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Materials and methods

All commercially available starting materials and reagents were used without further
purification. Anhydrous DCM was dispensed from a solvent purification system. Analytical
thin layer chromatography (TLC) was performed on silica gel plates (Merck 60F254) visualized
with a UV lamp (254 nm). Column chromatography was performed with commercial glass
columns using silica gel 60M (particle size 0.04-0.063 mm).Recycling gel permeation
chromatography (GPC) was performed on a Shimadzu chromatography system with
preparative JAIGEL columns (2 x 2H, 1 x 2.5H in a row). Melting points were determined with

a BUCHI Melting Point B-545 apparatus and are uncorrected.

UV/Vis spectroscopy

UV/Vis absorption spectra were recorded on a JASCO V670 or V770 spectrometer with a scan
rate of 400 nm/min and a data interval of 0.5 nm. Conventional quartz cells from 0.01 mm to
100 mm path length were used to cover different concentrations throughout the study. Organic
solvents for spectroscopic studies were of spectroscopic grade and used without further

purification.

Fluorescence spectroscopy

Fluorescence spectra were recorded on an Edinburgh Instruments FLS 980 spectrometer with
Xenon Xel lamp and visible PMT detector under following conditions: (1) for normal spectra,
Dwell time = 0.2 s, step = 0.5 nm, number of scans = 10, ExXBW (AA) =4.0, EmBW (A}) = 4.0,
and without polarizers; (2) for quantum yield determination, Dwell time = 1.0 s, step = 1.0 nm,
number of scans = 10, ExXBW (A1) = 6.0, EmBW (A1) = 6.0, ExPol = 0°, EmPol = 55°. For
quantum vyield determination, four emission spectra at four different excitation wavelengths
were recorded for each sample and the given quantum yield represents the averaged value of
four measurements. Quantum yield was determined against N,N'-bis(2,6-diisopropylphenyl)-
1,6,7,12-tetraphenoxy-3,4:9,10-perylenetetracarboxylic diimide in CHCIs as the reference (@
= 0.96%!) and the emission spectra of 2-5 were extrapolated using Gaussian functions before
use (Fig. S16). The concentration of each sample was chosen by ensuring its UV/vis absorbance
to be lower than 0.1(with 10 mm path length cell) to minimize re-absorption effect. Lifetime
measurements were conducted with TCSPC diode and high speed lifetime PMT under
following conditions: EmBW (AZ) = 8.0, EmPol = 55° 100 ns, 10000 peak counts. Organic
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solvents for spectroscopic studies were of spectroscopic grade and used without further

purification.

Mass spectrometry

High resolution electrospray ionization time-of-flight (HRESI-TOF) mass spectra were

measured in the positive ion mode on a Bruker Daltonic microTOF-Q 111 spectrometer.

NMR spectroscopy

NMR spectra (*H, *C, *H-'H COSY, H-'H ROESY, and *H-'H NOESY) were recorded on a
Bruker Avance 111 HD 400 or Avance Il HD 600 spectrometer in CDCl3 at 295 K. A BBFO
standard probe was used for 400 MHz and a DCH *C/*H cryoprobe for 600 MHz, respectively.
The residual solvent signals were used as internal standard (*H: § = 7.26 ppm, 13C: & =
77.16 ppm) and the chemical shifts ¢ are reported in ppm. Abbreviations used for signal
multiplicity are: s = singlet, d = doublet, t = triplet, g = quartet, m = multiplet or overlap of
nonequivalent resonances, br = broad. Coupling constants, J, are reported in Hertz (Hz). Data

processing was performed with the Topspin software.

Alternating-phase 180° pulses were applied during the mixing time of 300 ms in the ROESY
pulse sequence (roesyphpp.2) to suppress unwanted TOCSY contributions.S? 52 This procedure
is of particular importance, because the signal intensities of the 2D ROESY spectra were used

for a quantitative evaluation.

Simulation of solution structures of 3 in chloroform based on 2D-NMR data

For simulating solution structures of 3 in chloroform, the relevant ROE correlations needed to
be screened. Only correlations below the spectral diagonal were used and some redundant
correlations were further deleted. Finally, twenty-five useful correlations were selected and
converted into distance information via equations S1-S3%* (with the approximation that they are
valid for the applied mixing sequence of consecutive 180°x/180°-x pulses as well) by using a
fixed 6” < 5 distance as the reference (Table S1). These distances were imported into an
opened structure of 3 as distance constraints to perform energy minimization via MMFF in

vacuum resulting in a folded structure with close anti-parallel organization of MC moieties, i.e.
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MCs (Fig. S5). This process was repeated several times and always yielded similar structures
(MCGCs).

