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S1 Correlating a large active space for DMRG calculation in pen-
tacene dimer

Fig. S1: The pentacene molecule

We calculate the energy ordering for pentacene monomer (Fig. S1) using state-averaged DM-
RGSCF/NEVPT2 calculations for various active spaces by giving equal weights to the states in-
cluded in the calculations. Fig. S2 shows that the smaller active spaces such as - 4π4e and 8π8e
underestimate the energies of singlet states. However, using the larger active spaces such as: 10-14
π orbitals/electrons provide good agreement with the experimental values.1 Our calculations indi-
cate that the ‘dark state’ is not an underlying state as suggested by Zimmerman et al.2 However,
our results are in a good agreement with other theoretical results implying that the S1 state lies
below the S2 [dark state(D)] state in pentacene monomer.3,4 A 16π16e active space accurately
predicts the singlet state energies but overestimates the S-T gaps in the monomer.

Fig. S2: DMRGSCF/NEVPT2 excited state energies (eV) of the two low-lying excited singlet states
and one triplet state of pentacene monomer for a range of active spaces.

We establish that the active spaces of 10-14 π-orbitals/electrons are sufficient for pentacene
monomer, accordingly a correlated space of >20 π- orbitals/electrons should be built for the dimer.
We benchmark the excited state energies of the dimer for a range of active orbitals/electrons and
find the need to correlate at least 22π22e active space to accurately predict the excited states
energies of adiabatic states5 for pentacene dimer (Fig. S2). However, the NEVPT2 correction for
bipentacene is computationally demanding for a DMRGSCF(22π22e)/cc-pVTZ calculation and a
NEVPT2 correction at DMRGSCF(12π12e)/cc-pVTZ relates to these energies. The wavefunction
analysis implemented in this study is based on DMRG state and transition density matrices and
only considers the static part of the electronic correlation. It is clear from the Fig. S2 that a
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large part of static correlation can be significantly treated by correlating at least 22 electrons, for
a given perturbation in the wavefunction. On correlating a larger virtual orbitals space (44π22e),
the energies for S1 and S2 remain similar to that of a 22π22e active space. So, we use a 22π22e
active space in our DMRG calculations.

Fig. S3: The DMRGSCF/NEVPT2 excited state energies (eV) of the two low-lying excited singlet
states in pentacene dimer for a range of active spaces. A 22π22e active space significantly treats
the static correlation in the molecule and yields accurate excited state energies.

The accuracy of DMRG calculation depends on the number of renormalized states (M). Table
S1 comprises the energies of three lowest singlet states of pentacene dimer at different M values.
M=1000 seems to accurate enough for our system. So, we use M=1000 in our DMRG calculations.

Table S1: DMRGSCF/NEVPT2 energies (Eh) of S0, S1, S2 at different M values for pentacene
dimer

M S0 S1 S2
250 -1688.9115 -1688.8432 -1688.8405
500 -1688.9120 -1688.8441 -1688.8410
800 -1688.9121 -1688.8443 -1688.8414
1000 -1688.9123 -1688.8445 -1688.8414
1500 -1688.9123 -1688.8445 -1688.8414
2000 -1688.9123 -1688.8445 -1688.8414
2500 -1688.9123 -1688.8445 -1688.8414
3000 -1688.9123 -1688.8446 -1688.8415
4000 -1688.9123 -1688.8446 -1688.8415
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S2 The local spin analysis

In a dimer system with two molecules A and B, the expectation value of spin-square operator ⟨Ŝ2⟩
can be expressed as a sum of one and two-body contributions towards the total spin6,〈

Ŝ2
〉
=

∑
A

〈
Ŝ2
A

〉
+

∑
A,B ̸=B

〈
Ŝ2
AB

〉
(1)

Here, the first term
〈
Ŝ2
A

〉
accounts for the local spin contribution from the electron population of

molecular A, and the second term
〈
Ŝ2
AB

〉
=

〈
ŜA · ŜB

〉
adds the inter-molecular spin couplings. We

construct a local spin density matrix with both one and two-particle wavefunctions to accurately
account for the multiexcitonic transitions in the SF process.

ρrs∈A =
1

2S + 1
(2.0− 0.5N)

[
γArs −

∑
p

ΓA
rpsp

]
(2)

where γA and ΓA represent the one- and two-particle density matrices projected onto the localized
orbital basis r, s of the molecule A, respectively. S is the spin multiplicity and N is the number of
electrons (active electrons in DMRG calculations).

