Supplementary Information

A single layer artificial neural network type architecture with molecular engineered bacteria for reversible and irreversible computing

Kathakali Sarkar^{1,2}, Deepro Bonnerjee^{1,2}, Rajkamal Srivastava^{1,2}, Sangram Bagh^{1,*}

¹Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Homi Bhabha National Institute (HBNI), Block A/F, Sector-I, Bidhannagar, Kolkata 700064 INDIA ² Equal contributions

* Corresponding author

Figure S1: Derivation of functional and unit bactoneurons for a) de-multiplexing function, b) multiplexing function, c) majority function, d) decoding function, e) encoding function, f) Feynman gate function and g) Fredkin gate function. In each case, combination of unit bactoneurons gives rise to single layer ANN architecture where, individual unit bactoneurons come back to their corresponding functional bactoneuron states while they get associated with '0' weighted inputs (If any). In the network level, parts of the summation function of each functional bactoneuron, contributed by '0' weighted input, are not shown.

Figure S2: Details of characterization and dose responses of BNeus 1, 2 and 6. Expression characterization of **a)** BNeu 1, **c)** BNeu 2 and **e)** BNeu 6 and dose responses of **b)** BNeu 1, **d)** BNeu 2 and **f)** BNeu 6.

Figure S3: Correlation between bias and leakage of a Unit bactoneuron. a) Correlation between bias (b_1) and the percentage highest leakage $(L_{max}(\%))$ for all BNeu 1 cellular devices obtained from weight and bias adjustment steps. Simulated output behaviors of **b**) BNeu 1, **c**) BNeu 2 **d**) BNeu 3 **e**) BNeu 4, **f**) BNeu 5, **g**) BNeu 6, **h**) BNeu 7, **i**) BNeu 8, **j**) BNeu 9 and **k**) BNeu 10. Simulation corresponding to the bias value obtained experimentally for each bactoneuron is shown in red box.

Figure S4: Characterization of unit bactoneurons BNeu 3, BNeu 4, BNeu 5, BNeu 7, BNeu 8, BNeu 9 and BNeu 10. Neural architectures, truth tables and biological circuit designs of unit bactoneurons a) BNeu 3, d) BNeu 4, g) BNeu 5, j) BNeu 7, m) BNeu 8, p) BNeu 9 and s) BNeu 10 are shown. Details of plasmids carrying bioparts of the biological circuit designs of b) BNeu 3, e) BNeu 4, h) BNeu 5, k) BNeu 7, n) BNeu 8, q) BNeu 9 and t) BNeu 10 are illustrated. Expression characterization, dose responses, 3D simulations and experimental 3D behavior of c)BNeu3, f) BNeu 4, i) BNeu 5, l) BNeu 7, o) BNeu 8, r) BNeu 9 and u) BNeu 10 in terms of EGFP expression are also shown.

Figure **S5**: Characterizations of functional associated with weight=0 towards bactoneurons specific inducers. Each functional bactoneuron population was subjected to 10h+6h induction with a set of inducers which was chosen based on the neural architecture of individual functional bactoneurons, and then characterized in terms of EGFP expression. If the presence or absence of a specific inducer didn't change the output of the functional bactoneuron, then only we considered that, the inducer was associated with zero weight.Neural architecturesand validation for **'**0' weighted input(s) of functional bactoneuronsa)FBNeu 5, **b**) FBNeu 6, **c**) FBNeu 7, **d**) FBNeu 12, **e**) FBNeu 13, **f**) FBNeu 14, g) FBNeu 15, h) FBNeu 21 and i) FBNeu 23 are shown. FBNeu 20 and FBNeu 22 from Fredkin gate function are equivalent to FBNeu 7 and FBNeu 6 respectively except their different outputs. Therefore, individual weight '0' input validation for FBNeus 6 and 7 justifies the same for FBNeus 22 and 20 as well. FBNeu

12 and FBNeu 14 are similar except their outputs. Here, individual functional bactoneurons are characterized in terms of EGFP output. Therefore, both FBNeu 12 and FBNeu 14 produce EGFP output and hence, they become identical. Thus, they share common '0' weighted input validation data (Shown with magenta arrow). FBNeu 16 from Feynman gate function is a sub-set of FBNeu 13 as it operates on lesser number of inputs whereas, their corresponding unit bactoneuron is common. Therefore, weight '0' input of FBNeu 16 can be validated from the characterization result of FBNeu 13. Similarly, weight '0' inputs of Fredkin gate functional bactoneuron FBNeu 19 can be validated by characterization result of FBNeu 12/14.

Figure S6: Microscopy images with corresponding differential interference contrast (DIC) and merged channels. Populations of different combinations of bactoneurons, depending on the complex functions they constitute, were co-cultured with appropriate inductions where, they together formed a bactoneural layer. They were viewed under relevant laser channels and emission filters. DIC images show a heterogenous population of cells in the field with each sub-population responding uniquely to the induction conditions. A bactoneuron's activation is reported by fluorescence from its respective output protein

whereas inactive bactoneurons show no fluorescence. Microscopic images for the bactoneuron-based single layer ANN type architectures for **a**) de-multiplexing function, **b**) multiplexing function, **c**) majority function, **d**) decoding function, **e**) encoding function, **f**) reversible Feynman gate and **g**) reversible Fredkin gate are shown.

Table S1: Details of functional bactoneurons and corresponding unit bactoneurons associated with the computing functions developed in this study. Output fluorescent proteins and activation function equations corresponding to unit bactoneurons are also described.

