-yl)-1,2,3,4-tetrahydroquinoline-3-carboxylic acid (2g): Prepared by the general procedure F

from **1g** (24.5 mg, 0.1 mmol) and isolated as a white solid (18.1 mg, 74% yield); **m.p.** 120–122 °C; ¹**H NMR** (400 MHz, CDCl₃): δ 7.00 – 6.97 (m, 2H), 6.67 (td, J = 7.4, 1.1 Hz, 1H), 6.52 (dd, J = 8.3, 1.0 Hz, 1H), 5.77 (ddt, J = 16.9, 10.2, 6.6 Hz, 1H), 5.02 – 4.93 (m, 2H), 3.51 (dd, J = 11.6, 1.6 Hz, 1H), 3.17 (t, J = 12.4 Hz, 2H), 2.70 (d, J = 16.3 Hz, 1H), 2.05 (q, J = 7.2 Hz,

2H), 1.72 – 1.57 (m, 2H), 1.50 – 1.42 (m, 2H); ¹³**C NMR** (101 MHz, CDCl₃): δ 180.66, 143.13, 138.18, 129.74, 126.95, 119.55, 118.06, 114.90, 114.46, 47.70, 44.25, 35.69, 35.06, 33.89, 23.50; **IR** (thin film): 3422, 3015, 2938, 1698, 1606, 1502, 1266, 1243, 991, 911, 772, 748 cm⁻¹; **HRMS** (ESI) *m/z* calc'd for C₁₅H₂₀O₂N [M + H]⁺: 246.1489, found: 246.1490.

3-(Cyanomethyl)-1,2,3,4-tetrahydroquinoline-3-carboxylic acid (2h): Prepared by the general procedure F from **1h** (21.6 mg, 0.1 mmol) and isolated as a colorless liquid (12.5 mg, 58% yield); ¹H NMR (600 MHz, CD₃OD): δ 6.96 – 6.91 (m, 2H), 6.59 – 6.55 (m, 2H), 3.45 (d, *J* = 11.4 Hz, 1H), 3.34 (s, 1H), 3.24 (d, *J* = 16.2 Hz, 1H), 2.76 (dd, *J* = 16.6, 2.2 Hz, 1H), 2.73 – 2.66 (m, 2H); ¹³C NMR (151 MHz, CD₃OD): δ 176.53, 144.31, 130.81, 128.34, 119.14, 118.40, 118.13, 115.25, 47.39, 43.18, 35.84, 22.50; **IR** (thin film): 3406, 3019, 2962, 2928, 2854, 2251, 1715, 1607, 1498, 1284, 1219, 1096,

1032, 855, 770 cm⁻¹; **HRMS** (ESI) m/z calc'd for $C_{12}H_{13}O_2N_2$ [M + H]⁺: 217.0972, found: 217.0973.

5-Methylene-1',4,4',5-tetrahydro-2H,2'H-spiro[furan-3,3'-quinolin]-2-one (5): Prepared by the general procedure F from 1i (21.6 mg, 0.1 mmol) and isolated as a colorless liquid (15.0 mg, 70% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.04 (t, *J* = 7.6 Hz, 1H), 6.99 (d, *J* = 7.2 Hz, 1H), 6.68 (td, *J* = 7.4, 1.1 Hz, 1H), 6.56 (d, *J* = 8.0 Hz, 1H), 4.82 (dd, *J* = 4.5, 2.1 Hz, 1H), 4.34 (dd, *J* = 4.4, 2.0 Hz, 1H), 3.44 (d, *J* = 11.6 Hz, 1H), 3.23 (d, *J* = 15.6 Hz, 1H), 3.17 (dd, *J* = 11.4, 2.8 Hz, 1H), 2.91 (dt, *J* = 16.6, 1.7 Hz, 1H), 2.67 (dd, *J* = 15.9, 2.7 Hz, 1H), 2.61 (dd, *J* = 16.6, 0.8 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃): δ 177.75, 153.47, 142.44, 131.50, 130.14, 127.64, 117.96, 117.26, 114.24, 89.94, 47.04, 41.78, 35.98, 35.41; IR (thin film): 3405, 2921, 2848, 1786, 1671, 1607, 1497, 1361, 1294, 1165, 1013, 772 cm⁻¹; HRMS (ESI) *m/z* calc'd for C₁₃H₁₄O₂N [M + H]⁺: 216.1019, found: 216.1021.

3,7-Dimethyl-1,2,3,4-tetrahydroquinoline-3-carboxylic acid (2j): Prepared by the general procedure F from **1** (20.5 mg, 0.1 mmol) and isolated as a white solid (18.4 mg, 90% yield). **m.p.** 195–197 °C; **1 H NMR** (400 MHz, CDCl₃): δ 6.88 (d, J = 7.6 Hz, 1H), 6.52 (dd, J = 7.6, 0.8 Hz, 1H), 6.38 (s, 1H), 3.49 (dd, J = 11.5, 1.7 Hz, 1H), 3.16-3.08 (m, 2H), 2.65 (d, J = 16.4 Hz, 1H), 2.22 (s,

3H), 1.31 (s, 3H); ¹³**C NMR** (101 MHz, CDCl₃): δ 180.52, 142.32, 136.78, 129.59, 119.47, 116.79, 115.23, 49.06, 40.28, 36.21, 22.67, 21.11; **IR** (thin film): 3415, 2962, 2922, 1688, 1618, 1580, 1498, 1242, 1078, 917, 791, 745 cm⁻¹; **HRMS** (ESI) *m/z* calc'd for C₁₂H₁₆O₂N [M + H]⁺: 206.1176, found: 206.1175.

3,5-Dimethyl-1,2,3,4-tetrahydroquinoline-3-carboxylic acid (2k): Prepared by the general procedure F from

1k (20.5 mg, 0.1 mmol) and isolated as a white solid (16.6 mg, 81% yield). **m.p.** 155–157 °C; **¹H NMR** (400 MHz, CDCl₃): δ 6.93 (t, J = 7.7 Hz, 1H), 6.62 (d, J = 7.2 Hz, 1H), 6.47 (d, J = 8.0 Hz, 1H), 3.48 (dd, J = 11.2, 1.6 Hz, 1H), 3.10-3.05 (m, 2H), 2.52 (d, J = 17.2 Hz, 1H), 2.19

(s, 3H), 1.36 (s, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 179.42, 142.23, 137.52, 126.52, 120.79, 118.97, 113.08, 48.76, 40.44, 34.34, 23.29, 19.33; **IR** (thin film): 3404, 2965, 2927, 2873, 1701, 1590, 1482, 1468, 1282, 1230, 1091, 879, 769 cm⁻¹; **HRMS** (ESI) *m/z* calc'd for C₁₂H₁₆O₂N [M + H]⁺: 206.1176, found: 206.1179.

7-Bromo-3-methyl-1,2,3,4-tetrahydroquinoline-3-carboxylic acid (21): Prepared by the general procedure F

from 11 (26.9 mg, 0.1 mmol) and isolated as a white solid (18.8 mg, 70% yield). m.p. 208– 210 °C; ¹H NMR (400 MHz, CD₃OD): δ 6.78 (d, J = 8.0 Hz, 1H), 6.63 – 6.58 (m, 2H), 3.44 (dd, J = 11.6, 1.5 Hz, 1H), 3.06 – 3.01 (m, 2H), 2.55 (d, J = 16.0 Hz, 1H), 1.23 (s, 3H); ¹³C

NMR (101 MHz, CD₃OD): δ 182.27, 149.24, 134.45, 123.50, 122.46, 121.81, 119.38, 43.29, 39.84, 25.17; **IR** (thin film): 3412, 2968, 2929, 1698, 1598, 1494, 1283, 1238, 1068, 902, 861, 841, 789 cm⁻¹; **HRMS** (ESI) *m/z* calc'd for C₁₁H₁₃O₂NBr [M+H]⁺: 270.0124, found: 270.0127.

5-Chloro-3-methyl-1,2,3,4-tetrahydroquinoline-3-carboxylic acid (2m): Prepared by the general procedure F from **1m** (22.5 mg, 0.1 mmol) and isolated as a white solid (9.2 mg, 40% yield). **m.p.** 170– **172** °C; **¹H NMR** (400 MHz, CDCl₃): δ 6.92 (t, *J* = 8.0 Hz, 1H), 6.75 (dd, *J* = 7.9, 1.2 Hz, 1H), 6.44 (dd, *J* = 8.0, 1.2 Hz, 1H), 3.51 (dd, *J* = 11.6, 1.6 Hz, 1H), 3.27 (dd, *J* = 17.2, 1.6 Hz, 1H),

3.09 (dd, J = 11.2, 0.8 Hz, 1H), 2.64 (d, J = 17.2 Hz, 1H), 1.35 (s, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 179.75, 144.39, 134.97, 127.37, 118.63, 117.67, 112.77, 48.65, 40.45, 34.19, 22.84; **IR** (thin film): 3408, 2960, 2917, 2849, 1693, 1603, 1494, 1463, 1260, 1089, 1028, 772 cm⁻¹; **HRMS** (ESI) *m/z* calc'd for C₁₁H₁₃O₂NCl [M + H]⁺: 226.0629, found: 226.0629.

3,6-Dimethyl-1,2,3,4-tetrahydroquinoline-3-carboxylic acid (2n): Prepared by the general procedure F from

In (20.5 mg, 0.1 mmol) and isolated as a white solid (19.0 mg, 93% yield).
 The ratio of C6-isomer and C8-isomer was 65:35. m.p. 170–172 °C; ¹H
 NMR (400 MHz, CDCl₃) for the mixture of isomer: δ 6.89 (t, J = 8.0 Hz,

0.77H), 6.82 (d, J = 7.2 Hz, 1.29H), 6.61 (t, J = 7.4 Hz, 0.36 H), 6.48 (d, J = 8.4 Hz, 0.65H), 3.57 (dd, J = 11.6, 1.7 Hz, 0.35H), 3.48 (dd, J = 11.5, 1.7 Hz, 0.65H), 3.15-3.06 (m, 2H), 2.70 (d, J = 16.4 Hz, 0.35H), 2.65 (d, J = 16.4 Hz, 0.66H), 2.21 (s, 1.95 H), 2.09 (s, 1.05H), 1.32 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) for the mixture of isomer: δ 181.26, 180.98, 140.73, 140.04, 130.16, 128.13, 127.84, 127.66, 127.59, 121.71, 119.91, 118.94, 117.55, 114.95, 49.27, 49.17, 40.33, 40.02, 36.64, 36.48, 22.72, 22.47, 20.45, 17.11; **IR** (thin film): 3418, 2965, 2930, 1697, 1598, 1511, 1469, 1288, 1252, 1218, 897, 810, 754 cm⁻¹; **HRMS** (ESI) *m/z* calc'd for C₁₂H₁₆O₂N [M + H]⁺: 206.1176, found: 206.1179.

6-Methoxy-3-methyl-1,2,3,4-tetrahydroquinoline-3-carboxylic acid (20a): Prepared by the general procedure

F from **1o** (22.1 mg, 0.1 mmol) and isolated as a white solid (18.3 mg, 85% yield). The ratio of C6-isomer and C8-isomer was 40:60. **m.p.** 130–132 °C; ¹**H NMR** (400 MHz, CDCl₃): δ 6.64 (dd, *J* = 8.6, 2.8 Hz, 1H), 6.57 (dd, *J* = 10.3, 5.7 Hz, 2H), 3.73 (s, 3H), 3.46 (dd, *J* =

11.5, 1.8 Hz, 1H), 3.15 (d, J = 16.6 Hz, 1H), 3.07 (d, J = 11.5 Hz, 1H), 2.69 (d, J = 16.8 Hz, 1H), 1.32 (s, 3H); ¹³**C NMR** (101 MHz, CDCl₃): δ 179.40, 153.20, 135.87, 121.73, 116.55, 114.57, 113.45, 55.68, 49.64, 40.16, 37.06, 22.93; **IR** (thin film): 3394, 2932, 1702, 1506, 1464, 1238, 1194, 1037, 808, 755 cm⁻¹; **HRMS** (ESI) *m/z* calc'd for C₁₂H₁₆O₃N [M + H]⁺: 222.1125, found: 222.1127.

8-Methoxy-3-methyl-1,2,3,4-tetrahydroquinoline-3-carboxylic acid (2ob): m.p. 150–152 °C; ¹H NMR (400

MHz, CDCl₃): δ 6.66 – 6.61 (m, 3H), 3.82 (s, 3H), 3.54 (dd, J = 11.4, 1.6 Hz, 1H), 3.18 (dd, J = 16.5, 1.4 Hz, 1H), 3.13 (dd, J = 11.4, 0.8 Hz, 1H), 2.70 (d, J = 16.5 Hz, 1H), 1.32 (s, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 180.74, 146.56, 132.33, 121.70, 119.83, 117.40, 107.53, 55.38,

48.61, 40.10, 36.22, 22.68; **IR** (thin film): 3438, 2936, 1698, 1587, 1503, 1452, 1302, 1250, 1090, 943, 760, 728 cm⁻¹; **HRMS** (ESI) *m/z* calc'd for C₁₂H₁₆O₃N [M + H]⁺: 222.1125, found: 222.1128.

6-Fluoro-3-methyl-1,2,3,4-tetrahydroquinoline-3-carboxylic acid (2p): Prepared by the general procedure F

from 1p (20.9 mg, 0.1 mmol) and isolated as a white solid (17.3 mg, 83% yield). The ratio of C6-isomer and C8-isomer was 78:22. m.p. 128–130 °C; ¹H NMR (400 MHz, CDCl₃) for the mixture of isomer: δ 6.83 – 6.76 (m,

0.41H), 6.74 – 6.70 (m, 1.55H), 6.57 (dt, J = 7.8, 3.9 Hz, 0.20H), 6.48 (dd, J = 9.5, 4.8 Hz, 0.79H), 3.57 (dd, J = 11.5, 1.6 Hz, 0.20H), 3.50 (dd, J = 11.6, 1.8 Hz, 0.80H), 3.22-3.07 (m, 2H), 2.71-2.63 (m, 1H), 1.33 (s, 0.60H), 1.32 (s, 2.42H); ¹³**C NMR** (101 MHz, CDCl₃) for the mixture of isomer: δ 180.97, 180.82, 156.1 (d, J = 237.0 Hz), 138.7 (d, J = 1.4 Hz), 124.69 (d, J = 2.9 Hz), 121.60 (d, J = 3.7 Hz, 0.2), 121.15 (d, J = 7.1 Hz), 116.73 (d, J = 7.3 Hz), 115.74 (d, J = 22.1 Hz), 115.54 (d, J = 7.6 Hz), 113.74 (d, J = 22.6 Hz), 112.47 (d, J = 17.9 Hz), 49.33, 48.35, 40.19, 36.41, 35.85 (d, J = 2.8 Hz), 22.60, 22.50; ¹⁹F **NMR** (376 MHz, CDCl₃): δ -126.6, -137.88; for the mixture of isomers; **IR** (thin film): 3402, 2965, 2930, 1702, 1505, 1469, 1239, 1185, 900, 807, 762 cm⁻¹; **HRMS** (ESI) *m/z* calc'd for C₁₁H₁₃O₂NF [M + H]⁺: 210.0925, found: 210.0926.

