Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2021

Supporting Information

for

Directed Regioselective Ortho, Ortho'-Magnesiations of Aromatics and Heterocycles using sBu₂Mg in Toluene

A. Hess, J. P. Prohaska, S. B. Doerrich, F. Trauner, F. H. Lutter, S. Lemaire, S. Wagschal, K. Karaghiosoff, P. Knochel

Ludwig-Maximilians-Universität München

Department Chemie

Butenandtstrasse 5-13, Haus F, 81377 München (Germany)

E-mail: paul.knochel@cup.uni-muenchen.de

Table of Content

1. General Information	1
2. Reagents	3
3. Optimization of the Metalation	4
4. Typical Procedures	8
5. Starting Materials	10
6. Preparation of Compounds	21
7. Synthetic Transformations	81
8. NMR Spectra	84
9. Single Crystal X-Ray Diffraction Studies	167

1. General Information

All reactions were carried out under argon or nitrogen atmosphere in glassware dried with a heat gun (650 °C) under high vacuum (<1 mbar). Syringes which were used to transfer anhydrous solvents or reagents were purged thrice with argon or nitrogen prior to use. Indicated yields are isolated yields of compounds estimated to be >95% pure as determined by ¹H-NMR (25 °C) and capillary GC. Unless otherwise indicated, all reagents were obtained from commercial sources.

Solvents

Toluene was continuously refluxed and freshly distilled from sodium under nitrogen and stored over molecular sieves. THF was continuously refluxed and freshly distilled from sodium benzophenone ketyl under nitrogen and stored over molecular sieves. Solvents for flash column chromatography were distilled prior to use.

Chromatography

Flash column chromatography was performed using SiO₂60 (0.040-0.063 mm, 230-400 mesh ASTM) from Merck. Thin layer chromatography (TLC) was performed using aluminum plates covered with SiO₂ (Merck 60, F-254). Spots were visualized under UV light.

Analytical Data

¹**H-NMR** and ¹³**C-NMR** spectra were recorded on VARIAN Mercury 200, BRUKER ARX 300, VARIAN VXR 400 S and BRUKER AMX 600 instruments. Chemical shifts are reported as values in ppm relative to tetramethylsilane. CDCl₃ peaks were set to 7.26 ppm in ¹H NMR and 77.16 ppm in ¹³C NMR experiments. The following abbreviations were used to characterize signal multiplicities: s (singlet), d (doublet), dd (doublet of doublets),t (triplet),q (quartet), hept (heptett)as well as m (multiplet).

Mass spectroscopy: High resolution (HRMS) and low resolution (MS) spectra were recorded on a FINNIGAN MAT 95Q instrument. Electron impact ionization (EI) was conducted with an ionization energy of 70 eV. For coupled gas chromatography/mass spectrometry, a HEWLETT-PACKARD HP 6890/MSD 5973 GC/MS system was used. Molecular fragments are reported starting at a relative intensity of 10-20%.

Infrared spectra (IR) were recorded from 4500 cm⁻¹ to 650 cm⁻¹ on a PERKIN ELMER Spectrum BX-59343 instrument. For detection a SMITHS DETECTION DuraSamplIR II Diamond ATR sensor was used. The main absorption peaks are reported in cm⁻¹.

Melting points (m.p.) were determined on a BÜCHI B-540 melting point apparatus and are uncorrected.

2. Reagents

All reagents were obtained from commercial sources and used without further purification unless otherwise stated.

*n*BuLi and *s*BuLi solutions in hexane/cyclohexane were purchased from Albemarle and the concentration was determined by titration using 1,10-phenanthroline in THF with *i*PrOH.¹

sBuMgCI solution in Et₂O was purchased from Sigma-Aldrich and the concentration was determined by iodometric titration.

sBu₂Mg: A dry and argon-flushed Schlenk-flask equipped with a stirring bar and a septum, was charged with sBuMgCl (10.2 mL, 20 mmol, 1.95 M in Et₂O, 1.00 equiv). Then sBuLi (12.8 mL, 20 mmol, 1.56 M in cyclohexane, 1.00 equiv) was added at room temperature under vigorous stirring. The resulting suspension was stirred for 2 h at room temperature. The solvents were removed under vacuum followed by addition of dry toluene (40 mL). The resulting suspension was vigorously stirred and allowed to settle overnight. The colourless solution was carefully transferred by cannula using a syringe filter and titrated (benzoic acid and 4-(phenylazo)diphenylamine as indicator, 0.43-0.48 M, 96% yield) prior use.

¹H NMR (400 MHz, Toluene-*d*₈) δ (ppm) = 1.80 (pd, *J* = 7.2, 2.0 Hz, 4H), 1.45 (d, *J* = 7.9 Hz, 6H), 1.15 (t, *J* = 7.2 Hz, 6H), 0.02 (hept, *J* = 8.5 Hz, 2H).

Ph₂Mg², **(TMSCH₂)₂Mg³**, *t***Bu₂Mg⁴** and *c***Hex₂Mg⁵** were prepared using the same procedure.

CuCN-2LiCI: A CuCN-2LiCI solution (1.00 M) was prepared by drying CuCN (80.0 mmol, 7.17 g) and LiCI (160 mmol, 6.77 g) in a Schlenk-flask under vacuum at 140 °C for 12 h. After cooling, dry THF (80 mL) was added and stirring was continued until the salts were dissolved.⁶

ZnCl₂: A ZnCl₂ solution (1.00 M) was prepared by drying ZnCl₂ (200 mmol, 27.3 g) in a Schlenk-flask under vacuum at 140 °C for 5 h. After cooling, dry THF (200 mL) was added and stirring continued until the salt was dissolved.

¹ J. Skotnitzki, A. Kremsmair, D. Keefer, Y. Gong, R. de Vivie-Riedle, P. Knochel, *Angew. Chem. Int. Ed.* **2020**, 59, 320-324.

² I. Fujii, K. Semba, Q.-Z. Li, S. Sakaki, Y. Nakao, *J. Am. Chem. Soc.* **2020**, *142*, 11647-11652.

³ J. Francos, S. Zaragoza-Calero, C. T. O'Hara, *Dalton Trans.* 2014, 43, 1408-1412.

⁴ E. C. Ashby, G. E. Parris, *J. Am. Chem. Soc.* **1971**, *93*, 1206-1213.

⁵ F. R. Jensen, K. L. Nakamaye, *J. Am. Chem. Soc.* **1968**, *90*, 3248-3250.

⁶ P. Knochel, M. C. P. Yeh, S. C. Berk, J. Talbert, J. Org. Chem. **1988**, 53, 2390-2392.

3. Optimization of the metalation

Table 1: Optimization of the metalation of oxazoline 8a.

	Me O N	reagent (x.x equiv) solvent, 25 °C, time	$ \begin{array}{c} Me \\ Me \\ Me \\ N \\ Me \\ N \\ Me \\ N \\ $		
	8a	ĺ	9a 10a		
Entry	Reagent	Equivalents	Solvent	Time	Yield ^[a]
1	sBuMgCl	1.2	ether/toluene	1 h	0%
2	Ph₂Mg	0.6	toluene	1 h	0%
3	(TMSCH ₂) ₂ Mg	0.6	toluene	1 h	0%
4	<i>t</i> Bu₂Mg	0.6	toluene	1 h	0%
5	<i>c</i> Hex₂Mg	0.6	toluene	0.5 h	26%
6	<i>c</i> Hex₂Mg	0.6	toluene	1 h	46%
7	sBu₂Mg	0.6	cyclohexane	0.5 h	70%
8	sBu₂Mg	0.6	cyclohexane	1 h	61%
9	sBu₂Mg	0.55	toluene	0.5 h	62%
10	sBu₂Mg	0.55	toluene	1 h	78%
11	sBu₂Mg	0.6	toluene	0.5 h	74%
12	sBu₂Mg	0.6	toluene	1 h	91%
13	sBu₂Mg	0.6	toluene	1.5 h	85%
14	<i>s</i> Bu₂Mg	0.6	THF	1 h	73%

[a] Calibrated GC-yield using undecane as internal standard.

NMR studies on sBu₂Mg:

The amount of complexed ether was determined as 0.5 equiv with respect to 1.0 equiv sBu₂Mg.

⁷Li-NMR of sBu₂Mg in toluene-*d*₈:

Deuterolysis experiments:

Metalation yield = 94%; Ratio c:d:f = 98:1:1.

Metalation yield = 100%; Ratio b:c = >99:1.

Metalation yield = 75%; Ratio b:c = 97:3.

4. Typical Procedures

Typical Procedure 1 (TP1): Regioselective metalation and functionalization using sBu₂Mg

A dry and argon flushed Schlenk-tube, equipped with a magnetic stirring bar and a septum, was charged with the corresponding substrate (1.0 equiv) in dry toluene (0.5 M solution). The resulting solution was stirred at indicated temperature and *s*Bu₂Mg (0.60-0.80 equiv) was added dropwise. The completion of the metalation was checked by GC-analysis of reaction aliquots quenched with iodine, using undecane as internal standard. Subsequent reactions with electrophiles (1.2 equiv) were carried out under the indicated conditions. After complete conversion, the mixture was quenched with sat. aq. NH₄Cl solution and extracted with ethyl acetate (3 x 10 mL). The combined organic extracts were dried over MgSO₄, filtered and concentrated. Purification of the crude product by flash column chromatography using an indicated eluent afforded the corresponding title compounds.

Typical Procedure 2 (TP2): Preparation of 1-aryl-4-trimethylsilyl-1H-1,2,3-triazoles

A dry and argon flushed Schlenk-tube, equipped with a magnetic stirring bar and a septum, was charged with the corresponding aromatic azide (30.0 mmol, 1.0 equiv) and dissolved in dry acetonitrile (20 mL). Copper(I)-iodide (3.0 mmol, 10 mol%), trimethylsilylacetylene (87.7 mmol, 2.92 equiv) and DIPEA (15.0 mmol, 0.5 equiv) were added and the reaction mixture was stirred for a indicated time at room temperature. The reaction mixture was quenched with water, filtered through a short pad of celite and extracted with ethyl acetate (3 x 30 mL). The combined organic extracts were dried over MgSO₄, filtered and concentrated *in vacuo*. The crude product was purified by flash column chromatography.

Typical Procedure 3 (TP3): Preparation of aryl amides

A dry and argon flushed Schlenk-tube, equipped with a magnetic stirring bar and a septum, was charged with the corresponding aromatic acid chloride (20.0 mmol, 1.0 equiv) and dissolved in dry dichloromethane (20 mL). NEt₃ (24.0 mmol, 1.2 equiv) was added and the corresponding amine (28.0 mmol, 1.4 equiv) was added dropwise at 0 °C. The reaction mixture was allowed to warm to room temperature and stirred overnight. The reaction mixture was quenched with sat. aq. NaHCO₃ solution and extracted with dichloromethane (3 x 30 mL). The combined organic extracts were dried over MgSO₄, filtered and concentrated *in vacuo*. The crude products were purified by flash column chromatography.

Typical Procedure 4 (TP4): Preparation of aryl phosphordiamidate derivatives

The described preparation was performed according to a modified literature procedure.⁷ A dry and argon flushed Schlenk-tube, equipped with a magnetic stirring bar and a septum, was charged with the corresponding phenol (20.0 mmol, 1.0 equiv) and DMAP (2.0 mmol, 10 mol%) and subsequently dissolved in dry THF (20 mL). NEt₃ (24.0 mmol, 1.2 equiv) and *N*,*N*,*N*',*N*'-tetramethylphosphordiamidic chloride (24.0 mmol, 1.2 equiv) were added and the reaction mixture was stirred for 24 h at room temperature. The mixture was quenched with brine (20 mL) and extracted with ethyl acetate (3 x 30 mL). The combined organic extracts were dried over MgSO₄, filtered and concentrated *in vacuo*. The crude products were purified by flash column chromatography.

⁷ M. Balkenhohl, B. Heinz, T. Abegg, P. Knochel, Org. Lett. 2018, 24, 8057-8060.

5. Starting Materials

2-(4-Methoxyphenyl)-4,4-dimethyl-4,5-dihydrooxazole (8b)

2-(4-Methoxyphenyl)-4,4-dimethyl-4,5-dihydrooxazole (**8b**) was prepared according to a literature procedure.⁸

¹**H NMR (400 MHz, CDCI₃):** δ (ppm) = 7.92–7.87 (m, 2H), 6.93–6.88 (m, 2H), 4.09 (s, 2H), 3.84 (s, 3H), 1.38 (s, 6H).

¹³C NMR (101 MHz, CDCl₃) δ (ppm) = 162.0, 130.0, 120.2, 113.66, 79.1, 67.3, 55.3, 28.4.

2-(4-Chlorophenyl)-2H-1,2,3-triazole (16a)

2-(4-Chlorophenyl)-2*H*-1,2,3-triazole (**16a**) was prepared according to modified literature procedures.⁹ 4-chlorophenylhydrazine hydrochloride (8.95 g, 50.0 mmol, 1.0 equiv) was suspended in water (100 mL). Sodium acetate trihydrate (20.41 g, 150.0 mmol, 3.0 equiv) was added followed by dropwise addition of an aqueous solution of glyoxal (40% in water, 3.63 mL, 25.0 mmol, 0.5 equiv). The reaction mixture was vigorously stirred for 2 h. The yellow precipitate was filtrated, dried and used without further purification. A dry and argon flushed three-necked flask, equipped with a magnetic stirring bar, reflux condenser and a septum, was charged with the dry osazone and diluted in toluene (25 mL). Copper(II) triflate (0.27 g, 3 mol%) was added and the reaction mixture was heated to reflux for 48 h. The reaction mixture was cooled to room temperature, filtered through a short pad of celite and

⁸ D. A. Gutierrez, W.-C. C. Lee, Y. Shen, J. J. Li, *Tetrahedron Lett.* 2016, 57, 5372-5376.

⁹ (a) J. L. Riebsomer, *J. Org. Chem.* **1948**, *13*, 815-821. (b) G. F. Myachina, T. G. Ermakova, N. P. Kuznetsova, R. G. Sultangareev, L. I. Larina, L. V. Klyba, G. T. Suchanov, B. A. Trofimov, *Chem. Heterocycl. Cmpd.* **2010**, *46*, 79-81.

concentrated *in vacuo*. The crude product was purified by flash column chromatography (silica gel, *i*hexane/EtOAc = 99:1) affording 2-(4-Chlorophenyl)-2*H*-1,2,3-triazole as an orange solid (**16a**, 2.991 g, 16.7 mmol, 67% yield).

¹H NMR (400 MHz, CDCl₃): δ (ppm) = 8.08–8.00 (m, 2H), 7.82 (s, 2H), 7.49–7.42 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ (ppm) = 138.8, 136.2, 133.6, 129.8, 120.5.

2-(3,5-Dichlorophenyl)-2H-1,2,3-triazole (16b)

2-(3,5-Dichlorophenyl)-2*H*-1,2,3-triazole (**16b**) was prepared according to modified literature procedures.¹⁰ 3,5-dichlorophenylhydrazine hydrochloride (14.16 g, 80.0 mmol, 1.0 equiv) was suspended in water (160 mL). Sodium acetate trihydrate (32.66 g, 240.0 mmol, 3.0 equiv) was added followed by dropwise addition of an aqueous solution of glyoxal (40% in water, 5.81 mL, 40.0 mmol, 0.5 equiv). The reaction mixture was vigorously stirred for 2 h. The yellow precipitate was filtrated, dried and used without further purification. A dry and argon flushed three-necked flask, equipped with a magnetic stirring bar, reflux condenser and a septum, was charged with the dry osazone and diluted in toluene (40 mL). Copper(II) triflate (0.95 g, 3 mol%) was added and the reaction mixture was heated to reflux for 48 h. The reaction mixture was cooled to room temperature, filtered through a short pad of celite and concentrated *in vacuo*. The crude product was purified by flash column chromatography (silica gel, *i*hexane/EtOAc = 99:1) affording 2-(3,5-dichlorophenyl)-2*H*-1,2,3-triazole as a brown solid (**16b**, 4.691 g, 22.0 mmol, 55% yield).

¹**H NMR (400 MHz, CDCl₃):** δ (ppm) = 8.04 (d, *J* = 1.9 Hz, 2H), 7.84 (s, 2H), 7.34 (t, *J* = 1.9 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃) δ (ppm) = 140.9, 136.4, 135.8, 127.4, 117.5.

¹⁰ J. L. Riebsomer, *J. Org. Chem.* **1948**, *13*, 815-821; G. F. Myachina, T. G. Ermakova, N. P. Kuznetsova, R. G. Sultangareev, L. I. Larina, L. V. Klyba, G. T. Suchanov, B. A. Trofimov, *Chem. Heterocycl. Cmpd.* **2010**, *46*, 79-81.

1-(4-Fluorophenyl)-4-(trimethylsilyl)-1*H*-1,2,3-triazole (20a)

1-(4-Fluorophenyl)-4-(trimethylsilyl)-1*H*-1,2,3-triazole (**20a**) was prepared according to **TP 2** using 1-azido-4-fluorobenzene. The reaction was complete after 48 h. The crude product was purified by flash column chromatography (silica gel, *i*hexane/EtOAc = 9:1) affording the desired compound as a pale brown solid (**20a**, 5.72 g, 24.3 mmol, 81% yield).

¹**H NMR (400 MHz, CDCI₃):** δ (ppm) = 7.89 (s, 1H), 7.74–7.68 (m, 2H), 7.24–7.18 (m, 2H), 0.38 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ (ppm) = 163.2, 160.8, 147.3, 133.2, 133.1, 127.1, 122.5, 122.5, 116.5, 116.2, -1.4.

Analytical data was equivalent to literature.¹¹

1-(*p*-Tolyl)-4-(trimethylsilyl)-1*H*-1,2,3-triazole (20c)

1-(*p*-Tolyl)-4-(trimethylsilyl)-1*H*-1,2,3-triazole (**20c**) was prepared according to **TP 2** using 1azido-4-methylbenzene. The reaction was complete after 24 h. The crude product was purified by flash column chromatography (silica gel, *i*hexane/EtOAc = 9:1) affording the desired compound as a pale brown solid (**20c**, 4.33 g, 18.7 mmol, 62% yield).

¹H NMR (400 MHz, CDCI₃): δ (ppm) = 7.89 (s, 1H), 7.64–7.58 (m, 2H), 7.33–7.28 (m, 2H), 2.42 (s, 3H), 0.37 (s, 9H).

¹³**C NMR (101 MHz, CDCI₃)** δ (ppm) = 148.2, 139.6, 135.9, 131.2, 128.2, 121.8, 22.2, 0.0. Analytical data was equivalent to literature.¹¹

¹¹ F. H. Lutter, L. Grokenberger, L. A. Perego, D. Broggini, S. Lemaire, S. Wagschal, P. Knochel, *Nat. Comm.* **2020**, *11*, 4443.

1-Phenyl-4-(trimethylsilyl)-1H-1,2,3-triazole (20d)

1-Phenyl-4-(trimethylsilyl)-1*H*-1,2,3-triazole (**20d**) was prepared according to **TP 2** using azidobenzene. The reaction was complete after 48 h. The crude product was purified by flash column chromatography (silica gel, *i*hexane/EtOAc = 6:1) affording the desired compound as a pale brown solid (**20d**, 4.35 g, 20.0 mmol, 67% yield).

¹H NMR (400 MHz, CDCI₃): δ (ppm) = 7.94 (s, 1H), 7.78–7.70 (m, 2H), 7.56–7.47 (m, 2H), 7.47–7.38 (m, 1H), 0.38 (s, 9H).

¹³**C NMR (101 MHz, CDCI₃)** δ (ppm) = 147.3, 137.1, 129.8, 128.7, 127.3, 120.9, -0.9. Analytical data was equivalent to literature.¹¹

1-(Benzo[d][1,3]dioxol-5-yl)-4-(trimethylsilyl)-1H-1,2,3-triazole (20e)

1-(Benzo[*d*][1,3]dioxol-5-yl)-4-(trimethylsilyl)-1*H*-1,2,3-triazole (**20e**) was prepared according to **TP 2** using 5-azidobenzo[*d*][1,3]dioxole. The reaction was complete after 48 h. The crude product was purified by flash column chromatography (silica gel, *i*hexane/EtOAc = 9:1) affording the desired compound as a pale brown solid (**20e**, 4.28 g, 16.4 mmol, 55% yield).

¹**H NMR (400 MHz, CDCl₃):** δ (ppm) = 7.83 (s, 1H), 7.24 (d, *J* = 2.2 Hz, 1H), 7.14 (dd, *J* = 8.3, 2.2 Hz, 1H), 6.89 (d, *J* = 8.3 Hz, 1H), 6.07 (s, 2H), 0.37 (s, 9H).

¹³**C NMR (101 MHz, CDCI₃)** δ (ppm) = 149.8, 149.3, 147.8, 132.3, 128.8, 115.7, 109.6, 104.1, 103.3, 0.0.

MS (EI, 70 eV): m/z (%) = 236 (39), 233 (17), 218 (100), 190 (23), 168 (11).

HRMS (EI) for C₁₂H₁₅N₃O₂Si: calc. [M–CH₃N₂]²: 218.0637, found: 218.0629.

IR (Diamond-ATR, neat): $\tilde{\nu}/cm^{-1} = 3128 \text{ (vw)}, 2952 \text{ (w)}, 2897 \text{ (w)}, 1507 \text{ (m)}, 1484 \text{ (w)}, 1470 \text{ (m)}, 1463 \text{ (m)}, 1376 \text{ (w)}, 1246 \text{ (s)}, 1233 \text{ (m)}, 1205 \text{ (m)}, 1193 \text{ (m)}, 1170 \text{ (w)}, 1126 \text{ (m)}, 1108 \text{ (w)}, 1042 \text{ (s)}, 989 \text{ (m)}, 938 \text{ (m)}, 884 \text{ (m)}, 840 \text{ (vs)}, 818 \text{ (s)}, 806 \text{ (s)}, 799 \text{ (s)}, 756 \text{ (s)}, 726 \text{ (w)}, 690 \text{ (m)}.$

N,N-Diethyl-3-fluorobenzamide (23a)

N,*N*-Diethyl-3-fluorobenzamide (**23a**) was prepared according to **TP 3** using 3-fluorobenzoyl chloride and diethylamine. The crude product was purified by flash column chromatography (silica gel, *i*hexane/EtOAc = 4:1) affording the desired compound as a colorless liquid (**23a**, 3.87 g, 19.8 mmol, 99% yield).

¹H NMR (400 MHz, CDCl₃): δ (ppm) = 7.36 (dtd, J = 7.5, 5.6, 2.3 Hz, 1H), 7.14 (dt, J = 7.6, 1.3 Hz, 1H), 7.08 (ddt, J = 8.7, 7.0, 2.0 Hz, 2H), 3.63–3.15 (m, 4H), 1.35–1.02 (m, 6H). ¹³C NMR (101 MHz, CDCl₃) δ (ppm) = 169.8–161.3 (d, J = 847.21 Hz), 139.3 (d, J = 6.7 Hz), 130.3 (d, J = 8.1 Hz), 121.9 (d, J = 3.2 Hz), 116.2 (d, J = 21.0 Hz), 113.6 (d, J = 22.7 Hz). Analytical data was equivalent to literature.¹²

3,5-Dichloro-N,N-diethylbenzamide (23b)

3,5-Dichloro-*N*,*N*-diethylbenzamide (**23b**) was prepared according to **TP 3** using 3,5dichlorobenzoyl chloride and diethylamine. The crude product was purified by flash column chromatography (silica gel, *i*hexane/EtOAc = 4:1) affording the desired compound as a colorless solid (**23b**, 4.92 g, 20.0 mmol, 100% yield).

¹² R. J. Mills, N. J. Taylor, V. Snieckus, *J. Org. Chem.* **1989**, *54*, 4372.

¹**H NMR (400 MHz, CDCl₃):** δ (ppm) = 7.37 (t, *J* = 1.9 Hz, 1H), 7.23 (d, *J* = 1.9 Hz, 2H), 3.36 (dq, *J* = 115.6, 7.3 Hz, 4H), 1.16 (dt, *J* = 44.0, 7.4 Hz, 6H).

¹³C NMR (101 MHz, CDCl₃) δ (ppm) = 168.2, 139.9, 135.3, 129.3, 124.8, 43.3, 39.5, 14.2, 12.8.

Analytical data was equivalent to literature.¹³

3,4-Dichloro-N,N-diethylbenzamide (23c)

3,4-Dichloro-*N*,*N*-diethylbenzamide (**23c**) was prepared according to **TP 3** using 3,4dichlorobenzoyl chloride and diethylamine. The crude product was purified by flash column chromatography (silica gel, *i*hexane/EtOAc = 4:1) affording the desired compound as a colorless oil (**23c**, 5.09 g, 20.0 mmol, 100% yield).

¹**H NMR (400 MHz, CDCI₃):** δ (ppm) = 7.47 (dd, *J* = 5.1, 3.1 Hz, 2H), 7.20 (dd, *J* = 8.2, 1.9 Hz, 1H), 3.77–3.06 (m, 4H), 1.42–1.03 (m, 6H).

¹³C NMR (101 MHz, CDCl₃) δ (ppm) = 168.8, 137.0, 133.5, 132.9, 130.6, 128.6, 125.7, 43.4, 39.5, 14.2, 12.8.

Analytical data was equivalent to literature.¹⁴

¹³ M. Demas, G. J. Javadi, L. M. Bradley, D. A. Hunt, *J. Org. Chem.* **2000**, *21*, 7201-7202.

¹⁴ K. Shichijo, M. Fujitsuka, Y. Hisaeda, H. Shimakoshi, J. Organomet. Chem. 2020, 907, 121058.

(3,4-Dichlorophenyl)(morpholino)methanone (23d)

(3,4-Dichlorophenyl)(morpholino)methanone (**23d**) was prepared according to **TP 3** using 3,4dichlorobenzoyl chloride and morpholine. The crude product was purified by flash column chromatography (silica gel, *i*hexane/EtOAc = 4:1 to 1:1) affording the desired compound as a yellow solid (**23d**, 5.04 g, 19.3 mmol, 97% yield).

¹**H NMR (400 MHz, CDCl₃):** δ (ppm) = 7.48–7.41 (m, 2H), 7.19–7.15 (m, 1H), 3.53 (d, *J* = 120.1 Hz, 8H).

¹³**C NMR (101 MHz, CDCl₃)** δ (ppm) = 168.0, 135.0, 134.4, 133.1, 130.7, 129.4, 126.4, 66.8. Analytical data was equivalent to literature.¹⁵

(3,4-Dichlorophenyl)(4-methylpiperazin-1-yl)methanone (23e)

(3,4-Dichlorophenyl)(4-methylpiperazin-1-yl)methanone (**23e**) was prepared according to **TP 3** using 3,4-dichlorobenzoyl chloride and *N*-methylpiperazine. The crude product was purified by flash column chromatography (silica gel, *h*hexane/EtOAc = 1:1) affording the desired compound as an orange solid (**23e**, 5.217 g, 19.1 mmol, 95% yield).

¹**H NMR (400 MHz, CDCl₃):** δ (ppm) = 7.53–7.47 (m, 2H), 7.24 (dd, *J* = 8.2, 2.0 Hz, 1H), 3.60 (d, *J* = 139.7 Hz, 4H), 2.32 (s, 7H).

¹³C NMR (101 MHz, CDCl₃) δ (ppm) = 167.8, 135.6, 134.1, 133.0, 130.6, 129.3, 126.4, 46.0.

¹⁵ A. Althammer, L. Ackermann, Angew. Chem. Int. Ed. 2007, 46, 1627-1629.