Г		Functional bactoneurons (FBNeus)	Unit bactoneurons (BNcus)		E			Functional bactoneurons (FBNeus)	Unit bactoneurons (BNcus)		u.						
	Serial number			Output of unit bactoneuron	Activation function Equatio	Serial number	Function			Output of unit bactoneuron	Activation function Equation						
	1	$ \begin{array}{c} & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & $	$(A_{1}) \xrightarrow{b_{1}} (B_{1}) \xrightarrow{b_{1}} (B_{$	E2-Crimson (E2)	$O_1 = \frac{1}{1 + e^{-(w_{1x}I_p + w_{1x}A_p + b_1)}}$			$(X_{1})^{\text{b}} \xrightarrow{b_{16}} FBNeu 16$ $(X_{1})^{\text{b}} \xrightarrow{(g_{1}/g_{2})} (g$	$(A_{T} \stackrel{W_{BA}(+)}{\longrightarrow} (V_{S}^{T} \stackrel{W_{BA}}{\longrightarrow} E_{G} / E_{2}) \xrightarrow{b} E_{G} / E_{2}$	2-Crimson (E2)	$O_8 = \frac{1}{1 + e^{-(w_{8A} \cdot A_\gamma + b_9)}}$						
		$\begin{array}{c} \begin{array}{c} \begin{array}{c} & & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ \end{array} \end{array} \xrightarrow{ \begin{array}{c} & & & & & \\ & & & & \\ & & & & \\ & & & & \\ \end{array}} \xrightarrow{ \begin{array}{c} & & & & \\ & & & & \\ & & & & \\ & & & & $	$(A_{T}) \xrightarrow{\psi_{2}} (J) \xrightarrow{\psi_{2}} (BNeu 2$ $(A_{T}) \xrightarrow{\psi_{2}} (J) \xrightarrow{\psi_{2}} (M_{T}) \xrightarrow{\psi_{2}} (M_{T})$ $(A_{T}) \xrightarrow{\psi_{2}} (J) \xrightarrow{\psi_{2}} (M_{T}) \xrightarrow{\psi_{2}} (J)$	EGFP (E ₀)	$O_2 = \frac{1}{1 + e^{-(w_{2p}I_p + w_{2A}A_p + b_2)}}$		an gate	n gate	n gate	an gate	in gate	an gate	n gate	(ip) (ip)	A _T ^W _{2q} (-) ^b ₂ BNeu 2 (y ₂ ^W y ₂ ^A y y ₂ ^A	(Ea) E	$O_2 = \frac{1}{1 + e^{-(w_{2r}I_p + w_{2A}A_r + b_2)}}$
		$(b_{A})^{b_{A}} \xrightarrow{b_{A}} FBNeu 3$ $(b_{A})^{b_{A}} \xrightarrow{W_{A}} (f) \xrightarrow{W_{A}} FBNeu 3$ $(b_{A})^{b_{A}} \xrightarrow{W_{A}} (f) \xrightarrow{W_{A}} F_{A}$ $(b_{A})^{b_{A}} \xrightarrow{W_{A}} (f) \xrightarrow{W_{A}} (f$	$(A_{T} \xrightarrow{b_{2}} (J_{T}) \xrightarrow{b_{2}} (BNeu 2$	EGFP (E ₀)	$O_2 = \frac{1}{1 + e^{-(w_{2x}I_p + w_{2x}A_v + b_2)}}$	6	Feynma	(\vec{k}_0) (\vec{k}_0) (\vec{k}_0) (\vec{k}_0) (\vec{k}_0) (\vec{k}_0)	b_{0} b_{0} b_{0} b_{0} b_{0}	EGFP	$O_c = \frac{1}{1}$						
	2	$ \begin{array}{c} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	$ \begin{array}{c} (A_{1}, w_{2,4}(\circ) \\ (A_{2}, w_{2,4}(\circ) \\ ($	EGFP (E ₀)	$0_3 = \frac{1}{1 + e^{-(w_{3A}A_T + w_{3B}A_B + b_3)}}$			$ \begin{array}{c} (A_{1}) & \overset{V_{10}}{\longrightarrow} (V_{10}) & \overset{V_{10}}{\longrightarrow}$	$\begin{array}{c} (A_1) \xrightarrow{\nabla_{A_1}(v)} \\ (B_2) \xrightarrow{W_{B_1}(v)} \\ (B_2) \xrightarrow{W_{B_2}(v)} \\ (B_2) \xrightarrow{W_{B_2}$	EGFP (Eq)	$0 = \frac{1}{1 + e^{-(w_{ac}t_{p} + w_{bA}A_{T} + b_{b})}}$						
		$\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$	$(\mathbf{k}_{1}) \xrightarrow{\mathbf{k}_{1}} (\mathbf{y}_{1}) \xrightarrow{\mathbf{k}_{2}} (\mathbf{w}_{1}, \mathbf{w}_{1}, \mathbf{w}_{1}, \mathbf{w}_{1}) \xrightarrow{\mathbf{k}_{2}} \mathbf{B} \text{Neu 1}$ $(\mathbf{k}_{2}) \xrightarrow{\mathbf{k}_{2}} (\mathbf{w}_{1}, \mathbf{w}_{1}, \mathbf{w}_{1}, \mathbf{w}_{1}) \xrightarrow{\mathbf{k}_{2}} \mathbf{E}_{2} \mathbf{E}_{2}$ $(\mathbf{k}_{2}) \xrightarrow{\mathbf{k}_{2}} (\mathbf{w}_{1}, \mathbf{w}_{1}, \mathbf{w}_{1}) \xrightarrow{\mathbf{k}_{2}} \mathbf{E}_{2} \mathbf{E}_{2}$	EGFP (E ₀)	$0_1 = \frac{1}{1 + e^{-(w_{12}l_p + w_{1A}A_q + b_1)}}$			$\begin{array}{c} \begin{array}{c} A_{\alpha\beta} & & \\ A_{\alpha\beta}$	(∧ _y) ^{w_{7yl}(*)} (^y) ⁼ w _{yA} , (y) → E ₂ /E ₂	EGFP (Ea)	$1 + e^{-(w_{7H}A_H + b_7)}$						
	3	$ \begin{array}{c} & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & $	$\begin{array}{c} & \begin{array}{c} b_3 \\ \hline & b_3 \\ \hline \\ & b_3 \\ \hline & b_3 \\ \hline \\ \hline & b_3 \\ \hline \\ \hline & b_$	EGFP (E ₀)	$O_3 = \frac{1}{1 + e^{-(w_{3A}A_T + w_{3B}A_H + b)}}$			$ \begin{array}{c} \begin{pmatrix} X_{0} \\ A_{1} \\ A_{2} \\ A_{2$	$\begin{array}{c} \begin{array}{c} & & & & & \\ A_{11} & & & & \\ & & & & \\ A_{12} & & & & \\ & & & & \\ & & & & \\ & & & & $	tdTomato (T _M)	$O_4 = \frac{1}{1 + e^{-(w_{4R}l_p + w_{4R}A_R + b_4)}}$						
		$ \begin{array}{c} & \overbrace{ \begin{pmatrix} \mathbf{w}_{1} \\ \mathbf{w}_{2} \\ \mathbf{w}_{3} \\ \mathbf{w}_{3$	$\begin{array}{c} \begin{array}{c} b_{\mu} & b_{\mu} & \text{BNeu 4} \\ \hline \\ $	EGFP (E ₀)	$O_4 = \frac{1}{1 + e^{-(w_{4k}l_p + w_{4k}A_k + b_4)}}$	7	Fredkin gate	$(\begin{array}{c} \begin{matrix} u_{2} & b_{2} \\ (A_{1}) & b_{2} \\ (A_{2}) & w_{21A}(A) \\ ($	$\begin{array}{c} (A_{1}) & \begin{matrix} b_{0} & \text{BNeu 9} \\ \hline (A_{2}) & \begin{matrix} w_{0}(x) \\ & & \\ & $	td Tomato $(\mathrm{T}_{\mathrm{M}})$	$0_9 = \frac{1}{1 + e^{-(w_{9h}A_T + w_{9h}A_H + b)}}$						
_	4	$ \begin{array}{c} & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & $	$\begin{array}{c} \begin{array}{c} b_{3} \\ b_{3} \\ c_{1} \\ c_{2} \\ c_{3} \\ c_$	$m { m KO2}(M_{ m K})$	$O_5 = \frac{1}{1 + e^{-(w_{SF}l_p + w_{SA}A_p + b_S)}}$			$(k_1) \xrightarrow{W_{22}} (k_2) \xrightarrow{W_{22}} (k_1) \xrightarrow{W_{22}} (k_1) \xrightarrow{W_{22}} (k_2) \xrightarrow{W_{22}} (k_1) W_{2$	$\begin{array}{c} (A_{1}) & W_{2} & (A_{2}) \\ (A_{2}) & W_{3} & (A_{2}) \\ (A_{2}) & (A_{2}) (A_{2}) & (A_{2}) & (A_{2}) & (A_{2}) \\ (A_{2}) & (A_{2}) &$	E2-Crimson (E ₂)	$0_3 = \frac{1}{1 + e^{-(w_{3A}A_T + w_{3SI}A_H + b)}}$						
Ē		$(k_{1}) \xrightarrow{W_{2}(f)} (y_{2}) \xrightarrow{h_{2}} FBNeu 9$ $(k_{1}) \xrightarrow{W_{2}(f)} (y_{2}) \xrightarrow{W_{2}(h_{1})} (y_{2}) \xrightarrow{W_{2}(h_{1})} (g_{2})$ $(k_{1}) \xrightarrow{W_{2}(f)} (g_{2})$	$\begin{array}{c} & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & &$	E2-Crimson (E2)	$O_6 = \frac{1}{1 + e^{-(w_{6r}l_p + w_{6a}A_r + b_6)}}$			$\begin{array}{c} \begin{array}{c} \psi_{17} \\ \hline \\ \hline \\ W_{17} \\ W_{23A}(0) \\ W_{23A}(0) \\ W_{23A}(0) \\ W_{23A} \\ W_{23A} \\ W_{23A} \\ W_{23} \\ W_{2$	A ₁₀ ¹⁰ 	Crimson (E2)	$0_{10} = \frac{1}{1 + e^{-(w_{100}l_p + w_{100}A_n + w_{100$						
		$(k_{\gamma})^{k_{10}} (k_{\gamma})^{k_{10}} (k_{$	$(b_{\mathcal{D}}, b_{\mathcal{D}})^{(+)} \xrightarrow{\mathbf{P}_{\mathcal{D}}^{2} \text{ BNou 2}} (\mathbf{Y}_{\mathcal{D}}^{-} \mathbf{W}_{\mathcal{D}} \mathbf{h}_{\mathcal{D}}^{-} \mathbf{W}_{\mathcal{D}} \mathbf{h}_{\mathcal{D}}^{-} \mathbf{H}_{\mathcalD}^{-} \mathbf{H}$	mTFP1 (M ₁)	$O_2 = \frac{1}{1 + e^{-(w_{2r}l_p + w_{2A}A_r + b_2)}}$			Чр ^у		E3							
		$\begin{array}{c} \begin{array}{c} \begin{array}{c} X_{1} & w_{11}(r) \\ (l_{p}) \\ (l_{p}) \end{array} & \begin{array}{c} y_{11} & FBNeu 11 \\ (l_{p}) \\ (k_{\gamma}) \end{array} & \begin{array}{c} y_{11} & w_{11}l_{p} \\ (k_{\gamma}) \end{array} & \begin{array}{c} 0_{1} \\ (k_{\gamma}) \end{array} & $	$(\begin{array}{c} & & & & \\ & & & & \\ & & & & \\ & & & & $	mVenus (Mv)	$O_1 = \frac{1}{1 + e^{-(w_{1r}t_p + w_{1A}A_r + b_1)}}$												
		$(\mathbf{y}_{n_1}) \xrightarrow{\boldsymbol{\varphi}_{n_1}} \mathbf{y}_{12} \xrightarrow{\boldsymbol{\varphi}_{n_1}} \mathbf$	$(A_{H})^{W_{T_{11}}(*)} + (Y_{T_{11}}^{W_{T_{11}}(*)} + (Y_{T_{11}}^{W_{T_{11}}(*)} + B_{0} / E_{0} / E_{0})$	E2-Crimson (E2)	$O_7 = \frac{1}{1 + e^{-(w_{7H}A_{1H} + b_{7})}}$												
	_	¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹	$\underbrace{\overset{b_{g}}{\underset{k_{2}}{\overset{\otimes}}} \underset{k_{2}}{\overset{\otimes}} \underset{k_{2}}{\overset{k_{2}}} \underset{k_{2}}} \underset{k_{2}}} \underset{k_{2}}{\overset{k_{2}}} \underset{k_{2}}} k_{2$	E2-Crimson (E2)	$O_8 = \frac{1}{1 + e^{-(w_{0A}A_T + b_{\phi})}}$												
	5	$\begin{array}{c} \begin{array}{c} & & \\ $	$(\widehat{A_{15}})^{W_{7/2}(+)} \xrightarrow{b_{7}} \underbrace{BNeu 7}{y_{7} * w_{15}A_{15}} \underbrace{I_{1}}_{b_{7}} \xrightarrow{b_{7}} E_{5} / E_{7}$	EGFP (E _c)	$O_7 = \frac{1}{1 + e^{-(w_{7H}A_{H} + b_{7})}}$												
		A Contraction of the second se	$\begin{array}{c} & & & & & & \\ & & & & & & \\ & & & & & $	$EGFP\left(E_{ci}\right)$	$O_2 = \frac{1}{1 + e^{-(w_{2\ell}l_p + w_{2k}A_r + b_2)}}$												