3-Methyl-7-(4,4,5,5-tetramethyl-1,3-dioxolan-2-yl)-1,2,3,4-tetrahydroquinoline-3-carboxylic acid (2q):

Prepared by the general procedure F from **1q** (31.9 mg, 0.1 mmol) and isolated as a white solid (17.5 mg, 55% yield). **m.p.** 148–150 °C; ¹**H NMR** (400 MHz, CDCl₃): δ 6.97 (d, J = 7.6 Hz, 1H), 6.81 (dd, J = 7.8, 1.5 Hz, 1H), 6.67 (d, J = 1.4 Hz, 1H), 5.85 (s, 1H), 3.49 (dd, J = 11.5, 1.6 Hz, 1H), 3.15 (d, J = 16.4, 1H), 3.11 (d, J = 11.2, 1H),

2.67 (d, *J* = 16.4 Hz, 1H), 1.30 (s, 3H), 1.29 (s, 6H), 1.26 (s, 6H); ¹³C NMR (101 MHz, CDCl₃): δ 180.03, 142.43, 138.59, 129.71, 120.15, 116.36, 112.36, 99.83, 82.51, 49.03, 40.09, 36.42, 24.40, 22.53, 22.18; **IR** (thin film): 3401, 2977, 2929, 2854, 1702, 1618, 1587, 1495, 1388, 1288, 1157, 1075, 988, 879, 756 cm⁻¹; **HRMS** (ESI) *m/z* calc'd for C₁₈H₂₆O₄N [M + H]⁺: 320.1856, found: 320.1855.

3-Methyl-7-((triisopropylsilyl)ethynyl)-1,2,3,4-tetrahydroquinoline-3-carboxylic acid (2r): Prepared by the

general procedure F from 1r (37.1 mg, 0.1 mmol) and isolated as a white solid (16.6 mg, 45% Yield); **m.p.** 78–80 °C; ¹**H NMR** (400 MHz, CDCl₃): δ 6.90 (d, J = 7.6 Hz, 1H), 6.79 (dd, J = 7.7, 1.5 Hz, 1H), 6.65 (d, J = 1.4 Hz, 1H), 3.51 (dd, J = 11.6, 1.5 Hz, 1H), 3.15 (d, J = 16.4, 2H), 3.10 (d, J = 11.6, 2H), 2.65 (d, J = 16.4 Hz, 1H), 1.30 (s, 3H), 1.10 (s, 21H); ¹³C NMR (101 MHz, CDCl₃): δ 180.11, 142.42, 129.55, 121.94, 121.85, 120.18, 117.53, 107.44, 89.07, 48.97, 40.11, 36.44, 31.58, 22.65, 22.51, 18.66, 14.11, 11.32; **IR** (thin film): 3412, 2941, 2864, 2153, 1698, 1608, 1568, 1463, 1219, 996, 882, 772 cm⁻¹; **HRMS** (ESI) m/z calc'd for C₂₂H₃₄O₂NSi [M + H]⁺: 372.2353, found: 372.2354.

1,2,3,4-Tetrahydrobenzo[g]quinoline-3-carboxylic acid (2s): Prepared by the general procedure F from 1s (22.7 mg, 0.1 mmol) and isolated as a light yellow solid (15.8 mg, 70% yield); ¹H NMR $(400 \text{ MHz}, \text{CDCl}_3)$: δ 7.76 – 7.69 (m, 2H), 7.43 – 7.40 (m, 2H), 7.23 (brd, J = 8.3 Hz, 1H), 7.15 (brd, J = 8.4 Hz, 1H), 3.76 - 3.72 (m, 1H), 3.60-3.57 (m, 1H), 3.25 - 3.14 (m, 2H), 3.08-3.03 (m, 1H); ¹³C NMR (101 MHz, CDCl₃): δ 178.14, 137.88, 133.09, 128.56, 128.15, 125.32, 125.13,

123.36, 119.55, 118.11, 114.19, 43.69, 37.91, 29.78. Spectroscopic data matched those reported.²

2-(1,2,3,4-Tetrahydroquinolin-2-yl)acetic acid (7): Prepared by the general procedure F from 6 (19.1 mg, 0.1 mmol) and isolated as a brown oil (11.4 mg, 60% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.02–6.97 (m, 2H), 6.69 (td, *J* = 7.4, 1.0 Hz, 1H), 6.58 (d, *J* = 7.7 Hz, 1H), 3.77-3.71 (m, 1H), ЭΗ 2.90–2.71 (m, 2H), 2.62 (d, J = 5.8 Hz, 2H), 2.04 –1.97 (m, 1H), 1.84–1.74 (m, 1H); ¹³C NMR (101 MHz, CDCl₃): 8 175.70, 142.48, 129.39, 127.01, 121.91, 118.94, 115.77, 48.04, 39.92, 27.55, 25.44. Spectroscopic data matched those reported.²

3-Benzyl-2-phenyl-1,2,3,4-tetrahydroquinoline-3-carboxylic acid (14): Prepared by the general procedure F from 13 (34.3 mg, 0.1 mmol) and isolated as a white solid (10.2 mg, 30% yield). The relative configuration was determined by NOE analyses. m.p. 213-215 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.24 – 7.21 (m, 8H), 7.14 (t, J = 7.3 Hz, 1H), 7.05 (d, J = 7.4 Hz, 1H), 7.03- 6.98 (m, 2H), 6.77 (td, J = 7.4, 1.0 Hz, 1H), 6.65 – 6.63 (m, 1H), 4.64 (d, J = 1.4 Hz, 1H), 3.26 (d, J = 13.3 Hz, 1H), 3.02 (d, J = 13.4 Hz, 1H), 2.93 (d, J = 17.0 Hz, 1H), 2.59 (d, J = 16.2 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃): δ 178.82, 142.73, 142.41, 136.84, 130.31, 130.13, 128.30, 128.22, 127.80, 127.56, 127.43, 126.80, 117.84, 117.61, 113.24, 60.89, 49.93, 41.32, 26.62; IR (thin film): 3439, 3019, 2927, 1706, 1608, 1493, 1215,

3-Methyl-8-oxo-1-azaspiro[4.5]deca-6,9-dien-1-ium-3-carboxylate (16): Prepared by the general procedure F from 15 (20.7 mg, 0.1 mmol) and isolated as a light pink powder (19.6 mg, 95% yield); Two .o[⊖] isomers were obtained and the ratio of spiro-isomer and six membered-isomer was 85:15. m.p. 180–182 °C; ¹**H NMR** (400 MHz, D₂O): δ 7.22 (dd, J = 10.0, 3.1 Hz, 1H), 7.16 (dd, J = 10.0, 3.1 3.1 Hz, 1H, 6.50 - 6.44 (m, 2H), 4.11 (d, J = 12.4 Hz, 1H), 3.45 (d, J = 12.0 Hz, 1H), 2.73 (d, J = 14.4 Hz, 1H),

928, 771 cm⁻¹; **HRMS** (ESI) m/z calc'd for C₂₃H₂₁O₂NNa [M + Na]⁺: 366.1465, found: 366.1470.

2.32 (d, J = 14.4 Hz, 1H), 1.47 (s, 3H); ¹³C NMR (151 MHz, DMSO- d_6): δ 185.30, 178.25, 154.45, 154.06, 125.06, 124.65, 61.00, 56.78, 48.59, 46.62, 39.52, 24.06; **IR** (KBr): v 3445, 2878, 2757, 1686, 1638, 1548, 1393, 1264, 855 cm-1; **HRMS** (ESI) m/z calc'd for C₁₁H₁₄O₃N [M + H]⁺: 208.0968, found: 208.0971.

7-Hydroxy-3-methyl-1,2,3,4-tetrahydroquinoline-3-carboxylic acid (17): m.p. 148–150 °C; ¹H NMR (600 MHz, CD₃OD): δ 6.71 (d, J = 8.4 Hz, 1H), 6.04 (dd, J = 8.4, 2.3 Hz, 1H), 5.99 (d, J = 1.8 Hz, 1H), 3.39 (d, J = 11.4 Hz, 1H), 3.01 (dd, J = 13.3, 8.2 Hz, 2H), 2.51 (d, J = 15.6 Hz, 1H), 1.22 (s, 3H); ¹³C NMR (151 MHz, CD₃OD): δ 180.46, 157.22, 145.83, 131.25, 112.29,

105.68, 101.58, 50.04, 41.32, 37.27, 22.60; **IR** (thin film): 3411, 2965, 2932, 2841, 1704, 1618, 1495, 1290, 1260, 1097, 1022, 958, 897, 799 cm⁻¹; **HRMS** (ESI) m/z calc'd for C₁₁H₁₄O₃N [M + H]⁺: 208.0968, found: 208.0971.

5-(4-hydroxyphenyl)-3-methylpyrrolidine-3-carboxylic acid (19): Prepared by a slight modification of the

general procedure E, where $Rh_2(esp)_2$ (1 mol%) was employed as a catalyst instead of CuOTf/L4, and the reaction was conducted at 0 °C in HFIP. The title compound was isolated from 16 (22.1 mg, 0.1 mmol) as a white solid (21.1 mg, 95% yield, dr >20:1). m.p. 260–

262 °C (decomp.); ¹**H NMR** (400 MHz, D₂O): δ 7.42 – 7.39 (m, 2H), 6.99 – 6.96 (m, 2H), 4.71 (dd, *J* = 12.3, 6.3 Hz, 1H), 3.92 (d, *J* = 11.9 Hz, 1H), 3.24 (d, *J* = 11.9 Hz, 1H), 2.81 (dd, *J* = 13.5, 6.3 Hz, 1H), 2.21 (dd, *J* = 13.5, 12.4 Hz, 1H), 1.47 (s, 3H); ¹³C NMR (101 MHz, D₂O): δ 182.3, 156.8, 129.3, 125.7, 116.0, 62.5, 53.8, 50.8, 41.9, 22.7; **IR** (thin film): 3504, 3162, 2930, 2343, 1615, 1519, 1401, 1369, 1281, 1101, 880, 833, 685 cm⁻¹; **HRMS (ESI)** *m/z* calc'd for C₁₂H₁₆O₃N [M + H]⁺: 222.1125, found: 222.1127.

3-methyl-9-oxo-1-azaspiro[5.5]undeca-7,10-dien-1-ium-3-carboxylate (20): Prepared by the general procedure F from 16 (22.1 mg, 0.1 mmol) and isolated as a white solid (8.0 mg, 36% yield). m.p. 200-202 °C (decomp.); ¹H NMR (400 MHz, D₂O): δ 7.70 (dd, J = 10.5, 3.3 Hz, 1H), 7.16 (dd, J = 10.2, 3.3 Hz, 1H), 6.57 (ddd, J = 20.7, 10.3, 2.0 Hz, 2H), 3.56 (dd, J = 13.3, 1.7 Hz, 1H), 3.25 (d, J = 13.3 Hz, 1H), 2.14-2.06 (m, 2H), 1.88-1.81 (m, 2H), 1.27 (s, 3H); ¹³C NMR (101 MHz, D₂O): δ 186.5, 182.2, 147.7, 142.5, 131.0, 130.5, 53.8, 47.2, 40.8, 30.6, 29.1, 22.7; IR (KBr): 3421, 2929, 2873, 1670, 1638, 1569, 1456, 1393, 1261, 1100, 860 cm⁻¹; HRMS (ESI) *m/z* calc'd for C₁₂H₁₆O₃N [M + H]⁺: 222.1125, found: 222.1126.

4-2. Mechanistic investigation

Procedure for Figure 1: Prior to the experiment, an NMR tube was dried under vacuum for 1 h. In a similar manner to the general procedure F, ¹³C-**12** (8.2 mg, 0.05 mmol), CuOTf•0.5C₆H₆ (12 mg, 0.05 mmol), and L4 (9.8 mg, 0.05 mmol) were mixed under an argon atmosphere to prepare a HFIP (500 μ L) solution. The immediate consumption of the substrate was detected by a TLC analysis. A part of the HFIP solution (300 μ L) was

transferred to the dried NMR tube by a syringe under an argon atmosphere, followed by the addition of THF- d_8 (300 µL), whose ¹³C spectrum was recorded.

¹³C-Acetophenone: ¹H NMR (400 MHz, CDCl₃) δ 7.98 – 7.94 (m, 2H), 7.58 – 7.54 (m, 1H), 7.47 (t, *J* = 7.8 Hz, ⁰ ¹³C NMR (101 MHz, CDCl₃) δ 198.16; HRMS (ESI) *m/z* calc'd for C₇¹³CH₉O [M + H]⁺: 122.0681, found: 122.0680.

4-3. Kinetic study

The kinetic study was conducted under synthetically relevant conditions (0.1 M initial substrate concentration, 2.50–6.25 mol% catalyst loadings) to evaluate the copper dependency on the reaction rate. The reaction progression with varied copper concentrations were monitored over the course of the reaction. Only substrate **1a** and product **2a** were observed, and no intermediate was detected in ¹H-NMR analyses.

Procedure: Solutions of substrate **1a** (0.5 M in HFIP) and copper complex (0.05 M in HFIP, 1:1 CuOTf•0.5C₆H₆/L**4**) were prepared. To a flame-dried 10 mL test tube equipped with a magnetic stirring bar were added a solution of **1a** and HFIP, followed by the addition of a solution of the copper at an ambient temperature. The reaction mixture was quenched with aq EDTA and water at the indicated time. The aqueous layer was extracted with EtOAc (3x). The combined organic layers were concentrated under reduced pressure. The yields were determined by crude ¹H-NMR analysis using 1,1,2,2-tetrachloroethane as an internal standard.

catalyst loading	1a (0.5 M	(in HFIP)	Cu/L4 (0.05	M in HFIP)	HFIP	Total volume
6.25 mol%	200 µL	0.1 M	125 µL	0.0625 M	675 μL	1000 µL
5.0 mol%	200 µL	0.1 M	100 µL	0.050 M	700 µL	1000 µL
3.75 mol%	200 µL	0.1 M	75 μL	0.0375 M	725 µL	1000 µL
2.5 mol%	200 µL	0.1 M	50 µL	0.025 M	750 μL	1000 µL

The following plots show the consumption of 1a and the evolution of 2a over the reaction.

To evaluate the order of copper on the rate, the normalized time scale method developed by Burés was used.⁸ Although it is not trivial to determine the exact order, the visual inspection of the plots suggests that more than one copper complex is involved in the catalytic cycle.

5. Catalytic asymmetric desymmetrization of 8

5-1. Catalyst screening

5-2. Copper catalyzed asymmetric desymmetrization

(R)-3-Benzyl-1,2,3,4-tetrahydroquinoline-3-carboxylic acid (85): To a flame-dried 10 mL test tube equipped

with a magnetic stirring bar were added (*S*)-*t*Bu-BOX (2.9 mg, 10 mol%) and Cu(OTf)•0.5C₆H₆ (90%, 1.4 mg, 5 mol%) in a globe box. After it was taken out, HFIP (1.0 mL, 0.1 M) was added and the mixture was stirred for 10 min at an ambient temperature. The solution was cooled to 0 °C, and **8** (26.7 mg, 0.1 mmol) was added. The reaction mixture was stirred for 18 h at the

same temperature, and quenched with aq EDTA and water. The aqueous layer was extracted with EtOAc (3x). The combined organic layers were concentrated under reduced pressure. The material was purified and isolated as a white solid (24.5 mg, 92% yield). **m.p.** 98–100 °C; ¹**H NMR** (400 MHz, CDCl₃): δ 7.29-7.27 (m, 1H), 7.25 – 7.24 (m, 2H), 7.18 – 7.16 (m, 2H), 7.01 (dd, J = 13.4, 7.0 Hz, 2H), 6.69 (td, J = 7.4, 1.1 Hz, 1H), 6.56 (dd, J = 7.9, 0.7 Hz, 1H), 3.49 (dd, J = 11.6, 1.4 Hz, 1H), 3.20 (dd, J = 11.6, 1.1 Hz, 1H), 3.10 (d, J = 16.4 Hz, 1H); ¹³**C NMR** (101 MHz, CDCl₃): δ 179.41, 142.84, 136.47, 129.96, 129.89, 128.28, 127.12, 126.91, 119.16, 118.21, 114.44, 46.91, 45.43, 41.46, 34.90; **IR** (thin film): 3412, 3026, 2926, 2851, 1700, 1606, 1587, 1496, 1281, 1185, 939, 804, 746 cm⁻¹; **HRMS** (ESI) *m/z* calc'd for C₁₇H₁₈O₂N [M + H]⁺: 268.1332, found: 268.1335; [α]_D²⁷ +52.79 (c 1.5, CHCl₃, 93% ee sample).

