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S1. TRAINING
A. Training sets

The training sets for the water and ethanol molecules are taken from Ref.[Il. The training
set for water and ethanol contained 5k and 30k data points, respectively, at PBE4/def2-SVP
level of theory. The Hamiltonian matrices and the overlap matrices for the QM9 data set®
are obtained from authors of Ref. 5 and are computed at the same level of theory using a final
grid of 5, very tight SCF convergence criteria and the program ORCA.® The Hamiltonian
and overlap matrices are used to generate the eigenvalues that are subsequently learned. The
orbital energies for the QM7-X data set are directly obtained from Ref. 7] and the OE62 as
well as the GW5000 data set were obtained from Ref. [§, both reporting orbital energies for
a diverse set of molecules at PBEOQ level of theory” The GW5000 data set further contains
orbital energies at GOWOQPBEQ that are computed in accordance to the GW100 benchmark
set'” and PBEQ level of theory including implicit solvation (PBEO(H20)).* For the H,0O
molecule, the 15 energetically lowest eigenvalues are fitted. For ethanol, 12 eigenvalues
between an energy range of -54 eV and +3 €V are fitted. With respect to the QM9 data
set, we fit 34 eigenvalues within an energy range of -54 eV and +1 eV. To allow for better
comparison of a multi-state (MS) ML model reported in Ref. [12, the highest occupied 16
molecular orbital energies of the QM9 data set are additionally fitted. For the QM7-X data
set, an energy range of -54 €V to 1 eV was used and an energy range of -10 €V to the LUMO+1
(LUMO) orbitals is used for the OE62 (GW5000) data set, resulting in a maximum number
of 30 eigenvalues for the molecules in the QM7-X data set and a maximum number of 53
(52) orbital (quasiparticle) energies for molecules in the OE62 (GW5000) data set. In order
to allow for fitting of a very diverse range of molecules we do not discard any molecules for
training that contain less than the maximum number of orbitals in a molecule within the
defined energy range, but neglect those parts of the eigenvalue vector that contain values
outside the defined energy range when optimizing the fitting parameters of the model.

B. Model parameters

The model parameters are optimized by splitting each data set into training, validation,
and test set using random splits. The validation set is used to avoid overfitting and for
validation. The final model accuracy is reported on the test set in Table [S1] and [S2] As our
model uses the SchNet descriptor, two networks function end-to-end. Thus, the cutoff, the
interaction layers, the number of features, and the number of Gaussian functions to represent
the molecule and to learn an optimal representation have to be optimized in addition to the
number of hidden layers, nodes per hidden layer, the learning rate, and the batch size. The
model hyperparameters were optimized on a random grid.

Unless stated otherwise, a batch size between 16 and 32 and default MS-SchNet!#14
parameters with a cutoff of 5 or 6 Bohr are used. Lower and upper limits for the interac-
tion layers, hidden layers for mapping the representation to the pseudo-Hamiltonian layer,
Gaussian functions, features, nodes per hidden layer, and the learning rate were 3-6, 3-6,
25-100, 128-1024, 100-1500, and 0.001-0.01, respectively. Different from default parameters,
25 Gaussian functions are used instead of 50. Based on the training set size, the learning
rate is varied between 0.001 and 0.0001 with larger values for smaller training sets. In case of
ethanol, the QM7-X, QM9, and GW5000 data sets, we use 512, 512, 1024, and 512 features,
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respectively. For the QM9, OE62, and GW5000 data set, 4 layers are used instead of 3. The
number of nodes is increased to 500 for the MS-SchNet model to fit GW5000 A-values.

S2. TRAINING ON 15 EIGENVALUES OF WATER

For the 15 eigenvalues of HyO we train 15 single-state (1S-SchNet) models, one multi-state
(MS-SchNet) model and one pseudo-Hamiltonian model (SchNet+H). The mean absolute
errors (MAEs) and root-mean squared errors (RMSEs) for every energy level are reported
in Table [S1]in addition to Fig. 1 d and e in the main text.