MS (EI, 70 eV): m/z (%) = 229 (28), 227 (46), 180 (14), 174 (52), 172 (82), 146 (12), 144 (19), 110 (23), 108 (69), 99 (20), 84 (10), 83 (16), 82 (18), 75 (17), 74 (22), 70 (67), 58 (34), 56 (22), 42 (32).

HRMS (EI) for C₁₂H₁₄Cl₂N₂O: calc. [M]: 272.0483, found: 272.0480.

IR (Diamond-ATR, neat): $\tilde{\nu}/cm^{-1} = 2946$ (m), 2930 (m), 2859 (m), 1626 (vs), 1587 (m), 1553 (m), 1475 (m), 1461 (m), 1434 (vs), 1402 (m), 1377 (m), 1368 (m), 1352 (w), 1346 (w), 1287 (s), 1277 (s), 1258 (m), 1251 (s), 1235 (m), 1178 (w), 1148 (w), 1140 (w), 1132 (m), 1125 (m), 1105 (m), 1030 (m), 1003 (m), 954 (w), 895 (m), 881 (m), 851 (s), 835 (m), 807 (w), 793 (w), 781 (w), 753 (m), 710 (w), 670 (m), 660 (m).

(3,4-Dichlorophenyl)(piperidin-1-yl)methanone (23f)

(3,4-Dichlorophenyl)(piperidin-1-yl)methanone (**23f**) was prepared according to **TP 3** using 3,4-dichlorobenzoyl chloride and piperidine. The crude product was purified by flash column chromatography (silica gel, *i*hexane/EtOAc = 1:1) affording the desired compound as a white solid (**23f**, 4.827 g, 18.7 mmol, 94% yield).

¹**H NMR (400 MHz, CDCl₃):** δ (ppm) = 7.50–7.43 (m, 2H), 7.21 (dd, *J* = 8.2, 1.9 Hz, 1H), 3.78– 3.22 (m, 4H), 1.73–1.44 (m, 6H).

¹³**C NMR (101 MHz, CDCl₃)**: δ (ppm) = 167.8, 136.3, 133.7, 132.9, 130.5, 129.1, 126.2, 48.8, 43.3, 26.5, 25.5, 24.5.

MS (EI, 70 eV): m/z (%) = 258 (63), 257 (12), 256 (100), 174 (15), 172 (24), 108 (15). **HRMS (EI)** for C₁₂H₁₃Cl₂NO: calc. [M]: 257.0374, found: 257.0375.

IR (Diamond-ATR, neat): $\tilde{\nu}$ /cm⁻¹ = 2950 (w), 2929 (m), 2868 (w), 2845 (w), 2794 (m), 2769 (w), 1630 (vs), 1585 (m), 1549 (w), 1476 (w), 1455 (m), 1438 (vs), 1373 (m), 1362 (m), 1295 (s), 1289 (s), 1275 (s), 1265 (m), 1253 (m), 1239 (m), 1204 (w), 1170 (m), 1141 (s), 1128 (s), 1089 (w), 1073 (w), 1052 (m), 1029 (vs), 1000 (s), 913 (m), 903 (m), 848 (vs), 840 (m), 790 (s), 777 (m), 750 (vs), 712 (w), 681 (m), 665 (m).

3-Chlorophenyl N,N,N',N'-tetramethylphosphorodiamidate (23g)

3-Chlorophenyl *N*,*N*,*N'*,*N'*-tetramethylphosphorodiamidate (**23g**) was prepared according to **TP 4** using 3-chlorophenol. The crude product was purified by flash column chromatography (silica gel, *i*hexane/EtOAc = 1:1) affording the desired compound as a colorless liquid (**23g**, 3.37 g, 12.8 mmol, 64% yield).

¹**H NMR (400 MHz, CDCl₃):** δ (ppm) = 7.25–7.18 (m, 2H), 7.14–7.08 (m, 2H), 2.72 (d, *J* = 10.1 Hz, 12H).

¹³C NMR (101 MHz, CDCl₃): δ (ppm) = 151.9, 134.7, 130.3, 124.4, 120.7, 118.4, 36.7.

³¹P NMR (162 MHz, CDCl₃): δ (ppm) = 16.1.

Analytical data was equivalent to literature.¹⁶

3,5-Dichlorophenyl N,N,N',N'-tetramethylphosphorodiamidate (23h)

3,5-Dichlorophenyl *N*,*N*,*N'*,*N'*-tetramethylphosphorodiamidate (**23h**) was prepared according to **TP 4** using 3,5-dichlorophenol. The crude product was purified by flash column chromatography (silica gel, *i*hexane/EtOAc = 1:1) affording the desired compound as a colorless liquid (**23h**, 5.08 g, 17.1 mmol, 85% yield).

¹H NMR (400 MHz, CDCl₃): δ (ppm) = 7.11 (d, J = 1.0 Hz, 3H), 2.70 (d, J = 10.2 Hz, 12H). ¹³C NMR (101 MHz, CDCl₃): δ (ppm) = 152.4, 135.3, 124.6, 119.2, 36.6. ³¹P NMR (162 MHz, CDCl₃): δ (ppm) = 16.3. MS (EI, 70 eV): m/z (%) = 189 (29), 188 (47), 135 (100), 92 (11). HRMS (EI) for C₁₀H₁₅Cl₂N₂O₂P: calc. [M- C₂H₆N]: 251.9748, found: 251.9740.

¹⁶ C. J. Rohbogner, G. Clososki, P. Knochel, Angew. Chem. Int. Ed. 2008, 47, 1503-1507.

IR (Diamond-ATR, neat): $\tilde{\nu}$ /cm⁻¹ = 2928 (w), 2896 (w), 2811 (vw), 1582 (m), 1572 (s), 1455 (w), 1428 (m), 1305 (m), 1294 (m), 1246 (m), 1228 (m), 1218 (m), 1177 (m), 1096 (m), 1068 (w), 988 (s), 952 (vs), 847 (m), 830 (w), 809 (s), 787 (s), 756 (s), 674 (m), 665 (m).

4-Chloronaphtyl N,N,N',N'-tetramethylphosphorodiamidate (23i)

4-Chloronaphtyl N,N,N',N'-tetramethylphosphorodiamidate (**23i**) was prepared according to **TP 4** using 4-chloronaphtol. The crude product was purified by flash column chromatography (silica gel, *i*hexane/EtOAc = 1:1) affording the desired compound as a colorless solid (**23i**, 5.82 g, 18.6 mmol, 93% yield).

¹**H NMR (400 MHz, CDCl₃):** δ (ppm) = 8.31–8.17 (m, 2H), 7.63 (dddd, *J* = 19.5, 8.2, 6.9, 1.4 Hz, 2H), 7.51 (s, 2H), 2.80 (d, *J* = 10.1 Hz, 12H).

¹³**C NMR (101 MHz, CDCI₃):** δ (ppm) =146.4, 146.3, 131.6, 127.4, 126.7, 125.8, 124.7, 121.9, 114.3, 36.8.

³¹**P NMR (162 MHz, CDCI₃):** δ (ppm) = 16.29.

MS (EI, 70 eV): m/z (%) = 312 (13), 149 (10), 135 (100).

HRMS (EI) for C₁₄H₁₈CIN₂O₂P: calc. [M]: 312.0794, found: 312.0787.

IR (Diamond-ATR, neat): $\tilde{\nu}$ /cm⁻¹ = 2923 (w), 2889 (w), 2847 (w), 2799 (w), 1593 (w), 1503 (w), 1477 (w), 1454 (m), 1417 (w), 1371 (m), 1313 (m), 1254 (m), 1222 (s), 1179 (m), 1147 (m), 1115 (w), 1047 (m), 1025 (w), 1000 (s), 984 (s), 950 (m), 856 (s), 836 (s), 759 (vs), 707 (m), 674 (m), 656 (m).

Melting point: M.p. = 111 °C

4-Chlorophenyl N,N,N',N'-tetramethylphosphorodiamidate (23j)

4-Chlorophenyl *N*,*N*,*N'*,*N'*-tetramethylphosphorodiamidate (**23j**) was prepared according to **TP 4** using 4-chlorophenol. The crude product was purified by flash column chromatography (silica gel, *i*hexane/EtOAc = 1:4) affording the desired compound as a yellow liquid (**23j**, 4.95 g, 18.8 mmol, 94% yield).

¹H NMR (400 MHz, CDCl₃): δ (ppm) = 7.30–7.26 (m, 2H), 7.17–7.12 (m, 2H), 2.72 (d, J = 10.1 Hz, 12H).

¹³C NMR (101 MHz, CDCI₃): δ (ppm) = 150.0, 129.5, 129.3, 121.5, 36.6.

³¹**P NMR (162 MHz, CDCl₃):** δ (ppm) = 16.24.

Analytical data was equivalent to literature.¹⁶

6. Preparation of compounds

2-(2-lodophenyl)-4,4-dimethyl-4,5-dihydrooxazole (10a)

According to **TP 1**, to a mixture of 4,4-dimethyl-2-phenyl-4,5-dihydrooxazole (**8a**, 85 μ L, 0.50 mmol, 1.0 equiv) in toluene (1 mL) was added sBu₂Mg (0.30 mmol, 0.6 equiv) at 25 °C. After 1 h, the reaction mixture was cooled to 0 °C and iodine (153 mg, 0.60 mmol, 1.2 equiv) dissolved in THF (1 mL) was added dropwise and the reaction mixture was stirred for 1 h. Purification of the crude product by flash column chromatography (silica gel, *i*hexane/EtOAc = 9:1) afforded the title compound as a yellow oil (**10a**, 143 mg, 0.40 mmol, 80% yield).

¹H NMR (400 MHz, CDCI₃): δ (ppm) = 7.90 (dd, J = 8.0, 1.2 Hz, 1H), 7.57 (dd, J = 7.7, 1.7 Hz, 1H), 7.37 (td, J = 7.6, 1.2 Hz, 1H), 7.10 (td, J = 7.7, 1.7 Hz, 1H), 4.14 (s, 2H), 1.42 (s, 6H). ¹³C NMR (101 MHz, CDCI₃): δ (ppm) = 162.8, 140.1, 134.2, 131.5, 130.5, 127.8, 94.7, 79.4, 68.2, 28.2.

MS (EI, 70 eV): m/z (%) = 300 (19), 286 (10), 285 (100), 257 (35), 229 (26), 228 (13), 144 (27), 131 (15), 130 (15), 103 (18).

HRMS (EI): for C₁₁H₁₂INO: calc. [M+]: 300.9964; found: 300.9957.

IR (Diamond-ATR, neat): $\tilde{\nu}$ / cm-1 = 2964 (m), 2925 (w), 2888 (w), 1652 (m), 1584 (w), 1560 (w), 1461 (m), 1428 (m), 1382 (w), 1363 (m), 1349 (m), 1304 (s), 1248 (w), 1213 (m), 1187 (m), 1123 (w), 1081 (s), 1031 (s), 1023 (w), 1014 (s), 976 (w), 961 (s), 920 (m), 866 (w), 818 (w), 760 (s), 738 (w), 726 (vs), 707 (w), 694 (m).

2-(2-Bromophenyl)-4,4-dimethyl-4,5-dihydrooxazole (10b)

According to **TP 1**, to a mixture of 4,4-dimethyl-2-phenyl-4,5-dihydrooxazole (**8a**, 85 μ L, 0.50 mmol, 1.0 equiv) in toluene (1 mL) was added sBu₂Mg (0.30 mmol, 0.6 equiv) at 25 °C. After 1 h, the reaction mixture was cooled to 0 °C and 1,2-dibromotetrachloroethane (244 mg, 0.60 mmol, 1.2 equiv) dissolved in THF (1 mL) was added dropwise and the reaction mixture was stirred for 1 h. Purification of the crude product by flash column chromatography (silica gel, *l*hexane/EtOAc = 9:1) afforded the title compound as a yellow oil (**10b**, 87 mg, 0.34 mmol, 68% yield).

¹**H NMR (400 MHz, CDCI₃):** δ (ppm) = 7.62 (ddd, *J* = 9.2, 7.7, 1.6 Hz, 2H), 7.32 (td, *J* = 7.5, 1.4 Hz, 1H), 7.26 (td, *J* = 7.7, 1.9 Hz, 1H), 4.13 (s, 2H), 1.41 (s, 6H).

¹³**C NMR (101 MHz, CDCI₃):** δ (ppm) = 162.2, 133.9, 131.9, 131.6, 130.7, 127.4, 122.2, 79.8, 68.4, 28.6.

MS (EI, 70 eV): m/z (%) = 240 (10), 239 (99), 238 (10), 237 (100), 224 (26), 222 (26), 211 (50), 209 (51), 184 (15), 183 (69), 182 (15), 181 (72), 180 (15), 130 (12), 103 (15). **HRMS (EI):** for C₁₁H₁₂BrNO: calc. [M-H⁺]: 252.0024; found: 252.0016.

IR (Diamond-ATR, neat): $\tilde{\nu}$ / cm⁻¹ = 3187 (w), 3068 (w), 2967 (m), 2929 (w), 2892 (w), 1655 (s), 1590 (w), 1565 (w), 1474 (m), 1462 (m), 1433 (m), 1383 (w), 1352 (m), 1310 (s), 1250 (m), 1214 (m), 1187 (m), 1128 (w), 1087 (s), 1024 (vs), 986 (m), 962 (s), 921 (m), 869 (w), 819 (w), 762 (vs), 730 (vs), 703 (m), 685 (m).

2-(2-Allylphenyl)-4,4-dimethyl-4,5-dihydrooxazole (10c)

According to **TP 1**, to a mixture of 4,4-dimethyl-2-phenyl-4,5-dihydrooxazole (**8a**, 85 μ L, 0.50 mmol, 1.0 equiv) in toluene (1 mL) was added sBu₂Mg (0.30 mmol, 0.6 equiv) at 25 °C. After 1 h, allyl bromide (52 μ L, 0.60 mmol, 1.2 equiv) and CuCN-2LiCl (0.1 mL, 1.0 M in THF, 20 mol%) were added at -25 °C and the mixture was stirred for 1 h. Purification of the crude product by flash column chromatography (silica gel, *i*hexane/EtOAc = 9:1) afforded the title compound as a colorless oil (**10c**, 98 mg, 0.45 mmol, 90% yield).

¹H NMR (400 MHz, CDCl₃): δ (ppm) = 7.78 (dd, J = 7.7, 1.6 Hz, 1H), 7.41 (td, J = 7.4, 1.5 Hz, 1H), 7.31–7.27 (m, 2H), 6.02 (ddt, J = 17.6, 9.6, 6.6 Hz, 1H), 5.07 (dtd, J = 14.9, 3.6, 1.9 Hz, 2H), 4.11 (s, 2H), 3.81 (dt, J = 6.6, 1.6 Hz, 2H), 1.42 (s, 6H).

¹³**C NMR (101 MHz, CDCI₃):** δ (ppm) = 162.6, 140.1, 137.5, 130.6, 130.2, 130.0, 126.0, 115.5, 78.7, 67.8, 38.3, 28.4.

MS (EI, 70 eV): m/z (%) = 214 (69), 201 (14), 200 (100), 176 (11), 160 (19), 158 (10), 146 (12), 143 (20), 142 (14), 130 (10), 129 (12), 128 (13), 117 (16), 116 (13), 115 (53).

HRMS (EI): for C₁₄H₁₇NO: calc. [M+]: 215.1310; found: 215.1304.

IR (Diamond-ATR, neat): $\tilde{\nu}$ / cm⁻¹ = 3075 (w), 2964 (m), 2928 (w), 2890 (w), 2382 (vw), 2303 (vw), 2205 (vw), 2131 (vw), 2051 (vw), 1934 (vw), 1638 (s), 1601 (w), 1575 (w), 1491 (w), 1462 (w), 1445 (w), 1409 (w), 1382 (w), 1363 (w), 1349 (m), 1305 (m), 1279 (w), 1248 (w), 1214 (w), 1189 (m), 1164 (w), 1121 (w), 1066 (w), 1050 (m), 1035 (vs), 992 (m), 967 (m), 914 (m), 869 (w), 820 (w), 773 (m), 747 (s), 730 (m), 696 (s), 672 (w).

1-(2-(4,4-Dimethyl-4,5-dihydrooxazol-2-yl)phenyl)-3,3-dimethylbutan-1-one (10d)

According to **TP 1**, to a mixture of 4,4-dimethyl-2-phenyl-4,5-dihydrooxazole (**8a**, 85 μ L, 0.50 mmol, 1.0 equiv) in toluene (1 mL) was added sBu₂Mg (0.30 mmol, 0.6 equiv) at 25 °C. After 1 h, 3,3-dimethylbutanoyl chloride (81 mg, 0.60 mmol, 1.2 equiv) and CuCN-2LiCl (0.1 mL, 1.0 M in THF, 20 mol%) were added at -25 °C and the mixture was stirred for 12 h at 25 °C. Purification of the crude product by flash column chromatography (silica gel, *i*hexane/EtOAc = 9:1) afforded the title compound as a colorless oil (**10d**, 90 mg, 0.33 mmol, 66% yield).

¹H NMR (400 MHz, CDCl₃): δ (ppm) = 7.83–7.78 (m, 1H), 7.52–7.41 (m, 2H), 7.38 (dd, *J* = 7.4, 1.6 Hz, 1H), 4.07 (s, 2H), 2.74 (s, 2H), 1.38 (s, 6H), 1.03 (s, 9H).

¹³**C NMR (101 MHz, CDCl₃):** δ (ppm) = 204.7, 143.1, 130.7, 129.7, 129.6, 126.9, 125.9, 79.5, 68.1, 54.7, 31.4, 29.7, 28.1, 23.8.

MS (EI, 70 eV): m/z (%) = 216 (25), 203 (12), 202 (100), 186 (60), 160 (70), 148 (51), 146 (21), 130 (86).

HRMS (EI): for C₁₇H₂₃NO₂: calc. [M-CH₃]: 258.1494; found: 258.1487.

IR (Diamond-ATR, neat): $\tilde{\nu}$ / cm⁻¹ = 3066 (vw), 2957 (m), 2869 (m), 2361 (vw), 1709 (s), 1691 (m), 1653 (s), 1595 (w), 1574 (w), 1478 (m), 1463 (m), 1447 (w), 1398 (w), 1384 (m), 1363 (s), 1351 (s), 1312 (s), 1266 (m), 1249 (m), 1231 (s), 1215 (m), 1184 (s), 1122 (w), 1106 (w), 1073 (m), 1059 (m), 1044 (s), 1035 (s), 1008 (s), 989 (m), 964 (s), 912 (m), 869 (w), 818 (w), 770 (s), 745 (m), 697 (vs).

(2-(4,4-Dimethyl-4,5-dihydrooxazol-2-yl)-5-methoxyphenyl)(thiophen-2-yl)methanone (10e)

According to **TP 1**, to a mixture of 2-(4-methoxyphenyl)-4,4-dimethyl-4,5-dihydrooxazole (**8b**, 103 mg, 0.50 mmol, 1.0 equiv) in toluene (1 mL) was added sBu_2Mg (0.30 mmol, 0.6 equiv) at 40 °C. After 20 min, thiophene-2-carbonyl chloride (64 µL, 0.60 mmol, 1.2 equiv) and CuCN-2LiCl (0.1 mL, 1.0 M in THF, 20 mol%) were added at -25 °C and the mixture was stirred for 12 h at 25 °C. Purification of the crude product by flash column chromatography (silica gel, *i*hexane/EtOAc = 2:1) afforded the title compound as a yellow oil (**10e**, 142 mg, 0.45 mmol, 90% yield).

¹**H NMR (400 MHz, CDCl₃):** δ (ppm) = 7.91 (d, *J* = 8.6 Hz, 1H), 7.66 (dd, *J* = 5.0, 1.2 Hz, 1H), 7.26 (d, *J* = 2.2 Hz, 1H), 7.07–6.99 (m, 3H), 3.87 (s, 3H), 3.71 (s, 2H), 1.13 (s, 6H).

¹³**C NMR (101 MHz, CDCI₃):** δ (ppm) = 188.6, 161.8, 144.7, 141.4, 134.0, 131.3, 127.9, 115.9, 113.1, 79.7, 55.6, 27.7.

MS (EI, 70 eV): m/z (%) = 315 (15), 287 (16), 286 (100), 271 (12), 270 (72), 259 (15), 231 (35), 216 (25), 201 (12), 160 (16).

HRMS (EI): for C₁₇H₁₇NO₃S: calc. [M+]: 315.0929; found: 315.0921.

IR (Diamond-ATR, neat): $\tilde{\nu}/cm^{-1} = 3074 \text{ (vw)}, 2964 \text{ (w)}, 2927 \text{ (w)}, 2894 \text{ (w)}, 2839 \text{ (vw)}, 1716 \text{ (vw)}, 1647 \text{ (vs)}, 1600 \text{ (s)}, 1568 \text{ (m)}, 1509 \text{ (w)}, 1500 \text{ (m)}, 1460 \text{ (m)}, 1411 \text{ (s)}, 1383 \text{ (w)}, 1351 \text{ (s)}, 1319 \text{ (m)}, 1311 \text{ (m)}, 1294 \text{ (vs)}, 1231 \text{ (vs)}, 1184 \text{ (m)}, 1146 \text{ (w)}, 1109 \text{ (m)}, 1081 \text{ (w)}, 1060 \text{ (m)}, 1044 \text{ (m)}, 1025 \text{ (vs)}, 988 \text{ (w)}, 962 \text{ (m)}, 931 \text{ (m)}, 919 \text{ (m)}, 859 \text{ (m)}, 832 \text{ (m)}, 799 \text{ (s)}, 759 \text{ (s)}, 739 \text{ (s)}, 722 \text{ (s)}, 685 \text{ (m)}, 654 \text{ (w)}.$

Dicyclopropyl(2-(4,5-dihydrooxazol-2-yl)phenyl)methanol (10f)

According to **TP 1**, to a mixture of 2-phenyl-4,5-dihydrooxazole (**8d**, 64 μ L, 0.50 mmol, 1.0 equiv) in toluene (1 mL) was added *s*Bu₂Mg (0.30 mmol, 0.6 equiv) at 50 °C. After 1 h, dicyclopropyl ketone (74 μ L, 0.60 mmol, 1.2 equiv) was added dropwise at 0 °C and the reaction mixture was stirred for 2 h at room temperature. Purification of the crude product by flash column chromatography (silica gel, *i*hexane/EtOAc = 1:2) afforded the title compound as a white solid (**10f**, 90 mg, 0.35 mmol, 70% yield).

¹H NMR (400 MHz, CDCl₃): δ (ppm) = 7.48 (d, J = 7.6 Hz, 1H), 7.08 (td, J = 7.5, 1.2 Hz, 1H), 7.01 (td, J = 7.5, 1.1 Hz, 1H), 6.93 (d, J = 7.5 Hz, 1H), 3.88 (s, 1H), 3.52 (t, J = 5.3 Hz, 2H), 3.23 (t, J = 5.3 Hz, 2H), 0.91 (tt, J = 8.3, 5.4 Hz, 2H), 0.19–0.05 (m, 4H), 0.00–-0.13 (m, 4H). ¹³C NMR (101 MHz, CDCl₃): δ (ppm) = 160.3, 148.7, 130.8, 129.9, 128.2, 123.1, 120.8, 88.8, 62.0, 49.2, 18.0, 1.0, 0.0.

MS (EI, 70 eV): m/z (%) = 227 (11), 226 (100), 216 (34), 198 (21), 185 (61), 184 (46), 172 (13), 128 (12).

HRMS (EI): for C₁₆H₁₉NO₂: calc. [M+]: 257.1416; found: 257.1412.

IR (Diamond-ATR, neat): $\tilde{\nu}/cm^{-1} = 3178$ (w), 3085 (w), 3004 (w), 2951 (w), 2921 (w), 2903 (w), 2856 (w), 1679 (vs), 1610 (w), 1479 (w), 1467 (m), 1427 (w), 1367 (w), 1357 (m), 1330 (w), 1303 (m), 1272 (m), 1132 (m), 1121 (m), 1111 (m), 1093 (m), 1075 (s), 1057 (m), 1043 (m), 1019 (s), 990 (w), 952 (s), 918 (m), 897 (m), 872 (m), 862 (m), 838 (w), 821 (w), 815 (w), 786 (m), 777 (s), 756 (s), 721 (m), 675 (s), 660 (w).

Melting point: M.p. = 86 °C.

4,4-dimethyl-2-(3'-methyl-[1,1'-biphenyl]-2-yl)-4,5-dihydrooxazole (10g)

According to **TP 1**, to a mixture of 4,4-dimethyl-2-phenyl-4,5-dihydrooxazole (**8a**, 0.85 mL, 5.00 mmol, 1.0 equiv) in toluene (10 mL) was added sBu_2Mg (3.00 mmol, 0.6 equiv) at 25 °C. After 1 h, the resulting diarylmagnesium was transmetalated with a ZnCl₂ solution (5.5 mL, 1.00 M in THF, 1.10 equiv) at 0 °C for 30 min. A dry and argon-flushed Schlenk-tube, equipped with a magnetic stirring bar and a septum was charged with Pd(dppf)Cl₂ (183 mg, 5 mol%) and 3-iodotoluene (0.53 mL, 4.15 mmol, 0.83 equiv).The freshly prepared arylzinc reagent was added and the reaction mixture was placed in an oil bath at 55 °C for 18 h. Purification of the crude product by flash column chromatography (silica gel, *i*hexane/EtOAc = 9:1) afforded the title compound as a colorless oil (**10g**, 1.03 g, 3.88 mmol, 93% yield).

¹**H NMR (400 MHz, CDCl₃):** δ (ppm) = 7.71 (dd, *J* = 7.6, 1.4 Hz, 1H), 7.48 (td, *J* = 7.5, 1.4 Hz, 1H), 7.37 (ddd, *J* = 14.6, 7.5, 1.4 Hz, 2H), 7.28 (t, *J* = 7.6 Hz, 1H), 7.25–7.19 (m, 2H), 7.18–7.12 (m, 1H), 3.83 (s, 2H), 2.38 (s, 3H), 1.31 (s, 6H).

¹³**C NMR (101 MHz, CDCl₃):** δ (ppm) = 141.7, 141.0, 137.5, 130.4, 130.1, 129.1, 128.0, 127.0, 125.5, 79.6, 67.5, 28.0, 21.5.

MS (EI, 70 eV): m/z (%) = 265 (19), 264 (100), 210 (13), 209 (18), 192 (14), 179 (28), 178 (14), 165 (22), 152 (10).

HRMS (EI): for C₁₈H₁₉NO: calc. [M⁺]: 265.1467; found: 265.1461.

IR (Diamond-ATR, neat): $\tilde{\nu}$ / cm⁻¹ = 2964 (m), 2944 (w), 2942 (w), 2939 (w), 2925 (m), 2922 (m), 2915 (w), 2912 (w), 2889 (w), 2886 (w), 1676 (w), 1656 (s), 1652 (s), 1606 (w), 1604 (w), 1600 (w), 1479 (w), 1473 (m), 1471 (m), 1462 (m), 1456 (m), 1446 (m), 1363 (m), 1349 (m), 1311 (m), 1212 (w), 1190 (w), 1188 (w), 1113 (w), 1076 (m), 1067 (w), 1065 (w), 1043 (s), 1041 (m), 1034 (s), 988 (w), 964 (m), 920 (w), 918 (w), 790 (m), 769 (m), 755 (vs), 699 (s).

