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Instrumentation

Elemental analyses (C, H, N, S) were measured at the Campbell Microanalytical
Laboratory, University of Otago. *H and 3C NMR spectra were recorded on a Varian400
MHz NMR spectrometer at 298 K. 1°N (referenced to nitromethane, +380 ppm) and H
DOSY NMR spectra at 298 K, and the *H VT-NMR ranging from 243 K to 343 K, in CD3CN
were recorded on a Varian500 MHz NMR spectrometer. High resolution ESI-MS were
recorded at 293 K (with heating of the source and nebuliser gas switched off), at Bio21,
in house, using a Shimadzu LCMS_9030 mass spectrometer; the m/Z values have a
standard error of + 1 ppm. Variable temperature UV-Vis spectra were recorded, in
house, from 253 K to 303 K on a PerkinElmer Lambda 950 UV-Vis/NIR spectrometer.
Electrochemistry measurements were performed with a two electrode electrochemical
cell using an Iviumstat.XRe potentostat, on 1 mM of 1-5, in degassed, freshly distilled
MeCN (over CaH;), with TBACIO4 (0.1 mol L) except for 5 where TBAPFs is used (for
solubility reasons), as the supporting electrolyte and 0.01 mol L™ Ag/AgNOs. Both the
counter electrode and working electrode were Pt. The potential values are referred to
Fc/Fc* redox couple, is observed at Ey, = 0.08 + 0.01 V with AE = 0.08 V at 200 mV s scan

rate.

The solid-state magnetic susceptibilities were measured from 300-50-400 K for 1-5 in
settle mode (measuring in 5 K steps, ramping between steps at 5 K min™, with the
instrument considering the temperature “settled” after 1 min of the temperature being
within the smaller value of +0.5 K or +0.5% of the target value) and an applied field of
0.1 T with a Quantum Design Physical Property Measurement System equipped with a
vibrating sample mount (Versalab). The data were corrected for the diamagnetism of

the capsule, and of the sample (-M x 0.5 x 107 cm3 mol™).?

The single-crystal X-ray diffraction measurements were performed on an Oxford
Diffraction SuperNova diffractometer with Atlas CCD, equipped with a Cryostream N3
open-flow cooling device using mirror monochromated micro-focus Cu-Ka radiation
source (A = 1.56 A) at 100 K, except for 4-5.5NO,CHz and 4-4NO,CHs (253 K) where the
Mo-Ka radiation source was used (as the Cu radiation source was blown and could not
be replaced due to COVID19 restrictions). A series of scans was performed in such a way
as to collect a complete set of unique reflections (and many equivalents) to a maximum
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0 of 72° (Cu) and 26° (Mo). Raw frame data (including data reduction, inter-frame
scaling, unit cell refinement and absorption corrections)? for all structures were
processed using CrysAlis Pro.? Structures were solved using ShelXT* and using intrinsic
phasing and refined using all data by least-squares techniques with SHELXL® and olex2°®
program. All hydrogen atoms were placed in calculated positions and rode on the
attached carbon atom, with U(H) = 1.2U (attached C) except for —NH substituted for
which U(H) = 1.5U (attached atom). All non-H atoms were refined anisotropically,
otherwise stated. For further details, see Table S1 and cif files (CCDC: 2061247-2061253
and 2090518-2090519).

General organic synthesis scheme

j/ S, NazS8.9H,0, DMF JIR\J ’d\ Na, dry EtOH )\N\ ,NH\
—_—
H N 5% 19n T C,19h EtBr, reflux, 12 h
Bis-thioamide 1 j

X=Y. OH
N Dry EtOH EtOH, NHoNH, X=Y N~NH _BUOH
LN%% o> o A‘N%% \\ — LN%% 2 n-Bu

reflux, 3 d

Carbohydrazide

X/Y = CH/NH (LZNHIm-meta)

X/Y = NH/CN (|_4NHIm-meta) Y Y

X/Y = NMe/CH (L4NMelm-meta > \X
( ) LN 4 N i

X/Y = O/CH (Ldolm-meta) ~ N

= 4SIm-meta
X/Y = SICH (L ) white solid, 31-56 %

Scheme S1. General synthetic route used to synthesise ditopic azole-triazole Rat
ligands.’

Experimental section

Synthesis

All chemicals were used as commercially available without further purification. Dry
ethanol was prepared by distilling absolute ethanol from Mg/l,.

N,N'-(1,3-phenylenebis((ethylthio)methylene))bis(2-methyl-propan-1-amine),®
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1-methyl-1H-imidazole-4-carbohydrazide® and thiazole-4-carbohydrazide® synthesised

as previously reported.

Ethyl 1H-imidazole-4-carboxylate. To a dry ethanol (30 mL) solution of
4-imidazoledicarboxylic acid (1 g, 8.9 mmol) heated at 80 °C was added thionyl chloride
(3 mL, 45 mmol) dropwise with continuous stirring. The light yellow solution was stirred
at 80° C overnight. After it was cooled to room temperature, the yellow reaction mixture
was taken to dryness under vacuum. The resulting yellow oil was dissolved in water (5
mL) and 1 mM aq. NaOH (20 mL) was added dropwise with continuous stirring to reach
pH 9. The product was then extracted with dichloromethane (5x 10 mL), the combined
organic layer was dried over MgS0O4 and then concentrated under reduced pressure,
giving a crystalline white powder (950 mg, 76%). Anal. calcd for CsHsN,0,: C 51.42, H
5.75, N 19.99; found C 51.48, H 5.67, N 19.86. *H NMR (CDCls, 400 MHz) ppm: 7.79 (s,
1H), 7.76 (s, 1H), 4.37 (g, 2H), 1.36 (t, 3H).

1H-imidazole-4-carbohydrazide. Ethyl 1H-imidazole-4-carboxylate (1 g, 7.1 mmol) was
dissolved in 8 mL of ethanol, then 80% hydrazine hydrate (4 mL, 80 mmol) was added
dropwise. Behind an explosion shield, the reaction mixture was refluxed for 4 h, cooled
down to room temperature, then refrigerated at 4 °C. The resulting white solid was
filtered off, washed with chilled ethanol, and dried for 2 h in air (800 mg, 78%). Anal.
caled for C4HeN4O1-1.6H20-0.1C;Hs0H: C 31.62, H 6.19, N 35.12; found: C 31.90, H 6.28,
N 35.02. *H NMR (D20, 400 MHz) ppm: 7.80 (s, 1H); 7.75 (s, 1H).

1H-imidazole-2-carbohydrazide. Ethyl 1H-imidazole-2-carboxylate (3 g, 21 mmol) was
dissolved in 10 mL of ethanol, then 80% hydrazine hydrate (10 mL, 200 mmol) was added
dropwise. Behind an explosion shield, the reaction mixture was refluxed for 4 h and
cooled down to room temperature. The resulting white solid was filtered off, washed
with chilled ethanol, and dried for 2 hiin air (2.6 g, 96%). Anal. calcd for C4HsN4O: C 38.09,
H 4.80, N 44.42; found: C 38.03, H 4.53, N 45.03. 'H NMR (DMSO-ds, 400 MHz) ppm:
12.96 (b, 1H), 9.53 (s, 1H), 7.24 (d, 2H), 4.43 (b, 2H).

Oxazole-4-carbohydrazide. Methyl oxazole-4-carboxylate (2.1 g, 14.8 mmol) was
dissolved in 4 mL of ethanol, then 80% hydrazine hydrate (4 mL, 80 mmol) was added.

The reaction mixture was stirred at room temperature for 4 h. The resulting white
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precipitate was filtered off, washed with chilled ethanol, and dried for 2 hin air (1.3 g,
68%). Anal. calcd for C4HsN3O,: C37.80, H 3.97, N 33.06; found: C37.71, H3.96, N 33.71.
1H NMR (DMSO-dg, 400 MHz) ppm: 9.54 (s, 1H), 8.60 (s, 1H), 8.48 (s, 1H), 4.46 (d, 2H).

1,3-bis(5-(1H-imidazol-2-yl)-4-isobutyl-4H-1,2,4-triazol-3-yl)benzene (L2NHIm-meta)  Ap
n-butanol (10 mL) solution of N,N'-(1,3-phenylenebis((ethylthio)methylene))bis(2-
methyl-propan-1-amine) (1.3 g, 3.2 mmol) and 1H-imidazole-2-carbohydrazide (720 mg,
5.7 mmol) was refluxed at 108 °C for 3 days. The resulting pale yellow precipitates was
cooled to room temperature and the product isolated as a white solid by filtration,
washed with diethyl ether (3 x 5mL), then with water (3 x 5mL), and air dried overnight
(596 mg, 31%). Anal. calcd for C24H28N10: C63.14, H 6.18, N 30.68; found: C62.92, H6.72,
N 31.03. MS (m/Z) [(C2aH28N10) Na]*: calcd 479.2396, found 479.2365; [(C24H28N10)2 Na]*:
calcd 935.4895, found 935.4878. 'H NMR (CDCls, 400 MHz) ppm: 13.00 (b, 2H), 7.98 (s,
1H), 7.84 (d, 2H), 7.75 (t, 1H), 7.31 (s, 4H), 4.67 (d, 4H), 1.99 (sep, 2H), 0.73 (d, 12H). 13C
NMR (CDCl3, 100 MHz) ppm: 154.88, 147.36, 135.54, 130.78, 129.87, 129.79, 128.52,
52.27,29.29, 19.47.

1,3-Bis(5-(1H-imidazol-4-yl)-4-isobutyl-4H-1,2,4-triazol-3-yl)benzene (L*NHIm-meta)  An
n-butanol (10 mL) solution of N,N'-(1,3-phenylenebis((ethylthio)methylene))bis(2-
methyl-propan-1-amine) (1.3 g, 3.2 mmol) and 4H-imidazole-2-carbohydrazide (730 mg,
5.8 mmol) was refluxed at 108 °C for 3 days. The resulting pale yellow precipitate was
cooled to room temperature and the product isolated as a white solid by filtration,
washed with diethyl ether (3 x 5 mL), then with water (3 x 5 mL), and air dried overnight
(850 mg, 44%). Anal. calcd for CaaH2sN10-2H,0: C 58.52, H 6.55, N 28.44; found: C 58.82,
H 7.78, N 28.30. MS (m/Z) [(CasH2sN10) H]*: caled 457.2532, found 457.25712;
[(C24H28N10) Nal*: calcd 479.2396, found 479.23906; [(C24H28N10) Na]*: calcd 479.23906,
found 479.24030. *H NMR (DMSO-Ds, 400 MHz) ppm: 7.99 (s, 1H), 7.90 (s, 2H), 7.86 (d,
2H), 7.79 (b, 2H), 7.75 (t, 1H), 4.49 (d, 4H), 1.70 (sep, 2H), 0.57 (d, 12H). 13C NMR (DMSO-
ds, 100 MHz) ppm: 154.06, 150.66, 136.82, 130.49, 130.02, 129.39, 129.31, 125.80,
118.02, 51.30, 29.08, 29.08, 19.61.

1,3-Bis(4-isobutyl-5-(1-methyl-1H-imidazol-4-yl)-4H-1,2,4-triazol-3-yl)benzene

(L3NMelm-meta) | An n-butanol (10 mL) solution of N,N'-(1,3-

phenylenebis((ethylthio)methylene))bis(2-methyl-propan-1-amine) (1 g, 3.2 mmol) and
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1-methyl-1H-imidazole-4-carbohydrazide (620 mg, 4.4 mmol) added as solid in reaction
mixture and refluxed at 108 °C for 3 days. The resulting pale yellow precipitate was
cooled to room temperature and the product isolated as a white solid by filtration,
washed with diethyl ether (3 x 5 mL), then with water (3 x 5 mL), and air dried overnight
(720 mg, 46%). Anal. calcd for C26H32N10-0.5H,0: C63.27, H6.74, N 28.38; found: C63.49,
H 6.68, N 28.10. MS (m/Z) [(Ca6H32N10) Na]*: caled 507.2709, found 507.2715;
[(C26H32N10)2 Na]*: caled 991.5521, found 991.5440. *H NMR (CDCls, 400 MHz) ppm: 7.85
(s, 1H), 7.78 (d, 2H), 7.69 (s, 2H), 7.66 (t, 1H), 7.50 (s, 2H), 4.45 (d, 4H), 3.78 (s, 6H), 1.78
(sep, 2H), 0.63 (d, 12H). 13C NMR (CDCls, 100 MHz) ppm: 154.55, 150.23, 138.04, 130.87,
130.72,129.63, 129.37, 128.78, 122.10, 51.91, 33.73, 29.28, 19.43.

1,3-Bis(4-isobutyl-5-(oxazol-4-yl)-4H-1,2,4-triazol-3-yl)benzene (L*C'm-meta),  An n-
butanol (10 mL) solution of N,N'-(1,3-phenylenebis((ethylthio)methylene))bis(2-methyl-
propan-1-amine) (1 g, 3.2 mmol) and oxazole-4-carbohydrazide (864 mg, 6.8 mmol) was
refluxed at 108 °C for 3 days. The resulting off-white precipitate was cooled to room
temperature and the product isolated as a off-white solid by filtration, washed with
diethyl ether (3 x 5 mL), then with water (3 x 5 mL), and air dried overnight (514 mg,
35%). Anal. calcd for Ca4H26NgO2: C 62.87, H 5.72, N 24.44; found: C 61.95, H 6.78, N
24.81. MS (m/Z) [(C2aH26NsO2) Na]*: calcd 481.2076, found 481.2079; [(C24H26Ns02)2
Na]*: calcd 939.4255, found 939.4153. *H NMR (CDCls, 400 MHz) ppm: 8.45 (s, 2H), 8.03
(s, 2H), 7.87 (s, 1H), 7.81 (d, 2H), 7.71 (t, 1H), 4.39 (d, 4H), 1.79 (sep, 2H), 0.67 (d, 12 H).
13C NMR (CDCl3, 100 MHz) ppm: 155.12, 151.32, 147.59, 139.37, 130.86, 129.94, 129.73,
129.60, 128.56, 51.85, 29.57, 19.38. 15N NMR (CDCls, 50MHz) ppm: 317.33, 314.07,
253.61, 169.53.