ArefCref 1/6
T‘ij = rref (—al‘]’Cij ) (Sl)
1
Cij = (sinZ 6;sin 6 ;) (S2)
tan §; = (wiyflwo) (S3)

Computational details

For the simulation of UV/vis spectra, all structures were optimized in the frame of density
functional theory (DFT) using the B3LYP functional® together with the def2-SVP basis set>®
in TURBOMOLE®’. The 10 lowest excited states were calculated for every molecule using
time-dependent density functional theory (TD-DFT) in Gaussian16°8. Correct long-range
behavior of the method was ensured by using the range-separated hybrid functional CAM-
B3LYP*° together with the same basis set as described above. Broadened spectra were obtained
by convolution with Gaussians of 0.2 eV width. In order to compensate the overestimation of
transition energies by the employed functional, a static shift of 0.491 eV to lower energies was
applied to all calculated TD-DFT spectra. In all DFT calculations, Grimme’s empirical D3

correctionS® was used to account for the correct dispersion interactions.

Absorption spectra on the basis of Kasha’s molecular exciton theory were calculated based on
the monomer absorption at 560 nm with a calculated oscillator strength of 1.4753 on the TD-
DFT level of theory as described above. Coupling constants of 0.12 eV and 0.18 eV were used
in the case of 2 and 3, respectively. Additionally, the effects of van der Waals stabilization in
the excited states as well as solvatochromism were compensated by a static shift of 0.03 eV

(0.09 eV) to lower energies for molecule 2 (3).
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Synthesis and characterization

The syntheses of precursors 7-12 and pentamer 5 are described in our earlier work.5!
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Scheme S1 Synthesis of merocyanine oligomers 2-6. HBTU = (2-(1H-benzotriazol-1-yl)-1,1,3,3-
tetramethyluronium hexafluorophosphate, DIPEA = N,N-diisopropylethylamine.
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Synthesis of dimer 2

M P /7 To a suspension of compound7 (16 mg, 20 pmol,
O/ - HN 2 1 equiv.), compound 9 (14 mg, 30 umol, 1.5
ne N N—oc,,H, €quiv.) and HBTU (15 mg, 40 pmol, 2 equiv.) in
HN B 2 mL anhydrous dichloromethane, DIPEA (18pL,

— (0] O
HpsCio—N )= N—/_/ 0.10 mmol, 5 equiv.) was added. The reaction
— — (6]
= o mixture was stirred at room temperature for 1 h

) under nitrogen atmosphere. The solvent was
removed under vacuum and the crude product washed with methanol (3 x 10 mL) and then
purified by column chromatography (eluent: DCM/MeOH = 94/6, v/v) followed by GPC to
yield the dimer 2 as a dark red solid (20 mg, 16 umol, 80%). Mp.: 235-238 °C (from CH.Cl,).
'H NMR (400 MHz, CDCls): 6 (ppm) = 9.67 (t, J = 6.7 Hz, 1H), 9.45 (t, J = 5.6 Hz, 1H), 7.95-
7.72 (m, 6H), 7.69 (d, J = 6.5 Hz, 2H), 7.39 (d, J = 15.2 Hz, 1H), 7.33 (d, J = 14.8 Hz, 1H),
7.27 (m, overlapped with CHClIs signal) 7.18 (d, J = 7.0 Hz, 2H), 4.41 - 4.19 (m, 6H), 4.14 (t,
J=6.5Hz, 2H), 3.99-3.92 (m, 2H), 3.80 (br, 4H), 2.63-2.53 (m, 2H), 2.30 (s, 3H), 2.19 (s, 3H),
2.06-1.92 (m, 4H), 1.87-1.79 (m, 2H), 1.66-1.58 (m, overlapped with H>O signal), 1.49-1.15
(m, 54H), 0.90-0.79 (m, 9H).13C NMR (101 MHz, CDCls): J (ppm) = 168.2, 165.3, 164.6,
163.6, 163.5, 163.3, 163.1, 156.9, 156.72, 156.70, 156.0, 151.0, 150.1, 140.9, 139.7, 139.5,
138.7,120.4,119.6, 119.3, 114.8, 113.6, 110.6, 106.4, 106.3, 88.7, 87.3, 69.1, 60.4, 55.5, 39.9,
36.6, 35.7, 34.5, 32.1, 32.0, 30.9, 29.9, 29.83, 29.80, 29.77, 29.72, 29.68, 29.6, 29.51, 29.49,
29.47,29.4,29.1, 28.9, 28.6, 27.5, 27.0, 26.4, 26.0, 22.8, 18.9, 18.7, 14.3.HRMS (ESI, positive
mode): m/z calcd for C77H109NgNaO7 [M + Na]*: 1294.8342, found: 1294.8334.UV/Vis (CHCI;,

¢ =4 x 107° M): Amax = 490 nm (&= 213000 M tcm™).
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Synthesis of trimer 3

W _ To a suspension of compoundl0 (15 mg,
N — N .
o:gjé=/_<;\_\—\ 0 10 umol, 1equiv.), compound 9 (7.0 mg,
— HN
NC 15 umol, 1.5equiv.) and HBTU (11 mg,