2-(4'-Methoxy-[1,1'-biphenyl]-2-yl)-4,4-dimethyl-4,5-dihydrooxazole (10h)

According to **TP 1**, to a mixture of 4,4-dimethyl-2-phenyl-4,5-dihydrooxazole (**8a**, 85 μ L, 0.50 mmol, 1.0 equiv) in toluene (1 mL) was added sBu₂Mg (0.30 mmol, 0.6 equiv) at 25 °C. After 1 h, the resulting diarylmagnesium was transmetalated with a ZnCl₂ solution (0.6 mL, 1.00 M in THF, 1.10 equiv) at 0 °C for 30 min. A dry and argon-flushed Schlenk-tube, equipped with a magnetic stirring bar and a septum was charged with Pd(dppf)Cl₂ (15 mg, 5 mol%) and 4-bromoanisole (53 μ L, 0.42 mmol, 0.83 equiv).The freshly prepared arylzinc reagent was added and the reaction mixture was placed in an oil bath at 55 °C for 18 h. Purification of the crude product by flash column chromatography (silica gel, *i*hexane/EtOAc = 9:1) afforded the title compound as a yellow oil (**10h**, 89 mg, 0.32 mmol, 76% yield).

¹H NMR (400 MHz, CDCl₃): δ (ppm) = 7.70 (dd, J = 7.7, 1.6 Hz, 1H), 7.47 (td, J = 7.5, 1.5 Hz, 1H), 7.39–7.31 (m, 4H), 6.95–6.90 (m, 2H), 3.85 (s, 3H), 3.83 (s, 2H), 1.31 (s, 6H).

¹³**C NMR (101 MHz, CDCl₃):** δ (ppm) = 164.1, 158.9, 141.2, 133.6, 130.4, 130.2, 130.0, 129.4, 127.8, 126.7, 113.4, 79.5, 67.4, 55.3, 40.8, 28.0, 23.8.

MS (EI, 70 eV): m/z (%) = 281 (19), 280 (100), 225 (29), 195 (11).

HRMS (EI): for C₁₈H₁₉NO₂: calc. [M-H⁺]: 280.1338; found: 280.1332.

IR (Diamond-ATR, neat): $\tilde{\nu} / \text{cm}^{-1} = 3138 \text{ (vw)}, 3064 \text{ (vw)}, 2964 \text{ (m)}, 2892 \text{ (w)}, 2837 \text{ (w)}, 1652 \text{ (m)}, 1611 \text{ (m)}, 1580 \text{ (w)}, 1565 \text{ (vw)}, 1517 \text{ (s)}, 1483 \text{ (m)}, 1462 \text{ (m)}, 1446 \text{ (m)}, 1413 \text{ (vw)}, 1383 \text{ (w)}, 1363 \text{ (w)}, 1351 \text{ (m)}, 1295 \text{ (m)}, 1243 \text{ (vs)}, 1212 \text{ (m)}, 1177 \text{ (s)}, 1107 \text{ (w)}, 1075 \text{ (m)}, 1036 \text{ (vs)}, 1017 \text{ (m)}, 1001 \text{ (m)}, 988 \text{ (w)}, 963 \text{ (m)}, 920 \text{ (w)}, 869 \text{ (w)}, 832 \text{ (s)}, 804 \text{ (m)}, 761 \text{ (vs)}, 727 \text{ (m)}, 704 \text{ (m)}, 662 \text{ (w)}.$

2-(5-methoxy-3'-(trifluoromethyl)-[1,1'-biphenyl]-2-yl)-4,4-dimethyl-4,5-dihydrooxazole (10i)

According to **TP 1**, to a mixture of 2-(4-methoxyphenyl)-4,4-dimethyl-4,5-dihydrooxazole (**8b**, 1.026 g, 5.00 mmol, 1.0 equiv) in toluene (10 mL) was added sBu_2Mg (3.00 mmol, 0.6 equiv) at 40 °C. After 20 min, the resulting diarylmagnesium was transmetalated with a ZnCl₂ solution (5.5 mL, 1.00 M in THF, 1.10 equiv) at 0 °C for 30 min. A dry and argon-flushed Schlenk-tube, equipped with a magnetic stirring bar and a septum was charged with Pd(dppf)Cl₂ (183 mg, 5 mol%) and 1-iodo-3-(trifluoromethyl)benzene (0.60 mL, 4.15 mmol, 0.83 equiv). The freshly prepared arylzinc reagent was added and the reaction mixture was placed in an oil bath at 55 °C for 18 h. Purification of the crude product by flash column chromatography (silica gel, *i*hexane/Et₂O = 1:1) afforded the title compound as a brown solid (**10i**, 1.62 g, 4.05 mmol, 98% yield).

¹H NMR (400 MHz, CDCl₃): δ (ppm) = 7.76 (d, J = 8.6 Hz, 1H), 7.66–7.55 (m, 3H), 7.51 (t, J = 7.6 Hz, 1H), 6.93 (dd, J = 8.6, 2.6 Hz, 1H), 6.86 (d, J = 2.6 Hz, 1H), 3.86 (s, 3H), 3.76 (s, 2H), 1.26 (s, 6H).

¹³C NMR (101 MHz, CDCl₃): δ (ppm) = 162.7, 160.9, 141.8, 141.7, 132.0, 131.4, 131.3, 130.5, 130.1, 129.8, 129.5, 128.4, 125.3, 125.3, 125.2, 125.2, 125.1, 123.8, 123.8, 123.8, 123.7, 122.7, 120.1, 115.5, 112.8, 79.0, 67.2, 55.3, 27.8.

MS (EI, 70 eV): m/z (%) = 349 (20), 348 (100), 263 (38), 258 (18), 215 (14).

HRMS (EI): for C₁₉H₁₈F₃NO₂: calc. [M-H⁺]: 348.1211; found: 348.1199.

IR (Diamond-ATR, neat): $\tilde{\nu}$ / cm⁻¹ = 2988 (vw), 2974 (w), 2945 (w), 2942 (w), 2937 (vw), 2933 (vw), 2931 (vw), 2927 (vw), 2905 (vw), 2901 (vw), 2886 (w), 2843 (vw), 1635 (s), 1608 (s), 1579 (w), 1568 (w), 1513 (w), 1464 (m), 1448 (w), 1432 (w), 1423 (w), 1365 (w), 1350 (m), 1334 (s), 1314 (s), 1295 (s), 1276 (m), 1244 (m), 1212 (s), 1195 (m), 1178 (s), 1165 (vs), 1139 (s), 1110 (s), 1095 (s), 1080 (s), 1068 (s), 1034 (m), 1025 (vs), 1002 (w), 986 (m), 964 (m), 959 (m), 932 (m), 927 (m), 914 (m), 907 (m), 895 (s), 809 (s), 788 (m), 774 (vw), 771 (vw), 768 (vw), 758 (w), 743 (vw), 716 (m), 706 (m), 701 (vs), 687 (w), 664 (m). **Melting point:** M.p. = 70 °C.

2-(3,5-dichloro-2-(phenylethynyl)phenyl)-4,4-dimethyl-4,5-dihydrooxazole (10j)

According to **TP 1**, to a mixture of 2-(3,5-dichlorophenyl)-4,4-dimethyl-4,5-dihydrooxazole (**8c**, 0.732 g, 3.00 mmol, 1.0 equiv) in toluene (6 mL) was added sBu_2Mg (1.80 mmol, 0.6 equiv) at 25 °C. After 15 min, the resulting diarylmagnesium was transmetalated with a ZnCl₂ solution (3.6 mL, 1.00 M in THF, 1.10 equiv) at 0 °C for 30 min. Iodine (0.838 g, 3.30 mmol, 1.1 equiv) dissolved in THF (2 mL) was added and the reaction mixture was allowed to stir 1 h at 25 °C. A dry and argon-flushed Schlenk-tube, equipped with a magnetic stirring bar and a septum was charged with Pd(dba)₂ (52 mg, 3 mol%), Cul (23 mg, 4 mol%), tfp (42 mg, 6 mol%) and NEt₃ (10 mL). The freshly prepared arylzinc reagent followed by phenylacetylene (0.43 mL, 3.90 mmol, 1.3 equiv) were added and the reaction mixture was stirred overnight at 25 °C. Purification of the crude product by flash column chromatography (silica gel, *i*hexane/Et₂O = 9:1) afforded the title compound as a yellow oil (**10j**, 633 mg, 1.84 mmol, 61% yield).

¹**H NMR (400 MHz, CDCl₃):** δ (ppm) = 7.73 (d, *J* = 2.1 Hz, 1H), 7.58–7.53 (m, 3H), 7.37 (tt, *J* = 4.0, 2.7 Hz, 3H), 4.17 (s, 2H), 1.42 (s, 6H).

¹³C NMR (101 MHz, CDCI₃): δ (ppm) = 160.3, 143.4, 138.1, 133.8, 131.7, 131.0, 129.0, 128.4, 128.2, 100.4, 84.1, 79.6, 68.3, 28.4.

MS (EI, 70 eV): m/z (%) = 344 (22), 342 (36), 331 (11), 330 (61), 329 (18), 328 (100), 326 (17), 289 (16), 253 (11), 238 (14), 237 (18), 207 (32), 201 (14), 190 (19), 163 (13), 158 (26), 156 (39), 43 (54), 42 (25).

HRMS (EI): for C₁₉H₁₅Cl₂NO: calc. [M-H⁺]: 342.0452; found: 342.0445.

IR (Diamond-ATR, neat): $\tilde{\nu}$ / cm⁻¹ = 3079 (vw), 3057 (vw), 2965 (w), 2928 (w), 2892 (w), 2866 (vw), 2219 (w), 1651 (m), 1623 (m), 1596 (w), 1576 (m), 1541 (w), 1492 (m), 1475 (vw), 1461 (w), 1450 (m), 1442 (m), 1412 (m), 1382 (w), 1363 (w), 1347 (m), 1338 (w), 1296 (m), 1251 (w), 1214 (w), 1188 (m), 1157 (w), 1148 (w), 1116 (m), 1077 (w), 1063 (m), 1025 (vw), 988 (m), 969 (s), 915 (w), 893 (w), 891 (w), 861 (s), 819 (vw), 792 (m), 753 (vs), 729 (w), 688 (s), 672 (w), 667 (w).

4,4-dimethyl-2-(3"-methyl-1,2,3,4-tetrahydro-[1,1':3',1"-terphenyl]-2'-yl)-4,5dihydrooxazole (11a)

According to **TP 1**, to a mixture of 4,4-dimethyl-2-(3'-methyl-[1,1'-biphenyl]-2-yl)-4,5dihydrooxazole (**10g**, 133 mg, 0.50 mmol, 1.0 equiv) in toluene (1 mL) was added sBu_2Mg (0.30 mmol, 0.6 equiv) at 60 °C. After 1 h, 3-bromocyclohexene (70 µL, 0.60 mmol, 1.2 equiv) and CuCN-2LiCl (0.1 mL, 1.0 M in THF, 20 mol%) were added at -25 °C and the mixture was stirred for 1 h. Purification of the crude product by flash column chromatography (silica gel, *i*hexane/EtOAc = 4:1) afforded the title compound as a colorless liquid (**11a**, 129 mg, 0.37 mmol, 74% yield).

¹H NMR (400 MHz, CDCl₃): δ (ppm) = 7.40 (t, J = 7.7 Hz, 1H), 7.34–7.21 (m, 5H), 7.19–7.12 (m, 1H), 6.00–5.91 (m, 1H), 5.76 (dq, J = 10.3, 2.2 Hz, 1H), 3.88–3.80 (m, 2H), 3.77 (tq, J = 5.5, 2.7 Hz, 1H), 2.39 (s, 3H), 2.18–2.06 (m, 3H), 1.77 (tdd, J = 10.2, 6.8, 4.9 Hz, 1H), 1.66–1.54 (m, 2H), 1.20 (d, J = 16.2 Hz, 6H).

¹³C NMR (101 MHz, CDCl₃): δ (ppm) = 161.7, 145.5, 142.1, 141.1, 137.2, 130.2, 129.7, 129.4, 128.6, 127.9, 127.8, 127.8, 127.4, 126.6, 125.9, 78.9, 67.8, 65.9, 38.7, 32.2, 27.9, 27.8, 25.0, 21.4, 21.2.

MS (EI, 70 eV): m/z (%) = 345 (22), 290 (40), 289 (20), 288 (100), 274 (17), 273 (14), 272 (15), 271 (17), 270 (13), 255 (14), 244 (10), 222 (23), 215 (22), 202 (22), 189 (12), 179 (13), 178 (13), 165 (21).

HRMS (EI): for C₂₄H₂₇NO: calc. [M-H⁺]: 345.2093; found: 345.2085.

IR (Diamond-ATR, neat): $\tilde{\nu} / \text{cm}^{-1} = 3027 \text{ (w)}, 3019 \text{ (w)}, 2965 \text{ (m)}, 2962 \text{ (m)}, 2960 \text{ (m)}, 2952 \text{ (w)}, 2949 \text{ (w)}, 2926 \text{ (m)}, 2923 \text{ (m)}, 2900 \text{ (w)}, 2898 \text{ (w)}, 2897 \text{ (w)}, 2895 \text{ (w)}, 2889 \text{ (w)}, 2888 \text{ (w)}, 2883 \text{ (w)}, 2878 \text{ (w)}, 2875 \text{ (w)}, 2872 \text{ (w)}, 2870 \text{ (w)}, 2868 \text{ (w)}, 2865 \text{ (w)}, 2862 \text{ (w)}, 2859 \text{ (w)}, 2856 \text{ (w)}, 2844 \text{ (w)}, 2834 \text{ (w)}, 1661 \text{ (s)}, 1606 \text{ (w)}, 1584 \text{ (w)}, 1577 \text{ (w)}, 1459 \text{ (m)}, 1447 \text{ (m)}, 1433 \text{ (w)}, 1363 \text{ (w)}, 1345 \text{ (w)}, 1313 \text{ (w)}, 1285 \text{ (m)}, 1274 \text{ (w)}, 1265 \text{ (w)}, 1253 \text{ (w)}, 1246 \text{ (w)}, 1208 \text{ (w)}, 1196 \text{ (w)}, 1178 \text{ (w)}, 1175 \text{ (w)}, 1172 \text{ (w)}, 1095 \text{ (w)}, 1035 \text{ (vs)}, 1000 \text{ (w)}, 987 \text{ (w)}, 962 \text{ (m)}, 943 \text{ (w)}, 940 \text{ (w)}, 936 \text{ (w)}, 930 \text{ (w)}, 917 \text{ (m)}, 905 \text{ (w)}, 891 \text{ (w)}, 882 \text{ (w)}, 871 \text{ (w)}, 806 \text{ (w)}, 781 \text{ (s)}, 759 \text{ (s)}, 741 \text{ (m)}, 733 \text{ (w)}, 722 \text{ (m)}, 703 \text{ (vs)}.$

2-(4"-methoxy-3-methyl-[1,1':3',1"-terphenyl]-2'-yl)-4,4-dimethyl-4,5-dihydrooxazole (11b)

According to **TP 1**, to a mixture of 2-(4'-Methoxy-[1,1'-biphenyl]-2-yl)-4,4-dimethyl-4,5dihydrooxazole (**10h**, 1.0 g, 3.55 mmol, 1.0 equiv) in toluene (10 mL) was added sBu_2Mg (3.00 mmol, 0.6 equiv) at 60 °C. After 0.5 h, the resulting diarylmagnesium was transmetalated with a ZnCl₂ solution (3.91 mL, 1.00 M in THF, 1.10 equiv) at 0 °C for 30 min. A dry and argon-flushed Schlenk-tube, equipped with a magnetic stirring bar and a septum was charged with Pd(dppf)Cl₂ (132 mg, 5 mol%) and 3-iodotoluene (0.38 mL, 2.95 mmol, 0.83 equiv).The freshly prepared arylzinc reagent was added and the reaction mixture was placed in an oil bath at 55 °C for 16 h. Purification of the crude product by flash column chromatography (silica gel, *i*hexane/EtOAc = 4:1) afforded the title compound as a brown solid (**11b**, 0.914 g, 2.46 mmol, 83% yield).

¹H NMR (400 MHz, CDCI₃): δ (ppm) = 7.47 (dd, J = 8.1, 7.3 Hz, 1H), 7.43 – 7.37 (m, 2H), 7.33 (d, J = 7.8 Hz, 2H), 7.28 (d, J = 1.4 Hz, 1H), 7.26 (d, J = 3.4 Hz, 3H), 7.18 – 7.11 (m, 1H), 6.94 – 6.88 (m, 2H), 3.84 (s, 3H), 3.62 (s, 2H), 2.36 (s, 3H), 0.96 (s, 6H). ¹³C NMR (101 MHz, CDCI₃): δ (ppm) = 159.0, 142.4, 141.8, 140.7, 137.3, 133.3, 130.1, 129.7, 129.3, 128.6, 128.3, 127.9, 127.8, 126.0, 113.3, 79.0, 67.6, 55.3, 27.4, 21.4.

MS (EI, 70 eV): m/z (%) = 371 (26), 370 (100), 298 (11).

HRMS (EI): for C₂₅H₂₅NO₂: calc. [M⁺]: 371.1885; found: 371.1833.

IR (Diamond-ATR, neat): $\tilde{\nu} / \text{cm}^{-1} = 2972 \text{ (w)}, 2950 \text{ (w)}, 2928 \text{ (w)}, 2925 \text{ (w)}, 2919 \text{ (w)}, 2916 \text{ (w)}, 2914 \text{ (w)}, 2899 \text{ (w)}, 2878 \text{ (w)}, 2877 \text{ (w)}, 2864 \text{ (w)}, 2833 \text{ (w)}, 1658 \text{ (m)}, 1635 \text{ (w)}, 1610 \text{ (m)}, 1605 \text{ (m)}, 1587 \text{ (w)}, 1574 \text{ (w)}, 1515 \text{ (s)}, 1461 \text{ (m)}, 1454 \text{ (s)}, 1441 \text{ (s)}, 1419 \text{ (w)}, 1403 \text{ (w)}, 1402 \text{ (w)}, 1382 \text{ (w)}, 1379 \text{ (w)}, 1364 \text{ (m)}, 1345 \text{ (w)}, 1303 \text{ (w)}, 1293 \text{ (m)}, 1289 \text{ (m)}, 1283 \text{ (m)}, 1242 \text{ (vs)}, 1212 \text{ (m)}, 1202 \text{ (w)}, 1186 \text{ (m)}, 1171 \text{ (s)}, 1150 \text{ (w)}, 1120 \text{ (w)}, 1106 \text{ (m)}, 1092 \text{ (m)}, 1077 \text{ (w)}, 1043 \text{ (m)}, 1036 \text{ (vs)}, 1010 \text{ (w)}, 987 \text{ (m)}, 978 \text{ (w)}, 964 \text{ (m)}, 931 \text{ (w)}, 920 \text{ (w)}, 907 \text{ (m)}, 888 \text{ (w)}, 865 \text{ (w)}, 833 \text{ (s)}, 821 \text{ (m)}, 809 \text{ (s)}, 803 \text{ (s)}, 792 \text{ (w)}, 786 \text{ (vs)}, 762 \text{ (s)}, 729 \text{ (w)}, 716 \text{ (w)}, 713 \text{ (m)}, 702 \text{ (s)}.$

Melting point: M.p. = 84 °C.

4-(2-(4,4-dimethyl-4,5-dihydrooxazol-2-yl)-5-methoxy-3'-(trifluoromethyl)-[1,1'biphenyl]-3-yl)morpholine (11c)

According to **TP 1**, to a mixture of 2-(5-methoxy-3'-(trifluoromethyl)-[1,1'-biphenyl]-2-yl)-4,4dimethyl-4,5-dihydrooxazole (**10i**, 64 mg, 0.20 mmol, 1.0 equiv) in toluene (0.4 mL) was added sBu_2Mg (0.12 mmol, 0.6 equiv) at 40 °C. After 0.5 h, the resulting diarylmagnesium was transmetalated with a ZnCl₂ solution (0.24 mL, 1.00 M in THF, 1.20 equiv) at 0 °C for 30 min. A dry and argon-flushed Schlenk-tube, equipped with a magnetic stirring bar and a septum was charged with CoCl₂ (1.3 mg, 5 mol%) and morpholino benzoate (50 mg, 0.24 mmol, 1.2 equiv).The freshly prepared arylzinc reagent was added and the reaction mixture was stirred at 25 °C for 2 h. Purification of the crude product by flash column chromatography (silica gel, *i*hexane/EtOAc = 1:1) afforded the title compound as a white solid (**11c**, 73 mg, 0.17 mmol, 85% yield).

¹H NMR (400 MHz, CDCl₃): δ (ppm) = 7.67 (d, J = 1.9 Hz, 1H), 7.63 – 7.55 (m, 2H), 7.47 (t, J = 7.7 Hz, 1H), 6.68 (d, J = 2.4 Hz, 1H), 6.57 (d, J = 2.4 Hz, 1H), 3.82 (m, 9H), 3.13 – 3.01 (m, 4H), 1.07 (s, 6H).

¹³C NMR (101 MHz, CDCl₃): δ (ppm) = 161.1, 160.9, 153.8, 143.3, 141.6, 132.2, 130.6, 130.3, 130.0, 129.6, 128.4, 125.6, 125.6, 125.5, 125.5, 125.5, 124.2, 124.1, 124.1, 124.0, 122.8, 117.7, 109.5, 106.1, 78.8, 67.5, 67.4, 55.4, 53.1, 27.9.

MS (EI, 70 eV): m/z (%) = 404 (46), 403 (29), 389 (58), 377 (16), 376 (17), 375 (77), 361 (23), 360 (26), 359 (39), 348 (75), 347 (26), 346 (54), 331 (26), 321 (38), 320 (33), 319 (100), 306 (19), 305 (22), 303 (45), 301 (36), 285 (17), 283 (19), 263 (50), 258 (28), 235 (19), 220 (25), 215 (20), 207 (33), 201 (19), 188 (18), 165 (18), 164 (20), 43 (58), 42 (22).

HRMS (EI): for C₂₃H₂₅F₃N₂O₃: calc. [M⁺]: 434.1817; found: 434.1823.

IR (Diamond-ATR, neat): $\tilde{\nu} / \text{cm}^{-1} = 2963 \text{ (m)}, 1663 \text{ (m)}, 1591 \text{ (m)}, 1575 \text{ (m)}, 1466 \text{ (m)}, 1454 \text{ (m)}, 1437 \text{ (m)}, 1362 \text{ (s)}, 1347 \text{ (m)}, 1331 \text{ (m)}, 1323 \text{ (s)}, 1315 \text{ (m)}, 1305 \text{ (m)}, 1292 \text{ (m)}, 1260 \text{ (m)}, 1236 \text{ (m)}, 1210 \text{ (m)}, 1198 \text{ (m)}, 1187 \text{ (w)}, 1175 \text{ (m)}, 1165 \text{ (s)}, 1148 \text{ (s)}, 1127 \text{ (vs)}, 1110 \text{ (vs)}, 1093 \text{ (s)}, 1075 \text{ (s)}, 1045 \text{ (m)}, 1027 \text{ (s)}, 982 \text{ (m)}, 964 \text{ (m)}, 927 \text{ (m)}, 922 \text{ (m)}, 916 \text{ (m)}, 910 \text{ (m)}, 870 \text{ (m)}, 863 \text{ (s)}, 856 \text{ (s)}, 816 \text{ (m)}, 806 \text{ (s)}, 768 \text{ (m)}, 757 \text{ (m)}, 706 \text{ (s)}.$ **Melting point:** M.p. = 117 °C. 2-(3-iodo-5-methoxy-3'-(trifluoromethyl)-[1,1'-biphenyl]-2-yl)-4,4-dimethyl-4,5dihydrooxazole (11d)

According to **TP 1**, to a mixture of 2-(5-methoxy-3'-(trifluoromethyl)-[1,1'-biphenyl]-2-yl)-4,4dimethyl-4,5-dihydrooxazole (**10i**, 64 mg, 0.20 mmol, 1.0 equiv) in toluene (0.4 mL) was added sBu_2Mg (0.12 mmol, 0.6 equiv) at 40 °C. After 0.5 h, the reaction mixture was cooled to 0 °C and iodine (61 mg, 0.24 mmol, 1.2 equiv) dissolved in THF (1 mL) was added dropwise and the reaction mixture was stirred for 1 h. Purification of the crude product by flash column chromatography (silica gel, *i*hexane/EtOAc = 2:1) afforded the title compound as a yellow oil (**11d**, 74 mg, 0.16 mmol, 80% yield).

¹**H NMR (400 MHz, CDCl₃):** δ (ppm) = 7.69 (dt, J = 1.9, 1.0 Hz, 1H), 7.64–7.56 (m, 2H), 7.50 (t, J = 7.7 Hz, 1H), 7.41 (d, J = 2.5 Hz, 1H), 6.85 (d, J = 2.5 Hz, 1H), 3.90 (s, 2H), 3.83 (s, 3H), 1.14 (s, 6H).

¹³C NMR (101 MHz, CDCl₃): δ (ppm) = 162.2, 160.3, 142.9, 140.8, 132.1, 130.9, 130.6, 130.3, 130.0, 128.8, 126.7, 125.6, 125.6, 125.5, 125.5, 124.8, 124.7, 124.7, 124.6, 124.0, 122.8, 115.6, 97.6, 79.4, 68.1, 55.8, 27.7.

MS (EI, 70 eV): m/z (%) = 475 (18), 474 (93), 389 (14), 388 (100), 383 (24), 376 (22), 332 (21), 305 (11), 257 (11), 242 (16), 226 (12), 220 (10), 219 (12), 214 (11), 213 (15), 207 (27), 206 (15), 165 (14), 164 (24).

HRMS (EI): for C₁₉H₁₇F₃INO₂: calc. [M-H⁺]: 474.0178; found: 474.0170.

IR (Diamond-ATR, neat): $\tilde{\nu}$ / cm⁻¹ = 3012 (vw), 2976 (w), 2972 (w), 2969 (w), 2945 (w), 2942 (w), 2935 (w), 2931 (w), 2912 (vw), 2904 (vw), 2902 (vw), 2880 (vw), 2865 (vw), 2858 (vw), 2841 (vw), 1736 (s), 1667 (m), 1590 (m), 1546 (m), 1492 (w), 1464 (m), 1436 (w), 1428 (w), 1395 (w), 1373 (m), 1359 (w), 1348 (w), 1331 (vs), 1305 (m), 1270 (m), 1238 (vs), 1214 (s), 1165 (s), 1158 (s), 1125 (vs), 1095 (m), 1082 (m), 1073 (s), 1044 (s), 1035 (s), 1024 (vs), 1002 (w), 985 (w), 960 (m), 937 (w), 918 (w), 904 (w), 874 (w), 861 (w), 856 (w), 845 (w), 827 (vw), 803 (s), 787 (w), 744 (w), 733 (w), 703 (s), 666 (s).

2-(3,5-dichloro-2-(phenylethynyl)-6-(thiophen-2-yl)phenyl)-4,4-dimethyl-4,5dihydrooxazole (11e)

According to **TP 1**, to a mixture of 2-(3,5-dichloro-2-(phenylethynyl)phenyl)-4,4-dimethyl-4,5dihydrooxazole (**10j**, 68 mg, 0.2 mmol, 1.0 equiv) in toluene (0.4 mL) was added *s*Bu₂Mg (0.12 mmol, 0.6 equiv) at 40 °C. After 0.5 h, the resulting diarylmagnesium was transmetalated with a ZnCl₂ solution (0.22 mL, 1.00 M in THF, 1.10 equiv) at 0 °C for 30 min. A dry and argon-flushed Schlenk-tube, equipped with a magnetic stirring bar and a septum was charged with Pd(dppf)Cl₂ (8 mg, 5 mol%) and 2-iodothiophene (16 μ L, 0.17 mmol, 0.83 equiv).The freshly prepared arylzinc reagent was added and the reaction mixture was placed in an oil bath at 55 °C for 16 h. Purification of the crude product by flash column chromatography (silica gel, *i*hexane/EtOAc = 9:1) afforded the title compound as a white solid (**11e**, 66 mg, 0.15 mmol, 93% yield).