1,3-Bis(4-isobutyl-5-(thiazol-4-yl)-4H-1,2,4-triazol-3-yl)benzene (L*'™™et?),  An n-
butanol (10 mL) solution of N,N'-(1,3-phenylenebis((ethylthio)methylene))bis(2-methyl-
propan-1-amine) (1 g, 3.2 mmol) and thiazole-4-carbohydrazide (804 mg, 5.6 mmol) was
refluxed at 108 °C for 3 days. The resulting pale yellow precipitate was cooled to room
temperature and the product isolated as a white solid by filtration, washing with diethyl
ether (3 x5 mL), then with water (3 x 5 mL), and air dried overnight (900 mg, 56%). Anal.
calcd for CaaH26NsS2: C 58.75, H 5.34, N 22.84; found: C 58.53, H 5.40, N 22.97. MS (m/2)
[(C2aH26NgS2) Na]*: caled 513.1620, found 513.1614; [(C2aH26NsS2)2 Na]*: calcd
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1003.3341, found 1003.3352. *H NMR (CDCls, 400 MHz) ppm: 8.93 (s, 2H), 8.29 (s, 2H),
7.88 (s, 1H), 7.82 (d, 2H), 7.71 (t, 1H), 4.44 (d, 4H), 1.71 (sep, 2H), 0.63 (d, 12H). 13C NMR
(CDCls, 100 MHz) ppm: 155.16, 153.24, 150.26, 144.69, 130.93, 129.73, 129.71, 128.70,
120.69, 52.16, 29.61, 19.40. >N NMR (CDCls, 50 MHz) ppm: 316.60, 316.10, 315.12,
169.12.

Fe,(L2\HIm-meta);1(BF,)4-4H,0 (1-4H,0). To a white suspension of L2NHIm-meta (30 mg .06
mmol) in acetonitrile (5 mL), solid Fe(BF4);:6H,0 (15 mg, 0.04 mmol) was added,
resulting in an orange clear solution which was stirred for 4 h at room temperature.
Vapour diffusion of diethyl ether into this solution gave, within a week, a few block
shaped orange crystals of 1-solvents which were suitable for X-ray crystallography. The
orange crystals were filtered off, washed with diethyl ether and air dried, giving as the
hydrate, 1-4H,0 (30 mg, 73%). Anal. calcd for 1-4H,0: C 45.50, H 4.88, N 22.11; found: C
45.33, H 4.78, N 22.31. Cryo-MS (m/Z) [Fez(C2aH2sN10)3]**": calcd 370.15443, found
370.15571; [Fe2(CaaH28N10)3] (F)3*: calcd 499.87222, found 499.87145;
[Fe2(Ca4H28N10)3](BF4)3*: calcd 522.54075, found 522.54071; [Fex(C24H28N10)3](F)2 2*: caled
759.30780, found 759.30687. *H DOSY (CDsCN) diffusion coefficient: 6.7 x 10 cm? s

Fey(L*NHIm-meta) 1(BF,)4-6H,0 (2:6H20). To a white suspension of L4NHIm-meta (30 mg (.06
mmol) in nitromethane (5 mL), solid Fe(BF4),:6H,0 (15 mg, 0.04 mmol) was added,
resulting in a greenish-brown clear solution which was stirred for 4 h at room
temperature. Vapour diffusion of diethyl ether into this solution gave, within a week, a
few block shaped greenish brown crystals of 2-solvents which were suitable for X-ray
crystallography. The brown crystals were filtered off, washed with diethyl ether and air
dried, giving as the hydrated 2:6H,0 (12 mg, 30%). Anal. calcd for 2:6H,0: C 44.65, H
5.00, N 21.70; found: C 43.36, H 4.95, N 21.40. Cryo-MS (m/Z) [Fez(CaaH2sN10)3]**: calcd
370.15443, found 370.15105; [Fe2(CaaH28N10)3] (F)**: calcd 499.87222, found 499.87225;
[Fex(Ca4H28N10)3](BF4)3*: calcd 522.54075, found 522.54038; [Fez(CaaH2sN10)3](BF4)22*:
caled 827.31331, found 827.31229. 'H DOSY (CDsCN) diffusion coefficient:

6.5 x 10 cm? sec™.

[Fey(LANMelm-meta),1(BF,),-5H,0 (3:5H20). To a white suspension of LiNMelm-meta (44 mg
0.09 mmol) in acetonitrile (4 mL), solid Fe(BF4)2:6H,0 (20 mg, 0.06 mmol) was added,
resulting in a brownish orange clear solution which was stirred for 4 h at room

S8



temperature. Vapour diffusion of diethyl ether into this solution gave, within a week, a
few irregular shaped orange/yellow crystals of 3:6MeCN-CsH100 which were suitable for
X-ray crystallography. The orange crystals were filtered off, washed with diethyl ether
and air dried, giving as the hydrated 3-5H,0 (48 mg, 87%). Anal. calcd for 3-5H,0: C46.78
H 5.33 N 20.98; found: C46.89 H5.63 N 21.28. TGA for 3:5H,0 cald: 4.49 %, found: 5.27
%. Cryo MS (m/Z) [Fea(CasH32N10)3]*: caled 391.17812, found 391.17892;
[Fe2(Ca6H32N10)3](F)3*: calcd 527.90354, found 527.90272; [Fez(CasH32N10)3](BF4)3*: calcd
550.57209, found 550.57183; [Fe2(C26H32N10)3](F2)?*: calcd 801.35479, found 801.35297;
[Fe2(Ca6H32N10)3](BF4)22*: calcd 869.36035, found 869.35841. 'H DOSY (CDsCN) diffusion

coefficient: 6.6 x 10°° cm? sec™L.

Fe,(L30'™m-meta);1(BF4)4-6H20 (4-6H20). To a white suspension of L*0'm-meta (30 mg, 0.17
mmol) in acetonitrile (10 mL), solid Fe(BF4);:6H,0 (40 mg, 0.12 mmol) was added,
resulting in a violet clear solution which was stirred for 4 h at room temperature. Vapour
diffusion of diethyl ether into this solution gave, within a week, a few needle shaped
light pinkish-violet crystals of 4-solvents which were suitable for X-ray crystallography.
The light violet crystals were filtered off, washed with diethyl ether and air dried, giving
as hydrated greyish powder 4:6H,0, (40 mg, 37%). Anal. calcd for 4-6H,0: C 44.52, H
4.67, N 17.30; found: C44.39, H 4.47, N 17.58. TGA for 4-6H,0 cald: 5.56 %, found: 5.63
%. Cryo-MS (m/Z) [Fea(CasH26NgO2)3]*": calcd 371.63045, found 371.63271;
[Fe2(Ca6H26Ns02)3](BF4)3*: calcd 524.50878, found 524.50888; [Fea(CasH26Ns02)3](F2)**:
calcd 762.25952, found 762.25985; [Fez(CasH26Ns02)3] (BF4)(F)?*: calcd 796.26234, found
796.26265. 'H DOSY (CD3CN) diffusion coefficient: 6.4 x 10® cm? sec™.

Fe,(L30'™m-meta);1(BF4)4-3.5H,0-2NO,CH3 (4-3.5H20-2N0,CH3). To a white suspension of
L0Iim-meta (30 mg, 0.06 mmol) in nitromethane (5 mL), solid Fe(BF4)2:6H20 (15 mg, 0.04
mmol) was added, resulting in a violet clear solution which was stirred for 4 h at room
temperature. Vapour diffusion of diethyl ether into this solution gave, within a week, a
few needle shaped light pinkish-violet crystals of 4-5.5NO,CH3 which were suitable for
X-ray crystallography. The light violet crystals were filtered off, washed with diethyl
ether and air dried, giving a greyish powder, 4:3.5H,0:2NO,CH3s, (26 mg, 70%). Anal.
calcd for 4-:3.5H,0:2NO,CHs: C 44.01, H 4.54, N 18.03; found: C 44.25, H 4.24, N 17.64.
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Fe,(L3S'm-meta);](BF4)4-2.5H20 (5-2.5H20). To a white suspension of L*'™m-meta (36 mg, 0.18
mmol) in acetonitrile (10 mL), solid Fe(BF4);:6H,0 (46 mg, 0.14 mmol) was added,
resulting in an orange clear solution which was stirred for 4 h at room temperature.
Vapour diffusion of diethyl ether into this solution gave, within a week, a few block
shaped orange crystals of 5-solvent which were suitable for X-ray crystallography. The
orange crystals were filtered off, washed with diethyl ether and air dried, giving as
hydrated 5-2.5H,0, (98 mg, 87%). Anal. calcd for 5-:2.5H,0: C 43.77, H 4.23, N 17.01;
found: C 43.62, H 3.92, N 17.23. Cryo-MS (m/Z) [Fe2(CasH26NsS2)3]**: calcd 395.84672,
found 395.84795; [Fez(CasH26NsS2)3](F)®*: caled 533.79487, found 533.79484;
[Fe2(Ca6H26NsS2)3](BF4)**: calcd 556.46310, found 556.46302; [Fea(CaeH26NsS2)3](F2)%*:
calcd 810.19133, found 810.19066; [Fe2(C26H26NsS2)3](BF4)(F)?*: calcd 844.19413, found
844.19324; [Fe(Ca6H26NsS2)3](BFa)22*: calcd 878.19685, found 878.19685. 'H DOSY

(CDsCN) diffusion coefficient: 6.6 x 10® cm? sec™.

[Ni(L2NHIm-meta),1(BF,)4-6H,0 (1V-6H,0). To a white suspension of LZNHIm-meta (309 mg,
0.06 mmol) in acetonitrile (5 mL), solid Ni(BF4)2:6H,0 (16 mg, 0.04 mmol) was added,
resulting in a pale violet clear solution which was stirred for 4 h at room temperature.
Vapour diffusion diethyl ether into this solution gave, within a week, a few plate shaped
violet crystals of 1M-CH3CN-solvents which were suitable for X-ray crystallography. The
violet crystals were filtered off and washed with diethyl ether, air dried, giving as the
hydrate, 1N-6H,0, (25 mg, 62%). Anal. calcd for 1N-6H,0: C 44.52, H 4.98, N 21.63;
found: C44.43,H4.68, N 21.43. Cryo-MS (m/Z) [Ni2(C22H28N10)3]**: calcd 371.6542, found
371.6545: [[Ni2(C24H28N10)3](BF4)1]*: calcd 524.5403, found 524.5399.
[[Ni2(C24H28N10)3] (BF4)]?*: calcd 830.3125, found 830.3123.

[Nip(L3NHIm-meta) 1(BF,),4-4H,0 (2V-4H,0). To a white suspension of L*NHIm-meta (30 mg
0.06 mmol) in acetonitrile (5 mL), solid Ni(BF4)2:6H,0 (16 mg, 0.04 mmol) was added,
resulting in a pale violet clear solution which was stirred for 4 h at room temperature.
Vapour diffusion diethyl ether into this solution gave, within a week, a few block shaped
violet crystals of 2M-4CH3CN-solvents which were suitable for X-ray crystallography. The
violet crystals were filtered off and washed with diethyl ether, air dried, giving as the
hydrate, 2N-4H,0, (20 mg, 50%). Anal. calcd for 2Ni-4H,0: C 44.33, H 4.86, N 22.04;
found: C44.29,H4.64,N 21.76. Cryo-MS (m/Z) [Ni2(C24H28N10)3]**: calcd 371.6542, found
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371.6547: [[Ni2(C24H28N10)3](BF4)1]3*: calcd 524.5403, found
524.5398. [[Ni2(C24H28N10)3](BF4)]**: calcd 830.3125, found 830.3117.

[Ni(L*NMelm-meta) ;1(BF,)4-5H,0 (3V-5H,0). To a white suspension of L4NMelm-meta (70 mg,
0.14 mmol) in acetonitrile (8 mL), solid Ni(BF4)2:6H20 (35 mg, 0.10 mmol) was added,
resulting in a pale violet clear solution which was stirred for 4 h at room temperature.
Vapour diffusion diethyl ether into this solution gave, within a week, a few block shaped
violet crystals, none of which were suitable for X-ray crystallography. The violet crystals
were filtered off and washed with diethyl ether, air dried, giving as the hydrate,
3Ni.5H,0, (85 mg, 92%). Anal. calcd for 3M-5H,0: C46.64, H5.32, N 20.92; found: C 46.61,
H 5.31, N 21.00. Cryo-MS (m/Z) [Ni2(C26H32N10)3]*": calcd 392.68412, found 392.67776:
[[Ni2(C26H32N10)3](BF4)1]3*: caled 552.56987, found552.57172. [[Ni2(Ca26H32N10)3](BF4)]**:
calcd 872.35644, found 872.35960.

[Niy(LA0!m-meta);](BF,)4-2.5H,0 (4V-2.5H,0). To a brown suspension of L*0'™-meta (30 6 mg,
0.06 mmol) in acetonitrile (5 mL), solid Ni(BF4)2:6H,0 (15 mg, 0.04 mmol) was added,
resulting in a violet clear solution which was stirred for 4 h at room temperature. Vapour
diffusion diethyl ether into this solution gave, within a week, a few needle shaped violet
crystals, none of which were suitable for X-ray crystallography. The violet crystals were
filtered off and washed with diethyl ether, air dried, giving as the hydrate, 4Vi-2.5H,0,
(25 mg, 62%). Anal. calcd for 4V-2.5H,0: C 45.87, H 4.44, N 17.83; found: C45.73, H 4.29,
N 18.11. Cryo-MS (m/Z) [Ni2(CaaH26Ns0)s3]**: calcd 373.12549, found 373.13023:
[[Ni2(C24H26Ns02)3](BFa4)]3*: calcd 526.50835, found 526.50545.
[[Ni2(C24H26Ns03)3](BFa4)2]?*: calcd 833.26011, found 833.76454.

[Nip(L3S!m-meta);](BF4)4-3H20 (5M-3H,0). To a white suspension of L*'™meta (60 mg, 0.12
mmol) in acetonitrile (5 mL), solid Ni(BF4)2:6H.0 (30 mg, 0.09 mmol) was added,
resulting in a pale violet clear solution which was stirred for 4 h at room temperature.
Vapour diffusion diethyl ether into this solution gave, within a week, a few needle
shaped violet crystals, none of which were suitable for X-ray crystallography. The violet
crystals were filtered off and washed with diethyl ether, air dried, giving as the hydrate,
5Ni.3H,0, (75 mg, 96%). Anal. calcd for 5Ni-:3H,0: C 43.44, H 4.25, N 16.89, S 9.66; found:
C 43.57, H 4.01, N 16.76, S 9.61. Cryo-MS (m/Z) [Ni2(C2aH26NsgS2)3]**: calcd 397.09197,
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found  397.09584: [[Ni2(C24H26NsS2)3](BF4)]**:  calcd 558.46251,  found
558.45965. [[Ni2(C2aH26NsS2)3](BF4)2]**: calcd 881.19582, found 881.19198.