N/ \ OC1,Ho5
30 umol, 3 equiv.) in 2 mL anhydrous

PN O\N<HN o dichloromethane, DIPEA (10 pL, 60 pumol, 6
Q—\sz:g‘O > equiv.) was added. The reaction mixture was
N stirred at room temperature for 1 h under
3 nitrogen atmosphere. The solvent was removed
under reduced pressure and the crude product washed with methanol (3 x 10 mL) and further
purified by column chromatography (eluent: DCM/MeOH = 94/6,v/v) followed by GPC to
yield trimer 3 as a dark red solid (12 mg, 6.1 umol, 61%). Mp.: 166-168 °C (from CH2Cl).*H
NMR (400 MHz, CDCls): 6 (ppm) = 9.80 (t, J = 6.4 Hz, 1H), 9.67 (t, J = 6.5 Hz, 1H), 9.55 (t,
J=5.9 Hz, 1H), 9.42 (t, J = 6.0 Hz, 1H), 8.01 (d, J = 6.6 Hz, 2H), 7.88 (d, J = 14.7 Hz, 1H),
7.82-7.80 (m, 2H), 7.78-7.72 (m, 5H), 7.71-7.65 (m, 3H), 7.58 (d, J = 15.0 Hz, 1H), 7.41-7.33
(m, 3H), 7.28 (m, overlapped with CHClIs signal), 7.22 (d, J = 6.7 Hz, 2H), 7.15 (d, J = 6.7 Hz,
2H), 4.48-4.36 (m, 2H), 4.32-4.07 (m, 10H), 4.03-3.97 (m, 2H), 3.93-3.85 (m, 2H), 3.79-3.69
(m, 4H), 3.31 (br, too broad to be integrated), 2.55-2.44 (m, 4H), 2.38 (s, 3H), 2.25-2.19 (m,
6H), 2.08-1.96 (br, 4H), 1.88-1.71 (m, 6H), 1.72-1.57 (m, overlapped with H,O signal), 1.50—
1.42 (m, 4H), 1.36-1.08 (m, 64H), 0.91-0.79 (m, 12H). 13C NMR (101 MHz, CDCls): J (ppm)
= 168.3, 168.2, 165.1, 165.0, 164.72, 164.65, 163.7, 163.4, 163.3, 163.0, 157.2, 156.9, 156.7,
156.5, 156.3, 156.0, 151.0, 150.3, 150.2, 141.4, 140.4, 140.0, 139.7, 139.6, 137.6, 120.8, 120.6,
120.0, 119.6, 119.3, 115.4, 114.6, 113.3, 110.9, 110.8, 110.7, 110.6, 106.9, 106.5, 106.4, 89.0,
87.9, 86.2, 69.2, 69.1, 59.8, 57.3, 55.8, 39.9, 36.83, 36.76, 36.3, 35.9, 34.6, 34.5, 32.1, 32.0,
31.4,31.0, 29.9, 29.83, 29.79, 29.77, 29.72, 29.69, 29.6, 29.51, 29.49, 29.47, 29.45, 29.0, 28.9,
28.4,28.1,27.53,27.45, 26.2, 26.0, 22.8, 18.84, 18.82, 18.7, 14.3.HRMS (ESI, positive mode):
m/z calcd for C116H159N1sNaO12 [M + Na]*: 1977.2185, found: 1977.2187.UV/Vis (CHCl3, ¢
=4 x 10°® M): Amax = 476 nm (¢= 137000 M tcm™).
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Synthesis oftetramer4

W _ To a suspension of compoundll (16 mg, 7.5
N — N
ozgjé=/_<;/\ _\—\ o umol, 1 equiv.), compound 9 (7.2 mg, 15 umol,
— HN
NC 2 equiv.) and HBTU (8.7 mg, 23 umol, 3 equiv.)

