Supplementary Information

A single layer artificial neural network type architecture with molecular engineered bacteria for reversible and irreversible computing

Kathakali Sarkar ${ }^{1,2}$, Deepro Bonnerjee ${ }^{1,2}$, Rajkamal Srivastava ${ }^{1,2}$, Sangram Bagh ${ }^{1, *}$

${ }^{1}$ Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Homi Bhabha National Institute (HBNI), Block A/F, Sector-I, Bidhannagar, Kolkata 700064 INDIA
${ }^{2}$ Equal contributions

* Corresponding author

Figure S1: Derivation of functional and unit bactoneurons for a) de-multiplexing function, b) multiplexing function, c) majority function, d) decoding function, e) encoding function, f) Feynman gate function and g) Fredkin gate function.
In each case, combination of unit bactoneurons gives rise to single layer ANN architecture where, individual unit bactoneurons come back to their corresponding functional bactoneuron states while they get associated with ' 0 ' weighted inputs (If any). In the network level, parts of the summation function of each functional bactoneuron, contributed by ' 0 ' weighted input, are not shown.

d

Figure S2: Details of characterization and dose responses of BNeus 1, 2 and 6. Expression characterization of a) BNeu 1, c) BNeu 2 and $\mathbf{e)}$ BNeu 6 and dose responses of b) BNeu 1, d) BNeu 2 and \mathbf{f}) BNeu 6.

Figure S3: Correlation between bias and leakage of a Unit bactoneuron. a) Correlation between bias (b_{1}) and the percentage highest leakage ($\mathrm{L}_{\max }(\%)$) for all BNeu 1 cellular devices obtained from weight and bias adjustment steps. Simulated output behaviors of b) BNeu 1, c) BNeu 2 d) BNeu 3 e) BNeu 4, f) BNeu 5, g) BNeu 6, h) BNeu 7, i) BNeu 8, j) BNeu 9 and \mathbf{k}) BNeu 10. Simulation corresponding to the bias value obtained experimentally for each bactoneuron is shown in red box.

Figure S4: Characterization of unit bactoneurons BNeu 3, BNeu 4, BNeu 5, BNeu 7, BNeu 8, BNeu 9 and BNeu 10. Neural architectures, truth tables and biological circuit designs of unit bactoneurons a) BNeu 3, d) BNeu 4, g) BNeu 5, j) BNeu $7, \mathbf{m})$ BNeu $8, \mathbf{p})$ BNeu 9 and \mathbf{s}) BNeu 10 are shown. Details of plasmids carrying bioparts of the biological circuit designs of b) BNeu 3, e) BNeu 4, h) BNeu 5, k) BNeu 7, n) BNeu 8, q) BNeu 9 and t) BNeu 10 are illustrated. Expression characterization, dose responses, 3D simulations and experimental 3D behavior of \mathbf{c})BNeu3, f) BNeu 4, i) BNeu 5, l) BNeu 7,
o) BNeu 8 , r) BNeu 9 and \mathbf{u}) BNeu 10 in terms of EGFP expression are also shown.

Figure S5: Characterizations of functional bactoneurons associated with weight=0 towards specific inducers. Each functional bactoneuron population was subjected to $10 \mathrm{~h}+6 \mathrm{~h}$ induction with a set of inducers which was chosen based on the neural architecture of individual functional bactoneurons, and then characterized in terms of EGFP expression. If the presence or absence of a specific inducer didn't change the output of the functional bactoneuron, then only we considered that, the inducer was associated with zero weight.Neural architecturesand validation for ' 0 ' weighted input(s) of functional bactoneuronsa)FBNeu 5, b) FBNeu 6, c) FBNeu 7, d) FBNeu 12, e) FBNeu 13, f) FBNeu 14, g) FBNeu 15, h) FBNeu 21 and i) FBNeu 23 are shown. FBNeu 20 and FBNeu 22 from Fredkin gate function are equivalent to FBNeu 7 and FBNeu 6 respectively except their different outputs. Therefore, individual weight ' 0 ' input validation for FBNeus 6 and 7 justifies the same for FBNeus 22 and 20 as well. FBNeu 12 and FBNeu 14 are similar except their outputs. Here, individual functional bactoneurons are characterized in terms of EGFP output. Therefore, both FBNeu 12 and FBNeu 14 produce EGFP output and hence, they become identical. Thus, they share common ' 0 ' weighted input validation data (Shown with magenta arrow). FBNeu 16 from Feynman gate function is a sub-set of FBNeu 13 as it operates on lesser number of inputs whereas, their corresponding unit bactoneuron is common. Therefore, weight ' 0 ' input of FBNeu 16 can be validated from the characterization result of FBNeu 13 . Similarly, weight ' 0 ' inputs of Fredkin gate functional bactoneuron FBNeu 19 can be validated by characterization result of FBNeu 12/14.
ab

e

Figure S6: Microscopy images with corresponding differential interference contrast (DIC) and merged channels.
Populations of different combinations of bactoneurons, depending on the complex functions they constitute, were co-cultured with appropriate inductions where, they together formed a bactoneural layer. They were viewed under relevant laser channels and emission filters. DIC images show a heterogenous population of cells in the field with each sub-population responding uniquely to the induction conditions. A bactoneuron's activation is reported by fluorescence from its respective output protein
whereas inactive bactoneurons show no fluorescence. Microscopic images for the bactoneuron-based single layer ANN type architectures for \mathbf{a}) de-multiplexing function, b) multiplexing function, \mathbf{c}) majority function, d) decoding function, e) encoding function, f) reversible Feynman gate and g) reversible Fredkin gate are shown.

Table S1: Details of functional bactoneurons and corresponding unit bactoneurons associated with the computing functions developed in this study. Output fluorescent proteins and activation function equations corresponding to unit bactoneurons are also described.

Table S2: List of cellular devices constructed in this study.