¹H NMR (400 MHz, CDCI₃): δ (ppm) = 7.64 (s, 1H), 7.55–7.48 (m, 2H), 7.46–7.42 (m, 1H), 7.35 (qd, J = 4.4, 1.4 Hz, 3H), 7.07 (d, J = 3.2 Hz, 2H), 3.88 (s, 2H), 1.13 (s, 6H).

¹³**C NMR (101 MHz, CDCl₃):** δ (ppm) = 159.1, 136.6, 135.9, 135.1, 135.0, 132.3, 131.5, 130.8, 129.2, 128.9, 128.2, 126.9, 126.2, 122.2, 121.9, 98.6, 82.9, 79.5, 68.0, 29.5, 27.6.

MS (EI, 70 eV): m/z (%) = 281 (33), 266 (11), 265 (11), 225 (39), 209 (18), 208 (13), 207 (100), 191 (21), 43 (42), 42 (12).

HRMS (EI): for C₂₃H₁₇Cl₂NOS: calc. [M+]: 425.0408; found: 425.0396.

IR (Diamond-ATR, neat): $\tilde{\nu} / \text{cm}^{-1} = 2960 \text{ (m)}, 2958 \text{ (m)}, 2945 \text{ (m)}, 2921 \text{ (s)}, 2892 \text{ (m)}, 2887 \text{ (m)}, 2871 \text{ (w)}, 2866 \text{ (w)}, 2853 \text{ (m)}, 1740 \text{ (w)}, 1674 \text{ (m)}, 1492 \text{ (m)}, 1462 \text{ (m)}, 1447 \text{ (m)}, 1442 \text{ (m)}, 1424 \text{ (m)}, 1396 \text{ (w)}, 1363 \text{ (w)}, 1339 \text{ (w)}, 1307 \text{ (w)}, 1262 \text{ (m)}, 1237 \text{ (m)}, 1206 \text{ (s)}, 1177 \text{ (m)}, 1162 \text{ (m)}, 1093 \text{ (s)}, 1083 \text{ (m)}, 1069 \text{ (m)}, 1052 \text{ (m)}, 1033 \text{ (w)}, 1022 \text{ (w)}, 988 \text{ (m)}, 968 \text{ (s)}, 927 \text{ (w)}, 888 \text{ (m)}, 872 \text{ (w)}, 866 \text{ (m)}, 863 \text{ (w)}, 847 \text{ (m)}, 829 \text{ (w)}, 820 \text{ (w)}, 807 \text{ (m)}, 762 \text{ (s)}, 757 \text{ (s)}, 698 \text{ (s)}, 686 \text{ (vs)}, 667 \text{ (m)}.$

Melting point: M.p. = 126 °C.
4,6-dichloro-3-phenyl-7-(phenylethynyl)isobenzofuran-1(3H)-one (11f)

According to **TP 1**, to a mixture of 2-(3,5-dichloro-2-(phenylethynyl)phenyl)-4,4-dimethyl-4,5dihydrooxazole (**10j**, 68 mg, 0.2 mmol, 1.0 equiv) in toluene (0.4 mL) was added sBu_2Mg (0.12 mmol, 0.6 equiv) at 40 °C. After 0.5 h, benzaldehyde (26 µL, 0.24 mmol, 1.2 equiv) was added dropwise at 0 °C and the reaction mixture was stirred for 1 h at room temperature. & M HCl (4 mL) was added and the reaction mixture was stirred at 25 °C overnight. Purification of the crude product by flash column chromatography (silica gel, *I*hexane/EtOAc = 98:2) afforded the title compound as a white solid (**11f**, 42 mg, 0.11 mmol, 56% yield).

¹H NMR (400 MHz, CDCl₃): δ (ppm) = 7.77–7.70 (m, 2H), 7.68 (s, 1H), 7.46–7.35 (m, 6H), 7.26–7.21 (m, 2H), 6.30 (s, 1H).

¹³**C NMR (101 MHz, CDCl₃):** δ (ppm) = 166.5, 145.6, 138.5, 134.8, 133.7, 132.4, 129.9, 129.7, 129.0, 128.7, 128.6, 128.5, 128.2, 122.1, 120.7, 104.3, 81.2, 80.9.

MS (EI, 70 eV): m/z (%) = 381 (14), 380 (61), 379 (22), 378 (100), 302 (13), 300 (20), 299 (21), 286 (12), 274 (51), 273 (12), 272 (79), 264 (12), 263 (67), 261 (36), 250 (30), 245 (12), 243 (19), 212 (23), 210 (69), 175 (19), 174 (46), 131 (24), 130 (15), 125 (18), 105 (92), 77 (25).

HRMS (EI): for C₂₂H₁₂Cl₂O₂: calc. [M+]: 378.0214; found: 378.0208.

IR (Diamond-ATR, neat): $\tilde{\nu} / \text{cm}^{-1} = 3066 \text{ (w)}, 2961 \text{ (w)}, 2959 \text{ (w)}, 2945 \text{ (w)}, 2924 \text{ (w)}, 2922 \text{ (w)}, 2898 \text{ (w)}, 2896 \text{ (w)}, 2872 \text{ (w)}, 2869 \text{ (w)}, 2866 \text{ (w)}, 2864 \text{ (w)}, 2853 \text{ (w)}, 2210 \text{ (w)}, 1764 \text{ (m)}, 1754 \text{ (vs)}, 1733 \text{ (w)}, 1723 \text{ (w)}, 1720 \text{ (w)}, 1717 \text{ (w)}, 1700 \text{ (w)}, 1683 \text{ (w)}, 1674 \text{ (w)}, 1671 \text{ (w)}, 1669 \text{ (w)}, 1663 \text{ (w)}, 1652 \text{ (w)}, 1647 \text{ (w)}, 1492 \text{ (m)}, 1453 \text{ (s)}, 1441 \text{ (m)}, 1388 \text{ (w)}, 1322 \text{ (m)}, 1300 \text{ (w)}, 1270 \text{ (m)}, 1263 \text{ (m)}, 1210 \text{ (w)}, 1194 \text{ (s)}, 1178 \text{ (m)}, 1174 \text{ (m)}, 1167 \text{ (w)}, 1162 \text{ (w)}, 1158 \text{ (w)}, 1109 \text{ (w)}, 1091 \text{ (vs)}, 1073 \text{ (m)}, 1069 \text{ (m)}, 1050 \text{ (w)}, 1038 \text{ (w)}, 1036 \text{ (w)}, 1026 \text{ (m)}, 1011 \text{ (w)}, 993 \text{ (w)}, 980 \text{ (s)}, 969 \text{ (w)}, 922 \text{ (w)}, 910 \text{ (m)}, 881 \text{ (m)}, 829 \text{ (w)}, 804 \text{ (m)}, 796 \text{ (m)}, 785 \text{ (m)}, 764 \text{ (m)}, 757 \text{ (vs)}, 723 \text{ (m)}, 710 \text{ (w)}, 701 \text{ (vs)}, 696 \text{ (m)}, 685 \text{ (s)}, 674 \text{ (m)}, 669 \text{ (w)}, 667 \text{ (w)}.$

Melting point: M.p. = 148 °C.

4"-methoxy-3-methyl-[1,1':3',1"-terphenyl]-2'-carbonitrile (11g)

2-(4"-methoxy-3-methyl-[1,1':3',1"-terphenyl]-2'-yl)-4,4-dimethyl-4,5-dihydrooxazole (**11b**, 75 mg, 0.20 mmol, 1.0 equiv) was dissolved in SOCI₂ (2 mL) and DMF (1 mL) was added dropwise at 25 °C. The reaction mixture was refluxed for 2 h and subsequently cooled to 0 °C. Water was carefully added and the reaction mixture was extracted with EtOAc (3 x 10 mL). The combined organic layers were dried over MgSO₄, filtered and the solvent was removed in vacuo. Purification of the crude product by flash column chromatography (silica gel, *i*hexane/EtOAc = 98:2) afforded the title compound as a yellow solid (**11g**, 55 mg, 0.18 mmol, 92% yield).

¹**H NMR (400 MHz, CDCl₃):** δ (ppm) = 7.63 (t, J = 7.8 Hz, 1H), 7.57–7.52 (m, 2H), 7.43 (ddd, J = 7.6, 6.4, 1.2 Hz, 2H), 7.40–7.38 (m, 3H), 7.28–7.26 (m, 1H), 7.05–7.00 (m, 2H), 3.87 (s, 3H), 2.44 (s, 3H).

¹³C NMR (101 MHz, CDCl₃): δ (ppm) = 160.0, 147.1, 146.6, 138.7, 138.3, 132.2, 131.0, 130.3, 129.8, 129.4, 128.6, 128.5, 128.4, 126.1, 118.3, 114.1, 110.2, 55.4, 21.5.

MS (EI, 70 eV): m/z (%) = 299 (100), 298 (55), 284 (31), 283 (11), 255 (27), 254 (20), 241 (29), 240 (26).

HRMS (EI): for C₂₁H₁₇NO: calc. [M+]: 299.1310; found: 299.1305.

IR (Diamond-ATR, neat): $\tilde{\nu}$ / cm⁻¹ = 3013 (vw), 2957 (w), 2953 (w), 2945 (w), 2921 (w), 2920 (w), 2896 (w), 2877 (w), 2874 (w), 2871 (w), 2853 (w), 2844 (w), 2220 (w), 1733 (vw), 1662 (w), 1660 (w), 1652 (w), 1609 (m), 1581 (w), 1577 (w), 1575 (w), 1559 (w), 1558 (vw), 1515 (s), 1496 (w), 1490 (w), 1475 (vw), 1455 (s), 1442 (m), 1436 (m), 1419 (w), 1404 (w), 1394 (w), 1375 (w), 1364 (w), 1323 (vw), 1307 (w), 1298 (m), 1283 (m), 1247 (s), 1211 (w), 1202 (w), 1178 (s), 1151 (w), 1121 (w), 1110 (m), 1093 (w), 1077 (w), 1067 (w), 1043 (m), 1024 (s), 999 (w), 988 (w), 985 (w), 980 (w), 964 (w), 950 (w), 932 (vw), 917 (w), 907 (w), 888 (w), 872 (w), 833 (m), 828 (s), 809 (m), 804 (m), 785 (vs), 770 (s), 751 (m), 735 (w), 726 (w), 717 (w), 712 (w), 703 (s).

Melting point: M.p. = 83 °C.

(5-Chloro-2-(3,5-dimethyl-1*H*-pyrazol-1-yl)phenyl)(phenyl)methanol (14a)

According to **TP 1**, to a mixture of 1-(4-chlorophenyl)-3,5-dimethyl-1*H*-pyrazole (**12a**, 103 mg, 0.50 mmol, 1.0 equiv) in toluene (1 mL) was added sBu_2Mg (0.30 mmol, 0.6 equiv) at 40 °C. After 30 min, benzaldehyde (62 µL, 0.60 mmol, 1.2 equiv) was added dropwise at 0 °C and the reaction mixture was stirred for 1 h at room temperature. Purification of the crude product by flash column chromatography (silica gel, *i*hexane/EtOAc = 7:1) afforded the title compound as a white solid (**14a**, 135 mg, 0.43 mmol, 86% yield).

¹H NMR (400 MHz, CDCl₃): δ (ppm) = 7.47 (d, J = 2.4 Hz, 1H), 7.35 (dd, J = 8.4, 2.4 Hz, 1H), 7.23–7.13 (m, 3H), 7.09–7.05 (m, 3H), 5.77 (s, 1H), 5.61 (s, 1H), 2.27 (s, 3H), 1.78 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): δ (ppm) = 149.1, 144.0, 141.6, 141.2, 130.5, 128.9, 128.2, 127.8, 127.0, 125.4, 106.4, 72.8, 13.3, 11.2.

MS (EI, 70 eV): m/z (%) = 314 (43), 313 (26), 312 (100), 311 (34), 310 (26), 297 (15), 295 (18), 294 (19), 283 (13), 282 (16), 280 (27), 266 (37), 255 (18), 234 (29), 232 (48), 229 (12), 228 (13), 216 (12), 207 (34), 151 (17), 104 (22), 82 (16), 77 (20), 76 (28), 62 (27), 57 (12). **HRMS (EI):** for C₁₈H₁₇ClN₂O: calc. [M+]: 312.1029; found: 312.1033.

IR (Diamond-ATR, neat): $\tilde{\nu} / \text{cm}^{-1} = 3166 \text{ (m)}, 3059 \text{ (w)}, 3030 \text{ (w)}, 2923 \text{ (m)}, 2853 \text{ (m)}, 2733 \text{ (w)}, 2663 \text{ (w)}, 2563 \text{ (w)}, 2479 \text{ (w)}, 2360 \text{ (w)}, 2243 \text{ (w)}, 1932 \text{ (w)}, 1735 \text{ (w)}, 1700 \text{ (w)}, 1670 \text{ (w)}, 1595 \text{ (w)}, 1573 \text{ (w)}, 1555 \text{ (m)}, 1492 \text{ (m)}, 1472 \text{ (m)}, 1455 \text{ (m)}, 1417 \text{ (m)}, 1397 \text{ (m)}, 1379 \text{ (m)}, 1371 \text{ (m)}, 1338 \text{ (w)}, 1317 \text{ (m)}, 1292 \text{ (w)}, 1269 \text{ (w)}, 1242 \text{ (m)}, 1195 \text{ (w)}, 1179 \text{ (m)}, 1161 \text{ (w)}, 1139 \text{ (w)}, 1121 \text{ (w)}, 1091 \text{ (m)}, 1077 \text{ (m)}, 1049 \text{ (m)}, 1035 \text{ (s)}, 1026 \text{ (m)}, 982 \text{ (w)}, 962 \text{ (w)}, 918 \text{ (w)}, 906 \text{ (m)}, 889 \text{ (m)}, 850 \text{ (w)}, 832 \text{ (s)}, 773 \text{ (s)}, 751 \text{ (s)}, 699 \text{ (vs)}, 671 \text{ (w)}, 658 \text{ (w)}.$ **Melting point:** M.p. = 179 °C.

1-(5-Chloro-2-(3,5-dimethyl-1*H*-pyrazol-1-yl)phenyl)ethan-1-one (14b)

According to **TP 1**, to a mixture of 1-(4-chlorophenyl)-3,5-dimethyl-1*H*-pyrazole (**12a**, 103 mg, 0.50 mmol, 1.0 equiv) in toluene (1 mL) was added sBu_2Mg (0.30 mmol, 0.6 equiv) at 40 °C. After 30 min, *N*-methoxy-*N*-methyl acetamide (65 µL, 0.60 mmol, 1.2 equiv) was added dropwise at 0 °C and the reaction mixture was stirred for 1 h at room temperature. Purification of the crude product by flash column chromatography (silica gel, *i*hexane/EtOAc = 6:1) afforded the title compound as an orange solid (**14b**, 92 mg, 0.37 mmol, 74% yield).

¹**H NMR (400 MHz, CDCl₃):** δ (ppm) = 7.67 (d, *J* = 2.4 Hz, 1H), 7.53 (dd, *J* = 8.4, 2.5 Hz, 1H), 7.30 (d, *J* = 8.4 Hz, 1H), 6.04 (s, 1H), 2.27 (s, 3H), 2.14 (d, *J* = 0.7 Hz, 3H), 1.90 (s, 3H).

¹³**C NMR (101 MHz, CDCI₃):** δ (ppm) = 198.9, 150.0, 140.8, 138.9, 134.8, 131.7, 129.1, 129.0, 107.2, 28.2, 13.4, 11.5.

MS (EI, 70 eV): m/z (%) = 235 (31), 234 (12), 233 (100).

HRMS (EI): for C₁₃H₁₃CIN₂O: calc. [M+]: 248.0716; found: 248.0713.

IR (Diamond-ATR, neat): $\tilde{\nu}$ / cm⁻¹ = 3070 (vw), 2922 (w), 2854 (w), 2360 (vw), 1700 (vw), 1684 (vs), 1637 (vw), 1593 (w), 1570 (w), 1558 (m), 1542 (vw), 1508 (w), 1492 (s), 1467 (m), 1441 (w), 1410 (m), 1396 (m), 1376 (w), 1362 (w), 1351 (m), 1288 (w), 1274 (m), 1256 (m), 1229 (s), 1178 (vw), 1131 (w), 1114 (vw), 1098 (m), 1082 (w), 1042 (vw), 1029 (m), 1012 (w), 976 (w), 890 (m), 835 (s), 811 (vs), 764 (w), 731 (w), 689 (w), 663 (vw).

Melting point: M.p. = 82 °C.

1-(5-Chloro-1',2',3',4'-tetrahydro-[1,1'-biphenyl]-2-yl)-3,5-dimethyl-1*H*-pyrazole (14c)

According to **TP 1**, to a mixture of 1-(4-chlorophenyl)-3,5-dimethyl-1*H*-pyrazole (**12a**, 103 mg, 0.50 mmol, 1.0 equiv) in toluene (1 mL) was added sBu₂Mg (0.30 mmol, 0.6 equiv) at 40 °C. After 30 min, 3-bromocyclohexene (70 μ L, 0.60 mmol, 1.2 equiv) and CuCN-2LiCl (0.1 mL, 1.0 M in THF, 20 mol%) were added at -25 °C and the mixture was stirred for 1 h. Purification of the crude product by flash column chromatography (silica gel, *i*hexane/EtOAc = 18:1) afforded the title compound as a yellow solid (**14c**, 129 mg, 0.45 mmol, 90% yield).

¹**H NMR (400 MHz, CDCl₃):** δ (ppm) = 7.34 (d, *J* = 2.4 Hz, 1H), 7.24 (dd, *J* = 8.3, 2.4 Hz, 1H), 7.11 (d, *J* = 8.3 Hz, 1H), 5.95 (s, 1H), 5.90 (ddt, *J* = 10.0, 5.1, 2.8 Hz, 1H), 5.59–5.53 (m, 1H), 3.15 (s, 1H), 2.27 (s, 3H), 2.12–1.95 (m, 5H), 1.83 (d, *J* = 12.0 Hz, 1H), 1.68 (ddt, *J* = 16.4, 5.9, 3.7 Hz, 1H), 1.54–1.35 (m, 2H).

¹³C NMR (101 MHz, CDCl₃): δ (ppm) = 148.7, 146.7, 140.5, 136.4, 134.9, 129.4, 129.3, 129.0, 128.9, 126.7, 105.3, 36.1, 31.4, 24.7, 21.1, 13.6, 11.5.

MS (EI, 70 eV): m/z (%) = 288 (23), 286 (77), 285 (30), 273 (30), 272 (18), 271 (100), 257 (22), 254 (17), 245 (17), 243 (57), 231 (34), 228 (23), 217 (27), 205 (22), 191 (15), 190 (26), 180 (15), 168 (17), 167 (29), 164 (16), 162 (52), 154 (18), 153 (15), 152 (23), 115 (17), 96 (15).

HRMS (EI): for C₁₇H₁₉CIN₂: calc. [M+]: 286.1237; found: 286.1233.

IR (Diamond-ATR, neat): $\tilde{\nu} / \text{cm}^{-1} = 3021 \text{ (vw)}$, 2933 (m), 2859 (w), 2839 (w), 2360 (vw), 1731 (w), 1595 (vw), 1569 (vw), 1553 (m), 1496 (s), 1470 (m), 1445 (w), 1433 (w), 1415 (m), 1389 (w), 1378 (w), 1365 (m), 1343 (w), 1310 (w), 1298 (vw), 1279 (vw), 1267 (vw), 1241 (w), 1220 (vw), 1184 (w), 1154 (vw), 1136 (w), 1118 (w), 1091 (m), 1077 (w), 1042 (w), 1028 (m), 1014 (w), 991 (w), 984 (w), 931 (vw), 910 (w), 898 (w), 883 (m), 859 (w), 832 (vs), 810 (w), 795 (m), 775 (w), 753 (w), 726 (m), 718 (m), 683 (vw), 669 (w), 662 (w).

Melting point: M.p. = 94 °C.

5-(2-(5-Chloro-3-methyl-1*H*-pyrazol-1-yl)phenyl)pyrimidine (14d)

According to **TP 1**, to a mixture of 5-chloro-3-methyl-1-phenyl-1*H*-pyrazole (**12b**, 96 mg, 0.50 mmol, 1.0 equiv) in toluene (1 mL) was added sBu_2Mg (0.40 mmol, 0.8 equiv) at 60 °C. After 20 min, the resulting diarylmagnesium was transmetalated with a ZnCl₂ solution (0.6 mL, 1.00 M in THF, 1.10 equiv) at 0 °C for 30 min. A dry and argon-flushed Schlenk-tube, equipped with a magnetic stirring bar and a septum was charged with Pd(dppf)Cl₂ (15 mg, 5 mol%) and 5-bromopyrimidine (67 mg, 0.42 mmol, 0.83 equiv).The freshly prepared arylzinc reagent was added and the reaction mixture was placed in an oil bath at 55 °C for 18 h. Purification of the crude product by flash column chromatography (silica gel, *i*hexane/EtOAc = 2:1) afforded the title compound as a yellow oil (**14d**, 72 mg, 0.27 mmol, 64% yield).

¹**H NMR (400 MHz, CDCl**₃): δ (ppm) = 9.15 (s, 1H), 8.51 (s, 2H), 7.73–7.51 (m, 4H), 6.07 (s, 1H), 2.28 (s, 3H).

¹³**C NMR (101 MHz, CDCl₃):** δ (ppm) = 156.9, 155.9, 150.5, 136.1, 132.8, 132.3, 130.4, 130.2, 130.1, 129.2, 128.5, 105.9, 14.0.

MS (EI, 70 eV): m/z (%) = 236 (15), 235 (100), 208 (14), 207 (10), 194 (15), 167 (18), 140 (16).

HRMS (EI): for C₁₄H₁₁CIN₄: calc. [M-H⁺]: 269.0594; found: 269.0586.

IR (Diamond-ATR, neat): $\tilde{\nu}$ / cm⁻¹ = 3118 (vw), 3039 (w), 2929 (w), 2855 (vw), 1725 (vw), 1578 (w), 1549 (m), 1524 (s), 1497 (m), 1462 (m), 1421 (m), 1408 (vs), 1373 (m), 1362 (m), 1278 (w), 1187 (m), 1163 (w), 1117 (w), 1087 (w), 1011 (m), 1002 (m), 992 (m), 972 (w), 912 (w), 781 (m), 765 (vs), 750 (m), 726 (vs), 672 (w).

(2-(1*H*-Pyrazol-1-yl)phenyl)(furan-2-yl)methanol (14e)

According to **TP 1**, to a mixture of 1-phenyl-1*H*-pyrazole (**12c**, 65 μ L, 0.50 mmol, 1.0 equiv) in toluene (1 mL) was added *s*Bu₂Mg (0.40 mmol, 0.8 equiv) at 40 °C. After 1 h, furfural (50 μ L, 0.60 mmol, 1.2 equiv) was added dropwise at 0 °C and the reaction mixture was stirred for 1 h at room temperature. Purification of the crude product by flash column chromatography (silica gel, *i*hexane/EtOAc = 4:1) afforded the title compound as a brown solid (**14e**, 108 mg, 0.45 mmol, 90% yield).

¹**H NMR (400 MHz, CDCI₃):** δ (ppm) = 7.71 (dd, J = 1.9, 0.7 Hz, 1H), 7.65 (dd, J = 2.4, 0.7 Hz, 1H), 7.46–7.36 (m, 3H), 7.34–7.30 (m, 1H), 7.28–7.26 (m, 2H), 6.43 (t, J = 2.2 Hz, 1H), 6.27 (dd, J = 3.3, 1.8 Hz, 1H), 6.18 (dt, J = 3.3, 1.0 Hz, 1H), 5.72 (d, J = 1.1 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃): δ (ppm) = 154.5, 141.6, 140.5, 139.2, 136.9, 130.6, 130.2, 129.1, 128.6, 125.1, 110.2, 107.2, 106.5, 68.3.

MS (EI, 70 eV): m/z (%) = 223 (30), 212 (29), 211 (100), 209 (29), 197 (51), 195 (26), 193 (39), 184 (80), 183 (59), 181 (19), 172 (18), 171 (47), 169 (30), 168 (16), 167 (30), 166 (25), 156 (29), 144 (17), 130 (25), 117 (21), 115 (37), 89 (17).

HRMS (EI): for C₁₄H₁₂N₂O₂: calc. [M+]: 240.0899; found: 240.0892.

IR (Diamond-ATR, neat): $\tilde{\nu}/cm^{-1} = 3244$ (w), 3240 (w), 3091 (w), 2923 (vw), 1601 (w), 1583 (vw), 1515 (w), 1490 (m), 1458 (w), 1424 (w), 1398 (m), 1331 (w), 1316 (m), 1283 (w), 1270 (w), 1211 (m), 1197 (m), 1182 (m), 1166 (vw), 1142 (m), 1129 (w), 1103 (vw), 1068 (w), 1056 (m), 1046 (s), 1026 (m), 1012 (s), 985 (w), 950 (m), 922 (m), 914 (w), 881 (w), 865 (w), 830 (w), 802 (m), 769 (s), 757 (vs), 732 (vs), 717 (s), 698 (m), 677 (w), 663 (m).

Melting point: M.p. = 91 °C.

1-(2-(benzo[*d*][1,3]dioxol-5-yl)phenyl)-1H-pyrazole (14f)

According to **TP 1**, to a mixture of 1-phenyl-1*H*-pyrazole (**12c**, 0.65 mL, 5.00 mmol, 1.0 equiv) in toluene (10 mL) was added sBu_2Mg (0.40 mmol, 0.8 equiv) at 40 °C. After 1 h, the resulting diarylmagnesium was transmetalated with a ZnCl₂ solution (5.5 mL, 1.00 M in THF, 1.10 equiv) at 0 °C for 30 min. A dry and argon-flushed Schlenk-tube, equipped with a magnetic stirring bar and a septum was charged with Pd(dppf)Cl₂ (182 mg, 5 mol%) and 5-bromobenzo[d][1,3]dioxole (0.50 mL, 4.15 mmol, 0.83 equiv). The freshly prepared arylzinc reagent was added and the reaction mixture was placed in an oil bath at 55 °C for 18 h. Purification of the crude product by flash column chromatography (silica gel, *i*hexane/EtOAc = 9:1) afforded the title compound as a brown solid (**14f**, 879 mg, 3.33 mmol, 80% yield).

¹H NMR (400 MHz, CDCI₃): δ (ppm) = 7.65 (dd, J = 1.8, 0.7 Hz, 1H), 7.61–7.55 (m, 1H), 7.49– 7.41 (m, 3H), 7.15 (dd, J = 2.4, 0.7 Hz, 1H), 6.74 (d, J = 8.0 Hz, 1H), 6.60 (dd, J = 8.0, 1.8 Hz, 1H), 6.54 (d, J = 1.7 Hz, 1H), 6.24 (dd, J = 2.4, 1.8 Hz, 1H), 5.95 (s, 2H).