Previously reported SCO-active Fe',L; dinuclear helicates
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Figure S1.1 The 12 ligands, L1-L12, reported in the literature to form dinuclear SCO
active triply bridged FesLs helicates (see also Figure 1, main paper).10-20

The first example of a SCO-active dinuclear helicate, [Fe,L13]*" (Figure S1) reported by
Williams and co-workers in 1998,! undergoes a gradual and incomplete SCO in CDsCN
solution (240-330 K). Then in 2004 Hannon and co-workers?! showed that the solid state
SCO of the family of [Fe:L23](X)a (X = PFs, BF4 and ClO4) differed with counter-anion
choice. The PFs and BF4 analogues undergo gradual SCO from fully HS to ~80% LS at ~200
K and 150 K, respectively, whilst the ClO4 analogue undergoes half SCO at ~180 K.2* A

subsequent Mossbauer spectroscopy study showed that half of the [Fe;L23](ClO4)a
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undergo a two-step SCO, with Ti/; values of 240 K and 120 K for the [HS-HS] > [LS-LS]
conversion, whilst the other half remains HS-HS.?2 Li and co-workers went on to show
that the choice of heteroatom, methylene vs thioether vs ether, at the ‘hinge’ in such
ligands, L2-L4 (Figure S1), modified the half-SCO for the resulting [Fe,L3](BF4)s helicates,
T1/24d values (switching temperature in cooling mode) of 155 K, 115 K and 150 K,
respectively, with a 15 K wide thermal hysteresis in all cases'? whereas [Fe;L43](I3)4
undergoes full SCO at 210 K.2° Maintaining an ether hinge, but changing the terminal 4-
imidazole group of L4 to a 1-methyl-2-imidazole in L5, Kruger and co-workers reported
the doubly switchable (temperature and light) and solvent sensitive SCO of
[Fe2(L5)3](Cl04)4.23 The desolvated helicate undergoes full SCO [HS-HS] = [LS-LS] in the
solid state, with T1/2 = 140 K.13 In contrast, the hydrated analogues [Fez(L5)3](ClO4)a-xH20
(x=1-4), exhibit moisture sensitive half SCO, with T1/> value between 210-265 K.23 Further
modification of L4, changing the 4-imidazole to 4-thiazole L6 (Figure S1), by Li and co-
workers, resulted in [Fez(L6)3](BF4)a], which undergoes full SCO at Ti; = 348 K.14
Sunatsuki and Kojima and co-workers showed that short spacer ligands L7 and
ethyl/methyl substituted analogue L8 (Figure S1) resulted in tightly wound dinuclear
helicates that exhibited abrupt half-SCO in the solid state.® The complex
[Fe2(L7)3](ClO4)a undergoes Ti/; = 240 K and similarly the analogue BF4 showed lower
T1/2 = 190 K,*> whereas the plate crystals of [Fe2(L8)3](ClO4)s-H20 undergoes Ti/2 = 120
K.*® Aromi and co-workers reported two helicates based on the meta-phenylene linked
L9 ligand (Figure S1), X@[Fe2(L9)3])X(PFs)2, that could be triply switched by guests (X =
Cl or Br), temperature or light.*® Due to the presence of a pair of ‘spare’ NH moieties on
each L9 strand, the helicates encapsulate a halide ion guest, X = Cl or Br, with the choice
of guest, shown to tune the T/, by about 40 K, from 302 K for Cl to 258 K for Br. Kruger,
Clérac and co-workers showed that the solid state T1/2 for the thermally induced full SCO
of two solvated dinuclear helicates formed from a pair of isomeric ligands, L10 and L11
(Figure S1), featuring imidazole-imine binding pockets, was modified from 355 K to 148
K on changing from stronger 2-imidazole (L10) to weaker 4-imidazole (L11).!” Very
recently, Li and co-workers reported the longest dinuclear helicate, of Fe:--Fe length
19.322 A, formed using a long semi-flexible ligand L12 (Figure S1). It undergoes

incomplete two-step SCO at T1/, = 335 Kand T2 = 91 K.2°
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Previously reported SCO and redox active complexes
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Figure S1.2 A strong linear plot between En and yus for nine mononuclear [Fe'(X-
Salmeen);]PFs and [Fe'!(X-Sal),trien]PFs¢ complexes reported by Kadish and co-
workers.?% 2>

In 1975 Drago and co-workers studied four mononuclear Fe(ll) complexes, showing that
HS was the hardest to oxidise, but steric factors were also at play in that case.?® The
biggest family we are aware of contains nine mononuclear [Fe"'(X-Salmeen),;]PFs and
[Fe'(X-Sal),trien]PFes complexes and was published in 1984 by Kadish and co-workers:
they observed a linear correlation of decreasing fraction HS (yus) with increasing redox
potential (hence increasing ease of reduction), both measured in acetone solution
(Figure S1.2).2* 2> The only case involving SCO-active dinuclear iron(Il) helicates was
reported by Sunatsuki and co-workers in 2009, in which a pair of helicates differing by
ligand substituent X underwent irreversible oxidation, with the HS (at 300 K in the solid
state) complex of the X = H ligand slightly harder to oxidise (0.70 V) than the LS complex
of the electron donating X = Me ligand (0.69 V).%*> In 2017, Kuroda-Sowa and co-workers
studied a family of four [Fe'(qgsal*).] complexes varying in halide substituent X (F, Cl, Br

and 1): X= F remained HS in the solid state (but with a small needle component
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undergoing SCO at 144 K) and was the easiest to oxidise in MeCN solution (-0.35 V),
whilst the other three complexes were SCO active with T1/2 308-341 K, and had redox
potentials of -0.27 to -0.26 V.2’ More recently, Sunatsuki and co-workers reported that
a pair of tetrahedral cages [Fe'"s(H2LR)s]Xs (R = H, X = ClO4; R = Me, X = BF4) showed
gradual incomplete SCO in the solid state, starting below 150 K for the former (weaker
ligand field) and below 200 K for the latter, stronger field complex, with the former,
more HS complex, significantly harder to oxidise in MeCN solution (Eps = 0.68 V vs 0.54
V).28 Of these, only the Drago?® and Kadish?* 2° studies involved monitoring the SCO in
solution, which is the most relevant option for comparison with the redox potential, also

determined in solution.

X-ray crystallography

[Fey(L2NHIm-meta);1(BF,)4-2CH3CN-solvent (1-solvents): The asymmetric unit consists of
cationic FeLs, two acetonitrile, three BF4 and fourth disordered BF; anion at two
positions with half occupancies. All hydrogen atoms were placed in calculated positions
and rode on the attached atom with U(H) = 1.2U(attached atom, C) and U(H) =
1.5U(attached atom, N). All non-H atoms were refined anisotropically. One of the
counteranion, BF4 had positional disordered with half occupancy (B4, F41, F42, F43 and
F44) and (B5, F51, F52, F53 and F54). The command SAME was applied on isobutyl group
C65, C66, C67 and C68. The electron density found by SQUEEZE?® was 231 electrons/cell
i.e. 115.5 electrons per helicate (Z = 2). This is in agreement with the presence of five
molecules of acetonitrile (5 x 22 = 110 electrons) per helicate. For further details, see

Table S2 and the cif file.

[Fe,(LANHIm-meta).1(BF,),-solvent (2-solvents): The asymmetric unit consists of cationic
Feols and four BFs counteranions. All hydrogen atoms were placed in calculated
positions and rode on the attached atom with U(H) = 1.2U(attached atom, C) and U(H)
= 1.5U(attached atom, N). All non-H atoms were refined anisotropically. Carbon atoms
(and associated H atoms) of an isobutyl group were disordered across two positions with
0.6 occupancy (C66, C67) and 0.4 (C69, C70). In another not well behaved isobutyl group
RIGU was applied C53 C54 C56 C55. One of the counteranion, BF4 was disordered at two
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positions with occupancy 0.8 (F41, F42, FA3 and F44) and 0.2 (F45, F46, F47 and F48).
The seven molecules of nitromethane were highly disordered so SQUEEZE?® was applied.
The electron density found by SQUEEZE was 2136 electrons/cell i.e. 267 electrons per
helicate (Z = 8). This is in agreement with the presence of approximately 8 molecules of

nitromethane (8 x 32 = 256) per helicate. For further details, see Table S2 and the cif file.

[Fey(LANMelm-meta) 1(BF,),-6CH3CN-C4H100  (3:6CH3CN-C4H100): The asymmetric unit
constituting of the whole cation Fe,Ls, six acetonitrile, one diethyl ether and four BF4
anions. All hydrogen atoms were placed in calculated positions and rode on the attached
carbon atom with U(H) = 1.2U (attached atom, C). All non-H atoms were refined

anisotropically. No disorder was present. For further details, see Table S2 and the cif file.

[Fe(LA0'm-meta),](BF,),-6CH3CN-solvent (4-solvents): The asymmetric unit consist of Fe,Ls
cationic unit, four BF4 and six CHsCN molecules. All hydrogen atoms were placed in
calculated positions and rode on the attached carbon atom with U(H) = 1.2U(attached
atom, C). All non-H atoms were refined anisotropically otherwise mentioned. Carbon
atoms (and associated H atoms) of one isobutyl group were disordered with half
occupancy (C18, C19, C20 and C21, C22, C23). One of the counteranion, BFs was
disordered at two positions with occupancy 0.5 and RIGU was applied (F41, F42, F43 and
F44) and (F45, F46, F47 and F48, and left isotropically). The command SAME was applied
on isobutyl group C56, C57, C58 and C59. The electron density found by SQUEEZE?® was
179 electrons/cell i.e. 89.5 electrons per helicate (Z = 2). This is in agreement with the
presence of four molecules of acetonitrile (4 x 22 = 88) per helicate. For further details,

see Table S2 and the cif file.

[Fe(LA0'm-meta),](BF,),-5.5N0,CH3 (4:5.5N0,CHs): The asymmetric unit consists of the
FesLs cationic unit, four BFs, five and half NO2CHs molecules. All hydrogen atoms were
placed in calculated positions and rode on the attached carbon atom with U(H) =
1.2U(attached atom, C). All non-H atoms were refined anisotropically. Carbon atoms
(and associated H atoms) of one isobutyl group were disordered with 0.7 (C30A, C31A,
C32A) and 0.3 (C308B, C31B, C32B) occupancy. Two of the BF4 counteranions was ‘twirl’
disordered around the B2-F21 and B4-F41 bond, over two positions with occupancy 0.8
(F22, F23, F24) and 0.2 (F25, F26, F27) and second BF4 with 0.5 occupancy (F42, F43,
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F44) and (F45, F46, F47). The RIGU command was applied to the nitromethane molecule
0600, N600 and C600. For further details, see Table S2 and the cif file.

[Fey(LA0!m-meta),](BF,),-4NO,CH3 (4-5NO2CHs): The asymmetric unit consists of the Fe,lLs
cationic unit, four BFs, four NO2CH3 molecules. All hydrogen atoms were placed in
calculated positions and rode on the attached carbon atom with U(H) = 1.2U(attached
atom, C). All non-H atoms were refined anisotropically otherwise mentioned. Carbon
atoms (and associated H atoms) of three isobutyl group were disordered with 0.6 (C30A,
C31A, C32A) and 0.4 (C30B, C31B, C32B) occupancy, 0.7 (C43A, C44A, C4A5A) and 0.3
(CA3B, C44B, C45B, and left isotropic) occupancy and 0.6 (C55A, C56A, C57A) and 0.4
(C43B, C44B, C45B). One of the BF4 counteranions was ‘twirl’ disordered around the B4-
F41 bond, over two positions with occupancy 0.5 (F42, F43, F44) and (F46, F47, F48). The
unit cell contains solvent accessible voids of 240 A3 so SQUEEZE?® was applied. The
electron density found by SQUEEZE was 59 electrons/cell i.e. 29.5 electrons per helicate
(Z = 2). This is in agreement with the presence of approximately one molecule of

nitromethane (1 x 32 = 32) per helicate. For further details, see Table S2 and the cif file.

[Fey(L3SIm-meta);](BF,)4-solvent (5-solvents): The asymmetric unit consists of half cationic
unit, Felis, and two BFs4 in an asymmetric unit. All hydrogen atoms were placed in
calculated positions and rode on the attached carbon atom with U(H) = 1.2U(attached
atom, C). All non-H atoms were refined anisotropically otherwise mentioned. Out of
three isobutyl groups one was disordered. Carbon atoms (and associated H atoms) of
one isobutyl group were disordered across two positions but there was not enough
electrondensity to resolve it so left as isotropic (C6, C7 and C8). One of the counteranion,
BF4; was disordered at two positions with occupancy 0.6 (F22, F23 and F24) and 0.4 (F25,
F26 and F27). Three acetonitrile molecules were highly disordered so SQUEEZE?® was
applied. The electron density found by SQUEEZE was 362 electrons/cell i.e. 90.5
electrons per helicate (Z = 4). This is in agreement with the presence of approximately
four molecules of acetonitrile (4 x 22 = 88) per helicate. For further details, see Table S2

and the cif file.

[Nip(L2NHIm-meta),1(BF,),-solvent (1Ni-solvents): The asymmetric unit consists of cation
NizLs, two BF4 and six CH3CN molecules. All hydrogen atoms were placed in calculated
positions and rode on the attached carbon atom with U(H) = 1.2U(attached atom, C) and

S17



U(H) = 1.5U(attached atom, N). Carbon atoms (and associated H atoms) of one isobutyl
group were disordered with occupancy of 0.7 (C66, C67, C68) and 0.3 (C69, C70, C71).
Two of the counteranions, BF4, two diethyl ether and other four acetonitrile were highly
disordered so SQUEEZE? was applied. The electron density found by SQUEEZE was 1044
electrons/cell i.e. 261 electrons per helicate (Z = 4). This is in good agreement with the
presence of two BF4 (2 x 41 = 82) and two molecules diethyl ether molecules (2x 42= 84)
and four molecules of acetonitrile (4 x 22 = 88) per helicate. For further details, see Table

S3 and the cif file.

[Niy(L3NHIm-meta) ;1 (BF,)4-solvent (2Mi-solvents): The asymmetric unit consists of cation
NiL1s, two acetonitrile, one BF4 and two BFs with half occupancy. All hydrogen atoms
were placed in calculated positions and rode on the attached carbon atom with U(H) =
1.2U(attached atom, C) and U(H) = 1.5U(attached atom, N). All non-H atoms were
refined anisotropically. The electron density found by SQUEEZE?® was 820 electrons/cell
i.e. 102.5 electrons per helicate (Z = 8). This is in agreement with the presence of five
molecules of acetonitrile (5 x 22 = 110) per helicate. For further details, see Table S3 and

the cif file.