		Promoter-gene cassette	RBS	Ori	Antibiotic selection	Promoter-regulator cassette	RBS	Ori	Antibiotic selection
BNeul	IAA1	$\mathrm{P}_{\text {IAA }} 1$-EGFP	R	pUC	Amp	-	-	-	-
	IAA2	$\mathrm{P}_{\text {PAA }}$ 2-EGFP	R	pUC	Amp	-	-	-	-
	IAA3	$\mathrm{P}_{\text {IAA }} 3$-EGFP	R	pUC	Amp	-	-	-	-
	IAA4	$\mathrm{P}_{\text {IAA }} 4$-EGFP	R	pUC	Amp	-	-	-	-
	IAA5	$\mathrm{P}_{\text {IAA }} 5$-EGFP	R	pUC	Amp	-	-	-	-
	IAA6	$\mathrm{P}_{\text {PAA }} 6$-EGFP	R	pUC	Amp	-	-	-	-
	IAA7A	$\mathrm{P}_{\text {IAA }} 7$-EGFP	R	pUC	Amp	-	-	-	-
	IAA7B	$\mathrm{P}_{\text {IAA }} 7$-EGFP	R	p15A	Cm	-	-	-	-
	IAA8	$\mathrm{P}_{\text {IAA }} 8$-EGFP	R	pUC	Amp	-	-	-	-
	IAA9	$\mathrm{P}_{\text {IAA }} 9$-EGFP	R	pUC	Amp	-	-	-	-
	IAA10	$\mathrm{P}_{\text {IAA }} 10-\mathrm{EGFP}$	R	pUC	Amp	-	-	-	-
	IAA11	$\mathrm{P}_{\text {IAA }} 11-\mathrm{EGFP}$	R	pUC	Amp	-	-	-	-
	IAA7B.A	$\mathrm{P}_{\text {IAA }} 7$-E2-Crimson	R	p15A	Cm	-	-	-	-
	IAA7B.B	$\mathrm{P}_{\text {IAA }} 7$-mVenus	R	p15A	Cm	-	-	-	-
BNeu2	INA1A	$\mathrm{P}_{\text {INA }} 1$-EGFP	R	pUC	Amp	$\mathrm{P}_{\text {Lteto-1 }}$-CI	R	p15A	Cm
	INA1B		R	pUC	Amp	$\mathrm{P}_{\text {Lteto-1 }}$-CI	RC1	p15A	Cm
	INA1C		R	pUC	Amp	$\mathrm{P}_{\text {Leteo-1 }}$-CI	RC2	p15A	Cm
	INA1D		R	pUC	Amp	$\mathrm{P}_{\text {Letelo-1 }}$-CI	RC3	p15A	Cm
	INA2A	$\mathrm{P}_{\text {INA } 2-E G F P ~}$	R	pUC	Amp	$\mathrm{P}_{\text {Leteo-1 }}$-CI	R	p15A	Cm
	INA2B		R	pUC	Amp	$\mathrm{P}_{\text {Leteo-1 }}$-CI	RC1	p15A	Cm
	INA2C		R	pUC	Amp	$\mathrm{P}_{\text {Lteto-1 }}$-CI	RC2	p15A	Cm
	INA2D		R	pUC	Amp	$\mathrm{P}_{\text {Leteo-1 }}$-CI	RC3	p15A	Cm
	INA3A	$\mathrm{P}_{\text {INA }} 3$-EGFP	R	pUC	Amp	$\mathrm{P}_{\text {Lteto-1 }}$-CI	R	p15A	Cm
	INA3B		R	pUC	Amp	$\mathrm{P}_{\text {Lteto-1 }}$-CI	RC1	p15A	Cm
	INA3C		R	pUC	Amp	$\mathrm{P}_{\text {Lteto-1 }}$-CI	RC2	p15A	Cm
	INA3D		R	pUC	Amp	$\mathrm{P}_{\text {Lteto-1 }}$-CI	RC3	p15A	Cm
	INA4	$\mathrm{P}_{\text {INA }} 4$-EGFP	R	pUC	Amp	$\mathrm{P}_{\text {Lteto-1 }}$-CI	R	p15A	Cm
	INA5A	$\mathrm{P}_{\text {INA }} 5$-EGFP	R	ColE1	Amp	$\mathrm{P}_{\text {Leteo-1 }}$-CI	RC1	p15A	Cm
	INA5B		R	ColE1	Amp	$\mathrm{P}_{\text {Lteto-1 }}$-CI	RC2	p15A	Cm
	INA5C		R	ColE1	Amp	$\mathrm{P}_{\text {Lteto-1 }}$-CI	RC3	p15A	Cm
	INA6A	$\mathrm{P}_{\text {INA }} 6$-EGFP	R	ColE1	Amp	$\mathrm{P}_{\text {Lteto-1 }}$-CI	RC1	p15A	Cm
	INA6B		R	ColE1	Amp	$\mathrm{P}_{\text {Lteto-1 }}$-CI	RC2	p15A	Cm
	INA6C		R	ColE1	Amp	$\mathrm{P}_{\text {Lteto-1 }}$-CI	RC3	p15A	Cm
	INA7A	$\mathrm{P}_{\text {INA }} 7$-EGFP	R	ColE1	Amp	$\mathrm{P}_{\text {Lteto-1 }}$-CI	RC1	p15A	Cm
	INA7B		R	ColE1	Amp	$\mathrm{P}_{\text {Lteto-1 }}$-CI	RC2	p15A	Cm
	INA7C		R	ColE1	Amp	$\mathrm{P}_{\text {Leteo-1 }}$-CI	RC3	p15A	Cm
	INA7A.A	$\mathrm{P}_{\text {INA }} 7$-mTFP1	R	ColE1	Amp	$\mathrm{P}_{\text {Leteo-1 }}$-CI	RC1	p15A	Cm
BNeu3	AAH1	$\mathrm{P}_{\text {AAH }}$-EGFP	$\begin{gathered} \hline \text { RBS } \\ \mathrm{H} \end{gathered}$	p15A	Cm	BBa_J23102-LuxR	R	CoLE1	Amp
	AAH2	$\mathrm{P}_{\text {AAH }}$-E2-Crimson	$\begin{gathered} \text { RBS } \\ \text { H } \\ \hline \end{gathered}$	p15A	Cm	BBa_J23102-LuxR	R	CoLE1	Amp
BNeu4	IAH1	$\mathrm{P}_{\text {IAH-EGFP }}$	R	p15A	Cm	BBa J23102-LuxR	R	CoLE1	Amp
	IAH2	$\mathrm{P}_{\text {IAH }}$-ddTomato	R	p15A	Cm	BBa J23102-LuxR	R	CoLE1	Amp
BNeu5	N1	P_{R}-EGFP	R	p15A	Cm	$\mathrm{P}_{\text {Llaco-1-1 }}$ Frame-shifted CI* and $\mathrm{P}_{\text {Ltatoo-I-I }}$ Frame- shifted CI*	R	ColE1	Amp
	N2	P_{R}-mKO2	R	p15A	Cm	$\mathrm{P}_{\text {LlacO-1. }}$ Frame-shifted CI ${ }^{*}$ and $P_{\text {Ltaetol- }}$. Frameshifted CI*	R	ColE1	Amp
BNeu 6	ANI1A	$\mathrm{P}_{\text {ANI }} 1$-EGFP	R	ColE1	Amp	$\mathrm{P}_{\text {Llaco-1 }}$ - CI	R	p15A	Cm
	ANI1B		R	ColE1	Amp	$\mathrm{P}_{\text {LlacO-1 }}$-CI	RC1	p15A	Cm
	ANIIC		R	ColE1	Amp	$\mathrm{P}_{\text {Llaco-1 }}$-CI	RC2	p15A	Cm
	ANI1D		R	ColE1	Amp	$\mathrm{P}_{\text {Llaco-1 }}$-CI	RC3	p15A	Cm
	ANI2A	$\mathrm{P}_{\text {AN } 12-E G F P}$	R	ColE1	Amp	$\mathrm{P}_{\text {Llaco-1 }}$-CI	R	p15A	Cm
	ANI2B		R	ColE1	Amp	$\mathrm{P}_{\text {Llaco-1 }}$-CI	RC1	p15A	Cm
	ANI2C		R	ColE1	Amp	$\mathrm{P}_{\text {Llaco-1 }}$-CI	RC2	p15A	Cm
	ANI2D		R	ColE1	Amp	$\mathrm{P}_{\text {Llaco-1 }}$-CI	RC3	p15A	Cm
	ANI3A	$P_{\text {An }} 3$-EGFP	R	ColE1	Amp	$\mathrm{P}_{\text {Llaco-1 }}$-CI	R	p15A	Cm
	ANI3B		R	ColE1	Amp	$\mathrm{P}_{\text {LlacO-1 }}$-CI	RC1	p15A	Cm
	ANI3C		R	ColE1	Amp	$\mathrm{P}_{\text {Llaco-1 }}$-CI	RC2	p15A	Cm
	ANI3D		R	ColE1	Amp	$\mathrm{P}_{\text {Llaco-1 }}$-CI	RC3	p15A	Cm
	ANI4A	$\mathrm{P}_{\text {AN }} 4 \mathrm{EGFP}$	R	ColE1	Amp	$\mathrm{P}_{\text {Llaco-1 }}$-CI	R	p15A	Cm
	ANI4B		R	ColE1	Amp	$\mathrm{P}_{\text {Llaco-1 }}$-CI	RC1	p15A	Cm
	ANI4C		R	ColE1	Amp	$\mathrm{P}_{\text {Llaco-1 }}$-CI	RC2	p15A	Cm
	ANI4D		R	ColE1	Amp	$\mathrm{P}_{\text {LlacO-1 }}$-CI	RC3	p15A	Cm

	ANI2C.A	$\mathrm{P}_{\text {ANI }}$ 2-E2-Crimson	R	ColE1	Amp	$\mathrm{P}_{\text {Llaco-1 }}$-CI	RC2	p15A	Cm
BNeu7	AHLB1	$\mathrm{P}_{\text {Lux** }}$-EGFP	R	p15A	Cm	BBa J23102-LuxR	R	CoLE1	Amp
	AHLB2	$\mathrm{P}_{\text {Lux** }}$-E2-Crimson	R	p15A	Cm	BBa J23102-LuxR	R	CoLE1	Amp
BNeu8	ATCB1	$\mathrm{P}_{\text {Lteto-1-E2-EGFP }}$	R	ColE1	Amp	-	-	-	-
	ATCB2	$\begin{aligned} & \hline \mathrm{P}_{\text {Leto-1-1 }}-\mathrm{E} 2- \\ & \text { Crimson } \end{aligned}$	R	ColE1	Amp	-	-	-	-
BNeu 9	ANH1	$\mathrm{P}_{\text {ANH }}$-EGFP	R	ColE1	Amp	BBa J23102-LuxR	R	CoLE1	Amp
						$\mathrm{P}_{\text {Lux }}$-Frame-shifted CI	R	p15A	Cm
	ANH2	$\mathrm{P}_{\text {ANH-tdTomato }}$	R	ColE1	Amp	BBa_J23102-LuxR	R	CoLE1	Amp
						$\mathrm{P}_{\text {Lux }}$-Frame-shifted CI	R	p15A	Cm
BNeu 10	INH1	$\mathrm{P}_{\text {INH }}-\mathrm{EGFP}$	R	ColE1	Amp	BBa J23102-LuxR	R	CoLE1	Amp
						$\mathrm{P}_{\text {Lux }}$-Frame-shifted CI	R	p15A	Cm
	INH2	$\mathrm{P}_{\text {INH}}$-E2-Crimson	R	ColE1	Amp	BBa J23102-LuxR	R	CoLE1	Amp
						$\mathrm{P}_{\text {Lux }}$-Frame-shifted CI	R	p15A	Cm

*Frame-shifted CI is a mutant form of λ repressor CI [Supplementary reference 1].

Table S3: List of Promoters, primers, oligos and RBSs.lacO1, tetO2, Lux box, OR1 and OR2 operator sites are colored in red, brown, green, yellow and blue respectively. Transcription start site is shown in bold. -10 and -35 hexamers are underlined.

Each promoter is flanked by XhoI and EcoRI restriction sites (marked in italics).

Name	Sequence (5^{\prime} - $\mathbf{3}^{\prime}$)	Purpose	Source
$\mathrm{P}_{\mathrm{IAA}} \mathbf{1}$	CTCGAGTCCCTATCAGTGATAGAGATTGAC ATTGTGAGCGGATAACAAGATACTGAGCAC AATTGTGAGCGGATAACAATGAATTC	Construction and weight \& bias adjustment of BNeu 1	This study
$\mathrm{P}_{\mathrm{IAA}} \mathbf{2}$	CTCGAGTCCCTATCAGTGATAGAGAGATTC CCTATCAGTGATAGAGATTGACATTGTGAG CGGATAACAAGATACTGAGCACAATTGTGA GCGGATAACAATGAATTC		This study
$\mathrm{P}_{\mathrm{IAA}} 3$	$C T C G A G A A T T G T G A G C G G A T A A C A A T T G A C$ ATCCCTATCAGTGATAGAGATACTGAGCAC ATCCCTATCAGTGATAGAGAGAATTC		This study
$\mathrm{P}_{\mathrm{IAA}} 4$	CTCGAGTCCCTATCAGTGATAGAGATTGAC ATTGTGAGCGGATAACAAGATACTGAGCAC ATCCCTATCAGTGATAGAGAGAATTC		This study
$\mathrm{P}_{\text {IAA }} 5$	CTCGAGTCCCTATCAGTGATAGAGATTGAC ATCCCTATCAGTGATAGAGATACTGAGCAC AATTGTGAGCGGATAACAATGAATTC		This study
$\mathrm{P}_{\text {IAA }} 6$	CTCGAGTCCCTATCAGTGATAGAGATTGAC ATTGTGAGCGGATAACAAGATACTGAGCAC AATTGTGAGCGGATAACAATGATTCCCTAT CAGTGATAGAGAGAATTC		This study
$\mathrm{P}_{\text {IAA }} 7$	CTCGAGTCCCTATCAGTGATAGAGATTGAC ATTGTGAGCGGATAACAAGATACTGAGCAC ATCCCTATCAGTGATAGAGAGATAATTGTG AGCGGATAACAATTGAATTC		This study
$\mathrm{P}_{\mathrm{IAA}} 8$	CTCGAGTCCCTATCAGTGATAGAGATTGAC ATTGTGAGCGGATAACAAGATACTGAGCAC ATCCCTATCAGTGATAGAGAGATAATTGTG AGCGGATAACAATTGATAATTGTGAGCGGA TAACAATTGAATTC		[Supplementary reference 1]
$\mathrm{P}_{\mathrm{IAA}} 9$	CTCGAGTCCCTATCAGTGATAGAGATTGAC ATTGTGAGCGGATAACAAGATACTGAGCAC ATCCCTATCAGTGATAGAGAGATAATTGTG AGCGGATAACAATTGATTCCCTATCAGTGA TAGAGAGAATTC		This study
$\mathrm{P}_{\mathrm{IAA}} 10$	CTCGAGTCCCTATCAGTGATAGAGATTGAC ATTGTGAGCGGATAACAAGATACTGAGCAC ATCCCTATCAGTGATAGAGAGATGATAATT GTGAGCGGATAACAATTGATGATTCCCTAT CAGTGATAGAGAGATGATAATTGTGAGCGG ATAACAATTGAATTC		This study
$\mathrm{P}_{\text {IAA }} 11$	CTCGAGTCCCTATCAGTGATAGAGATTGAC ATTGTGAGCGGATAACAAGATACTGAGCAC ATCCCTATCAGTGATAGAGAGATGATAATT GTGAGCGGATAACAATTGATGATTCCCTAT CAGTGATAGAGAGATGATAATTGTGAGCGG ATAACAATTGATGATTCCCTATCAGTGATA		This study