¹³**C NMR (101 MHz, CDCI₃):** δ (ppm) = 147.7, 147.0, 140.3, 138.5, 136.4, 132.4, 131.3, 131.0, 128.3, 128.2, 126.6, 122.2, 108.9, 108.4, 106.5, 101.1.

MS (EI, 70 eV): m/z (%) = 264 (20), 263 (100), 205 (15).

HRMS (EI): for C₁₆H₁₂N₂O₂: calc. [M+]: 264.0899; found: 264.0891.

IR (Diamond-ATR, neat): $\tilde{\nu} / \text{cm}^{-1} = 2892 \text{ (w)}, 1733 \text{ (vw)}, 1607 \text{ (w)}, 1576 \text{ (vw)}, 1517 \text{ (m)}, 1505 \text{ (m)}, 1477 \text{ (vs)}, 1460 \text{ (s)}, 1435 \text{ (m)}, 1416 \text{ (m)}, 1393 \text{ (s)}, 1337 \text{ (m)}, 1329 \text{ (m)}, 1239 \text{ (s)}, 1218 \text{ (vs)}, 1192 \text{ (m)}, 1148 \text{ (w)}, 1126 \text{ (w)}, 1107 \text{ (m)}, 1097 \text{ (m)}, 1036 \text{ (s)}, 1021 \text{ (s)}, 1012 \text{ (m)}, 935 \text{ (s)}, 915 \text{ (m)}, 891 \text{ (m)}, 877 \text{ (m)}, 863 \text{ (w)}, 861 \text{ (w)}, 836 \text{ (vw)}, 809 \text{ (m)}, 749 \text{ (vs)}, 744 \text{ (vs)}, 726 \text{ (m)}, 715 \text{ (m)}, 701 \text{ (w)}, 699 \text{ (w)}, 675 \text{ (w)}, 667 \text{ (w)}, 659 \text{ (w)}.$

Melting point: M.p. = 97 °C.

6-(3-(benzo[d][1,3]dioxol-5-yl)-2-(1H-pyrazol-1-yl)phenyl)quinolone (15a)

According to **TP 1**, to a mixture of 1-(2-(benzo[*d*][1,3]dioxol-5-yl)phenyl)-1H-pyrazole (**14f**, 53 mg, 0.20 mmol, 1.0 equiv) in toluene (0.4 mL) was added sBu_2Mg (0.40 mmol, 0.8 equiv) at 60 °C. After 0.5 h, the resulting diarylmagnesium was transmetalated with a ZnCl₂ solution (0.24 mL, 1.00 M in THF, 1.10 equiv) at 0 °C for 30 min. A dry and argon-flushed Schlenk-tube, equipped with a magnetic stirring bar and a septum was charged with Pd(dppf)Cl₂ (8 mg, 5 mol%) and 6-iodoquinoline (43 mg, 0.17 mmol, 0.83 equiv).The freshly prepared arylzinc reagent was added and the reaction mixture was placed in an oil bath at 55 °C for 18 h. Purification of the crude product by flash column chromatography (silica gel, *i*hexane/EtOAc = 2:1) afforded the title compound as a brown oil (**15b**, 55 mg, 0.14 mmol, 84% yield).

¹**H NMR (400 MHz, CDCI₃):** δ (ppm) = 8.88 (dd, J = 4.2, 1.7 Hz, 1H), 8.06 (dd, J = 8.3, 1.7 Hz, 1H), 7.92 (d, J = 8.8 Hz, 1H), 7.68–7.48 (m, 4H), 7.41–7.34 (m, 3H), 7.12 (d, J = 2.4 Hz, 1H), 6.71 (d, J = 8.0 Hz, 1H), 6.63 (dd, J = 8.0, 1.7 Hz, 1H), 6.57 (d, J = 1.8 Hz, 1H), 6.07 (t, J = 2.1 Hz, 1H), 5.93 (s, 2H).

¹³C NMR (101 MHz, CDCl₃): δ (ppm) = 150.6, 147.6, 147.4, 147.1, 140.3, 139.9, 139.7, 137.3, 136.7, 136.5, 132.5, 132.5, 130.7, 130.2, 130.0, 129.4, 129.1, 128.1, 127.4, 122.1, 121.5, 108.8, 108.3, 106.6, 101.2.

MS (EI, 70 eV): m/z (%) = 281 (17), 252 (14), 225 (41), 209 (20), 207 (64), 191 (17). **HRMS (EI):** for C₂₅H₁₇N₃O₂: calc. [M+]: 391.1321; found: 391.1315.

IR (Diamond-ATR, neat): $\tilde{\nu}$ / cm⁻¹ = 2955 (w), 2924 (m), 2855 (w), 1741 (m), 1517 (w), 1502 (m), 1492 (m), 1464 (s), 1435 (m), 1410 (w), 1390 (w), 1354 (w), 1341 (w), 1241 (m), 1227 (m), 1157 (m), 1154 (m), 1109 (m), 1091 (m), 1083 (m), 1037 (vs), 1022 (s), 976 (s), 937 (vs), 914 (vs), 870 (s), 841 (s), 829 (m), 799 (s), 763 (s), 754 (s), 736 (m), 731 (m), 698 (w), 673 (w), 668 (w).

1-(2-(benzo[d][1,3]dioxol-5-yl)-6-(dibenzo[b,d]thiophen-4-yl)phenyl)-1H-pyrazole (15b)

According to **TP 1**, to a mixture of 1-(2-(benzo[*d*][1,3]dioxol-5-yl)phenyl)-1H-pyrazole (**14f**, 53 mg, 0.20 mmol, 1.0 equiv) in toluene (0.4 mL) was added sBu_2Mg (0.40 mmol, 0.8 equiv) at 60 °C. After 0.5 h, the resulting diarylmagnesium was transmetalated with a ZnCl₂ solution (0.24 mL, 1.00 M in THF, 1.10 equiv) at 0 °C for 30 min. A dry and argon-flushed Schlenk-tube, equipped with a magnetic stirring bar and a septum was charged with Pd(dppf)Cl₂ (8 mg, 5 mol%) and 4-iododibenzo[*b*,*d*]thiophene (53 mg, 0.17 mmol, 0.83 equiv). The freshly prepared arylzinc reagent was added and the reaction mixture was placed in an oil bath at 55 °C for 18 h. Purification of the crude product by flash column chromatography (silica gel, *i*hexane/EtOAc = 98:1) afforded the title compound as a white solid (**15b**, 51 mg, 0.12 mmol, 67% yield).

¹**H NMR (400 MHz, CDCI₃):** δ (ppm) = 8.17–8.12 (m, 1H), 8.03 (dd, J = 7.9, 1.1 Hz, 1H), 7.84– 7.78 (m, 1H), 7.67 (dd, J = 7.3, 1.9 Hz, 1H), 7.64–7.56 (m, 2H), 7.49–7.42 (m, 2H), 7.32–7.26 (m, 2H), 7.07–7.01 (m, 2H), 6.71 (d, J = 8.1 Hz, 1H), 6.66 (dd, J = 8.1, 1.7 Hz, 1H), 6.60 (d, J = 1.7 Hz, 1H), 5.92 (s, 3H).

¹³C NMR (101 MHz, CDCl₃): δ (ppm) = 147.2, 146.8, 140.0, 139.5, 139.3, 139.3, 138.7, 136.8, 135.7, 135.4, 133.1, 132.2, 131.9, 130.8, 129.1, 128.9, 126.7, 126.6, 124.3, 124.1, 122.5, 121.9, 121.6, 120.3, 108.6, 107.9, 105.7, 100.8.

MS (EI, 70 eV): m/z (%) = 447 (26), 446 (74), 445 (100).

HRMS (EI): for C₂₈H₁₈N₂O₂S: calc. [M-H⁺]: 445.1011; found: 445.1010.

IR (Diamond-ATR, neat): $\tilde{\nu} / \text{cm}^{-1} = 2962 \text{ (vw)}$, 2959 (w), 2957 (w), 2954 (w), 2950 (vw), 2945 (vw), 2922 (w), 2918 (w), 2914 (w), 2901 (w), 2896 (w), 2892 (w), 2889 (w), 2887 (w), 2884 (w), 2882 (w), 2876 (w), 2874 (w), 2866 (w), 2864 (w), 2862 (w), 2853 (w), 1517 (w), 1502 (m), 1492 (m), 1480 (w), 1462 (m), 1440 (m), 1436 (m), 1419 (w), 1411 (w), 1392 (m), 1385 (w), 1339 (w), 1315 (w), 1304 (w), 1259 (w), 1257 (w), 1242 (m), 1227 (s), 1195 (w), 1178 (w), 1157 (vw), 1155 (vw), 1107 (w), 1084 (w), 1038 (s), 1022 (m), 937 (m), 911 (m), 894 (w), 890 (w), 882 (w), 877 (w), 874 (w), 872 (w), 870 (w), 868 (w), 865 (w), 863 (w), 804 (m), 793 (m), 749 (vs), 737 (m), 732 (m), 727 (m), 722 (s), 705 (m), 692 (w).

Melting point: M.p. = 152 °C.

(5-Chloro-2-(2H-1,2,3-triazol-2-yl)phenyl)(furan-2-yl)methanol (18a)

According to **TP 1**, to a mixture of 2-(4-chlorophenyl)-2*H*-1,2,3-triazole (**16a**, 90 mg, 0.50 mmol, 1.0 equiv) in toluene (1 mL) was added sBu_2Mg (0.40 mmol, 0.8 equiv) at 40 °C. After 15 min, furfural (50 µL, 0.60 mmol, 1.2 equiv) was added dropwise at 0 °C and the reaction mixture was stirred for 1 h at room temperature. Purification of the crude product by flash column chromatography (silica gel, *i*hexane/EtOAc = 4:1) afforded the title compound as a brown oil (**18a**, 92 mg, 0.34 mmol, 68% yield).

¹H NMR (400 MHz, CDCI₃): δ (ppm) = 7.84 (s, 2H), 7.75–7.69 (m, 1H), 7.48–7.42 (m, 2H), 7.32 (dd, J = 1.9, 0.9 Hz, 1H), 6.28 (dd, J = 3.3, 1.9 Hz, 1H), 6.17 (dt, J = 3.3, 1.0 Hz, 1H), 5.98 (d, J = 0.9 Hz, 1H).

¹³**C NMR (101 MHz, CDCl₃):** δ (ppm) = 153.3, 142.3, 137.0, 136.4, 135.7, 134.9, 129.8, 129.2, 126.2, 110.2, 107.3, 67.2.

MS (EI, 70 eV): m/z (%) = 277 (23), 275 (64), 260 (26), 259 (20), 258 (71), 257 (22), 248 (32), 247 (37), 246 (84), 231 (26), 230 (20), 228 (19), 221 (38), 220 (41), 219 (100), 208 (22), 207 (39), 206 (62), 204 (22), 202 (18), 192 (29), 191 (34), 164 (22), 163 (17), 140 (16), 124 (25), 123 (18), 115 (18), 95 (42), 81 (31), 75 (18), 70 (83), 63 (17), 43 (78), 42 (43), 41 (16). **HRMS (EI):** for $C_{13}H_{10}CIN_3O_2$: calc. [M+]: 275.0462; found: 275.0457.

IR (Diamond-ATR, neat): $\tilde{\nu}/cm^{-1} = 3380$ (w), 3143 (w), 3120 (w), 2923 (vw), 2852 (vw), 2363 (vw), 1794 (w), 1714 (w), 1700 (w), 1652 (w), 1594 (w), 1488 (s), 1410 (s), 1370 (w), 1290 (w), 1260 (w), 1225 (w), 1181 (m), 1148 (m), 1122 (w), 1100 (m), 1072 (m), 1049 (w), 1010 (s), 962 (s), 948 (vs), 902 (w), 883 (m), 819 (vs), 783 (m), 735 (s), 675 (w), 656 (vw).

2-(5-Chloro-4'-methoxy-[1,1'-biphenyl]-2-yl)-2H-1,2,3-triazole (18b)

According to **TP 1**, to a mixture of 2-(4-chlorophenyl)-2*H*-1,2,3-triazole (**16a**, 539 mg, 3.00 mmol, 1.0 equiv) in toluene (6 mL) was added sBu_2Mg (1.80 mmol, 0.6 equiv) at 40 °C. After 15 min, the resulting diarylmagnesium was transmetalated with a ZnCl₂ solution (3.3 mL, 1.00 M in THF, 1.10 equiv) at 0 °C for 30 min. A dry and argon-flushed Schlenk-tube, equipped with a magnetic stirring bar and a septum was charged with Pd(dppf)Cl₂ (110 mg, 5 mol%) and 4-bromoanisole (0.31 mL, 2.50 mmol, 0.83 equiv). The freshly prepared arylzinc reagent was added and the reaction mixture was placed in an oil bath at 55 °C for 18 h. Purification of the crude product by flash column chromatography (silica gel, *l*hexane/EtOAc = 9:1) afforded the title compound as a yellow oil (**18b**, 455 mg, 1.60 mmol, 64% yield).

¹**H NMR (400 MHz, CDCl₃):** δ (ppm) = 7.69 (s, 2H), 7.54 – 7.49 (m, 2H), 7.42 (dd, *J* = 8.4, 2.4 Hz, 1H), 6.96–6.92 (m, 2H), 6.81–6.76 (m, 2H), 3.79 (s, 3H).

¹³C NMR (101 MHz, CDCl₃): δ (ppm) = 159.3, 139.1, 136.8, 135.3, 135.1, 131.0, 129.5, 129.2, 127.9, 127.6, 113.8, 55.2.

MS (EI, 70 eV): m/z (%) = 287 (11), 286 (31), 285 (36), 284 (100), 269 (10), 188 (22), 153 (18), 126 (10).

HRMS (EI): for C₁₅H₁₂CIN₃O: calc. [M+]: 285.0669; found: 285.0671.

IR (Diamond-ATR, neat): $\tilde{\nu}/cm^{-1} = 3125$ (vw), 3060 (vw), 3038 (vw), 3001 (vw), 2956 (w), 2932 (w), 2835 (w), 1609 (m), 1580 (w), 1516 (m), 1488 (s), 1462 (m), 1441 (w), 1410 (m), 1401 (m), 1368 (w), 1289 (m), 1250 (s), 1242 (s), 1178 (s), 1149 (m), 1128 (w), 1110 (m), 1099 (m), 1075 (m), 1056 (w), 1036 (m), 1024 (m), 1007 (w), 961 (s), 950 (s), 884 (w), 819 (vs), 776 (m), 745 (w), 728 (vw), 670 (w).

2-(4-Chloro-2-(phenylethynyl)phenyl)-2H-1,2,3-triazole (18c)

According to **TP 1**, to a mixture of 2-(4-chlorophenyl)-2H-1,2,3-triazole (**16a**, 539 mg, 3.00 mmol, 1.0 equiv) in toluene (6 mL) was added sBu₂Mg (1.80 mmol, 0.6 equiv) at 40 °C. After 15 min, the further procedure was adopted and modified from literature.¹⁷ The reaction mixture was cooled to -50 °C and CuCN-2LiCl (3.6 mL, 1.0 M in THF, 1.2 equiv) was added dropwise and the mixture was stirred for 25 min. (phenylethynyl)lithium (6.00 mmol; prepared by adding nBuLi (6.00 mmol) to a 0.5 M solution of phenylacetylen (6.00 mol) in THF at 0 °C and stirring for 30 min) was added dropwise to the resulting cuprate and the mixture was stirred for 1 h at -50 °C. The reaction mixture was cooled to -78 °C, and a solution of chloranil (959 mg, 3.90 mmol, 1.3 equiv) in dry THF (20 mL) was added slowly over a period of 45 min. The reaction mixture was then warmed to -50 °C and stirred for 3 h. Et₂O (30 mL) was poured into the crude reaction mixture and the reaction mixture was then filtered through celite and the residue washed with Et₂O (ca. 100 mL). The organic phase was washed with NH₄OH (2 M, 2 x 30 mL) and extracted with Et_2O . The combined organic layers were dried over MgSO₄, filtered and concentrated in vacuo. Purification of the crude product by flash column chromatography (silica gel, *i*hexane/EtOAc = 98:2) afforded the title compound as a brown oil (**18c**, 432 mg, 1.54 mmol, 52% yield).

¹**H NMR (400 MHz, CDCI₃):** δ (ppm) =7.90 (s, 2H), 7.71–7.66 (m, 2H), 7.45–7.40 (m, 3H), 7.33 (dd, *J* = 5.3, 2.0 Hz, 3H).

¹³**C NMR (101 MHz, CDCl₃):** δ (ppm) = 139.2, 135.7, 134.1, 133.3, 131.6, 129.0, 128.9, 128.3, 125.9, 122.5, 119.7, 95.2, 84.6.

MS (EI, 70 eV): m/z (%) = 278 (20), 254 (32), 253 (16), 252 (100), 223 (12), 217 (31), 190 (41), 163 (19).

HRMS (EI): for C₁₆H₁₀CIN₃: calc. [M+]: 279.0563; found: 279.0559.

IR (Diamond-ATR, neat): $\tilde{\nu}$ / cm⁻¹ = 3284 (vw), 3061 (vw), 2966 (w), 2927 (vw), 2873 (vw), 2223 (w), 1683 (m), 1599 (w), 1571 (m), 1497 (s), 1484 (s), 1442 (m), 1406 (s), 1262 (w), 1149 (m), 1103 (s), 1068 (m), 1024 (w), 961 (s), 945 (s), 893 (m), 820 (vs), 753 (vs), 728 (s), 688 (vs), 669 (w).

¹⁷ S. R. Dubbaka, M. Kienle, H. Mayr, P. Knochel, *Angew. Chem. Int. Ed.* **2007**, *46*, 9093-9096.

2-(2-Allyl-4-chlorophenyl)-2H-1,2,3-triazole (18d)

According to **TP 1**, to a mixture of 2-(4-chlorophenyl)-2*H*-1,2,3-triazole (**16a**, 539 mg, 3.00 mmol, 1.0 equiv) in toluene (6 mL) was added sBu_2Mg (1.80 mmol, 0.6 equiv) at 40 °C. After 15 min, allyl bromide (0.31 mL, 3.60 mmol, 1.2 equiv) and CuCN-2LiCl (0.6 mL, 1.0 M in THF, 20 mol%) were added at -25 °C and the mixture was stirred for 1 h. Purification of the crude product by flash column chromatography (silica gel, *i*hexane/EtOAc = 98:2) afforded the title compound as a white solid (**18d**, 433 mg, 1.98 mmol, 66% yield).

¹H NMR (400 MHz, CDCl₃): δ (ppm) = 7.84 (s, 2H), 7.51 (d, J = 8.4 Hz, 1H), 7.38–7.30 (m, 2H), 5.81 (ddt, J = 16.8, 10.1, 6.6 Hz, 1H), 5.06–4.93 (m, 2H), 3.48 (dt, J = 6.7, 1.6 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃): δ (ppm) = 138.2, 137.1, 135.8, 135.6, 135.2, 131.1, 127.6, 127.4, 117.4, 36.4.

MS (EI, 70 eV): m/z (%) = 206 (32), 205 (10), 204 (100), 164 (14), 155 (12), 128 (12), 115 (10).

HRMS (EI): for C₁₁H₁₀CIN₃: calc. [M+]: 219.0563; found: 219.0558.

IR (Diamond-ATR, neat): $\tilde{\nu}/cm^{-1} = 3134$ (w), 3121 (w), 3076 (vw), 2926 (w), 2856 (vw), 1882 (vw), 1854 (vw), 1635 (w), 1600 (w), 1490 (m), 1437 (w), 1414 (m), 1407 (m), 1375 (w), 1304 (w), 1255 (w), 1188 (w), 1157 (m), 1132 (m), 1103 (m), 1095 (m), 1070 (m), 1045 (w), 1005 (m), 956 (s), 945 (m), 920 (s), 883 (m), 871 (m), 815 (vs), 751 (m), 705 (w), 677 (m), 660 (w). **Melting point:** M.p. = 63 °C.

2-(3,5-Dichloro-2-(methylthio)phenyl)-2H-1,2,3-triazole (18e)

According to **TP 1**, to a mixture of 2-(3,5-dichlorophenyl)-2*H*-1,2,3-triazole (**16b**, 1.070 g, 5.00 mmol, 1.0 equiv) in toluene (10 mL) was added sBu_2Mg (3.00 mmol, 0.6 equiv) at 25 °C. After 30 min, S-methyl methanethiosulfonate (0.57 mL, 6.00 mmol, 1.2 equiv) was added dropwise at 0 °C and the reaction mixture was stirred for 2 h at room temperature. Purification of the crude product by flash column chromatography (silica gel, *i*hexane/EtOAc = 98:2) afforded the title compound as a brown solid (**18e**, 1.062 g, 4.08 mmol, 82% yield).

¹**H NMR (400 MHz, CDCl₃):** δ (ppm) = 7.90 (s, 2H), 7.61 (d, *J* = 2.3 Hz, 1H), 7.48 (d, *J* = 2.3 Hz, 1H), 2.24 (s, 3H).

¹³C NMR (101 MHz, CDCI₃): δ (ppm) = 144.7, 141.3, 135.9, 134.6, 131.8, 130.9, 126.3, 19.0. MS (EI, 70 eV): m/z (%) = 260 (49), 258 (73), 245 (38), 243 (56), 227 (61), 225 (100), 205 (44), 203 (71), 202 (11), 191 (12), 190 (12), 189 (20), 188 (23), 168 (27), 167 (13), 160 (19), 158 (26), 141 (10), 123 (15), 119 (24), 92 (10), 78 (16), 69 (29).

HRMS (EI): for C₉H₇Cl₂N₃S: calc. [M+]: 258.9738; found: 258.9735.

IR (Diamond-ATR, neat): $\tilde{\nu}$ / cm⁻¹ = 3141 (vw), 3122 (vw), 3075 (w), 3059 (w), 2995 (vw), 2919 (w), 1768 (vw), 1738 (vw), 1574 (s), 1545 (m), 1439 (m), 1406 (s), 1346 (m), 1313 (w), 1249 (w), 1184 (w), 1146 (m), 1119 (m), 1067 (w), 1047 (w), 979 (m), 958 (vs), 899 (m), 885 (w), 870 (s), 828 (s), 821 (vs), 791 (s), 723 (m), 701 (w), 672 (w), 654 (w). **Melting point:** M.p. = 53 °C.

2-(2-Allyl-3,5-dichlorophenyl)-2H-1,2,3-triazole (18f)

According to **TP 1**, to a mixture of 2-(3,5-dichlorophenyl)-2*H*-1,2,3-triazole (**16b**, 1.070 g, 5.00 mmol, 1.0 equiv) in toluene (10 mL) was added sBu_2Mg (3.00 mmol, 0.6 equiv) at 25 °C. After 30 min, allyl bromide (0.52 mL, 6.00 mmol, 1.2 equiv) and CuCN-2LiCl (1.0 mL, 1.0 M in THF, 20 mol%) were added at -25 °C and the mixture was stirred for 1 h. Purification of the crude product by flash column chromatography (silica gel, *i*hexane/EtOAc = 99:1) afforded the title compound as a red solid (**18f**, 1.150 g, 4.53 mmol, 91% yield).

¹**H NMR (400 MHz, CDCI₃):** δ (ppm) = 7.86 (s, 2H), 7.55–7.49 (m, 2H), 5.79 (ddt, *J* = 16.3, 10.1, 6.2 Hz, 1H), 4.97 (dq, *J* = 10.2, 1.6 Hz, 1H), 4.87 (dq, *J* = 17.1, 1.7 Hz, 1H), 3.59 (dt, *J* = 6.1, 1.6 Hz, 2H).

¹³C NMR (101 MHz, CDCI₃): δ (ppm) = 135.7, 133.7, 132.6, 132.0, 130.2, 125.2, 116.5, 32.8. MS (EI, 70 eV): m/z (%) = 239 (62), 237 (100), 207 (20), 149 (15), 57 (11), 44 (67), 43 (42). HRMS (EI): for C₁₁H₉Cl₂N₃: calc. [M+]: 253.0174; found: 253.0181.

IR (Diamond-ATR, neat): $\tilde{\nu} / \text{cm}^{-1} = 3136 \text{ (w)}$, 3084 (w), 2360 (w), 1733 (w), 1635 (m), 1589 (s), 1565 (m), 1466 (m), 1455 (m), 1447 (m), 1436 (m), 1428 (m), 1411 (s), 1283 (w), 1256 (w), 1184 (w), 1146 (m), 1129 (m), 1119 (m), 1076 (m), 1061 (m), 998 (m), 960 (s), 936 (m), 920 (s), 907 (s), 857 (vs), 825 (m), 818 (s), 807 (m), 782 (s), 705 (m), 672 (w). **Melting point:** M.p. = 58 °C.

According to **TP 1**, to a mixture of 2-(2-allyl-4-chlorophenyl)-2*H*-1,2,3-triazole (**18d**, 110 mg, 0.50 mmol, 1.0 equiv) in toluene (1 mL) was added sBu_2Mg (0.40 mmol, 0.8 equiv) at 40 °C. After 15 min, benzaldehyde (62 µL, 0.60 mmol, 1.2 equiv) was added dropwise at 0 °C and the reaction mixture was stirred for 1 h at room temperature. Purification of the crude product by flash column chromatography (silica gel, *i*hexane/EtOAc = 9:1) afforded the title compound as a white solid (**19a**, 67 mg, 0.21 mmol, 42% yield).

¹**H NMR (400 MHz, CDCI₃):** δ (ppm) = 7.84 (s, 2H), 7.40 (d, J = 2.4 Hz, 1H), 7.37–7.26 (m, 4H), 7.22–7.16 (m, 2H), 5.73 (ddt, J = 16.9, 10.0, 6.8 Hz, 1H), 5.43 (d, J = 4.2 Hz, 1H), 5.04 (dq, J = 10.1, 1.5 Hz, 1H), 4.95 (dq, J = 17.0, 1.6 Hz, 1H), 3.56–3.47 (m, 1H), 3.11 (dd, J = 6.8, 1.7 Hz, 2H).

¹³**C NMR (101 MHz, CDCl₃):** δ (ppm) = 143.3, 140.9, 140.0, 136.1, 135.2, 134.6, 129.6, 128.2, 127.6, 127.1, 126.0, 117.3, 71.2, 35.6.

MS (EI, 70 eV): m/z (%) = 325 (13), 324 (25), 309 (22), 308 (37), 307 (72), 306 (21), 299 (24), 297 (78), 272 (17), 270 (16), 268 (100), 254 (16), 219 (36), 204 (15), 203 (49), 202 (34), 192 (15), 190 (66), 189 (19), 152 (17), 128 (16), 115 (21), 105 (75), 77 (48).

HRMS (EI): for C₁₈H₁₆CIN₃O: calc. [M+]: 325.0982; found: 325.0979.

IR (Diamond-ATR, neat): $\tilde{\nu} / \text{cm}^{-1} = 3320 \text{ (m)}, 3132 \text{ (w)}, 3109 \text{ (m)}, 2955 \text{ (w)}, 2919 \text{ (m)}, 2849 \text{ (w)}, 1639 \text{ (w)}, 1589 \text{ (w)}, 1578 \text{ (w)}, 1456 \text{ (m)}, 1435 \text{ (m)}, 1418 \text{ (m)}, 1363 \text{ (w)}, 1315 \text{ (m)}, 1307 \text{ (w)}, 1227 \text{ (m)}, 1186 \text{ (w)}, 1153 \text{ (m)}, 1117 \text{ (w)}, 1061 \text{ (s)}, 1007 \text{ (m)}, 967 \text{ (s)}, 956 \text{ (s)}, 938 \text{ (m)}, 893 \text{ (m)}, 865 \text{ (m)}, 842 \text{ (m)}, 825 \text{ (m)}, 777 \text{ (m)}, 758 \text{ (m)}, 697 \text{ (vs)}, 684 \text{ (m)}, 668 \text{ (m)}.$ **Melting point:** M.p. = 84 °C.

