
Supplementary Information: Formally exact simulations of mesoscale exciton
dynamics in molecular materials

Leonel Varvelo, Jacob K. Lynd, and Doran I. G. Bennett∗

Department of Chemistry, Southern Methodist University, PO Box 750314, Dallas, TX, USA

I. ADAPTIVE BASIS ALGORITHM

Below we describe the adaptive algorithm for the normalized non-linear HOPS equation

~∂t|ψ(~k)
t 〉 =

(
− iĤS − ~k · ~γ − Γt +

∑
n

L̂n(z∗n,t + ξn,t)
)
|ψ(~k)

t 〉

+
∑
n

~k[n]γnL̂n|ψ(~k−~en)
t 〉

−
∑
n

(
gn
γn

)(L̂†n − 〈L̂†n〉t)|ψ
(~k+~en)
t 〉,

(1)

where

Γt =
∑
n

〈L̂n〉t Re[z∗n,t + ξn,t]−
∑
n

(
gn
γn

)Re[〈ψ(~0)
t |L̂†n|ψ

(~en)
t 〉]

+
∑
n

(
gn
γn

) 〈L̂†n〉t Re[〈ψ(~0)
t |ψ

(~en)
t 〉]

(2)

ensures normalization of the physical wave function. We define the derivative error in terms of Euclidean distance
between the true derivative vector and the effective derivative vector constructed using the adaptive basis. The key
equations (below) provide an upper bound on the derivative error squared and are derived by considering all possible
flux contributions in the normalized non-linear HOPS equation (eq. (1)), excluding higher order effects introduced
through the normalization correction (Γt).

A. Basis Sets

The adaptive basis at the previous time point (t) is defined as the direct sum of a truncated auxiliary and state
basis (Bt = At

⊕
St). In practice, this means that when a state n is not in the adaptive state basis at the previous

time point (n /∈ St) the coefficient of that state is necessarily zero for all auxiliary wave functions at that time point

(and vice-versa for an auxiliary ~k /∈ At). In the following, we will refer to auxiliaries (~k ∈ At) and states (n ∈ St)
that belong to the adaptive basis at the previous time point as ‘populated’ because they are the only elements with
non-zero coefficients.

Given an adaptive basis at the previous time point, the challenge of constructing the new adaptive basis can be split
into two pieces: constructing the new auxiliary basis (Anew) and the new state basis (Snew). For each of these pieces,
we must determine which populated elements will remain in the new basis (Ap,Sp) and which ‘boundary elements’
that were not in the previous basis need to be included (Ab,Sb). The new adaptive basis is Bt+∆t = Anew

⊕
Snew,

where Anew = Ap ∪Ab and Snew = Sp ∪ Sb. At each step, we ensure that the error introduced by truncating the basis
set is bounded below an error threshold δA/S,p/b such that δ2 = δ2

A,p + δ2
A,b + δ2

S,p + δ2
S,b. Because the total basis is

constructed as the direct sum of the auxiliary and state bases, there is a coupling between the construction of the
new auxiliary basis and the new state basis. As a result, the order of basis set construction can influence the results.
Though these operations can be performed in any order, in the equations below we assume that the new auxiliary
basis is constructed before the new state basis.

For clarity, we assume there is a single thermal environment associated with each molecule. The equations we
provide have straightforward extensions for the case of multiple thermal environments on each molecule.

∗ doranb@smu.edu

Electronic Supplementary Material (ESI) for Chemical Science.
This journal is © The Royal Society of Chemistry 2021

2

B. Flux components

In the following, we will consider how different flux components contribute to the error when basis set elements are
neglected in the adaptive basis. To simplify our presentation, we begin by decomposing the components of eq. (1)

into convenient pieces. In the following, we revert to a vector notation for the auxiliary wave functions where ψ
(~k)
t [n]

is the coefficient of the nth state on the ~k auxiliary wave function.
It is convenient to group fluxes that connect populated basis set elements

D(~k,~k′)[n, n′] = K̂~k,n←~k′,n′(t)ψ
(~k′)
t [n′] (3)

where K̂~k,n←~k′,n′(t) is the time-evolution operator for the complete hierarchy constructed using the adaptive basis for

the previous time point (Bt). We will make use of the fact that

∂tψ
(~k)
t [n] =

∑
(~k′,n′)∈Bt

D(~k,~k′)[n, n′] (4)

as long as (~k, n) ∈ Bt.
We decompose the different flux contributions to elements outside the populated basis into three basic groups.