In all cases, the stereochemistry around the M(Il) (M: Fe and Ni) centre is facial, as seen
in other ditopic azine-triazole helicates and cages.? This is in contrast to the meridional
binding mode of the monotopic azine-triazole/azole-triazole Rdpt or Rat analogues

observed in the mononuclear [Fels]?* complexes.30-33

All of the Fe—N distances fall in the range of 1.934-2.000 A (Table S1), which is consistent
with LS Fe(ll). There are two distinct sets of cis N—-Fe—N angle: the intraligand bite angles
are restricted by the 5-membered chelate ring formed by the azole-azole binding
pocket, so fall well below 90° (79.9-81.2°, Table S4) whereas the interligand cis-N-Fe-N
angles are much less constrained, so are larger and closer to 90° (88.9-98.3°, Table S5).
The trans-N—Fe—N angles, 168.1-173.0°, are all ~“below the ideal 180° for an octahedral

geometry (Table S6).1°
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Table S1. Selected structural parameters at 100 K, otherwise mentioned, of the following complexes: the new azole-triazole dinuclear Fe(ll)
helicates 1-5, a pair of azole-triazole dinuclear Ni(ll) helicates, the pair of analogous literature azine-triazole dinuclear helicates, and the pair of
analogous mononuclear azole-triazole complexes. The distances and angles given are the averages for each independent Fe(ll) centre. HS and
mixedHS/LS Fe(ll) in red text. Octahedral Ni(ll) in blue text.

Complexes Space group | <Fe—Nazole> | <Fe—Ntriazole> 3° Spin state M---M (A) Intraligand
(A) (A) <Nazole—Fe—Ntriazole> (°)

1-solvents P1 1.984,1.978 | 1.949, 1.948 60.9, 59.7 LS 10.0361(6) 80.1, 80.5

1Ni-solvents P21/n 2.103,2.083 | 2.091, 2.069 75.2,70.2 S=1 10.313(1) 78.3,78.7

2-solvents Pbca 1.988,1.993 | 1.956, 1.949 58.7,57.8 LS 10.1619(9) 80.5, 80.6
2Vi.solvents Ibca 2.097 2.069 69.7 S=1 10.3891(8) 78.8

3:6CH3CN-C4H100 P1 2.000,1.997 | 1.961, 1.964 62.0, 61.5 LS 10.3227(7) 80.3, 80.4

4-solvents P1 1.999,1.987 | 1.948,1.940 57.0, 56.8 LS 10.018(1) 80.6, 80.8

4-5.5NO2CH;s P1 1.988,2.075 | 1.945,2.042 62,77.2 LS, 10.1554(7) 80.7,78.5

mixLS/HS

4-5NO2CHz (253K) P1 2.002,2.202 | 1.957,2.159 63, 95.3 LS, HS 10.2281(9) 80.3,75.8
5-solvents C2/c 1.975 1.931 57.0 LS 9.9711(9) 80.9
[Fey(L2Pym-meta);](BF4)4-6CH3CN 8 P31c 1.999 1.926 56.7 LS 10.132 80.7
[Fe(LAym-meta);](BF4)4-6CH3CN 8 P31c 2.008 1.915 60.3 LS 10.320 80.3
[Fe(LANMeim),1(BF4),-solvents ° P1 2.175 2.197 92.9° HS - 75.7

[Fe(L*")3](BFa4)2-solvents ° P1 1.997,1.988 | 1.976,1.958 | 58.2,58.2° LS - 80.6, 80.6
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Figure S2. Selected structural parameters (average bond lengths (A), av. C-X—C angles
(°)) associated with the azole ring in the dinuclear helicates: 1-solvents (black), 2:solvents
(red), 3:6CH3CN-CsH100 (blue), 4-solvents (green) and 5-solvents (purple).

The average C—X—C angle and C-X bond length in the azole of these helicates varies
(Figure S2): for X = CH (1-solvents), NH (2:solvents), NMe (3:6CH3CN-C4H100) and O
(4-solvents) they lie in a very narrow range (105-109°, 1.35-1.37 A), whereas for the
larger X = S heteroatom (5-solvents) they are significantly lower (90°) and longer (1.70
A), respectively. The overlaid structures of the 4—imidazole (2-solvents) and 4—thiazole

(5-solvents) helicates highlights both of these differences (Figure S3).

The angle between the centroids of the triazole—phenylene—triazole rings in all of these
helicates (116-120°) remains close to 120° irrespective of changing from a six
membered diazine to a five membered azole ring (Table S8), as it is largely controlled by
the meta-phenylene linker employed in all of these ditopic ligands. Unsurprisingly, given
that both rings coordinate, the azole and attached triazole ring are close to co-planar
(2.84-5.77°, Table S7) in all helicates 1-5, as were the analogous n-pyrimidine and
triazole rings for [Fey(L2/4pym-meta);](BF,)4-6CH3CN (1.80/1.20°).8 This is usual for such Rat
complexes.” 3% 3436 |nterestingly, the twist angle between the triazole and phenylene
linker drops slightly, by ~4°, from 50.22-51.33° for the azine-triazoles to 45.40-48.18° for

the azole-triazoles (Table S7).
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Figure S3. Overlay (fit of Fe, N, C and S) of the cationic structures of [Fey(L*NHIm-
meta);1(BF4)4 (2, purple) and [Fey(L*S'™-meta);](BF,)4 (5, golden yellow); emphasising of the
differences in C—X bond length and C—X—C angle (X = S vs N; black dashed circle). For
clarity, hydrogen atoms, counter-anions, solvents and iso-butyl groups are not shown.
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Table S2. Crystal data and structure refinement details for the complexes. TSQUEEZE applied.

1-solventst 2-solventst 3:6CH3CN-C4H100 4-solventst 4-5.5NO2CH3 4-5NO,CHs5" 5-solventst
TIK] 100 100 100 100 100 253 100
Empirical formula C76HooBaF16Fe2N32 C72HgaBaF16Fe2N30 CoasaH124BaF16Fe2N360 CsaHo6BaF16Fe2N3006 | CissHisoBsF32FeaNsoOsza C76Ho0BaF16Fe2N23014 C72H73BaF16FeaN24Se
M 1910.73 1828.63 2233.22 2080.84 4340.52 2078.69 1926.85
CCDC No. 2061247 2061248 2061249 2061250 2090518 2090519 2061251
Crystal system triclinic orthorhombic triclinic triclinic triclinic triclinic monoclinic
Space group P-1 Pbca P-1 P-1 P-1 P-1 C2/c
a[A] 14.5969(3) 20.0164(7) 17.7970(4) 14.0743(3) 12.7611(3) 12.9427(4) 13.1754(4)
b [A] 18.8022(3) 30.0399(5) 18.8632(5) 15.1211(6) 15.2423(5) 15.5781(6) 25.7678(7)
c[A] 19.7107(3) 36.9150(16) 19.2290(3) 27.2280(8) 25.9116(7) 26.0851(9) 29.1091(9)
al] 84.573(2) 90 66.217(2) 105.634(3) 92.820(2) 93.702(3) 90
BI] 81.247(2) 90 73.980(2) 91.620(2) 101.815(2) 101.308(3) 94.743(3)
vI[°] 89.600(2) 90 74.493(2) 96.749(3) 93.092(2) 93.154(3) 90
V[A3] 5322.56(16) 22196.6(13) 5587.7(2) 5530.7(3) 4916.7(2) 5134.2(3) 9848.7(5)
z 2 8 2 2 1 2 4
Pealcd. [8/cm?)] 1.192 1.094 1.327 1.250 1.466 1.345 1.300
W [mm1] 2.877 2.734 2.835 2.848 0.403 0.380 4.249
F(000) 1972.0 7536.0 2328.0 2148.0 2236.0 2140.0 3944.0
Crystal Size (mm) 0.1 x0.08 x 0.05 0.1x0.08 x0.02 0.2x0.1x0.09 0.08 x 0.05 x 0.03 0.09 x 0.05 x 0.012 0.09 x 0.05 x 0.012 0.09 x 0.03 x 0.02

26 range for data collection 7.708 to 154.666 7.148 to 153.272 8.002 to 152.934 6.992 to 153.868 6.462 to 58.928 6.588 to 58.592 7.508 to 153.194
Reflections collected 57200 93118 49438 45905 59625 57448 20758
Independent reflections 22044 23026 22943 22571 23153 23784 10075

R(int) 0.0392 0.0915 0.0343 0.0839 0.0408 0.0373 0.0389

Data / restraints / parameters 22044/26/1230 23026/24/1184 22943/0/140 22571/15/1337 23153/18/1434 23784/17/1413 10075/0/578
Goof (F?) 1.014 0.999 1.063 1.074 1.046 1.059 1.063

Ri [I>20(1)] 0.0681 0.0795 0.0722 0.0916 0.0645 0.0871 0.0914

WwR: [all data] 0.1981 0.2399 0.2137 0.2546 0.1701 0.2745 0.2612

Max/min res. e density [e,&'i“] 1.27 and -0.72 0.90 and -0.48 1.94 and -0.92 0.88 and -0.62 1.28/-0.66 1.20/-0.58 2.24 and -0.86
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Figure S5. Solution of 1 (0.032 mM; Yellow), 2 (1.6 mM; Brown), 3 (2 mM, Dark yellow), 4 (1.4 mM; Greyish) and 5 (0.01 mM; Yellow) in acetonitrile
used in VT-UV-vis studies.
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Figure S7. Crystal structure of cationic [Fey(L2NHIm-meta);1(BF,)4-2CHsCN-solvent (1-solvents), [Fe,(L*NHIm-meta) ](BF,),-solvent (2-solvents),
[Fey(L¥NMelm-meta).1(BE,),.6CH3CN-C4H100  (3-6CH3CN-C4H100), [Fe,(LA0!m-meta),1(BF,),-6CH3CN-solvent  (4-solvents) and [Fey(LASIm-
meta);1(BF4)s-solvent (5-solvents); solvent molecules, counter-anions and hydrogens are not shown for clarity.
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Figure S8. Space filled representation of dinuclear helicates of [Fe(LZNHIm-meta);](BF,),4-2CH3CN-solvent (1-solvents), [Fe,(L*NHIm-meta), ] (BF,),-solvent
(2-solvents), [Fey(L*NMelm-meta),1(BF,),-6CH3CN-C4H100 (3:6CH3CN-C4H100), [Fea(L*0'm-meta);](BF,)4-6CH3CN-solvent (4-solvents) and [Fey(L*S'™
meta),;](BF4)4-solvent (5-solvents).

Figure S9. Solid sample of 1N (violet), 2N (pink), 3N (violet), 4N (pink) and 5N (pink) at RT under the optical microscope.
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Figure S10. Crystal structure of cationic [Niy(LZNHIm-meta);](BF,),4-CH3CN-solvent
(1V-solvents) and  [Nip(L#NHIm-meta),1(BF,),-4CH3CN-solvent  (2M-solvents); solvent
molecules, counter-anions and hydrogens are not shown for clarity.
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Table S3. Crystal data and structure refinement details for the Ni(ll) helicates.

1Mi.solvents 2Ni.solvents
T [K] 100 100
Empirical formula C7aHs7B2FsN31Ni2 CsoHo6B4F16N34Ni2
Mr 1701.78 1998.56
CCDC no. 2061253 2061252
Crystal system monoclinic orthorhombic
Space group P2i/n Ibca
a[A] 14.3289(4) 19.9782(4)
b [A] 22.2707(6) 29.8827(5)
c[A] 35.2655(11) 37.7594(8)
a[] 90 90
B[] 96.353(3) 90
v ] 90 90
Vv [A3] 11184.6(6) 22542.5(8)
YA 4 8
Pealcd. [g/cm3] 1.011 1.178
i [mm] 0.918 1.093
F(000) 3544.0 8272.0

Crystal Size (mm)

0.04 x 0.02 x 0.005

0.01 x 0.009 x 0.008

20 range for data collection

7.368 to 153.33

7.088 to 153.222

Reflections collected 54658 30243
Independent reflections 23003 11551

R(int) 0.0558 0.0230

Data / restraints / parameters 23003/9/1096 11551/0/623
Goof (F?) 1.048 1.108

R [1>20(1)] 0.1241 0.0679

wR: [all data] 0.3406 0.2175
Max/min res. e density [eA] 1.50/-1.07 0.98/-0.64
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Table S4. Bite angle and torsion angle dinuclear tris-L Fe(ll) 1-5 complex.

angle within ligand
Ntriazole—Fe”—Nazole

()

Torsion angle

()

1-solvents
N1-Fel-N3 79.9(1) N1-C3-C4-N3 -1.9(3)
N11-Fel-N13 80.28(9) N11-C53-C54—-N13 -5.3(3)
N21-Fel-N23 80.2(1) N21-C51-C52—N23 -3.4(4)
N7-Fe2-N9 80.5(1) N7-C21-C22-N9 -6.0(4)
N17-Fe2—N20 80.5(1) N17-C45-C46—N20 -1.9(4)
N27-Fe2—-N29 80.4(1) N27-C69-C70-N29 -1.0(4)

2:solvents
N1-Fel-N3 80.4(1) N1-C3-C4-N3 3.8(5)
N11-Fel-N13 80.6(1) N11-C27-C28-N13 4.3(5)
N21-Fel-N23 80.4(1) N21-C51-C52—N23 2.2(5)
N7-Fe2-N9 80.3(1) N7-C21-C22-N9 0.6(5)
N17-Fe2—-N19 80.3(1) N17-C44-C45—-N19 7.9(5)
N27-Fe2—-N29 81.2(1) N27-C71-C72—-N29 3.9(5)

3:6CH3CN-CsaH100
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N1-Fel-N3 80.1 (1) N1-C49-C48—N3 -4.2(4)
N11-Fel-N13 80.3 (1) N11-C23-C22—-N13 -0.4(4)
N21-Fel-N23 80.5 (1) N21-C74-C75-N23 -4.4(4)

N8—Fe2—-N9 80.4 (1) N8-C31-C30-N9 -4.9(4)
N18-Fe2—N19 80.6 (1) N18-C4—C5—-N19 -3.3(4)
N28-Fe2—-N29 80.3 (1) N28-C56—-C57—-N29 -6.0(4)

4-solvents

N1-Fel-N2 80.4(2) N1-C3-C4-N2 -1.5(7)
N9—Fel-N10 81.0(2) N9—-C30-C31-N10 0.8(7)
N17-Fel-N18 80.6(2) N17-C54-C55—-N18 2.2(7)

N6—Fe2—-N8 80.9(2) N6—C24—C25-N8 -1.1(8)
N14-Fe2—N16 80.9(2) N14-C48-C49-N16 -0.4(7)
N22-Fe2—-N24 80.7(2) N22-C72-C73—-N24 1.9(7)

4-5.5N0O,CHs

N1-Fel-N2 80.8(1) N1-C3-C4-N2 -0.1(4)
N9—Fel—- N10 80.8(1) N9—C27—C28-N10 -3.6(4)
N17-Fel— N18 80.4(1) N17-C51-C52—-N18 -3.6(4)

N6—Fe2— N8 78.7(1) N6—C21-C22-N8 -3.5(4)
N14—Fe2— N16 78.5(1) N14-C45-C46—-N16 -7.0(4)
N22—-Fe2— N24 78.4(1) N22-C69-C70-N24 -8.5(4)

4-5N0,CHs (253 K)

N1-Fel-N2 80.2(1) N1-C3-C4-N2 3.4(5)
N9—Fel- N10 80.4(1) N9—C27—C28-N10 4.3(5)
N17-Fel— N18 80.3(1) N17-C52-C53—-N18 0.2(5)

N6—Fe2— N8 75.6(1) N6—C21-C22-N8 8.8(6)
N14—Fe2— N16 75.6(1) N14-C46—-C47-N16 8.3(6)
N22-Fe2— N24 76.1(1) N22-C70-C71-N24 6.1(5)

5-solvents

N1-Fel-N2 81.0(1) N1-C3-C4-N2 -1.5(4)

N5—-Fel-N8 80.6(1) N5-C21-C22-N8 -1.9(5)
N9—Fel-N10 81.0(1) N9—C27—C28-N10 -2.5(4)
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Table S5. Remaining cis-angles between ligands N—Fe—N for the [Fe,L3]** complexes 1-5.