Using the local operator, it is natural to employ the decomposition scheme of the local spin
distribution by Clark and Davidson. 7 We thus formulate the computation of the local spin square
value in terms of the projected local density matrices,〈

Ŝ2
A

〉
=

3

4

∑
r

γArr −
1

2

∑
rs

ΓA
rsrs −

1

4

∑
rs

ΓA
rssr (3)

For instance, the values of
〈
Ŝ2
A

〉
for perfect singlet, doublet and triplet manifolds are 0.00, 0.75

and 2.00, respectively. The first term yields
∑

r γ
A
rr = NA that simply adds the spin square of each

electron according to the number of electrons in molecule A, and the second term deals with the
spin coupling between electrons within molecule A that modifies the additive contribution from
the first term. This local spin formulation is rigorous, aside from the local fragment projector that
can be defined in various ways which lead to different projected density matrices. For non-covalent
pentacene dimer, the local fragment operator P̂ (A) can be well defined using a subsystem projection
that satisfies, ∑

A

P̂ (A) = I (4)

P̂ (A)P̂ (B) = δABP̂ (A) (5)

Here we choose Pipek-Mezey localized active orbitals (ϕr) belonging to molecule A to build the
projector,

P̂ (A) =
∑
r∈A

|ϕr⟩⟨ϕr| (6)

One can also define a projector by removing the atomic components residing on other molecules
according to

P̂ (A) =

1−
∑
B

∑
µν∈B

|ϕµ⟩S
− 1

2
µν ⟨ϕν |

∑
r∈A

|ϕr⟩⟨ϕr| (7)

S4



But this loosely breaks the conditions in Eqs. (4) and (5). For non-covalent pentacene dimer,
both forms of the local projection operator are found to yield similar local spin characters, as the
projection of atomic components is only minor. Fig. S4 shows the 22 Pipek-Mezey localized orbitals
employed in the local spin analysis. In all these orbitals, the electronic population is localized over
one of the molecule in the dimer.

Fig. S4: The 22 Pipek-Mezey localized orbitals employed in the local spin analysis of pentacene
dimer.

We have benchmarked our local spin analysis method to characterize the electronic states of
few of the SF systems (DPBF and tetracene dimers) with the charge and spin analysis by Luzanov
et al.8 and obtained good agreement on the assignment of adiabatic state characters (Table S2
and S3).
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Table S2: The characterization of electronic state for the dimer3 (A+D) structure of DPBF [Table
VIII (Luzanov et al. J. Chem. Phys. 2015, 142, 224104). ]

Luzanov et al. Our work
State Character State Character

〈
Ŝ2
A

〉
1ME TT S1 TT 1.999
S1 LE S2 LE 0.000
S′1 LE S3 LE 0.000
S2 CR S4 CT 0.750
S′2 CR S5 CT 0.749

Table S3: The characterization of electronic state for the X-ray structure of tetracene dimer [Table
IV (Luzanov et al. J. Chem. Phys. 2015, 142, 224104).]

Luzanov et al. Our work
State Character State Character

〈
Ŝ2
A

〉
1ME TT S1 TT 1.902
S1 LE S2 LE 0.051
S′1 LE S3 LE 0.065
S2 CR S4 CT 0.706
S′2 CR S5 CT 0.766

S2.1 The natural transition orbitals
The nature of CT character in S2 and S4 states can be confirmed by visualizing the Natural
Transition Orbitals (NTOs) for corresponding states obtained from DMRG calculations. Generally,
the NTO analysis is performed for a CIS wavefunctions, where the sum of the square of each NTO
singular value

∑
i λi

2 is exactly 1.9 However, if the state of interest is not pure singlet state (like
the DMRG many body wavefunction),

∑
i λi

2 would not be 1. The orbital distribution in the
corresponding highest occupied and lowest unoccupied NTO pair is shown in Fig. S5
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Fig. S5: The most significant natural transitions orbital pairs for the S0→S4 and S0→S2 transition
in pentacene dimer at ISO value of ±4× 10−2 a.u.

S3 The multipolar electronic interaction

Here we assume that the intermolecular Coulomb operator V̂coul is well defined on the active orbitals
that are well localized on the respective monomer molecule of the non-covalent dimer. For less crit-
ical divergence, we construct an intermolecular electronic interaction Hele

mn = ⟨Ψm|V̂coul|Ψn⟩ based
on the distributed many-center multipolar (dipole, quadrupole, hexapole and octupole) moments
of V̂coul

10 between SF adiabatic states m and n. In the dimer system, where A and B represent the
two molecules, the electronic interaction operator HIJ,ele

mn between the atom sites I ∈ A and J ∈ B
can be defined in a many-center expansion, assuming the summation on the common Cartesian
indices (α, β, · · · ),

HIJ,ele
mn = − T IJ

αβµ
I,mn
α µJ,mn

β − 1

3
T IJ
αβγ

(
µI,mn
α ΘJ,mn

βγ −ΘI,mn
αβ µJ,mn

γ

)
− T IJ

αβγδ

(
1

15
µI,mn
α ΩJ,mn

βγδ − 1

9
ΘI,mn

αβ µJ,mn
γδ +

1

15
Ω̂I,mn
αβγ µ

J,mn
δ

)
− T IJ

αβγδϵ

(
1

105
µI,mn
α ΞJ,mn

βγδϵ − 1

45
ΘI,mn

αβ ΩJ,mn
γδϵ +

1

45
Ω̂I,mn
αβγ ΘJ,mn

δϵ − 1

105
ΞI,mn
αβγδµ

J,mn
ϵ

) (8)

where T IJ
αβ...v = 1

4πϵ0
∇α∇β . . .∇v

1
RIJ

and RIJ is the position vector between the atomic centers
of two monomers (A and B). The lowest order contribution arises from the transition dipole-
dipole interaction, since the transition charges are always zero as the transition density matrix is
traceless due to the orthogonality of the ground and excited state adiabatic wavefunctions. The
intermolecular Coulombic interaction between uncorrelated core electrons are easily computed at
the Hartree-Fock level. The overall interaction between two molecules is evaluated as