Methyl (R)-3-benzyl-1,2,3,4-tetrahydroquinoline-3-carboxylate (9): Isolated S5 (24.5 mg, 0.09 mmol) was

dissolved in 9:1 toluene/MeOH solution (0.90 mL, 0.1 M) and the reaction was cooled with an ice bath. TMS-diazomethane (2.0M in Et_2O , 1.5 equiv). After being stirred for 15 min, the reaction was quenched with aq AcOH, followed by the addition of aq NaHCO₃. The resulting aqueous layer was extracted with EtOAc (3x). The combined organic layers were concentrated

under reduced pressure to give the crude product, which was purified by silica gel column chromatography to afford product **9** as a white solid (24.4 mg, 95% yield). **m.p.** 73–75 °C; ¹**H NMR** (400 MHz, CDCl₃): δ 7.28 – 7.26 (m, 1H), 7.25 – 7.20 (m, 2H), 7.10 – 7.07 (m, 2H), 7.02 - 6.97 (m, 2H), 6.65 (td, *J* = 7.4, 1.1 Hz, 1H), 6.53 (d, *J* = 7.9 Hz, 1H), 3.63 (s, 3H), 3.48 (dd, *J* = 11.6, 1.1 Hz, 1H), 3.22 (dd, *J* = 11.6, 1.6 Hz, 1H), 3.08 (d, *J* = 16.2 Hz, 1H), 2.96 (dd, *J* = 42.8, 13.4 Hz, 2H), 2.81 (d, *J* = 16.2 Hz, 1H); ¹³**C NMR** (101 MHz, CDCl₃): δ 175.15, 143.20, 136.98, 129.90, 129.80, 128.18, 127.01, 126.73, 119.04, 117.63, 114.06, 51.76, 46.94, 45.70, 41.32, 34.85; **IR** (thin film): 3407, 3026, 2949, 2879, 1727, 1607, 1587, 1496, 1439, 1366, 1282, 1092, 748 cm⁻¹; **HRMS** (ESI) *m/z* calc'd for C₁₈H₂₀O₂N [M + H]⁺: 282.1489, found: 282.1491; [α]_D²⁷ +112.01 (c 1.0, CHCl₃, 93% ee sample). Enantiomeric excess of the product was determined to be 93% ee by chiral stationary phase HPLC analysis (CHIRALPAK IA (ϕ 0.46 cm x 25 cm), *n*-hexane/2-propanol = 8/2, flow rate 1.0 mL/min, detection at 254 nm, t_R = 6.19 min (major), 10.45 min (minor).

Single crystals of **9** were obtained by slow diffusion of the solution of **9** in CHCl₃ at 23 °C. A suitable crystal was selected and the sample was measured on a Rigaku R-AXIS RAPID diffractometer using graphite monochromated Cu-Ka radiation. The data were collected at 93.15 K. Refined structure and crystallographic parameters are summarized in Fig. S1 and Table S1. CCDC 2049408 contains the supplementary crystallographic data for **9**.

Fig. S1. ORTEP diagram of 9.

Empirical formula	$C_{36}H_{38}N_2O_4$	Volume/Å ³	1489.33(2)
Formula weight	562.68	Z	2
Temperature/K	93.15	$\rho_{calc}g/cm^3$	1.255
Crystal system	monoclinic	μ/mm^{-1}	0.648
Space group	P2 ₁	F(000)	600.0
a/Å	10.47410(10)	Crystal size/mm ³	$0.3 \times 0.1 \times 0.05$
b/Å	10.48660(10)	Radiation	CuKa ($\lambda = 1.54184$)
c/Å	13.73150(10)	Flack parameter	-0.02(6)
$\alpha/^{\circ}$	90		
β/°	99.0810(10)		
$\gamma/^{\circ}$	90		

Table S1. Crystal data and structure refinement for 9.

5-3. Nonlinear effect

The experiments were performed by a slight modification of the procedure described above. (R)- and (S)-tBu-BOX ligands were weighted to prepare target ee ligand (20–80% ee). The weighted ligand was dissolved in HFIP before complexation with a copper, and an aliquot was removed to determine the accurate ee value of the mixed ligand by a chiral HPLC. Two series of experiments were conducted, and both results showed a positive nonlinear effect.

6. Computational study

6-1. Computational details

All quantum chemical calculations were performed using the Gaussian 16 program.⁹ Density functional theory (DFT) calculations employed an ultrafine integration grid (99 radial shells, 590 angular points). Structural optimizations were conducted in the gas phase at the B3LYP-D3(BJ)¹⁰/6-31G(d)(SDD for Cu) level of theory. Frequency calculations confirmed the identity of geometry minima (no imaginary frequencies) and transition state (one imaginary frequency). All transition state structures were verified to connect the reactant and the product of interest by performing IRC calculations. Single point energies on the optimized structures were evaluated using Truhlar's M06 functional¹¹ with the 6-311++G(2d,p) basis set for C, H, N, and O atoms and the SDD effective core potential for Cu. Single point solvation energies were obtained by using SMD¹² solvation model (2-methyl-1-propanol) to model HFIP. Gibbs free energies are given relative to a dicopper triplet nitrene. Zero-point energies and thermal corrections were obtained at 298K and are unscaled. Computed structures were visualized by CYLview 2.0.¹³

6-2. Evaluation of interaction energies

The interaction energies between two copper complexes were estimated by computing counterpoise corrected energies on the truncated structures.

³NTR_D

Counterpoise corrected energy = -1687.322851787333

BSSE energy =	-0.002216308473
sum of fragments =	-1687.256769441415
complexation energy =	-40.08 kcal/mole (raw)
complexation energy =	-41.47 kcal/mole (corrected)

³TS2_D

Counterpoise corrected energy = -1687.315509706308

BSSE energy =	0.015924594258
sum of fragments =	-1687.225498624053
complexation energy =	-66.48 kcal/mole (raw)
complexation energy =	-56.48 kcal/mole (corrected)

7. References

(1) Fulmer, G. R.; Miller, A. J. M.; Sherden, N. H.; Gottlieb, H. E.; Nudelman, A.; Stoltz, B. M.; Bercaw, J. E.; Goldberg, K. I. *Organometallics*, **2010**, *29*, 2176.

(2) Yu, J.-S.; Espinosa, M.; Noda, H.; Shibasaki, M. J. Am. Chem. Soc. 2019, 141, 10530-10537.

(3) Espinosa, M.; Noda, H.; Shibasaki, M. Org. Lett. 2019, 21, 9296-9299.

(4) Singh, R. P.; Das, J.; Yousufuddin, M.; Gout, D.; Lovely, C. J. Org. Lett. 2017, 19, 4110-4113.

(5) Baldwin, J. E.; Harwood, L. M.; Jombard, M. J. Tetrahedron 1984, 40, 4363-4370.

(6) Noda, H.; Shibasaki, M. Chem. Pharm. Bull. 2019, 67, 1248-1249.

(7) Lakshmana, M. K.; Tine, F. A.; Khandaker, T. A.; Basava, V.; Agyemang, N. B.; Benavidez, M. S. A.; Gaši, M.; Guerrera, L.; Zajc, B. *Synlett* 2017, 381–385.

(8) Burés, J. Angew. Chem. Int. Ed. 2016, 55, 2028–2031.

(9) Gaussian 16, Revision A.03, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.

(10) Grimme, S.; Ehrlich, S.; Goerigk, L. J. Comp. Chem. 2011, 32, 1456-1465.

(11) Zhao, Y.; Truhlar, D. G. Theor. Chem. Acc. 2007, 120, 215-241.

(12) Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. J. Phys. Chem. B 2009, 113, 6378-6396.

(13) CYLview20; Legault, C. Y., Université de Sherbrooke, 2020 (http://www.cylview.org). Accessed on 16-Dec-2020.

8. Optimized coordinates ³NTR M

Zero-point correction	=		0.401071				
(Hartree/Particle)							
Thermal correction to	Energy=		0.427785				
Thermal correction to	Thermal correction to Enthalpy= 0.428729						
Thermal correction to	Thermal correction to Gibbs Free Energy= 0.339202						
С	-3.82523700	1.98193500	-0.62036300				
С	-2.48165300	1.80552400	-0.25390000				
С	-1.62565800	2.90205300	-0.12945300				
С	-2.18353700	4.14998300	-0.39695200				
С	-3.53438700	4.30388200	-0.77036300				
С	-4.39782300	3.21298800	-0.88980600				
С	-3.44387100	-0.12799200	-0.31541200				
Н	-0.59462900	2.78338000	0.18422700				
Н	-1.56094800	5.03436100	-0.31061700				
Н	-3.91774700	5.29966600	-0.96702800				
Н	-5.43867500	3.31990900	-1.17117700				
Ν	-2.28443600	0.43437200	-0.07173500				
0	-4.42318700	0.72854400	-0.65107500				
С	-3.65696600	-1.56500400	-0.23307300				
С	-4.87719500	-2.19203000	-0.46436300				
С	-2.59499900	-3.57617500	0.20817500				
С	-4.93342400	-3.58224600	-0.34599600				
Н	-5.74951900	-1.60483200	-0.72729700				
С	-3.77959200	-4.28513700	-0.00492400				
Н	-1.67213600	-4.08116700	0.47306500				
Н	-5.86785800	-4.10603600	-0.51854900				
Н	-3.78658000	-5.36450100	0.09578300				
Ν	-2.53126300	-2.24509000	0.09761400				
Cu	-0.88422300	-0.97270000	0.32112300				
0	2.06754700	0.82177700	2.96596300				
С	1.80089800	1.33775100	1.74662800				
С	2.58543600	0.63634500	0.64028700				
С	2.23255600	-0.88834100	0.69935100				
Н	2.78101600	-1.40327100	-0.10817200				
Н	2.58418600	-1.31868500	1.65137900				
0	1.01896800	2.25178200	1.58775500				
Ν	0.86251900	-1.12786100	0.57213200				
С	4.11297900	0.81610600	0.92939000				
Н	4.31720000	1.89324300	0.91098300				
Н	4.31359300	0.47047700	1.94756900				
С	5.01716300	0.10250500	-0.04705300				

5.46054300 -1.20136600

С

Supplementary Information Tak, Amemiya, Noda, and Shibasaki

5.42674000	0.72019800	-1.23678000
6.27450900	-1.87872500	-0.69113500
5.18215300	-1.68251400	1.15229200
6.24149000	0.04699300	-2.14648600
5.11553000	1.74046400	-1.44472600
6.66333800	-1.25683700	-1.87831400
6.61427200	-2.88523200	-0.46564600
6.55465900	0.54361100	-3.06001100
7.30211700	-1.77923200	-2.58390600
1.54899300	1.33651900	3.61399300
2.18771800	1.21615800	-0.71892000
2.42076900	2.28327000	-0.76339000
2.73236300	0.70793800	-1.51831900
1.11516700	1.10276400	-0.89828400

³TS1_M

С

С Н С Н С Н Η Н Н С Н Н Н

Zero-point correction	=		0.399497			
(Hartree/Particle)						
Thermal correction to Energy= 0.425728						
Thermal correction t	o Enthalpy=		0.426672			
Thermal correction t	o Gibbs Free En	ergy=	0.338173			
С	-3.67823200	-1.77235700	-0.34038800			
С	-2.27694500	-1.81708100	-0.40115700			
С	-1.60400300	-3.04023200	-0.39216600			
С	-2.39340700	-4.18544100	-0.32178700			
С	-3.80048600	-4.11577400	-0.26373000			
С	-4.48292700	-2.89721100	-0.27202400			
С	-2.89645500	0.24605900	-0.42291600			
Н	-0.52159700	-3.08500000	-0.43917400			
Н	-1.91671800	-5.16004500	-0.31356100			
Н	-4.37189900	-5.03651200	-0.21153900			
Н	-5.56384300	-2.83547700	-0.22780700			
Ν	-1.82290700	-0.50137500	-0.45691000			
Ο	-4.05677200	-0.43704800	-0.35653700			
С	-2.83771700	1.70006300	-0.42619700			
С	-3.95373000	2.53128400	-0.42428300			
С	-1.37647500	3.49364100	-0.42362600			
С	-3.74341300	3.91162000	-0.42286400			
Н	-4.95051000	2.10520300	-0.42520800			
С	-2.43894300	4.40135000	-0.42291700			
Н	-0.34467200	3.82908600	-0.42165200			
Н	-4.58875000	4.59184800	-0.42250300			
Н	-2.23775400	5.46670000	-0.42212000			
N	-1.56626900	2.17095200	-0.42437100			

Page S32 of S129

0.21746700

Supplementary Information Tak, Amemiya, Noda, and Shibasaki

Cu	-0.13049600	0.62826200	-0.41621600	Н	-4.68777900	-5.06802700	0.66385100
0	5.64076700	1.12638800	-0.70179700	Н	-5.76424200	-2.83976800	0.28424000
С	5.29015600	-0.14076700	-1.03717100	Ν	-1.90526800	-0.74810400	-0.19135800
С	3.87930300	-0.48720600	-0.56584100	0	-4.13412800	-0.56583900	-0.16876900
С	2.84845000	0.55570700	-1.07379800	С	-2.81323300	1.47244800	-0.55837100
Н	3.25603200	1.57167000	-0.95402700	С	-3.88177800	2.35762600	-0.65896200
Н	2.62126000	0.41075400	-2.13908500	С	-1.25414800	3.15666500	-0.86927300
Ο	6.02660200	-0.88720300	-1.63674700	С	-3.59463600	3.70682600	-0.87860200
Ν	1.66170900	0.43004300	-0.28775800	Н	-4.89999400	1.99786700	-0.56480500
С	3.78150500	-0.35299700	0.97971300	С	-2.26607700	4.11417700	-0.98186900
Н	4.20567900	-1.23810600	1.46375500	Н	-0.20417000	3.42163100	-0.93194100
Н	4.36981700	0.50951400	1.30195800	Н	-4.40100000	4.42778900	-0.96431800
С	2.33102600	-0.15625700	1.41424700	Н	-2.00850400	5.15413700	-1.14808700
С	2.00326300	1.02003900	2.19566500	Ν	-1.52092100	1.86384700	-0.66837500
С	1.50934400	-1.32554900	1.66334600	Cu	-0.17444100	0.28086200	-0.42027500
С	0.80980800	1.10683300	2.88307300	0	5.46742100	-0.26045400	-1.49894700
Н	2.68839700	1.86214600	2.16772700	С	4.99548300	-1.37499400	-0.88520400
С	0.32011700	-1.22152100	2.35258300	С	3.64713300	-1.13068800	-0.21838100
Н	1.82567900	-2.27954100	1.25616300	С	2.61719800	-0.53344100	-1.21236500
С	-0.06419100	0.00358200	2.93417700	Н	3.10410900	0.20323000	-1.86854900
Н	0.55641000	2.01936500	3.41450700	Н	2.13547300	-1.28589500	-1.84281400
Н	-0.31198300	-2.09598300	2.47551500	0	5.59270700	-2.42490800	-0.88109700
Н	-0.99776900	0.07459700	3.48334800	Ν	1.64518500	0.13562100	-0.37176000
Н	6.55077800	1.25946400	-1.03004500	С	3.73546300	-0.00005200	0.84410500
С	3.51476800	-1.88860600	-1.06854500	Н	3.94867200	-0.39981800	1.83832100
Н	3.65721300	-1.95473400	-2.15032900	Н	4.52984800	0.70536100	0.59214400
Н	4.15207700	-2.64756700	-0.60726200	С	2.35224800	0.73112100	0.81027600
Н	2.46912100	-2.11649500	-0.84484200	С	2.50123600	2.20942900	0.53175600
				С	1.49340000	0.46851300	2.02136400
³ INT1 N	Л			С	1.81725900	3.16392800	1.22838100
Zero-point	correction=		0.400817	Н	3.17792100	2.48111000	-0.27367800
(Hartree/Pa	article)			С	0.82093600	1.46255100	2.68084400
Thermal c	correction to Energy=		0.427127	Н	1.41438600	-0.56549100	2.34375900
Thermal c	correction to Enthalpy=		0.428071	С	0.94670800	2.81919100	2.29546200
Thermal c	correction to Gibbs Free En	ergy=	0.339480	Н	1.96530600	4.21241800	0.98214500
С	-3.82430700	-1.89861800	0.06545800	Н	0.20112900	1.20873500	3.53656700
С	-2.42620100	-2.01818100	0.05219200	Н	0.41871800	3.59311100	2.84175200
С	-1.81766800	-3.25675700	0.26287300	Н	6.33030200	-0.50077300	-1.88764100
С	-2.66649600	-4.33887700	0.48127300	С	3.12484200	-2.44117200	0.38005800
С	-4.06893300	-4.19416900	0.48960900	Н	3.03425400	-3.21141300	-0.39112600
С	-4.68736000	-2.95973600	0.27994100	Н	3.80955800	-2.81794500	1.14374400
С	-2.94251000	0.04409700	-0.30950400	Н	2.14107900	-2.28492300	0.83517900
Н	-0.73816900	-3.36322800	0.25437200				
Н	-2.24044100	-5.32234100	0.64943200	³ TS2_M			
			Page	S33 of S129			