	GAGAGATGATAATTGTGAGCGGATAACAAT TGAATTC		
$\mathrm{P}_{\text {INA }} 1$	CCTCGAGTACCTCTGGCGGTGATATTGACAT TGTGAGCGGATAACAAGATACTGAGCACAA TTGTGAGCGGATAACAATGAATTC	Construction and weight \& bias adjustment of BNeu 2	This study
$\mathrm{P}_{\text {INA }} \mathbf{2}$	CTCGAGTACCTCTGGCGGTGATAGATTACCT CTGGCGGTGATATTGACATTGTGAGCGGAT AACAAGATACTGAGCACAATTGTGAGCGGA TAACAATGAATTC		This study
$\mathrm{P}_{\text {INA }} 3$	CTCGAGTAACACCGTGCGTGTTGACTATTT ATGGTTGCAATTGT GAGCGGATAACAATGAATTC		This study
$\mathrm{P}_{\text {INA }} 4$	$\begin{aligned} & \hline C T C G A G T A A C A C C G T G C G T G T T G A C T A T T T T \\ & \text { ACCTCTGGCGGTGATAATGGTTGCAATTGT } \\ & \text { GAGCGGATAACAATGATAATTGTGAGCGGA } \\ & \text { TAACAATGAATTC } \end{aligned}$		This study
$\mathrm{P}_{\text {INA }} 5$	CTCGAGAATTGTGAGCGGATAACAATTGAC ATTGTGAGCGGATAACAAGATACTGAGCAC ATC GAATTC		This study
$\mathrm{P}_{\text {INA }} 6$	CTCGAGAATTGTGAGCGGATAACAATTGAC ATTGTGAGCGGATAACAAGATACTGAGCAC ATCTACCTCTGGCGGTGATAGATGATTACC TCTGGCGGTGATA GAATTC		This study
$\mathrm{P}_{\text {INA }} 7$	$\begin{aligned} & \hline \text { CTCGAGAATTGTGAGCGGATAACAATTGAC } \\ & \text { ATTGTGAGCGGATAACAAGATACTGAGCAC } \\ & \text { ATCTACCTCTGGCGGTGATAGATGATTACC } \\ & \text { TCTGGCGGTGATAGATGATTACCTCTGGCG } \\ & \text { GTGATAGAATTC } \\ & \hline \end{aligned}$		This study
$\mathrm{P}_{\text {ANI } 1} 1$	CTCGAGTACCTCTGGCGGTGATATTGACATC CCTATCAGTGATAGAGATACTGAGCACATC CCTATCAGTGATAGAGAGAATTC	Construction and weight \& bias adjustment of BNeu 6	This study
$\mathrm{P}_{\mathrm{ANI}} 2$	$\begin{aligned} & \text { CCTCGAGTACCTCTGGCGGTGATAGATTACC } \\ & \text { TCTGGCGGTGATATTGACATCCCTATCAGT } \\ & \text { GATAGAGATACTGAGCACATCCCTATCAGT } \\ & \text { GATAGAGAGAATTC } \end{aligned}$		This study
$\mathrm{P}_{\text {ANI }} 3$	CTCGAGTACCTCTGGCGGTGATATTGACATC CCTATCAGTGATAGAGATACTGAGCACATC TACCTCTGGCGGTGATAGAATTC		This study
$\mathrm{P}_{\mathrm{ANI}} 4$	$C T C G A G T C C C T A T C A G T G A T A G A G A T T G A C$ ATACCTCTGGCGGTGATAGATACTGAGCAC ATCCCTATCAGTGATAGAGAGAATTC		This study
$\mathbf{P}_{\text {AAH }}$	CTCGAGACCTGTAGGATCGTACAGGTTTAC GTCCCTATCAGTGATAGAGTATAGTCGAAT AAATCCCTATCAGTGATAGAGAGAATTC	Construction of BNeu 3	This study
$\mathbf{P}_{\text {IAH }}$	CTCGAGACCTGTAGGATCGTACAGGTTTAC GTTTGTGAGCGGATAACAATATAGTCGAAT AAATTGTGAGCGGATAACAATTGAATTC	Construction of BNeu 4	This study
$\mathbf{P}_{\text {R }}$	CTCGAGTAACACCGTGCGTGTTGACTATTT ACCTCTGGCGGTGATAATGGTTGCATGTAC GAATTC	Construction of BNeu 5	[1]
BBa_J23102	$\begin{aligned} & \text { CTCGAGTTGACAGCTAGCTCAGTCCTAGGT } \\ & \text { ACTGTGCTAGCGAATTC } \end{aligned}$	Construction of BNeus 3, 4, 7, 9 and 10	[2]
$\mathbf{P}_{\text {Lux }}$	CTCGAGACCTGTAGGATCGTACAGGTTTAC GCAAGAAAATGGTTTGTTATAGTCGAATAA AGAATTC	Construction of BNeus 9 and 10	This study
$\mathbf{P}_{\text {Lux }}$ *	CTCGAGACCTGTAGGATCGTACAGGTTTAC GCAAGAAAATGGTTTGTTACTTTCGAATAA AGAATTC	Construction of BNeu 7	[3]
$\mathbf{P}_{\text {LtetO-1 }}$	CTCGAGTCCCTATCAGTGATAGAGATTGAC ATCCCTATCAGTGATAGAGATACTGAGCAC ATCAGCAGGACGCACTGACCGAATTC	Construction of BNeus 5 and 8	[4]
$\mathbf{P}_{\text {Llaco-1 }}$	CTCGAGAATTGTGAGCGGATAACAATTGAC ATTGTGAGCGGATAACAAGATACTGAGCAC ATCAGCAGGACGCACTGACCGAATTC	Construction of BNeu 5	[4]
Primer 1	GCCCTTTCGTCTTCACCTC	Amplification of promoters $\mathrm{P}_{\mathrm{IAA}} 1, \mathrm{P}_{\mathrm{IAA}} 2$, $\mathrm{P}_{\text {INA }} 1, \mathrm{P}_{\text {INA }} 2, \mathrm{P}_{\text {ANI }} 1, \mathrm{P}_{\text {ANI }} 2, \mathrm{P}_{\text {ANI }} 3$ and $\mathrm{P}_{\mathrm{AN}} 4$: forward primer	This study
Primer 2	ATGTTTTTGGCGTCTTCCAT	Amplification of promoters $\mathrm{P}_{\mathrm{IAA}} 1, \mathrm{P}_{\mathrm{IAA}} 2$, $\mathrm{P}_{\text {INA }} 1, \mathrm{P}_{\mathrm{INA}} 2, \mathrm{P}_{\mathrm{ANI}} 1, \mathrm{P}_{\mathrm{ANI}} 2, \mathrm{P}_{\mathrm{ANI}} 3$ and $\mathrm{P}_{\text {ANI }} 4$: reverse primer	This study