Hele
mn =

∑
I∈A

∑
J∈B

HIJ,ele
mn (9)
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The partitioning of distributed multipolar moments on two molecules can be based on the basis
of atomic orbitals (µ, ν, · · · ). When the transition multipoles are relocated with respect to the
distributed origin RI of the atom I belonging to the molecule M (M = A,B), the explicit expres-
sions for the transition dipole (µI,mn

α ), quadrupole (ΘI,mn
αβ ), hexapole (ΩI,mn

αβγ ) and octupole (ΞI,mn
αβγδ)

moment tensors11 between two SF electronic states m and n are given as,

µI,mn =
∑
µν∈I

τµνmn [⟨µ|ν⟩RI − ⟨µ|r|ν⟩] (10)

ΘI,mn =
∑
µν∈I

τµνmn [−RI ⊗RI ⟨µ|ν⟩+ ⟨µ|r|ν⟩ ⊗RI − ⟨µ|r⊗ r|ν⟩] (11)

ΩI,mn =
∑
µν∈I

τµνmn [RI ⊗RI ⊗RI ⟨µ|ν⟩ −RI ⊗RI ⊗ ⟨µ|r|ν⟩ −RI ⊗ ⟨µ|r|ν⟩ ⊗RI − ⟨µ|r|ν⟩ ⊗RI ⊗RI

+RI ⊗ ⟨µ|r⊗ r|ν⟩+ ⟨µ|r⊗RI ⊗ r|ν⟩+ ⟨µ|r⊗ r|ν⟩ ⊗RI − ⟨µ|r⊗ r⊗ r|ν⟩] (12)
ΞI,mn =

∑
µν∈I

τµνmn [−RI ⊗RI ⊗RI ⊗RI ⟨µ|ν⟩ +RI ⊗RI ⊗RI ⊗ ⟨µ|r|ν⟩+RI ⊗RI ⊗ ⟨µ|r|ν⟩ ⊗RI

+RI ⊗ ⟨µ|r|ν⟩ ⊗RI ⊗RI + ⟨µ|r|ν⟩ ⊗RI ⊗RI ⊗RI −RI ⊗RI ⊗ ⟨µ|r⊗ r|ν⟩
−RI ⊗ ⟨µ|r⊗ r|ν⟩ ⊗RI − ⟨µ|r⊗ r|ν⟩ ⊗RI ⊗RI +RI ⊗ ⟨µ|r⊗ r⊗ r|ν⟩
+ ⟨µ|r⊗ r⊗ r|ν⟩ ⊗RI −RI ⊗ ⟨µ|r⊗RI ⊗ r|ν⟩ − ⟨µ|r⊗RI ⊗ r|ν⟩ ⊗RI − ⟨µ|r⊗ r⊗ r⊗ r|ν⟩
+ ⟨µ|r⊗RI ⊗ r⊗ r|ν⟩+ ⟨µ|r⊗ r⊗RI ⊗ r|ν⟩ − ⟨µ|r⊗RI ⊗RI ⊗ r|ν⟩] (13)

where τµνmn is the DMRG transition density matrix between two excited states m and n, and the
outer products (⊗) are carried out between two vectors.

S4 The theory of vibronic coupling analysis

We consider a vibronic Hamiltonian Hvib
mn expanded as a Taylor series around the equilibrium

position Q=0 of the ground state of pentacene dimer12,

Hvib
mn(Q) = Hmn(0) +

∑
i

Qi
∂Hmn(Q)

∂Qi

∣∣∣∣∣
Q=0

+
∑
ij

QiQj
∂2Hmn(Q)

∂Qi∂Qj

∣∣∣∣∣∣
Q=0

+ . . . (14)

where m and n are any two SF adiabatic states in this context. i and j are two vibrational modes
for the dimer. The zeroth order term in eq. (9) represents the ab-initio DMRG electronic energies
and the first term relates to the first-order vibronic couplings. Higher order vibronic couplings are
not included in this study. Tokunaga and Sato13,14 proposed the calculation of VCs in terms of
Holstein (intrastate) and Peierls (interstate) couplings as a function of spatial wavefunctions. We
incorporated DMRG based spatial state and transition densities to analyze these interactions in
pentacene dimer,

∂Hnn(Q)

∂Qi

∣∣∣∣
Q=0

=

∫
drγ̄diffn (r)vi(r)

∂Hmn(Q)

∂Qi

∣∣∣∣
Q=0

=

∫
drτ̄ tramn(r)vi(r)

(15)

where, γ̄diffn (r) represents the DMRG difference density between an excited state(n) and the ground
state(0).