N/ A OCyoHo5
in 2 mL anhydrous dichloromethane, DIPEA

. /\j>:\_0§;\>:<iﬂ\l 0 (8.0 uL, 45 umol, 6 equiv.) was added. The
— “N\_/9; reaction mixture was stirred at room temperature
CN for 1 h under nitrogen atmosphere. The solvent
4 was removed under reduced pressure and the
crude product washed with methanol (3 x 10 mL) and further purified by column
chromatography (eluent: DCM/MeOH = 94/6,v/v) followed by GPC to yieldtetramer 4as a dark
red solid (14 mg,5.3 umol, 71%). Mp.: 214-217 °C (from CHCl;). *H NMR (400 MHz,
CDCl3): 0 (ppm) = 9.79 (t, J = 6.5 Hz, 1H), 9.70-9.63 (m, 2H), 9.54 (t, J = 6.6 Hz, 1H), 9.45
(t, J=6.3 Hz, 1H), 9.40 (t, J = 6.1 Hz, 1H), 8.06-7.95 (m, 6H), 7.93 (d, J = 14.9 Hz, 1H), 7.89—
7.68 (m, 11H), 7.56 (d, J = 14.6 Hz, 1H), 7.51-7.41 (m, 5H), 7.35 (d, J = 6.8 Hz, 2H), 7.31 (d,
J =6.7 Hz, 2H), 7.23 (d, J = 6.9 Hz, 2H), 4.41-4.04 (m, 20H), 3.95-3.87 (m, 2H), 3.78-3.67
(m, 6H), 3.40 (br, too broad to be integrated), 2.58-2.43 (m, 6H), 2.37 (s, 3H), 2.36 (s, 3H),
2.35 (s, 3H), 2.30 (s, 3H), 2.13-1.93 (br, 6H), 1.88-1.72 (m, 8H), 1.66-1.56 (m, overlapped
with H20 signal), 1.50-1.41 (m, 6H), 1.38-1.14 (m, 80H), 0.91-0.83 (m, 15H).13C NMR (151
MHz, CDCls): ¢ (ppm) = 168.3, 168.2, 165.23, 165.20, 164.88, 164.86, 164.84, 164.75, 163.7,
163.6, 163.5, 163.43, 163.36, 163.3, 163.2, 157.1, 157.02, 156.97, 156.8, 156.54, 156.49, 156.3,
156.1, 151.03, 151.02, 150.2, 150.1, 150.0, 141.3, 141.2, 141.0, 140.0, 139.8, 138.81, 138.77,
138.4, 128.6, 128.5, 126.0, 121.2, 120.9, 120.7, 120.14, 120.11, 120.0, 119.8, 115.2, 115.0,
113.5,110.9, 110.7, 110.5, 106.8, 106.7, 106.6, 106.5, 88.4, 86.9, 86.84, 86.76, 69.2, 69.1, 59.8,
57.5, 57.0, 56.2, 39.9, 38.1, 36.9, 36.8, 36.7, 36.4, 36.1, 34.8, 34.7, 34.6, 32.07, 32.05, 32.0,
31.2, 30.5, 29.91, 29.86, 29.84, 29.81, 29.79, 29.77, 29.73, 29.72, 29.69, 29.68, 29.6, 29.52,
29.49, 29.46, 29.4, 29.1, 29.0, 28.9, 28.5, 27.6, 27.52, 27.45, 27.4, 26.2, 26.01, 25.99, 22.83,
22.81, 18.9, 18.84, 18.76, 18.7, 14.27, 14.26. HRMS (ESI, positive mode): m/z calcd for
CissH200N21017 [M]?*: 1318.3062, found: 1318.3047.UV/Vis (CHCls, ¢ =4 - 107 M):
Amax = 498 nm (¢= 215000 Mtcm™).
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Synthesis of 13

% W S To a suspension of compound 12 (23 mg, 8 umol, 0.8
o — — (o]
Wan HN equiv.), compound 8 (8.2 mg, 10 umol, 1 equiv.) and
\
Q " HBTU (7.6 mg, 20 pmol, 2 equiv.) in 2 mL anhydrous

NH HN
RO{/ZN; RNV °\N< ° dichloromethane, DIPEA (7.0 puL, 40 pumol, 4 equiv.)
— — o

g M “on ¢ was added. The reaction mixture was stirred at room
" temperature for 1 h under nitrogen atmosphere. The
crude product was washed with 10 mL methanol three times and further purified by column
chromatography (eluent: DCM/MeOH =94/6, v/v%) to yield compound 13as a dark red solid
(15 mg, 5.4 umol,54%). Mp.: 195-197 °C (from CH2Cl). *H NMR (400 MHz, CDClz): 6 (ppm)
=9.77-9.67 (m, 4H), 9.49-9.36 (m,4H), 8.59 (t, J = 6.4 Hz, 1H), 8.23 (d, J = 6.8 Hz, 1H), 8.19—
8.10 (m, 6H), 7.91-7.67 (m, 18H), 7.61-7.49 (m, 4H), 7.48-7.36 (m, 6H), 7.31 (d, J = 6.7 Hz,
2H), 7.23 (d, J = 6.7 Hz, 2H), 4.45-4.30 (m, 8H), 4.30-4.16 (m, 10H), 4.14-4.06 (m, 10H),3.98
(s, 3H), 3.92 (t,J = 7.3 Hz, 2H), 3.76-3.68(m, 6H), 3.59-3.52 (m, 2H), 3.40 (br, too broad to be
integrated), 2.51-2.42 (m, 16H), 2.36 (s, 3H), 2.31-2.24 (m, 5H), 2.03-1.90 (m, 12H), 1.85—
1.76 (m, 10H), 1.61-1.53 (m, 2H), 1.47-1.40 (m, 10H), 1.34-1.18 (m, 96H), 0.89-0.82 (m,
18H).13C NMR (101 MHz, CDCls): 6 (ppm) = 168.2, 167.8, 165.1, 165.0, 164.9, 164.8, 163.73,
163.70, 163.6, 163.5, 163.39, 163.35, 163.2, 157.4, 157.2, 157.1, 157.0 , 156.7, 156.5, 156.41,
156.36, 155.9, 151.4, 151.0, 150.0, 149.92, 149.89, 148.1, 141.4, 141.3, 141.2, 140.1, 139.8,
139.6,139.1, 138.8, 138.4, 121.1, 121.0, 120.9, 120.7, 120.5, 120.3, 120.1, 119.7, 115.1, 115.0,
113.5,111.1, 110.7, 110.5, 107.0, 106.8, 106.6, 106.5, 88.45, 87.05, 86.90, 86.53, 86.49, 77.36,
69.36, 69.10, 57.70, 57.05, 56.42, 53.57, 53.18, 50.95, 39.98, 36.84, 36.25, 35.85, 34.75, 32.03,
31.70, 30.53, 30.36, 29.86, 29.81, 29.77, 29.75, 29.70, 29.67, 29.47, 29.43, 29.39, 29.10, 28.92,
28.86, 28.43, 27.56, 25.97, 22.81, 18.81, 18.72, 14.26 HRMS (ESI, positive mode): m/z calcd
for CaosH271N29Na,026 [M+2Na]?*: 1800.5280, found: 1800.5225.