(°) Fe2 (°)
1-solvents
N1-Fel-N11 96.1(1) N7-Fe2—-N17 89.8(1)
N1-Fel-N21 95.3(1) N7-Fe2—-N27 93.3(1)
N1-Fel-N23 91.8(1) N7-Fe2—-N29 95.3(1)
N3-Fel-N11 92.55(9) N9-Fe2—-N17 92.8(1)
N3—-Fe1-N13 90.77(9) N9—Fe2—-N20 93.4(1)
N3-Fel-N23 91.86(9) N9—-Fe2—N29 95.1(1)
N11-Fel-N21 96.0(1) N17-Fe2—-N27 92.2(1)
N13-Fel-N21 94.47(9) N20-Fe2—-N27 93.6(1)
N13—Fel-N23 92.43(9) N20—Fe2-N29 95.2(1)
2-solvents
N1-Fel-N11 96.1(1) N7-Fe2—-N17 91.0(1)
N1-Fel-N13 91.7(1) N7-Fe2—-N19 93.5(1)
N1-Fel-N21 98.3(1) N7-Fe2—-N27 91.5(1)
N3-Fel-N13 90.4(1) N9-Fe2-N19 96.9(1)
N3-Fel-N21 97.0(2) N9—-Fe2—-N27 93.0(1)
N3-Fel-N23 92.9(1) N9—-Fe2—-N29 97.5(1)
N11-Fel-N21 92.5(2) N17-Fe2—-N27 90.4(1)
N13—Fel-N23 90.4(1) N17—-Fe2-N29 91.6(1)
N11-Fel-N23 90.8(1) N19—Fe2-N29 94.2(1)
3-6CH3CN-C4H100
N1-Fel-N11 98.1 (1) N8—Fe2—-N18 90.7 (1)
N1-Fel-N13 93.2 (1) N8—Fe2—-N19 95.1 (1)
N1-Fel-N21 96.4 (1) N8—Fe2—N28 89.1 (1)
N3—-Fe1-N13 90.0 (1) N9—Fe2—-N19 94.3 (1)
N3-Fel-N21 95.1 (1) N9-Fe2—-N28 95.4 (1)
N3-Fel-N23 88.9 (1) N9-Fe2—-N29 95.2 (1)
N11-Fel-N21 94.8 (1) N18—Fe2—-N28 90.3 (1)
N11-Fel-N23 93.4 (1) N18—Fe2-N29 94.6 (1)
N13—Fel-N23 90.8 (1) N19—Fe2—N29 96.3 (1)
4-solvents
N1-Fel-N9 95.6(2) N6—Fe2—N14 91.5(2)
N1-Fel-N10 91.0(2) N6—Fe2—-N16 91.9(2)
N1-Fel-N17 97.5(2) N6—Fe2—-N22 92.2(2)
N2—-Fel-N10 92.1(2) N8—Fe2—-N16 97.6(2)
N2-Fel-N17 91.8(2) N8—Fe2—-N22 91.9(2)
N2-Fel-N18 90.7(2) N8—Fe2—N24 95.3(2)
N9-Fel-N17 95.6(2) N14—Fe2-N22 90.1(2)
N9—-Fe1-N18 93.4(2) N14—Fe2—-N24 92.4(2)
N10-Fel-N18 91.3(2) N16—-Fe2—N24 95.8(2)
4-5.5N0O>CHs
N1-Fel-N9 96.6(1) N6—Fe2—N14 95.4(1)
N1-Fel-N10 96.9(1) N6—Fe2— N16 95.9(1)
N1-Fel-N17 95.6(1) N6—Fe2— N22 92.8(1)
N2-Fel-N10 94.8(1) N8—Fe2— N16 102.7(1)
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N2-Fel-N17 91.2(1) N8—Fe2— N22 92.3(1)
N2—-Fel-N18 91.1(1) N8—Fe2— N24 90.6(1)
N9-Fel-N17 93.8(1) N14—Fe2— N22 87.2(1)
N9-Fe1l-N18 91.8(1) N14-Fe2— N24 95.1(1)
N10-Fel-N18 87.8(1) N16-Fe2— N24 95.2(1)
4-5N02CHs (253 K)

N1-Fel-N9 93.9(1) N6—Fe2—-N14 87.0(1)
N1-Fel-N17 95.9(1) N6-Fe2— N22 93.9(1)
N1-Fel-N18 91.2(1) N6—Fe2— N24 91.6(1)
N2—Fel-N9 92.1(1) N8—Fe2— N14 95.5(1)
N2—-Fel-N10 88.3(1) N8—Fe2— N16 96.2(1)
N2—-Fel-N18 91.7(1) N8—Fe2— N24 91.1(1)
N9-Fel-N17 96.1(1) N14—Fe2— N22 96.9(1)
N10-Fel-N17 96.2(1) N16—Fe2— N22 97.6(1)
N10-Fe1l-N18 95.1(1) N16-Fe2— N24 106.8(1)
5-solvents

N2—-Fel-N10 92.2(1) - -
N2-Fel-N5 91.4(1) - -
N2—Fel-N8 91.7(1) - -
N1-Fe1l-N10 93.8(1) - -
N1-Fel-N9 94.2(1) - -
N1-Fel-N8 94.2(1) - -
N5—Fel1-N10 91.9(1) - -
N9—Fel-N5 94.2(1) - -
N9-Fel-N8 95.8(1) - -

Table S6. Trans-angles between ligands N—Fe—N for the [Fe,L3]** complexes 1-5.

Fel (‘) Fe2 ()
1-solvents

N1-Fel-N13 169.9(1) N7—-Fe2—N20 168.3(1)
N3—-Fel-N21 170.6(1) N9—Fe2—N27 172.0(1)
N11-Fel-N23 171.5(1) N17-Fe2-N29 171.2(1)
2-solvents

N1-Fel-N23 173.0(1) N7-Fe2—-N29 172.3(1)
N3—-Fel-N11 170.3(2) N9—Fe2—-N17 170.7(1)
N13—Fel-N21 168.4(1) N19-Fe2-N27 169.5(1)
3:6CH3CN-C4H100

N1-Fel-N23 168.3(1) N8—Fe2—N29 168.1(1)
N3-Fel-N11 170.0(1) N9—-Fe2—-N18 169.3(1)
N13—-Fel-N21 169.8(1) N19-Fe2—-N28 170.0(1)
4-solvents

N1-Fel-N18 170.9(2) N6—Fe2—-N24 171.9(2)
N2—-Fe1-N9 172.1(2) N8—Fe2—-N14 172.2(2)
N10—Fel-N17 171.1(2) N16—-Fe2-N22 170.1(2)
4-5.5N0>CH3

N1-Fel-N18 170.9(1) N6—Fe2—N24 166.0(1)
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N2-Fel-N9 174.5(1) N8—Fe2-N14 174.0(1)
N10-Fel-N17 167.0(1) N16—Fe2—N22 163.9(1)
4-5N0,CH3 (253 K)

N1-Fe1l-N10 167.1(1) N6-Fe2— N16 160.1(1)
N2—Fel- N17 171.1(1) N8—Fe2— N22 163.3(1)
N9 —Fel— N18 174.0(1) N14—Fe2— N24 172.8(1)
5-solvents

N2-Fel-N9 171.3(1) - -
N1-Fel-N5 170.5(1) - -
N8—Fel-N10 171.6(1) - -

Table S7. Triazole-imidazole plane angle and triazole-phenyl plane angle in the dinuclear
Fe(ll) complexes 1-5 and [Fe,(L2/4Pym-meta);](BF,)4-6CH3CN.8

1-solvents
triazole-imidazole angle () triazole-phenyl ring angle ()
LN3 C4 N5C9N4-C3N2C2C1N1 4.10 LN3 C4 N5 C9 N4-C10 C15 C14 50.93
Cci3c12c11
LN14 C33 N15 C28 N13- C27 N12 C26 6.54 LN13 C28 N15 C33 N14- C34 C39 46.97
C25N11 C38 C37 C36 C35
LN24 C57 N25 C52 N23-N22 C50 C49 3.67 LN23 C52 N25 C57 N24-C58 C63 40.29
N21 C51 C62 C61 C60 C59
LN7 C21 N8 C16 N6- N9 C24 C23 N10 8.77 LN7 C21 N8 C16 N6-C12 C13 C14 46.15
C22 Cci5c1oc11
LN17 C45 N18 C40 N16- N20 C48 C47 3.59 LN17 C45 N18 C40 N16-C36 C37 45.52
N19 C46 C38 C39 C34 C35
LN27 C69 N28 C64 N26- N29 C71 C72 2.57 LN27 C69 N28 C64 N26- C60 C61 42.92
N30 C70 C62 C63 C58 C59
Average 4.87 45.46
2-solvents
triazole-imidazole angle () triazole-phenyl ring angle ()
LCAN3N5CON4- NIC3C2N2C1 5.20 LN3 C4 N5C9 N4-C10C15C14 46.71
Ci3c12c11
LN14 C33 N15 C28 N13- N11 C25 N12 4.62 LN13 C28 N15 C33 N14- C34 C35 50.96
C26 C27 C36 C37 C38 C39
LN23 C52 N25 C57 N24- N21 C51 C50 3.41 LN23 C52 N25 C57 N24- C58 C59 39.91
N22 C49 C60 C61 C62 C63
LN7 C21 N8 C16 N6- N9 C22 C23 N10 1.23 LN7 C21 N8 C16 N6-C12 C13 C14 50.42
C24 Cci5c1oc11
LN17 C45 N18 C40 N16- N19 C46 C47 7.62 LN17 C45 N18 C40 N16- C38 C37 46.89
N20 C48 C36 C35 C34 C39
LN27 C71 N28 C64 N26- N29 C72 C73 3.11 LN27 C71 N28 C64 N26- C62 C61 44.69
N30 C74 C60 C59 C58 C63
Average 4.20 46.59
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3:6CH3CN-CsH100

triazole-imidazole angle

()

triazole-phenyl ring angle

()

Cl2Ci11Ci14

LN3 C48 N5 C43 N4- N1 C52 N2 C50 C49 6.99 LN3 C48 N5 C43 N4-C42 C41 C40 52.33
C39C37C38
LN23 C74 N25 C69 N24-N21 C78 N22 5.39 LN23 C74 N25 C69 N24-C67 C66 43.93
C76 C75 C65 C63 C64 C68
LC22 N13 N15C17 N14- N11 C26 N12 1.31 LN13 C22 N15 C17 N14-C15 C16 50.68
C24 C23 Cl2C11C13cC14
LN8 C31 N7 C36 N6- N9 C27 N10 C29 5.52 LN8 C31 N7 C36 N6- C37 C39 C40 45.25
C30 C41 C42 C38
LN28 C57 N27 C62 N26- N29 C53 N30 9.67 LN28 C57 N27 C62 N26- C63 C65 52.68
C55 C56 C66 C67 C68 Co4
LN18 C5N17 C10 N16- N19 C1 N20 C3 4.53 LN18 C5N17 C10 N16- C11 C13 44.20
(o] Cl4 C15C16 C12
Average 5.77 48.17
4-solvents
triazole-imidazole angle (°) triazole-phenyl ring angle (°)
LN2C4N4CO9N3-N1C101C2C3 1.27 LN2 C4 N4 C9 N3- C10 C11 C12 52.22
C13 C14 C15
LN10 C31 N12 C36 N11- N9 C28 03 C29 4.11 LN10 C31 N12 C36 N11-C37 C38 37.82
C30 C39 C40 C41 C42
L C55 N18 N20 C60 N19- N17 C52 05 2.96 LN18 C55 N20 C60 N19- C61 C62 47.52
C53C54 C63 C64 C65 C66
LN6 C24 N7 C16 N5- N8 C27 02 C26 C25 3.14 LN6 C24 N7 C16 N5- C14 C13 C12 43.22
C11 C10 C15
LN14 C48 N15 C43 N13- N16 C51 04 2.06 LN14 C48 N15 C43 N13- C41 C40 50.72
C50 C49 C39 C38 C37 C42
LN22 C72 N23 C67 N21- N24 C74 06 3.48 LN22 C72 N23 C67 N21- C65 C64 48.52
C75 C73 C63 C62 C61 C66
Average 2.84 46.67
5-solvents
triazole-imidazole angle (°) triazole-phenyl ring angle (°)
LN1C1S1C2C3- N2C4N4C9N3 2.71 LN2 C4 N4 C9 N3- C10 C11 C12 43.71
C13 C14 C15
LN8 C24 S2 C23 C22- N5 C21 N7 C16 N6 4.50 LN5 C21 N7 C16 N6- C14 C13 C12 46.96
C11 C10 C15
LN9 C25S3 C26 C27- N10 C28 N12 C33 5.27 LN10 C28 N12 C33 N11- C34 C35 45.54
N11 C36 C35 C34 C37
Average 4.16 45.40
[Fey(L2Pym-meta)3](BF4)4-6CH3CN & [Fe(Lym-meta)3](BF4)4-6CH3CN 2
triazole-phenyl ring angle triazole-phenyl ring angle
N3 C5 N5 C6 N4- C7 C9 C10 C9 C7 C8 50.22 N3 C5 N5 C10 N4- C11 C12 C13 51.33
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Table S8. The 6 angle between centroid of tiazole-phenylene-triazole ring of 1-5 and
[Fey(L2PYm-meta) ] (BF,),-6CH3CN and [Fey(L4PYm-meta) ] (BF4)s-6CH3CN.