Image: Second

		Promoter –gene cassette	RBS	Ori	Antibiotic selection	Promoter-regulator cassette	RBS	Ori	Antibiotic selection
	IAA1	P _{IAA} 1-EGFP	R	pUC	Amp	-	-	-	-
]	IAA2	PIAA2-EGFP	R	pUC	Amp	-	-	-	-
ļ	IAA3	PIAA3-EGFP	R	pUC	Amp	-	-	-	-
	IAA4	PIAA4-EGFP	R	pUC	Amp	-	-	-	-
	IAA5	P _{IAA} 5-EGFP	R	pUC	Amp	-	-	-	-
	IAA6	P _{IAA} 6-EGFP	R	pUC	Amp	-	-	-	-
BNeu1	IAA/A	P _{IAA} 7-EGFP	R	pUC	Amp	-	-	-	-
4		PIAA/-EGFP	K D	p15A pUC	Cm Amn	-	-	-	-
1	IAAo	PIAA0-EUFP D 0 EGED	R D	pUC pUC	Amp	-	-	-	-
1	IAA9	Privi 10-EGEP	R	pUC pUC	Amp	-		-	
1	IAA11	PIAA10 EGFP	R	pUC	Amp	-	-	-	_
1	IAA7B.A	P _{IAA} 7-E2-Crimson	R	p15A	Cm	-	-	-	-
1	IAA7B.B	P _{IAA} 7-mVenus	R	p15A	Cm	-	-	-	-
	INA1A		R	pUC	Amp	P _{LtetO-1} -CI	R	p15A	Cm
]	INA1B	P _{INA} 1-EGFP	R	pUC	Amp	P _{LtetO-1} -CI	RC1	p15A	Cm
	INA1C		R	pUC	Amp	P _{LtetO-1} -CI	RC2	p15A	Cm
	INA1D		R	pUC	Amp	P _{LtetO-1} -CI	RC3	p15A	Cm
	INA2A		R	pUC	Amp	P _{LtetO-1} -CI	R	p15A	Cm
	INA2B	P _{INA} 2-EGFP	R	pUC	Amp	P _{LtetO-1} -CI	RC1	p15A	Cm
	INA2C		R	pUC	Amp	P _{LtetO-1} -CI	RC2	pl5A	Cm
	INA2D		K D	pUC mUC	Amp	P _{LtetO-1} -CI	RC3	p15A	Cm
1	INA3A INA3B	D 2 ECED	R D	pUC pUC	Amp	P _{LtetO-1} -CI	RC1	p15A	Cm
1	INA3D INA3C	r _{INA} 5-DOFF	R	pUC pUC	Amp	PLucol -CI	RC2	p15A	Cm
BNeu2	INA3D		R	pUC pUC	Amp	PLtetO-1 -CI	RC3	n15A	Cm
1	INA4	PINA4-EGFP	R	pUC	Amp	PLtetO-1 -CI	R	p15A	Cm
1	INA5A	- 104	R	ColE1	Amp	PLtetO-1 -CI	RC1	p15A	Cm
1	INA5B	P _{INA} 5-EGFP	R	ColE1	Amp	P _{LtetO-1} -CI	RC2	p15A	Cm
]	INA5C		R	ColE1	Amp	P _{LtetO-1} -CI	RC3	p15A	Cm
]	INA6A	P _{INA} 6-EGFP	R	ColE1	Amp	P _{LtetO-1} -CI	RC1	p15A	Cm
	INA6B		R	ColE1	Amp	P _{LtetO-1} -CI	RC2	p15A	Cm
	INA6C		R	ColE1	Amp	P _{LtetO-1} -CI	RC3	p15A	Cm
	INA7A		R	ColE1	Amp	P _{LtetO-1} -CI	RC1	p15A	Cm
	INA7B	P _{INA} 7-EGFP	R	ColE1	Amp	P _{LtetO-1} -CI	RC2	p15A	Cm
	INA/C		R	ColEI	Amp	P _{LtetO-1} -Cl	RC3	pl5A	Cm
	INA/A.A	P _{INA} /-m1FP1		COLET	Amp	P _{LtetO-1} -CI	RCI	pISA	Cm
BNeu3	AAH1	P _{AAH} -EGFP	H	p15A	Cm	BBa_J23102-LuxR	R	CoLE1	Amp
	AAH2	P _{AAH} -E2-Crimson	RBS H	p15A	Cm	BBa_J23102-LuxR	R	CoLE1	Amp
BNeu4	IAH1	P _{IAH} -EGFP	R	p15A	Cm	BBa_J23102-LuxR	R	CoLE1	Amp
Dittai	IAH2	P _{IAH} -tdTomato	R	p15A	Cm	BBa_J23102-LuxR	R	CoLE1	Amp
DN5	N1	P _R -EGFP	R	p15A	Cm	P _{LlacO-1} . Frame-shifted CI* and P _{LtactO-1} . Frame- shifted CI*	R	ColE1	Amp
Bineus	N2	P _R -mKO2	R	p15A	Cm	P _{LlacO-1} - Frame-shifted CI* and P _{LtactO-1} - Frame- shifted CI*	R	ColE1	Amp
	ANI1A		R	ColE1	Amp	P _{LlacO-1} -CI	R	p15A	Cm
]	ANI1B	P _{ANI} 1-EGFP	R	ColE1	Amp	P _{LlacO-1} -CI	RC1	p15A	Cm
]	ANI1C		R	ColE1	Amp	P _{LlacO-1} -CI	RC2	p15A	Cm
	ANI1D		R	ColE1	Amp	P _{LlacO-1} -CI	RC3	p15A	Cm
	ANI2A	-	R	ColE1	Amp	P _{LlacO-1} -CI	R	p15A	Cm
	ANI2B		R	ColE1	Amp	P _{LlacO-1} -CI	RC1	p15A	Cm
	ANI2C	P _{ANI} 2-EGFP	R	ColE1	Amp	P _{LlacO-1} -CI	RC2	p15A	Cm
BNeu 6	ANI2D		R	ColE1	Amp	P _{LlacO-1} -CI	RC3	p15A	Cm
-	ANI3A	D 1 DOED	K D	ColE1	Amp	P _{LlacO-1} -Cl	R RC1	p15A	Cm
1	ANI3B	PANI3-EGFP	K P	ColE1	Amp	P _{LlacO-1} -CI	RC1	p15A	Cm
1	ANI3C ANI2D	{	D D	ColE1	Amp		RC2	p15A	Cm
1	ANIAA		R	ColE1	Amp	Price - CI	R	p15A	Cm
1	ANI4R	1	R	ColE1	Amn	PLIacO-1-CI	RC1	n15A	Cm
1	ANI4C	P _{ANI} 4EGFP	R	ColE1	Amp	P _{LlacO-1} -CI	RC2	p15A	Cm
	ANI4D	1	R	ColE1	Amp	P _{LlacO-1} -CI	RC3	p15A	Cm

	ANI2C.A	P _{ANI} 2-E2-Crimson	R	ColE1	Amp	P _{LlacO-1} -CI	RC2	p15A	Cm
DNau7	AHLB1	P _{Lux*} -EGFP	R	p15A	Cm	BBa_J23102-LuxR	R	CoLE1	Amp
Bineu/	AHLB2	P _{Lux*} -E2-Crimson	R	p15A	Cm	BBa_J23102-LuxR	R	CoLE1	Amp
	ATCB1	P _{LtetO-1} -E2-EGFP	R	ColE1	Amp	-	-	-	-
BNeu8	ATCB2	P _{LtetO-1} -E2- Crimson	R	ColE1	Amp	-	-	-	-
	ANH1	D ECED	р	ColE1	Aman	BBa_J23102-LuxR	R	CoLE1	Amp
DNau 0		P _{ANH} -EOFP	ĸ		Anip	P _{Lux} -Frame-shifted CI	R	p15A	Cm
Diveu 9	4 1112	D tilTamata	п	C-IE1	A	BBa_J23102-LuxR	R	CoLE1	Amp
	AINFIZ	P _{ANH} -to I offiato	ĸ	COLET	Amp	P _{Lux} -Frame-shifted CI	R	p15A	Cm
	DUUI	D ECED	р	C-IE1	A	BBa_J23102-LuxR	R	CoLE1	Amp
DN 10	INHI	PINH-EGFP	ĸ	COLET	Amp	P _{Lux} -Frame-shifted CI	R	p15A	Cm
Bineu 10	DUU2	D E2 Crimeson	р	CalE1	Amon	BBa_J23102-LuxR	R	CoLE1	Amp
	IINH2	P _{INH} -E2-Crimson	ĸ	COLET	Amp	P _{Lux} -Frame-shifted CI	R	p15A	Cm

*Frame-shifted CI is a mutant form of λ repressor CI [Supplementary reference 1].

Table S3: List of Promoters, primers, oligos and RBSs.*lac*O1, *tet*O2, Lux box, *O*R1 and *O*R2 operator sites are colored in red, brown, green, yellow and blue respectively. Transcription start site is shown in bold. -10 and -35 hexamers are underlined. Each promoter is flanked by *XhoI* and *EcoRI* restriction sites (marked in italics).

Name	Sequence (5' – 3')	Purpose	Source
Рілл1	CTCGAGTCCCTATCAGTGATAGAGATTGAC <u>A</u> TTGTGAGCGGATAACAAGATACTGAGCAC <u>AATTGTGAGCGGATAACAATGAATTC</u>		This study
P _{IAA} 2	CTCGAGTCCCTATCAGTGATAGAGAGATTC CCTATCAGTGATAGAGA <u>TTGACA</u> TTGTGAG CGGATAACAA <u>GATACT</u> GAGCACAATTGTGA GCGGATAACAAT <i>GAATTC</i>		This study
Ριλλ	CTCGAGAATTGTGAGCGGATAACAA <u>TTGAC</u> <u>A</u> TCCCTATCAGTGATAGA <u>GATACT</u> GAGCAC ATCCCTATCAGTGATAGAGA <i>GAATTC</i>		This study
P _{IAA} 4	CTCGAGTCCCTATCAGTGATAGAGATTGAC <u>A</u> TTGTGAGCGGATAACAAGATACTGAGCAC ATCCCTATCAGTGATAGAGAGAATTC		This study
P _{IAA} 5	CTCGAGTCCCTATCAGTGATAGAGA <u>TTGAC</u> <u>A</u> TCCCTATCAGTGATAGA <u>GATACT</u> GAGCAC <u>AATTGTGAGCGGATAACAATGAATTC</u>		This study
Ріллб	CTCGAGTCCCTATCAGTGATAGAGATTGAC <u>A</u> TTGTGAGCGGATAACAAGATACTGAGCAC AATTGTGAGCGGATAACAATGATTCCCTAT CAGTGATAGAGAGAGAATTC		This study
P _{IAA} 7	CTCGAGTCCCTATCAGTGATAGAGATTGAC <u>A</u> TTGTGAGCGGATAACAA <u>GATACT</u> GAGCAC ATCCCTATCAGTGATAGAGAGATAATTGTG AGCGGATAACAATT <i>GAATTC</i>	Construction and weight & bias adjustment of BNeu 1	This study
Ριλλ	CTCGAGTCCCTATCAGTGATAGAGATTGAC <u>A</u> TTGTGAGCGGATAACAA <u>GATACT</u> GAGCAC ATCCCTATCAGTGATAGAGAGATAATTGTG AGCGGATAACAATTGATAATTGTGAGCGGA TAACAATTGAATTC		[Supplementary reference 1]
P _{1AA} 9	CTCGAGTCCCTATCAGTGATAGAGATTGAC <u>A</u> TTGTGAGCGGATAACAAGATACTGAGCAC ATCCCTATCAGTGATAGAGAGATAATTGTG AGCGGATAACAATTGATTCCCTATCAGTGA TAGAGAGAATTC		This study
Р _{ілл} 10	CTCGAGTCCCTATCAGTGATAGAGATTGAC <u>A</u> TTGTGAGCGGATAACAA <u>GATACT</u> GAGCAC ATCCCTATCAGTGATAGAGAGAGATGATAATT GTGAGCGGATAACAATTGATGATTCCCTAT CAGTGATAGAGAGAGATGATAATTGTGAGCGG ATAACAATTGAATTC		This study
Р _{ілл} 11	CTCGAGTCCCTATCAGTGATAGAGATTGAC <u>ATTGTGAGCGGATAACAAGATACT</u> GAGCAC ATCCCTATCAGTGATAGAGAGATGATAATT GTGAGCGGATAACAATTGATGATTCCCTAT CAGTGATAGAGAGAGATGATAATTGTGAGCGG ATAACAATTGATGATTCCCTATCAGTGATA		This study