2-(3,5-Dichloro-2-iodo-6-(methylthio)phenyl)-2H-1,2,3-triazole (19b)

According to **TP 1**, to a mixture of 2-(3,5-dichloro-2-(methylthio)phenyl)-2*H*-1,2,3-triazole (**18e**, 130 mg, 0.50 mmol, 1.0 equiv) in toluene (1 mL) was added sBu_2Mg (0.40 mmol, 0.8 equiv) at 25 °C. After 10 min, the reaction mixture was cooled to 0 °C and iodine (153 mg, 0.60 mmol, 1.2 equiv) dissolved in THF (1 mL) was added dropwise and the reaction mixture was stirred for 1 h. Purification of the crude product by flash column chromatography (silica gel, *i*hexane/EtOAc = 98:2) afforded the title compound as a brown solid (**19b**, 169 mg, 0.44 mmol, 88% yield).

¹H NMR (400 MHz, CDCl₃): δ (ppm) = 7.93 (s, 2H), 7.79 (s, 1H), 2.26 (s, 3H).

¹³C NMR (101 MHz, CDCI₃): δ (ppm) = 148.8, 140.8, 140.2, 135.5, 135.3, 131.2, 100.8, 18.9. MS (EI, 70 eV): m/z (%) = 384 (100), 371 (13), 369 (21), 354 (26), 352 (35), 332 (21), 331 (11), 330 (33), 317 (33), 316 (12), 315 (38), 227 (11), 225 (16), 202 (21), 190 (17), 189 (13), 188 (24), 157 (12), 155 (16), 153 (41), 70 (43), 69 (33), 44 (12).

HRMS (EI): for C₉H₆Cl₂IN₃S: calc. [M+]: 384.8704; found: 384.8698.

IR (Diamond-ATR, neat): $\tilde{\nu} / \text{cm}^{-1} = 3139 \text{ (vw)}, 3126 \text{ (w)}, 2920 \text{ (w)}, 2361 \text{ (vw)}, 1543 \text{ (w)}, 1517 \text{ (w)}, 1432 \text{ (m)}, 1411 \text{ (m)}, 1391 \text{ (s)}, 1277 \text{ (m)}, 1234 \text{ (w)}, 1160 \text{ (m)}, 1155 \text{ (s)}, 1131 \text{ (m)}, 1073 \text{ (m)}, 1062 \text{ (m)}, 1057 \text{ (m)}, 968 \text{ (m)}, 961 \text{ (vs)}, 872 \text{ (s)}, 823 \text{ (vs)}, 792 \text{ (m)}, 699 \text{ (w)}, 682 \text{ (w)}.$ **Melting point:** M.p. = 97 °C.

(4,6-Dichloro-3-(methylthio)-2-(2H-1,2,3-triazol-2-yl)phenyl)(furan-2-yl)methanol (19c)

According to **TP 1**, to a mixture of 2-(3,5-dichloro-2-(methylthio)phenyl)-2*H*-1,2,3-triazole (**18e**, 130 mg, 0.50 mmol, 1.0 equiv) in toluene (1 mL) was added *s*Bu₂Mg (0.40 mmol, 0.8 equiv) at 25 °C. After 10 min, furfural (50 μ L, 0.60 mmol, 1.2 equiv) was added dropwise at 0 °C and the reaction mixture was stirred for 1 h at room temperature. Purification of the crude product by flash column chromatography (silica gel, *i*hexane/EtOAc = 9:1) afforded the title compound as a yellow oil (**19c**, 136 mg, 0.38 mmol, 76% yield).

¹H NMR (400 MHz, CDCl₃): δ (ppm) = 7.79 (s, 1H), 7.77–7.67 (m, 2H), 7.16 (dt, J = 1.8, 0.9 Hz, 1H), 6.11 (dd, J = 3.3, 1.8 Hz, 1H), 6.06 (d, J = 9.9 Hz, 1H), 5.86–5.80 (m, 1H), 4.38 (d, J = 11.0 Hz, 1H), 2.21 (s, 3H).

¹³**C NMR (101 MHz, CDCl₃):** δ (ppm) = 152.7, 144.3, 141.7, 140.8, 136.6, 135.7, 135.5, 135.3, 132.8, 110.2, 105.3, 66.8, 19.0.

MS (EI, 70 eV): m/z (%) = 354 (100), 341 (15), 339 (27), 338 (15), 336 (16), 327 (15), 325 (22), 288 (23), 287 (30), 286 (33), 285 (41), 279 (17), 277 (24), 273 (13), 271 (24), 230 (12), 97 (12), 95 (61), 70 (94), 69 (22), 41 (23), 40 (16).

HRMS (EI): for C₁₄H₁₁Cl₂N₃O₂S: calc. [M+]: 354.9949; found: 354.9944.

IR (Diamond-ATR, neat): $\tilde{\nu} / \text{cm}^{-1} = 3410 \text{ (w)}, 3122 \text{ (w)}, 3066 \text{ (vw)}, 2980 \text{ (vw)}, 2925 \text{ (w)}, 1733 \text{ (m)}, 1562 \text{ (m)}, 1536 \text{ (m)}, 1505 \text{ (w)}, 1431 \text{ (s)}, 1410 \text{ (s)}, 1373 \text{ (m)}, 1241 \text{ (m)}, 1188 \text{ (w)}, 1143 \text{ (s)}, 1108 \text{ (s)}, 1045 \text{ (s)}, 1003 \text{ (s)}, 960 \text{ (vs)}, 905 \text{ (s)}, 883 \text{ (m)}, 823 \text{ (vs)}, 807 \text{ (m)}, 793 \text{ (m)}, 733 \text{ (vs)}, 702 \text{ (w)}.$

2-(3-Allyl-4,6-dichloro-1',2',3',4'-tetrahydro-[1,1'-biphenyl]-2-yl)-2H-1,2,3-triazole (19d)

According to **TP 1**, to a mixture of 2-(2-allyl-3,5-dichlorophenyl)-2*H*-1,2,3-triazole (**18f**, 127 mg, 0.50 mmol, 1.0 equiv) in toluene (1 mL) was added sBu_2Mg (0.30 mmol, 0.6 equiv) at 40 °C. After 20 min, 3-bromocyclohexene (70 µL, 0.60 mmol, 1.2 equiv) and CuCN-2LiCl (0.1 mL, 1.0 M in THF, 20 mol%) were added at -25 °C and the mixture was stirred for 1 h. Purification of the crude product by flash column chromatography (silica gel, *i*hexane/EtOAc = 99:1) afforded the title compound as a colorless oil (**19d**, 117 mg, 0.35 mmol, 70 % yield).

¹H NMR (400 MHz, CDCl₃): δ (ppm) = 7.89–7.71 (m, 2H), 7.60 (s, 1H), 5.67 (ddt, J = 16.6, 10.1, 6.4 Hz, 1H), 5.38–5.16 (m, 2H), 4.95 (dq, J = 10.1, 1.5 Hz, 1H), 4.81 (dq, J = 17.1, 1.7 Hz, 1H), 3.01–2.77 (m, 2H), 2.12–1.71 (m, 6H), 1.43 (d, J = 13.6 Hz, 1H).

¹³**C NMR (101 MHz, CDCl₃):** δ (ppm) = 141.1, 140.6, 134.8, 133.5, 133.2, 133.0, 127.2, 116.8, 76.7, 38.7, 33.4, 27.8, 23.8, 22.7.

MS (EI, 70 eV): m/z (%) =334 (46), 332 (74), 320 (57), 318 (91), 305 (42), 304 (38), 298 (63), 280 (69), 279 (56), 278 (100), 277 (75), 276 (66), 265 (35), 264 (39), 243 (40), 242 (45), 241 (47), 240 (37), 238 (37), 236 (63), 234 (41), 229 (49), 214 (57), 207 (40), 206 (49), 204 (40), 201 (57), 180 (53), 178 (35), 165 (96), 153 (42), 152 (87), 139 (52).

HRMS (EI): for C₁₇H₁₇Cl₂N₃: calc. [M⁺]: 333.0800; found: 333.0793.

IR (Diamond-ATR, neat): $\tilde{\nu}$ / cm⁻¹ = 3027 (vw), 2927 (vw), 2866 (vw), 2252 (vw), 1639 (vw), 1578 (vw), 1554 (vw), 1455 (vw), 1433 (vw), 1413 (vw), 1380 (vw), 1219 (vw), 1178 (vw), 1148 (vw), 1110 (vw), 1011 (vw), 994 (vw), 962 (w), 821 (w), 804 (vw), 652 (vw).

2-(3-Allyl-4,6-dichloro-2-(2H-1,2,3-triazol-2-yl)phenyl)propan-2-ol (19e)

According to **TP 1**, to a mixture of 2-(2-allyl-3,5-dichlorophenyl)-2*H*-1,2,3-triazole (**18f**, 51 mg, 0.20 mmol, 1.0 equiv) in toluene (1 mL) was added sBu₂Mg (0.12 mmol, 0.6 equiv) at 40 °C. After 20 min, the reaction mixture was cooled to 0 °C and Cul (8 mg, 5 mol%) was added and the reaction mixture was stirred for 1 h at 0 °C. Propylene oxide (42 μ L, 0.24 mmol, 1.2 equiv) was added dropwise and the reaction mixture was stirred for further 4 h at 0 °C. Purification of the crude product by flash column chromatography (silica gel, *i*hexane/EtOAc = 4:1) afforded the title compound as a yellow oil (**19e**, 42 mg, 0.14 mmol, 70% yield).

¹**H NMR (400 MHz, CDCI₃):** δ (ppm) = 7.92 (s, 2H), 7.64 (s, 1H), 5.67 (ddt, *J* = 16.7, 10.1, 6.3 Hz, 1H), 4.94 (dq, *J* = 10.1, 1.5 Hz, 1H), 4.81 (dq, *J* = 17.0, 1.6 Hz, 1H), 4.07 (dtq, *J* = 12.5, 6.2, 3.3, 2.4 Hz, 1H), 3.14 (ddt, *J* = 15.0, 6.6, 1.5 Hz, 1H), 3.05–2.97 (m, 2H), 2.77 (dd, *J* = 14.1, 4.0 Hz, 1H), 1.95 (dd, *J* = 14.1, 9.5 Hz, 1H), 1.13 (d, *J* = 6.2 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃): δ (ppm) = 140.9, 135.4, 135.0, 133.6, 133.4, 133.2, 132.2, 116.8, 66.2, 38.6, 33.5, 24.5.

MS (EI, 70 eV): m/z (%) = 269 (25), 268 (13), 267 (39), 266 (11), 256 (11), 254 (62), 253 (14), 252 (100), 239 (10), 197 (12), 45 (17), 43 (14).

HRMS (EI): for C₁₄H₁₅Cl₂N₃O: calc. [M-H⁺]: 310.0514; found: 310.0509.

IR (Diamond-ATR, neat): $\tilde{\nu} / \text{cm}^{-1} = 3426 \text{ (w)}, 3080 \text{ (vw)}, 2969 \text{ (w)}, 2930 \text{ (w)}, 2360 \text{ (w)}, 1638 \text{ (w)}, 1581 \text{ (m)}, 1569 \text{ (w)}, 1558 \text{ (m)}, 1456 \text{ (m)}, 1436 \text{ (vs)}, 1411 \text{ (s)}, 1387 \text{ (w)}, 1374 \text{ (m)}, 1286 \text{ (w)}, 1206 \text{ (w)}, 1148 \text{ (m)}, 1110 \text{ (s)}, 1083 \text{ (m)}, 1050 \text{ (m)}, 987 \text{ (m)}, 960 \text{ (vs)}, 932 \text{ (s)}, 916 \text{ (s)}, 893 \text{ (m)}, 874 \text{ (m)}, 820 \text{ (s)}, 802 \text{ (m)}, 777 \text{ (m)}, 756 \text{ (w)}, 740 \text{ (w)}.$

According to **TP 1**, to a mixture of 2-(2-allyl-3,5-dichlorophenyl)-2*H*-1,2,3-triazole (**18f**, 127 mg, 0.50 mmol, 1.0 equiv) in toluene (1 mL) was added sBu_2Mg (0.30 mmol, 0.6 equiv) at 40 °C. After 20 min, the resulting diarylmagnesium was transmetalated with a ZnCl₂ solution (0.6 mL, 1.00 M in THF, 1.10 equiv) at 0 °C for 30 min. A dry and argon-flushed Schlenk-tube, equipped with a magnetic stirring bar and a septum was charged with Pd(dppf)Cl₂ (15 mg, 5 mol%) and 3-bromopyridine (40 µL, 0.42 mmol, 0.83 equiv).The freshly prepared arylzinc reagent was added and the reaction mixture was placed in an oil bath at 55 °C for 18 h. Purification of the crude product by flash column chromatography (silica gel, *i*hexane/EtOAc = 2:1) afforded the title compound as a yellow oil (**19f**, 98 mg, 0.30 mmol, 71% yield).

¹H NMR (400 MHz, CDCI₃): δ (ppm) = 8.45 (dd, J = 4.9, 1.7 Hz, 1H), 8.31 (dd, J = 2.3, 0.9 Hz, 1H), 7.76 (s, 1H), 7.57 (s, 2H), 7.44 (dt, J = 7.9, 2.0 Hz, 1H), 7.15 (ddd, J = 7.9, 4.9, 0.9 Hz, 1H), 5.73 (ddt, J = 16.6, 10.0, 6.4 Hz, 1H), 4.98 (dq, J = 10.0, 1.5 Hz, 1H), 4.85 (dq, J = 17.1, 1.6 Hz, 1H), 3.18 (dt, J = 6.4, 1.6 Hz, 2H).

¹³**C NMR (101 MHz, CDCl₃):** δ (ppm) = 149.9, 149.5, 141.1, 137.2, 136.3, 136.0, 135.9, 135.6, 133.4, 133.1, 132.4, 130.7, 122.9, 117.6, 33.9.

MS (EI, 70 eV): m/z (%) = 332 (14), 330 (22), 319 (11), 318 (12), 317 (63), 316 (23), 315 (100), 302 (11), 275 (11), 263 (18), 261 (23), 239 (12), 205 (11), 191 (11).

HRMS (EI): for $C_{16}H_{12}Cl_2N_4$: calc. [M⁺]: 330.0439; found: 330.0434.

IR (Diamond-ATR, neat): $\tilde{\nu}$ / cm⁻¹ = 2962 (vw), 2253 (vw), 2151 (vw), 2020 (vw), 1639 (vw), 1581 (vw), 1441 (vw), 1411 (vw), 1379 (vw), 1193 (vw), 1150 (vw), 1100 (vw), 1027 (vw), 962 (vw), 823 (vw), 664 (vw).

Ethyl 5'-fluoro-2'-(4-(trimethylsilyl)-1*H*-1,2,3-triazol-1-yl)-[1,1'-biphenyl]-4-carboxylate (22a)

According to **TP 1**, to a mixture of 1-(4-fluorophenyl)-4-(trimethylsilyl)-1*H*-1,2,3-triazole (**20a**, 118 mg, 0.50 mmol, 1.0 equiv) in toluene (1 mL) was added sBu_2Mg (0.30 mmol, 0.6 equiv) at 25 °C. After 30 min, the resulting diarylmagnesium was transmetalated with a ZnCl₂ solution (0.6 mL, 1.00 M in THF, 1.10 equiv) at 0 °C for 30 min. A dry and argon-flushed Schlenk-tube, equipped with a magnetic stirring bar and a septum was charged with Pd(dppf)Cl₂ (15 mg, 5 mol%) and ethyl 4-bromobenzoate (69 µL, 0.42 mmol, 0.83 equiv). The freshly prepared arylzinc reagent was added and the reaction mixture was placed in an oil bath at 55 °C for 18 h. Purification of the crude product by flash column chromatography (silica gel, *i*hexane/EtOAc = 12:1) afforded the title compound as a yellow oil (**22a**, 148 mg, 0.39 mmol, 93% yield).

¹**H NMR (400 MHz, CDCI₃):** δ (ppm) = 7.97–7.91 (m, 2H), 7.61 (dd, *J* = 9.6, 5.1 Hz, 1H), 7.26–7.22 (m, 2H), 7.12 (s, 1H), 7.12–7.08 (m, 2H), 4.37 (q, *J* = 7.1 Hz, 2H), 1.38 (t, *J* = 7.1 Hz, 3H), 0.21 (s, 9H).

¹³C NMR (101 MHz, CDCl₃): δ (ppm) = 167.2, 165.3, 162.8, 147.8, 141.9, 139.9, 139.8, 132.5, 131.6, 131.1, 130.1, 130.0, 129.6, 118.9, 118.7, 117.4, 117.2, 62.5, 15.5, 0.0.

MS (EI, 70 eV): m/z (%) = 356 (10), 355 (28), 354 (31), 340 (17), 326 (13), 312 (12), 297 (13), 296 (54), 283 (14), 282 (48), 269 (13), 268 (50), 267 (100), 266 (13), 252 (18), 238 (19), 222 (16), 209 (12), 169 (14), 75 (15), 73 (20).

HRMS (EI) for C₂₀H₂₂FN₃O₂Si: calc. [M]: 383.1465, found: 383.1448.

IR (Diamond-ATR, neat): $\tilde{\nu}/cm^{-1} = 3121 \text{ (vw)}$, 3073 (vw), 2980 (vw), 2956 (w), 2900 (vw), 1713 (s), 1608 (w), 1588 (w), 1567 (w), 1517 (m), 1501 (m), 1478 (w), 1408 (w), 1391 (w), 1367 (w), 1271 (s), 1248 (s), 1200 (w), 1184 (m), 1147 (m), 1101 (s), 1034 (m), 1018 (m), 984 (m), 892 (w), 838 (vs), 775 (s), 758 (m), 737 (w), 705 (s), 670 (w).

1-(5-Chloro-4'-methoxy-[1,1'-biphenyl]-2-yl)-4-(trimethylsilyl)-1H-1,2,3-triazole (22b)

According to **TP 1**, to a mixture of 1-(4-chlorophenyl)-4-(trimethylsilyl)-1*H*-1,2,3-triazole (**20b**, 126 mg, 0.50 mmol, 1.0 equiv) in toluene (1 mL) was added sBu_2Mg (0.30 mmol, 0.6 equiv) at 25 °C. After 30 min, the resulting diarylmagnesium was transmetalated with a ZnCl₂ solution (0.6 mL, 1.00 M in THF, 1.10 equiv) at 0 °C for 30 min. A dry and argon-flushed Schlenk-tube, equipped with a magnetic stirring bar and a septum was charged with Pd(dppf)Cl₂ (15 mg, 5 mol%) and 4-bromoanisole (53 µL, 0.42 mmol, 0.83 equiv).The freshly prepared arylzinc reagent was added and the reaction mixture was placed in an oil bath at 55 °C for 18 h. Purification of the crude product by flash column chromatography (silica gel, *i*hexane/EtOAc = 9:1) afforded the title compound as a yellow oil (**22b**, 101 mg, 0.28 mmol, 67% yield).

¹**H NMR (400 MHz, CDCl₃):** δ (ppm) = 7.57 (d, *J* = 8.4 Hz, 1H), 7.49 (d, *J* = 2.3 Hz, 1H), 7.45 (dd, *J* = 8.4, 2.3 Hz, 1H), 7.09 (s, 1H), 6.96–6.90 (m, 2H), 6.82–6.76 (m, 2H), 3.78 (s, 3H), 0.22 (s, 9H).

¹³**C NMR (101 MHz, CDCl₃):** δ (ppm) = 160.9, 147.6, 139.5, 136.6, 134.8, 132.3, 131.9, 130.8, 129.6, 129.3, 129.0, 115.3, 56.5, 0.0.

MS (EI, 70 eV): m/z (%) = 329 (30), 328 (25), 327 (84), 315 (24), 314 (20), 313 (74), 312 (12), 284 (21), 283 (17), 282 (56), 280 (21), 279 (100), 271 (17), 264 (10), 139 (18), 73 (24).

HRMS (EI): for C18H20CIN3OSi: calc. [M+]: 357.1064; found: 357.1059

IR (Diamond-ATR, neat): $\tilde{\nu}$ / cm-1 = 2957 (w), 2900 (vw), 2838 (vw), 1609 (m), 1579 (vw), 1516 (m), 1496 (s), 1464 (m), 1443 (w), 1427 (w), 1378 (vw), 1292 (w), 1248 (s), 1201 (m), 1179 (m), 1149 (m), 1125 (w), 1112 (w), 1095 (w), 1042 (m), 1034 (m), 1008 (w), 996 (w), 982 (m), 884 (w), 832 (vs), 821 (vs), 775 (m), 758 (s), 725 (w), 708 (w), 698 (w), 680 (w), 659 (w).

(5-Chloro-2-(4-(trimethylsilyl)-1H-1,2,3-triazol-1-yl)phenyl)(phenyl)methanone (22c)

According to **TP 1**, to a mixture of 1-(4-chlorophenyl)-4-(trimethylsilyl)-1*H*-1,2,3-triazole (**20b**, 126 mg, 0.50 mmol, 1.0 equiv) in toluene (1 mL) was added sBu₂Mg (0.30 mmol, 0.6 equiv) at 25 °C. After 30 min, benzoyl chloride (70 μ L, 0.60 mmol, 1.2 equiv) and CuCN-2LiCl (0.1 mL, 1.0 M in THF, 20 mol%) were added at -25 °C and the mixture was stirred for 12 h at room temperature. Purification of the crude product by flash column chromatography (silica gel, *i*hexane/EtOAc = 9:1) afforded the title compound as a yellow oil (**22c**, 103 mg, 0.29 mmol, 58% yield).

¹**H NMR (400 MHz, CDCl₃):** δ (ppm) = 7.69–7.57 (m, 6H), 7.47 (ddt, *J* = 8.7, 7.1, 1.4 Hz, 1H), 7.34–7.28 (m, 2H), 0.19 (s, 9H).

¹³C NMR (101 MHz, CDCl₃): δ (ppm) = 148.6, 137.2, 137.0, 136.8, 135.1, 132.9, 131.5, 131.2, 130.6, 129.8, 127.4, 0.0.

MS (EI, 70 eV): m/z (%) = 313 (30), 312 (18), 311 (100), 105 (52), 77 (29), 73 (10). **HRMS (EI)** for C₁₈H₁₈ClN₃OSi: calc. [M]: 355.0908, found: 355.0914.

IR (Diamond-ATR, neat): $\tilde{\nu}$ / cm-1 = 3117 (w), 2954 (w), 2854 (vw), 1733 (vw), 1658 (m), 1595 (w), 1583 (vw), 1573 (vw), 1497 (m), 1478 (w), 1449 (w), 1408 (w), 1394 (w), 1314 (w), 1278 (m), 1268 (m), 1247 (m), 1202 (m), 1176 (w), 1158 (w), 1136 (vw), 1113 (w), 1090 (w), 1069 (w), 1041 (m), 1025 (w), 1000 (w), 984 (m), 956 (w), 939 (vw), 904 (vw), 891 (vw), 833 (vs), 805 (m), 786 (m), 760 (m), 740 (m), 708 (s), 695 (m), 661 (w).

(5-Methyl-2-(4-(trimethylsilyl)-1H-1,2,3-triazol-1-yl)phenyl)(phenyl)methanone (22d)

According to **TP 1**, to a mixture of 1-(*p*-tolyl)-4-(trimethylsilyl)-1*H*-1,2,3-triazole (**20c**, 116 mg, 0.50 mmol, 1.0 equiv) in toluene (1 mL) was added sBu_2Mg (0.40 mmol, 0.8 equiv) at 40 °C. After 60 min, benzoyl chloride (70 µL, 0.60 mmol, 1.2 equiv) and CuCN-2LiCl (0.1 mL, 1.0 M in THF, 20 mol%) were added at -25 °C and the mixture was stirred for 12 h at room temperature. Purification of the crude product by flash column chromatography (silica gel, *i*hexane/EtOAc = 9:1) afforded the title compound as a yellow oil (**22d**, 93 mg, 0.28 mmol, 55% yield).

¹**H NMR (400 MHz, CDCI₃):** δ (ppm) = 7.61–7.40 (m, 7H), 7.31–7.27 (m, 2H), 2.50 (s, 3H), 0.19 (s, 9H).

¹³**C NMR (101 MHz, CDCl₃):** δ (ppm) = 196.8, 148.2, 141.1, 137.7, 135.7, 134.6, 134.1, 133.6, 131.6, 130.5, 129.6, 126.0, 22.5, 0.0.

MS (EI, 70 eV): m/z (%) = 307 (22), 292 (26), 291 (100).

HRMS (EI) for C₁₉H₂₁N₃OSi: calc. [M]: 335.1454, found: 335.1477.

IR (Diamond-ATR, neat): $\tilde{\nu}/cm^{-1} = 3080 \text{ (w)}, 2957 \text{ (w)}, 2923 \text{ (vw)}, 2852 \text{ (vw)}, 1730 \text{ (w)}, 1660 \text{ (s)}, 1605 \text{ (w)}, 1597 \text{ (w)}, 1581 \text{ (w)}, 1509 \text{ (m)}, 1450 \text{ (w)}, 1406 \text{ (w)}, 1318 \text{ (w)}, 1312 \text{ (w)}, 1287 \text{ (m)}, 1247 \text{ (m)}, 1211 \text{ (w)}, 1198 \text{ (m)}, 1179 \text{ (m)}, 1161 \text{ (w)}, 1108 \text{ (w)}, 1039 \text{ (m)}, 1002 \text{ (w)}, 982 \text{ (w)}, 976 \text{ (m)}, 971 \text{ (m)}, 958 \text{ (w)}, 932 \text{ (w)}, 908 \text{ (vw)}, 836 \text{ (vs)}, 824 \text{ (vs)}, 797 \text{ (m)}, 757 \text{ (m)}, 738 \text{ (s)}, 702 \text{ (vs)}, 686 \text{ (m)}, 662 \text{ (w)}.$

According to **TP 1**, to a mixture of 1-phenyl-4-(trimethylsilyl)-1*H*-1,2,3-triazole (**20d**, 109 mg, 0.50 mmol, 1.0 equiv) in toluene (1 mL) was added sBu_2Mg (0.40 mmol, 0.8 equiv) at 40 °C. After 1 h, furfural (50 µL, 0.60 mmol, 1.2 equiv) was added dropwise at 0 °C and the reaction mixture was stirred for 1 h at room temperature. Purification of the crude product by flash column chromatography (silica gel, *i*hexane/EtOAc = 4:1) afforded the title compound as a slight yellow solid (**22e**, 126 mg, 0.40 mmol, 80% yield).

¹**H NMR (400 MHz, CDCl₃):** δ (ppm) = 7.67 (dd, J = 7.7, 1.6 Hz, 1H), 7.58 (s, 1H), 7.55 (dd, J = 7.7, 1.4 Hz, 1H), 7.49 (td, J = 7.6, 1.6 Hz, 1H), 7.33 (dd, J = 7.8, 1.4 Hz, 1H), 7.24 (dd, J = 1.9, 0.9 Hz, 1H), 6.24 (dd, J = 3.3, 1.8 Hz, 1H), 6.09 (dt, J = 3.3, 1.0 Hz, 1H), 5.74 (s, 1H), 0.37 (s, 9H).

¹³**C NMR (101 MHz, CDCl₃):** δ (ppm) = 155.3, 148.1, 143.1, 138.4, 136.6, 131.8, 131.3, 131.0, 130.3, 111.6, 108.3, 68.4, 0.0.