S9



Deprotection of 13 to 13-OH

/F%N?J_CN 13 (15 mg, 4.2 umol, 1 equiv.) was dissolved in 2 mL
[e] — — ‘\—\ o]

— HN

NC

(0]

MeOH/THF (30/70, viv%) and 0.3 M NaOH aqueous
2\
N "= solution (42 uL, 12.6 umol, 3 equiv.) was added into

NH
— — (0) o - -
rRo—{_ N WNW the solution at room temperature. The mixture was
— — (e)

OH 4

J en stirred at room temperature for 2 h (note: the desired

1e-on product slowly decomposes, therefore, the
appropriate reaction time should be determined by TLC monitoring). The reaction mixture was
then diluted with DCM and extracted with 10 mM HCI aqueous solution three times. The
organic layer was dried with Na2SOs and condensed under vacuum to yield a dark red solid.
This crude product was rigorously dried under high vacuum and used for the next reaction

without further purification.

Synthesis of hexamer 6

% T\ To a suspension of compound13-OH (11 mg, 3.1 umol, 1
oéjéJC \j”'“:g}owzs equiv.), compound 9 (2.3 mg, 4.5 pumol, 1.5 equiv.) and

= HBTU (3.4 mg, 9 umol, 3 equiv.) in 2 mL anhydrous
HasCrN_ Y= Ow ° dichloromethane, DIPEA (2.5 puL, 15 umol, 5 equiv.) was

— 5

eN added. The reaction mixture was stirred at room

° temperature for 1 h under nitrogen atmosphere. The solvent
was removed under reduced pressure and the crude product washed with methanol (3 x 10 mL)
and further purified by column chromatography (eluent: DCM/MeOH = 94/6,v/v) followed by
GPC to yield hexamer6 as a dark red solid (9 mg, 2.3umol,75%). Mp.: 241-245 °C (from
CH2Cl,).'H NMR (400 MHz, CDCls): 6 (ppm) = 9.81-9.64 (m, 5H), 9.52-9.41 (m, 4H), 9.37
(t, J =5.7 Hz, 1H), 8.19-8.10 (m, 8H), 7.97-7.88 (m, 3H), 7.86-7.76 (m, 6H), 7.75-7.71 (m,
12H), 7.60-7.53 (m, 3H), 7.51-7.47 (br, 2H), 7.46-7.37 (m, 8H), 7.30 (d, J = 6.1 Hz, 2H), 7.22
(d, J = 6.5 Hz, 2H), 4.44-4.33 (m, 8H), 4.28-4.15 (m, 12H), 4.12-4.08 (m, 10H), 3.92 (t,J =
7.6 Hz, 2H), 3.76-3.68(m, 10H), 3.36 (br, too broad to be integrated), 2.60-2.42 (m, 20H), 2.36
(s, 3H), 2.29 (s, 3H), 2.04-1.97 (br, 8H), 1.84-1.78 (m, 10H), 1.70-1.65 (m, 4H), 1.64 (m, 2H),
1.47-1.42 (m, 8H), 1.41-1.21 (m, 120H), 0.90-0.79 (m, 21H).23C NMR (101 MHz, CDCl3): &
(ppm) = 168.22, 168.18, 165.1, 165.00, 164.97, 164.91, 164.88, 164.8, 163.8, 163.7, 163.6,
163.5, 163.4, 163.39, 163.35, 163.2, 157.3, 157.1, 157.0, 156.8, 156.5, 156.42, 156.35, 156.0,
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151.0, 150.06, 150.04, 149.99, 149.93, 149.89, 141.4, 141.3, 141.2, 140.8, 140.1, 139.8, 139.6,
139.2,138.9, 138.4, 135.3, 125.1, 121.2, 121.0, 120.7, 120.58, 120.52, 120.39, 120.30, 120.22,
119.7, 115.1, 115.0, 113.5, 110.79, 110.73, 110.66, 110.52, 110.48, 107.0, 106.84, 106.83,
106.80, 106.6, 106.5, 88.54, 87.16, 86.89, 86.64, 86.60, 86.57, 69.18, 69.13, 59.95, 57.67, 57.60,
56.36, 53.58, 39.96, 36.86, 36.73, 36.21, 34.78, 34.68, 32.33, 32.05, 32.02, 31.93, 31.29, 30.51,
30.45, 30.16, 29.89, 29.84, 29.83, 29.79, 29.77, 29.72, 29.69, 29.60, 29.51, 29.48, 29.46, 29.45,
29.09, 28.93, 28.47, 27.59, 27.51, 26.52, 26.31, 25.99, 23.57, 22.83, 22.81, 18.90, 18.86, 18.85,
18.83, 18.75, 14.27. HRMS (ESI, positive mode): m/z calcd for C233H309N33NazO27 [M+3Na]®*:
1356.7832, found: 1356.7849. UV/Vis (CHCl;, ¢ =4-10°%M): Amx=529nm (& =
315000 Mtcm™).
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NMR studies

Fig. S1 Chemical structure of trimer 3 with the assignment of the protons used for the evaluation of the NMR

studies. The different chromophores are labeled as A, B and C.