Zero-point correction= 0.400537 (Hartree/Particle) Thermal correction to Energy= 0.426414 Thermal correction to Enthalpy= 0.427358 0.341119 Thermal correction to Gibbs Free Energy= С 3.06855900 2.21963400 -0.53391600 С 1.70331300 1.90948200 -0.43590400 С 0.74601400 2.92599300 -0.42641500 С 4.23163100 -0.51873200 1.22108800 С 2.59808600 4.51795000 -0.61683100 С 3.56375200 3.50946700 -0.62700400 С 2.82824600 0.07125100-0.40827900Н -0.31021100 2.70107900-0.34617900 Η 0.51414800 5.05474600 -0.51778300 Н 2.91822300 5.55210700 -0.68781200 4.62412400 3.71916600 -0.70283500 Η Ν 1.59925000 0.52072100 -0.36077600 0 3.77373800 1.02484000 -0.51488000 С 3.15205000 -1.34553000 -0.33619000С 4.44240800 -1.86038400-0.41471400 С С 2.21853900 -3.45074300 -0.10432400 С 4.60245100 -3.24493800 -0.33142400Η 5.28819100 -1.19378100 -0.53843400 С 3.47765200 -4.05230300-0.17484500 Н 1.31524800 -4.03915600 0.01764800 Η 5.59319600 -3.68350500 -0.38947800 Η 3.56383400 -5.13091300 -0.10739400 Ν 2.05450000 -2.12630700 -0.18163400Cu 0.27969500 -1.01532700 -0.11324800 0 -5.53629500 -1.43835200 -0.82978100 С -4.86879200 -0.40858800 -1.40463200 С -3.56044000 -0.09924200 -0.67637800 С -2.71393700 -1.41343400-0.59974900 Η -3.32174000 -2.20137700-0.13282400Η -2.47574000 -1.74443300 -1.62041900 0 -5.28334400 0.18603800 -2.37126000 Ν -1.49647300 -1.23913700 0.13307600 С -3.90942000 0.38449900 0.77300000 Η -4.41211200 1.35477300 0.70523100 Η -4.61450500 -0.325775001.21717900 С -2.66778000 0.47949800 1.60891900 С -0.76156800 -2.01345200 1.94661500 С -2.02239100 1.67515100 1.88116200 С 2.72155200 -0.80665100 -0.71696700

Supplementary Information Tak, Amemiya, Noda, and Shibasaki

-2.63815000	-1.64701300	2.04856300
-0.78389600	1.69565700	2.54345900
-2.48846000	2.61061400	1.58292700
-0.18564800	0.49412800	2.96687200
-0.38215200	-1.64582100	3.09013700
-0.29963300	2.64409700	2.75232500
0.74531700	0.52507100	3.52537900
-6.35980800	-1.55968500	-1.34063400
-2.80080700	0.97958300	-1.45303500
-2.58277500	0.64381600	-2.47090600
-3.39768500	1.89192600	-1.52985800
-1.85788800	1.21003600	-0.95318900

³INT2 M

Η С

Η

С

Н

Η

Η

Н

С

Η

Η

Η

Zero-point correction=			0.402084				
(Hartree/Particle)							
Thermal correction to Energy= 0.427925							
Thermal correction to	Enthalpy=		0.428870				
Thermal correction to	Gibbs Free Ene	ergy= (0.342863				
С	2.95007000	2.21143200	-0.73076100				
С	1.61606000	1.89377600	-0.43112200				
С	0.64827100	2.89688400	-0.34893700				
С	1.08084700	4.19883800	-0.58710900				
С	2.42530600	4.49330900	-0.89293500				
С	3.40177700	3.49801200	-0.97113000				
С	2.77163600	0.07352700	-0.43572400				
Н	-0.38004300	2.66520400	-0.09961500				
Н	0.36565600	5.01318100	-0.53605800				
Н	2.71200100	5.52436400	-1.07117500				
Н	4.43792700	3.71544500	-1.20173500				
Ν	1.55101700	0.51216500	-0.25737700				
0	3.67563200	1.02795900	-0.72780400				
С	3.12532500	-1.33170500	-0.30568200				
С	4.40578100	-1.84072900	-0.49817100				
С	2.26196000	-3.42262400	0.19006000				
С	4.59853100	-3.21364300	-0.33242800				
Н	5.21967100	-1.17795100	-0.76894500				
С	3.51437100	-4.01659600	0.01606400				
Н	1.39015900	-4.00831400	0.46187300				
Н	5.58317400	-3.64673900	-0.47446800				
Н	3.62671900	-5.08610600	0.15327900				
Ν	2.06656900	-2.10902100	0.03424800				
Cu	0.29702900	-1.02311200	0.20794300				
0	-5.34756900	-1.58155500	-0.98163600				

Page S34 of S129

Supplementary Information Tak, Amemiya, Noda, and Shibasaki

С	-4.56260100	-0.71102400	-1.66142100	Ν	-1.72321100	-0.17325800	-0.10323400
С	-3.35341900	-0.26886700	-0.83809500	0	-3.64079500	0.83698300	0.44772800
С	-2.56946900	-1.54324300	-0.38164800	С	-1.66169200	2.24545300	0.05231500
Н	-3.26792300	-2.22759100	0.11807100	С	-2.27688600	3.47962200	0.24207600
Н	-2.15181000	-2.05259500	-1.25427800	С	0.38909400	3.21914300	-0.39648300
0	-4.81350500	-0.33705900	-2.78274800	С	-1.49424400	4.62733100	0.10113100
Ν	-1.49835700	-1.19914200	0.53281800	Н	-3.33172600	3.53336800	0.48602700
С	-3.84981900	0.48115500	0.43852400	С	-0.14539500	4.49924600	-0.22716400
Н	-4.29810200	1.43749000	0.14934900	Н	1.42947900	3.05883800	-0.66014400
Н	-4.63585300	-0.12290500	0.91015000	Н	-1.93681300	5.60818300	0.24051500
С	-2.72105200	0.68729700	1.39995000	Н	0.48727000	5.37067900	-0.35320700
С	-1.99408000	-0.58729000	1.78737600	Ν	-0.34952800	2.11898800	-0.25167800
С	-2.27777800	1.90345600	1.83955400	Cu	0.27382900	0.09285400	-0.40155800
С	-0.85869500	-0.38008700	2.74521100	0	2.21947100	-1.34671900	3.29352800
Н	-2.73011000	-1.29778300	2.21277500	С	2.04345800	-0.59415600	2.20161100
С	-1.16115300	2.02799900	2.70540200	С	3.30482700	-0.46160700	1.35422600
Н	-2.80464400	2.80105300	1.52282500	С	3.14811100	0.75265500	0.41168700
С	-0.47559700	0.87061300	3.14868600	Н	2.72352000	1.62556200	0.91393500
Н	-0.36535200	-1.26999100	3.12742500	Н	4.13287400	1.03725100	0.01997200
Н	-0.84522200	3.00918000	3.04216100	Ο	0.95152200	-0.11567000	1.92183000
Н	0.35633400	0.98052700	3.83889400	Ν	2.25328500	0.33201900	-0.67975500
Н	-6.09830300	-1.79935300	-1.56710000	С	3.30593000	-1.64972300	0.33754200
С	-2.46611800	0.63409200	-1.69970800	Н	4.33328700	-1.82255400	0.00100400
Н	-2.11166300	0.10049000	-2.58653300	Н	2.94718100	-2.58114000	0.78238500
Н	-3.02748900	1.50574400	-2.04530300	С	2.41599600	-1.17966800	-0.81253000
Н	-1.60096800	0.97663200	-1.12798000	С	1.05021400	-1.77435900	-0.99435200
				С	3.01453400	-0.51216300	-1.98566400
³ TS3_M				С	0.49836600	-1.78977600	-2.33340800
Zero-point corre	ection=		0.400303	Н	0.76230800	-2.56687700	-0.30794700
(Hartree/Particle	e)			С	2.36746700	-0.52218000	-3.25213100
Thermal correct	ction to Energy=		0.425497	Н	4.06498900	-0.24473900	-1.92340700
Thermal correct	ction to Enthalpy=		0.426442	С	1.11401800	-1.15718600	-3.39991900
Thermal correct	ction to Gibbs Free En	ergy=	0.343365	Н	-0.44671600	-2.30268900	-2.49064600
С	-3.88577200	-0.52820800	0.41017700	Н	2.84438300	-0.03140300	-4.09297500
С	-2.68389000	-1.16758600	0.06845600	Н	0.63746700	-1.16872100	-4.37497200
С	-2.62913300	-2.55838800	-0.04296900	Н	1.35832100	-1.40669000	3.75191400
С	-3.81277600	-3.25172100	0.19820900	С	4.56993200	-0.40667700	2.21680100
С	-5.00806000	-2.58685600	0.53847500	Н	4.54721500	0.44625800	2.90288000
С	-5.07342600	-1.19663800	0.65417600	Н	4.68468500	-1.31441000	2.81284300
С	-2.33613600	0.95964800	0.13334600	Н	5.44785000	-0.30278400	1.57131200
Н	-1.70844300	-3.06722100	-0.30377200				
Н	-3.81862000	-4.33402600	0.12227900	³ NTR_D			
Н	-5.90470000	-3.17124000	0.71602400	Zero-point correc	ction=		0.581506
Н	-5.98748700	-0.67664600	0.91550500	(Hartree/Particle))		

Page S35 of S129

Supplementary Information Tak, Amemiya, Noda, and Shibasaki

Thermal correction to Energy=		0.621282	Н	-5.77584900	-2.39116900	1.43352000
Thermal correction to Enthalpy=		0.622226	С	-8.59320800	-0.54113500	1.01165100
Thermal correction to Gibbs Free Er	ergy=	0.502733	Н	-9.00242400	0.70795400	-0.69604900
C 2.74553400	0.23419500	2.23033500	Н	-7.92157100	-1.89959100	2.54602700
C 1.50940000	-0.32380700	1.86838000	Н	-9.54479700	-0.33739400	1.49255200
C 1.25774400	-1.68211800	2.06965200	Н	-4.42799000	2.17383400	-1.92176500
C 2.29875400	-2.43604400	2.60886100	С	-3.45126100	-0.59592200	1.11288500
C 3.54057100	-1.85842600	2.94074800	Н	-4.31638300	-0.11929500	1.57727800
C 3.79407000	-0.49491600	2.76431800	Н	-3.41317500	-1.63355300	1.45782600
C 1.47520500	1.78965900	1.41644700	Н	-2.54458500	-0.09394500	1.46741700
Н 0.29746500	-2.11923700	1.82238400	Cu	0.66877800	-1.26354200	-1.11361000
Н 2.14947100	-3.49597600	2.78572200	С	1.39023200	-4.28150100	-0.70115400
Н 4.31836700	-2.48512100	3.36406900	С	3.12691500	-2.75497000	-0.76390200
Н 4.73839000	-0.03875300	3.03700600	С	2.27582100	-5.32677400	-0.42495700
N 0.73317200	0.70971800	1.33958100	Н	0.32333600	-4.45684400	-0.79234200
O 2.69374900	1.59313700	1.94445900	С	4.07707700	-3.73214000	-0.48662100
C 1.00936100	3.08338400	0.94737800	С	3.63645800	-5.04621400	-0.31336500
C 1.68312800	4.28493400	1.12969400	Н	1.89776500	-6.33579800	-0.30389200
C -0.74366400	4.11408500	-0.16778100	Н	5.12637300	-3.46876700	-0.41709300
C 1.09085000	5.44915400	0.63272300	Н	4.34794800	-5.83741000	-0.10092700
Н 2.63540400	4.30351700	1.64702600	С	3.20631100	0.75768000	-1.36935400
C -0.13712300	5.36467100	-0.02152500	С	3.43833900	-1.34853100	-0.96851800
Н -1.69735500	3.99096200	-0.66775300	С	4.53972400	0.51842300	-1.00251500
Н 1.58199800	6.40818400	0.76096300	С	2.78021800	2.04803900	-1.68945400
Н -0.62597600	6.24896100	-0.41465900	С	5.50529900	1.50705600	-0.91555400
N -0.18115300	2.99636000	0.30362000	С	3.73460700	3.06043200	-1.60636300
Cu -0.86253200	1.04093100	0.09084600	Н	1.76063000	2.24220900	-2.00548300
O -4.54757500	1.23619900	-1.66621300	С	5.06581600	2.79694600	-1.22511900
C -3.55209500	0.85353700	-0.90099600	Н	6.53099100	1.29448800	-0.63767300
C -3.56523700	-0.58360800	-0.42508700	Н	3.45283100	4.07792100	-1.85657300
C -2.29359600	-1.25058400	-1.05447700	Н	5.77592300	3.61612300	-1.18493000
н -2.31094500	-2.30412600	-0.73555300	Ν	1.80075300	-3.01963200	-0.86356800
Н -2.39926100	-1.26933200	-2.15232900	Ν	2.53871600	-0.46637200	-1.33151900
O -2.63460300	1.65705100	-0.63641600	0	4.66755200	-0.84096700	-0.75639100
N -1.02121700	-0.68525400	-0.71305200				
C -4.80866500	-1.38769200	-0.91153700	³ TS1_D			
Н -4.56699400	-2.44237300	-0.73250200	Zero-point correction=			0.579639
Н -4.89845400	-1.27155700	-1.99656200	(Hartree/Particle)			
С -6.13178700	-1.07507900	-0.24101200	Thermal correction to	Energy=		0.618924
С -7.06575400	-0.21764900	-0.83629900	Thermal correction to	Enthalpy=		0.619868
С -6.46438700	-1.68354800	0.97823800	Thermal correction to	Gibbs Free End	ergy=	0.504636
С -8.28597900	0.04915800	-0.21472400	С	-2.58445600	-0.13700800	-2.26899200
Н -6.84692100	0.22895300	-1.80051600	С	-1.33714100	-0.77726400	-2.18423800
C -7.68038100	-1.41473700	1.60500900	С	-1.24121700	-2.15873300	-2.37274000