Eigenvalue ‘ 15-SchNet ‘ MS-SchNet ‘ SchNet+H ‘

HOMO-4

HOMO-3
HOMO-2
HOMO-1
HOMO
LUMO
LUMO+1
LUMO-+2
LUMO-+3
LUMO-+4
LUMO+5
LUMO+6
LUMO+7
LUMO-+8
LUMO-+9

0.6 (3.0)
0.7 (5.8)

1(2.8)
3.4 (12.4)
2.0 (4.0)
0.8 (2.1)
0.6 (1.5)
5.5 (31.1)
5.3 (15.4)

54.6 (79.1)
51.4 (75.4)
50.8 (90.3)
50.0 (78.3)
51.7 (75.2)
59.1 (84.1)

)

14.9 (24.1)
45.9 (32.7)
21.8 (42.4)
23.0 (36.7)
25.6 (41.6)
26.7 (35.6)
22.4 (107)
66.5 (90.1)
59.7 (46.7)
25.7 (50.3)
32.9 (61.5)
34.6 (84.5)
60.6 (47.1)
36.9 (180)
51.7 (115)

TABLE S1. Mean absolute (root mean-squared) errors in meV of the different orbitals predicted
with 15 single-state models, a multi-state model, and the pseudo-Hamiltonian model.

Moreover, we compute the learning curves for the MS and SchNet-+H models using a net-
work architecture with comparable number of fitting parameters, i.e., 369871 and 373336 pa-
rameters, respectively. We further test larger MS models, containing 689,155 and 1,728,823
fitting parameters that show only a slightly lower error of 105 meV and 98 meV, respectively,
which is still almost twice the error of the SchNet+H with 56 meV. Panels b to d show a
scan along the bending mode of the molecule with zoom-ins to highlight the accuracy of the
SchNet-+H model compared to the MS model.



S 1 a) Learning curve | — .
<, (@) g 2 10{ (b) Scan along the bending
s 02 P mode
; g
5 ] g 0
3 0.1 c
2 - -5
© b
S 0.051 — nDirect learning 2 -10
g —— Learning via pseudo-Hamiltonian ©
-15
125 250 500 1000 70 80 90 100
Number of data points H-O-H Angle [°]
ad I—— - = — [ === — LUMO+1
7 _g| (€) Zoom of (b) 3| (d) Zoom of (b) ==
o Qv
g B
2 2 2
v -10 HOMO-1 9
e B
s ~s HOMO-2 g1 e
— = = _______-;—_...—'-T'-"m_".:—___ =
O —-12 o =
70 80 90 100 70 80 90 100
H-O-H Angle [°] H-O-H Angle [°]

FIG. S1. (a) Learning curves of the multi-state and pseudo-H models, i.e., the error averaged over
two ML models as a function of training set size for 15 eigenvalues of water. (b) A scan along
the bending mode of the molecule shows the closest molecular orbitals around the HOMO and the
LUMO with zoom-ins in panels (c) and (d), comparing the different models to the reference method.
Learning curves show the slightly better learning efficiency and lower offset of the SchNet-+H model.



S3. PERFORMANCE OF ML MODELS ON EIGENVALUES OF
ETHANOL, QM7-X, QM9, OE62 AND GW5000 MOLECULES

Table[52|lists the MAEs and RMSEs of the models trained in this work on orbital energies
of H,O, ethanol, and the molecules in the QM7-X, QM9, OE62, and GW5000 data sets. For
better comparison, we report errors of models that were previously used to fit one or more
orbital energies of these data sets.

Scatter plots showing the predicted orbital energies for ethanol and the molecules in the
QM7-X and QM9 data sets (using the model that predicts 30 eigenvalues) are shown in
Figs. [S2h-c, respectively, for the first 10,000 randomly mixed molecules within the test set.
In addition, the worst predicted eigenvalues are shown in dark blue with the corresponding
molecule within the plot. As can be seen, the worst predicted molecule in the QM9 data set
(panel b) is a complex system with a four-membered ring attached to a five-membered ring.
The two rings have an angle of almost 90 deg. The worst predicted molecule in the QM7-X

data set has a CH3 fragment and a highly distorted structure, which is energetically highly
unfavourable.
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FIG. S2. Scatter plots showing the correlation between the predicted eigenvalues and the reference
eigenvalues for 10,000 randomly selected molecules inside of the following training sets: (a) ethanol,
(b) QM9, and (c) QM7-X. In addition, the worst prediction of the whole test set is shown with the
molecular structure related to the worst predicted orbital energies shown in dark-blue.