γ̄diffn (r) = γ̄n(r)− γ̄0(r) (16)
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The vibronic coupling density η for a vibrational mode i is defined to analyze the vibronic
couplings. For example, the Holstein coupling density is calculated as,

ηi(r) = γ̄diffn (r)vi(r) (17)

The γ̄n and the τ̄ tramn are the electronic density of a state n and the transition density between two
states m and n, respectively. vi is the potential derivative defined as,

vi(r) =

Natom∑
I

(
∂

∂Qi

−ZI

|r−RI |

)∣∣∣∣∣
Q=0

(18)

The vibrational coordinate Qi relates to a dimensionless normal coordinate qi at a frequency ωi
such as,

Qi =

√
h̄

ωi
qi (19)

The vibrational coordinate Qi can be projected to 3N Cartesian coordinates by,

Rβ =
1√
Mβ

3N−6∑
i=1

LβiQi (β = 1, 2, . . . , 3N) (20)

where Mβ denotes the nuclear mass associated with its position at Rβ, and Lβi forms the transfor-
mation matrix from normal to Cartesian coordinates obtained from vibrational analysis.

The difference and transition densities are related to the density matrices represented in the
DMRG active orbitals, respectively, as follows,

γ̄diff
n (r) =

∑
pq

γdiff
n,pqϕ

∗
p(r)ϕq(r), (21)

τ̄ tra
mn(r) =

∑
pq

τ tra
mn,pqϕ

∗
p(r)ϕq(r). (22)

In our implementation, the Holstein (Peierls) couplings of Eqs. (15) are computed by tracing the
product of the difference (transition) density matrix and the derivative potential matrix represented
in the active orbital basis,

∂Hnn(Q)

∂Qi
|Q=0 = tr

{
γdiff
n vi

}
(23)

∂Hmn(Q)

∂Qi
|Q=0 = tr

{
τ tra
mnvi

}
. (24)

Next, we show how the derivative potential matrix vi for each Qi mode is evaluated. The matrix
element vi,pq is given as

vi,pq =

Natom∑
I

⟨ϕp|
∂

∂Qi

−ZI

|r−RI |
|ϕq⟩

=

Natom∑
I

⟨ϕp|
∂

∂RI

−ZI

|r−RI |
|ϕq⟩

∂RI

∂Qi

=

Natom∑
I

c∗µpcνq ⟨ϕµ|
∂

∂r

ZI

|r−RI |
|ϕν⟩

∂RI

∂Qi
. (25)
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In the last equation, the transformations are made from atomic orbitals ϕµ and ϕν using the orbital
coefficients cµp and cνq, respectively. By further noting the relation

∂

∂r
⟨ϕµ|

ZI

|r−RI |
|ϕν⟩ = 0, (26)

the derivative potential is formulated in terms of the analytical first-derivative integrals that are
readily computed in our program,

vi,pq = −
Natom∑

I

c∗µpcνq

[〈
∂

∂r
ϕµ

∣∣∣∣ ZI

|r−RI |

∣∣∣∣ϕν〉+

〈
ϕµ

∣∣∣∣ ZI

|r−RI |

∣∣∣∣ ∂∂rϕν
〉]

∂RI

∂Qi
(27)

S5 The microscopic origin of vibronic couplings
The first-order vibronic couplings can be separated into two parts: (i) intrastate or interstate cou-
plings based on the difference and transition densities, respectively and (ii) the potential derivative
vi. A vibronic coupling density (VCD) analysis is performed to understand the origin of VCs from
an interaction between electronic and vibrational structures.

To address the question about the microscopic origin of these couplings due to vibronic modula-
tion, the VCD analysis leads to the visualization the HC and PCs in real space. Fig. S6(a-d) shows
the difference densities of S1, S2, S3 and S4 states, respectively. The transition densities for S1→ S2,
S1→ S3, S3→ S4 and S1→ S4 transitions, relating to corresponding PCs are shown in Fig. S6(e-h).
The product of these difference (transition) densities with the potential derivative for a vibrational
mode is used to calculate the corresponding HC (PC).13 The difference density sketches the spatial
distribution of the difference between the molecular orbital densities of the states involved in the
transition, however the transition density represents a spatial map of a product of these molecular
orbital densities.

Fig. S6: The DMRG difference densities (a-d) and transition densities (e-h) for low-lying excited
states and the transitions in pentacene dimer. The blue and orange surfaces represent the positive
and negative isosurfaces at ISO value of ±5× 10−4 a.u.).