	GAGAGATGATAATTGTGAGCGGATAACAAT			
	TGAATTC			
	CCTCGAGTACCTCTGGCGGTGATATTGACAT		TT1 · / 1	
P _{INA} I	TGTGAGCGGATAACAA <u>GATACT</u> GAGCACAA		This study	
	CTCGAGTACCTCTGGCGGTGATAGATTACCT	1		
D 2	CTGGCGGTGATATTGACATTGTGAGCGGAT		This study	
r _{INA} 2	AACAAGATACTGAGCACAATTGTGAGCGGA		This study	
		4		
Pn. 3	ACCTCTGGCGGTGATAATGGTTGCAATTGT		This study	
I INAS	GAGCGGATAACAAT <i>GAATTC</i>		This study	
	CTCGAGTAACACCGTGCGTGTTGACTATTT	1		
Pina4	ACCTCTGGCGGT <u>GATAAT</u> GGTTGCAATTGT		This study	
- 104	GAGCGGATAACAATGATAATTGTGAGCGGA	Construction and weight & bias		
		adjustitent of Breu 2		
P _{INA} 5	<u>A</u> TTGTGAGCGGATAACAA <u>GATACT</u> GAGCAC		This study	
	ATCTACCTCTGGCGGTGATAGAATTC			
	CTCGAGAATTGTGAGCGGATAACAA <u>TTGAC</u>			
P _{INA} 6	<u>A</u> IIGIGAGCGGATAACAA <u>GATACI</u> GAGCAC ATCTACCTCTGGCGGTGATAGATGATTACC		This study	
	TCTGGCGGTGATAGAATTC			
	CTCGAGAATTGTGAGCGGATAACAATTGAC			
	ATTGTGAGCGGATAACAAGATACTGAGCAC		T 1 · · · 1	
P _{INA} /			This study	
	GTGATAGAATTC			
	CTCGAGTACCTCTGGCGGTGATA <u>TTGACA</u> TC			
P _{ANI} 1	CCTATCAGTGATAGA <u>GATACT</u> GAGCACATC		This study	
		4		
	TCTGGCGGTGATATTGACATCCCTATCAGT		T	
P _{ANI} 2	GATAGAGATACTGAGCACATCCCTATCAGT	Construction and weight & high	This study	
	GATAGAGAGAATTC	adjustment of BNeu 6		
D 2	CTCGAGTACCTCTGGCGGTGATA <u>TTGACA</u> TC		This study	
I ANIS	TACCTCTGGCGGTGATAGAGAATTC		This study	
	CTCGAGTCCCTATCAGTGATAGAGATTGAC	1		
P _{ANI} 4	ATACCTCTGGCGGTGATAGATACTGAGACAC		This study	
Раан	GTCCCTATCAGTGATAGAGTATAGTCGAAT	Construction of BNeu 3	This study	
	AAATCCCTATCAGTGATAGAGAGAAATTC			
	CTCGAGACCTGTAGGATCGTACAGGT <u>TTAC</u>		TT1 - 1	
PIAH	$\frac{GI}{GI} \prod GI GAGCGGA TAACAA TA GICGAA TAAATTGTGAGCGGA TAACAA TTGA4777C$	Construction of BNeu 4	This study	
	CTCGAGTAACACCGTGCGTGTTGACTATTT			
P _R	ACCTCTGGCGGT <u>GATAAT</u> GGTTGCATGTAC	Construction of BNeu 5	[1]	
	GAATTC			
BBa_J23102	CTCGAG <u>TTGACA</u> GCTAGCTCAGTCCTAGG <u>T</u>	Construction of BNeus 3, 4, 7, 9 and 10	[2]	
P _{Lux}	<u>G</u> CAAGAAAATGGTTTGT <u>TATAGT</u> CGAATAA	Construction of BNeus 9 and 10	This study	
	AGAATTC			
D. *		Construction of BNeu 7	[3]	
+ Lux	AGAATTC		[3]	
	CTCGAGTCCCTATCAGTGATAGAGATTGAC			
P _{LtetO-1}	ATCCCTATCAGTGATAGAGATACTGAGCAC	Construction of BNeus 5 and 8	[4]	
P _{LlacO-1}	ATTGTGAGCGGATAACAAGATACTGAGCAC	Construction of BNeu 5	[4]	
	ATCAGCAGGACGCACTGACCGAATTC			
n		Amplification of promoters P_{IAA} , P_{IAA} , P_{IAA} ,	71 1	
Primer I	GCCCTTTCGTCTTCACCTC	P _{INA} 1, P _{INA} 2, P _{ANI} 1, P _{ANI} 2, P _{ANI} 3 and P _{ANI} 4: forward primer	This study	
	1	Amplification of promoters P_{IAA} , P_{IAA} 2.	1	
Primer 2	ATGTTTTTGGCGTCTTCCAT	$P_{INA}1$, $P_{INA}2$, $P_{ANI}1$, $P_{ANI}2$, $P_{ANI}3$ and	This study	
		P _{ANI} 4: reverse primer		

Primer 3	CGAGGCCCTTTCGTCTTCACCTCGAGAATTG TGAGCGGATAACAATTGACATCCCTATCAG TGATAGAGATACTGAGCACA	Amplification of promoter P _{IAA} 3: forward primer	This study
Primer 4	ATGTTTTTGGCGTCTTCCATGGTACCTTTCT CCTCTTTAATGAATTCTCTCTATCACTGATA GGGATGTGCTCAGTATCTCTATCA	Amplification of promoter P _{IAA} 3: reverse primer	This study
Primer 5	CGAGGCCCTTTCGTCTTCACCTCGAGTCCCT ATCAGTGATAGAGATTGACATTGTGAGCGG ATAACAAGATACTGAGCACATC	Amplification of promoter P _{IAA} 4: forward primer	This study
Primer 6	ATGTTTTTGGCGTCTTCCATGGTACCTTTCT CCTCTTTAATGAATTCTCTCTATCACTGATA GGGATGTGCTCAGTATCTTGTT	Amplification of promoter P _{IAA} 4: reverse primer	This study
Primer 7	CAATTCTTTATGCCGGTGTTG	Amplification of promoters $P_{IAA}5$ and $P_{IAA}10$: forward primer	This study
Primer 8	GTCGAAGATGTTGGGGGTGTT	Amplification of promoters $P_{IAA}5$ and $P_{IAA}10$: reverse primer	This study
Primer 9	CAGAATCGTCGTATGCAGTGA	Amplification of promoters $P_{IAA}6$ and $P_{IAA}11$: forward primer	This study
Primer 10	TTTTCCGTCATCGTCTTTCC	Amplification of promoters $P_{IAA}6$ and $P_{IAA}11$: reverse primer	This study
Primer 11	TTGGCAGAAGCTATGAAACGA	Amplification of promoters $P_{IAA}7$, $P_{INA}5$ and P_{AAH} : forward primer	This study
Primer 12	CTTGACTGGCGACGTAATCC	Amplification of promoters $P_{IAA}7$, $P_{INA}5$ and P_{AAH} : reverse primer	This study
Primer 13	GCCCTTTCGTCTTCACCTC	Amplification of promoters P_{IAA} 8 and P_{IAA} 9: forward primer	This study
Primer 14	CTTGACTGGAATTCAATTGTTATCCGCTCAC AATTATCAATTGTTATCCGCTCACAATTATC TCTCTATCACTGATAGGGATGTGCTCAG	Amplification of promoter P_{IAA} 8: reverse primer	This study
Primer 15	CTTGACTGGAATTCTCTCTATCACTGATAGG GAATCAATTGTTATCCGCTCACAATTATCTC TCTATCACTGATAGGGATGTGCTCAG	Amplification of promoter P_{IAA} 9: reverse primer	This study
Primer 16	CAGATGCACATATCGAGGTGA	Amplification of promoters $P_{INA}3$ and $P_{INA}6$: forward primer	This study
Primer 17	GCAACTTTTTGGCGGTTG	Amplification of promoters $P_{INA}3$ and $P_{INA}6$: reverse primer	This study
Primer 20	TGAAGAGATACGCCCTGGTT	Amplification of promoter $P_{INA}4$, $P_{INA}7$ and P_{IAH} : forward primer	This study
Primer 21	TCTGATTTTTCTTGCGTCGAG	Amplification of promoter $P_{INA}4$, $P_{INA}7$ and P_{IAH} : reverse primer	This study
Primer 22	ATCCGTGCAACTCGAGTTGACAGCTAGCTC AGTCCTAGGTAC	Amplification of promoter BBa_J23102: forward primer	This study
Primer 23	GTTCAAGACTGAATTCGCTAGCACAGTACC TAGGACTGAGCTAGC	Amplification of promoter BBa_J23102: reverse primer	This study
Primer 24	CTTCACTCGACTCGAGACCTGTAGGATCGT ACAGGTTTACGCAAGAAAATGG	Amplification of promoters P _{Lux} and P _{Lux} *: forward primer	This study
Primer 25	CTGATTATGTGAATTCTTTATTCGAAAGTAA CAAACCATTTTCTTGCGTAAACCTG	Amplification of promoter P _{Lux} *: reverse primer	This study
Primer 26	GAGACCACAATGGGCGTAAT	Amplification of fluorescent protein mTFP1: forward primer (1 st round)	This study
Primer 27	CGTAAACGGTCACCTTGTTGTA	Amplification of fluorescent protein mTFP1: reverse primer (1 st round)	This study
Primer 28	GTCCAGTCGAGGTACCATGGTGAGCAAGGG CGAGGAGACCACAATGGGCGTAAT	Amplification of fluorescent protein mTFP1: forward primer (2 nd round)	This study
Primer 29	GCTTATGCTCTAGATTACTTGTACAGCTCGT CCATGCCGTCGGTGGAGTTGCGGGCCACGG CGCTCTCGTAAACGGTCACCTTGTTGTA	Amplification of fluorescent protein mTFP1: reverse primer (2 nd round)	This study
Primer 30	CAAGGGCGAGGAGCTGTT	Amplification of fluorescent protein EGFP and mVenus: forward primer (1 st round)	This study
Primer 31	CCATGCCGAGAGTGATCC	Amplification of fluorescent protein EGFP and mVenus: reverse primer (1 st round)	This study
Primer 32	CTTCAGTCGAGGTACCATGGTGAGCAAGGG CGAGGAGCTGTT	Amplification of fluorescent protein EGFP and mVenus: forward primer (2 nd round)	This study
Primer 33	CTGATTATGATCTAGATTACTTGTACAGCTC GTCCATGCCGAGAGTGATCC	Amplification of fluorescent protein EGFP and mVenus: reverse primer (2 nd round)	This study