Page S36 of S129
-1.10350800

-1.01077000 -0.53201900

-2.15844300

0.87371200

0.72262700

0.92417800

0.59207500

0.69783300

0.79575800

0.62841100

0.46934900

0.82990900

0.53125000

1.41075000

1.11045800

1.35370500

1.61286700

1.47465600

1.73811200

1.67396900

1.66776800

1.43258500

1.90271600

1.77770100

1.24266900

1.16388300

0.580964

0.620295

0.621239

-2.27270400

-2.14057800 -2.28407600

-2.54463300

-2.66132400

-2.52925600

-1.84985500

-2.20328800

-2.67205600

0.505977

0.88677900

-2.61440400

-2.35443400

-3.52984400

-2.82100800

-0.87347400

-3.91970300

-2.24407800

-4.89008500

-4.18732100

-3.13825800

-4.49158800

-5.93254700

-2.78266300

-5.22117700

1.28104800

-0.81040500

1.13448700

2.53639400

2.18700500

3.61122400

2.65621800

3.44156300

2.04708100

4.60673700

4.30802800

0.01125800

-0.21442100

-0.38470200

-0.95230200

-2.33180300

-3.08714700

-2.49240700

-1.11438100

1.16717600

-2.78721500

-4.16067700

-2.62450800

С	-2.42663200	-2.84342600	-2.62845500	С	5.00242100	-2.
С	-3.66798200	-2.17754000	-2.69704700	Н	6.05867600	-2.
С	-3.77735100	-0.79603200	-2.51993500	Н	4.82224000	-3.
С	-1.03626000	1.31751200	-1.82819400	Н	4.79769300	-2.
Н	-0.28445200	-2.66710700	-2.32877800	Cu	0.13877800	-0.
Н	-2.39772100	-3.91582200	-2.78965400	С	-0.86109300	-3.9
Н	-4.56378300	-2.75166700	-2.90966800	С	-2.43803000	-2.2
Н	-4.72530200	-0.27516900	-2.58753300	С	-1.85922200	-4.8
Ν	-0.37432400	0.19323500	-1.89729300	Н	0.19062500	-4.
0	-2.37320000	1.21233700	-2.04552700	С	-3.49608200	-3.1
С	-0.45378300	2.60790900	-1.48872000	С	-3.19376200	-4.4
С	-1.11631300	3.81632200	-1.69350400	Н	-1.58690900	-5.9
С	1.40900100	3.68529600	-0.62264700	Н	-4.51942300	-2.7
С	-0.46669800	4.99897900	-1.34349000	Н	-3.99099300	-5.2
Н	-2.11166400	3.81895500	-2.12182000	С	-2.13989000	1.
С	0.81816800	4.93448200	-0.80373800	С	-2.60219600	-0.8
Н	2.40402000	3.58698300	-0.20219300	С	-3.53384900	1.
Н	-0.95353400	5.95639500	-1.49744400	С	-1.56481100	2.
Н	1.35950200	5.83232900	-0.52736400	С	-4.42493500	2.
Ν	0.78851000	2.54138500	-0.94798600	С	-2.44268000	3.
Cu	1.54126800	0.71189200	-0.61221200	Н	-0.48936300	2.
0	5.50619200	-0.06037100	-1.85352700	С	-3.84028500	3.
С	4.28187100	-0.21122700	-1.37599500	Н	-5.49869900	2.
С	4.10093200	-1.49375500	-0.56791400	Н	-2.04380800	4.
С	2.61204800	-1.89585500	-0.54474200	Н	-4.48370500	4.
Н	2.18400100	-1.94657500	-1.55514400	Ν	-1.13779900	-2.62
Н	2.54283500	-2.90136100	-0.10404400	Ν	-1.58644200	0.
0	3.42151600	0.65516400	-1.57290900	О	-3.80623100	-0.2
Ν	1.89998600	-0.92946700	0.25650300			
С	4.40052800	-1.18223700	0.93390900	³ INT1_D		
Н	5.30176000	-0.57102500	1.03922300	Zero-point corr	ection=	
Н	4.61033100	-2.13914100	1.42147200	(Hartree/Particl	e)	
С	3.20669300	-0.51260300	1.61068100	Thermal corre	ction to Energy=	
С	2.55343700	-1.19293700	2.71124200	Thermal corre	ction to Enthalpy=	
С	3.16633500	0.93828900	1.65679400	Thermal corre	ction to Gibbs Free En	ergy=
С	1.67683300	-0.51829000	3.54282600	С	-2.57821900	-0.38
Н	2.70668300	-2.26231900	2.82331900	С	-1.30048900	-0.9
С	2.30011300	1.59671800	2.50665000	С	-1.12699000	-2.3
Н	3.82978200	1.49941100	1.00544500	С	-2.26741800	-3.0
С	1.51016900	0.87499400	3.42444200	С	-3.54100000	-2.4
Н	1.14819600	-1.05871100	4.32211500	С	-3.72798400	-1.
Н	2.26020700	2.68222200	2.50389200	С	-1.12153800	1.
Н	0.83364300	1.39898500	4.09131300	Н	-0.14637200	-2.
Н	5.55882700	0.78464900	-2.34508300	Н	-2.17712100	-4.
			n	027 (0100		

Page S37 of S129

Н	-4.39923100	-3.12050600	-2.87618800
Н	-4.70052700	-0.64778400	-2.63398600
Ν	-0.39789800	0.07884000	-1.86552900
0	-2.44554000	0.98079400	-2.08914900
С	-0.62222600	2.50219000	-1.55252200
С	-1.36046700	3.65837400	-1.79500300
С	1.16578000	3.72397300	-0.71841300
С	-0.78888700	4.89059900	-1.48119400
Н	-2.35321800	3.58385100	-2.22275900
С	0.49548800	4.92615900	-0.93809100
Н	2.16305800	3.70275300	-0.29231500
Н	-1.33603900	5.80948400	-1.66447100
Н	0.97675000	5.86503100	-0.68821600
Ν	0.62112300	2.53405300	-1.01154100
Cu	1.48757300	0.77775800	-0.61224400
0	5.39765600	0.01377400	-2.07789600
С	4.21536700	-0.12350200	-1.50381800
С	4.09464500	-1.37751500	-0.64240700
С	2.61301600	-1.79152200	-0.55032500
Н	2.09636100	-1.81675000	-1.51390600
Н	2.56446600	-2.79822200	-0.11100200
0	3.33598700	0.73347900	-1.66191000
Ν	2.00073500	-0.80397600	0.33956600
С	4.37088800	-0.99135900	0.84443900
Н	5.19239500	-0.27983200	0.95712600
Н	4.66100300	-1.90217600	1.37665900
С	3.03401100	-0.43328600	1.41313600
С	2.55215400	-1.11488500	2.66671800
С	3.04266600	1.06990000	1.55714300
С	1.90356900	-0.43384800	3.66336600
Н	2.66789700	-2.19452800	2.71527700
С	2.40762600	1.70877600	2.59120900
Н	3.61746000	1.63653300	0.82951100
С	1.78133900	0.98006400	3.63073800
Н	1.51249800	-0.97908200	4.51754200
Н	2.42674800	2.79424000	2.64315900
Н	1.28104300	1.50060700	4.43965700
Н	5.41056000	0.84415300	-2.59650800
С	5.01065300	-2.50000600	-1.14286000
Н	6.06138300	-2.20792600	-1.09317100
Н	4.87139600	-3.38774500	-0.51873000
Н	4.78427300	-2.76840800	-2.17936400
Cu	0.20581200	-0.79618400	0.94729600
С	-0.70859600	-3.87758200	0.88017200

-2.33054000	-2.23713500	0.99798200
-1.67960500	-4.87786400	0.77121100
0.34974600	-4.11915300	0.88131600
-3.36299700	-3.16239300	0.88440000
-3.02386800	-4.51286200	0.77107900
-1.37892000	-5.91675100	0.69225300
-4.39547700	-2.83266900	0.89147400
-3.80082700	-5.26575700	0.68859800
-2.12489500	1.30342200	1.41776000
-2.53434400	-0.80347700	1.14399000
-3.51311300	1.12591400	1.32398800
-1.58004600	2.57207300	1.61892300
-4.42797300	2.16201600	1.40043900
-2.48236600	3.63053100	1.70045500
-0.50947200	2.71323800	1.71511800
-3.87352500	3.43088400	1.58956200
-5.49710500	1.99983800	1.33014100
-2.10861700	4.63588300	1.86360700
-4.53706100	4.28565700	1.66701600
-1.02002500	-2.58488500	0.99174300
-1.54104500	0.04326700	1.28771500
-3.75137000	-0.23245500	1.15263100

³TS2_D

С С Н С С Н Н Н С С С С С С Н С Н Н Н Ν Ν 0

Zero-point correction= 0.580755			
(Hartree/Particle)			
Thermal correction to	Energy=		0.619628
Thermal correction to	Enthalpy=		0.620572
Thermal correction to	Gibbs Free End	ergy=	0.506575
С	2.68161200	-0.26494900	2.19493000
С	1.49376700	-0.99103800	2.00889500
С	1.50691100	-2.38750300	2.06874200
С	2.73717200	-2.99713600	2.30109200
С	3.91760400	-2.24417400	2.47223000
С	3.91763400	-0.84797400	2.42556300
С	1.02873100	1.09583500	1.83478900
Н	0.59624200	-2.96392400	1.94803800
Н	2.79198500	-4.07879200	2.36424100
Н	4.85146900	-2.76284300	2.66247600
Н	4.81746000	-0.26224800	2.57309300
Ν	0.46124100	-0.07920600	1.77562400
0	2.36560200	1.07726400	2.08839200
С	0.36487900	2.37187700	1.60460300
С	0.93975700	3.58982400	1.96335400

Page S38 of S129

С	-1.52873200	3.42561400	0.77308100	Н
С	0.23047700	4.76279100	1.71134800	Н
Н	1.91640400	3.60576700	2.43228800	С
С	-1.02538800	4.68061300	1.10995100	С
Н	-2.49408800	3.31119300	0.29285200	С
Н	0.64982000	5.72501000	1.98639300	С
Н	-1.61103600	5.56937000	0.90329800	С
Ν	-0.84988300	2.29133400	1.00643000	С
Cu	-1.52303800	0.49124300	0.46570700	Н
0	-5.04701200	-0.84105000	2.29942500	С
С	-3.96718000	-0.77519100	1.53640300	Н
С	-3.89376400	-1.88810900	0.49878600	Н
С	-2.42550300	-2.15413900	0.06034200	Н
Н	-1.83687500	-2.44101300	0.94395200	Ν
Н	-2.44922900	-3.02911900	-0.60643700	N
0	-3.16718700	0.15659500	1.67426800	0
Ν	-1.76579600	-1.04642500	-0.59836900	
С	-4.74062600	-1.40318800	-0.73435900	³ II
Н	-5.73355200	-1.09896100	-0.39009200	Ze
Н	-4.87484100	-2.27886900	-1.38054400	(H
С	-4.05253900	-0.30089500	-1.48220800	Т
С	-2.84676500	-0.64953500	-2.19095300	Т
С	-4.40190500	1.03575900	-1.36041100	Т
С	-2.14913800	0.37459100	-2.91365500	С
Н	-2.75969400	-1.66818300	-2.56300000	С
С	-3.64385200	2.03787000	-1.99030200	С
Н	-5.28647700	1.30952600	-0.79162700	С
С	-2.52121700	1.69792100	-2.77178100	С
Н	-1.33100400	0.09593100	-3.57187100	С
Н	-3.95853300	3.07454400	-1.91822800	С
Н	-1.98406600	2.47485500	-3.30769300	Н
Н	-5.05005900	-0.08056500	2.91569100	Н
С	-4.49373300	-3.19054200	1.05688100	Н
Н	-5.54557000	-3.06243900	1.31822700	Н
Н	-4.42254000	-3.97800700	0.30065500	Ν
Н	-3.96003900	-3.52372100	1.95272000	0
Cu	0.03133200	-0.78085500	-1.03523300	С
С	1.17223000	-3.73956500	-1.20645000	С
С	2.66622800	-1.97446900	-1.18841900	С
С	2.21716300	-4.66701800	-1.15617800	С
Н	0.13542100	-4.05893900	-1.23712200	Н
С	3.76539100	-2.82422700	-1.12919300	С
С	3.52944600	-4.20116100	-1.11550400	Н
Н	1.99701600	-5.72878800	-1.15392600	Н

4.76948600	-2.41725000	-1.09894100
4.36128100	-4.89676900	-1.07700000
2.17918300	1.56004200	-1.33047500
2.75595000	-0.52280300	-1.22158200
3.57872700	1.48423400	-1.27018100
1.53763500	2.79521500	-1.43076500
4.41198000	2.58948100	-1.28577300
2.35654200	3.92222500	-1.44946200
0.45775100	2.86361800	-1.49872400
3.76074300	3.82265200	-1.37454500
5.49144200	2.50421500	-1.24385800
1.90522500	4.90529400	-1.53312000
4.35636600	4.72898200	-1.39917400
1.38655900	-2.42217900	-1.22432200
1.69640900	0.25131200	-1.28568400
3.92402700	0.13962500	-1.20394200

³INT2_D

Ν 0

Н Н С С С С С С Н С Н Η Н

Zero-point correction	n=		0.582250
(Hartree/Particle)			
Thermal correction	to Energy=		0.621135
Thermal correction	to Enthalpy=		0.622079
Thermal correction	to Gibbs Free Ene	ergy= 0	0.508079
С	2.62933100	-0.34364900	2.22216600
С	1.44074100	-1.04356100	1.95773500
С	1.42884900	-2.44124100	1.98151600
С	2.63648200	-3.07798100	2.25582700
С	3.81928400	-2.35043400	2.50315800
С	3.84336400	-0.95370700	2.49549000
С	1.01862200	1.05629600	1.82089200
Н	0.51695200	-3.00011100	1.80258600
Н	2.67054200	-4.16171900	2.29253700
Н	4.73469300	-2.88990400	2.72281400
Н	4.74406300	-0.38759300	2.70229600
Ν	0.43639200	-0.10744400	1.69756400
0	2.33981500	1.00613900	2.13963400
С	0.39101700	2.35222000	1.59674100
С	0.98288000	3.55078900	1.99112400
С	-1.44860400	3.46444700	0.71464200
С	0.31081400	4.74399000	1.73063300
Н	1.94402300	3.53743600	2.49109600
С	-0.92418100	4.70199400	1.08342500
Н	-2.39927400	3.37962500	0.19850500
Н	0.74412800	5.69185200	2.03257800

Page S39 of S129

С	4.54651900	2.46175900	-1.18933600
С	2.56081700	3.89628700	-1.35461100
Н	0.61406600	2.93315600	-1.45820800
С	3.95719100	3.72676600	-1.26029100
Н	5.61978900	2.32294400	-1.13384200
Н	2.15912200	4.90169500	-1.42438800
Н	4.59628200	4.60331700	-1.25597400
N	1.28241400	-2.39651900	-1.30540300
Ν	1.72159500	0.25923600	-1.28278500
0	3.93936400	0.03736200	-1.17250700