The difference density for S1 shows both positive and negative distribution in the two molecules
due to the multiexcitonic nature of the state, with more negative distribution at C=C bonds in
the upper molecule which can be attributed to the π → π∗ nature of the transition (Fig. S6(a)).
Fig. S6(b) depicts the presence of the weak CT character in S2 state as there is only a slight
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difference between the density distribution in upper and lower molecule. The difference density
for S3 states have equal but both positive and negative distribution in both molecules, confirming
the fact that this transition involves a local character (Fig. S6(c)). For the S4 state, the difference
density primarily has positive and negative distributions in the upper and lower part of the molecule,
reiterating that this state has a strong CT character (Fig. S6(d)). The vibrational vectors for the
C=C stretching mode at 1615i cm−1 are uniformly distributed throughout the pentacene unit
(ABCBA), with the ring ‘C’ being static (Fig. S11(i)). This vibration overlaps well with the
difference density in the ‘AB/BA’ region and induces a vibronic density of 215 meV in the molecule
which is distributed throughout the dimer skeleton with more population at the side (A) part of the
pentacene dimer, as large displacement vectors for vibration are observed in this region (Fig. S7(a)).
In the similar regions, an ‘out-of-phase’ normal mode at 1615o cm-1 (Fig. S11(j)) induces a strong
HC of 452 meV in the molecule (Fig. S7(c)). Some low-frequency vibrations such as out-of-phase
ring bending mode at 101o cm-1 (Fig. S11(b)) also induces a strong HC of 356 meV in the S4 state
(Fig. S7(b)). Such long-range interactions easily get activated by thermal excitation and have the
potential to significantly oscillate the energy of the CT states.

To analyze the origin of PCs, the transition densities are plotted in Fig. S6(e-h) for different
transitions. The equally distributed transition density in both S1→ S3 and S3→ S4 represents
that both the ‘TT→ LE’ and ‘LE→ CT2’ are charge-transfer transitions or must occur through
a CT mediated state. A similar but strong transition density for S1→ S4 transition validates the
strong CT based interaction between these two states as predicted by local spin distribution. The
ring breathing mode at 778o cm-1 (Fig. S11(e)) gives rise to a VCD of 148 meV in the middle
region of the lower molecule owing to the fact that the transition density, as well as the vibrational
vectors are localized in this region (Fig. S7(d)). On the other hand the in-phase vibration at 1332i

cm-1 (Fig. S11(h)) is widely distributed in the molecule, causing a relatively weak PC of 74 meV
for S3→ S4 transition (Fig. S7(e)). Similarly, the S1→ S4 transition for C=C stretching mode
at 1204o cm-1 (Fig. S11(g)) shows a strong PC of 459 meV in the intermolecular region between
the molecules, primarily located near the upper molecule as the vibrational motion in the lower
fragment affects the distribution of potential derivative in the upper regions, differently (Fig. S7(f)).

Fig. S7: Vibronic coupling densities: The Holstein [for normal mode at 1615i cm-1 (a) 101o cm-1

(b) and 1615o cm-1 (c)]; and Peierls [for normal mode at 778o cm-1 (d), 1332i cm-1 (e) and 1204o

cm-1 (f)] coupling densities (ISO value: ±5× 10−5 a.u.).
A possible way to include these VCs in explaining the mechanism of SF can be understood

by a bath engineering point of view based on e-ph interaction. As well known, a phonon creation
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and annihilation induce the addition and subtraction of the energy quanta to the bath, during the
process of electronic transition or the oscillation of electronic states. To consider the energy con-
servation, it is desirable that the adiabatic energy should match with the corresponding vibrational
frequency for an efficient SF. For our dimer, we identify several modes with significant HCs such
as - 114 meV at 1615i cm-1 for S2, 126 meV at 1716o cm-1 for S3 and 258 meV at 1615o cm-1 for S4
states. Interestingly, these couplings correspond to the energy gap of these states with S1, which is
0.08, 0.14 and 0.31 eV for S2, S3 and S4 states, respectively. The PCs can also provide such energy
matching to facilitate efficient SF as depicted in Fig. S7(d-e). Actually, it can be estimated that
there are several multimode pathways activated within the molecule which help in populating the
S1 state through multistate vibronic interaction, so that it can be a multiexcitonic state in the true
sense.

The other important HCs and PCs are plotted in Figure S8 and Figure S9, respectively with the
all related vibrational vectors shown in Figure S11.

Fig. S8: Other significant Holstein coupling densities for SF states in pentacene dimer at (a) 101i
(b) 476i (c) 778i (d) 1204i (e) 1615o (f) 476i (g) 726i (h) 1615i (i) 1716i (j) 778i (k) 778 o (l) 1204i
(m) 1204o (n) 1332i cm−1. The in-phase and out-of-phase vibrations are distinguished with the
subscripts ‘i’ and ‘o’, respectively.
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Fig. S9: Other significant Peierls coupling densities for SF states in pentacene dimer at (a) 101i
(b) 476i (c) 778i (d) 1204o (e) 1615o (f) 101o (g) 476i (h) 778i (i) 778o (j) 1204i (k) 1204 o (l) 1615o
(m) 101o (n) 778i (o) 778o (p) 1204i (q) 1615o cm−1. The in-phase and out-of-phase vibrations are
distinguished with the subscripts ‘i’ and ‘o’, respectively.