To further support the findings of Fig. 2 in the main text, we plot the orbital energies and
the diagonal matrix elements along an alchemical reaction coordinate (panel a) as predicted
by an ML model trained on the OE62 data set in Fig. As can be seen, the orbital energies
are non-smooth functions which show avoided crossings across chemical compound space,
whereas the diagonal matrix elements are allowed to cross and are smoother functions, even
though spikes are visible in contrast to the configurational coordinate shown in Fig. 2 in
the main text. In addition, the pseudo-Hamiltonian (pseudo-H) matrix elements are plotted

5



(a) Molecular structures (b) Orbital energies across chemical space

0 /\7
E -2
>
3 —5.0
(0]
UCJ \/\_—_
-7.5
—10.055 25 40 55 70
@ Se Number of atoms

TR ®Br ©N
®o0

(c) Diagonal elements of pseudo-H

10 25 40 55 70
Number of atoms

(d) Elements of pseudo-H
H; (Na=10) H, (NA=25) H; (NA=40) H, (Na=55)

::FC:-:.::‘-_:-._.'. . .‘:] H--...: ;‘.. . - '\"'\:.-: - LA rerakd 1.5
1 -\.‘I.-'.u-.\'_:- H ' T T -\.:'.\. e L
5 jatd ik ; -
44 i 1 [ | ml . 05
:'.!:L"':_:-'?" | o i | i
3014 f i) » 1 l L :FI- A-ma -I_". f f 05
a5 picRRS RE 8] Irip iR bl et e e e ) RN
0O 15 30 45 0 15 30 45 0 15 30 45 0 15 30 45 0 15 30 45

FIG. S3. Molecular orbital energies and pseudo-Hamiltonian (pseudo-H) diagonal elements are
plotted (b and c, respectively) along (a) a reaction coordinate of different molecules with different
number of atoms and elements using a ML model trained on the OE62 data set. (d) The pseudo-H
matrices along the same reaction coordinate are shown. N4 is the number of atoms in a system.

in panel d for each molecule. It can be seen that the matrices are densely populated and
become diagonally dominant for larger molecules (from left to right).

The OE62 data base contains molecules of high chemical complexity. Analysis of our
model on the whole training set shows that some molecules cannot be predicted reliably.
The average mean squared error (MSE) of all fitted orbital energies and the maximum MSE
of the model on each data point of the whole training set is shown in Fig. [S4h. As can be
seen, some molecules are predicted with an extremely enlarged error and can be considered
as outliers. These outliers, i.e., 18 data points, are shown with an in increasing mean
root MSE (RMSE) on all orbital energies in panel (b) to assess the overall performance
of the model on all orbital energies of these data points. As can be seen, the molecules
with the largest model errors (17 and 18) contain bicyclic groups and contain many atoms.
Another exemplary system is number 5, which contains an 8-membered cage that consists
only of nitrogen atoms in the center. Molecule 13 is an example of a smaller system with



heteroatoms and of unusual composition. To investigate the influence of these systems on
the training, the models are retrained without these data points and the accuracy of the
models is assessed. As the model performance is not influenced, i.e., the MAE is the same
and the RMSE differs slightly (0.21 eV instead of 0.19 €V), the models trained on all data
points are used for further analysis. Even when the outliers for one model are removed,
there are outliers that cannot be predicted accurately.
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FIG. S4. (a) Maximum and mean orbital energy model MSE on the whole OE62 training set.
Some outliers with an error larger than one third of the mean maximum RMSE and its standard
deviation are sorted out and (b) the respective mean RMSE in increasing size to assess the overall
performance on all orbital energies of the system.

The spectral shifts of the orbital energies of the molecules in the OE62 data set due to
correction by perturbation theory are shown in Fig. and are in agreement with the
spectral shifts obtained in the GW5000 data set for which reference values exist® To allow
an assessment of the accuracy of the predicted values for which no reference values are
available, a second A-ML model is trained for the differences of Kohn-Sham DFT values
and quasiparticle energies and the differences due to implicit solvation. Only molecules
whose values are predicted with a difference smaller than the MAE of the two trained
models are considered trustworthy and are used for the analysis. In this way, 5661 (4592)
quasiparticle predictions (orbital energies with implicit solvation) are sorted out. On average,
the molecules sorted out contain about 75 atoms and the largest molecule is 174 atoms in
size, while the remaining molecules contain on average 40 atoms and the largest molecule
classified as trustworthy has 78 atoms. The GWb5000 data set contains molecules that
average 40 atoms in size and only 107 molecules in the training set contain more than 78
atoms, which we consider to be insufficient data to train a reliable model for systems of this
size.