MS (EI, 70 eV): m/z (%) = 313 (17), 284 (14), 270 (15), 269 (13), 268 (56), 252 (18), 224 (12), 212 (18), 204 (21), 202 (22), 196 (88), 195 (16), 194 (17), 187 (15), 180 (17), 168 (10), 167 (31), 166 (33), 115 (22), 75 (74), 73 (100).

HRMS (EI) for C₁₆H₁₉N₃O₂Si: calc. [M]: 313.1247, found: 313.1234.

IR (Diamond-ATR, neat): $\tilde{\nu}/cm^{-1} = 3272$ (w), 3141 (vw), 2954 (w), 1500 (m), 1459 (w), 1390 (vw), 1347 (vw), 1251 (m), 1208 (m), 1183 (w), 1156 (w), 1148 (m), 1105 (w), 1072 (w), 1051 (m), 1029 (m), 1013 (m), 987 (w), 929 (w), 842 (vs), 807 (m), 760 (s), 747 (s), 731 (m), 709 (w), 680 (vw), 667 (w).

Melting point: M.p. = 107 °C.

(5-Fluoro-2-(4-(trimethylsilyl)-1H-1,2,3-triazol-1-yl)phenyl)(phenyl)methanol (22f)

According to **TP 1**, to a mixture of 1-(4-fluorophenyl)-4-(trimethylsilyl)-1*H*-1,2,3-triazole (**20a**, 118 mg, 0.50 mmol, 1.0 equiv) in toluene (1 mL) was added *s*Bu₂Mg (0.30 mmol, 0.6 equiv) at 25 °C. After 30 min, benzaldehyde (62 μ L, 0.60 mmol, 1.2 equiv) was added dropwise at 0 °C and the reaction mixture was stirred for 1 h at room temperature. Purification of the crude product by flash column chromatography (silica gel, *i*hexane/EtOAc = 6:1) afforded the title compound as a white solid (**22f**, 118 mg, 0.35 mmol, 70% yield).

¹**H NMR (400 MHz, CDCl₃):** δ (ppm) = 7.43 (dd, J = 9.2, 2.9 Hz, 1H), 7.29 (s, 1H), 7.25–7.17 (m, 4H), 7.12 (ddd, J = 8.7, 7.5, 2.8 Hz, 1H), 7.07–7.02 (m, 2H), 5.79 (s, 1H), 0.31 (s, 9H). ¹³**C NMR (101 MHz, CDCl₃):** δ (ppm) = 165.7, 163.2, 147.6, 144.2, 144.1, 142.4, 132.3, 129.6, 129.1, 129.0, 128.9, 127.4, 117.8, 117.6, 116.7, 116.5, 72.8, 0.0.

MS (EI, 70 eV): m/z (%) = 313 (21), 312 (56), 298 (31), 296 (15), 256 (18), 239 (28), 236 (28), 225 (15), 224 (100), 223 (18), 222 (71) 220 (69), 207 (14), 204 (14), 198 (47), 183 (23), 170 (12), 75 (11), 73 (27).

HRMS (EI) for C₁₈H₂₀FN₃OSi: calc. [M]: 341.1360, found: 341.1366.

IR (Diamond-ATR, neat): $\tilde{\nu}/cm^{-1} = 3223$ (w), 3030 (vw), 2953 (w), 1618 (vw), 1594 (w), 1501 (m), 1488 (w), 1455 (w), 1421 (w), 1348 (vw), 1263 (m), 1250 (m), 1202 (m), 1152 (m), 1142 (m), 1099 (w), 1055 (m), 1044 (m), 1039 (m), 1017 (w), 989 (m), 957 (m), 917 (vw), 891 (w), 835 (vs), 822 (s), 765 (w), 749 (m), 744 (s), 702 (s), 663 (w), 656 (w). **Melting point:** M.p. = 118 °C.

(5-Chloro-2-(4-(trimethylsilyl)-1H-1,2,3-triazol-1-yl)phenyl)(furan-2-yl)methanol (22g)

According to **TP 1**, to a mixture of 1-(4-chlorophenyl)-4-(trimethylsilyl)-1*H*-1,2,3-triazole (**20b**, 126 mg, 0.50 mmol, 1.0 equiv) in toluene (1 mL) was added sBu_2Mg (0.30 mmol, 0.6 equiv) at 25 °C. After 1 h, furfural (50 µL, 0.60 mmol, 1.2 equiv) was added dropwise at 0 °C and the reaction mixture was stirred for 1 h at room temperature. Purification of the crude product by flash column chromatography (silica gel, *i*hexane/EtOAc = 4:1) afforded the title compound as a colorless solid (**22g**, 134 mg, 0.39 mmol, 78% yield).

¹**H NMR (400 MHz, CDCl₃):** δ (ppm) = 7.71 (d, *J* = 2.3 Hz, 1H), 7.51 (s, 1H), 7.44 (dd, *J* = 8.4, 2.4 Hz, 1H), 7.28–7.25 (m, 2H), 6.25 (dd, *J* = 3.3, 1.8 Hz, 1H), 6.08 (dt, *J* = 3.4, 0.9 Hz, 1H), 5.74 (s, 1H), 0.34 (s, 9H).

¹³**C NMR (101 MHz, CDCI₃):** δ (ppm) = 154.6, 148.2, 143.4, 140.1, 137.3, 134.8, 131.9, 130.8, 130.3, 128.0, 111.6, 108.8, 67.5, 0.0.

MS (EI, 70 eV): m/z (%) = 317 (16), 303 (11), 301 (25), 285 (11), 245 (10), 238 (10), 235 (15), 231 (21), 229 (68), 228 (20), 200 (13), 199 (13), 167 (15), 166 (18), 115 (10), 81 (21), 75 (75), 73 (100), 45 (12).

HRMS (EI): for C₁₆H₁₈ClN₃O₂Si: calc. [M+]: 347.0857; found: 347.0851.

IR (Diamond-ATR, neat): $\tilde{\nu} / \text{cm}^{-1} = 3213 \text{ (w)}, 3142 \text{ (w)}, 2959 \text{ (w)}, 2360 \text{ (w)}, 1498 \text{ (m)}, 1484 \text{ (w)}, 1457 \text{ (w)}, 1406 \text{ (w)}, 1318 \text{ (w)}, 1298 \text{ (vw)}, 1286 \text{ (vw)}, 1251 \text{ (m)}, 1211 \text{ (m)}, 1183 \text{ (w)}, 1159 \text{ (w)}, 1152 \text{ (m)}, 1119 \text{ (w)}, 1092 \text{ (w)}, 1077 \text{ (vw)}, 1056 \text{ (m)}, 1043 \text{ (m)}, 1010 \text{ (m)}, 989 \text{ (w)}, 927 \text{ (w)}, 889 \text{ (w)}, 871 \text{ (w)}, 838 \text{ (vs)}, 817 \text{ (s)}, 806 \text{ (m)}, 786 \text{ (m)}, 757 \text{ (m)}, 742 \text{ (s)}, 713 \text{ (m)}, 681 \text{ (w)}, 657 \text{ (w)}.$

Melting point: M.p. = 136 °C.

(4-Bromo-2,5-dimethoxyphenyl)(5-(4-(trimethylsilyl)-1*H*-1,2,3-triazol-1-yl)benzo[*d*][1,3]dioxol-4-yl)methanol (22h)

According to **TP 1**, to a mixture of 1-(benzo[*d*][1,3]dioxol-5-yl)-4-(trimethylsilyl)-1*H*-1,2,3triazole (**20e**, 126 mg, 0.50 mmol, 1.0 equiv) in toluene (1 mL) was added $sBu_2Mg \cdot (0.30 \text{ mmol}, 0.6 \text{ equiv})$ at 25 °C. After 1 h, 4-bromo-2,5-dimethoxybenzaldehyde (147 mg, 0.60 mmol, 1.2 equiv) dissolved in toluene (1 mL) was added dropwise at 0 °C and the reaction mixture was stirred for 1 h at room temperature. Purification of the crude product by flash column chromatography (silica gel, *i*hexane/EtOAc = 4:1 to 1:1) afforded the title compound as a colorless solid (**22h**, 201 mg, 0.40 mmol, 80% yield).

¹**H NMR (400 MHz, CDCI₃):** δ (ppm) = 7.23 (s, 1H), 6.80 (t, *J* = 4.1 Hz, 2H), 6.76 (s, 1H), 6.67 (d, *J* = 8.2 Hz, 1H), 6.14 (d, *J* = 13.9 Hz, 2H), 5.97 (s, 1H), 3.80 (s, 3H), 3.49 (s, 3H), 0.31 (s, 9H).

¹³**C NMR (101 MHz, CDCl₃):** δ (ppm) = 150.6, 148.4, 132.4, 131.1, 130.0, 123.4, 120.9, 116.9, 111.2, 110.4, 108.6, 103.7, 65.8, 61.7, 57.5, 23.9, 22.3, 15.5, 0.0.

MS (EI, 70 eV): m/z (%) = 463 (14), 462 (11), 448 (10), 390 (12), 388 (18), 358 (13), 355 (12), 332 (23), 263 (19), 262 (97), 246 (47), 217 (25), 297 (24), 111 (11), 99 (11), 97 (23), 85 (46), 84 (11), 83 (23), 75 (50), 74 (11), 73 (93), 71 (61), 70 (14), 67 (10), 57 (83), 56 (17), 55 (32), 44 (100), 43 (57), 43 (33), 41 (24).

HRMS (EI): for C₂₁H₂₄BrN₃O₅Si: [M–O]⁺⁺: 489.0714, found: 489.0719.

IR (Diamond-ATR, neat): $\tilde{\nu}/cm^{-1} = 3142$ (w), 2359 (w), 1492 (s), 1453 (m), 1409 (w), 1378 (m), 1323 (m), 1275 (w), 1250 (m), 1241 (m), 1210 (s), 1180 (m), 1138 (w), 1071 (s), 1048 (s), 1034 (s), 1004 (m), 934 (w), 889 (w), 843 (vs), 817 (s), 761 (s), 736 (m), 709 (m), 668 (m). **Melting point:** M.p. = 201 °C.

2-Allyl-N,N-diethyl-3-fluorobenzamide (25a)

According to **TP 1**, to a mixture of *N*,*N*-diethyl-3-fluorobenzamide (**23a**, 98 mg, 0.50 mmol, 1.0 equiv) in toluene (1 mL) was added sBu_2Mg (0.30 mmol, 0.6 equiv) at 25 °C. After 30 min, allyl bromide (52 µL, 0.60 mmol, 1.2 equiv) and CuCN-2LiCl (0.1 mL, 1.0 M in THF, 20 mol%) were added at -25 °C and the mixture was stirred for 1 h. Purification of the crude product by flash column chromatography (silica gel, *i*hexane/EtOAc = 4:1) afforded the title compound as a colorless oil (**25a**, 73 mg, 0.31 mmol, 62% yield).

¹**H NMR (400 MHz, CDCI₃):** δ (ppm) = 7.25–7.18 (m, 1H), 7.04 (ddd, J = 9.6, 8.2, 1.2 Hz, 1H), 6.97 (dd, J = 7.5, 1.2 Hz, 1H), 5.97–5.85 (m, 1H), 5.08–4.98 (m, 2H), 3.79 (s, 1H), 3.46–3.23 (m, 3H), 3.08 (p, J = 6.6 Hz, 2H), 1.25 (t, J = 7.1 Hz, 3H), 1.05 (t, J = 7.1 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃): δ (ppm) = 169.1, 169.1, 162.5, 160.1, 139.1, 139.0, 135.0, 135.0, 128.0, 127.9, 124.0, 123.8, 121.3, 121.3, 116.0, 115.7, 115.5, 43.0, 38.7, 30.7, 13.8, 12.7. MS (EI, 70 eV): m/z (%) = 282 (10), 281 (61), 266 (32), 265 (13), 253 (13), 250 (10), 248 (13), 225 (23), 221 (20), 209 (12), 208 (12), 207 (92), 197 (17), 192 (13), 191 (19), 163 (31), 162 (100), 149 (12), 147 (24), 135 (18), 134 (58), 133 (76), 115 (48), 109 (16), 73 (33).

HRMS (EI): for C₁₄H₁₈FNO: calc. [M-H⁺]: 234.1294; found: 234.1289.

IR (Diamond-ATR, neat): $\tilde{\nu}$ / cm⁻¹ = 3080 (vw), 2976 (w), 2936 (w), 2876 (vw), 1629 (vs), 1613 (m), 1578 (m), 1482 (m), 1456 (s), 1427 (s), 1381 (m), 1365 (m), 1348 (w),1315 (m), 1287 (s), 1244 (m), 1231 (m), 1220 (m), 1207 (w), 1186 (w), 1159 (w), 1130 (w), 1095 (m), 1070 (w), 1016 (w), 994 (w), 960 (w), 939 (w), 915 (m), 884 (w), 844 (m), 793 (s), 752 (m), 676 (w).

According to **TP 1**, to a mixture of *N*,*N*-diethyl-3-fluorobenzamide (**23a**, 976 mg, 5.00 mmol, 1.0 equiv) in toluene (10 mL) was added sBu_2Mg (0.30 mmol, 0.6 equiv) at 25 °C. After 30 min, 3-bromocyclohexene (0.81 mL, 7.00 mmol, 1.4 equiv) and CuCN-2LiCl (1.0 mL, 1.0 M in THF, 20 mol%) were added at -25 °C and the mixture was stirred for 1 h. Purification of the crude product by flash column chromatography (silica gel, *i*hexane/EtOAc = 9:1 to 4:1) afforded the title compound as a pink oil (**25b**, 974 mg, 3.54 mmol, 71% yield).

¹**H NMR (400 MHz, CDCI₃):** δ (ppm) = 7.19 (tt, *J* = 7.9, 4.8 Hz, 1H), 6.99 (ddt, *J* = 11.2, 8.2, 1.5 Hz, 1H), 6.92 (ddd, *J* = 7.7, 3.8, 1.2 Hz, 1H), 5.85–5.70 (m, 1H), 5.61 (dt, *J* = 9.7, 1.9 Hz, 1H), 3.87–3.03 (m, 5H), 2.20–1.72 (m, 5H), 1.66–1.52 (m, 1H), 1.23 (q, *J* = 7.3 Hz, 3H), 1.05 (dt, *J* = 11.5, 7.1 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃): δ (ppm) = 169.3, 163.2, 163.1, 160.7, 160.6, 139.0, 139.0, 139.0, 129.7, 129.5, 129.4, 129.0, 128.8, 128.0, 127.9, 127.8, 127.7, 127.3, 127.2, 121.3, 121.1, 116.5, 116.3, 116.1, 43.0, 42.8, 38.7, 38.4, 37.9, 36.7, 29.1, 28.8, 24.6, 24.5, 22.8, 13.9, 12.7, 12.5.

MS (EI, 70 eV): m/z (%) = 275 (29), 260 (23), 246 (17), 220 (30), 203 (17), 202 (100), 201 (86), 187 (17), 185 (35), 184 (62), 183 (54), 175 (18). 174 (14), 173 (17), 170 (11), 165 (32), 159 (25), 153 (11), 152 (13), 147 (25), 146 (42), 133 (37), 109 (12), 72 (13).

HRMS (EI): for C₁₇H₂₂FNO: calc. [M+]: 275.1685; found: 275.1681.

IR (Diamond-ATR, neat): $\tilde{\nu}$ / cm⁻¹ = 3020 (w), 2971 (w), 2933 (m), 2874 (w), 2836 (w), 2363 (vw), 1629 (vs), 1609 (m), 1574 (w), 1479 (m), 1454 (s), 1425 (s), 1380 (m), 1364 (w), 1347 (w), 1315 (m), 1288 (s), 1265 (w), 1238 (m), 1222 (m), 1190 (w), 1160 (w), 1135 (w), 1119 (m), 1099 (w), 1067 (w), 1047 (w), 1014 (w), 987 (w), 952 (w), 928 (w), 900 (w), 878 (vw), 850 (w), 833 (m), 799 (s), 746 (s), 720 (m), 703 (w), 654 (vw).

N,N-Diethyl-3-fluoro-2-(thiophene-2-carbonyl)benzamide (25c)

According to **TP 1**, to a mixture of *N*,*N*-diethyl-3-fluorobenzamide (**23a**, 98 mg, 0.50 mmol, 1.0 equiv) in toluene (1 mL) was added sBu_2Mg (0.30 mmol, 0.6 equiv) at 25 °C. After 30 min, thiophene-2-carbonyl chloride (64 µL, 0.60 mmol, 1.2 equiv) and CuCN-2LiCl (0.1 mL, 1.0 M in THF, 20 mol%) were added at -25 °C and the mixture was stirred for 12 h at 25 °C. Purification of the crude product by flash column chromatography (silica gel, *i*hexane/EtOAc = 1:1) afforded the title compound as a yellow oil (**25c**, 97 mg, 0.32 mmol, 64% yield).

¹**H NMR (400 MHz, CDCI₃):** δ (ppm) = 7.72 (dd, *J* = 4.9, 1.2 Hz, 1H), 7.57–7.45 (m, 2H), 7.23– 7.16 (m, 2H), 7.10 (dd, *J* = 4.9, 3.8 Hz, 1H), 3.40 (q, *J* = 7.1 Hz, 2H), 3.25 (q, *J* = 7.1 Hz, 2H), 1.10 (t, *J* = 7.1 Hz, 3H), 1.01 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃): δ (ppm) = 184.3, 167.9, 160.3, 157.8, 143.9, 138.7, 136.2, 135.5, 131.7, 128.4, 125.5, 125.4, 122.2, 116.6, 116.4, 43.4, 38.9, 13.7, 12.1.

MS (EI, 70 eV): m/z (%) = 234 (22), 233 (100), 213 (15), 205 (17), 189 (11), 186 (11), 185 (12), 157 (20), 133 (13), 110 (23), 72 (18).

HRMS (EI): for C₁₆H₁₆FNO₂S: calc. [M-H⁺]: 304.0808; found: 304.0804.

IR (Diamond-ATR, neat): $\tilde{\nu}$ / cm⁻¹ = 3078 (vw), 2975 (w), 2935 (w), 2876 (vw), 1626 (vs), 1606 (s), 1572 (m), 1516 (m), 1483 (m), 1449 (s), 1429 (s), 1409 (vs), 1382 (m), 1355 (m), 1314 (m), 1283 (vs), 1243 (s), 1212 (m), 1165 (w), 1142 (w), 1123 (m), 1100 (w), 1081 (w), 1069 (w), 1048 (m), 1017 (w), 956 (w), 934 (w), 914 (w), 883 (m), 844 (s), 826 (w), 802 (s), 767 (m), 742 (s), 724 (s), 689 (w), 680 (w).

4-Fluoro-3-(furan-2-yl)isobenzofuran-1(3*H*)-one (25d)

According to **TP 1**, to a mixture of *N*,*N*-diethyl-3-fluorobenzamide (**23a**, 98 mg, 0.50 mmol, 1.0 equiv) in toluene (1 mL) was added sBu_2Mg (0.30 mmol, 0.6 equiv) at 25 °C. After 30 min, furfural (50 µL, 0.60 mmol, 1.2 equiv) was added dropwise at 0 °C and the reaction mixture was stirred for 1 h at room temperature. The reaction mixture was warmed to 60 °C and stirred for further 2 h. Purification of the crude product by flash column chromatography (silica gel, *i*hexane/EtOAc = 4:1) afforded the title compound as a red solid (**25d**, 83 mg, 0.38 mmol, 76% yield).

¹**H NMR (400 MHz, CDCl₃):** δ (ppm) = 7.79 (d, *J* = 7.5 Hz, 1H), 7.66–7.58 (m, 1H), 7.46–7.36 (m, 2H), 6.54 (s, 1H), 6.46 (dd, *J* = 3.3, 0.7 Hz, 1H), 6.40 (dd, *J* = 3.3, 1.8 Hz, 1H).

¹³**C NMR (101 MHz, CDCl₃):** δ (ppm) = 168.5, 158.3, 155.8, 147.0, 144.3, 132.3, 132.3, 132.1, 129.6, 121.7, 121.7, 121.3, 121.1, 111.1, 110.7, 73.1.

MS (EI, 70 eV): m/z (%) = 218 (47), 217 (11), 191 (10), 190 (85), 174 (57), 173 (23), 162 (32), 147 (10), 146 (100), 134 (11), 133 (33), 126 (10), 125 (11), 123 (24), 122 (19), 120 (21), 95 (11), 94 (17), 75 (10).

HRMS (EI): for C₁₂H₇FO₃: calc. [M+]: 218.0379; found: 218.0372.

IR (Diamond-ATR, neat): $\tilde{\nu}$ / cm⁻¹ = 515 (vw), 3121 (vw), 3079 (vw), 2925 (vw), 2853 (vw), 1900 (vw), 1770 (s), 1764 (s), 1732 (w), 1725 (w), 1603 (m), 1501 (w), 1483 (s), 1386 (vw), 1342 (w), 1312 (w), 1288 (m), 1254 (m), 1245 (s), 1181 (w), 1156 (m), 1152 (m), 1083 (s), 1070 (m), 1050 (m), 1016 (m), 985 (m), 936 (m), 925 (s), 887 (m), 868 (m), 823 (s), 796 (w), 751 (s), 741 (vs), 668 (w).

Melting point: M.p. = 87 °C.

3,5-Dichloro-2-(cyclopropanecarbonyl)-N,N-diethylbenzamide (25e)

According to **TP 1**, to a mixture of 3,5-dichloro-*N*,*N*-diethylbenzamide (**23b**, 738 mg, 3.00 mmol, 1.0 equiv) in toluene (6 mL) was added sBu_2Mg (2.40 mmol, 0.8 equiv) at 25 °C. After 10 min cyclopropanecarbonyl chloride (0.33 mL, 3.60 mmol, 1.2 equiv) and CuCN·2LiCl (0.6 mL, 1.0 M in THF, 20 mol%) were added at -25 °C and the mixture was stirred for 12 h at 25 °C. Purification of the crude product by flash column chromatography (silica gel, *i*hexane/EtOAc = 9:1) afforded the title compound as a white solid (**25e**, 675 mg, 2.15 mmol, 72% yield).

¹**H NMR (400 MHz, CDCl₃):** δ (ppm) = 7.43 (d, *J* = 1.9 Hz, 1H), 7.18 (d, *J* = 1.9 Hz, 1H), 3.45 (q, *J* = 7.1 Hz, 2H), 3.18 (q, *J* = 7.2 Hz, 2H), 2.39 (tt, *J* = 7.8, 4.5 Hz, 1H), 1.32–1.26 (m, 2H), 1.18–1.08 (m, 8H).

¹³C NMR (101 MHz, CDCl₃): δ (ppm) = 203.6, 167.2, 138.7, 137.4, 135.6, 131.7, 129.8, 124.6, 43.4, 39.1, 23.2, 14.0, 13.7, 12.3.

MS (EI, 70 eV): m/z (%) = 222 (38), 215 (30), 214 (21), 213 (49), 212 (33), 199 (20), 197 (30), 186 (28), 184 (44), 180 (10), 178 (32), 174 (20), 172 (32), 160 (13), 151 (13), 150 (24), 149 (38), 143 (12), 115 (25), 108 (13), 72 (100).

HRMS (EI): for C₁₅H₁₇Cl₂NO₂: calc. [M-H⁺]: 312.0558; found: 312.0552.

IR (Diamond-ATR, neat): $\tilde{\nu} / \text{cm}^{-1} = 3048 \text{ (w)}, 2972 \text{ (w)}, 2933 \text{ (w)}, 2362 \text{ (vw)}, 1680 \text{ (m)}, 1620 \text{ (vs)}, 1580 \text{ (m)}, 1551 \text{ (m)}, 1478 \text{ (m)}, 1455 \text{ (m)}, 1428 \text{ (m)}, 1371 \text{ (s)}, 1361 \text{ (m)}, 1346 \text{ (m)}, 1316 \text{ (m)}, 1285 \text{ (m)}, 1265 \text{ (w)}, 1228 \text{ (m)}, 1202 \text{ (m)}, 1183 \text{ (m)}, 1121 \text{ (w)}, 1103 \text{ (m)}, 1087 \text{ (m)}, 1063 \text{ (w)}, 1035 \text{ (m)}, 1015 \text{ (w)}, 984 \text{ (s)}, 949 \text{ (w)}, 928 \text{ (w)}, 861 \text{ (s)}, 829 \text{ (m)}, 795 \text{ (m)}, 762 \text{ (m)}, 729 \text{ (w)}.$ **Melting point:** M.p. = 91 °C.

3,4-Dichloro-N,N-diethyl-2-iodobenzamide (25f)

According to **TP 1**, to a mixture of 3,4-dichloro-*N*,*N*-diethylbenzamide (**23c**, 123 mg, 0.50 mmol, 1.0 equiv) in toluene (1 mL) was added sBu_2Mg (0.30 mmol, 0.6 equiv) at 40 °C. After 10 min, the reaction mixture was cooled to 0 °C and iodine (153 mg, 0.60 mmol, 1.2 equiv) dissolved in THF (1 mL) was added dropwise and the reaction mixture was stirred for 1 h. Purification of the crude product by flash column chromatography (silica gel, *i*hexane/EtOAc = 4:1) afforded the title compound as a brown solid (**25f**, 134 mg, 0.36 mmol, 72% yield).

¹**H NMR (400 MHz, CDCI₃):** δ (ppm) = 7.49 (d, *J* = 8.1 Hz, 1H), 7.02 (d, *J* = 8.1 Hz, 1H), 3.84 (dtd, *J* = 14.3, 7.2, 0.9 Hz, 1H), 3.28 (dq, *J* = 14.1, 7.1 Hz, 1H), 3.22–3.02 (m, 2H), 1.28 (t, *J* = 7.1 Hz, 3H), 1.08 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃): δ (ppm) = 168.9, 144.2, 137.9, 132.1, 130.5, 125.1, 98.7, 42.8, 39.0, 13.9, 12.2.

MS (EI, 70 eV): m/z (%) = 371 (16), 370 (14), 369 (21), 300 (43), 298 (75), 270 (11), 246 (24), 244 (27), 207 (15), 174 (12), 172 (19), 145 (11), 143 (19), 85 (11), 83 (16), 71 (17), 70 (11), 69 (20), 57 (35), 56 (23), 55 (14), 43 (100), 42 (27), 41 (12), 40 (15).

HRMS (EI): for C₁₁H₁₂Cl₂INO: calc. [M-H⁺]: 369.9262; found: 369.9260.