Primer 3	CGAGGCCCTTTCGTCTTCACCTCGAGAATTG TGAGCGGATAACAATTGACATCCCTATCAG TGATAGAGATACTGAGCACA	Amplification of promoter $\mathrm{P}_{\mathrm{IAA}} 3$: forward primer	This study
Primer 4	ATGTTTTTGGCGTCTTCCATGGTACCTTTCT CCTCTTTAATGAATTCTCTCTATCACTGATA GGGATGTGCTCAGTATCTCTATCA	Amplification of promoter $\mathrm{P}_{\mathrm{IAA}} 3$: reverse primer	This study
Primer 5	CGAGGCCCTTTCGTCTTCACCTCGAGTCCCT ATCAGTGATAGAGATTGACATTGTGAGCGG ATAACAAGATACTGAGCACATC	Amplification of promoter $\mathrm{P}_{\mathrm{IAA}} 4$: forward primer	This study
Primer 6	ATGTTTTTGGCGTCTTCCATGGTACCTTTCT CCTCTTTAATGAATTCTCTCTATCACTGATA GGGATGTGCTCAGTATCTTGTT	Amplification of promoter $\mathrm{P}_{\mathrm{IAA}} 4$: reverse primer	This study
Primer 7	CAATTCTTTATGCCGGTGTTG	Amplification of promoters $\mathrm{P}_{\mathrm{IAA}} 5$ and $\mathrm{P}_{\mathrm{IAA}} 10$: forward primer	This study
Primer 8	GTCGAAGATGTTGGGGTGTT	Amplification of promoters $\mathrm{P}_{\mathrm{IAA}} 5$ and $\mathrm{P}_{\mathrm{IAA}}$ 10: reverse primer	This study
Primer 9	CAGAATCGTCGTATGCAGTGA	Amplification of promoters $\mathrm{P}_{\mathrm{IAA}} 6$ and $\mathrm{P}_{\mathrm{IAA}} 11$: forward primer	This study
Primer 10	TTTTCCGTCATCGTCTTTCC	Amplification of promoters $\mathrm{P}_{\mathrm{IAA}} 6$ and $\mathrm{P}_{\mathrm{IAA}}$ 11: reverse primer	This study
Primer 11	TTGGCAGAAGCTATGAAACGA	Amplification of promoters $\mathrm{P}_{\mathrm{IAA}} 7, \mathrm{P}_{\text {INA }} 5$ and $\mathrm{P}_{\mathrm{AAH}}$: forward primer	This study
Primer 12	CTTGACTGGCGACGTAATCC	Amplification of promoters $\mathrm{P}_{\mathrm{IAA}} 7, \mathrm{P}_{\mathrm{INA}} 5$ and $\mathrm{P}_{\mathrm{AAH}}$: reverse primer	This study
Primer 13	GCCCTTTCGTCTTCACCTC	Amplification of promoters $\mathrm{P}_{\mathrm{IAA}} 8$ and $\mathrm{P}_{\mathrm{IAA}}$ 9: forward primer	This study
Primer 14	CTTGACTGGAATTCAATTGTTATCCGCTCAC AATTATCAATTGTTATCCGCTCACAATTATC TCTCTATCACTGATAGGGATGTGCTCAG	Amplification of promoter $\mathrm{P}_{\mathrm{IAA}} 8$: reverse primer	This study
Primer 15	CTTGACTGGAATTCTCTCTATCACTGATAGG GAATCAATTGTTATCCGCTCACAATTATCTC TCTATCACTGATAGGGATGTGCTCAG	Amplification of promoter $\mathrm{P}_{\mathrm{IAA}} 9$: reverse primer	This study
Primer 16	CAGATGCACATATCGAGGTGA	Amplification of promoters $\mathrm{P}_{\text {INA }} 3$ and $\mathrm{P}_{\text {INA }} 6$: forward primer	This study
Primer 17	GCAACTTTTTGGCGGTTG	Amplification of promoters $\mathrm{P}_{\mathrm{INA}} 3$ and $\mathrm{P}_{\text {INA }}$ 6: reverse primer	This study
Primer 20	TGAAGAGATACGCCCTGGTT	Amplification of promoter $\mathrm{P}_{\mathrm{INA}} 4, \mathrm{P}_{\mathrm{INA}} 7$ and $\mathrm{P}_{\mathrm{IAH}}$: forward primer	This study
Primer 21	TCTGATTTTTCTTGCGTCGAG	Amplification of promoter $\mathrm{P}_{\mathrm{INA}} 4, \mathrm{P}_{\mathrm{INA}} 7$ and $\mathrm{P}_{\mathrm{IAH}}$: reverse primer	This study
Primer 22	ATCCGTGCAACTCGAGTTGACAGCTAGCTC AGTCCTAGGTAC	Amplification of promoter BBa_J23102: forward primer	This study
Primer 23	GTTCAAGACTGAATTCGCTAGCACAGTACC TAGGACTGAGCTAGC	Amplification of promoter BBa_J23102: reverse primer	This study
Primer 24	CTTCACTCGACTCGAGACCTGTAGGATCGT ACAGGTTTACGCAAGAAAATGG	Amplification of promoters $\mathrm{P}_{\text {Lux }}$ and $\mathrm{P}_{\mathrm{Lux}}$: forward primer	This study
Primer 25	CTGATTATGTGAATTCTTTATTCGAAAGTAA CAAACCATTTTCTTGCGTAAACCTG	Amplification of promoter $\mathrm{P}_{\text {Lux }} *$: reverse primer	This study
Primer 26	GAGACCACAATGGGCGTAAT	Amplification of fluorescent protein mTFP1: forward primer ($1^{\text {st }}$ round)	This study
Primer 27	CGTAAACGGTCACCTTGTTGTA	Amplification of fluorescent protein mTFP1: reverse primer ($1^{\text {st }}$ round)	This study
Primer 28	GTCCAGTCGAGGTACCATGGTGAGCAAGGG CGAGGAGACCACAATGGGCGTAAT	Amplification of fluorescent protein mTFP1: forward primer ($2^{\text {nd }}$ round)	This study
Primer 29	GCTTATGCTCTAGATTACTTGTACAGCTCGT CCATGCCGTCGGTGGAGTTGCGGGCCACGG CGCTCTCGTAAACGGTCACCTTGTTGTA	Amplification of fluorescent protein mTFP1: reverse primer ($2^{\text {nd }}$ round)	This study
Primer 30	CAAGGGCGAGGAGCTGTT	Amplification of fluorescent protein EGFP and mVenus: forward primer ($1^{\text {st }}$ round)	This study
Primer 31	CCATGCCGAGAGTGATCC	Amplification of fluorescent protein EGFP and mVenus: reverse primer ($1^{\text {st }}$ round)	This study
Primer 32	CTTCAGTCGAGGTACCATGGTGAGCAAGGG CGAGGAGCTGTT	Amplification of fluorescent protein EGFP and mVenus: forward primer (2 ${ }^{\text {nd }}$ round)	This study
Primer 33	CTGATTATGATCTAGATTACTTGTACAGCTC GTCCATGCCGAGAGTGATCC	Amplification of fluorescent protein EGFP and mVenus: reverse primer (2 $2^{\text {nd }}$ round)	This study

Primer 34	TGGTGAGTGTGATTAAACCAGAGA	Amplification of fluorescent protein mKO : forward primer ($1^{\text {st }}$ round)	This study
Primer 35	AATGTTGCCTTCGGTTTTCC	Amplification of fluorescent protein mKO : reverse primer (${ }^{\text {st }}$ round)	This study
Primer 36	GTCCAGTCGAGGTACCATGGTGAGTGTGAT TAAACCAGAGA	Amplification of fluorescent protein mKO 2 : forward primer ($2^{\text {nd }}$ round)	This study
Primer 37	GTGATTATGATCTAGATTAGCTATGAGCTA CTGCATCTTCTACCTGCTCAGTAATGTTGCC TTCGGTTTTCC	Amplification of fluorescent protein mKO 2 : reverse primer ($2^{\text {nd }}$ round)	This study
Primer 38	TGGATAGCACTGAGAACGTCAT	Amplification of fluorescent protein E2Crimson: forward primer (1 ${ }^{\text {st }}$ round)	This study
Primer 39	ACCACGGTGTAGTCCTCGTT	Amplification of fluorescent protein E2Crimson: reverse primer (1 $1^{\text {st }}$ round)	This study
Primer 40	GTCCAGTCGAGGTACCATGGATAGCACTGA GAACGTCAT	Amplification of fluorescent protein E2Crimson: forward primer ($2^{\text {nd }}$ round)	This study
Primer 41	GATTATGATCTAGActaCTGGAACAGGTGGT GGCGGGCCTCGGCGCGCTCGTACTGCTCCA CCACGGTGTAGTCCTCGTT	Amplification of fluorescent protein E2Crimson: reverse primer ($2^{\text {nd }}$ round)	This study
Primer 42	ATGCCGACGACACATACAGA	Amplification of LuxR gene: forward primer (1 $1^{\text {st }}$ round)	This study
Primer 43	TGATGCCTGGCTCTAGTAGTGA	Amplification of LuxR gene: reverse primer ($1^{\text {st }}$ round)	This study
Primer 44	CTCCGTGGAAGGTACCATGAAAAACATAAA TGCCGACGACACATACAGA	Amplification of LuxR gene: forward primer (2 $2^{\text {nd }}$ round)	This study
Primer 45	GTTCAAGACTTCTAGATGATGCCTGGCTCT AGTAGTGA	Amplification of LuxR gene: reverse primer ($2^{\text {nd }}$ round)	This study
Primer 46	CGAAAAGTGCCACCTGAC	Amplification of gene cassette starting with promoters $\mathrm{P}_{\text {Lteto-1 }}, \mathrm{P}_{\text {IAA }} 1-2, \mathrm{P}_{\mathrm{IAA}} 4-11$ and $\mathrm{P}_{\mathrm{AN}} 4$: forward sequencing primer	This study
Primer 47	GTCTGATTGAGAATTCATTTTTGAGGAGTTC GGTACCATGGTGAGCAAGGGCGAGGAGCT GTT	Incorporation of RC1 upstream of EGFP gene: forward primer	This study
Primer 48	GTCTGATTGAGAATTCATTCGGGAGGAGTG CGGTACCATGGTGAGCAAGGGCGAGGAGC TGTT	Incorporation of RC2 upstream of EGFP gene: forward primer	This study
Primer 49	GTCTGATTGAGAATTCATTTCGGAGGAGTG CGGTACCATGGTGAGCAAGGGCGAGGAGC TGTT	Incorporation of RC3 upstream of EGFP gene: forward primer	This study
Primer 50	CTGATTATGTGAATTCTTTATTCGACTATAACAA ACCATTTTCTTGCGTAAACCTG	Amplification of promoter $\mathrm{P}_{\text {Lux }}$: reverse primer	This study
Oligo 1	AATTCATTGGAGAGGAGTCCGGTAC	RBSH: sense strand oligomer for annealing	This study
Oligo 2	CGGACTCCTCTCCAATG	RBSH: antisense strand oligomer for annealing	This study

Table S4: Weights and biases of each cellular device (construct) used for optimizing and improving corresponding unit bactoneuron (BNeu \mathbf{j}).