First, those fluxes that change the state index

F (~k)[m,n] = −iĤS [m,n]ψ
(~k)
t [n]/~ (5)

arise from the system Hamiltonian inducing coupling between states within a single auxiliary (first line, eq. (1)).

Second, those fluxes that increase the auxiliary index (~k + ~en ← ~k)

I
~k
+[n] = γn(~k[n] + 1)ψ

(~k)
t [n]/~ (6)

arise from the second line of eq. (1). Third, those fluxes that can decrease the auxiliary index (~k−~en ← ~k) which we
divide into

I
~k
−[n] = −gn

γn
ψ

(~k)
t [n]/~ (7)

arising from the L̂n in the third line of eq. (1) and

G
~k
−,n[m] =

gn
γn
〈L̂n〉t ψ

(~k)
t [m]/~ (8)

where the 〈L̂n〉t term allows flux from the m state coefficients on the ~k auxiliary to the m state coefficients on the
~k − ~en auxiliary.

C. Auxiliary Basis: Populated Wave Functions

The first step in constructing the new auxiliary basis is to determine which of the populated auxiliary wave functions

(~k ∈ At) can be neglected while ensuring the associated derivative error is below the threshold δA,p. To determine the
error associated with neglecting one populated auxiliary wave function, we consider all of its possible contributions
to the derivative vector.

The simplest contribution is the derivative of the coefficients for each populated state in the auxiliary vector. Using
the sum property defined in eq. (4) we can write this squared error term as∑

n∈St

|
∑

(~k′,n′)∈Bt

D(~k,~k′)[n, n′]|2

= ||∂t,Bt
|ψ(~k)

t 〉||2
(9)

3

where in the second line we have written ∂t,Bt
to remind us that this equation is an abridgement that only holds for

the populated states of the ~k auxiliary wave function (i.e., the components of the auxiliary wave function that are in
the adaptive basis at the previous time point).

In addition to its own derivative components, the populated auxiliary ~k can also contribute to the derivative by
providing flux. We avoid double-counting error terms included in eq. (9) by only considering non-populated states

(m /∈ St) in the squared error term associated with the ~k ← ~k flux∑
m/∈St

|
∑
n∈St

F (~k)[m,n]|2

= ||(Ĥ − P̂StĤP̂St)|ψ
(~k)
t 〉||2/~2

(10)

where the second line is a convenient operator expression for these terms making use of P̂St , the operator that projects
onto the populated states (St). The squared error arising from the flux towards auxiliaries with a larger index is given
by ∑

n∈St

|I~k+[n]|2Θ[~k + ~en,A] (11)

where

Θ[~k,A] =

{
1 if ~k ∈ A
0 otherwise

(12)

ensures we only consider flux terms that lead to legal members of the auxiliary basis (since all others should be
neglected). The squared error associated with the flux towards auxiliaries with a smaller index is given by∑

n∈St

(|I~k−[n] +G
~k
−,n[n]|2 +

∑
n 6=m∈St

|G~k
−,n[m]|2)Θ[~k − ~en,A]

≤
∑
n∈St

Θ[~k − ~en,A]
∣∣∣gn
γn

∣∣∣2(|ψ(~k)
t [n]|2 + 〈L̂†n〉2t ||ψ

(~k)
t ||2)/~2

(13)

where we have rearranged terms in the second line to generate a more convenient expression, at the price of introducing
an upper bound.

If we neglect the ~k auxiliary wave function, then by the end of the next time step the coefficients are forced to zero.
This implicitly introduces a fictitious derivative constructed to precisely cancel the current amplitude in a single time
step. Since this flux does not arise in the HOPS equation, this is an additional squared error term in our derivative

||ψ(~k)
t ||2/∆t2 (14)

which depends on the simulation time step (∆t).