Triazole—phenyl —triazole angle | ()
1-solvents

LN7 C21 N8 C16 N6-C12 C13 C14 C15 C10 C11- N3 C4A N5 C9 N4 116.71
LC69 N27 N28 C64 N26- C60 C61 C62 C63 C58 C59- N23 C52 N25 C57 N24 117.21
LC45 N17 N18 C40 N16- C36 C37 C38 C39 C34 C35- C33 N15C28 N13 N14 117.36
2-solvents

LN24 C57 N25 C52 N23- C58 C59 C60 C61 C62 C63- N27 C71 N28 C64 N26 118.21
LC9 N4 N5 C4 N3- C10 C15C14 C13 C12 C11- N7 C21 N8 C16 N6 117.85
LN14 C33 N15 C28 N13- C34 C35 C36 C37 C38 C39- N17 C45 N18 C40 N16 118.36
3:6CH3CN-CsH100

LN8 C31 N7 C36 N6- C37 C39 C40 C41 C42 C38- N4 C43 N5 C48 N3 119.47
LN18 C5N17 C10 N16-C11 C13 C14 C15 C16 C12-N14 C17 N15 C22 N13 118.80
LN28 C57 N27 C62 N26- C63 C65 C66 C67 C68 C64- N24 C69 N25 C74 N23 119.45
4-solvents

LN2 C4 N4 C9 N3- C10 C11 C12 C13 C14 C15- N5C16 N7 C24 N6 116.21
LN10C31 N12 C36 N11- C37 C38 C39 C40 C41 C42- N13 C43 N15 C48 N14 116.93
L N19 C60 N20 C55 N18- C61 C62 C63 C64 C65 C66- N21 C67 N23 C72 N22 117.17
5-solvents

L N2 C4 N4 C9 N3- C10 C11 C12 C13 C14 C15- N6 C16 N7 C21 N5 116.75
L C21 N5 N7 C16 N6- C14 C13 C12 C11 C10 C15- N3 C9 N4 C4 N2 116.75
LN10 C28 N12 C33 N11- C34 C35 (36 C35 C34 C37- N11 C33 N12 C28 N10 116.95
[Fey(L2Pym-meta);](BF4)4-6CH3CN &

N3 C5 N5 C6 N4- C7 C9 C10 C9 C7 C8- N4 C6 N5 C5 N3 117.88
[Fey(Lym-meta)3](BF4)4-6CH3CN &

N3 C5 N5 C10 N4-C11C12C13C12 C11C14- N4 CI0N5C5 N3 120.02

S34



-

]-

Figure S11. Intermolecular classical/non-classical hydrogen bonding through interaction
of H’s of acetonitrile and F’s of BF4 anion with H’s of azole rings in 1-solvents.

Figure S12. —NH of 2-Imidazole interacting with —F of BF4" counter-anions through
hydrogen bonding in 1-solvents; N19-H19---F24, N30-H30---F14, N12—-H12:--F31 and
N12-H12:--F32 to form 1D-chain.
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Figure S13. Intramolecular non-classical hydrogen bonding through interaction of F’s of
BF4™ anion with H’s of azole rings in 2-solvents.

Figure S14. F's of BF4 counter-anion interacting with —NH’s of 4-imidazole to form helical
chain extended along b-axis in 2-solvents; N30—H30-:-F32, N30—H30--F31, N2—H2:--F33
and N2—H2:--F34.

Figure S15. F's of BF4 counter-anion interacting with —NH’s of 4-imidazole to form helical
chain extended along b-axis in 2:solvents; N20—H20-:-F11, N20—H20---F13, C2—H2A---F13
and C5-H5A---F12.
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Figure S16. F’s of BF4 counter-anion interacting with —NH’s of 4-imidazole to form helical
chain extended along a-axis in 2-solvents; N10-H10---F21, N22-H22---F23 and
N22—-H22---F24.

Figure S17. F's of BF4 counter-anion interacting with —NH’s of 4-imidazole to form helical
chain extended along b-axis in 2-solvents; N12-H12---F42, N12-H12---F41,
C73-H73---F42, C73—H73---F44 and C65—H65A--F44.
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Figure S18. Intramolecular classical/non-classical hydrogen bonding through interaction
of H’s of six acetonitrile, H’s of diethyl ether and H’s of azole rings with F’s of four BF4
anion in 3-6CH3CN-C4H100.

Figure S19. Intermolecular classical/non-classical hydrogen bonding through interaction
of H’s of four acetonitrile and F’s of four BF4~ anion with H’s of azole rings in 4-solvents.
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Figure S20. Two inverted dimeric units reside in a unit cell via CH---:O intermolecular
hydrogen bond in 4-solvents.

Figure S21. F’s of BF4 counter-anion interacting with —CH’s of 4-oxazol to form 1D chain
extended along c-axis in 4-solvents; two inverted dimers are connected through one BF4
: C29—-H29-:-F14, C35-H35C::-F14, C53—H53-:-F12, C59-H59C::-F11 and C56—H56A:--F11
and connected through other BFs: C71-H71C---F41, C75-H75---F41, C44—-H44A---F42,
C46-H46C:+-F42, C50—-H50:--F42 and C50-H50:---F43.
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Figure S22. F’s of BF4 counter-anion interacting with —CH’s of 4-oxazol/phenylene to
form 1D chain extended along ac-plane in 4-solvents; dimers are connected through one
different BFs: C63-H63:--F22, C64-H64:--F22, C64-H64:--F24, C68-H68C:-02,
C51-H51:--F23 and, connected through other BFs;: C1-H1:--F31, C52-H52---F32,

C38-H38::-F31 and C39-H39---F34.

Figure S23. Intramolecular non-classical hydrogen bonding through the interaction of
H’s of imidazole rings and F’s of four BF4” anion in 5-solvents.
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Figure S24. Overlaid structure of 1-solvents (grey), 2-solvents (orange), 3:6CH3CN-CsH100
(blue), 4-solvents (green) and 5-solvents (purple); emphasising all structures are similar
(iso-butyl group, hydrogens and anions are removed for clarity).

Figure S25. Overlaid structure of 2:solvents (purple) and 5-solvents at 100 K (orange);
emphasising comparison of C-S and C-N bond length (black dashes circle) (iso-butyl
group, hydrogens and anions are removed for clarity).
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Figure S26. [Fe,(L2NHIm-meta);1(BF,)4, homochiral A, A in a crystal packing.
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Figure S27. [Fey(L*NHIm-meta).1(BF,),, homochiral AAAA, AAAA in a crystal packing.
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Figure S28. Unit cell packing of [Fe,(L*NMelm-meta),1(BF,),-6CH3CN-C2HsO, homochiral A, A
in a crystal packing.

Figure S29. [Fey(L0'™m-meta),](BF,)4, homochiral A, A in a crystal packing.
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Figure S30. [Fe,LS'm-meta);1(BF,)4, homochiral AAA, AAA in a crystal packing.

VT- 'H NMR Evans method

For the solution Evans method VT-NMR spectra, 1-4H,0 (5.6 mM), 2:6H,0 (6.2 mM),
3:5H,0 (5.4 mM), 4-6H,0 (6.1 mM) and 5-2.5H,0 (6.0 mM) in CDsCN solution were used.
The obtained data on 1-5 helicates from variable temperature Evans NMR method were
modelled with the regular solution model Equation S1 (below). The R? for all fits was
0.99 (for all solvents studied; see below Table, Figure S31-Figure S35 below). The range
of AH (10-20 kJ-mol™) and AS (34-79 J-mol™-K™?) values obtained from the fit (below
Table) fall in the expected literature ranges for solution studies of SCO-active iron(ll)
complexes (AH = 4-41 ki-mol™and AS= 22-146 J-mol™-K™1).373% The modelling to
equation S1 was carried out in OriginPro 2018 from OriginLab Corporation; Excel was
also employed, to determine 95% confidence intervals and help assign appropriate
errors to the parameters obtained from the fit (Figure S31-Figure S35). Note that the
expected error in temperature in a VT-NMR instrument is £ 1 K, and error associated
with the Evans method determination of ymT(T) is 5-10%, so significant errors are

expected in the derived parameters?’.

XmT(T) = % (Equation S1)
1+e\RT R
Where:
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xmT(T) is the molar magnetic susceptibility at temperature T.
amTmax) Was, in all fits, set to 3.7 cm3 mol? K.?
R is the ideal gas constant (8.314472 ) mol* K1)

The parameters obtained from the fit include: AH and AS, the thermodynamic enthalpy

and entropy values associated with the SCO event.

T1/2, the SCO transition temperature = AH/ AS.

Ta/2 (K) AH (k) K mol?) AS (J mol?) R2
[Fe,(L2NHIm-meta) J](BF,),-4H,0 (1-4H,0) 331+17 17.558 53.0 0.99
[Fe,(L4NHIm-meta) ](BF,),-6H,0 (2-:6H,0) 267 £13 10.258 38.3 0.99
[Fey(LANMelm-meta) . ](BF,),-5H,0 (3:5H,0) 247 £ 12 17.881 72.4 0.99
[Fe,(LAOIm-meta),](BF,),-5H,0 (4:6H,0) 249 +12 19.682 79.0 0.99
[Fey(L4SIm-meta);](BF,4)4-2.5H,0 (5-2.5H,0) 471123 23.537 50.0 0.92
4.0 -
Equation maxA/(1+exp((H/(R*T))-(S/R))
H 17558.24064 + 580.18936
354 |s 53.0359 £ 2.07533
’ Reduced Chi-Sqr 0.89111
R-Square (COD) 0.99286
_ Adj. R-Square 0.99196
3.0 T1/2 (K) 331
© 254
€
X
o 2.0
e
)
= 1.5-
£
=
1.0 4
0.5 1
00 I ' I ! I ' I ' 1
0 100 200 300 400 500

Temperature (K)

Figure S31. Plot of ymT vs T for 5.6 mM of [Fe,(L2NHIm-meta);](BF,), (1-4H,0) in CD3CN
solution from Evans method NMR studies (500 MHz); this graph displays the
experimental data points (black squares) with error bar of 5%.
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4.0 5

Equation maxA/(1+exp((H/(R*T))-(S/R)))
1 [H 10258.21436 + 364.58168
S 38.28851 + 1.33845
35 =1 |Reduced Chi-Sar 0.19746
R-Square (COD) 0.99109
h Adj. R-Square 0.9901
T1/2 (K) 267
— 3.0 +
N
6] 4
€ 25-
X ]
™
£ 20
O
~ |
l_E 1.5
= 5
1.0 1
0.5+
00 T T T T & T U T T 1
0 100 200 300 400 500

Temperature (K)

Figure S32. Plot of ymT vs T for 6.2 mM of [Fe,(LNHIm-meta);1(BF,), (2-6H,0) in CDsCN
solution from Evans method NMR studies (500 MHz); this graph displays the
experimental data points (red squares) with error bar of 5%.

4.0 S
Equation maxA/(1+exp((H/(R*T))<(SIR)))
1/H 17881.08892 + 324.25891
S 72.40737 + 1.25553
35 7| Reduced Chi-Sqr 0.03472
4 | R-Square (COD) 0.99862
Adj. R-Square 0.99846
3.0 4[t1r2 K 247

N
[&)]
1

%mT / cm® K mol”’
= N
(&)} o
1 1

-
o
1

o
(6}
1

o
o

T Y T y T E T T 1
100 200 300 400 500
Temperature / K

o

Figure S33. Plot of ymT vs T for 5.4 mM of [Fe,(L3NMelm-meta),1(BF,), (3.5H,0) in CDsCN
solution from Evans method NMR studies (500 MHz); this graph displays the
experimental data points (blue squares) with error bar of 5%.
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|[Equation maxA/(1+exp((H/(R*T))-(S/R)))
H 19682.87469 + 528.52399
3.5+ S 79.03697 + 1.96285
|| Reduced Chi-Sqr 0.14683
R-Square (COD) 0.99692
3.0 | Adj. R-Square 0.99648
- {T12 ) 249.05
'S
2.5
g
X
- 2.0
g
&)
F 15
= 1.5
x
1.0
0.5
0.0 T T T T T T T T 1
0 100 200 300 400 500

Temperature/ K

Figure S34. Plot of ymT vs T for 6.1 mM of [Fe,(L*C'™-meta);](BF,), (4-6H20) in CD3CN
solution from Evans method NMR studies (500 MHz); this graph displays the
experimental data points (green squares) with error bar of 5%.

4.0
Equation maxA/(1+exp((H/(R*T))-(S/R)))
4 |H 23537.01569 + 2230.73319
S 50+ 6.57676
3.5 - |Reduced chi-sar 3.97863E-4
R-Square (COD) 0.92415
< | Adj. R-Square 0.91467
304  T,,= 471K
S 25-
S
X
- 2.0
€
(6]
~
= 154
= 1.5
=
1.0 1
0.5 1
0.0 —_—-
0 100 200 300 400 500

Temperature/ K

Figure S35a. Plot of ymT vs T for 6.0 mM of [Fe(L*'™m-meta)3](BF,)4 (5-2.5H20) in CD3CN
solution from Evans method NMR studies (500 MHz).
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3.5 1 Equation maxA/(1+exp((H/(R*T))-(S/R))
H 26103.94665 + 2012.9692
s 55.14507 £ 5.49502
Reduced Chi-Sqr 2.75664E-4
3.0 R-Square (COD) 0.97447
Adj. R-Square 0.97021
- 25-
[e)
S T, .= 474K
X 2.0
(3]
S
(&)
— 1.5
-
€
=
1.0 +
0.5 1
OO T T T T T T T ! 1
0 100 200 300 400 500

Temperature / K

Figure S36b. Plot of ymT vs T for 6.0 mM of [Fey(L*S'm-meta);](BF,)a (5-2.5H,0) in CD3NO-
solution from Evans method NMR studies (500 MHz).

Table S9a. Comparison of ymT (per Fe' ion) vs T for 5:2.5H,0 in CDsCN and CD3NO>
solvent; calculated from 'H NMR data by the Evans method at various temperatures.

Temperature/K | CD3CN CD3sNO;
298 0.14384 -
303 0.14626 -
308 0.14867 -
313 0.18812 -
318 0.21736 -
323 0.22464 -
328 0.23626 -
333 0.27956 0.18516
338 0.31051 0.26293
343 0.33254 0.27638
348 - 0.32405
353 - 0.35627
358 - 0.37479
363 - 0.43463
368 - 0.48214
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Figure S37. Stacked spectra, obtained by the Evans *H NMR method, from 333 to 243 K
for complex [Fey(LZNHIm-meta),1(BF,), (1) in CD3CN (500 MHz) (* represent the solvent
residual signal).
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Figure S38. Stacked spectra, obtained by the Evans 'H NMR method, from 343 to 243 K
for complex [Fey(L*NHIm-meta).1(BF,), (2) in CD3CN (500 MHz) (* represent the solvent
residual signal).
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Figure S39. Stacked spectra, obtained by the Evans 'H NMR method, from 343 to 243 K
for complex [Fey(L*NMelm-meta) 1(BF,), (3) in CD3CN (500 MHz) (* represent the solvent
residual signal).
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Figure S40. Stacked spectra, obtained by the Evans 'H NMR method, from 343 to 243 K
for complex [Fey(L30'™-meta);](BF,), (4) in CD3CN (500 MHz) (* represent the solvent
residual signal).
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Figure S41a. Stacked spectra, obtained by the Evans *H NMR method, from 343 to 298
K for complex [Fey(L*S'™-meta);](BF4)4 (5) in CD3CN (500 MHz) (* represent the solvent
residual signal).
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Figure S40b. Stacked spectra, obtained by the Evans 'H NMR method, from 368 to 333
K for complex [Fey(L'™-meta);](BF,4)4 (5) in CD3NO2 (500 MHz) (* represent the solvent
residual signal).
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VT-UV vis studies in acetonitrile solution

The UV-vis spectra recorded from 253 K to 303 K on acetonitrile solutions of 1-5 (Figure
S5). The resulting solution VT-UV-vis data were then modelled using the regular solution

model (Equation S3).