Unit bactoneuron	Cellular device	\mathbf{w}_{jR}	$\mathbf{w}_{\mathbf{j 1}}$	$\mathbf{W}_{\mathrm{j}}{ }^{\text {a }}$	$\mathbf{W}_{\mathbf{j H}}$	b_{jR}	$\mathrm{b}_{\mathrm{j} 1}$	$\mathbf{b}_{\text {j }}$	\mathbf{b}_{jH}	$\mathbf{b}_{\mathbf{j}}$	S.D. of $\mathbf{b}_{\mathbf{j}}$
BNeul	IAA1	-	7.75	8.42	-	-	-1.26	-2.15	-	-9.79	0.16
	IAA2	-	10.37	9.05	-	-	-1.68	-0.77	-	-10.94	0.29
	IAA3	-	8.94	15.44	-	-	0.67	-5	-	-14.36	0.59
	IAA4	-	6.19	11.77	-	-	0.18	-5.12	-	11.45	0.198
	IAA5	-	7.71	12.6	-	-	-1.09	-6.02	-	-13.71	0.03
	IAA6	-	7.2	7.07	-	-	-0.81	-0.64	-	-7.86	0.03
	IAA7A	-	8.5	11.73	-	-	-1.73	-4.52	-	-13.24	0.31
	IAA7B(10h+6h)	-	9.69	12.44	-	-	-2.58	-5.59	-	-15.15	0.18
	IAA8	-	8.36	11.92	-	-	-1.47	-4.8	-	-13.28	0.16
	IAA9	-	7.58	12.96	-	-	-1.15	-6.27	-	-13.98	0.18
	IAA10	-	8.84	15.91	-	-	-1.41	-8.26	-	-17.21	0.16
	IAA11	-	9.94	12.44	-	-	-1.71	-3.55	-	-13.82	0.47
	IAA7B.A	-	9.69	12.44	-	-	-2.58	-5.59	-	-15.15	0.18
	IAA7B.B	-	9.69	12.44	-	-	-2.58	-5.59	-	-15.15	0.18
BNeu2	INA6A	-	9.59	-15.32	-	-	-2.49	7	-	-2.54	0.07
	INA6B	-	9.11	-14.87	-	-	-2.12	7	-	-2.12	0.007

	INA6C	-	9.12	-15.48	-	-	-1.71	7.5	-	-1.67	0.07
	INA7A	-	10.98	-14.57	-	-	-2.68	7.8	-	-2.93	0.35
	INA7A (10h+6h)	-	10.8	-14.89	-	-	-3.3	7.14	-	-3.48	0.25
	INA7B	-	9.51	-14.89	-	-	-2.12	7.5	-	-2.07	0.08
	INA7A.A	-	10.8	-14.89	-	-	-3.3	7.14	-	-3.48	0.25
BNeu3	AAH1(10h+6h)	-	0	13.16	10.93	-	-	-4.52	-2.42	-15.52	0.09
BNeu3	AAH2	-	0	13.16	10.93	-	-	-4.52	-2.42	-15.52	0.09
BNeu4	IAH1(10h+6h)	-	10.78	0	11.98	-	-2.12	-	-3.17	-14.03	0.11
BNeu4	IAH2	-	10.78	0	11.98	-	-2.12	-	-3.17	-14.03	0.11
BNeu5	N1(10h+6h)	-	-10.03	-11.65	-	-	3.52	3.72	-	3.62	0.14
BNeu5	N2	-	-10.03	-11.65	-	-	3.52	3.72	-	3.62	0.14
	ANI2C	-	-15.58	12.59	-	-	7.5	-4.3	-	-4.7	0.56
BNeu6	ANI2C (10h+6h)		-16.25	13.2	-	-	7.5	-4.64		-5.17	0.75
	ANI2C.A	-	-16.25	13.2	-	-	7.5	-4.64	-	-5.17	0.75
BNeu7	AHLB1(10h+6h)	0	0	0	10.84	-	-	-	-3.21	-3.21	-
BNeu7	AHLB2	0	0	0	10.84	-	-	-	-3.21	-3.21	-
BNeu8	ATCB1(10h+6h)	0	0	12.17	0	-	-	-4.85	-	-4.85	-
BNeu8	ATCB2	0	0	12.17	0	-	-	-4.85	-	-4.85	-
	ANH1(10h+6h)	-	0	10.00	-12.94	-	-	-3.2	5.8	-3.7	0.71
BNeu 9	ANH2	-	0	10.00	-12.94	-	-	-3.2	5.8	-3.7	0.71
	INH1(10h+6h)	-	9.42	0	-13.75	-	-1.83	-	7.00	-2.13	0.42
BNeu 10	INH2	-	9.42	0	-13.75	-	-1.83	-	7.00	-2.13	0.42

Table S5: Leakage of each EGFP-expressing cellular device (construct) during weight and bias optimization of unit bactoneurons.

	Cellular device	Promoter expressing Output EGFP	Total leakage ($\sum \mathbf{L}$)	Highest leakage $\left(\mathbf{L}_{\text {max }}\right)$	Percentage highest leakage ($\mathrm{L}_{\text {max }}(\%)$)	Difference between total leakage and highest leakage ($\sum \mathbf{L}-\mathbf{L}_{\text {max }}$)	Percentage difference between total leakage and highest leakage ($\sum \mathbf{L}-\mathbf{L}_{\text {max }}$ (\%))	Fold Change between highest signal and highest leakage
BNeu 1	IAA1	$\mathrm{P}_{\text {IAA }} 1$	0.44075	0.27818	27.82	0.16257	16.26	3.59
	IAA2	$\mathrm{P}_{\mathrm{IAA}} 2$	0.38592	0.26795	26.8	0.11797	11.8	3.73
	IAA3	$\mathrm{P}_{\mathrm{IAA}} 3$	0.26577	0.23858	23.86	0.02719	2.72	4.19
	IAA4	$\mathrm{P}_{\text {IAA }} 4$	0.2465	0.23556	23.56	0.01094	1.09	4.25
	IAA5	$\mathrm{P}_{\text {IAA }} 5$	0.22367	0.17495	17.5	0.04872	4.87	5.72
	IAA6	$\mathrm{P}_{\text {IAA }} 6$	0.42029	0.26436	26.44	0.15593	15.59	3.78
	IAA7A	$\mathrm{P}_{\text {IAA }} 7$	0.12599	0.11025	11.03	0.01574	1.57	9.07
	IAA7B		0.0724	0.06992	6.99	0.00248	0.25	14.3
	IAA8	$\mathrm{P}_{\text {IAA }} 8$	0.11287	0.09674	9.67	0.01613	1.61	10.33
	IAA9	$\mathrm{P}_{\mathrm{IAA}} 9$	0.15845	0.13822	13.82	0.02023	2.02	7.23
	IAA10	$\mathrm{P}_{\text {IAA }} 10$	0.23014	0.21021	21.02	0.01993	1.99	4.76
	IAA11	$\mathrm{P}_{\text {IAA }} 11$	0.52619	0.49162	49.16	0.03457	3.46	2.03
BNeu 2	INA1A	$\mathrm{P}_{\text {INA }} 1$	0.63673	0.28273	28.27	0.354	35.4	3.54
	INA1B		0.53862	0.36044	36.04	0.17819	17.82	2.77
	INA1C		0.74802	0.45623	45.62	0.29179	29.18	2.19
	INA1D		0.80989	0.45047	45.05	0.35942	35.94	2.22
	INA2A	$\mathrm{P}_{\text {INA }} 2$	0.72654	0.37157	37.16	0.35497	35.5	2.69
	INA2B		0.63688	0.53902	53.9	0.09787	9.79	1.86
	INA2C		0.79001	0.51294	51.29	0.27707	27.71	1.95
	INA2D		0.85405	0.4802	48.02	0.37385	37.39	2.08
	INA3A	$\mathrm{P}_{\text {INA }} 3$	0.77393	0.38146	38.15	0.39247	39.25	2.62
	INA3B		0.72405	0.70337	70.34	0.02067	2.07	1.42
	INA3C		0.89997	0.80164	80.16	0.09832	9.83	1.25
	INA3D		2.13488	0.8703	87.03	1.26457	126.46	1.15
	INA4	$\mathrm{P}_{\text {INA }} 4$	1.23277	0.80884	80.88	0.42393	42.39	1.24
	INA5A	$\mathrm{P}_{\text {INA }} 5$	0.40655	0.23903	23.9	0.16752	16.75	4.18
	INA5B		0.35622	0.23112	23.11	0.1251	12.51	4.33
	INA5C		0.56242	0.38104	38.1	0.18138	18.14	2.62
	INA6A	$\mathrm{P}_{\text {INA }} 6$	0.10504	0.06611	6.61	0.03893	3.89	15.13
	INA6B		0.0933	0.06478	6.48	0.02852	2.85	15.44

	INA6C		0.16935	0.08823	8.82	0.08112	8.11	11.33
	INA7A	$\mathrm{P}_{\text {INA }} 7$	0.07783	0.04258	4.26	0.03525	3.53	23.49
	INA7B		0.09163	0.04595	4.6	0.04567	4.57	21.76
	INA7C		0.40418	0.34627	34.63	0.05791	5.79	2.89
BNeu 3	AAH1	$\mathrm{P}_{\text {AAH }}$	0.05393	0.0502	5.02	0.00373	0.37	19.92
BNeu 4	IAH1	$\mathrm{P}_{\text {IAH }}$	0.1402	0.08861	8.86	0.05159	5.16	11.29
BNeu 5	N1	P_{R}	~ 0.00000	~ 0.00000	~ 00.00	~ 0.00000	~ 00.00	-
BNeu 6	ANI1A	$\mathrm{P}_{\mathrm{ANI}} 1$	0.90311	0.74394	74.39	0.15917	15.92	1.34
	ANI1B		0.20376	0.17735	17.73	0.02642	2.64	5.64
	ANI1C		0.2262	0.20363	20.36	0.02256	2.26	4.91
	ANI1D		0.63651	0.62022	62.02	0.01629	1.63	1.61
	ANI2A	$\mathrm{P}_{\text {ANI }} 2$	0.60315	0.40034	40.03	0.20281	20.28	2.5
	ANI2B		0.22933	0.17476	17.48	0.05457	5.46	5.72
	ANI2C		0.15726	0.10908	10.91	0.04818	4.82	9.16
	ANI2D		0.26405	0.23224	23.22	0.03181	3.18	4.31
	ANI3A	$\mathrm{P}_{\text {ANI }} 3$	3.1181	2.43408	243.41	0.68398	68.4	0.41
	ANI3B		0.51524	0.3359	33.59	0.17933	17.93	2.98
	ANI3C		0.44074	0.22444	22.44	0.21629	21.63	4.46
	ANI3D		0.40381	0.30815	30.82	0.09566	9.57	3.25
	ANI4A	$\mathrm{P}_{\text {ANl }} 4$	0.7652	0.47934	47.93	0.28586	28.59	2.09
	ANI4B		0.18267	0.16603	16.6	0.01664	1.66	6.02
	ANI4C		0.25445	0.23556	23.56	0.0189	1.89	4.25
	ANI4D		0.60619	0.59089	59.09	0.0153	1.53	1.69
BNeu 7	AHLB1	$\mathrm{P}_{\text {Lux }}{ }^{*}$	0.0338	0.0338	3.38	-	-	29.59
BNeu 8	ATCB1	$\mathrm{P}_{\text {LtetO-1 }}$	0.00778	0.00778	0.78	-	-	128.53
BNeu 9	ANH1	$\mathrm{P}_{\text {ANI }} 2$	0.13249	0.08548	8.55	0.04701	4.7	11.7
BNeu 10	INH1	$\mathrm{P}_{\text {INA }} 7$	0.17488	0.09012	9.01	0.08476	8.48	11.1

Table S6: Translation initiation rate calculated from RBS calculator [5].