S5.1 The superposition of normal modes
In calculating the vibronic couplings in the dimer, we considered two ways to superimpose the
vibrational motion of monomer (i) in-phase and (ii) out-of-phase. The normal modes of dimer are
examined to be the linear combination of that of the monomers. During in-phase motion, the atoms
in both fragments reach their respective maximum positive (negative) vibrational displacement at
the same time. However, the atoms in different fragments vibrate in opposite vibrational directions
during the out-of-phase motion. The in-phase and out-of-phase vibrations are distinguished with
the subscripts ‘i’ and ‘o’, respectively.
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Fig. S10: The example of in-phase and out-of-phase superposition of monomer vibrational modes
(101 cm-1) into a dimer. The H-atoms in the molecule are omitted.

Table S4: Comparison of dimer and monomer normal mode symmetries. The totally symmetric
vibrations do not change the center of the molecule.

Modes dimer in-phase dimer out-of-phase
monomer symmetric Symmetric Symmetric
monomer asymmetric Asymmetric Symmetric

S5.2 Normal vibrational modes of pentacene dimer

Fig. S11: Normal vibrational modes of pentacene dimer.
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S6 A multistate Holstein-Peierls Hamiltonian

We consider the vibronic wavefunction (Ψ(r,Q) for S′
m) in the expansion of the adiabatic SF

eigenstates (ψn(r;0) for Sn) obtained from the reference electronic Hamiltonian Ĥe(r;0),

Ψ(r,Q) =
∑
n

χn(Q)ψn(r;0) (28)

Ĥe(r;0)ψn(r;0) = En(0)ψn(r;0) (29)

The resulting vibronic wavefunction is exact if all adiabatic eigenstates are used as the basis states.
Here we assume that low-lying vibronic states are well approximated by the six adiabatic SF states
of pentacene dimer that exhibit a range of characters. Given the linear vibronic coupling elements
∂Hnn(Q)

∂Qi
(Holstein coupling) and ∂Hmn(Q)

∂Qi
(Peierls coupling for m ̸= n) in terms of the normal mode

displacements Qi, the Holstein-Peierls vibronic model Hamiltonian takes the form in the adiabatic
basis states,

Ĥ(r,Q) =
∑
n

|ψn⟩Hnn(0) ⟨ψn|+
∑
n

|ψn⟩
∑
i

Qi
∂Hnn(Q)

∂Qi
⟨ψn|+

∑
m̸=n

|ψm⟩
∑
i

Qi
∂Hmn(Q)

∂Qi
⟨ψn|

(30)
where the static Hamiltonian is

Hnn(0) = En(0) +
∑
i

1

2
ωi

(
− ∂2

∂Q2
i

+Q2
i

)
(31)

Further, Ĥ(r,Q) is diagonalized to obtain χn for determining the vibronic state Ψm along with
the cumulative vibrational coordinates as the normal mode displacements Q (approximated in the
in-phase and out-of-phase linear combination of the monomer modes). It is obvious that only
totally symmetric modes can make nonzero contributions to Holstein coupling but are unimportant
to Peierls couplings (between two states of different characters). The analysis of the dimer mode
symmetry is given in Table S4.

In our calculations, however, the adiabatic states Sn and the vibrational modes Qi are computed
using different structures: the adiabatic Sn and the energies En are computed using the dimer that
is built by combining the CASSCF optimized monomer geometry, while the normal modes are
computed using the dimer that is built by combining the DFT optimized monomer geometry.
There is an obvious discrepancy between the DFT-based structure at which the Holstein-Peierls
vibronic Hamiltonian is defined and the CASSCF-based structure at which the vibronic state is
constructed. In other words, ψn(r;0) no longer remain the eigenstate of Ĥe(r;0). To approximately
circumvent this problem which inevitably affects the vibronic Hamiltonian, we add electron-electron
and electron-nucleus Coulombic corrections δHmn(0) to Peierls element,

Ĥ(r,Q) → Ĥ(r,Q) +
∑
m ̸=n

|ψm⟩ δHmn(0) ⟨ψn| (32)

δHmn(0) = δV ee
mn(0) + δV en

mn(0), (33)

while still remaining DMRG/NEVPT2 En on the diagonal Holstein. The electron-electron correc-
tion δV ee

mn can be computed using the many-center multipolar formula introduced in Section S3 by
tracing the product of the DMRG transition density matrix τmn and the difference of multipoles
between DFT and CASSCF geometries. The electron-nucleus correction δV en

mn is simply computed
as,

δV en
mn = tr

{
τ̂mnδV̂en

}
(34)
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with δV̂en = −
∑

I ZI

(
1

|r−RDFT
I | −

1
|r−RCASSCF

I |

)
the electron-nucleus attractive potential.