Primer 34	TGGTGAGTGTGATTAAACCAGAGA	Amplification of fluorescent protein mKO2: forward primer (1 st round)	This study
Primer 35	AATGTTGCCTTCGGTTTTCC	Amplification of fluorescent protein mKO2: reverse primer (1 st round)	This study
Primer 36	GTCCAGTCGAGGTACCATGGTGAGTGTGAT TAAACCAGAGA	Amplification of fluorescent protein mKO2: forward primer (2 nd round)	This study
Primer 37	GTGATTATGATCTAGATTAGCTATGAGCTA CTGCATCTTCTACCTGCTCAGTAATGTTGCC TTCGGTTTTCC	Amplification of fluorescent protein mKO2: reverse primer (2 nd round)	This study
Primer 38	TGGATAGCACTGAGAACGTCAT	Amplification of fluorescent protein E2- Crimson: forward primer (1 st round)	This study
Primer 39	ACCACGGTGTAGTCCTCGTT	Amplification of fluorescent protein E2- Crimson: reverse primer (1 st round)	This study
Primer 40	GTCCAGTCGAGGTACCATGGATAGCACTGA GAACGTCAT	Amplification of fluorescent protein E2- Crimson: forward primer (2 nd round)	This study
Primer 41	GATTATGATCTAGActaCTGGAACAGGTGGT GGCGGGCCTCGGCGCGCGCTCGTACTGCTCCA CCACGGTGTAGTCCTCGTT	Amplification of fluorescent protein E2- Crimson: reverse primer (2 nd round)	This study
Primer 42	ATGCCGACGACACATACAGA	Amplification of LuxR gene: forward primer (1 st round)	This study
Primer 43	TGATGCCTGGCTCTAGTAGTGA	Amplification of LuxR gene: reverse primer (1 st round)	This study
Primer 44	CTCCGTGGAAGGTACCATGAAAAACATAAA TGCCGACGACAACATACAGA	Amplification of LuxR gene: forward primer (2 nd round)	This study
Primer 45	GTTCAAGACTTCTAGATGATGCCTGGCTCT AGTAGTGA	Amplification of LuxR gene: reverse primer (2 nd round)	This study
Primer 46	CGAAAAGTGCCACCTGAC	Amplification of gene cassette starting with promoters $P_{LtelO-1}$, $P_{IAA}1-2$, $P_{IAA}4-11$ and $P_{ANI}4$: forward sequencing primer	This study
Primer 47	GTCTGATTGAGAATTCATTTTTGAGGAGTTC GGTACCATGGTGAGCAAGGGCGAGGAGCT GTT	Incorporation of RC1 upstream of EGFP gene: forward primer	This study
Primer 48	GTCTGATTGAGAATTCATTCGGGAGGAGTG CGGTACCATGGTGAGCAAGGGCGAGGAGC TGTT	Incorporation of RC2 upstream of EGFP gene: forward primer	This study
Primer 49	GTCTGATTGAGAATTCATTTCGGAGGAGTG CGGTACCATGGTGAGCAAGGGCGAGGAGC TGTT	Incorporation of RC3 upstream of EGFP gene: forward primer	This study
Primer 50	CTGATTATGTGAATTCTTTATTCGACTATAACAA ACCATTTTCTTGCGTAAACCTG	Amplification of promoter P _{Lux} : reverse primer	This study
Oligo 1	AATTCATTGGAGAGGAGGAGTCCGGTAC	RBSH: sense strand oligomer for annealing	This study
Oligo 2	CGGACTCCTCTCCAATG	RBSH: antisense strand oligomer for annealing	This study

Table S4: Weights and biases of each cellular device (construct)) used for optimizing and improving corresponding unit
bactoneuron (BNeu i).	

Unit bactoneuron	Cellular device	WjR	WjI	WjA	WjH	b _{jR}	b _{jI}	b _{jA}	b _{jH}	bj	S.D. of b _j
	IAA1	-	7.75	8.42	-	-	-1.26	-2.15	-	-9.79	0.16
	IAA2	-	10.37	9.05	-	-	-1.68	-0.77	-	-10.94	0.29
	IAA3	-	8.94	15.44	-	-	0.67	-5	-	-14.36	0.59
	IAA4	-	6.19	11.77	-	-	0.18	-5.12	-	11.45	0.198
	IAA5	-	7.71	12.6	-	-	-1.09	-6.02	-	-13.71	0.03
	IAA6	-	7.2	7.07	-	-	-0.81	-0.64	-	-7.86	0.03
DNau1	IAA7A	-	8.5	11.73	-	-	-1.73	-4.52	-	-13.24	0.31
Diveui	IAA7B(10h+6h)	-	9.69	12.44	-	-	-2.58	-5.59	-	-15.15	0.18
	IAA8	-	8.36	11.92	-	-	-1.47	-4.8	-	-13.28	0.16
	IAA9	-	7.58	12.96	-	-	-1.15	-6.27	-	-13.98	0.18
	IAA10	-	8.84	15.91	-	-	-1.41	-8.26	-	-17.21	0.16
	IAA11	-	9.94	12.44	-	-	-1.71	-3.55	-	-13.82	0.47
	IAA7B.A	-	9.69	12.44	-	-	-2.58	-5.59	-	-15.15	0.18
	IAA7B.B	-	9.69	12.44	-	-	-2.58	-5.59	-	-15.15	0.18
DNau2	INA6A	-	9.59	-15.32	-	-	-2.49	7	-	-2.54	0.07
Diveuz	INA6B	-	9.11	-14.87	-	-	-2.12	7	-	-2.12	0.007

	INA6C	-	9.12	-15.48	-	-	-1.71	7.5	-	-1.67	0.07
	INA7A	-	10.98	-14.57	-	-	-2.68	7.8	-	-2.93	0.35
	INA7A (10h+6h)	-	10.8	-14.89	-	-	-3.3	7.14	-	-3.48	0.25
	INA7B	-	9.51	-14.89	-	-	-2.12	7.5	-	-2.07	0.08
	INA7A.A	-	10.8	-14.89	-	-	-3.3	7.14	-	-3.48	0.25
DNav2	AAH1(10h+6h)	-	0	13.16	10.93	-	-	-4.52	-2.42	-15.52	0.09
BNeus	AAH2	-	0	13.16	10.93	-	-	-4.52	-2.42	-15.52	0.09
DN4	IAH1(10h+6h)	-	10.78	0	11.98	-	-2.12	-	-3.17	-14.03	0.11
BNeu4	IAH2	-	10.78	0	11.98	-	-2.12	-	-3.17	-14.03	0.11
DNau5	N1(10h+6h)	-	-10.03	-11.65	-	-	3.52	3.72	-	3.62	0.14
Biveus	N2	-	-10.03	-11.65	-	-	3.52	3.72	-	3.62	0.14
	ANI2C	-	-15.58	12.59	-	-	7.5	-4.3	-	-4.7	0.56
BNeu6	ANI2C (10h+6h)		-16.25	13.2	-	-	7.5	-4.64		-5.17	0.75
	ANI2C.A	-	-16.25	13.2	-	-	7.5	-4.64	-	-5.17	0.75
DN7	AHLB1(10h+6h)	0	0	0	10.84	-	-	-	-3.21	-3.21	-
BNeu/	AHLB2	0	0	0	10.84	-	-	-	-3.21	-3.21	-
DNau	ATCB1(10h+6h)	0	0	12.17	0	-	-	-4.85	-	-4.85	-
Diveuo	ATCB2	0	0	12.17	0	-	-	-4.85	-	-4.85	-
DN0	ANH1(10h+6h)	-	0	10.00	-12.94	-	-	-3.2	5.8	-3.7	0.71
Bineu 9	ANH2	-	0	10.00	-12.94	-	-	-3.2	5.8	-3.7	0.71
DNau 10	INH1(10h+6h)	-	9.42	0	-13.75	-	-1.83	-	7.00	-2.13	0.42
Diveu 10	INH2	-	9.42	0	-13.75	-	-1.83	-	7.00	-2.13	0.42

Table S5: Leakage of each EGFP-expressing cellula	r device (construct)) during weight a	nd bias optimization	of unit
bactoneurons.				

Unit bactoneuron	Cellular device	Promoter expressing Output EGFP	Total leakage (∑L)	Highest leakage (L _{max})	Percentage highest leakage (L _{max} (%))	Difference between total leakage and highest leakage (∑L-L _{max})	Percentage difference between total leakage and highest leakage (∑L-L _{max} (%))	Fold Change between highest signal and highest leakage
	IAA1	P _{IAA} 1	0.44075	0.27818	27.82	0.16257	16.26	3.59
	IAA2	P _{IAA} 2	0.38592	0.26795	26.8	0.11797	11.8	3.73
	IAA3	P _{IAA} 3	0.26577	0.23858	23.86	0.02719	2.72	4.19
	IAA4	P _{IAA} 4	0.2465	0.23556	23.56	0.01094	1.09	4.25
	IAA5	P _{IAA} 5	0.22367	0.17495	17.5	0.04872	4.87	5.72
DN 1	IAA6	P _{IAA} 6	0.42029	0.26436	26.44	0.15593	15.59	3.78
Bineu I	IAA7A	D 7	0.12599	0.11025	11.03	0.01574	1.57	9.07
	IAA7B	P _{IAA} /	0.0724	0.06992	6.99	0.00248	0.25	14.3
	IAA8	P _{IAA} 8	0.11287	0.09674	9.67	0.01613	1.61	10.33
	IAA9	P _{IAA} 9	0.15845	0.13822	13.82	0.02023	2.02	7.23
	IAA10	P _{IAA} 10	0.23014	0.21021	21.02	0.01993	1.99	4.76
	IAA11	P _{IAA} 11	0.52619	0.49162	49.16	0.03457	3.46	2.03
	INA1A		0.63673	0.28273	28.27	0.354	35.4	3.54
	INA1B	D 1	0.53862	0.36044	36.04	0.17819	17.82	2.77
	INA1C	PINAI	0.74802	0.45623	45.62	0.29179	29.18	2.19
	INA1D		0.80989	0.45047	45.05	0.35942	35.94	2.22
	INA2A		0.72654	0.37157	37.16	0.35497	35.5	2.69
	INA2B		0.63688	0.53902	53.9	0.09787	9.79	1.86
	INA2C	P _{INA} 2	0.79001	0.51294	51.29	0.27707	27.71	1.95
	INA2D		0.85405	0.4802	48.02	0.37385	37.39	2.08
DNu 2	INA3A		0.77393	0.38146	38.15	0.39247	39.25	2.62
Bineu 2	INA3B		0.72405	0.70337	70.34	0.02067	2.07	1.42
	INA3C	P _{INA} 3	0.89997	0.80164	80.16	0.09832	9.83	1.25
	INA3D		2.13488	0.8703	87.03	1.26457	126.46	1.15
	INA4	P _{INA} 4	1.23277	0.80884	80.88	0.42393	42.39	1.24
	INA5A		0.40655	0.23903	23.9	0.16752	16.75	4.18
	INA5B	P _{INA} 5	0.35622	0.23112	23.11	0.1251	12.51	4.33
	INA5C]	0.56242	0.38104	38.1	0.18138	18.14	2.62
	INA6A	P 6	0.10504	0.06611	6.61	0.03893	3.89	15.13
	INA6B	r _{INA} U	0.0933	0.06478	6.48	0.02852	2.85	15.44