7.8 f ; 7.2 F2 [ppm]

Fig. S2 Excerpt of *H-'H COSY spectrum (400 MHz) of trimer 3 in CDCl; at 295 K showing 7 < 8 correlations

(dashed double-headed arrows) and 5 < 6 correlations (solid double-headed arrows) in the same spin systems.
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Fig. S3 Excerpt of the H-'H ROESY spectrum (600 MHz) of trimer 3 in CDCls; at 295 K. Also shown is the

chemical structure of 3 with significant correlations between protons indicated by double-headed arrows.
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[wdd] z4

Fig. S4 An excerpt of the 'H-'H ROESY spectrum (600 MHz) of 3 in CDCl; at 295 K. Also shown is the chemical
structure of trimer 3 with the correlations indicated by double-headed arrows as found in the *H-'H ROESY

spectrum.
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Table S1 Selected ROE correlations and the corresponding distances in trimer 3.

ROE correlations? F2 (ppm) F1 (ppm) Distances rij (&)

9B > 7A 2.24 7.88 3.64

98 « 6 2.24 7.38 3.63

9« 78 2.23 7.75 3.17

1€ < 138 9.54 9.79 2.60

58« 134 8.01 9.67 4.15

5C 1€ 7.70 9.54 3.55

108 «» 138 4.24 9.79 2.80

4¢ 1€ 4.22 9.54 3.27

2B~ 1B 3.72 9.42 2.43

KRR 2.48 9.54 3.69

2€ > 5C 3.76 7.70 3.30

3B 5B 2.51 8.01 2.61

Reference (6" 5*) 7.39 7.76 2.30¢
2 Selected from *H-*H ROESY spectrum (600 MHz, 295 K) of 3 in CHCls.” Calculated using the equations [S1-

1/6
. _ ArefCref . _ 1 . — _ VB c i
S3: 1 = Trer (—aijcij ) VG = G osin76) tan@; = @ An approximate value from a crystal

structure of a monomeric analogue with the same merocyanine moiety.
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Fig. S5 Molecular modeling of trimer 3 with distance constraints (obtained from ROE correlations, Table S1) by
Spartan via MMFF (energy minimization in vacuum). (a) The starting opened structure, (b) the resulting folded
structure (H-aggregate) after putting partial distance constraints (only those proton 9 related correlations, blue

lines) and (c) the final close anti-parallel stack after putting all distance constraints (blue and violet lines).

side view

top view

Fig. S6 Overlapped fourteen conformers of trimer 3 by Spartan via ‘‘conformer distribution’” function (conditions:
starting with the above final structure; all constraints removed; MMFF energy minimization in vacuum) showing

structural vibration of 3. MC in red, tether in blue and C12 chains in grey.
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Fig. S7 (a, b) Excerpt of *H-'H ROESY spectrum (600 MHz) of dimer 2 in CDCl; at 295 K. (c) Partial chemical
structure of 2 with the correlations observed in the *H-'H ROESY spectrum indicated by red double-headed arrows.

Only one set of correlation is shown for clarity.
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Fig. S8 (a, b) Excerpt of *H-'H ROESY spectrum (600 MHz) of tetramer 4 in CDClI; at 295 K. (c) Partial chemical
structure of 4 with the correlations observed in the *H-*H ROESY spectrum indicated by red double-headed arrows.

Only one set of correlation is shown for clarity.
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Fig. S9 (a, b) Excerpt of *H-'H NOESY spectrum (600 MHz, green, mixing time = 300 ms) and 'H-'H-COSY
(600 MHz, red) of pentamer 5 in CDCls at 295 K. (c) Partial chemical structure of 5 with the correlations observed

in the 'H-'H ROESY spectrum indicated by red double-headed arrows. Only one set of correlation is shown for

clarity.
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Fig. S10 Full *H-*H ROESY (600 MHz, positive signals in blue and negative ones in green) and *H-*H COSY
(400 MHz, in red) spectra of dimer 2 in CDCl3 at 295 K. The black rectangles include the investigated correlations.
To properly show the investigated correlations, the upper graph is with lower signal intensity while the bottom one

is with higher signal intensity.
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Fig. S11 Full *H-'H ROESY (600 MHz, positive signals in blue and negative ones in green) and ‘H-'H COSY
(400 MHz, in red) spectra of trimer 3 in CDCl; at 295 K. The black rectangles include the investigated correlations.
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Fig. S12 Full *H-'H ROESY (600 MHz, positive signals in blue and negative ones in green) and ‘H-'H COSY
(400 MHz, in red) spectra of tetramer 4 in CDCl; at 295 K. The black rectangles include the investigated
correlations. To properly show the investigated correlations, the upper graph is with lower signal intensity while
the bottom one is with higher signal intensity.
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UV-vis and fluorescence studies
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Fig. S13 Concentration-dependent UV-vis spectra of MC oligomers (a) 2, (b) 3, (c) 4, (d) 5 and (e) 6 in CHClI; at