Furthermore, panel a shows the correlation of the HOMO orbital energies and the LUMO
orbital energies of PBEO, GOW0QPBEO, and PBEO(H50). As can be seen from the light and
dark red data points, the HOMO and LUMO energies of PBEO calculated in the gas phase
and with an implicit solvation model for water are not strongly different from each other
and show a linear relation. A linear relation is also found when comparing the HOMO (dark
blue) and LUMO energies (light blue) of PBE0 and GOW0@QPBEQ. However, as expected,
the values do not lie on the diagonal with the HOMO values shifted towards lower energies
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and the LUMO values shifted towards higher energies.

(a) Correlation plots for OE62
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FIG. S5. The SchNet+H model for PBEO eigenvalues and the A-ML models used to predict the
differences of PBE0 to GOW0OQPBE(O and PBE0O(H20) eigenvalues for the whole 62k data set.
(a) A linear correlation between the HOMO and LUMO eigenvalues of PBEO and GOW0QPBEO
and PBEO(H20) can be found. (b) Gaussian functions with a width of 0.5 eV are placed on the
eigenvalues and are summed up to show the trend of the spectral shifts of the molecules in the
62k data set. The shaded areas are obtained from a histogram analysis where the whole energy
range of the spectrum is divided into 500 parts and orbital energies within a given energy range are
grouped. The y-axis on the left refers to the number of eigenvalues within a given energy range for
the training set.



Training set | ML model |Training|Validation| Test # e [eV] MAE
points | points |points| (energy range) |(RMSE) |eV]
Ethanol SchNet+H | 25k 1k 4k <12 0.05 (0.07)
(-54 - 3)
Ethanol  [SchNOrb*™| 25k 500 4.5k all 0.48
Ethanol  [SchNOrb*| 25k 500 4.5k 12 ~ 0.017
(= -54 - ~ 3)
QM9 SchNet+H | 10k 1k 97.7k <34 0.23 (0.32)
(-54-1)
QM9 SchNet+H | 90k 9k 9.7k 16 0.12 (0.16)
(-54 - HOMO)
QM9 KRR! 32k 1 (HOMO) | 0.086 (0.12)
QM9 1S-SchNet1®| 110k 1 (HOMO) 0.041
QM9 CNNE |~ 120k 16 - (0.23)
QM9 DTNNY | ~ 120k 16 - (0.19)
QM7-X SchNet+H | 100k 10k |230.2k < 30 0.15 (0.20)
(-54-1)
OE62 SchNet+H | 50k 5k 7k <53 0.13 (0.19)
(-10 - LUMO+1)
OE62 KRR'® 32k 1 (HOMO) 0.17 (0.24)
OE62 GNNL? 32k 1 (HOMO) 0.15 (0.21)
OE62 GNNL? 32k 1 (LUMO) 0.15 (0.21)
OE62 GNN*2L 32k 1 (HOMO) 0.13 (0.18)
OE62 GNN*2LT 32k 1 (LUMO) 0.13 (0.18)
GW5000 | MS-SchNet >52 0.16 (0.21)
(GOW0O@PBEO)| AML 4k 400 839 |(-10eV - LUMO)
GW5000 | MS-SchNet >52 0.028 (0.079)
(GOW0@PBEO)| ADFT 4k 400 839 | (-10 - LUMO)
GW5000 | MS-SchNet >52 0.11 (0.16)
(PBEO(H20)) AML 4k 400 839 | (-10 - LUMO)

TABLE S2. Test set errors on predicted eigenvalues of different training sets. Kernel Ridge Re-
gression (KRR, Convolutional Neural Networks (CNN)*2 Deep Tensor NNs (DTNNs)* Graph
NNs (GNNs, *2with extended descriptors)”, and SchNOrb models (*! model not trained on forces,
only trained on energies)! are trained. GOWO@QPBEO and PBEO(H20) eigenvalues are predicted
using a combination of a SchNet+H model trained on PBEO eigenvalues of the OE62 data set
and a A-ML model trained on GOW0QPBEO-PBEO values from the GW5000 data set. AML in-
dicates that the model is trained on the difference of PBEO values obtained from the ML model,
whereas ADFT indicates a model trained on the difference PBEO reference values from DFT to
GOWOQPBEO values. The number of data points used for training, validation, and testing as well
as the number of eigenvalues we trained are indicated along with the energy range that defines the
number of eigenvalues for every molecule. The validation set The number of eigenvalues is related
to the molecule that contains most eigenvalues within this energy range.