-	1	1	1	1			1	
	INA6C		0.16935	0.08823	8.82	0.08112	8.11	11.33
	INA7A		0.07783	0.04258	4.26	0.03525	3.53	23.49
	INA7B	P _{INA} 7	0.09163	0.04595	4.6	0.04567	4.57	21.76
	INA7C		0.40418	0.34627	34.63	0.05791	5.79	2.89
BNeu 3	AAH1	P _{AAH}	0.05393	0.0502	5.02	0.00373	0.37	19.92
BNeu 4	IAH1	PIAH	0.1402	0.08861	8.86	0.05159	5.16	11.29
BNeu 5	N1	P _R	~0.00000	~0.00000	~00.00	~0.00000	~00.00	-
	ANI1A		0.90311	0.74394	74.39	0.15917	15.92	1.34
	ANI1B	ד ת	0.20376	0.17735	17.73	0.02642	2.64	5.64
	ANI1C	P _{ANI} I	0.2262	0.20363	20.36	0.02256	2.26	4.91
	ANI1D		0.63651	0.62022	62.02	0.01629	1.63	1.61
	ANI2A		0.60315	0.40034	40.03	0.20281	20.28	2.5
	ANI2B	P _{ANI} 2	0.22933	0.17476	17.48	0.05457	5.46	5.72
	ANI2C		0.15726	0.10908	10.91	0.04818	4.82	9.16
BNeu 6	ANI2D		0.26405	0.23224	23.22	0.03181	3.18	4.31
	ANI3A		3.1181	2.43408	243.41	0.68398	68.4	0.41
	ANI3B		0.51524	0.3359	33.59	0.17933	17.93	2.98
	ANI3C	P _{ANI} 3	0.44074	0.22444	22.44	0.21629	21.63	4.46
	ANI3D		0.40381	0.30815	30.82	0.09566	9.57	3.25
	ANI4A		0.7652	0.47934	47.93	0.28586	28.59	2.09
	ANI4B	D 4	0.18267	0.16603	16.6	0.01664	1.66	6.02
	ANI4C	P _{ANI} 4	0.25445	0.23556	23.56	0.0189	1.89	4.25
	ANI4D		0.60619	0.59089	59.09	0.0153	1.53	1.69
BNeu 7	AHLB1	P _{Lux} *	0.0338	0.0338	3.38	-	-	29.59
BNeu 8	ATCB1	P _{LtetO-1}	0.00778	0.00778	0.78	-	-	128.53
BNeu 9	ANH1	P _{ANI} 2	0.13249	0.08548	8.55	0.04701	4.7	11.7
BNeu 10	INH1	P _{INA} 7	0.17488	0.09012	9.01	0.08476	8.48	11.1

Table S6: Translation initiation rate calculated from RBS calculator [5].

Name of RBS	Operating Promoter	Protein of Translational regulation	Translation initiation rate (a.u.)	Sequence (5' – 3')
R(BBa_B0034) [6]	P _{LlacO-1} /P _{LtetO-1}	CI	40767	GAATTCATTAAAGAGGAGAAAGGTACC
RC1	P _{LlacO-1} /P _{LtetO-1}	CI	2091	GAATTCATTTTTGAGGAGTTCGGTACC
RC2	P _{LlacO-1} /P _{LtetO-1}	CI	518	GAATTCATTCGGGAGGAGTGCGGTACC
RC3	P _{LlacO-1} /P _{LtetO-1}	CI	396	GAATTCATTTCGGAGGAGTGCGGTACC
R(BBa B0034) [6]	P _{AAH}	EGFP	46	GAATTCATTAAAGAGGAGAAAGGTACC
RH	P _{AAH}	EGFP	10	GAATTCATTGGAGAGGAGTCCGGTACC

Table S7: Details of molecular engineering performed for weight and bias optimization of the unit bactoneurons.

Unit bactoneuron	Molecular engineering of the cellular devices for weight and bias optimization					
BNeu 1	Initial assumptions: We took the design knowledge from two reported synthetic promoters showing nonlinear behavior with respect to IPTG and aTc [4] to make a starting set (Set 1) of five synthetic promoters P_{IAA} 1-5 carried by cellular devices IAA1-5. The designs of those synthetic promoters were made by varying the number and relative positions of the operator sites for LacI and TetR. Schematic representation of the promoter maps can be found in figure 3 and the promoter sequences are shown in supplementary table S3.					
	Initial characterization of cellular devices IAA1-5: •No device was found showing >8 fold between					
	(Single-cassette systems in high copy (pUC ori) plasmids)highest signal and highest leakage (Table S5) •Either weight values were low, or the difference between IPTG weight and aTc weight was high (Table S4)					
	In most cases, IPTG weight had lower value than aTc weight (Table S4). The weight values represent the slope in the dose response curve (See equation 1 in the main text). Among those five devices, total leakage for IAA4 and IAA5 was similar (Table S5). However, although IAA5 showed lowest value of highest leakage, IAA4 showed minimum leakage associated with the input states other than the highest leakage state (Difference between ΣL and ΣL_{max}). Therefore, we selected IAA4 as the design template for the next set of cellular devices (Set 2) in order to decrease the leakage and sharpen the slope (weight value) of the bactoneural response curve with respect to the input inducers which was the optimization of the weights of the inputs.					

	•	Weight and leakage adjustment step 1 to decrease the leakage and sharpen the slope of the bactoneural response curve					
	The aTc single induction state was the highest leak we assumed that, the device produced leakage due t and its operator sites present in the promoter $P_{IAA}4$ v binding in aTc single induction condition. Based on with different combinations and relative positions to devices IAA6 and IAA7A respectively (Figure 3, would promote more LacI binding events causin reduction. It was previously reported that, the slope be altered by changing the number and the relative the target promoter design [7]. Here we thought t sensitive to the input inducers that in turn could sha weight values.	tage state of IAA4 (Figure 3, figure S2 and table S5). Thus, to insufficient interactions between LacI transcription factor which was supposed to remain turned off because of the LacI in this assumption, we increased the number of binding sites generate two more promoters P_{IAA6} and 7 carried by cellular table S2 and table S3). Increased number of operator sites g tight repression of the promoter and therefore leakage of the circuit response curve with respect to the input could positions of the transcription factor-specific operator sites in hat the same could be applicable to make the device more arpen the bactoneural response curve leading to the elevated					
	Initial characterization of cellular devices IAA6	 and IAA7A: •More than 8 fold between highest signal and highest leakage was achieved only for IAA7A (Table S5) •Value of IPTG weight was increased for IAA7A (Table S4) 					
	Hence, we selected IAA7A as the best design form Set 2. We thought to further optimize weights and bia this bactoneuron (Set 3).						
		Weight and leakage adjustment step 2					
	We again increased the operator sites and designed promoters P _{IAA} 8-11 carried by cellular devices IAA8-11 respectively (Figure 3, table S2 and table S3). Initial characterization of cellular devices IAA8-11: •Leakage built up gradually (Table S5)	We changed the copy number of the plasmid carrying cellular device IAA7A from high copy (pUC) to low copy (p15A) to alter the relative amount of the promoter and its transcription factor per cell resulting in IAA7B (Figure 3 and table S2). Initial characterization of cellular device IAA7B: •Highest fold change between highest signal and highest leakage (Table S5)					
	No device was selected. We stopped increasing the number of operator sites on the synthetic promoters.	• Lowest leakage (Table S4)					
		Selected as the final cellular device					
	Cellular devices IAA7B.A and IAA7B.B: Develop Crimson and mVenus respectively (Table S2) only	ed from IAA7B by changing the output from EGFP to E2- for microscopic experiments.					
BNeu 2	Initial assumptions: Based on the design knowledge of BNeu 1 and the map of the P_R-P_{RM} promoter system of λ phage regulated by CI, four initial designs of the output-expressing synthetic promoters $P_{INA}1$ -4 were created by varying number and relative positions of operator sites for LacI and CI (Figure 3 and table S3). They were placed under low copy origin (p15A) while their regulator CI was placed under high copy origin (pUC). CI shows high basal level expression (CI expression from inducible promoter even in absence of the corresponding input inducer) under a strong RBS [Supplementary reference 1] that would affect the desired bactoneural behavior. Therefore, to reduce its basal level expression through reduction of its translation rate, three weak RBSs RC1-3 were designed (Table S3). Individual weak RBSs along with the native strong RBS R (BBa_B0034) were co-transformed with each of the $P_{INA}1$ -3 promoters, whereas, for $P_{INA}4$ promoter, only RBS R was tested (Table S2). As a result, in set 1, 13 cellular devices were built (INA1A-D, INA2A-D, INA3A-D and INA4).						
	Initial characterization of cellular devices INA14 (Double-cassette systems)	 4-4: •Fold change between highest signal and highest leakage was very low (~1.1-3.5 fold) for all designs (Table S5) •High leakage accumulation was observed in all cases (Table S5) 					
	We didn't choose any devise from set 1 as no one changes between the highest signal and the highest designs.	e fulfilled our first selection criterion that is at least 8 fold st leakage. We decided to create completely new promoter					

		Weight and leakage adjustment step 1						
	Next, we made another set (Set 2) of synthetic promoters $P_{INA}5-7$ (Table S3) by varying the number and relative positions of the LacI and CI binding sites. Here also, we placed CI under weak RBSs RC1-3 but we didn't consider strong RBS R anymore (Figure 3). We also changed the plasmid copy number for CI from high copy (pUC ori) to medium copy (CoIE1 ori). In this way 9 more device designs were generated (INA5A-C, INA6A- C and INA7A-C).							
	 Initial characterization of cellular devices INA5A-7C: •INA7A showed highest fold change between highest signal and highest leakage (~23.5 fold; Table S5) •INA7A showed good weight values compared to cellular device IAA7B for BNeu 1 (Table S4) 							
		$\mathbf{\Lambda}$						
	INA7A wa	s selected as the final cellular device						
	Cellular device INA7A.A: Developed from IN	A7A by changing the output from EGFP to mTFP1 (Table S2)						
PNou 2	only for microscopic experiments.	dadaa of DNay 1 the man of the heaterial Drepresentar (Table						
Bineu 3	S3) regulated by LuxR, and the design of a repor with respect to IPTG, aTc and AHL [2], the desi (Figure S4 and table S3).	Initial assumptions: Based on the design knowledge of BNeu 1, the map of the bacterial P_{LUX} promoter (Table S3) regulated by LuxR, and the design of a reported synthetic promoter-based system showing nonlinear behavior with respect to IPTG, aTc and AHL [2], the design of the output-expressing synthetic promoter P_{AAH} was created (Figure S4 and table S3).						
	Initial characterization of cellular device AA	H1: •Total leakage was low (Table S5)						
	(Double-cassette system)	•Difference between total leakage and highest leakage was Low (Table S5)						
		•Fold change between highest signal and highest leakage						
		• Good weight values as compared to other bactoneurons						
		(Table S4)						
	Scielled as the initial cellular device							
	Cellular device AAH2: Developed from AAH1 by changing the output from EGFP to E2-Crimson (Table S2) only for microscopic experiments.							
BNeu 4	Initial assumptions: Based on the design knowledge of BNeu 1 and BNeu 2, the map of the bacterial P_{LUX} promoter {Table S3} regulated by LuxR, and the design of a reported synthetic promoter-based system showing nonlinear behavior with respect to IPTG, aTc and AHL [2], the design of the output-expressing synthetic promoter P_{IAH} was created (Figure S4 and table S3).							
	Initial characterization of cellular device IAF	11: •Total leakage was low (Table S5)						
	(Double-cassette system)	Low (Table S5)						
		•Fold change between highest signal and highest leakage was more than 8 fold (Table S5)						
		•Good weight values as compared to other bactoneurons (Table S4)						
		\mathbf{V}						
	Selected as the final cellular device							
	Cellular device IAH2: Developed from IAH1 b for microscopic experiments.	y changing the output from EGFP to tdTomato (Table S2) only						
BNeu 5	Initial assumptions: Based on a biological designed.	NOT gate, developed previously [1], cellular device N1 was						
	Initial characterization of cellular device N1.	•Total leakage was low (Table S5)						
	(Double-cassette system)	•Difference between total leakage and highest leakage was low						
		•Fold change between highest signal and highest leakage was						
		more than 8 fold (Table S5) •Good weight values as compared to other bactoneurons (Table S4)						
		(1000 57)						