293 K.
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Fig. S14 Normalized UV/vis absorption (black), emission (red and blue dashed line), and excitation spectra (red
and blue solid line) of (a) reference dye 1 at 3.5 x 108 M, (b) dimer 2 at 2.5 x 10 M, (c) trimer 3 at 3.0 x 105 M,
(d) tetramer 4 at 2.5 x 108 M, (e) pentamer 5 at 2.0 x 10® M and hexamer 6 at 2.0 x 10° M in CHClz at 293 K.
Colored arrows indicate the excitation wavelength or the detection wavelength of the corresponding emission or

excitation spectra, respectively, with the same colors.
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3.0x 106 M, (b) trimer 3 at 2.5 x 10® M, (c) tetramer 4 at 2.5 x 10 M, (d) pentamer 5 at 3.0 x 107 M and (e)
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S25



(a) Ex. 475 nm (b) 1.6x10° —— Ex. 470 nm
5x10° — Ex. 480 nm X . —— Ex. 475 nm
—— Ex. 485 nm 1.4x107 ——Ex. 480 nm
4x10° . —— Ex. 490 nm 1.2x10°4 —— Ex. 485 nm
Lo e Extrapolation, 1.0x10° - Extrapolation,,,
‘E 3%10° - - Extrapolation,,, " 8-0 10° e Extrapolation,,.
3 wwee Extrapolation,,, s~ X107 i - Extrapolation,,,
O 2x10°- ; 2 6.0x10° B ;
Extrapolation,, O Extrapolation,,
. 4.0x10° 1
1x10°1 2.0x10°1 :
0l Moo 0.0- U —
500 600 700 800 900 1000 1100 1200 500 600 700 800 900 1000 1100 1200
Alnm Al nm
5.
(c) 5x10 —— Ex. 465 nm ©d  18x10°] —— Ex. 455 nm
—— Ex. 470 nm 1.6x10° —— Ex. 460 nm
4x10° —— Ex. 475 nm o Ex. 465 nm
—— Ex. 480 nm 1.4x10°1 ——Ex. 470 nm
awiod [ bV e Extrapolation, 1.2x10°4 - Extrapolation,,, ,
2 K - Extrapolation,, £ 1.0x10° - Extrapolation,.,
é 2x10° ‘ - Extrapolation,, é 8.0x10° - Extrapolation,
- Extrapolation,,, 6.0x10° - Extrapolation,,;
1x10° kY 4.0x10°
% 2.0x10°
0 o — 004 ~© @ e
500 600 700 800 900 1000 1100 1200 500 600 700 800 900 1000 1100 1200
Alnm Al nm
S —Ex_465nm
——Ex. 470 nm
——Ex 475 nm
6
410 ——Ex. 480 nm
------- Extrapolation
b] 5 485 nm
§ 3x10 - Extrapolationg zg om
o] ax0ed  F W Extrapolation, .
e Extrapolationggg o
1x108 -
0

500 600 700 800 900 1000 1100 1200
iinm

Fig. S16 Fluorescence spectra (solid lines) and extrapolation (Gaussian function, dotted lines) of (a) dimer 2 at
3.0 x 106 M, (b) trimer 3 at 2.5 x 108 M, (c) tetramer 4 at 2.5 x 107 M, (d) pentamer 5 at 3.0 x 10° M and (e)
hexamer 6 at 2.5 x 10® M in CHCIs/MCH 30:70 at 293 K.
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Fig. S17 Fluorescence spectra (solid lines) and extrapolation (Gaussian function, dotted lines) of (a) monomer 1,

(b) dimer 2, (c) trimer 3, (d) tetramer 4, (e) pentamer 5 and (f) hexamer 6 in CHClIs/liquid paraffin 30:70 at 293 K
and optical densities < 0.5.

S27



(@

1.0 4

0.8

0.6

0.4

Normalized Absorption

0.2

0.0

400

(c)

0.8
0.6

0.4

Normalized Absorption

0.2

0.0

450 500 550 600 650 700

Alnm

—— 70% Paraffin
——70% MCH

400

(e)

0.4

Normalized Absorption

0.2

0.0

450 500 550 600 650 700

Alnm

—— 70% Paraffin
——70% MCH

400

450 500 550 600 650 700

Alnm

Normalized Absorption Normalized Absorption

Normalized Absorption

(b)

0.8

0.6

0.4

0.2

0.0

—— 70% Paraffin
——70% MCH

400

(d)

0.8
0.6
0.4

0.2

0.0

450

500

550 600 650 700

Alnm

—— 70% Paraffin
——70% MCH

400
(f)
1.0
0.8
0.6 -
0.4

0.2

0.0

450

500

550 600 650 700

Alnm

—— 70% Paraffin
——70% MCH

400

450

500

550 600 650 700

Alnm

Fig. S18 Normalized absorption spectra of (a) monomer 1, (b) dimer 2, (c) trimer 3, (d) tetramer 4, (e) pentamer
5 and (f) hexamer 6 in CHCls/liquid paraffin 30:70 (black) and CHCIs/MCH 30:70 (red) at 293 K.
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Table S2 Fluorescence data of MC reference 1 and MC oligomers 2-6 in CHCls/MCH 30:70.