The square of the derivative error introduced by removing the ~k populated auxiliary wave function (E2
p [~k]) is

bounded by the sum of eqs. (9), (10), (11), (13), and (14). We determine the largest set of auxiliaries that can be
removed at the current time point while maintaining the bound δA,p on the derivative error. The remaining auxiliaries
– those that were in the adaptive basis in the previous time point and will be in the adaptive basis in the next time
point – define the set Ap. We note that our selection criterion (maximum number of auxiliaries removed), like all
subsequent basis set selections, is not unique and a variety of different algorithms can be used to determine which
auxiliaries to keep at each time point while satisfying the error bound.

D. Auxiliary Basis: Boundary Wave Functions

Boundary wave functions – auxiliary wave functions that are members of the full auxiliary basis but were not in

the adaptive basis at the previous time point (~k ∈ A \At) – have no amplitude to contribute to flux but may still be
important to the overall dynamics by accepting amplitude from populated auxiliaries. Naively, one might attempt

to calculate the error for neglecting each possible boundary auxiliary ~k ∈ A \ At which would scale with the size of
the full auxiliary basis and be unmanageable for even moderately sized pigment aggregates. However, the only way

4

for an auxiliary ~k to belong to this set is for it to be connected to one (or more) populated auxiliaries. As a result,
it is more efficient to determine the important connections with populated auxiliaries than to directly search for the
important boundary auxiliary wave functions.

We can determine an upper bound on the squared error for neglecting boundary auxiliary wave functions in terms

of the populated auxiliary ~k′ ∈ Ap that creates the flux and the mode (n) along which it is connected to the boundary,

either from below (~k′, n,+): (
Θ[~k′ + ~en,A \ At]|I

~k′

+ [n]|2
)
, (15)

or from above (~k′, n,−):

Θ[~k′ − ~en,A \ At]
∣∣∣gn
γn

∣∣∣2(|ψ(~k′)
t [n]|2 + 〈L̂†n〉2t ||ψ

(~k′)
t ||2)/~2 (16)

where the second expression arises from the same considerations leading to eq. (13) and is an upper bound. We

introduce Θ[~k′ ± ~en,A \ At] operators to ensure that the each flux term goes to an auxiliary wave function that was
not in the adaptive basis at the previous time point.

Treating each of these error terms independently, we construct the largest set of tuples that can be removed

{(~k′, n,±), ...} such that the associated error is less than δA,b. The set Ab is composed of all auxiliaries constructed

from the remaining tuples (~k = ~k′ ± ~en). This algorithm does not guarantee that the minimal error is achieved since
we do not determine which auxiliary each flux term leads to until after the truncation. However, it has the advantage
of introducing only a small additional computational cost since the vast majority of all connections to the boundary
are negligible due to localization in the auxiliary wave functions.

E. State Basis: Populated States

To strengthen the analogy between the auxiliary and state bases, we introduce a new vector |φ(n)
t 〉 which contains

the coefficient of the nth state across all auxiliaries in the reduced set Ap (i.e. φ
(n)
t [~k] = ψ

(~k)
t [n] if ~k ∈ Ap). The

construction of the state basis is completely analogous to the auxiliary basis construction. A brief description is
provided below for completeness.

For each populated state, we first consider its contribution to the derivative of coefficients for each populated
auxiliary wave function ∑

~k∈Ap

|
∑

(~k′,n′)∈Ap
⊕

St

D(~k,~k′)[n, n′]|2

= ||P̂Ap
∂t,Bt

(P̂Ap
|φ(n)

t 〉)||2
(17)

where the sums in the first line only considers auxiliary wave function that are in the truncated set of populated wave
functions Ap. In the second line, we rewrite that into a convenient operator notation, again recognizing the abridged
time-evolution ∂t,Bt

which must be further reduced onto the truncated set of populated auxiliary wave functions by

the projection operator P̂Ap
.