The increasing absorbance with decreasing temperature directly relates to the
increasing population of the Fe(ll) LS state. If HS and LS fraction are in thermal

equilibrium, the absorbance can be defined as a function of temperature as equation

5240, 41
_ A(0) .
A(T) = —=i=s Equation S2
1+e(W+T)

According to the Beer-Lambert law, A = cl, so equation S2 can be rewritten as follows,

in terms of molar extinction coefficient:

e(T) = % Equation S3

11e(FTHER)
€(T) is molar extinction coefficient as a function of temperature,

€(0) is the extinction coefficient for fully LS (i.e. yus = 0), estimated from the equation for
the fit shown in Figure S52 and Figure S54, yus = xe +c. For all fits to equation D3, g(0)
was set to this value g5(0) = 103.3 (1), 316.6 (2), 168.2 (3) and 176.8 (4) L mol* cm*and

extrapolate significantly (Figure S53 and Figure S55).

R is the ideal gas constant (8.314472 J mol? K), and the determined parameters, AH
and AS, are the thermodynamic enthalpy and entropy values associated with the SCO.

The transition temperature Ty, calculated accordingly, AH/AS.
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Figure S42. Variable temperature absorbance UV-vis spectra of 0.032 mM
[Fey(L2NHIm-meta) 1(BF,), (1) in acetonitrile solution (charge transfer transition at 446 nm).
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Figure S43. Variable temperature UV-vis study of a 0.032 mM acetonitrile solution of 1.
Note: € is calculated per mole of Fe' ion so it can be used to monitor the spin state as a

function of T.
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Figure S44. Variable Temperature absorbance UV-vis spectra of 1.6 mM
[Fey(LANHIm-meta) 1(BF,), (2) in acetonitrile (d-d transition at 540 nm).
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Figure S45. Variable temperature UV-vis study of a 1.6 mM acetonitrile solution of 2.
Note: € is calculated per mole of Fe' ion so it can be used to monitor the spin state as a
function of T.
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Figure S46. Variable temperature absorbance UV-vis spectra of 2 mM
[Fey(LANMelm-meta) 1(BF,), (3) in acetonitrile (d-d transition at 540 nm).
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Figure S47. Variable temperature absorbance UV-vis spectra of 1.4 mM
[Fe(LA0'm-meta)](BF,), (4) in acetonitrile (d-d transition at 540 nm).
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Figure S48. Variable temperature UV-vis study of a 1.4 mM acetonitrile solution of 4.

Note: € is calculated per mole of Fe' ion so it can be used to monitor the spin state as a
function of T.
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Figure S49. Variable temperature absorbance UV-vis spectra of 0.012 mM

[Fey(LAS!m-meta);1(BF,), (5) in acetonitrile (charge transfer transition at 336 nm and d-d
band at 540 nm).
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Figure S50. Variable temperature UV-vis spectra of 0.012 mM [Fe,(L*'™m-met@);](BF4)4 (5)
in acetonitrile (charge transfer transition at 336 nm).
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Figure S51. Variable Temperature absorbance UV-vis spectra of 0.3 mM
[Fey(LAS!m-meta);1(BF,)4 (5) in acetonitrile (d-d transition at 524 nm).
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Figure S52. Variable temperature UV-vis study of a 0.3 mM acetonitrile solution of 5.
Note: € is calculated per Fe'' ion of complex.

Estimation of HS fraction (yus) of UV-vis data points by calibrating with Evans method

data

yus from the Evans method data (Table S11, 1%t column) was calculated assuming ymT(x+)
= 3.7 K cm® mol? for the fully [HS-HS] state and ymT() = 0 K cm3 mol™ for the fully [LS-

LS] state.

The 'H-NMR and UV-vis spectra were both recorded at 253 K, 263 K, 273 K, 283 K, 293 K
and 303 K for 1-5 complexes in acetonitrile, so the extinction coefficient (€) values
observed for the 540 nm band due to the LS state can be compared with the yysobtained
by 'H-NMR Evans method at the same temperature. A plot of yusversus g(both per metal
ion of the complex) gave the linear relationship noted in the insert (Figure S52 and
Figure S54), which was then used to convert each e(per metal ion of the

complex) measured in UV-vis spectrum to a yus value (green column,Table S11), and to
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estimate the €(0) expected for the fully LS state (i.e. yus = 0), to be €(0) (a significant

extrapolation).

Table S9b. ymT (per Fe' ion) values calculated from *H NMR data by the Evans method
at various temperatures for each complex in the CDsCN solution.

Temperature ZmT (cm3 K mol?)
/K [Fey(L2NHIm-meta) ] [Fep(LANHIm-meta),) [Fe(LANMelm-meta),] [Fey(LAO!m-meta);]
(BFa)a(1) (BFa)a(2) (BFa)a (3) (BFa)a (4)
243 0.3685 1.3806 1.7328 1.61698
253 0.43815 1.58814 2.03685 1.9183
263 0.55413 1.80158 2.28796 2.17566
273 0.75964 1.98822 2.58833 2.47243
283 0.91081 2.13116 2.77965 2.70389
293 1.12879 2.25767 2.96951 2.92644
303 1.34176 2.32796 3.11074 3.06567
313 1.53524 2.43604 3.21721 3.20861
323 1.74255 2.48000 3.29128 3.30308
333 1.91178 2.57693 3.33051
343 2.67567 3.36465

Table S10. Molar extinction coefficient, € per Fe' ion of the charge transfer for 1 (446
nm) and Az 1T1g band (540 nm) for 2, 3 and 4 and at various temperatures for each

complex in MeCN solution.

Temperature g(Lmoltcm™)
/K [Fea(L2NHIm-meta),] | [Fe,(L4NHIm-meta);] | [Fe,(|L4NMelm-meta),] [Fep(LA0!m-meta),]
(BFa)a (1) (BFa)a (2) (BFa)a (3) (BFa)a (4)
253 8597 173.81 81.8995 102.5
263 7928 154.21 68.46175 91.5
273 7178 138.29 57.46075 78.8
283 6405 125.38 47.7365 70.1
293 5646 113.36 41.57325 63.1
303 4863 106.9 35.1385 57.66
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Table S11. Comparison of yus values at measured temperatures both calculated from 'H
NMR (Evans method) data and estimated for UV-vis data, for 1, 2, 3 and 4 complex in
CDsCN/MeCN solution.

T/K [Fea(L2NHmmete)s] (BF4)s [Fea(L#NHImmete)s] (BF4)s [Fep(LANMetm-meta)s] (BF4)s [Fea(L*O'™meta)s] (BF4)a
(1) () 3) (4)
Vis (NMR) | yhs (UV-vis) | vus(NMR) [ yus (UV-vis) | yus(NMR) | yus (UV-vis) | yus(NMR) | yus (UV-vis)

243 0.0996 0.37314 0.46832 0.43702
253 0.11842 0.11251 0.42923 0.42857 0.5505 0.54403 0.51846 0.51275
263 0.14976 0.159 0.48691 0.48737 0.61837 0.62869 0.58802 0.58865
273 0.20531 0.21113 0.53736 0.53513 0.69955 0.698 0.66823 0.67628
283 0.24616 0.26485 0.57599 0.57386 0.75126 0.75926 0.73078 0.73631
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Figure S53. Plot of yus (obtained from Evans method) vs extinction coefficient per metal
ion (obtained from variable temperature UV-vis studies) of 446 nm band of complex 1
in 0.032 mM acetonitrile solution (R? = 0.99). The linear fit equation is further used to
convert € value into yus for UV-vis studies.
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Figure S54. Temperature dependence of the molar extinction coefficients (g) of the 446
nm charge transfer transition of 1 in acetonitrile solution. Red dotted curve represents
fit to equation S3, RZ = 0.99 (1) having set £.5(0) = 10334 L mol™* cm™, see Figure S52).
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Figure S55. Plot of yus (obtained from Evans method) vs extinction coefficient per metal
ion (obtained from variable temperature UV-vis studies) of 540 nm band of complex 2
(1.6 mM), 3(2 mM) and 4 (1.4 mM) acetonitrile solution. The linear fit equation is further
used to convert € value into yus for UV-vis studies.
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Figure S56. Temperature dependence of the molar extinction coefficients () of the 540
nm LS Fe(ll) Az Tig band of 2, 3 and 4 in acetonitrile solution. Red dotted curve
represents fit to equation S3, R?=0.99 (2), R2=0.99 (3) and R? = 0.99 (4) having set g.5(0)
=316.6 (2), 168.2 (3) and 176.8 (4) L mol* cm™, see Figure S54).
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Figure S57. UV-vis spectra of accurately measured ~3 mM of analogous Ni(ll) helicates
in acetonitrile solution; 1N-6H,0 (black), 2M-4H,0 (red), 3Mi-5H,0 (blue) and 4“-2.5H,0
(green), and 5M-3H,0 (purple).

S65



Table S12. Two of the three UV-vis transitions (Amax in nm/energy in cm™) of the
accurately calculated ~3 mM of Ni(ll) helicates in acetonitrile solution with € per
dinuclear complex (L mol™ cm™) and corrected Aocorr) calculated by using Hart, Boeyens

and Hancock equation (= 10630 + 1370¢e1/¢,).2°

Complexes | 3A—> 3T1¢(F) | Shoulder/cm™ Peak/cm™ 3A2g>3T2(F)
(e1/Lmoltcm™) | (e2/Lmoltecm™) | Aocorr)/ cm?
N 547/18281 (28) | 774/12919 (14) | 879/11376(23) | 11505
2N 544/18382 (25) | 770/12987 (13) | 884/11312 (22) | 11420
3N 544/18382 (27) | 772/12953 (14) | 880/11363 (24) | 11430
gNi 530/18867 (41) | 769/13003 (18) | 874/11441 (26) | 11516
SNi 535/18691 (26) | 780/12820 (31) | 862/11600 (36) | 11804
Cyclic voltammetry
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Figure S58. CVs of 1 mM of [Fey(L2\NHIm-meta);1(BF,), (1-4H,0) in MeCN (0.1 M TBACIO4),

Potential (V)

from 0 > 1.0 > 0V vs 0.01M Ag/AgNOs at scan rates 100, 150, 200 and 400 mV s,
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Figure S59. CVs of 1 mM of [Fe,(L3NHIm-meta);1(BF,), (2-:6H,0) in MeCN (0.1 M TBACIO4),
from 0> 0.6 > 0V vs 0.01M Ag/AgNOs at scan rates 100, 150, 200 and 400 mV s
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Figure S60. CVs of 1 mM of [Fe,(L*NMelm-meta) 1(BF,), (3-5H,0) in MeCN (0.1 M TBACIOa,),
from 0.0 - 0.6 > 0V vs 0.01M Ag/AgNOs at scan rates 100, 150, 200 and 400 mV s,
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Figure S61. CVs of 1 mM of [Fey(L?0'™-meta);](BF,), (4-5H,0) in MeCN (0.1 M TBACIOa,),
from 0.2 > 1.0 > 0.2 V vs 0.01M Ag/AgNOs at scan rates 100, 150, 200 and 400 mV s™.
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Figure S62. CVs of 1 mM of [Fey(LS™meta);]1(BF,)4 (5:2.5H20) in MeCN (0.1 M TBAPFs,
partially soluble), from 0 = 1.2 > 0 V vs 0.01M Ag/AgNOs at scan rates 100, 150, 200
and 400 mV s,
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'H DOSY NMR spectra
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Figure S63. 'H DOSY-NMR spectrum (500 MHz) of Fe,(L2NHIm-meta),1(BF,), (1) in CDsCN at
25 °C; unit of D is 1019 m2s,

F1 (D)
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Figure S64. 'H DOSY-NMR spectrum (500 MHz) of Fe,(L*NHIm-meta).1(BF,), (2) in CDsCN at
25 °C; unit of D is 10 1 m?sL,
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Figure S65. 'H DOSY-NMR spectrum (500 MHz) of Fe,(L*NMelm-meta);1(BF,), (3) in CD3CN
at 25 °C; unit of D is 10 19 m2sL,
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Figure S66. *H DOSY-NMR spectrum (500 MHz) of Fe,(L*C'm-meta);1(BF,), (4) in CDsCN at
25 °C; unit of D is 10 1 m?sL,
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Figure S67. *H DOSY-NMR spectrum (500 MHz) of Fe,(L*S'™-meta);](BF,)4 (5) in CD3CN at
25 °C; unit of D is 10 1 m2s1,

Mass spectra
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Figure S68. Mass spectrum of [Fe,(L2NHIm-meta) ](BF,), (1). Fits of the circled peaks are
provided in the following figures.
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Figure S69. Fit of a peak in the mass spectrum of [Fe,(LZNHIm-meta),;](BF,), (1) (Figure S67):
[Fe,(L2NHIm-meta), 14+ ayperimental (black) and simulated pattern (red).
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Figure S70. Fit of a peak in the mass spectrum of [Fe,(LZNHIm-meta),](BF,), (1) (Figure S67):
[Fe,(L2NHIm-meta),](F)3+ experimental (black) and simulated pattern (red).
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Figure S71. Fit of a peak in the mass spectrum of [Fe,(LZNHIm-meta),](BF,), (1) (Figure S67):
[Fey(L2NHIm-meta) 1(BF,)3* experimental (black) and simulated pattern (red).
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Figure S72. Fit of a peak in the mass spectrum of [Fe,(LZNHIm-meta),](BF,), (1) (Figure S67):
[Fe,(L2NHIm-meta),](F,)2* experimental (black) and simulated pattern (red).