Average life Quantum yield

c 71 c 71
time / ns (@) k-¢/ 10’s Kn®/ 107s

Life time (z) / ns

=0.2°
4'=1.24
7= 2.9 (50%)
2 2= 5.6 (50%) Tavg=4.3 0.6% + 0.1% 0.14 23
4'=1.03
1= 3.2 (51%)
3 2= g.O (49%) Tavg=4.1 2.1% + 0.2% 0.51 24
x =113
7= 2.9 (38%)
4 7= 5.3 (62%) Tavg=4.4 0.9% + 0.1% 0.21 23
£'=1.07
1= 3.1 (40%)
5 7= €25-1 (60%) Tavg=4.9 1.7% + 0.3% 0.35 20
x =102
7= 1.9 (16%)
6 = ?-1 (84%) Tavg=4.6 1.5% + 0.2% 0.33 21
x = 1.07

--- 0.3% + 0.07%* 15 500

aLife time and quantum yield could not be determined for 1 in CHCI3/MCH (30:70) with our instrument due to
the weak fluorescence. The values were determined in CHCly/liquid paraffin (30:70, Table S3).> Quantum yield
was determined against N,N'-bis(2,6-diisopropylphenyl)-1,6,7,12-tetraphenoxy-3,4,9,10-perylenetetracarboxylic
diimide in CHCI; as the reference and the emission spectra of 2-6 were extrapolated through Gaussian function
before use. °Determined according to k, = @/ and ko = 1/zq1 — Ks1.

Table S3 Fluorescence data of MC reference 1 and MC oligomers 2-6 in CHCI3/liquid paraffin 30:70.

Average life Quantum yield

b/ 107¢-1 b/ 107c-1
time / ns (@) ki®/ 10's kn®/ 107s

Life time (z) / ns

=0.2
4=1.24
1= 3.2 (54%)
2 7= 625-1 (46%) Tavg=4.5 1.1% + 0.1% 0.24 22
x =101
1= 3.6 (41%)
3 2= 5.8 (59%) Tavg=4.9 4.8% +0.1% 0.98 19
4'=1.04
1= 3.4 (42%)
4 7= 625-0 (58%) Tavg=4.9 1.9% + 0.1% 0.39 20
x =102
1= 2.6 (22%)
5 = 5-9 (78%) Tavg=5.2 2.8% +0.1% 0.54 19
x =101
1= 2.4 (23%)
6 7= 6.0 (77%) Tavg=5.2 2.1% + 0.1% 0.40 19
=113

--- 0.3% + 0.07% 1.5 500

aQuantum yield was determined against N,N'-bis(2,6-diisopropylphenyl)-1,6,7,12-tetraphenoxy-3,4,9,10-
perylenetetracarboxylic diimide in CHCI; as the reference and the emission spectra of 2-6 were extrapolated
through Gaussian function before use. °Determined according to k; = @/r and knr = 1/zs1 — k.

S29



Calculations

Table S4 Oscillator strength f of the transitions and interfragment charge transfer (IFCT) analysis performed by

the Multiwfn program®2? between chromophore units 1 and 2 in the dimer 2 for the lowest 4 excited states.

So = S1 So=>S: So=>Ss So = Sa
1->2 0.06 0.56 0.08 -0.73
f 0.0142 0.3075 2.1711 0.1202

Table S5 Oscillator strength f of the transitions and interfragment charge transfer (IFCT) analysis performed by

the Multiwfn program®? between chromophore units 1, 2 and 3 in the trimer 3 for the lowest 7 excited states.

So>S1 So2> S So>S3 So>S4 So—>Ss So > Se So>S7
152 0.00 0.05 -0.02 0.31 0.05 -0.02 -0.38
1->3 0.00 0.05 -0.32 -0.11 0.61 -0.03 0.01
2->3 0.00 0.02 -0.14 -0.19 0.08 -0.01 0.12
f 0.2596 0.0153 1.1895 0.1693 0.0299 1.1563 0.9892

Fig. S19 Plotted TD-DFT transition densities of 2.
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Fig. S20 Plotted TD-DFT transition densities of 3.
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1D NMR spectra
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Fig. S21 *H NMR (400 MHz, CDCls) spectrum of the dimer 2 at 295 K.
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Fig. S26 *C NMR (101 MHz, CDClIs) spectrum of the tetramer 4 at 295 K.
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