S7 The e-ph couplings in pentacene crystal
The electron-phonon interaction in our study is described by the Fröhlich Hamiltonian, which is
expressed as

Ĥep =
∑

mnkνq

gmnk,νqĉ
†
mk+qĉnk(âqν + â†−qν) (35)

where â†qν and â−qν denote the creation and annihilation operators for a phonon of the ν-th vibra-
tion mode with momentum q, and ĉ†nk and ĉnk denote the creation and annihilation operators for
an electron in the n-th electronic state with momentum k. The electron-phonon matrix element
gmnk,νq is in the following definition, the calculation of which is implemented in the Quantum
Espresso codes.

gmnk,νq =
1√
2ωνq

⟨ψmk+q(r)|∂νqV (r)|ψnk(r)⟩ (36)

The probability of finding the initial state |Si⟩ in the final state |Sf ⟩ can be described by the
S-matrix theory.15 We note that, for n = 1 term, it must vanish as it contains the unpaired creation
or annihilation operators of phonon. To the lowest order of non-zero terms in S-matrix terms, we
should consider the transition matrix element for n = 2 as-

⟨Sf |(Ĥep)2|Si⟩ =
∑

vcv′c′kk′qq′

⟨0|ASi
vckA

Sf
∗

v′c′k′ ĉ
†
v′k′ ĉc′k′(Ĥep)2ĉ†ckĉvk|0⟩

=
∑

vcv′c′νν′kq

AS
vckA

Sf
∗

v′c′kgvv′k,ν′qgcc′k,νq
(37)

with the wavefunction of an excited state expressed as,

|Si⟩ =
∑
vck

ASi
vck ĉ

†
ckĉvk|0⟩ (38)

where |0⟩ represents the ground state and ASi
vck are the coefficients of excited state obtained by

solving Bethe-Salpeter equation (BSE), implemented in the BerkeleyGW codes.
Our calculations are based on density functional theory (DFT) and many-body perturbation

theory, including the GW and BSE method. We first calculated the mean-field wavefunctions and
eigenvalues based on the DFT, implemented in the Quantum Espresso package, within the local
density approximation (LDA) functional.16 The pseudopotential was used in a norm-conserving
type with a energy cutoff 80 Ry. The force and electronic convergence tolerance is set to 0.01 eV
Å-1 and 10-8 eV. A Monkhorst–Packcentered k grid is set to 7×7×7 in the structure optimization,
while it is set to 11×11×11 in the self-consistent calculation. The phonon properties are obtained
by diagonalizing the force constant matrix with density functional perturbation theory (DFPT).17

After diagonalization of Ĥep, the eigenvectors S′x, where x = 0, 1, · · · , 5, represent new SF
electronic states which are a linear combination of SF basis states in pentacene crystal. As a result
of e-ph interactions in the pentacene crystal, the S1 state stabilizes (Table S5) and substantial
mixing among electronic states are evident (Fig. S12).
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Table S5: The final excited state energies (eV) in pentacene crystal [GW/BSE, in eV] modified as
a result of e-ph interactions

State Energy
S′1 1.55
S′2 1.78
S′3 1.85
S′4 1.96
S′5 2.67

Fig. S12: The composition of final SF electronic states of pentacene crystal as a function of SF
basis states.

S8 The exciton size

The charge-transfer number9 ΩAB is calculated by summing up the contributions to DMRG one-
particle transition density matrix from individual molecules A and B in the dimer -

ΩAB =
1

2

∑
r∈A

∑
s∈B

[
(τ0nS)r(Sτ

0n)rs + τ0nrs (Sτ
0nS)r

]
(39)

where S is the overlap matrix. An exciton size is determined by -

dexc =

√
1

Ω

∑
A,B

ΩAB(dAB)2 (40)

Here, Ω is a normalization factor computed by summing over ΩAB and dAB is the distance
between the centers-of-mass of two molecules in the pentacene dimer.
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Fig. S13: A delocalization of transition densities over two molecules in pentacene dimer for S†3↔S†4
(a) and S†4↔S†1 (b) transitions caused by out-of-phase vibronic modulations at Q=0.10 in the
vibronic stretching region.

Fig. S14: The exciton sizes for SF states along with the in-phase vibronic modulations.
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S9 Coordinates

1. The Cartesian coordinates of pentacene monomer (in Å) optimized for the ground (S0) state
at M062X/cc-pVTZ level of theory with E(S0)=-846.7252490 Eh.

C 1.28320100 -0.48314700 -0.11606800
C 0.77507900 -0.21099300 1.15285200
C 1.52588100 -0.43778900 2.32601900
C 1.01621000 -0.16609400 3.57498400
C 1.77304000 -0.39372600 4.77312400
C 1.25090200 -0.11917200 5.98917100
C -0.07675800 0.40799800 6.11132100
C -0.82886600 0.63956600 5.01244400
C -0.32159900 0.36533100 3.69808900
C -1.06796600 0.59268100 2.56461900
C -0.56169000 0.32020900 1.27583800
H 2.28671300 -0.88163600 -0.20831800
H 2.52955400 -0.83629700 2.23449300
H 2.77524500 -0.79175900 4.67718900
H 1.83235200 -0.29542100 6.88373300
H -0.47151100 0.61902800 7.09572100
H -1.83184300 1.03740500 5.10088600
H -2.07153000 0.99113200 2.65762000