³TS3_D

Ν

	_			
200	Zero-point correction	I=		0.579487
900	(Hartree/Particle)			
000	Thermal correction	to Energy=		0.618261
300	Thermal correction	to Enthalpy=		0.619205
3600	Thermal correction	to Gibbs Free Ene	ergy=	0.506663
200	С	-1.83950800	1.34937600	2.62114100
700	С	-0.60104800	1.31672800	1.95997800
3700	С	0.20076500	2.45833100	1.90071100
5700	С	-0.29328200	3.60150700	2.52400600
9800	С	-1.54238700	3.61144200	3.17822900
3400	С	-2.35365200	2.47531500	3.24198000
0000	С	-1.50464000	-0.63729500	1.81896100
9100	Н	1.15424000	2.44748400	1.38731900
0700	Н	0.29827400	4.51088600	2.51205600
0000	Н	-1.88091700	4.52441900	3.65673100
2100	Н	-3.30966500	2.47204200	3.75233100
4500	Ν	-0.43341700	0.02466500	1.46139400
9800	0	-2.40257300	0.08366000	2.51952300
9600	С	-1.71428100	-2.03411500	1.47490800
6600	С	-2.77349000	-2.80314700	1.94322200
3200	С	-0.80662800	-3.81685400	0.31109800
3600	С	-2.82462900	-4.14876500	1.57226500
600	Н	-3.52386200	-2.36018800	2.58757100
9500	С	-1.82453000	-4.66567700	0.75226000
900	Н	-0.01558300	-4.17915000	-0.33600900
5600	Н	-3.63087100	-4.78227200	1.92700000
2300	Н	-1.82302200	-5.70791400	0.45330900
3400	Ν	-0.74860000	-2.52771300	0.65808600
7200	Cu	0.67612600	-1.10969900	0.10859800
2400	0	6.45477800	-1.57712300	1.08275100
1100	С	5.13128900	-1.43252300	1.22689600
2900 Page S40	C of S129	4.67433300	-0.00981200	0.88574800

Н	-1.47814900	5.60828000	0.86596400
Ν	-0.80591600	2.31194700	0.96107000
Cu	-1.52128400	0.54709200	0.39157400
0	-4.79560000	-0.94475200	2.51911800
С	-3.82471600	-0.80036400	1.63252300
С	-3.82235900	-1.87035500	0.55111100
С	-2.39339200	-2.09124700	-0.02026400
Н	-1.70276900	-2.34297800	0.79021700
Н	-2.45339600	-2.96011100	-0.69194600
0	-3.06359000	0.17229000	1.69981300
Ν	-1.85560400	-0.94607500	-0.76218200
С	-4.75106700	-1.32724100	-0.59246800
Н	-5.71952500	-1.03164300	-0.17743200
Н	-4.93364200	-2.17670200	-1.26586900
С	-4.09744300	-0.20895300	-1.34013000
С	-2.75041600	-0.56371300	-1.91884300
С	-4.57275600	1.07302100	-1.39938600
С	-2.11630900	0.53742100	-2.71371200
Н	-2.84297200	-1.47296500	-2.54030700
С	-3.86799300	2.09599200	-2.08548700
Н	-5.52483000	1.31044400	-0.93075700
С	-2.65330200	1.79643700	-2.75259800
Н	-1.23192300	0.29286700	-3.29828400
Н	-4.29114700	3.09285900	-2.14830000
Н	-2.16571000	2.57113600	-3.33789100
Н	-4.76704500	-0.19643100	3.14960700
С	-4.36428100	-3.20366500	1.09030000
Н	-5.38900500	-3.09765900	1.45092100
Н	-4.35962500	-3.94967600	0.29004500
Н	-3.75201600	-3.57942700	1.91649800
Cu	0.00410600	-0.69899200	-1.10959600
С	1.00479100	-3.70211700	-1.32776600
С	2.58126000	-2.01250000	-1.23213200
С	2.00262700	-4.68013500	-1.28033600
Н	-0.04504800	-3.97020400	-1.39012600
С	3.63678400	-2.91585100	-1.17479500
С	3.33469800	-4.27963300	-1.20150900
Н	1.73173300	-5.72965000	-1.31095600
Н	4.65840800	-2.55888300	-1.11452300
Н	4.13114700	-5.01561100	-1.16523400
С	2.26719900	1.54387100	-1.29007200
С	2.74144200	-0.56673600	-1.22362400
С	3.66044000	1.39853100	-1.21101100
С	1.68786700	2.81067100	-1.37312900

Н	-6.12885800	-2.54727200	-0.42850100
Ν	-0.29703000	2.45391900	-1.49945800
Ν	-1.85364400	0.23704600	-1.49763800
0	-3.53504900	1.26765100	-0.44319800

³TS4_D

-1.14963500	Zero-point	correction=		0.574768	
-0.86192300	(Hartree/Pa	rticle)			
-1.17899100	Thermal c	Thermal correction to Energy=			
-2.42287800	Thermal c	orrection to Enthalpy=		0.615061	
-0.96086900	Thermal c	orrection to Gibbs Free Ene	ergy=	0.500260	
-3.19675000	С	3.17304900	-1.07031300	1.79600100	
-2.74423500	С	1.86259500	-1.56445300	1.70264400	
-1.62580200	С	1.62404200	-2.93949700	1.68739100	
-0.34530500	С	2.74036600	-3.76994900	1.75167900	
-2.80083800	С	4.04880500	-3.25044000	1.82811900	
-4.17540200	С	4.29814500	-1.87556700	1.85473100	
-1.61074400	С	1.77780900	0.59329800	1.73013600	
-3.50616500	Н	0.61572200	-3.33462600	1.63415100	
1.31397200	Н	2.60326100	-4.84618000	1.75139800	
1.62602800	Н	4.88721200	-3.93676800	1.88452200	
1.32177400	Н	5.29956400	-1.46856600	1.93200300	
1.40189100	Ν	1.00405600	-0.46588800	1.65197500	
2.70956700	0	3.09913200	0.31427800	1.81392800	
-2.11291700	С	1.27867200	1.95559200	1.70003800	
-1.56306400	С	2.08141200	3.07669200	1.90277800	
-0.98045800	С	-0.62115800	3.24890700	1.41928000	
-1.12387600	С	1.47857800	4.33274500	1.86885000	
-1.98099000	Н	3.14338600	2.95859400	2.08361900	
-0.51605400	С	0.10771100	4.42160700	1.62127800	
-0.59555700	Н	-1.68588800	3.27301400	1.21443300	
-1.20574600	Н	2.06965600	5.22725500	2.03448500	
-0.10885700	Н	-0.39625100	5.38138000	1.59243200	
-0.25146600	Ν	-0.05739700	2.03478300	1.46226500	
-1.32467100	Cu	-0.90769800	0.13107900	1.25124000	
-0.97948300	0	-4.68958300	-1.08469600	2.49044300	
-0.65362700	С	-3.76611400	-1.04811700	1.54131300	
-1.69613100	С	-4.26163600	-1.57200800	0.20509500	
-0.29698400	С	-3.10133300	-1.94200400	-0.74772500	
-1.35293500	Н	-2.35883100	-2.54615700	-0.22278600	
-2.23462800	Н	-3.52749200	-2.57419300	-1.53581200	
-0.66455300	0	-2.65052900	-0.58391800	1.77732200	
0.21388900	Ν	-2.35869900	-0.84325700	-1.40405600	
-1.63121700	C	-5.10980600	-0.43297800	-0.42957100	

С	3.17914300	0.15767100	1.23718500
Н	2.86752800	-0.53231700	2.02416100
Н	2.99050100	1.18025700	1.58532700
0	4.39553800	-2.34093600	1.56509900
Ν	2.37466200	-0.03245800	0.01197700
С	4.70568900	0.20827300	-0.65521700
Н	5.48393300	-0.37824500	-1.14963500
Н	4.91169600	1.26391700	-0.86192300
С	3.31066500	-0.12723200	-1.17899100
С	2.87957200	0.54810200	-2.42287800
С	2.80699200	-1.49351600	-0.96086900
С	1.82005200	0.01299300	-3.19675000
Н	3.40001400	1.44373300	-2.74423500
С	1.60534700	-1.92821500	-1.62580200
Н	3.36677300	-2.18470800	-0.34530500
С	1.14249600	-1.16300400	-2.80083800
Н	1.61087700	0.44030600	-4.17540200
Н	1.38691600	-2.99131900	-1.61074400
Н	0.48202800	-1.65890000	-3.50616500
Н	6.68544200	-2.49867800	1.31397200
С	5.56064200	1.00772200	1.62602800
Н	6.60461700	0.91111600	1.32177400
Н	5.22341100	2.02500700	1.40189100
Н	5.50919400	0.85991100	2.70956700
Cu	0.07810400	0.51081500	-2.11291700
С	0.49311400	3.53004900	-1.56306400
С	-1.54264600	2.59590400	-0.98045800
С	0.07622000	4.78953400	-1.12387600
Н	1.48168800	3.37284500	-1.98099000
С	-2.03627000	3.81019900	-0.51605400
С	-1.20543000	4.92967300	-0.59555700
Н	0.74681800	5.63768400	-1.20574600
Н	-3.03861100	3.87160800	-0.10885700
Н	-1.55827300	5.89623700	-0.25146600
С	-2.87615900	-0.69728900	-1.32467100
С	-2.30225700	1.35554000	-0.97948300
С	-3.92428600	-0.04888300	-0.65362700
С	-2.99541400	-2.03770300	-1.69613100
С	-5.11204600	-0.66494100	-0.29698400
С	-4.18377900	-2.67781800	-1.35293500
Н	-2.20344900	-2.54551700	-2.23462800
С	-5.21706500	-2.00876200	-0.66455300

Н

Н

-5.90925900

-4.32696100

-0.13783500

-3.71654200

Page S41 of S129

Н	-5.90975000	-0.13134700	0.25146200	Zero-point correction=		0.583909
Н	-5.59250000	-0.85459600	-1.32294600	(Hartree/Particle)		
С	-4.25108000	0.73546000	-0.81543100	Thermal correction to Energy=		0.622607
С	-3.03217100	0.45129800	-1.51684800	Thermal correction to Enthalpy=		0.623551
С	-4.58086100	2.05177600	-0.57534400	Thermal correction to Gibbs Free E	nergy=	0.511528
С	-2.17446200	1.53446300	-1.93191400	C 3.1607410	-1.54233800	1.51424100
Н	-3.03397700	-0.48827800	-2.49785700	C 1.79711600	-1.30305700	1.73668400
С	-3.74056100	3.11674900	-0.98708600	C 0.9724450	-2.32223400	2.21295400
Н	-5.51429100	2.27884200	-0.06739600	C 1.5631860	-3.56601100	2.42022600
С	-2.55331200	2.84848100	-1.66631900	C 2.9307120	-3.78826400	2.16528400
Н	-1.34950300	1.33261800	-2.61422000	C 3.7701960	-2.77013000	1.70735500
Н	-4.04896300	4.14080700	-0.80634800	C 2.7384750	0.54556700	1.08082800
Н	-1.94059300	3.66675800	-2.03192600	Н -0.07839000	-2.15136200	2.41666800
Н	-4.32324700	-0.70265500	3.31347600	Н 0.9570110	-4.38626000	2.78817000
С	-5.13199800	-2.82750700	0.41881500	Н 3.3483810	-4.77316600	2.34441100
Н	-5.97748000	-2.61271800	1.07408700	Н 4.8278300	-2.92432400	1.52874000
Н	-5.52159800	-3.16968200	-0.54431800	N 1.5627280	0.04111000	1.43407600
Н	-4.55292800	-3.64272200	0.86520100	O 3.7397180	0 -0.35129100	1.10081300
Cu	-0.49724600	-0.39456300	-1.22678100	C 2.9323010	1.93974100	0.74866900
С	0.25909200	-3.46040400	-1.56516000	C 4.1624160	2.50661400	0.41871700
С	1.96844000	-1.89553400	-1.54337400	C 1.8350710	3.96960700	0.54693200
С	1.17451200	-4.50764600	-1.66592900	C 4.2042880	3.87609400	0.15772700
Н	-0.80920800	-3.64823700	-1.54632100	Н 5.0531270	0 1.89072500	0.37651300
С	2.94950100	-2.88262500	-1.62854000	C 3.02796200	4.62343900	0.23126600
С	2.53988300	-4.21228400	-1.69280900	Н 0.8938800	4.50822800	0.59910800
Н	0.81909800	-5.53005700	-1.72823300	Н 5.1454750	0 4.35347100	-0.09421900
Н	3.99705100	-2.60576500	-1.64799700	Н 3.0275630	5.69161400	0.04575200
Н	3.27440600	-5.00690300	-1.76935000	N 1.7806710	2.66081300	0.80166300
С	1.90009100	1.66829400	-1.49155600	Cu 0.1587550	1.25700600	0.88902500
С	2.23425500	-0.47678700	-1.51362500	O -3.27344800	3.36374000	0.00580900
С	3.28160800	1.42548000	-1.44857100	C -2.57980200	2.41254000	0.59296300
С	1.41031600	2.97405200	-1.50653600	C -3.38371800	1.60798700	1.60099200
С	4.23787100	2.42520300	-1.40461000	C -2.78299900	0.22607800	1.87729900
С	2.35513400	3.99702200	-1.47079100	Н -1.78177300	0.28604400	2.31066800
Н	0.34685700	3.17608200	-1.52825100	Н -3.43317800	-0.25470600	2.61498900
С	3.73756800	3.73020000	-1.41738900	O -1.37029300	2.29230500	0.33471800
Н	5.29958600	2.21018500	-1.37556300	N -2.70598700	-0.64235700	0.65818800
Н	2.02064200	5.02892500	-1.48526600	C -4.81235900	1.38370500	1.07038600
Н	4.43607200	4.55998400	-1.39616900	Н -5.29477400	2.33535800	0.84004000
N	0.63726200	-2.17924700	-1.50203500	Н -5.39763200	0.92245200	1.87606000
Ν	1.26787100	0.42289900	-1.52752700	C -4.78766100	0.49527800	-0.15061800
0	3.47246800	0.05005600	-1.46147900	C -3.79169700	-0.47519000	-0.32215300
				C -5.76691000	0.61314700	-1.14432800
³ PRO D				C -3.77779300	-1.31048800	-1.44647700