Name of RBS	Operating Promoter	Protein of Translational regulation	Translation initiation rate (a.u.)
$\mathrm{R}(\mathrm{BBa}-\mathrm{B} 0034)[6]$	$\mathrm{P}_{\text {Llaco-1 }} / \mathrm{P}_{\text {Lteto-1 }}$	CI	Sequence (5'

Table S7: Details of molecular engineering performed for weight and bias optimization of the unit bactoneurons.

Unit bactoneuron	Molecular engineering of the cellular devices for weight and bias optimization
BNeu 1	Initial assumptions: We took the design knowledge from two reported synthetic promoters showing nonlinear behavior with respect to IPTG and aTc [4] to make a starting set (Set 1) of five synthetic promoters $\mathrm{P}_{\mathrm{IAA}} 1-5$ carried by cellular devices IAA1-5. The designs of those synthetic promoters were made by varying the number and relative positions of the operator sites for LacI and TetR. Schematic representation of the promoter maps can be found in figure 3 and the promoter sequences are shown in supplementary table S3.
	Initial characterization of cellular devices IAA1-5: •No device was found showing ≥ 8 fold between (Single-cassette systems in high copy highest signal and highest leakage (Table S5) (pUC ori) plasmids) -Either weight values were low, or the difference between IPTG weight and aTc weight was high (Table S4)
	In most cases, IPTG weight had lower value than aTc weight (Table S4). The weight values represent the slope in the dose response curve (See equation 1 in the main text). Among those five devices, total leakage for IAA4 and IAA5 was similar (Table S5). However, although IAA5 showed lowest value of highest leakage, IAA4 showed minimum leakage associated with the input states other than the highest leakage state (Difference between $\sum \mathrm{L}$ and $\sum \mathrm{L}_{\text {max }}$). Therefore, we selected IAA4 as the design template for the next set of cellular devices (Set 2) in order to decrease the leakage and sharpen the slope (weight value) of the bactoneural response curve with respect to the input inducers which was the optimization of the weights of the inputs.

	Weight and leakage adjustment step 1 to decrease the leakage and sharpen the slope of the bactoneural response curve The aTc single induction state was the highest leakage state of IAA4 (Figure 3, figure S2 and table S5). Thus, we assumed that, the device produced leakage due to insufficient interactions between LacI transcription factor and its operator sites present in the promoter $\mathrm{P}_{\mathrm{IAA}} 4$ which was supposed to remain turned off because of the LacI binding in aTc single induction condition. Based on this assumption, we increased the number of binding sites with different combinations and relative positions to generate two more promoters $\mathrm{P}_{\mathrm{IAA}} 6$ and 7 carried by cellular devices IAA6 and IAA7A respectively (Figure 3, table S2 and table S3). Increased number of operator sites would promote more LacI binding events causing tight repression of the promoter and therefore leakage reduction. It was previously reported that, the slope of the circuit response curve with respect to the input could be altered by changing the number and the relative positions of the transcription factor-specific operator sites in the target promoter design [7]. Here we thought that the same could be applicable to make the device more sensitive to the input inducers that in turn could sharpen the bactoneural response curve leading to the elevated weight values. Initial characterization of cellular devices IAA6 and IAA7A: •More than 8 fold between highest signal and highest leakage was achieved only for IAA7A (Table S5) -Value of IPTG weight was increased for IAA7A (Table S4) Hence, we selected IAA7A as the best design form Set 2. We thought to further optimize weights and bias for this bactoneuron (Set 3). We again increased the operator sites and We changed the copy number of the plasmid designed promoters $\mathrm{P}_{\mathrm{IAA}} 8-11$ carried by carrying cellular device IAA7A from high cellular devices IAA8-11 respectively copy (pUC) to low copy (p 15 A) to alter the (Figure 3, table S2 and table S3). relative amount of the promoter and its Initial characterization of cellular devices transcription factor per cell resulting in IAA8-11: •Leakage built up gradually IAA7B (Figure 3 and table S2). (Table S5) Initial characterization of cellular device IAA7B: •Highest fold change between highest signal and highest leakage (Table S5) - Lowest leakage (Table S4) No device was selected. We stopped increasing the number of operator sites on the synthetic promoters. Selected as the final cellular device Cellular devices IAA7B.A and IAA7B.B: Developed from IAA7B by changing the output from EGFP to E2Crimson and mVenus respectively (Table S2) only for microscopic experiments.
BNeu 2	Initial assumptions: Based on the design knowledge of BNeu 1 and the map of the $\mathrm{P}_{\mathrm{R}}-\mathrm{P}_{\mathrm{RM}}$ promoter system of λ phage regulated by CI, four initial designs of the output-expressing synthetic promoters $\mathrm{P}_{\text {INA }} 1-4$ were created by varying number and relative positions of operator sites for LacI and CI (Figure 3 and table S3). They were placed under low copy origin (p 15 A) while their regulator CI was placed under high copy origin (pUC). CI shows high basal level expression (CI expression from inducible promoter even in absence of the corresponding input inducer) under a strong RBS [Supplementary reference 1] that would affect the desired bactoneural behavior. Therefore, to reduce its basal level expression through reduction of its translation rate, three weak RBSs RC1-3 were designed (Table S3). Individual weak RBSs along with the native strong RBS R (BBa_B0034) were cotransformed with each of the $\mathrm{P}_{\mathrm{INA}} 1-3$ promoters, whereas, for $\mathrm{P}_{\mathrm{INA}} 4$ promoter, only RBS R was tested (Table S2). As a result, in set 1,13 cellular devices were built (INA1A-D, INA2A-D, INA3A-D and INA4). Initial characterization of cellular devices INA1A-4: •Fold change between highest signal and highest (Double-cassette systems) leakage was very low ($\sim 1.1-3.5$ fold) for all designs (Table S5) -High leakage accumulation was observed in all cases (Table S5)

We didn't choose any devise from set 1 as no one fulfilled our first selection criterion that is at least 8 fold changes between the highest signal and the highest leakage. We decided to create completely new promoter designs.

	Weight and leakage adjustment step 1 Next, we made another set (Set 2) of synthetic promoters $P_{\text {INA }} 5-7$ (Table S3) by varying the number and relative positions of the LacI and CI binding sites. Here also, we placed CI under weak RBSs RC1-3 but we didn't consider strong RBS R anymore (Figure 3). We also changed the plasmid copy number for CI from high copy (pUC ori) to medium copy (ColE1 ori). In this way 9 more device designs were generated (INA5A-C, INA6AC and INA7A-C). Initial characterization of cellular devices INA5A-7C: •INA7A showed highest fold change between highest signal and highest leakage (~ 23.5 fold; Table S5) -INA7A showed good weight values compared to cellular device IAA7B for BNeu 1 (Table S4) INA7A was selected as the final cellular device Cellular device INA7A.A: Developed from INA7A by changing the output from EGFP to mTFP1 (Table S2) only for microscopic experiments.
BNeu 3	Initial assumptions: Based on the design knowledge of BNeu 1, the map of the bacterial $\mathrm{P}_{\text {Lux }}$ promoter (Table S3) regulated by LuxR, and the design of a reported synthetic promoter-based system showing nonlinear behavior with respect to IPTG, aTc and AHL [2], the design of the output-expressing synthetic promoter $\mathrm{P}_{\text {AAH }}$ was created (Figure S4 and table S3). Initial characterization of cellular device AAH1: •Total leakage was low (Table S5) (Double-cassette system) -Difference between total leakage and highest leakage was Low (Table S5) -Fold change between highest signal and highest leakage was more than 8 fold (Table S5) - Good weight values as compared to other bactoneurons (Table S4) Selected as the final cellular device Cellular device AAH2: Developed from AAH1 by changing the output from EGFP to E2-Crimson (Table S2) only for microscopic experiments.
BNeu 4	Initial assumptions: Based on the design knowledge of BNeu 1 and BNeu 2, the map of the bacterial $\mathrm{P}_{\mathrm{LUX}}$ promoter $\{$ Table S3) regulated by LuxR, and the design of a reported synthetic promoter-based system showing nonlinear behavior with respect to IPTG, aTc and AHL [2], the design of the output-expressing synthetic promoter $\mathrm{P}_{\mathrm{IAH}}$ was created (Figure S 4 and table S 3). Initial characterization of cellular device IAH1: •Total leakage was low (Table S5) (Double-cassette system) -Difference between total leakage and highest leakage was Low (Table S5) -Fold change between highest signal and highest leakage was more than 8 fold (Table S5) -Good weight values as compared to other bactoneurons (Table S4) Selected as the final cellular device Cellular device IAH2: Developed from IAH1 by changing the output from EGFP to tdTomato (Table S2) only for microscopic experiments.
BNeu 5	Initial assumptions: Based on a biological NOT gate, developed previously [1], cellular device N1 was designed. Initial characterization of cellular device N1: •Total leakage was low (Table S5) (Double-cassette system) -Difference between total leakage and highest leakage was low (Table S5) -Fold change between highest signal and highest leakage was more than 8 fold (Table S5) -Good weight values as compared to other bactoneurons (Table S4)