C -1.31043000 0.54737800 0.12254100
C -0.80230900 0.27522600 -1.14633900
C -1.55311500 0.50202100 -2.31954400
C -1.04344600 0.23032900 -3.56848000
C -1.80027500 0.45796000 -4.76664300
C -1.27813800 0.18341000 -5.98267500
C 0.04954200 -0.34376600 -6.10482800
C 0.80164500 -0.57533700 -5.00596400
C 0.29438200 -0.30110500 -3.69158700
C 1.04074100 -0.52845300 -2.55814400
C 0.53446900 -0.25598000 -1.26932600
H -2.31394000 0.94586800 0.21481300
H -2.55678600 0.90052900 -2.22799900
H -2.80248100 0.85598900 -4.67069600
H -1.85957400 0.35965700 -6.87724800
H 0.44428300 -0.55478600 -7.08923400
H 1.80462100 -0.97317900 -5.09439500
H 2.04430600 -0.92690500 -2.65112800
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2. The Cartesian coordinates of pentacene dimer structure (in Å) with DMRG(22π22e)/NEVPT2/cc-
pVTZ (M=1000) energies of -1688.9122476, -1688.8444652, -1688.8413507, -1688.8392253, -
1688.8329462, -1688.8077224 Eh for S0-S5 states, respectively.

C -0.72537787 0.32890493 -1.16524187
C -0.51023340 0.38305041 1.25899737
C 0.51023340 -0.38305041 -1.25899737
C 0.72537787 -0.32890493 1.16524187
C -1.20766964 0.69585546 0.09163535
C 1.20766964 -0.69585546 -0.09163535
C 0.29160582 -0.43556160 -3.68807885
C 0.93793954 -0.27289858 3.59478361
C -0.93793954 0.27289858 -3.59478361
C -0.29160582 0.43556160 3.68807885
C 0.99088295 -0.75068114 -2.53803636
C 1.42510113 -0.64140131 2.35471673
C -1.42510113 0.64140131 -2.35471673
C -0.99088295 0.75068114 2.53803636
C 0.07391953 -0.48762907 -6.10372002
C 1.14906028 -0.21704806 6.01092297
C -1.14906028 0.21704806 -6.01092297
C -0.07391953 0.48762907 6.10372002
C 0.77459321 -0.80620762 -4.99015421
C 1.64403085 -0.58739597 4.80663426
C -1.64403085 0.58739597 -4.80663426
C -0.77459321 0.80620762 4.99015421
H -2.13551484 1.23047695 0.16203823
H 2.13551484 -1.23047695 -0.16203823
H -2.35301943 1.17587141 -2.28695991
H -1.91833375 1.28526889 2.61106092
H 1.91833375 -1.28526889 -2.61106092
H 2.35301943 -1.17587141 2.28695991
H -1.68534529 0.45758427 -6.90843347
H -0.44479268 0.76979454 7.07006372
H 0.44479268 -0.76979454 -7.07006372
H 1.68534529 -0.45758427 6.90843347
H -2.57159898 1.12174357 -4.73781787
H -1.70188534 1.34062468 5.06208058
H 1.70188534 -1.34062468 -5.06208058
H 2.57159898 -1.12174357 4.73781787

C 2.24846286 3.41094746 -1.13506502
C 2.50212283 3.48153794 1.28502348
C 3.48339217 4.11441606 -1.28502248
C 3.73705214 4.18500654 1.13506602
C 1.78575440 3.11041636 0.14656688
C 4.19976060 4.48553764 -0.14656588
C 3.22617016 4.04195114 -3.70980658
C 3.98821158 4.25401797 3.56058630
C 1.99730342 3.34193603 -3.56058530
C 2.75934484 3.55400286 3.70980758
C 3.94410651 4.41448611 -2.58879292
C 4.45605913 4.55695627 2.29558290
C 1.52945587 3.03899773 -2.29558190
C 2.04140849 3.18146789 2.58879392
C 2.97010282 3.96973480 -6.12116200
C 4.23771700 4.32249635 5.97273853
C 1.74779800 3.27345765 -5.97273753
C 3.01541218 3.62621920 6.12116300
C 3.68885920 4.34383827 -5.03677250
C 4.71394497 4.62910712 4.74324210
C 1.27157003 2.96684688 -4.74324110
C 2.29665580 3.25211573 5.03677350
H 0.85842130 2.58216773 0.25917293
H 5.12709370 5.01378627 -0.25917193
H 0.60200773 2.51076386 -2.18562471
H 1.11451154 2.65338742 2.70400983
H 4.87100346 4.94256658 -2.70400883
H 5.38350727 5.08519014 2.18562571
H 1.19695718 2.98808577 -6.84802130
H 2.65959552 3.39512017 7.10654218
H 3.32591948 4.20083383 -7.10654118
H 4.78855782 4.60786823 6.84802230
H 0.34448907 2.43878927 -4.63223774
H 1.36990024 2.72414869 5.15088151
H 4.61561476 4.87180531 -5.15088051
H 5.64102593 5.15716473 4.63223874
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