Н	-2.72962500	-1.60858900	0.98805000	С	0.66449100	1.91062050	1.44105990
С	-5.76719700	-0.21524800	-2.26384700	Н	1.32874390	-2.07509890	2.04308390
Н	-6.54280500	1.36401100	-1.02604900	Н	3.68110960	-2.47795590	2.77606010
С	-4.76970900	-1.18235900	-2.41410100	Н	5.26294190	-0.61324080	3.06329030
Н	-2.99668800	-2.05563700	-1.56534400	Н	4.56263340	1.75522090	2.65259870
Н	-6.54017400	-0.10671600	-3.01723400	Ν	0.44161970	0.62469780	1.48830780
Н	-4.76087200	-1.83326000	-3.28190000	0	1.91452290	2.29366100	1.81179050
Н	-2.69695200	3.88012500	-0.59351400	С	-0.29109350	2.92057710	1.00954860
С	-3.38670400	2.42768400	2.91480200	С	-0.06984080	4.28587470	1.18638160
Н	-3.86341500	3.39884600	2.76070200	С	-2.35207250	3.31018160	0.01428820
Н	-3.95450200	1.88653700	3.67749900	С	-1.04742470	5.18232070	0.75772330
Н	-2.37088800	2.58865100	3.29137200	Н	0.84622490	4.62334320	1.65590810
Cu	-0.98776400	-0.63327900	-0.34829400	С	-2.21059010	4.68760710	0.16729000
С	-1.27733500	-3.73166200	-0.03953600	Н	-3.23262980	2.87918350	-0.45082640
С	0.64556000	-2.82504900	-1.03293500	Н	-0.90478780	6.25000470	0.88838480
С	-0.73034900	-5.00074400	-0.03376600	Н	-2.99611540	5.35250940	-0.17376210
Н	-2.28832500	-3.56920800	0.32867400	Ν	-1.41255740	2.44074040	0.41709870
С	1.26558100	-4.09405600	-1.04505500	Cu	-1.59197280	0.48924220	0.17846530
С	0.57723500	-5.17880800	-0.54649500	Ο	-4.58077320	-1.27178660	2.70832510
Н	-1.30732900	-5.83764200	0.34166400	С	-3.55762350	-1.12356130	1.87299450
Н	2.26845800	-4.18796300	-1.44588500	С	-3.35575360	-2.33825730	0.96971000
Н	1.02987100	-6.16460200	-0.55358800	С	-1.95410130	-2.33792820	0.32351530
С	1.41384800	0.50945000	-1.98176300	Н	-1.18763670	-2.30971720	1.10365670
С	1.21347100	-1.62637700	-1.49861200	Н	-1.85736830	-3.29687460	-0.21108290
С	2.62590200	-0.14224300	-2.26259500	0	-2.90614580	-0.08216930	1.84297730
С	1.27618800	1.87188400	-2.24429000	Ν	-1.68053850	-1.24809300	-0.62166720
С	3.73763800	0.49815800	-2.77628100	С	-4.40027230	-2.23352040	-0.18743780
С	2.38886200	2.53984100	-2.76115400	Н	-5.41281330	-2.14676630	0.21542540
Н	0.34049700	2.38787200	-2.05661300	Н	-4.34226120	-3.18133600	-0.74257690
С	3.59724300	1.87138500	-3.01579700	С	-4.06584130	-1.09781080	-1.09442170
Н	4.65516500	-0.03638800	-2.99382300	С	-2.69423350	-1.15021990	-1.72109000
Н	2.31541700	3.59964200	-2.98099200	С	-4.93025370	-0.05627600	-1.33972380
Н	4.43472600	2.42278800	-3.42953100	С	-2.36029500	0.08697100	-2.50382340
Ν	-0.62928900	-2.65230000	-0.51901500	Н	-2.62885710	-2.04866250	-2.36921160
Ν	0.53096200	-0.45172200	-1.48367400	С	-4.57659530	0.99822490	-2.20478410
0	2.48831600	-1.48813900	-1.95576900	Н	-5.91256260	-0.05634450	-0.87614470
				С	-3.28050780	1.06867260	-2.76468370
MECP				Н	-1.36676900	0.13289750	-2.94277660
С	2.56436850	1.11296160	2.11360110	Н	-5.29938630	1.77968130	-2.41816190
С	1.64499820	0.06735050	1.92555260	Н	-3.01225740	1.91420740	-3.39040590
С	2.02777240	-1.25516540	2.16653870	Н	-4.67412420	-0.45598440	3.24094380
С	3.34341950	-1.46722840	2.57217320	С	-3.56722280	-3.64089260	1.75847420
С	4.25000710	-0.39992170	2.73892120	Н	-4.58161630	-3.70059830	2.15693250
С	3.87700400	0.92735260	2.51575800	Н	-3.40493610	-4.49926510	1.09947240
			Page	S43 of S129			

Н	-2.86750910	-3.71264490	2.59753810	Ο	1.89228800	2.31305700	1.78478700
Cu	0.18197220	-0.99390430	-1.04498130	С	-0.31097300	2.94706100	0.97202300
С	1.41595090	-4.02356510	-0.74231340	С	-0.09545500	4.31144400	1.16222200
С	2.86395670	-2.23631620	-0.92449520	С	-2.38645300	3.33888700	0.00813000
С	2.48036740	-4.91736900	-0.59111880	С	-1.08312900	5.20807800	0.75892000
Н	0.38742660	-4.37081750	-0.73338560	Н	0.82395400	4.64762100	1.62664200
С	3.98450750	-3.04923300	-0.77750950	С	-2.25267200	4.71445500	0.17988500
С	3.78209490	-4.42019870	-0.60677780	Н	-3.27052900	2.91062600	-0.45213500
Н	2.28403980	-5.97683940	-0.46560120	Н	-0.94519000	6.27477100	0.90219600
Н	4.97912650	-2.61798650	-0.79938660	Н	-3.04864500	5.37853300	-0.13762100
Н	4.62993910	-5.08786630	-0.49254470	Ν	-1.43723300	2.46886700	0.38419700
С	2.34612980	1.26404590	-1.40894660	Cu	-1.58913900	0.52810400	0.11939300
С	2.93132100	-0.79393390	-1.10803790	0	-4.65414500	-1.19513400	2.59756200
С	3.73081950	1.22145400	-1.19429060	С	-3.54282100	-1.10576200	1.86724900
С	1.69714380	2.47989530	-1.62803570	С	-3.34601600	-2.32015000	0.96010900
С	4.54066280	2.34444480	-1.16977760	С	-1.95018700	-2.31334000	0.31119000
С	2.49094460	3.62478220	-1.60341910	Н	-1.18232900	-2.27541500	1.08851100
Н	0.62921190	2.52090470	-1.81265840	Н	-1.84859700	-3.27358100	-0.22110500
С	3.88076690	3.55855200	-1.37724880	0	-2.80798700	-0.12701600	1.92852500
Н	5.61033100	2.28483770	-1.00738930	Ν	-1.67484100	-1.22639200	-0.63931800
Н	2.03279670	4.59377520	-1.77196140	С	-4.38916800	-2.23825100	-0.19874100
Н	4.45914960	4.47620650	-1.37513740	Н	-5.40685400	-2.18508600	0.19569900
N	1.59553820	-2.71000720	-0.90174190	Н	-4.29427500	-3.17367900	-0.76994700
Ν	1.87740490	-0.04787170	-1.34335260	С	-4.07787200	-1.07869900	-1.08059700
0	4.08507400	-0.10759260	-1.01205330	С	-2.70413200	-1.07718300	-1.71096600
				С	-4.97512600	-0.06853800	-1.32242100
¹ INT2 D				C	-2.36842700	0.24188400	-2.34896400
Zero-point correction=	=		0.582453	Н	-2.65756200	-1.90206800	-2.45275900
(Hartree/Particle)			0.002100	C	-4 63664100	1.02188000	-2 15528500
Thermal correction to	Energy=		0 621788	н	-5 96839500	-0 11451500	-0.88527900
Thermal correction to	Entralny=		0.622732	n C	-3 32980500	1 18967300	-2 63620800
Thermal correction to	Gibbs Eree Ere		0.022752	н	1 35733700	0.34730300	2.03020000
C	2 53353800	1 12740000	2 088/1000	н	5 39172800	1 76000600	2 37970900
C	1 61366200	0.08622000	1 87853800	н	3.06926000	2.07889500	3 20120900
c C	1.01300200	1 22048200	2 11505200	II	-3.00920000	2.07889500	-3.20120900
C C	2.20(00000	-1.23948200	2.11393200	ĥ	-4.72497900	-0.39407700	1.7(512200
c	3.29000900	-1.43983800	2.55952800	C II	-3.34999000	-3.013/4000	2.10512500
C	4.20340500	-0.39695900	2.72901400	Н	-4.55626400	-3.66454500	2.18518500
C	3.83886/00	0.93343600	2.51060300	Н	-3.40325200	-4.48311900	1.1140/200
C	0.64673400	1.93601200	1.39416400	Н	-2.83332700	-3.6/982900	2.59047400
Н	1.28850500	-2.05564000	1.97242600	Cu	0.20719600	-1.07704500	-1.09407700
H	3.62758900	-2.47383400	2.73729900	С	1.52094000	-4.12006400	-0.72061400
Н	5.21094100	-0.61688500	3.06601700	С	2.92627400	-2.30588600	-0.93060200
Н	4.52614400	1.75692100	2.66472200	С	2.60522500	-4.98910200	-0.56205300
Ν	0.41932400	0.65110700	1.42811700	Н	0.50049700	-4.49078200	-0.70239500

Page S44 of S129

С	4.06626400	-3.09145000	-0.77913900	С
С	3.89597600	-4.46429500	-0.59005600	Н
Н	2.43287000	-6.05042300	-0.42109400	Н
Н	5.05071500	-2.63876700	-0.81282600	Н
Н	4.75888600	-5.11135000	-0.47159300	Ν
С	2.36099900	1.18429100	-1.44070200	Cu
С	2.96843500	-0.86395700	-1.12751900	0
С	3.74087400	1.16308300	-1.19465500	С
С	1.69969600	2.39234300	-1.66659700	С
С	4.53218800	2.29838200	-1.14510200	С
С	2.47452100	3.54953400	-1.61814100	Н
Н	0.63486800	2.41940200	-1.87184100	Н
С	3.85948000	3.50388500	-1.36075700	0
Н	5.59843800	2.25411900	-0.95678200	Ν
Н	2.00514300	4.51241200	-1.79136800	С
Н	4.42339300	4.43036800	-1.33919100	Н
Ν	1.66865300	-2.80486100	-0.89680800	Н
Ν	1.90923300	-0.13492400	-1.38849100	С
0	4.11058300	-0.15960000	-1.00570000	С
				С
¹ TS4_D				С
Zero-point correction=	=		0.578050	Н
(Hartree/Particle)				С
Thermal correction to	o Energy=		0.617532	Н
Thermal correction to	o Enthalpy=		0.618476	С
Thermal correction to	o Gibbs Free Ene	ergy=	0.503765	Н
С	2.96496300	-0.48817400	1.95637500	Н
С	1.73878300	-1.16140200	1.84811900	Н
С	1.69483100	-2.55669000	1.86892600	Н
С	2.91282600	-3.22104100	1.98558600	С
С	4.13409700	-2.52171700	2.07932100	Н
С	4.18956200	-1.12606000	2.06920800	Н
С	1.35650500	0.95918700	1.78579100	Н
Н	0.75346500	-3.09034500	1.80204500	Cu
Н	2.92672400	-4.30536600	2.01205300	С
Н	5.05749700	-3.08290300	2.17691600	С
Н	5.12189800	-0.58068500	2.15649100	С
Ν	0.73813000	-0.19563400	1.73145200	Н
0	2.69910100	0.87184200	1.91959000	С
С	0.68748900	2.24601700	1.67635800	С
С	1.33520200	3.46298800	1.87695400	Н
С	-1.33239400	3.28127400	1.24541100	Н
С	0.58874500	4.63479000	1.75312600	Н
Н	2.39058400	3.48296700	2.12232000	С

1ак, 1	Amemiya, Noad	a, ana shibasa
-0.76492800	4.54445200	1.43178300
-2.38193800	3.16733600	0.99573400
1.05711600	5.60088600	1.90982600
-1.37954300	5.43254900	1.33359200
-0.62729500	2.14981000	1.36016700
-1.21535700	0.10390500	1.17592100
-4.99212200	-1.49143600	2.13822800
-3.86908500	-1.30454900	1.45945500
-3.86889000	-2.01607900	0.11236600
-2.48800800	-1.94193700	-0.56125000
-1.73010500	-2.42415200	0.06184200
-2.54685400	-2.52432200	-1.49048900
-2.96505000	-0.60531800	1.91755600
-1.99143200	-0.57508500	-0.81793400
-4.88982900	-1.30651200	-0.80984100
-5.87269500	-1.26212900	-0.33236800
-5.01173500	-1 92967500	-1 70603500
-4 44100900	0.07782400	-1 19600500
-3.04022300	0.38115700	-1 30404900
-5.35696000	1.08703300	-1.47273000
-3.53670000	1.72/05800	1 60151800
-2.49799600	-0 24971200	-2 16742600
-4.94657400	2 37772500	-1.81680300
6 41762200	0.86110800	1 /1031100
-3.58001100	2 69177600	-1.88206700
1 57296100	1 93742700	1 64830100
-1.57230100	3 13751500	2 03622800
3 26354500	3 60440100	2 15022800
-3.20334300	1.01056200	-2.13022800
4 26124800	2 40287600	0.20726000
-4.20134800	-3.49387000	0.30730000
-3.20933100	-5.58152900	0.71727800
-4.23337800	-4.010/0000	-0.03709100
-3.30998000	-4.00130200	1 18742000
-0.12898800	-0.55599700	-1.18/45000
0.90667900	-3.03003800	-1.3/198100
2.45564100	-1.958/1/00	-1.41000300
1.91082000	-4.6293/300	-1.42948/00
-0.14066900	-3.94248600	-1.33544600
3.52569800	-2.85062800	-1.46896500
3.24020100	-4.21692000	-1.47690800
1.64740700	-5.68138200	-1.44102500
4.54407500	-2.48222700	-1.50844200
4.04460800	-4.94355900	-1.52428200
2.27260700	1.62115300	-1.42876500

Page S45 of S129

2.09616200

-1.33478000

-4.83474600

С	2.63899400	-0.51409300	-1.41843100	Ο
С	3.65765200	1.40708900	-1.43956500	С
С	1.75715100	2.91745400	-1.43265600	С
С	4.59635900	2.42445800	-1.45065100	С
С	2.68242300	3.95936300	-1.44611200	Н
Н	0.68831300	3.10161500	-1.42141400	Н
С	4.07082800	3.71919100	-1.45383200	0
Н	5.66235800	2.23020900	-1.46466200	Ν
Н	2.32778300	4.98469200	-1.45619000	С
Н	4.75292000	4.56255900	-1.47059400	Н
Ν	1.16215300	-2.34779300	-1.36281200	Н
Ν	1.66033000	0.36407100	-1.41160300	С
0	3.86829600	0.03667900	-1.43494100	С
				С
¹ PRO_D				С
Zero-point correction=			0.585157	Н
(Hartree/Particle)				С
Thermal correction to	Energy=		0.624549	Н
Thermal correction to	Enthalpy=		0.625493	С
Thermal correction to	Gibbs Free Ene	ergy=	0.509955	Н
С	3.26018600	-0.71804900	1.80820700	Н
С	2.02037000	-1.37039900	1.74354000	Н
С	1.95147000	-2.76392100	1.76415300	Н
С	3.16189900	-3.44822000	1.84137200	С
С	4.39725200	-2.77042900	1.89473400	Н
С	4.47653300	-1.37561400	1.88036600	Н
С	1.67418800	0.76336000	1.71096300	Н
Н	0.99927700	-3.28126600	1.72878500	Cu
Н	3.15804600	-4.53269300	1.86878700	С
Н	5.31348900	-3.34739600	1.96328000	С
Н	5.42031400	-0.84605800	1.93672300	С
Ν	1.03593100	-0.38278400	1.67260300	Н
0	3.01532600	0.64836400	1.78583700	С
С	1.01599700	2.06094300	1.66819800	С
С	1.68993200	3.26701700	1.83855700	Н
С	-1.02299100	3.11250900	1.41698200	Н
С	0.94287400	4.44542400	1.79678200	Н
Н	2.76199200	3.27704500	1.99677700	С
С	-0.43160700	4.36946900	1.58210000	С
Н	-2.08829200	3.00836500	1.23969000	С
Н	1.42977700	5.40549900	1.93209800	С
Н	-1.04482400	5.26333100	1.54802000	С
Ν	-0.31955900	1.97793400	1.45959000	С
Cu	-0.91106300	-0.14520800	1.47308700	Н

