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1. Effect of steric hindrance on the geometry of the vinyl group of PD1 and PD2 

 

Fig. S1. Potential energy curve as a function of the C-C-C=C torsion angle of the vinyl group of PD1 

and PD2 for isolated monomer, dimer in vacuum, and dimer in the protein environment of PSII. In PSII, 

the vinyl group of PD1 (marked with the blue circle) take an in-plane structure at the equilibrium 

geometry in the protein environment. The in-plane structure of the PD1 vinyl group leads to a small 

− interaction with ChlD2. 
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2. Reorganization energies of pigments 

Table S1. Intramolecular reorganization energy (meV) relevant with the charge separation in PbRC. 

The geometries of excited states, cations, and anions are optimized from the ground state geometry, 

using QM/MM.  

 Exciton Cation Anion 

PLPM 108 95 – 

BL 24 107 140 

BM 30 143 136 

HL 103 – 180 

HM 98 – 170 

Total reorganization energy (meV) of charge separated states from the ground state geometry. 

(PLPM)•+BL
•− 

(PLPM)•+HL
•− 

(PLPM)•+BM
•− 

(PLPM)•+HM
•− 

235 

275 

231 

265 

 

Table S2. Intramolecular reorganization energy (meV) relevant with the charge separation in PSII. The 

geometries of excited states, cations, and anions are optimized from the ground state geometry, using 

QM/MM.  

 Exciton Cation Anion 

PD1 32 94 – 

PD2 48 111 – 

ChlD1 47 124 165 

ChlD2 59 154 180 

PheoD1 70 – 132 

PheoD2 76 – 150 

Total reorganization energy (meV) of charge separated states from the ground state geometry. 

ChlD1
•+PheoD1

•− 

PD1
•+PheoD1

•− 

PD1
•+ChlD1

•− 

PD2
•+ChlD1

•− 

ChlD2
•+PheoD2

•− 

PD2
•+ChlD2

•− 

PD1
•+ChlD2

•− 

PD1
•+PheoD2

•− 

256 

226 

259 

276 

304 

291 

274 

244 

 

 



3. Delocalized exciton states in the reaction center of PSII 

Delocalized exciton states in the reaction center of PSII are analyzed by diagonalizing the 

Hamiltonian matrix consisting of the excitation energies of pigments and excitonic couplings (Table 

S3). The lowest and second lowest exciton states are localized on ChlD1 and ChlD2, respectively (Fig. 

S2). Thus, charge separation is considered to occur from the localized exciton.  

The exciton energies calculated using TDDFT-QM/MM/PCM with the CAMB3LYP functional ( = 

0.14,  = 0.19, and  = 0.46) are systematically blue-shifted as compared to the experimental values, 

where the calculated lowest excitation energy in the reaction center of PSII (632 nm) is blue-shifted 

from the experimental value of 680 nm.    

 

Table S3. Hamiltonian matrix consisting of the excitation energies of pigments and excitonic couplings. 

 PheoD1
* ChlD1

* PD1
* PD2

* ChlD2
* PheoD2

* 

PheoD1
* 2048 -11 0 0 0 0 

ChlD1
*  1965 7 -14 0 0 

PD1
*   2032 -10 -14 0 

PD2
*    2038 7 0 

ChlD2
*     1992 -13 

PheoD2
*      2044 

 

 

Fig. S2. Distribution of exciton on each pigment in the diagonalized (delocalized) exciton states in the 

reaction center of PSII. 
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4. Time constants based on Marcus theory 

For comparison, we estimate the charge transfer rates along the active branches of PbRC and PSII 

using the Marcus theory. The time constants of (PLPM)*→(PLPM) •+BL
•− and BL

•−→HL
•− transfers in 

PbRC are ~4 and ~0.1 ps, respectively, and those of ChlD1
*→ChlD1

•+PheoD1
•− and ChlD1

•+→PD1
•+ 

transfers in PSII are <0.1 and ~3 ps, respectively. The time constant of BL
•−→HL