S4. SPECTRA PREDICTION OF UNSEEN MOLECULES IN ADDITION
TO THE MAIN TEXT

In addition to the spectra predicted in the main text, additional excitation spectra of
azulene-like molecules, polycyclic hydrocarbons, and azenes are shown in Figures [S6] to
respectively. Noticeably, no molecule that is illustrated here, is contained in the GW5000
data set. All molecular structures were optimized at PBE level of theory using FHI-aims!®9
in accordance with the reference data in the OE62 data set®
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FIG. S6. Experimental and predicted photoemission spectra along with the LUMO (quasipar-
ticle) orbital energies for PBEO0 (GOWOQPBEQ) for (a) azulene, (b) 4,6,8-Trimethylazulene, (c)
1,3-Dibromoazulene, (d) 1,3-Dichloroazulene, (e) 1,3-Dibenzoylazulene, and (f) 1-Benzoylazulene.
(I Experimental photoemission spectra are extracted from Ref. 20 2 GOW0@PBE values for azulene

are extracted from Ref. 2]l

Fig. [S6p shows the spectra of azulene at PBE0, GOW0QPBE, GOW0QPBEQ levels of the-
ory with a comparison to experiment. The experimental data was extracted from published
spectra.?! The GOW0@QPBEOQ values predicted with ML match the experimental spectra bet-
ter than the reference GOW0OQPBE values. This effect can be attributed to the fact that
the GOWO method is non-self-consistent and heavily relies on the quality of the Kohn-Sham
DFT orbital energies as starting point. All examples show that the energy gaps found with
GOWO@PBEQ are considerably larger than those found with PBEO and are in better agree-
ment with experiment. Noticeably, the experimental spectra show a base line drift, which
is an artifact due to the quality of the published spectra which date back to 1980.2Y Spec-
tra created from the predicted resonances are obtained using a Pseudo-Voigt profile??23 to
account for line broadening with a mix of 30% Lorentzian and 70% Gaussian with a width
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of 0.5 eV.

(b) Phenanthrene (c) Fluorene
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FIG. S7. Experimental and predicted photoemission spectra along with the LUMO (quasipar-
ticle) orbital energies for PBE0 (GOWOQPBEQ) for (a) azulene, (b) 4,6,8-Trimethylazulene, (c)
1,3-Dibromoazulene, (d) 1,3-Dichloroazulene, (e) 1,3-Dibenzoylazulene, and (f) 1-Benzoylazulene.
A Pseudo-Voigt profile?®23 with 30% Lorentzian and 70% Gaussian and a width of 0.3 eV is used.
(Experimental photoemission spectra are extracted from Ref. 24 and (2) Ref. 25!

Besides chrysene and perylene, which are already reported in the main text, pyrene,
phenanthrene, and fluorene photoemission spectra are predicted and compared to experi-
ment *#2% Those molecules are of special interest for novel functional organic materials. As
can be seen, all spectra are in qualitatively good agreement to experiment. Further, the
ionization potentials are almost perfectly reproduced with the ML models.

Quasiparticle density of states of azene-family members
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FIG. S8. Photoemission spectra predicted with ML models at GOW0QPBEOQ quality.

Lastly, we plot the excitation spectra of azene at GOW0OQPBEO accuracy. It is known
from literature®® that the energy gaps are underestimated with GOWO for these molecules,
which can also be seen from the ML prediction in Fig. 4(e) in the main text. However,
the trend exists that larger azenes lead to smaller HOMO-LUMO gaps. This trend can be
reproduced with the ML models. Due to the shift in the spectral peaks of GOWO0 with respect
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to experiment, we only plot the ML predictions here using a Gaussian convolution of width
0.1 eV. Besides the shift, the spectra are in qualitatively good agreement with experimental
values, that are summarized from different studies in Ref. 26.
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