							
		↓ ↓					
	▼ Selected as the final cellular device						
	Cellular device N2: Developed from N1 by changing the output from EGFP to mKO2 (Table S2) only for microscopic experiments						
BNeu 6	Initial assumptions: Based on the design knowledge of BNeu 1 and BNeu 2, four initial design expressing synthetic promoters $P_{ANI}1$ -4 were made by varying number and relative positions of TetR and CI (Figure 3 and table S3). They were placed under low copy origin (p15A) while the was placed under medium copy origin (ColE1). Similar to the bactoneuron BNeu 2, weak RI with the native RBS R (BBa_B0034) were co-transformed with each of the $P_{ANI}1$ -4 promoters (Set 1) of 12 designs (ANI1A-D, ANI2A-D, ANI3A-D and ANI4A-D).						
	Initial characterization of cellular devices ANI1A-4D: •Only ANI2C showed more than 8 fold change between highest signal and highest leakage (Table S5) • ANI2C showed good weight values compared to other bactoneurons (Table S4)						
		\checkmark					
	ANI2C was s	elected as the final cellular device					
	Cellular device ANI2C.A: Developed from ANI2 S2) only for microscopic experiments.	C by changing the output from EGFP to E2-Crimson (Table					
BNeu 7	Initial assumptions: Based on the design knowledge of BNeu 3 and BNeu 4, cellular device AHLB1 was designed (Figure S4 and table S2).						
	Initial characterization of cellular device AHLE (Double-cassette system)	 B1: •Total leakage was low (Table S5) •Difference between total leakage and highest leakage was Low (Table S5) •Fold change between highest signal and highest leakage was more than 8 fold (Table S5) •Good weight value as compared to other bactoneurons (Table S4) 					
		\checkmark					
	Selected as the final cellular device						
	Cellular device AHLB2: Developed from AHLB1 by changing the output from EGFP to E2-Crimson (
BNeu 8	Initial assumptions: Based on the design know nonlinear behavior with respect to aTc [4], cellular	wledge of the reported synthetic promoter $P_{LtetO-1}$ showing r device ATCB1 was designed (Figure S4 and table S2).					
	Initial characterization of cellular device ATCE (Single-cassette system in medium copy (ColE1 ori) plasmid)	 B1: •Total leakage was low (Table S5) •Difference between total leakage and highest leakage was low (Table S5) • Fold change between highest signal and highest leakage was more than 8 fold (Table S5) • Good weight value as compared to other bactoneurons (Table S4) 					
	Salastad as th	•					
	Cellular device ATCB2: Developed from ATCB1	by changing the output from EGFP to E2-Crimson (Table S2)					
BNeu 9	 only for microscopic experiments. Initial assumptions: Based on the design knowled was designed (Figure S4 and table S2). 	edge of BNeu 3, BNeu 6 and BNeu 7, cellular device ANH1					
	Initial characterization of cellular device ANH1 (Double-cassette system)	 Total leakage was low (Table S5) Difference between total leakage and highest leakage was Low (Table S5) Fold change between highest signal and highest leakage 					

	was more than 8 fold(Table S5)					
	•Good weight values as compared to other bactoneurons (Table S4)					
	Selected as the final cellular device					
	Cellular device ANH2: Developed from ANH1 by changing the output from EGFP to tdTomato (Table S2 for microscopic experiments.					
BNeu 10	Initial assumptions: Based on the design knowledge of BNeu 2, BNeu 4 and BNeu 7, cellular device INH1 was designed (Figure S4 and table S2). Initial characterization of cellular device INH1: •Total leakage was low (Table S5) (Double-cassette system) •Difference between total leakage and highest leakage was Low (Table S5) •Fold change between highest signal and highest leakage was more than 8 fold (Table S5) •Good weight values as compared to other bactoneurons (Table S4)					
	Selected as the final cellular device					
	Cellular device INH2: Developed from INH1 by changing the output from EGFP to E2-Crimson (Table S2) only for microscopic experiments.					

Table S8: Details of unit bactoneuron culturing. The optimized unit bactoneuron constructs are shown in bold.

						Time of propaga	tion for induced	culture for vario	us experiments	~
Unit bactoneuron	Cellular device	Transformation of plasmids	Overnight culture condition for transformed bacteria	Seeding of overnight uninduced culture	Induced culture condition	For fluorescence measurements with respect to the presence ('1' state) and absence ('0') of the input inducers in various combinations	For dose response experiments	For simulation validation experiments	For microscopic experiments	Number of independent experiment performed in various days
	IAA1	~ -	()	0		6 hours	12 hours	-	-	3
	IAA2	s LH	es lia ut	atio	ч	6 hours	12 hours	-	-	3
	IAA3	e ere [?] ate	nec nic	wi wi	ato	6 hours	12 hours	-	-	3
	IAA4	s w c-f c-f ion tr p	B 1 B 1 B 1 B 1 B 1 B 1 B 1 B 1 B 1 B 1	cul 00	qna	6 hours	12 hours	-	-	3
	IAA5	diti diti	h L co buildin	e 1	II.	6 hours	12 hours	-	-	3
	IAA6	B S di li	rate resl 0 h	len.	ng.	6 hours	12 hours	-	-	3
DN 1	IAA7A	onc onc an L of L o	to find	lon ppl s ir	aki	12 hours	12 hours	-	-	3
BNeu I	IAA8	0H2 esp ikir s i	int -se	r su -co	l sh	12 hours	12 hours	-	-	3
	IAA9	<i>li</i> D n fr she our	tes vel ss v vei	gle idia	ria	12 hours	12 hours	-	-	3
	IAA10	co dir 5 h	ed v pla otic	sin me d ir	licte	12 hours	12 hours	-	-	3
	IAA11	nid ere °C	d fo	an EB	ı ba	12 hours	12 hours	-	-	3
	IAA7B	ent lasr sov 37 r 15	bcu scu ant	duc sh J tics	ш.	10+6 hours ^a	10+6 hours ^a	10+6 hours ^a	10+6 hours ^a	5
	IAA7B.A	rec pet	b ti m in i	fre	E	-	-	-	10+6 hours ^a	1
	IAA7B.B	om vith čes, oui oui	lly sfoi w 1 inc	t ur nto ntib	L TP	-	-	-	10+6 hours ^a	1
	INA1A	y c bd v vic vic gro	dua ran: ntec	igh d ir e ai	25(16 hours	-	-	-	1
	INA1B	for de	ivid e ti ner	ern sde	tt ∼	16 hours	-	-	-	1
BNeu 2	INA1C	mic sfoi llar), a	ind in th aler cer	ov see	ũ	16 hours	-	-	-	1
	INA1D	he. Tan: fan: fan: fan: fan: fan: fan: fan: f	Ve ron upr	The vas ppr	6	16 hours	-	-	-	1
	INA2A	O to t E	L > E s ii	T w	ŝ	16 hours	-	-	-	1

INIA2B					16 hor	1#0	170 _	1 * 0	140
	A2B			ł	16 hours		-		
INA20	<u> </u>			-	16 hours		-		
IN	A2D			ł	16 hours		-		
	A3A			ł	16 hours	_	-		
	INA3B			-	16 hours	-		-	
	INA3C			-	16 hours	-		-	
	INA3D			-	16 hours	-		-	
	INA4			ļ	16 hours	-		-	
	INA5A				16 hours	-		-	
	INA5B				16 hours	-		-	
	INA5C			Ī	16 hours	-		-	
	INA6A			Ī	16 hours	16 hours		-	
	INA6B			Ī	16 hours	16 hours		-	
	INA6C			İ	16 hours	16 hours		-	
	INA7A			t	16 hours and	16 hours ar	nd	nd 10+6 hours ^a	nd 10+6 hours ^a 10+6 hours ^a
					10+6 hours ^a	10+6 hours	a	a	a
F	INA7B			ł	16 hours	16 hours		<u> </u>	
ŀ	INA7C			ł	16 hours	-			
┝	INA7A A			ł	10 110015	+			
$\left \right $	IINA/A.A			ł	-	-	9	• 10 1 Channel	
	AAHI			Ļ	10+6 hours"	10+6 hours	a	^a 10+6 hours ^a	^a 10+6 hours ^a 10+6 nours ^a
	AAH2			-	-	-		-	- 16 hours
ļ	IAH1				10+6 hours ^a	10+6 hours	a	^a 10+6 hours ^a	a 10+6 hours ^a 10+6 hours ^a
	IAH2				-	-		-	- 16 hours
	N1				10+6 hours ^a	10+6 hours	s ^a	s ^a 10+6 hours ^a	s ^a 10+6 hours ^a -
	N2				-	-		-	- 10+6 hours ^a
	ANI1A			Ī	16 hours	-		-	
İ	ANI1B			Ī	16 hours	-		-	
	ANIIC			İ	16 hours	-		-	
ŀ	ANIID			t	16 hours	-		-	
	ANI2A			ł	16 hours	1_		-	
	ANI2R			ł	16 hours				
	ANIZO			ł	16 hours and	- 16 hours or	d	-	
	ANIZC				10 nours and	10 nours an	a	a 10+6 nours"	
				ł	10+6 nours	10+6 nours	<u> </u>	a	·
	ANI2D			-	16 hours	-		-	
	ANI3A			ļ	16 hours	-		-	
	ANI3B			ļ	16 hours	-		-	
L	ANI3C				16 hours	-		-	
	ANI3D			ſ	16 hours	-		-	
	ANI4A			Ī	16 hours	-		-	
	ANI4B			t	16 hours	-		-	
	ANI4C			ł	16 hours	-		-	
	ANI4D			ł	16 hours	1_			
				ł	10 110415	-		-	
	AINIZU.A			ł	-	-	а	- a	- 10+0 110uis
-	AHLBI				10+6 hours"	10+6 hour	'S"	'S ^a –	s ^a - 16 hours and
				ļ					10+6 hours*
	AHLB2			ļ	-	-		-	- 10+6 hours ^a
	ATCB1			ļ	10+6 hours ^a	10+6 hou	rs ^a	rs ^a -	rs ^a
	ATCB2				-	-		-	- 10+6 hours ^a
- -	ANH1			Ī	10+6 hours ^a	10+6 hou	rs ^a	rs ^a 10+6 hours ^a	rs ^a 10+6 hours ^a -
'	ANH2			Ī	-	-		-	- 16 hours
	INH1			t	10+6 hours ^a	10+6 hor	irs ^a	ırs ^a 10+6 hours ^a	urs ^a 10+6 hours ^a -
	INH2			f	-	-	Ju . 5	-	- 16 hours
						1			

^a10 hours induction of the 1% (V/V) overnight uninduced culture seeded into LB media with appropriate inducers and antibiotics followed by second seeding of 1% (V/V) of that induced culture into fresh media supplemented with inducers and antibiotics as appropriate and additional induction for 6 hours.