•− transfer estimated 

by the Marcus theory is underestimated as compared to that calculated by the quantum dynamics 

calculations.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



5. Nonadiabatic Quantum Dynamics Calculations with the MCTDH method 

Nonadiabatic quantum dynamics calculations with the multi-configuration time-dependent Hartree 

(MCTDH) method is briefly introduced below. In the MCTDH method [S1], multi-dimensional 

vibrational wavefunctions on the respective electronic states are described as a linear combination of 

Hartree products of single particle functions (SPFs), where the respective SPFs are described by the 

discrete variable representation (DVR). The vibrational wave packets on the potential energy surfaces 

of the respective electronic states are propagated according to the time-dependent Schrödinger 

equation, where both the expansion coefficients of the respective configurations and the SPFs 

themselves are time-dependent. The MCTDH method enables efficient multi-states nonadiabatic 

quantum dynamics calculations, properly considering correlations among the nuclear degrees of 

freedom, the Franck-Condon factor of vibrational wavefunctions (Fig. S3), and vibrational energy 

redistribution along with electronic state transitions. This is well suited for describing charge and 

exciton transfers [S2], as well as superexchange mechanisms [S3] in condensed molecular systems 

beyond perturbative approaches.  

 

 

 

 

 

 

Fig. S3. Schematic illustration of vibrational wavefunctions along with electronic state transitions.  
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6. Effective mode representation of linear vibronic coupling model. 

We consider the following linear vibronic coupling Hamiltonian for the nonadiabatic quantum 

dynamics calculations: 

( )( )I IJ

I I J

H h I I H I J J I


= + + x                  (S1) 

( )2 2

1 1

( )
2

N N
Ii

I i i i i II

i i

h p x x H



= =

= + + + x .                    (S2) 

N is the number of vibrational modes, HIJ is the diabatic coupling (electronic coupling) between the 

state I and J. HII is the vertical excitation energy of the Ith electronic states. i, xi, and pi are the 

frequency, position, and momentum of the ith normal mode in the dimensionless coordinate. i
I is the 

vibronic coupling of the ith normal mode in the Ith electronic state. The linear vibronic coupling model 

(Eq. S2) can be transformed to another equivalent representation (Eq. S3) via an orthogonal 

transformation of the coordinates, X = U x, from the normal modes, x, to the hierarchical electron-

phonon model as follows [S4-S6] (for a two-state model):  

( ) ( )2 2

1 1 , 1 1 1

1 1

( )
2

N N
i

I i i i i i i i i II

i i

h P X D X d P P X X H+ + +

= =


= + + + + + x .          (S3) 

The frequencies, i, and bilinear couplings, dij, are expressed with the elements, uij, of the orthogonal 

matrix, U: 
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=
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The cumulative effect of the vibronic couplings of all normal modes is represented by a single effective 

mode, X1, with the effective vibronic coupling, D1:   

1 1

1

N
I

i i

j

D X x
=

=            (S5) 

The transformed vibrational modes comprise a chain of coupled oscillators from X1 to XN via dij (Eq. 

S3). Note that Eqs. S2 and S3 are equivalent when all modes (N modes) are considered. It has been 

proven that the nonadiabatic dynamics considering N modes can be reproduced for a certain 



propagation time by considering M effective modes (M < N) via truncation of the chain-like coupled 

oscillators of Eq. S3 [S4]. This feature can be exploited to construct a reduced model for analyzing 

short-time dynamics, where quantitative accuracy can be improved systematically by increasing the 

number of effective modes according to the order of chain. When the vibrational modes are coupled 

to several electronic states simultaneously, several effective vibronic coupling terms, DiXi, are needed 

as detailed in Refs. S4. The reorganization energy can also be reproduced by considering adequate 

number of effective modes. In the present study, the effective modes, Xi, for each pigment are 

determined via orthogonal transformation of the intramolecular normal modes, xi, considering the 

vibronic coupling, iI, for the exciton, cation, and anion states.  
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