S73



[Fez(L4NHIm-meta)3](B F4 )4

370.15105
® 499.87225
@
522.54038
)
827.31229
L+H

I“ﬂll " if,] .I. — L IL

I 4 I 4 I ' I ' I ' 1 ' 1 ' 1 ' 1
200 300 400 500 600 700 800 900 1000
m/Z

Figure S73. Mass spectrum of [Fe(L*NHIm-meta),1(BF,), (2). Fits of the circled peaks are
provided in the following figures.
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Figure S74. Fit of a peak in the mass spectrum of [Fe,(L*NHIm-meta);](BF,), (2) (Figure S72):
[Fe,(LANHIm-meta) .14+ axnerimental (blue) and simulated pattern (red).
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Figure S75. Fit of a peak in the mass spectrum of [Fe,(L*NHIm-meta);1(BF,), (2) (Figure S72):
[Fey(LANHIm-meta) (F,)3* experimental (blue) and simulated pattern (red).
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Figure S76. Fit of a peak in the mass spectrum of [Fe,(L*NHIm-meta);1(BF,), (2) (Figure S72):
[Fey(LANHIm-meta);1(BF,);3* experimental (blue) and simulated pattern (red).
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Figure S77. Fit of a peak in the mass spectrum of [Fe,(L*NHIm-meta);1(BF,), (2) (Figure S72):
[Fe(LANHIm-meta) 1(BF,),%* experimental (blue) and simulated pattern (red).
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Figure S78. Mass spectrum of [Fe(L¥NMelm-meta).](BF,), (3). Fits of the circled peaks are
provided in the following figures.
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Figure S79. Fit of a peak in the mass spectrum of [Fe,(L4NMelm-meta) 1(BF,), (3) (Figure S77):
[Fe,(LANMelm-meta), 14+ aynerimental (black) and simulated pattern (red).
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Figure S80. Fit of a peak in the mass spectrum of [Fe,(L*NMelm-meta),|(BF,), (3) (Figure S77):
[Fe,(L*NMelm-meta) .1(F)3+ experimental (black) and simulated pattern (red).
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Figure S81. Fit of a peak in the mass spectrum of [Fe,(L4NMelm-meta).1(BF,), (3) (Figure S77):
[Fey(LNMelm-meta),1(BE,)3* experimental (black) and simulated pattern (red).
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Figure S82. Fit of a peak in the mass spectrum of [Fe,(L*NMelm-meta),|(BF,), (3) (Figure S77):
[Fey(L¥NMelm-meta).1(F,)2+ experimental (black) and simulated pattern (red).
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Figure S83. Fit of a peak in the mass spectrum of [Fe,(L*NMelm-meta),|(BF,), (3) (Figure S77):
[Fey(L¥NMelm-meta).1(BE,),2* experimental (black) and simulated pattern (red).
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Figure S84. Mass spectrum of [Fe,(L40'™m-meta);1(BF,), (4). Fits of the circled peaks are
provided in the following figures.
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Figure S85. Fit of a peak in the mass spectrum of [Fe,(L*0'™-meta);](BF,)4 (4) (Figure S83):
[Fey(LA0'm-meta) 14+ axperimental (blue) and simulated pattern (red).
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Figure S86. Fit of a peak in the mass spectrum of [Fe,(L*0'™-meta);](BF,)4 (4) (Figure S83):

[Fe,(t40Im-meta), ] (BF,)3* experimental (blue) and simulated pattern (red).
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Figure S87. Fit of a peak in the mass spectrum of [Fe,(L*C'™meta);](BF,)4 (4) (Figure S83):
[Fe,(LA0m-meta).1(F)3+ experimental (blue) and simulated pattern (red).
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Figure S88. Fit of a peak in the mass spectrum of [Fe,(L*0'™meta);](BF,)4 (4) (Figure S83):
[Fey(LA0'm-meta),](F,)2* experimental (blue) and simulated pattern (red).
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Figure S89. Fit of a peak in the mass spectrum of [Fe,(L*C'™meta);](BF,)4 (4) (Figure S83):
[Fey(LA0'm-meta) 1(BF,)(F)2* experimental (blue) and simulated pattern (red).
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Figure S90. Mass spectrum of [Fey(L!™-meta);1(BF,)s (5). Fits of the circled peaks are
provided in the following figures.
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Figure S91. Fit of a peak in the mass spectrum of [Fe,(L*'™-™meta);](BF,), (5) (Figure S89):
[Fey(L3S!m-meta) 14+ experimental (black) and simulated pattern (red).
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Figure S92. Fit of a peak in the mass spectrum of [Fe,(L*'™-™meta);](BF,), (5) (Figure S89):
[Fey(L3SIm-meta);](F)3* experimental (black) and simulated pattern (red).
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Figure S93. Fit of a peak in the mass spectrum of [Fe,(L*'™meta);](BF,), (5) (Figure S89):
[Fey(LASIm-meta);](BF,)3* experimental (black) and simulated pattern (red).
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Figure S94. Fit of a peak in the mass spectrum of [Fe,(L*'™-™meta);](BF,), (5) (Figure S89):
[Fey(LASIm-meta);](F,)2* experimental (black) and simulated pattern (red).
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Figure S95. Fit of a peak in the mass spectrum of [Fe,(L*'™meta);](BF,), (5) (Figure S89):
[Fe(LASIm-meta);](BF,)(F)%* experimental (black) and simulated pattern (red).
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Figure S96. Fit of a peak in the mass spectrum of [Fe,(L*'™-™meta);](BF,), (5) (Figure S89):
[Fey(LAS!m-meta);](BF,),2* experimental (black) and simulated pattern (red).
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Figure S97. Mass spectrum of [Ni(LZNHIm-meta),1(BF,), (1N). Fits of the circled peaks are
provided in the following figures.
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Figure S98. Fit of a peak in the mass spectrum of [Niy(L2ZNHIm-meta);](BF,), (1N
(Figure S96): ([Niy(L2NHIm-meta);1)4+ experimental (blue) and simulated pattern (red).
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Figure S99. Fit of a peak in the mass spectrum of [Niy(LZNHIm-meta);1(BF,), (1M) (Figure S96):
([Ni(L2NHIm-meta),](BF,);)3* experimental (blue) and simulated pattern (red).
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Figure S100. Fit of a peak in the mass spectrum of [Niy(LZNHIm-meta);1(BF,), (1N) (Figure
S96): ([Niy(L2NHIm-meta),1(BF,),)?* experimental (blue) and simulated pattern (red).
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Figure S101. Mass spectrum of [Niy(L¥NHIm-meta);1(BF,), (2V). Fits of the circled peaks are
provided in the following figures.
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Figure S102. Fit of a peak in the mass spectrum of [Niy(L4NHIm-meta);1(BF,), (2M) (Figure
S100): ([Niy(LANHIm-meta).1)4+ axperimental (black) and simulated pattern (red).

5245398
5238739 5242077
5245733
5252061
. 5255392 .
:23‘74‘\0 | :2:.7724 5262040
1
| I
5262057
5235417 5258725
5255396
5252064
5248737
5238742 5242080 5245403
T e e L e e A e e e e L e e e e e S
5235 5240 5245 5250 5255 5260 5265

Figure S103. Fit of a peak in the mass spectrum of [Niy(L4NHIm-meta);1(BF,), (2M) (Figure
$100): ([Nip(L*NHIm-meta),1(BF,))3+ experimental (black) and simulated pattern (red).
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Figure S104. Fit of a peak in the mass spectrum of [Niy(L3NHIm-meta);1(BF,), (2M) (Figure
S100): ([Niy(LANHIm-meta).1(BF,),)3* experimental (black) and simulated pattern (red).
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Figure S105. Mass spectrum of [Ni(L*NMelm-meta),1(BF,), (3Ni). Fits of the circled peaks are
provided in the following figures.
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Figure S106. Fit of a peak in the mass spectrum of [Niy(L*NMelm-meta).1(BF ), (3Ni) (Figure
S104): [Niy(L3NMelm-meta) 14+ oy nerimental (blue) and simulated pattern (red).
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Figure S107. Fit of a peak in the mass spectrum of [Niy(L*NMelm-meta).1(BF ), (3Ni) (Figure
S104): [Niy(L3NMelm-meta).](BF,)3* experimental (blue) and simulated pattern (red).
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Figure S108. Fit of a peak in the mass spectrum of [Niy(L*NMelm-meta).1(BF ), (3Ni) (Figure
S104): [Niy(L3NMelm-meta),|(BF,),2* experimental (blue) and simulated pattern (red).
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Figure S109. Mass spectrum of [Niy(L*0'm-meta);](BF,), (4"1). Fits of the circled peaks are
provided in the following figures.
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Figure S110. Fit of a peak in the mass spectrum of [Niy(L4C'm-meta);](BF,), (4Ni) (Figure
S108): [Niy(L30'm-meta) 14+ experimental (blue) and simulated pattern (red).
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Figure S111. Fit of a peak in the mass spectrum of [Niy(L4C'm-meta);](BF,), (4Ni) (Figure
S108): [Niy(L20'm-meta)](BF,)3* experimental (blue) and simulated pattern (red).
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Figure S112. Fit of a peak in the mass spectrum of [Niy(L4C'm-meta);](BF,), (4Ni) (Figure
S108): [Niy(L30'm-meta)](BF,),%* experimental (blue) and simulated pattern (red).
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Figure S113. Mass spectrum of [Niy(L*S'm-meta);](BF,), (5M). Fits of the circled peaks are
provided in the following figures.
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Figure S114. Fit of a peak in the mass spectrum of [Niy(L4!™™eta)3](BF,)4 (5V) (Figure
S$112): [Niy(L3SIm-meta);14+ experimental (black) and simulated pattern (red).
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Figure S115. Fit of a peak in the mass spectrum of [Niy(L3S!mmeta);](BF,), (5N) (Figure
S112): [Niy(L3S'm-meta);](BF,)3* experimental (black) and simulated pattern (red).
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Figure S116. Fit of a peak in the mass spectrum of [Niy(L*S'™™eta)3](BF,)4 (5V) (Figure
$112): [Niy(L3S!m-meta);](BF,4),%* experimental (black) and simulated pattern (red).
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Figure S117. Mass spectrum of L2NHIm-meta
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Figure S118. Mass spectrum of LNHIm-meta
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Figure S119. Mass spectrum of L4NMelm-meta_
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Figure $120. Mass spectrum of L40!m-meta,
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Figure S121. Mass spectrum of LS!m-meta,
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NMR spectra
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Figure S122. Direct >N NMR spectrum of L40'm-metajn CDCl3, referenced to NO>CDs (+380 ppm).
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Figure S123. Direct >N NMR spectrum of L3S!m-metajn CDCl;, referenced to NO,CDs (+380 ppm).
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Figure S124. 'H NMR spectrum (400 MHz) of Ethyl 1H-imidazole-4-carboxylate in CDCls.
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Figure S125. 'H NMR spectrum (400 MHz) of 1H-imidazole-2-carbohydrazide in DMSO-Ds.
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Figure S130. 'H NMR spectrum (400 MHz) of L2NMelm-meta 4 CDCl;,
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Figure S131. 'H NMR spectrum (400 MHz) of L#0Im-meta jn CDCls.
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Figure S135. 13C NMR spectrum (100 MHz) of L#NMelm-meta jn CD(C]3,
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Figure S136. 13C NMR spectrum (100 MHz) of LA0!m-meta jn CDCls,
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Figure S137. 13C NMR spectrum (100 MHz) of L#S!m-meta jn CDCls.
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Overlaid crystal structures

Figure S138. Overlay of structures (all atoms) of 4-5.5NO,CHs (100 K, blue) and 4-5NO,CHj3
(253 K, orange), emphasising on lengthening of Fe2-N bond (dashed elipsoid).

Figure S139. Overlay of structures (all atoms) of 4-oxazole helicates 4-5.5NO,CH3 (crystallised
from nitromethane, blue) and 4-solvent (crystalised from acetonitrile, pink) at 100K,
emphasising on LS-LS Fe octahedral distortion (3°); higher number observed for former (62,
77.2°, blue) than latter (57.0, 56.8°, pink).
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Figure S140. Overlay of structures (all atoms) of 2NH-imidazole helicate 1-solvent (orange)
and 1Nisolvent (green), emphasising on comparison of distorted M(ll) octahedral sphere.

Figure S141. Overlay of structures (all atoms) of 4NH-imidazole helicate 2:solvent (orange)
and 2Ni-solvent (green), emphasising on comparison of distorted M(ll) octahedral sphere.
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Figure S142. Overlay of structures (all atoms) of Ni(ll) helicate of 1M-solvent (carbon:
yellowish-green) and 2Ni-solvent (carbon: green).

Solid state magnetic studies

The solid state magnetic susceptibility vs temperature of the air dried crystalline samples 1-5
were monitored with scan speed of 5K/min in settle mode. On cooling from 300 K to 50 K,
1-4H,0 remain LS whereas the small fraction of HS increased above 300 K, at 400 K (ymT=0.79
cm3 K mol?). The SCO curve followed the same path over the next three cycles (Figure S143).
On the contrast changing from 2NH-imidazole (1-4H,0) to 4NH-imidazole (2:6H,0), gradual
and incomplete SCO (Figure S144) is observed. While heating from 50-400 K, yus increased
from 0.43 (ymT = 1.61 cm3® K mol™?) to 0.86 (ymT = 3.17 cm3 K mol?). The ymT value for 3-5H,0
at 50 K is 0.44 cm? K mol which increased gradually upon heating to 3.86 cm3 K mol* at 400
K with T1/2 at 280 K (Figure S145). Compound 4-6H,0 has undergone abrupt SCO at 230 K, the
xmT value at 300 K of 3.43 cm?® K mol?, consistent with presence of 93% of HS fraction,
dropped to 0.54 cm? K mol™ at 50 K (Figure $S146). On the other hand, 5:2.5H,0 showed same
behaviour as 1-4H,0, remains towards LS at 400 K (ymT = 1 cm3 K mol?), only 27 % fraction

converted into HS (Figure S147).
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Complex T1/2 in solid state | T1/2 from NMR
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Figure S143. ymT versus T plot fsor [Fe,(L2NHIm-meta),|(BF,),.4H,0 (1-4H,0) over four successive
cycles, 300-50-400, 400-50-400 K, 400-50-400 K and 400-50-400 K (cooling = filled squares;
heating = open squares), in settle mode.
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Figure S144. ymT versus T plot for [Fe,(LANHIm-meta) 1(BF,),-6H,0 (2-6H,0) over two successive
cycles, 300-50-400 and 400-50-400 K (cooling = filled squares; heating = open squares), in
settle mode.
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Figure S145. ymT versus T plot for [Fey(L*NMelm-meta).](BF,),.5H,0 (3-5H,0) over three
successive cycles, 50-300-50, 50-300-50 K and 50-400-50 K (cooling = filled circle; heating =
open circle), in settle mode. TGA before the measurement cald: 4.49, found: 5.27.
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Figure S146. ymT versus T plot for [Fey(L30'™meta);](BF,)4-6H20 (4-6H,0) over three successive
cycles, 300-50-300, 300-50-300 K and 300-50-300 K (cooling = filled squares; heating = open
squares), in settle mode. TGA before the measurement cald: 5.56, found: 5.63.
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