Table S9: List of bacterial strain	s and plasmids	used in this study.
------------------------------------	----------------	---------------------

Plasmid name	Description	Ori	Antibiotic selection	Source
E. coli DH5α	-	-	-	Prof. David McMillen
E. coli DH5αZ1 pOR-EGFP-12 pOR-Luc-31 pmVenus-C1 mTFP1-pBad (Plasmid#54553)	Source of EGFP gene and ColE1 Ori Source of p15A Ori Source of mVenus gene Source of mTFP1 gene	ColE1 p15A pUC pBR322	- Amp Cm Kan Amp	Prof. David McMillen Prof. David McMillen Prof. David McMillen Clontech Addgene

pUCP20T-E2Crimson (Plasmid#78473)	Source of E2-Crimson gene	pBR322	Amp	Addgene
mKO2-pBAD	Source of mKO2 gene	-	Amp	Addgene
pBW313lux-hrpR	Source of LuxR gene	p15A	Kan	Addgene
(Plasmid#61436)			~	
pXC3EGFP	EGFP gene with RBS R under P_{LUX} promoter: source of P_{LUX} promoter	p15A	Cm	This study
pTA1EGFP	EGFP gene with RBS R under P _{LtetO-1} promoter	pUC	Amp	[1]
pTA2EGFP	EGFP gene with RBS R under PLterO-1 promoter	ColE1	Amp	[1]
pTA2E2-Crimson	E2-Crimson gene with RBS R under P _{L tetO-1} promoter	ColE1	Amp	This study
nRC3EGEP	EGFP gene with RBS R under $P_{\rm p}$ promoter	n15A	Cm	[1]
nRC3MKO2	mKO2 gene with RBS R under $P_{\rm R}$ promoter	p15A	Cm	This study
nTA2aI	Source of wild time CL cone	ColE1	Amn	[1]
DA1SECEPT-If.	Source of white type of gene	UC	Amp	[1]
	Source of frame-smilled Ci gene	puc	Amp	
pLA2Scifm1cifm	Prame-shifted CI gene with RBS R under both $P_{LlacO-1}$ promoter and $P_{LtetO-1}$ promoter	COLET	Amp	[1]
pP _{IAA} 1A1EGFP	EGFP gene with RBS R under PIAAl promoter	pUC	Amp	This study
pP _{IAA} 2A1EGFP	EGFP gene with RBS R under P _{IAA} 2promoter	pUC	Amp	This study
pP _{IAA} 3A1EGFP	EGFP gene with RBS R under PIAA 3 promoter	pUC	Amp	This study
pP ₁₄₄ 4A1EGFP	EGFP gene with RBS R under PLAA4promoter	pUC	Amp	This study
nP ₁₁₁ 5A1EGEP	EGEP gene with RBS R under Phys 5promoter	pUC	Amn	This study
pP6A1EGEP	EGED gene with PBS P under P.,	pUC	Amp	This study
*D 7A1ECED	ECED gang with DDS R under D 7 momentar	PUC	Amp	This study
pP _{IAA} /AIEGFP	EGFP gene with KBS K under P _{IAA} /promoter	puc	Amp	This study
pP _{IAA} /C3EGFP	EGFP gene with RBS R under P _{IAA} /promoter	pISA	Cm	This study
pP _{IAA} 7C3mVenus	mVenus gene with RBS R under PIAA7promoter	p15A	Cm	This study
pPIAA7C3E2-Crimson	E2-Crimson gene with RBS R under P _{IAA} 7promoter	p15A	Cm	This study
pP _{IAA} 8A1EGFP	EGFP gene with RBS R under P _{IAA} 8promoter	pUC	Amp	This study
pP _{14A} 9A1EGFP	EGFP gene with RBS R under P ₁₄ , 9promoter	pUC	Amp	This study
pPr. 10A 1EGEP	EGEP gene with RBS R under P., 10promoter	pUC	Amp	This study
pP 11A1EGED	EGED gone with RDS R under D 11promotor	PUC	Amp	This study
	ECTP gene with KBS K under FIAAT I promoter	puc	Amp	This study
PP _{INA} TATEGFP	EGFP gene with KBS K under P _{INA} 1promoter	puc	Amp	This study
pP _{INA} 2A1EGFP	EGFP gene with RBS R under P _{INA} 2promoter	pUC	Amp	This study
pP _{INA} 3A1EGFP	EGFP gene with RBS R under P _{INA} 3promoter	pUC	Amp	This study
pP _{INA} 4A1EGFP	EGFP gene with RBS R under P _{INA} 4promoter	pUC	Amp	This study
$pP_{INA}5A2EGFP(F)$	EGFP gene with RBS R under P _{INA} 5promoter (Forward	ColE1	Amp	This study
	direction)		1	•
pP _{INA} 6A2EGFP(F)	EGFP gene with RBS R under $P_{INA}6$ promoter (Forward direction)	ColE1	Amp	This study
pP _{INA} 7A2EGFP(F)	EGFP gene with RBS R under P _{INA} 7promoter (Forward direction)	ColE1	Amp	This study
pP _{INA} 7A2mTFP1(F)	mTFP1 gene with RBS R under P _{INA} 7promoter	ColE1	Amp	This study
pP _{INA} 7A2E2-Crimson(R)	E2-Crimson gene with RBS R under P_{INA} 7promoter	ColE1	Amp	This study
	(Reverse direction)	G 171		
pP _{ANI} 1A2EGFP	EGFP gene with RBS R under P _{ANI} promoter	ColE1	Amp	This study
pP _{ANI} 2A2EGFP	EGFP gene with RBS R under P _{ANI} 2promoter	ColE1	Amp	This study
pP _{ANI} 2A2E2-Crimson	E2-Crimson gene with RBS R under P _{ANI} 2promoter	ColE1	Amp	This study
pP _{ANI} 2A2tdTomato(F)	tdTomato gene with RBS R under P _{ANI} 2promoter (Forward direction)	ColE1	Amp	This study
nPANJ3A2EGEP	EGEP gene with RBS R under PANE3promoter	ColE1	Amn	This study
pP ₁₀₇ 4A2EGEP	EGEP gene with RBS R under P4nromoter	ColE1	Amn	This study
$pT_{AN} = C^2 E C E D(D)$	EGED gone with RDS R under D promotor (Powerce	n15A	Cm	This study
$PF_{AAH} CSEOFF(K)$	L'UT F gene with KDS K under FAAH promoter (Keverse	PIJA	CIII	This study
pP _{AAH} C3RBSHEGFP(R)	EGFP gene with RBS RH under P_{AAH} promoter (Reverse	p15A	Cm	This study
"D CZECED(D)	ECED care with DDS D under D		Cm	This stall
PPIAH CSEGFP(R)	EGFP gene with KBS K under P _{IAH} promoter	p15A	Cm	This study
pTA2RBSCIEGFP	EGFP gene with RBS RC1 under P _{LtetO-1} promoter	Cole I	Amp	This study
pTA2RBSC2EGFP	EGFP gene with RBS RC2 under P _{LtetO-1} promoter	ColE1	Amp	This study
pTA2RBSC3EGFP	EGFP gene with RBS RC3 under P _{LtetO-1} promoter	ColE1	Amp	This study
pTC3cI	Wild type CI gene with RBS R under P _{LtetO-1} promoter	p15A	Cm	[1]
pTC3RBSC1cI	Wild type CI gene with RBS RC1 under PLtetO-1 promoter	p15A	Cm	This study
pTC3RBSC2cI	Wild type CI gene with RBS RC2 under PL totO_1 promoter	p15A	Cm	This study
nTC3RBSC3cI	Wild type CI gene with RBS RC3 under Provider Promoter	n15A	Cm	This study
nl C3cl	Wild type CI gene with DRS D under D	p15/1	Cm	This study
H C2DDSC1-I	Wild tree CL cone with DDC DC1 1 D	p13A	Cm	This study
PLUSKBSUICI	promoter	pisa	Cm	i nis study
pLC3RBSC2cI	Wild type CI gene with RBS RC2 under P _{LlacO-1} promoter	p15A	Cm	This study
pLC3RBSC3cI	Wild type CI gene with RBS RC3 under P _{LlacO-1} promoter	p15A	Cm	This study
pTA2LuxR	LuxR gene with RBS R under $P_{LtetO-1}$ promoter	ColE1	Amp	[2]

pJA2LuxR(F)	LuxR gene with RBS R under BBa_J23102 promoter	ColE1	Amp	This study
nIA2LuxR(R)	(Forward direction)	ColE1	Amn	This study
por 12Durit(it)	(Reverse direction)	COLLI	rimp	This study
pJA2LuxR(F)P _{INA} 7E2-	LuxR gene with RBS R under BBa_J23102 promoter	ColE1	Amp	This study
Crimson(R)	(Forward direction) with E2-Crimson gene with RBS R			
	under P _{INA} 7 promoter (Reverse direction)			
pPANI2A2tdTomato(F)JLu	tdTomato gene with RBS R under PANI2promoter	ColE1	Amp	This study
xR(R)	(Forward direction) with LuxR gene with RBS R under			
	BBa_J23102 promoter (Reverse direction)			
pXC3cIfm	Frame-shifted CI gene with RBS R under PLUX promoter	p15A	Cm	This study
pX*C3EGFP	EGFP gene with RBS R under P _{LUX} * promoter	p15A	Cm	This study
pX [*] C3E2-Crimson	E2-Crimson gene with RBS R under P _{LUX} * promoter	p15A	Cm	This study
pA2MCS	Only MCS	ColE1	Amp	This study
pC3MCS	Only MCS	p15A	Cm	This study

Reference

- K. Sarkar, S, Mukhopadhyay, D. Bonnerjee, R. Srivastava and S. Bagh, J. Biol. Eng., 2019, 13, DOI: 10.1186/s13036-019-0151-x.
- 2. D. Bonnerjee, S. Mukhopadhyay, and S. Bagh, *Bioconjugate Chem.*, 2019, 30, 3013-3020.
- 3. T. S. Moon, C. Lou, A. Tamsir, B. C. Stanton and C. A. Voigt, *Nature*, 2012, 491, 249–253.
- 4. R. Lutz and H. Bujard, Nucleic Acids Res., 1997, 25, 1203–1210.
- 5. H. M. Salis, E. A. Mirsky and C. A. Voigt, Nat. Biotechnol., 2009, 27, 946–950.
- V. S. Mahajan, V. D. Marinescu, B. Chow, A. D. Wissner-Gross and P. Carr iGEM group: Antiquity, Data from "Registry of Standard Biological Parts", 2003, http://parts.igem.org/Part:BBa B0034.
- 7. K. F. Murphy, G. Bala'zsi and J. J. Collins, Proc. Natl. Acad. Sci. U.S.A., 2007, 104, 12726–12731.