Page S46 of S129

-3.72992100 -1.30756200 1.37114600 -3.87323000 -2.05197800 0.04758000 -2.56296900 -1.99811600 -0.74892500 -1.71319100 -2.17462300 -0.08667600 -2.57738100 -2.80503600 -1.48501900 -2.72551300 -0.72436100 1.78656500 -0.71342400 -1.51789500 -2.32084800 -0.76801900 -4.97961800 -1.33705500 -5.94592700 -1.42705800 -0.26744800 -5.06831000 -1.84805500 -1.73664400 -4.58277400 0.10695600 -0.92917700-3.24649200 0.39487800 -1.23543700-5.46395100 1.16767500 -0.70311100 -2.80388800 1.71102000 -1.33913000 -2.45839100 -0.94463800 -2.50435100 -5.03212700 2.48968600 -0.81816200 -6.49722900 0.95223000 -0.44708900-1.14116900 -3.70155000 2.76167500 -1.76474500 1.90742300 -1.58577800 -5.73227300 3.30307400 -0.65820200 -3.36229000 3.78781500 -1.24309900 -4.69121600 -0.84775000 2.93259600 -4.23537000 -3.52371400 0.33885300 -5.13890800 -3.58778900 0.94822900 -4.41854400 -4.04739400 -0.60404600 -3.42559500 -4.03825000 0.86778400 -0.40831400 -0.24854000-1.45401700 0.89747100 -3.53644300 -1.54485000 2.30463600 -1.72022800 -1.51415400 1.97704800 -4.42434200 -1.61265200 -0.12371200 -3.90724500 -1.53313600 3.44381600 -2.52226100 -1.571812003.26927600 -3.90586800 -1.624579001.79879000 -5.49314400 -1.65876200 4.42989400 -2.07334800 -1.58084800 4.13028700 -4.56383000 -1.67840300 1.86584500 1.84179000 -1.52183200 2.37840200-0.26522500 -1.490570003.26117000 1.72431500 -1.46691400 1.26195000 3.09824900 -1.57344900 4.12620500 2.80509600 -1.43888900 2.11183600 4.20167100 -1.55461500 0.18483200 3.20784400 -1.62428800

С	3.51228800	4.05965400	-1.48365100
Н	5.20260600	2.68598000	-1.40045600
Н	1.68788300	5.19922200	-1.60171600
Н	4.13408700	4.94862600	-1.47772900
Ν	1.04539200	-2.21197900	-1.49753300
Ν	1.34298300	0.54442900	-1.51923200
0	3.56609000	0.37162600	-1.45099900

9. NMR spectra

5-(4-((*tert*-Butyldimethylsilyl)oxy)phenethyl)-2,2-dimethyl-1,3-dioxane-4,6-dione (S1u)

tert-Butyl 4-hexyl-5-oxoisoxazolidine-2-carboxylate (S2b)

tert-Butyl 5-oxo-4-phenethylisoxazolidine-2-carboxylate (S2c)

¹H NMR (400 MHz, CDCl₃) 74.249 4.228 4.222 4.222 ||ſ СН3 2.074 3.044 H00.1 Ho. 3.08-Hoot. Ä 9.12-= 9.0 4.5 f1 (ppm) 8.5 8.0 . 7.5 7.0 6.5 6.0 5.5 5.0 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 ¹³C NMR (101 MHz, CDCl₃) 129.010 128.722 128.403 126.579 --- 53.595 СН3 сн. 100 f1 (ppm) 70 30 20 200 . 190 . 180 170 . 160 . 150 . 140 . 130 120 110 90 80 60 50 40 10 0

tert-Butyl 5-oxo-4-(pent-4-en-1-yl)isoxazolidine-2-carboxylate (S2g) ¹H NMR (400 MHz, CDCl₃)

tert-Butyl 4-(4-((tert-butyldimethylsilyl)oxy)phenethyl)-5-oxoisoxazolidine-2-carboxylate (S2u)

tert-Butyl 4-benzyl-4-methyl-5-oxoisoxazolidine-2-carboxylate (3a)

tert-Butyl 4-benzyl-4-hexyl-5-oxoisoxazolidine-2-carboxylate (3b)

tert-Butyl 4-benzyl-5-oxo-4-phenethylisoxazolidine-2-carboxylate (3c)

¹H NMR (400 MHz, CDCl₃)

200 190 180 170 160 150

140 130 120

110 100 f1 (ppm) 90 80 70 60 50

40 30 20

10 0

tert-Butyl 4-benzyl-5-oxo-4-(pent-4-en-1-yl)isoxazolidine-2-carboxylate (3g) ¹H NMR (400 MHz, CDCl₃)

tert-Butyl 4-benzyl-4-(cyanomethyl)-5-oxoisoxazolidine-2-carboxylate (3h) ¹H NMR (400 MHz, CDCl₃)

tert-Butyl 4-benzyl-5-oxo-4-(prop-2-yn-1-yl)isoxazolidine-2-carboxylate (3i) ¹H NMR (400 MHz, CDCl₃)

tert-Butyl 4-methyl-4-(4-methylbenzyl)-5-oxoisoxazolidine-2-carboxylate (3j) ¹H NMR (400 MHz, CDCl₃)

tert-Butyl 4-methyl-4-(2-methylbenzyl)-5-oxoisoxazolidine-2-carboxylate (3k)

tert-Butyl 4-(4-bromobenzyl)-4-methyl-5-oxoisoxazolidine-2-carboxylate (3l) ¹H NMR (400 MHz, CDCl₃)

tert-Butyl 4-(2-chlorobenzyl)-4-methyl-5-oxoisoxazolidine-2-carboxylate (3m)

tert-Butyl 4-methyl-4-(3-methylbenzyl)-5-oxoisoxazolidine-2-carboxylate (3n) ¹H NMR (400 MHz, CDCl₃)

tert-Butyl 4-(3-methoxybenzyl)-4-methyl-5-oxoisoxazolidine-2-carboxylate (30)

tert-Butyl 4-(3-fluorobenzyl)-4-methyl-5-oxoisoxazolidine-2-carboxylate (3p) ¹H NMR (400 MHz, CDCl₃)

¹⁹F NMR (376 MHz, CDCl₃)

---- -112.481

—																			 						<u> </u>	 _	
-10	-15	-20	-25	-30	-35	-40	-45	-50	-55	-60	-65	-70	-75	-80	-85	-90	-95	-100	-110	-1	20	-130)	-1	.40	-150	

tert-Butyl 4-methyl-5-oxo-4-(4-(4,4,5,5-tetramethyl-1,3-dioxolan-2-yl)benzyl)isoxazolidine-2-carboxylate (3q)

tert-Butyl 4-methyl-5-oxo-4-(4-(4,4,5,5-tetramethyl-1,3-dioxolan-2-yl)benzyl)isoxazolidine-2-carboxylate (3r) ¹H NMR (400 MHz, CDCl₃)

tert-Butyl 4-(4-(tert-butoxy)benzyl)-4-methyl-5-oxoisoxazolidine-2-carboxylate (3t) ¹H NMR (400 MHz, CDCl₃)

4-Benzyl-2,4-dimethylisoxazolidin-5-one (10): ¹H NMR (400 MHz, CDCl₃)

tert-Butyl4-(4-((tert-butyldimethylsilyl)oxy)phenethyl)-4-methyl-5-oxoisoxazolidine-2-carboxylate (3u)

tert-Butyl 5-oxo-3-phenylisoxazolidine-2-carboxylate (83) ¹H NMR (400 MHz, CDCl₃)

tert-Butyl 4,4-dibenzyl-5-oxo-3-phenylisoxazolidine-2-carboxylate (S4) ¹H NMR (400 MHz, CDCl₃)

4-Benzyl-4-methylisoxazolidin-5-one (1a) ¹H NMR (400 MHz, CDCl₃)

4-Benzyl-4-hexylisoxazolidin-5-one (1b) ¹H NMR (400 MHz, CDCl₃)

4-Benzyl-4-phenethylisoxazolidin-5-one (1c)

¹H NMR (400 MHz, CDCl₃)

4-Benzyl-4-(pent-4-en-1-yl)isoxazolidin-5-one (1g) ¹H NMR (400 MHz, CDCl₃)

2-(4-Benzyl-5-oxoisoxazolidin-4-yl)acetonitrile (1h)

¹H NMR (400 MHz, CDCl₃)

4-Benzyl-4-(prop-2-yn-1-yl)isoxazolidin-5-one (1i) ¹H NMR (400 MHz, CDCl₃)

4-Methyl-4-(4-methylbenzyl)isoxazolidin-5-one (1j) ¹H NMR (400 MHz, CDCl₃)

4-Methyl-4-(2-methylbenzyl)isoxazolidin-5-one (1k) ¹H NMR (400 MHz, CDCl₃)

4-(4-Bromobenzyl)-4-methylisoxazolidin-5-one (11) ¹H NMR (400 MHz, CDCl₃)

4-(2-Chlorobenzyl)-4-methylisoxazolidin-5-one (1m)

¹H NMR (400 MHz, CDCl₃)

4-Methyl-4-(3-methylbenzyl)isoxazolidin-5-one (1n)

4-(3-Methoxybenzyl)-4-methylisoxazolidin-5-one (10) ¹H NMR (400 MHz, CDCl₃)

4-(3-Fluorobenzyl)-4-methylisoxazolidin-5-one (1p) ¹H NMR (400 MHz, CDCl₃)

¹⁹F NMR (376 MHz, CDCl₃)

1 1		1 1		1 1					1 1	1 1	1 1			1 1
-10	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150

4-Methyl-4-(4-(4,4,5,5-tetramethyl-1,3-dioxolan-2-yl)benzyl)isoxazolidin-5-one (1q) ¹H NMR (400 MHz, CDCl₃)

4-Methyl-4-(4-((triisopropylsilyl)ethynyl)benzyl)isoxazolidin-5-one (1r) ¹H NMR (400 MHz, CDCl₃)

4-(4-(*tert*-Butoxy)benzyl)-4-methylisoxazolidin-5-one (15) ¹H NMR (400 MHz, CD₃OD)

4-(4-Hydroxyphenethyl)-4-methylisoxazolidin-5-one (18) ¹H NMR (400 MHz, CDCl₃)

3-Phenyl-3λ³-isoxazolidin-5-one-3-¹³C (¹³C-12)

¹H NMR (400 MHz, CDCl₃)

¹³C NMR (101 MHz, CDCl₃)

3-Phenylisoxazolidin-5-one (12)

¹H NMR (400 MHz, CDCl₃)

4,4-Dibenzyl-3-phenylisoxazolidin-5-one (13)

¹H NMR (400 MHz, CDCl₃)

3-Methyl-1,2,3,4-tetrahydroquinoline-3-carboxylic acid (2a) ¹H NMR (400 MHz, CDCl₃)

3-Hexyl-1,2,3,4-tetrahydroquinoline-3-carboxylic acid (2b) ¹H NMR (400 MHz, CDCl₃)

3-Phenethyl-1,2,3,4-tetrahydroquinoline-3-carboxylic acid (2c)

¹H NMR (400 MHz, CDCl₃)

3-(Cyclohexylmethyl)-1,2,3,4-tetrahydroquinoline-3-carboxylic acid (2d) ¹H NMR (400 MHz, CDCl₃)

3-(3-(Benzyloxy)-3-oxopropyl)-1,2,3,4-tetrahydroquinoline-3-carboxylic acid (2e) ¹H NMR (400 MHz, CDCl₃)

3-(2-(Phenylsulfonyl)ethyl)-1,2,3,4-tetrahydroquinoline-3-carboxylic acid (2f) ¹H NMR (400 MHz, CDCl₃)

3-(Pent-4-en-1-yl)-1,2,3,4-tetrahydroquinoline-3-carboxylic acid (2g) ¹H NMR (400 MHz, CDCl₃)

3-(Cyanomethyl)-1,2,3,4-tetrahydroquinoline-3-carboxylic acid (2h) ¹H NMR (400 MHz, CD₃OD)

5-Methylene-1',4,4',5-tetrahydro-2H,2'H-spiro[furan-3,3'-quinolin]-2-one (5) ¹H NMR (400 MHz, CDCl₃)

DEPT 90

3,7-Dimethyl-1,2,3,4-tetrahydroquinoline-3-carboxylic acid (2j) ¹H NMR (400 MHz, CDCl₃)

3,5-Dimethyl-1,2,3,4-tetrahydroquinoline-3-carboxylic acid (2k) ¹H NMR (400 MHz, CDCl₃)

7-Bromo-3-methyl-1,2,3,4-tetrahydroquinoline-3-carboxylic acid (2l) ¹H NMR (400 MHz, CD₃OD)

5-Chloro-3-methyl-1,2,3,4-tetrahydroquinoline-3-carboxylic acid (2m) ¹H NMR (400 MHz, CDCl₃)

3,6-Dimethyl-1,2,3,4-tetrahydroquinoline-3-carboxylic acid (2n)

6-Methoxy-3-methyl-1,2,3,4-tetrahydroquinoline-3-carboxylic acid (20a) ¹H NMR (400 MHz, CDCl₃)

8-Methoxy-3-methyl-1,2,3,4-tetrahydroquinoline-3-carboxylic acid (2ob) ¹H NMR (400 MHz, CDCl₃)

6-Fluoro-3-methyl-1,2,3,4-tetrahydroquinoline-3-carboxylic acid (2p) ¹H NMR (400 MHz, CDCl₃)

¹⁹F NMR (376 MHz, CDCl₃)

1

	J anon 1997 - 1

1 1												· ·				· · ·	· · ·				
-50	-55	-60	-65	-70	-75	-80	-85	-90	-95	-100	-105	-110	-115	-120	-125	-130	-135	-140	-145	-150	-155

3-Methyl-7-(4,4,5,5-tetramethyl-1,3-dioxolan-2-yl)-1,2,3,4-tetrahydroquinoline-3-carboxylic acid (2q) ¹H NMR (400 MHz, CDCl₃)

3-Methyl-7-((triisopropylsilyl)ethynyl)-1,2,3,4-tetrahydroquinoline-3-carboxylic acid (2r) ¹H NMR (400 MHz, CDCl₃)

1,2,3,4-Tetrahydrobenzo[g]quinoline-3-carboxylic acid (2s)

2-(1,2,3,4-Tetrahydroquinolin-2-yl)acetic acid (7) ¹H NMR (400 MHz, CDCl₃)

3-Methyl-8-oxo-1-azaspiro[4.5]deca-6,9-dien-1-ium-3-carboxylate (16) ¹H NMR (400 MHz, D₂O)

7-Hydroxy-3-methyl-1,2,3,4-tetrahydroquinoline-3-carboxylic acid (17) ¹H NMR (600 MHz, CD₃OD)

DEPT 135

5-(4-Hydroxyphenyl)-3-methylpyrrolidine-3-carboxylic acid (19) ¹H NMR (400 MHz, D₂O)

3-Methyl-9-oxo-1-azaspiro[5.5]undeca-7,10-dien-1-ium-3-carboxylate (20) ¹H NMR (400 MHz, D₂O)

DEPT 90

(2*R*,3*R*)-3-Benzyl-2-phenyl-1,2,3,4-tetrahydroquinoline-3-carboxylic acid (14) ¹H NMR (400 MHz, CDCl₃)

HSQC

(R)-3-Benzyl-1,2,3,4-tetrahydroquinoline-3-carboxylic acid (85)

¹H NMR (400 MHz, CDCl₃)

7,289 7,727 7,727 7,727 7,728 7,729 ОН 1.997 1.97 1.97 1.97 2.097 2 22.04 2.04 1.97 1.97 1.97 1.01 1.01 H86.0 7.0 9.0 8.5 8.0 7.5 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 . 1.0 0.5 0.0 ¹³C NMR (101 MHz, CDCl₃) $\begin{array}{c} -136.468 \\ 129.892 \\ 129.892 \\ 129.892 \\ 128.283 \\ 126.907 \\ 126.907 \\ 126.907 \\ 118.210 \\ -114.440 \end{array}$ 人 46.908 人 45.430 人 41.460 ---- 34.895 он 200 160 110 100 70 50 30 20 10 190 180 170 150 140 130 120 90 80 60 40 0

Methyl (*R*)-3-benzyl-1,2,3,4-tetrahydroquinoline-3-carboxylate (9)

¹H NMR (400 MHz, CDCl₃)

¹³C-Acetophenone

¹H NMR (400 MHz, CDCl₃)