In addition to their own derivative components, the populates state n can also contribute to the derivative by
providing flux. We avoid double-counting error already included in eq. (17) by only considering non-populated states

(m /∈ St) for the squared error term associated with the ~k ← ~k flux∑
~k∈Ap

∑
m/∈St

|F (~k)[m,n]|2

= V [n] ||φ(n)
t ||2/~2

(18)

where in the second line we have introduced

V [n] =
∑
m/∈St

|Hs[m,n]|2 (19)

5

which quantifies the total coupling of state n to all states not included in the previous basis (m /∈ St). In addition
there are the flux terms which can increase the auxiliary index∑

~k∈Ap

|I~k+[n]|2Θ[~k + ~en,A] (20)

or decrease the auxiliary index ∑
~k∈Ap

Θ[~k − ~en,A]
∣∣∣gn
γn

∣∣∣2(|ψ(~k)
t [n]|2 + 〈L̂†n〉2t ||ψ

(~k)
t ||2)/~2. (21)

Again, eq. (21) represents an upper bound on the squared error.
Finally, the squared derivative error arising from the fictitious flux required to cancel the residual amplitude on the

neglected state is given by

||φ(n)
t ||2/∆t2. (22)

Using the bound on the squared derivative error given by the sum of eqs. (17), (18), and (20)-(22), we determine
the largest set of states ({n′}) which can be neglected while ensuring the total error is smaller than δS,p. The set of
remaining states we will label Sp.

F. State Basis: Boundary States

The set of states that are not included in the adaptive basis at the previous time point can be important for
accurately propagating the time evolution if they accept flux from one (or more) populated states. When the system-

bath coupling operators (L̂n) are site-projection operators, the only term in the normalized non-linear HOPS equation

which can change the state index is the system Hamiltonian (Ĥs), and the corresponding squared error for neglecting
the flux into a state n ∈ S \ St is given by ∑

k∈Ap

|
∑
m∈Sp

F (~k)[n,m]|2

=
∑
~k∈Ap

|Ψ(~k)[n]|2/~2
(23)

where

|Ψ(~k)
t 〉 = (Ĥs − P̂SpĤsP̂Sp)P̂Sp |ψ

(~k)
t 〉 (24)

provides a convenient operator formulation. Eq. (23) can be further simplified to

||Φ(n)
t ||2/~2 (25)

by defining, in analogy to the definition of φ(n) above, Φ
(n)
t [~k] = Ψ

(~k)
t [n] where ~k ∈ Ap and n ∈ S \ St.

We determine the largest set of states (n′ ∈ S \ St) that can be neglected while maintaining δS,b as the bound on
the derivative error. The remaining states form the set Sb.

G. Hamiltonian couplings

To achieve O(1) scaling in eqs. (10), (18) and (23), the system Hamiltonian must be sparse. We note that for a
physical Hamiltonian that supports coupling over a finite spatial extent (e.g., r−3 scaling of dipole-dipole coupling), this
sparsity requirement is necessarily fulfilled for large aggregates. The simplest computational approach to leveraging
the locality of coupling is to filter the system Hamiltonian so that elements below a threshold (ε) are set to zero before
the calculation begins.

6

FIG. S1. Comparing error sources in HOPS ensembles. (a) Statistical error from bootstrapping as a function of trajectories
with kmax = 10. (b) Error in population vectors as a function of kmax with Ntraj = 103. (c) Error in population vectors as a
function of time step with kmax = 10 and Ntraj = 104. Parameters: V = 50 cm−1, λ = 50 cm−1, γ = 50 cm−1, and T = 295 K.

H. Adaptive Parameters

The adaptive basis at each time point is defined by four error parameters (δA,p, δA,b, δS,p, δS,b). Instead of specifying
each of the four parameters, we select a single parameter δ and, for all calculations presented here, require the error
to be equally distributed between the auxiliary and state basis (δ2

A = δ2
S = δ2/2). The explicit distribution among

the sub-parameters is determined at each time point. For the auxiliary basis, the error bound used for the populated
auxiliaries is required to obey δA,p ≤ δA/

√
2. This value is often not saturated, so at each time point we define

δ2
A,b = δ2

A − δ2
A,p. The equivalent is done for the state basis.