	Selected as the final cellular device Cellular device N2: Developed from N1 by changing the output from EGFP to mKO2 (Table S2) only for microscopic experiments.
BNeu 6	Initial assumptions: Based on the design knowledge of BNeu 1 and BNeu 2, four initial designs of the outputexpressing synthetic promoters $\mathrm{P}_{\text {ANI }} 1-4$ were made by varying number and relative positions of operator sites for TetR and CI (Figure 3 and table S3). They were placed under low copy origin (p15A) while their regulator CI was placed under medium copy origin (ColE1). Similar to the bactoneuron BNeu 2, weak RBSs RC1-3 along with the native RBS R (BBa _B0034) were co-transformed with each of the $\mathrm{P}_{\text {ANI }} 1-4$ promoters resulting in a set (Set 1) of 12 designs (ANI1A-D, ANI2A-D, ANI3A-D and ANI4A-D). Initial characterization of cellular devices ANI1A-4D: •Only ANI2C showed more than 8 fold change (Double-cassette systems) between highest signal and highest leakage (Table S5) - ANI2C showed good weight values compared to other bactoneurons (Table S4) ANI2C was selected as the final cellular device Cellular device ANI2C.A: Developed from ANI2C by changing the output from EGFP to E2-Crimson (Table S2) only for microscopic experiments.
BNeu 7	Initial assumptions: Based on the design knowledge of BNeu 3 and BNeu 4, cellular device AHLB1 was designed (Figure S4 and table S2). Initial characterization of cellular device AHLB1: •Total leakage was low (Table S5) (Double-cassette system) -Difference between total leakage and highest leakage was Low (Table S5) -Fold change between highest signal and highest leakage was more than 8 fold (Table S5) - Good weight value as compared to other bactoneurons (Table S4) Selected as the final cellular device Cellular device AHLB2: Developed from AHLB1 by changing the output from EGFP to E2-Crimson (Table S2) only for microscopic experiments.
BNeu 8	Initial assumptions: Based on the design knowledge of the reported synthetic promoter $\mathrm{P}_{\mathrm{LtetO}-1}$ showing nonlinear behavior with respect to aTc [4], cellular device ATCB1 was designed (Figure S4 and table S2). Initial characterization of cellular device ATCB1: •Total leakage was low (Table S5) (Single-cassette system in medium copy -Difference between total leakage and highest leakage (ColE1 ori) plasmid) was low (Table S5) - Fold change between highest signal and highest leakage was more than 8 fold (Table S5) - Good weight value as compared to other bactoneurons (Table S4) Selected as the final cellular device Cellular device ATCB2: Developed from ATCB1 by changing the output from EGFP to E2-Crimson (Table S2) only for microscopic experiments.
BNeu 9	Initial assumptions: Based on the design knowledge of BNeu 3, BNeu 6 and BNeu 7, cellular device ANH1 was designed (Figure S4 and table S2). Initial characterization of cellular device ANH1: •Total leakage was low (Table S5) (Double-cassette system) -Difference between total leakage and highest leakage was Low (Table S5) - Fold change between highest signal and highest leakage

	was more than 8 fold（Table S5） －Good weight values as compared to other bactoneurons （Table S4） Selected as the final cellular device Cellular device ANH2：Developed from ANH1 by changing the output from EGFP to tdTomato（Table S2）only for microscopic experiments．
BNeu 10	Initial assumptions：Based on the design knowledge of BNeu 2，BNeu 4 and BNeu 7，cellular device INH1 was designed（Figure S4 and table S2）． Initial characterization of cellular device INH1：•Total leakage was low（Table S5） （Double－cassette system） －Difference between total leakage and highest leakage was Low（Table S5） －Fold change between highest signal and highest leakage was more than 8 fold（Table S5） －Good weight values as compared to other bactoneurons （Table S4） Selected as the final cellular device Cellular device INH2：Developed from INH1 by changing the output from EGFP to E2－Crimson（Table S2）only for microscopic experiments．

Table S8：Details of unit bactoneuron culturing．The optimized unit bactoneuron constructs are shown in bold．

$\begin{aligned} & \text { E } \\ & \text { U } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { U } \\ & \text { 己 } \\ & \text { U } \end{aligned}$	Transformation of plasmids		弟		Time of propagation for induced culture for various experiments				Number of independent experimentsperformed in various days
							For dose response experiments	皆	For microscopic experiments	
BNeu 1	IAA1					6 hours	12 hours	－	－	3
	IAA2				6 hours	12 hours	－	－	3	
	IAA3				6 hours	12 hours	－	－	3	
	IAA4				6 hours	12 hours	－	－	3	
	IAA5				6 hours	12 hours	－	－	3	
	IAA6				6 hours	12 hours	－	－	3	
	IAA7A				12 hours	12 hours	－	－	3	
	IAA8				12 hours	12 hours	－	－	3	
	IAA9				12 hours	12 hours	－	－	3	
	IAA10				12 hours	12 hours	－	－	3	
	IAA11				12 hours	12 hours	－	－	3	
	IAA7B				10＋6 hours ${ }^{\text {a }}$	5				
	IAA7B．A				－	－	－	$10+6$ hours $^{\text {a }}$	1	
	IAA7B．B				－	－	－	$10+6$ hours $^{\text {a }}$	1	
BNeu 2	INA1A				16 hours	－	－	－	1	
	INA1B				16 hours	－	－	－	1	
	INA1C				16 hours	－	－	－	1	
	INA1D				16 hours	－	－	－	1	
	INA2A				16 hours	－	－	－	1	

${ }^{\mathrm{a}} 10$ hours induction of the $1 \%(\mathrm{~V} / \mathrm{V})$ overnight uninduced culture seeded into LB media with appropriate inducers and antibiotics followed by second seeding of $1 \%(\mathrm{~V} / \mathrm{V})$ of that induced culture into fresh media supplemented with inducers and antibiotics as appropriate and additional induction for 6 hours.

Table S9: List of bacterial strains and plasmids used in this study.

Plasmid name	Description	Ori	Antibiotic selection	Source
E. coli DH5		-	-	-
E. coli DH5aZ1		-	-	Prof. David McMillen
pOR-EGFP-12	Source of EGFP gene and ColE1 Ori	ColE1	Amp	Prof. David McMillen
pOR-Luc-31	Source of p15A Ori	p15A	Cm	Prof. David McMillen
pmVenus-C1	Source of mVenus gene	pUC	Kan	Clontech
mTFP1-pBad	Source of mTFP1 gene	pBR322	Amp	Addgene
(Plasmid\#54553)				