The algorithm above can be partitioned to allow for either the state or auxiliary basis to be treated adaptively while
the other is statically defined. For small aggregates, in particular, it is often convenient to not solve for an adaptive
state basis since most (or even all) states will be in the adaptive basis most of the time.

II. SOURCES OF ERROR

In a HOPS simulation, there are three sources of error for an ensemble averaged property: the statistical error,
associated with a finite number of trajectories, the hierarchy error arising from a truncation of the hierarchy, and the
time-step error that arises from numerical integration (in this case fourth-order Runge-Kutta).

Here, we characterize the distance between the outcome of two calculations in terms of the mean norm of the
population differences on each pigment

σ =
1

Nt

∑
t

√
1

2

∑
n

|~Pn(t)− ~pn(t)|2 (26)

where the factor of 1
2 ensures σ is bounded between 0 and 1.

A. Number of Trajectories

We estimate the statistical error arising from a finite number of trajectories by bootstrapping [1]. We first calculate
104 trajectories. Then, for each value of Ntraj we construct 104 ensembles by sampling (with replacement) Ntraj

trajectories from the original ensemble of 104 trajectories. We use the half-width of the 95% confidence interval to

characterize the expected error arising from finite sampling. Specifically, we construct a vector (~Σt) with half-width
of the 95% confidence interval for each site population at a given time (t) and estimate the statistical error (ε)

ε =
1√
2Nt

∑
t

∥∥∥~Σt

∥∥∥ (27)

7

where the factor of
√

2 ensures consistency with the error definition. Fig. S1a shows the statistical error as a function
of number of trajectories.

B. Depth of the Hierarchy

HOPS calculations are exact for an infinite hierarchy, but numerical calculations require the calculation to consider
only auxiliary wave functions up to some maximum depth (kmax). To isolate the effects of kmax on the population
vectors, we minimize the influence of statistical error by comparing simulations at different hierarchy depths using
the same noise trajectories. We calculate the error at different depths of the hierarchy by comparing the ensemble
average population vector to the results when kmax = 12, using eq. (26). Fig. S1b shows the mean error vs hierarchy
depth for 103 trajectories. By kmax = 10 the hierarchy error is substantially below 0.01, and we use this value of kmax

for most of our 5 site calculations.

C. Time Step

In numerical integration, the time step affects both the accuracy of the trajectory and the computational cost.
To test convergence with respect to the time step (∆t), we consider matched HOPS trajectories with varying ∆t
values. Figure S1c presents the distribution of mean error (eq. 26) as a function of increasing ∆t when compared to
population vectors calculated using a time step of 1 fs. The error gradually increases as the time step becomes larger.
We did not explore the origin of the integration error, though it is notable that the Markovian mode introduces a
timescale of decay that is approximately 10 fs. Except where noted otherwise, for the calculations presented here, we
have used a time step of 4 fs which is sufficiently short to sample the Markovian dynamics.

D. Distribution of adaptive error

With the use of an adaptive basis, adHOPS introduces a new form of error into the HOPS framework, arising due to
the finite accuracy with which the derivative is calculated at any given time. We calculate the adaptive error for each
trajectory in a 104 member ensemble as the mean difference (σ, eq. (26)) between the equivalent adHOPS and HOPS
trajectories. The distribution of adaptive errors (Fig. S2) shows errors spreading more than two orders of magnitude.
To explore how error evolves in individual trajectories, we plot the error vs time for trajectories that show extremely
high error (red box, red line), moderately high error (green box, green lines), and ‘nominal’ error behavior (blue box,
blue lines). The highest error arises from adHOPS trajectories that diverge from the equivalent HOPS calculations,
though these represent around 0.1% of the ensemble. The moderately high errors arise from adHOPS trajectories
that show periods in which they drift away from the corresponding HOPS trajectory before returning, as seen by the
peak like structure in the error plots. The ‘nominal’ error of most adHOPS trajectories show small fluctuations in the
vicinity of the corresponding HOPS trajectory. We note that the mean adHOPS ensemble population dynamics are
even more similar to the corresponding HOPS calculations than these results suggest, due to cancellation of errors.
The black line in Fig. S2 shows the error between the ensemble average adHOPS population trajectory compared to
the corresponding HOPS ensemble average and has a mean value of 3× 10−3.