pUCP20T-E2Crimson (Plasmid\#78473)	Source of E2-Crimson gene	pBR322	Amp	Addgene
$\mathrm{mKO} 2-\mathrm{pBAD}$	Source of mKO2 gene	-	Amp	Addgene
pBW313lux-hrpR	Source of LuxR gene	p15A	Kan	Addgene
(Plasmid\#61436)				
pXC3EGFP	EGFP gene with RBS R under $\mathrm{P}_{\text {Lux }}$ promoter: source of $P_{\text {LUX }}$ promoter	p15A	Cm	This study
pTA1EGFP	EGFP gene with RBS R under $\mathrm{P}_{\text {LtetO-1 }}$ promoter	pUC	Amp	[1]
pTA2EGFP	EGFP gene with RBS R under $\mathrm{P}_{\text {Lteto-1 }}$ promoter	ColE1	Amp	[1]
pTA2E2-Crimson	E2-Crimson gene with RBS R under $\mathrm{P}_{\text {LtetO-1 }}$ promoter	ColE1	Amp	This study
pRC3EGFP	EGFP gene with RBS R under P_{R} promoter	p15A	Cm	[1]
pRC3MKO2	mKO 2 gene with RBS R under P_{R} promoter	p15A	Cm	This study
pTA2cI	Source of wild type CI gene	ColE1	Amp	[1]
pRA1SEGFPTcIfm	Source of frame-shifted CI gene	pUC	Amp	[1]
pLA2ScIfmTcIfm	Frame-shifted CI gene with RBS R under both $\mathrm{P}_{\text {Llaco-1 }}$ promoter and $\mathrm{P}_{\text {Lteto-1 }}$ promoter	ColE1	Amp	[1]
$\mathrm{pP}_{\text {IAA }} 1$ A1EGFP	EGFP gene with RBS R under $\mathrm{P}_{\text {IAA }} 1$ promoter	pUC	Amp	This study
$\mathrm{pP}_{\text {IAA }}$ 2A1EGFP	EGFP gene with RBS R under $\mathrm{P}_{\text {IAA }} 2$ promoter	pUC	Amp	This study
pP ${ }_{\text {IAA }} 3$ A1EGFP	EGFP gene with RBS R under $\mathrm{P}_{\text {IAA }} 3$ promoter	pUC	Amp	This study
$\mathrm{pP}_{\text {IAA }}$ 4A1EGFP	EGFP gene with RBS R under $\mathrm{P}_{\text {IAA }}$ 4promoter	pUC	Amp	This study
$\mathrm{pP}_{\text {IAA }} 5$ A1EGFP	EGFP gene with RBS R under $\mathrm{P}_{\text {IAA }} 5$ promoter	pUC	Amp	This study
p $\mathrm{P}_{\text {IAA }} 6$ A1EGFP	EGFP gene with RBS R under $\mathrm{P}_{\text {IAA }} 6$ promoter	pUC	Amp	This study
$\mathrm{pP}_{\text {IAA }} 7$ 7A1EGFP	EGFP gene with RBS R under $\mathrm{P}_{\text {IAA }} 7$ promoter	pUC	Amp	This study
$\mathrm{pP}_{\mathrm{IAA}} 7 \mathrm{C} 3 \mathrm{EGFP}$	EGFP gene with RBS R under $\mathrm{P}_{\text {IAA }} 7$ promoter	p15A	Cm	This study
$\mathrm{pP}_{\text {IAA }} 7 \mathrm{C} 3 \mathrm{mVenus}$	mVenus gene with RBS R under $\mathrm{P}_{\text {IAA }} 7$ promoter	p15A	Cm	This study
$\mathrm{pP}_{\text {IAA }} 7 \mathrm{C} 3 \mathrm{E} 2$-Crimson	E2-Crimson gene with RBS R under $\mathrm{P}_{\text {IAA }} 7$ promoter	p15A	Cm	This study
$\mathrm{pP}_{\text {IAA }} 8$ A1EGFP	EGFP gene with RBS R under $\mathrm{P}_{\mathrm{IAA}} 8$ promoter	pUC	Amp	This study
pP ${ }_{\text {IAA }} 9$ A1EGFP	EGFP gene with RBS R under $\mathrm{P}_{\text {IAA }} 9$ promoter	pUC	Amp	This study
$\mathrm{pP}_{\text {IAA }}$ 10A1EGFP	EGFP gene with RBS R under $\mathrm{P}_{\text {IAA }} 10$ promoter	pUC	Amp	This study
$\mathrm{pP}_{\text {IAA }} 11$ A1EGFP	EGFP gene with RBS R under $\mathrm{P}_{\text {IAA }} 11$ promoter	pUC	Amp	This study
pP ${ }_{\text {INA }} 1$ A1EGFP	EGFP gene with RBS R under $\mathrm{P}_{\text {INA }} 1$ promoter	pUC	Amp	This study
pP ${ }_{\text {INA }}$ 2A1EGFP	EGFP gene with RBS R under $\mathrm{P}_{\text {INA }} 2$ promoter	pUC	Amp	This study
pP ${ }_{\text {INA }} 3$ A1EGFP	EGFP gene with RBS R under $\mathrm{P}_{\text {INA }} 3$ promoter	pUC	Amp	This study
pP ${ }_{\text {INA }} 4$ A1EGFP	EGFP gene with RBS R under $\mathrm{P}_{\text {INA }} 4$ promoter	pUC	Amp	This study
$\mathrm{pP}_{\text {INA }} 5 \mathrm{~A} 2 \mathrm{EGFP}(\mathrm{F})$	EGFP gene with RBS R under $\mathrm{P}_{\text {INA }} 5$ promoter (Forward direction)	ColE1	Amp	This study
pP ${ }_{\text {INA }} 6$ A2EGFP(F)	EGFP gene with RBS R under $\mathrm{P}_{\text {INA }}$ 6promoter (Forward direction)	ColE1	Amp	This study
$\mathrm{pP} \mathrm{P}_{\text {INA }} 7 \mathrm{~A} 2 \mathrm{EGFP}(\mathrm{F})$	EGFP gene with RBS R under $\mathrm{P}_{\text {INA }} 7$ promoter (Forward direction)	ColE1	Amp	This study
pP INA 7 A 2 mTFP 1 (F)	mTFP1 gene with RBS R under $\mathrm{P}_{\text {INA }} 7$ promoter (Forward direction)	ColE1	Amp	This study
$\mathrm{p} \mathrm{P}_{\text {INA }} 7$ 7A2E2-Crimson(R)	E2-Crimson gene with RBS R under $\mathrm{P}_{\text {INA }}$ 7promoter (Reverse direction)	ColE1	Amp	This study
$\mathrm{pP}_{\text {ANI }} 1$ A2EGFP	EGFP gene with RBS R under $\mathrm{P}_{\text {ANI }} 1$ promoter	ColE1	Amp	This study
$\mathrm{pP}_{\text {ANI }}$ 2A2EGFP	EGFP gene with RBS R under $\mathrm{P}_{\text {AN }} 2$ promoter	ColE1	Amp	This study
$\mathrm{pP}_{\mathrm{AN}}$ 2A2E2-Crimson	E2-Crimson gene with RBS R under $\mathrm{P}_{\mathrm{ANI}} 2$ promoter	ColE1	Amp	This study
$\mathrm{pP}_{\text {AN }} 2 \mathrm{~A} 2$ 2tdTomato(F)	tdTomato gene with RBS R under $\mathrm{P}_{\text {ANI }} 2$ promoter (Forward direction)	ColE1	Amp	This study
$\mathrm{pP}_{\text {ANI }} 3$ A2EGFP	EGFP gene with RBS R under $\mathrm{P}_{\text {ANI }} 3$ promoter	ColE1	Amp	This study
pP ${ }_{\text {ANI }} 4$ A2EGFP	EGFP gene with RBS R under $\mathrm{P}_{\text {AN }} 4$ promoter	ColE1	Amp	This study
$\mathrm{pP}_{\text {AAH }} \mathrm{C} 3 \mathrm{EGFP}(\mathrm{R})$	EGFP gene with RBS R under $\mathrm{P}_{\text {AAH }}$ promoter (Reverse direction)	p15A	Cm	This study
$\mathrm{pP}_{\text {AAH }} \mathrm{C} 3$ RBSHEGFP(R)	EGFP gene with RBS RH under $\mathrm{P}_{\text {AAH }}$ promoter (Reverse direction)	p15A	Cm	This study
$\mathrm{pP}_{\text {IAH }} \mathrm{C} 3 \mathrm{EGFP}(\mathrm{R})$	EGFP gene with RBS R under $\mathrm{P}_{\text {IAH }}$ promoter	p15A	Cm	This study
pTA2RBSC1EGFP	EGFP gene with RBS RC1 under $\mathrm{P}_{\text {Lteto-1 }}$ promoter	ColE1	Amp	This study
pTA2RBSC2EGFP	EGFP gene with RBS RC2 under $\mathrm{P}_{\text {Lteto-1 }}$ promoter	ColE1	Amp	This study
pTA2RBSC3EGFP	EGFP gene with RBS RC3 under $\mathrm{P}_{\text {Lteto-1 }}$ promoter	ColE1	Amp	This study
pTC3cI	Wild type CI gene with RBS R under $\mathrm{P}_{\text {LtetO-1 }}$ promoter	p15A	Cm	[1]
pTC3RBSC1cI	Wild type CI gene with RBS RC1 under $\mathrm{P}_{\text {Lteto-1 }}$ promoter	p15A	Cm	This study
pTC3RBSC2cI	Wild type CI gene with RBS RC2 under $\mathrm{P}_{\text {Lteto-1 }}$ promoter	p15A	Cm	This study
pTC3RBSC3cI	Wild type CI gene with RBS RC3 under $\mathrm{P}_{\text {Lteto-1 }}$ promoter	p15A	Cm	This study
pLC3cI	Wild type CI gene with RBS R under $\mathrm{P}_{\text {Llaco-1 }}$ promoter	p15A	Cm	This study
pLC3RBSC1cI	Wild type CI gene with RBS RC1 under $\mathrm{P}_{\text {Llaco-1 }}$ promoter	p15A	Cm	This study
pLC3RBSC2cI	Wild type CI gene with RBS RC2 under $\mathrm{P}_{\text {Llaco-1 }}$ promoter	p15A	Cm	This study
pLC3RBSC3cI	Wild type CI gene with RBS RC3 under $\mathrm{P}_{\text {LlacO-1 }}$ promoter	p15A	Cm	This study
pTA2LuxR	LuxR gene with RBS R under $\mathrm{P}_{\text {LtetO-1 }}$ promoter	ColE1	Amp	[2]

pJA2LuxR(F)	LuxR gene with RBS R under BBa_J23102 promoter (Forward direction)	ColE1	Amp	This study
pJA2LuxR(R)	LuxR gene with RBS R under BBa_J23102 promoter (Reverse direction)	ColE1	Amp	This study
$\begin{aligned} & \text { pJA2LuxR(F)P } \mathrm{P}_{\text {INA }} 7 \mathrm{E} 2- \\ & \text { Crimson(R) } \end{aligned}$	LuxR gene with RBS R under BBa_J23102 promoter (Forward direction) with E2-Crimson gene with RBS R under $\mathrm{P}_{\text {INA }} 7$ promoter (Reverse direction)	ColE1	Amp	This study
$\begin{aligned} & \left.\mathrm{pP}_{\mathrm{ANI}} 2 \mathrm{~A} 2 \text { tdTomato(} \mathrm{F}\right) \mathrm{JLu} \\ & \mathrm{xR}(\mathrm{R}) \end{aligned}$	tdTomato gene with RBS R under $\mathrm{P}_{\text {ANI }} 2$ promoter (Forward direction) with LuxR gene with RBS R under BBa_J23102 promoter (Reverse direction)	ColE1	Amp	This study
pXC3cIfm	Frame-shifted CI gene with RBS R under $\mathrm{P}_{\text {Lux }}$ promoter	p15A	Cm	This study
pX* ${ }^{*}$ C3EGFP	EGFP gene with RBS R under $\mathrm{P}_{\text {LUX }}{ }^{*}$ promoter	p15A	Cm	This study
pX ${ }^{*}$ C3E2-Crimson	E2-Crimson gene with RBS R under $\mathrm{P}_{\text {Lux }}{ }^{*}$ promoter	p15A	Cm	This study
pA2MCS	Only MCS	ColE1	Amp	This study
pC3MCS	Only MCS	p15A	Cm	This study

Reference

1. K. Sarkar, S, Mukhopadhyay, D. Bonnerjee, R. Srivastava and S. Bagh, J. Biol. Eng.,2019, 13, DOI: 10.1186/s13036-019-0151-x.
2. D. Bonnerjee, S. Mukhopadhyay, and S. Bagh, Bioconjugate Chem., 2019, 30, 3013-3020.
3. T. S. Moon, C. Lou, A. Tamsir, B. C. Stanton and C. A. Voigt, Nature, 2012, 491, 249-253.
4. R. Lutz and H. Bujard, Nucleic Acids Res., 1997, 25, 1203-1210.
5. H. M. Salis, E. A. Mirsky and C. A. Voigt, Nat. Biotechnol., 2009, 27, 946-950.
6. V. S. Mahajan, V. D. Marinescu, B. Chow, A. D. Wissner-Gross and P. Carr iGEM group: Antiquity, Data from "Registry of Standard Biological Parts", 2003, http://parts.igem.org/Part:BBa_B0034.
7. K. F. Murphy, G. Bala'zsi and J. J. Collins, Proc. Natl. Acad. Sci. U.S.A., 2007, 104, 12726-12731.