III. CONVERGENCE IN ADHOPS

In an adHOPS calculations we have two convergence parameters that define the hierarchy basis used in our cal-
culations: the maximum depth of the hierarchy (kmax) and the bound on the derivative error (δ). We explored the
possibility of a coupling between these two convergence criteria that would lead to changes in the converged value
of one (e.g., kmax) for different values of the other parameter (δ). Our approach began with a scan over δ values in
logarithmic half-steps (e.g., log(δ) = -1, -1.5, -2, etc.) until the difference between two calculations (σ, eq. (26)) with
δ separated by 1 log unit was less than 0.01. We then ran a similar convergence scan for kmax with values increasing
by steps of 1, until the difference between two calculations (σ, eq. (26)) with kmax separated by 2 was less than
0.01. We then ran a new δ convergence scan at the converged value of kmax. In all cases we found that this second
δ scan returns the same convergence value as the first, suggesting that the δ and kmax scans are, at least to a first
approximation, independent.

8

FIG. S2. Population error of individual trajectories and their ensemble distribution. The ensemble contains 104 matched HOPS
and adHOPS (δ = 10−3) trajectories. Four trajectories each from median (blue lines), moderate (green lines), and high-error
(red lines) subsets of the ensemble are plotted with the ensemble mean (black line). Parameters: V = 50 cm−1, λ = 50 cm−1,
γ = 50 cm−1, T = 295 K, kmax = 10, δ = 10−3, Ntraj = 104, and ∆t = 4 fs.

FIG. S3. Average CPU time for running HOPS (black squares) and adHOPS (green circle) simulations. The green line in the
right panel shows a linear fit to the data from Npig = 16 to 1000, with a coefficient of 0.0277. Calculations were run using Intel
Xeon 2.1 GHz processor. Parameters: V = 50 cm−1, λ = 50 cm−1, γ = 50 cm−1, T = 295 K, kmax = 10, δ = 3 × 10−4, and
∆t = 4 fs.

9

IV. CPU TIMING

In Fig. S3, we compare the CPU time required to run matched HOPS (black squares) and adHOPS (green circles)
calculations for the sequence of linear chains presented in Fig. 6 of the main text. We measure the CPU time as the
time required to propagate the equation-of-motion, excluding any time spent in the initial setup. HOPS calculations
were only performed for Npig ≤ 10 due to the extreme computational expense for calculations of larger chains. We
find that starting at Npig = 9, adHOPS calculations require less CPU time per trajectory than the matched HOPS
calculations, and adHOPS calculations including up to 103 pigments (and beyond) can be performed conveniently.

Using the log-log plot for CPU time vs system size (Fig. S3, right panel) we determine a residual scaling of O(N0.03
pig)

for the adHOPS calculations in the size-invariant region. This results in a 20% increase in CPU time per trajectory
when increasing the linear chain length from Npig = 16 to 1000. We have not yet identified the origin of the residual
scaling.

V. CODE

With the exception of the SI section on CPU timing (above), all calculations presented here used the version 1.00 of
MesoHOPS. The CPU timing section used version 1.10 of MesoHOPS, which is also the version archived with Zenodo.
The changes in the code do not influence any conclusions though numerical differences may be observed.

MesoHOPS V1.1.0: http://doi.org/10.5281/zenodo.4592583
MesoHOPS V1.0.0: (https://github.com/MesoscienceLab/mesohops, commit: 86e991917c9e57d63dfc9b5e140d1f6112544f98)

REFERENCES

[1] A. C. Davison and D. V. Hinkley. Bootstrap Methods and their Application. Cambridge Series in Statistical and
Probabilistic Mathematics. Cambridge: Cambridge University Press, 1997. isbn: 978-0-521-57471-6. doi: 10 . 1017 /

CBO9780511802843. url: https://www.cambridge.org/core/books/bootstrap- methods- and- their- application/

ED2FD043579F27952363566DC09CBD6A.