IR (Diamond-ATR, neat): $\tilde{\nu} / \text{cm}^{-1} = 2996 \text{ (w)}, 2972 \text{ (w)}, 2932 \text{ (w)}, 2873 \text{ (w)}, 2365 \text{ (vw)}, 1888 \text{ (vw)}, 1609 \text{ (vs)}, 1568 \text{ (m)}, 1537 \text{ (w)}, 1520 \text{ (w)}, 1463 \text{ (m)}, 1444 \text{ (m)}, 1419 \text{ (s)}, 1384 \text{ (m)}, 1366 \text{ (m)}, 1343 \text{ (m)}, 1337 \text{ (m)}, 1319 \text{ (m)}, 1292 \text{ (s)}, 1247 \text{ (w)}, 1221 \text{ (m)}, 1201 \text{ (m)}, 1163 \text{ (m)}, 1147 \text{ (m)}, 1112 \text{ (m)}, 1108 \text{ (m)}, 1089 \text{ (m)}, 1068 \text{ (m)}, 1048 \text{ (m)}, 1012 \text{ (w)}, 950 \text{ (w)}, 895 \text{ (m)}, 820 \text{ (s)}, 800 \text{ (s)}, 777 \text{ (m)}, 760 \text{ (m)}, 713 \text{ (m)}, 659 \text{ (m)}.$

Melting point: M.p. = 103 °C.
(3,4-Dichloro-2-iodophenyl)(morpholino)methanone (25g)

According to **TP 1**, to a mixture of (3,4-dichlorophenyl)(morpholino)methanone (**23d**, 130 mg, 0.50 mmol, 1.0 equiv) in toluene (1 mL) was added sBu_2Mg (0.30 mmol, 0.6 equiv) at -20 °C. After 2 h, iodine (153 mg, 0.60 mmol, 1.2 equiv) dissolved in THF (1 mL) was added dropwise and the reaction mixture was stirred for 1 h at 0 °C. Purification of the crude product by flash column chromatography (silica gel, *i*hexane/EtOAc = 4:1 to 1:1) afforded the title compound as a yellow solid (**25g**, 118 mg, 0.31 mmol, 61% yield).

¹**H NMR (400 MHz, CDCI₃):** δ (ppm) = 7.52 (d, *J* = 8.2 Hz, 1H), 7.02 (d, *J* = 8.1 Hz, 1H), 3.89-3.73 (m, 5H), 3.60 (ddd, *J* = 11.6, 6.3, 3.2 Hz, 1H), 3.28 (ddd, *J* = 13.4, 6.4, 3.3 Hz, 1H), 3.18 (ddd, *J* = 13.4, 6.6, 3.3 Hz, 1H).

¹³**C NMR (101 MHz, CDCl₃):** δ (ppm) = 168.2, 143.1, 138.2, 132.7, 130.7, 125.2, 98.5, 66.6, 47.1, 42.0.

MS (EI, 70 eV): m/z (%) = 386 (22), 385 (25), 384 (35), 383 (32), 302 (11), 300 (63), 298 (100), 272 (15), 270 (20), 260 (12), 258 (19), 174 (15), 172 (24), 146 (10), 145 (20), 144 (16), 143 (30), 108 (25), 86 (38), 74 (18), 56 (37), 55 (19), 41 (12).

HRMS (EI): for C₁₁H₁₀Cl₂INO₂: calc. [M-H⁺]: 384.9133; found: 384.9127.

IR (Diamond-ATR, neat): $\tilde{\nu} / \text{cm}^{-1} = 3066 \text{ (vw)}, 2957 \text{ (m)}, 2869 \text{ (m)}, 2361 \text{ (vw)}, 1709 \text{ (s)}, 1691 \text{ (m)}, 1653 \text{ (s)}, 1595 \text{ (w)}, 1574 \text{ (w)}, 1478 \text{ (m)}, 1463 \text{ (m)}, 1447 \text{ (w)}, 1398 \text{ (w)}, 1384 \text{ (m)}, 1363 \text{ (s)}, 1351 \text{ (s)}, 1312 \text{ (s)}, 1266 \text{ (m)}, 1249 \text{ (m)}, 1231 \text{ (s)}, 1215 \text{ (m)}, 1184 \text{ (s)}, 1122 \text{ (w)}, 1106 \text{ (w)}, 1073 \text{ (m)}, 1059 \text{ (m)}, 1044 \text{ (s)}, 1035 \text{ (s)}, 1008 \text{ (s)}, 989 \text{ (m)}, 964 \text{ (s)}, 912 \text{ (m)}, 869 \text{ (w)}, 818 \text{ (w)}, 770 \text{ (s)}, 745 \text{ (m)}, 697 \text{ (vs)}.$

Melting point: M.p. = 134 °C.

(2-Allyl-3,4-dichlorophenyl)(4-methylpiperazin-1-yl)methanone (25h)

According to **TP 1**, to a mixture of (3,4-dichlorophenyl)(4-methylpiperazin-1-yl)methanone (**23e**, 137 mg, 0.50 mmol, 1.0 equiv) in toluene (1 mL) was added $sBu_2Mg \cdot (0.40 \text{ mmol}, 0.8 equiv)$ at 0 °C. After 15 min, allyl bromide (52 µL, 0.60 mmol, 1.2 equiv) and CuCN·2LiCl (0.1 mL, 1.0 M in THF, 20 mol%) were added at -25 °C and the mixture was stirred for 1 h. Purification of the crude product by flash column chromatography (silica gel, *i*hexane/EtOAc = 1:1) afforded the title compound as a brown oil (**25h**, 104 mg, 0.33 mmol, 66% yield).

¹**H NMR (400 MHz, CDCl₃):** 7.38 (d, *J* = 8.1 Hz, 1H), 7.02 (d, *J* = 8.2 Hz, 1H), 5.88 (dddd, *J* = 17.3, 10.1, 7.4, 5.2 Hz, 1H), 5.13–4.98 (m, 2H), 3.87 (dd, *J* = 11.5, 6.0 Hz, 1H), 3.77–3.52 (m, 3H), 3.19 (dtdt, *J* = 13.2, 10.5, 7.1, 3.6 Hz, 2H), 2.46 (dtq, *J* = 18.7, 7.1, 3.5 Hz, 2H), 2.36–2.20 (m, 5H).

¹³C NMR (101 MHz, CDCl₃): δ (ppm) = 168.3, 137.5, 136.7, 134.5, 134.4, 134.3, 128.9, 125.3, 117.3, 55.4, 55.0, 47.6, 46.5, 42.0, 36.2.

MS (EI, 70 eV): m/z (%) = 281 (16), 225 (38), 209 (22), 208 (13), 207 (100), 192 (16), 191 (25), 151 (11), 150 (13), 149 (38), 133 (15), 115 (40), 99 (11), 97 (39), 85 (14), 73 (27), 70 (45), 56 (10), 42 (13).

HRMS (EI): for C₁₅H₁₈Cl₂N₂O: calc. [M+]: 312.0796; found: 312.0790.

IR (Diamond-ATR, neat): $\tilde{\nu} / \text{cm}^{-1} = 3077 \text{ (vw)}, 2936 \text{ (w)}, 2847 \text{ (w)}, 2791 \text{ (w)}, 2357 \text{ (w)}, 2331 \text{ (vw)}, 1717 \text{ (w)}, 1632 \text{ (vs)}, 1579 \text{ (m)}, 1460 \text{ (m)}, 1447 \text{ (m)}, 1427 \text{ (s)}, 1383 \text{ (m)}, 1291 \text{ (s)}, 1273 \text{ (s)}, 1266 \text{ (s)}, 1243 \text{ (m)}, 1171 \text{ (m)}, 1143 \text{ (m)}, 1122 \text{ (m)}, 1092 \text{ (w)}, 1071 \text{ (m)}, 1025 \text{ (m)}, 1000 \text{ (s)}, 915 \text{ (m)}, 894 \text{ (w)}, 824 \text{ (m)}, 777 \text{ (m)}, 668 \text{ (w)}.$

(2-Bromo-3,4-dichlorophenyl)(piperidin-1-yl)methanone (25i)

According to **TP 1**, to a mixture of (3,4-dichlorophenyl)(piperidin-1-yl)methanone (**23f**, 129 mg, 0.50 mmol, 1.0 equiv) in toluene (1 mL) was added sBu_2Mg (0.30 mmol, 0.6 equiv) at 0 °C. After 20 min, 1,2-dibromotetrachloroethane (244 mg, 0.60 mmol, 1.2 equiv) dissolved in THF (1 mL) was added dropwise and the reaction mixture was stirred for 1 h at 0 C°. Purification of the crude product by flash column chromatography (silica gel, *i*hexane/EtOAc = 4:1) afforded the title compound as a white solid (**25i**, 115 mg, 0.34 mmol, 68% yield).

¹**H NMR (400 MHz, CDCI₃):** δ (ppm) = 7.47 (d, *J* = 8.2 Hz, 1H), 7.08 (d, *J* = 8.2 Hz, 1H), 3.80– 3.66 (m, 2H), 3.17 (qdd, *J* = 13.2, 7.1, 3.8 Hz, 2H), 1.66 (tt, *J* = 13.9, 5.4 Hz, 5H), 1.51–1.41 (m, 1H).

¹³**C NMR (101 MHz, CDCI₃):** δ (ppm) = 166.1, 139.2, 134.3, 133.9, 129.6, 125.4, 121.1, 47.8, 42.6, 26.2, 25.4, 24.4.

MS (EI, 70 eV): m/z (%) = 338 (14), 337 (40), 336 (32), 335 (85), 334 (21), 333 (50), 258 (41), 257 (10), 256 (65), 254 (44), 252 (100), 250 (59), 226 (13), 224 (29), 222 (17), 172 (15), 145 (11), 143 (18), 108 (15), 84 (16), 83 (11), 55 (23), 42 (22), 41 (22).

HRMS (EI): for C₁₂H₁₂BrCl₂NO: calc. [M-H⁺]: 334.9479; found: 333.9389.

IR (Diamond-ATR, neat): $\tilde{\nu}$ / cm⁻¹ = 2942 (m), 2921 (w), 2861 (m), 2353 (vw), 1630 (vs), 1572 (m), 1467 (m), 1458 (m), 1447 (m), 1441 (m), 1424 (vs), 1351 (m), 1284 (m), 1278 (m), 1272 (s), 1258 (m), 1250 (m), 1240 (m), 1188 (m), 1166 (m), 1146 (w), 1117 (m), 1059 (w), 1028 (m), 1004 (s), 955 (w), 932 (vw), 896 (m), 852 (m), 823 (vs), 790 (m), 762 (m), 730 (m), 721 (m), 667 (m).

Melting point: M.p. = 111 °C.

3-Chloro-2(methylsulfanyl)phenyl N,N,N',N'-tetramethylphosphorodiamidate (25j)

According to **TP 1**, to a mixture of 3-Chlorophenyl *N*,*N*,*N'*,*N'*-tetramethylphosphorodiamidate (**23g**, 131 mg, 0.50 mmol, 1.0 equiv) in toluene (1 mL) was added *s*Bu₂Mg (0.40 mmol, 0.8 equiv) at 40 °C. After 30 min, S-methyl methanethiosulfonate (57 μ L, 0.60 mmol, 1.2 equiv) was added dropwise at 0 °C and the reaction mixture was stirred for 1 h at room temperature. Purification of the crude product by flash column chromatography (silica gel, *i*hexane/EtOAc = 9:1) afforded the title compound as a colorless oil (**25j**, 106 mg, 0.34 mmol, 68% yield).

¹**H NMR (400 MHz, CDCl₃):** δ (ppm) = 7.35 (dt, *J* = 7.7, 1.4 Hz, 1H), 7.24–7.17 (m, 2H), 2.77 (d, *J* = 10.1 Hz, 12H), 2.41 (s, 3H).

¹³C NMR (101 MHz, CDCl₃): δ (ppm) = 153.8, 140.1, 130.3, 129.7, 125.5, 118.7, 36.7, 18.3.
 ³¹P NMR (162 MHz, CDCl₃): δ (ppm) = 15.9.

MS (EI, 70 eV): m/z (%) = 265 (29), 264 (83), 263 (27), 261 (87), 200 (11), 173 (21), 154 (13), 135 (100), 92 (12).

HRMS (EI): for C₁₁H₁₈CIN₂O₂PS: calc. [M+]: 308.0515; found: 308.0506.

IR (Diamond-ATR, neat): $\tilde{\nu}$ / cm⁻¹ = 3471 (vw), 3065 (vw), 2994 (vw), 2923 (w), 2893 (w), 2851 (w), 2809 (w), 1589 (w), 1573 (w), 1564 (m), 1474 (w), 1438 (s), 1304 (m), 1220 (s), 1179 (m), 1107 (vw), 1068 (w), 987 (s), 929 (vs), 777 (s), 754 (s), 736 (m), 719 (m), 700 (vw), 682 (w), 667 (m).

2-lodo-3,5-Dichlorophenyl N,N,N',N'-tetramethylphosphorodiamidate (25k)

According to **TP 1**, to a mixture of 3,5-Dichlorophenyl *N,N,N',N'*tetramethylphosphorodiamidate (**23h**, 148 mg, 0.50 mmol, 1.0 equiv) in toluene (1 mL) was added sBu_2Mg (0.30 mmol, 0.6 equiv) at 40 °C. After 1 h, iodine (153 mg, 0.60 mmol, 1.2 equiv) dissolved in THF (1 mL) was added dropwise and the reaction mixture was stirred for 1 h at 0 °C. Purification of the crude product by flash column chromatography (silica gel, *i*hexane/EtOAc = 1:1) afforded the title compound as a yellow oil (**25k**, 209 mg, 0.49 mmol, 98% yield).

¹H NMR (400 MHz, CDCl₃): δ (ppm) = 7.44 (dd, J = 2.2, 1.1 Hz, 1H), 7.24 (d, J = 2.2 Hz, 1H), 2.75 (d, J = 10.3 Hz, 12H).

¹³C NMR (101 MHz, CDCl₃): δ (ppm) = 153.3, 140.1, 135.5, 124.5, 117.8, 92.0, 36.9.

³¹**P NMR (162 MHz, CDCl₃):** δ (ppm) = 16.5.

MS (EI, 70 eV): m/z (%) = 297 (31), 295 (47), 135 (100), 44 (29).

HRMS (EI): for C₁₀H₁₄Cl₂IN₂O₂P: calc. [M-I]: 295.0170; found: 295.0173.

IR (Diamond-ATR, neat): $\tilde{\nu}$ / cm⁻¹ = 2942 (m), 2921 (w), 2861 (m), 2353 (vw), 1630 (vs), 1572 (m), 1467 (m), 1458 (m), 1447 (m), 1441 (m), 1424 (vs), 1351 (m), 1284 (m), 1278 (m), 1272 (s), 1258 (m), 1250 (m), 1240 (m), 1188 (m), 1166 (m), 1146 (w), 1117 (m), 1059 (w), 1028 (m), 1004 (s), 955 (w), 932 (vw), 896 (m), 852 (m), 823 (vs), 790 (m), 762 (m), 730 (m), 721 (m), 667 (m).

4-Chloro-2-(cyclohexyl(hydroxy)methyl)phenyl *N,N,N',N'* tetramethylphosphorodiamidate (25I)

According to **TP 1**, to a mixture of 4-Chloronaphtyl *N*,*N*,*N'*,*N'*-tetramethylphosphorodiamidate (**23i**, 156 mg, 0.50 mmol, 1.0 equiv) in toluene (1 mL) was added sBu_2Mg (0.40 mmol, 0.8 equiv) at 60 °C. After 30 min, cyclohexan carboxaldehyde (73 µL, 0.60 mmol, 1.2 equiv) was added dropwise at 0 °C and the reaction mixture was stirred for 1 h at room temperature. Purification of the crude product by flash column chromatography (silica gel, *i*hexane/EtOAc = 2:1) afforded the title compound as a white solid (**25I**, 144 mg, 0.34 mmol, 68% yield).

¹**H NMR (400 MHz, CDCI₃):** δ (ppm) = 8.26–8.20 (m, 1H), 8.05–7.98 (m, 1H), 7.70 (s, 1H), 7.64–7.55 (m, 2H), 4.73 (d, *J* = 10.0 Hz, 1H), 2.89 (d, *J* = 10.0 Hz, 6H), 2.60 (d, *J* = 9.8 Hz, 6H), 2.49–2.40 (m, 1H), 1.97–1.78 (m, 2H), 1.71–1.52 (m, 2H), 1.38–1.04 (m, 6H).

¹³**C NMR (101 MHz, CDCl₃):** δ (ppm) = 142.9, 133.0, 130.8, 128.7, 128.4, 127.1, 126.5, 125.6, 124.7, 122.1, 71.6, 41.4, 36.9, 30.7, 26.5, 25.8.

³¹P NMR (162 MHz, CDCl₃): δ (ppm) = 15.9.

MS (EI, 70 eV): m/z (%) = 270 (11), 254 (17), 219 (18), 191 (12), 135 (100).

HRMS (EI): for C₂₁H₃₀CIN₂O₃P: calc. [M-H₂O]: 406.1582; found: 406.1572.

IR (Diamond-ATR, neat): $\tilde{\nu} / \text{cm}^{-1} = 3325 \text{ (w)}, 2951 \text{ (w)}, 2921 \text{ (s)}, 2851 \text{ (m)}, 2815 \text{ (w)}, 1743 \text{ (vw)}, 1597 \text{ (w)}, 1455 \text{ (w)}, 1449 \text{ (w)}, 1360 \text{ (m)}, 1307 \text{ (m)}, 1254 \text{ (w)}, 1213 \text{ (m)}, 1195 \text{ (s)}, 1160 \text{ (m)}, 1124 \text{ (m)}, 1083 \text{ (s)}, 1068 \text{ (m)}, 1027 \text{ (m)}, 995 \text{ (vs)}, 971 \text{ (m)}, 954 \text{ (m)}, 910 \text{ (w)}, 850 \text{ (s)}, 789 \text{ (m)}, 784 \text{ (w)}, 776 \text{ (s)}, 757 \text{ (s)}, 706 \text{ (s)}, 674 \text{ (w)}, 669 \text{ (w)}.$ **Melting point:** M.p. = 155 °C.

77

According to **TP 1**, to a mixture of 4-Chlorophenyl *N*,*N*,*N'*,*N'*-tetramethylphosphorodiamidate (**23j**, 657 mg, 2.50 mmol, 1.0 equiv) in toluene (5 mL) was added sBu_2Mg (2.00 mmol, 0.8 equiv) at 60 °C. After 30 min, 1,2-dibromotetrachloroethane (1.14 g, 3.50 mmol, 1.4 equiv) dissolved in THF (5 mL) was added dropwise and the reaction mixture was stirred for 1 h at 0 C°. Purification of the crude product by flash column chromatography (silica gel, *i*hexane/EtOAc = 1:4) afforded the title compound as a yellow oil (**25m**, 699 mg, 2.10 mmol, 84% yield).

¹**H NMR (400 MHz, CDCl₃):** δ (ppm) = 7.53 (dd, *J* = 2.5, 1.0 Hz, 1H), 7.44 (dd, *J* = 8.8, 1.1 Hz, 1H), 7.21 (dd, *J* = 8.8, 2.6 Hz, 1H), 2.73 (d, *J* = 10.2 Hz, 12H).

¹³C NMR (101 MHz, CDCl₃): δ (ppm) = 147.5, 132.8, 129.4, 128.5, 121.5, 114.7, 114.6, 36.7.
 ³¹P NMR (162 MHz, CDCl₃): δ (ppm) = 16.1.

MS (EI, 70 eV): m/z (%) = 263 (20), 261 (63), 135 (100).

HRMS (EI): for C₁₀H₁₅BrClN₂O₂P: calc. [M+]: 339.9743; found: 339.9740.

IR (Diamond-ATR, neat): $\tilde{\nu}$ / cm⁻¹ = 3461 (vw), 3089 (vw), 2997 (vw), 2926 (w), 2895 (w), 2852 (w), 2810 (w), 2363 (vw), 1733 (vw), 1647 (vw), 1579 (vw), 1470 (vs), 1379 (w), 1304 (m), 1262 (m), 1223 (s), 1180 (m), 1149 (w), 1096 (w), 1068 (w), 1046 (m), 985 (vs), 904 (vs), 866 (m), 823 (m), 790 (vs), 758 (vs), 684 (s), 659 (w).

2-Bromo-4-chlorophenol (25n)

The procedure was adopted from literature.¹⁸ 2-Bromo-4-Chlorophenyl *N*,*N*,*N'*,*N'*-tetramethylphosphorodiamidate (**23n**, 171 mg, 0.50 mmol, 1.0 equiv) was dissolved in a mixture of HCI (2 M) and dioxane (1:1, 5 mL). The reaction mixture was warmed to reflux for 1 h. The reaction mixture was extracted with Et₂O (3 x 10 mL). Purification by short path flash column chromatography (silica gel, *i*hexane/EtOAc = 4:1) afforded the title compound as a white solid (**25n**, 91 mg, 0.44 mmol, 88% yield).

¹**H NMR (400 MHz, CDCl₃):** δ (ppm) = 7.40 (d, *J* = 2.5 Hz, 1H), 7.13 (dd, *J* = 8.8, 2.5 Hz, 1H), 6.89 (d, *J* = 8.7 Hz, 1H), 5.40 (s, 1H).

¹³**C NMR (101 MHz, CDCI₃):** δ (ppm) = 150.9, 131.1, 129.0, 125.6, 116.6, 110.1. Analytical data was equivalent to literature.¹⁹

¹⁸ C. J. Rohbogner, S. Wirth, P. Knochel, Org. Lett. **2010**, *9*, 1984-1987.

¹⁹ P. Suresh, S. Annalakshmi, K. Pitchumani, *Tetrahedron* **2007**, *63*, 4959-4967.

5-Cinnamyl-1-propyl-1*H*-1,2,4-triazole (250)

According to **TP 1**, to a mixture of 1-propyl-1*H*-1,2,4-triazole (**23k**, 56 mg, 0.50 mmol, 1.0 equiv) in toluene (1 mL) was added sBu_2Mg (0.30 mmol, 0.6 equiv) at 0 °C. After 15 min, cinnamyl bromide, (118 mg, 0.60 mmol, 1.2 equiv) and CuCN-2LiCl (0.1 mL, 1.0 M in THF, 20 mol%) were added at -25 °C and the mixture was stirred for 1 h. Purification of the crude product by flash column chromatography (silica gel, *i*hexane/EtOAc = 1:1) afforded the title compound as a colorless oil (**25o**, 98 mg, 0.43 mmol, 86% yield).

¹**H NMR (400 MHz, CDCI₃):** δ (ppm) = 7.91 (s, 1H), 7.42 – 7.28 (m, 6H), 6.53 (dt, *J* = 15.9, 1.7 Hz, 1H), 6.35 (dt, *J* = 15.9, 6.5 Hz, 1H), 4.11 (t, *J* = 7.2 Hz, 2H), 3.78 (dd, *J* = 6.5, 1.5 Hz, 2H), 1.93 (h, *J* = 7.4 Hz, 2H), 0.97 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃): δ (ppm) = 153.0, 150.3, 136.4, 133.0, 128.6, 127.7, 126.3, 123.1, 49.9, 29.7, 23.2, 11.1.

MS (EI, 70 eV): m/z (%) = 227 (41), 226 (30), 212 (57), 199 (14), 198 (39), 184 (54), 170 (17), 157 (13), 145 (20), 144 (11), 136 (15), 130 (13), 129 (12), 128 (15), 125 (34), 117 (17), 116 (10), 115 (72), 110 (46), 97 (56), 96 (21), 91 (16), 84 (100), 83 (22).

HRMS (EI): for C₁₄H₁₇N₃: calc. [M+]: 227.1422; found: 227.1415.

IR (Diamond-ATR, neat): $\tilde{\nu}$ / cm⁻¹ = 3057 (w), 3026 (w), 2964 (m), 2930 (m), 2876 (w), 2853 (w), 1733 (w), 1598 (w), 1510 (m), 1482 (s), 1460 (m), 1448 (s), 1399 (m), 1384 (m), 1347 (w), 1274 (s), 1225 (w), 1184 (m), 1136 (m), 1040 (m), 1030 (m), 966 (vs), 927 (w), 899 (w), 876 (m), 806 (w), 770 (m), 732 (vs), 692 (vs), 676 (m).

7. Synthetic transformations

6-Fluoro-1',2',3',4'-tetrahydro-[1,1'-biphenyl]-2-carbaldehyde (26a)

The title compound was prepared according to a literature procedure.²⁰ A dry and argon flushed Schlenk-tube, equipped with a magnetic stirring bar and a septum, was charged with Cp₂Zr(H)Cl (77 mg, 0.30 mmol, 1.5 equiv). A solution of *N*,*N*-diethyl-6-fluoro-1',2',3',4'-tetrahydro-[1,1'-biphenyl]-2-carboxamide (**25b**, 55 mg, 0.20 mmol, 1.0 equiv) in dry THF (1 mL) was added and the reaction mixture was stirred for 15 min at 25 °C. Purification by short path flash column chromatography (silica gel, *h*exane/EtOAc = 4:1) afforded the title compound as a colorless oil (**26a**, 37 mg, 0.18 mmol, 90% yield).

¹**H NMR (400 MHz, CDCl₃):** δ (ppm) = 10.57 (s, 1H), 7.72 (dd, *J* = 7.6, 1.4 Hz, 1H), 7.39–7.25 (m, 2H), 5.92–5.77 (m, 2H), 4.35 (h, *J* = 5.2, 3.9 Hz, 1H), 2.25–1.75 (m, 6H).

¹³**C NMR (101 MHz, CDCl₃):** δ (ppm) = 191.4, 162.4, 160.0, 136.5, 135.3, 130.3, 127.8, 127.7, 127.5, 125.4, 121.0, 120.8, 33.4, 31.8, 24.6, 22.9.

MS (EI, 70 eV): m/z (%) = 204 (14), 203 (13), 187 (11), 186 (81), 185 (69), 183 (13), 176 (24), 175 (100), 171 (33), 170 (14), 165 (51), 163 (37), 162 (40), 160 (17), 159 (19), 149 (35), 148 (12), 147 (44), 146 (42), 135 (20), 134 (13), 133 (64), 121 (14), 115 (16), 109 (16).

HRMS (EI): for C₁₃H₁₃FO: calc. [M+]: 204.0950; found: 204.0945.

IR (Diamond-ATR, neat): $\tilde{\nu}$ / cm⁻¹ = 3069 (vw), 3021 (vw), 2928 (w), 2859 (w), 2836 (w), 2764 (vw), 2732 (vw), 2363 (vw), 1687 (s), 1652 (vw), 1604 (m), 1574 (w), 1457 (m), 1447 (m), 1434 (w), 1396 (w), 1271 (w), 1239 (vs), 1221 (m), 1205 (m), 1192 (w), 1186 (w), 1135 (w), 1078 (vw), 1031 (vw), 987 (w), 950 (w), 929 (w), 899 (w), 876 (w), 847 (w), 791 (s), 776 (m), 760 (m), 744 (m), 735 (s), 720 (m), 679 (m).

²⁰ J. M. White, A. R. Tunoori, G. I. Georg, *J. Am. Chem. Soc.* **2000**, *122*, 11995-11996.

N-Ethyl-N-((6-fluoro-1',2',3',4'-tetrahydro-[1,1'-biphenyl]-2-yl)methyl)ethanamine

The title compound was prepared according to a literature procedure.²¹ A dry and argon flushed Schlenk-tube, equipped with a magnetic stirring bar and a septum, was charged with *N*,*N*-diethyl-6-fluoro-1',2',3',4'-tetrahydro-[1,1'-biphenyl]-2-carboxamide (**25b**, 138 mg, 0.50 mmol, 1.0 equiv). Lithium pyrrolidinoborohydride (0.60 mL, 0.60 mmol, 1 M in THF, 1.2 equiv) was added dropwise and the reaction mixture was heated to reflux for 2 h. The reaction was quenched by slow addition of 3M HCI (2 mL). The aqueous layer was separated, layered with Et₂O and NaOH was added until the reaction mixture was strongly basic to litmus. The organic layer was separated, the aqueous layer extracted with Et₂O (3 x 10 mL) and the combined organic extracts were dried over MgSO₄, filtered and concentrated *in vacuo*. Purification of the crude product by flash column chromatography (silica gel, *i*hexane/EtOAc = 9:1 to 4:1) afforded the title compound as a colorless oil (114 mg, 0.44 mmol, 88% yield).

¹**H NMR (400 MHz, CDCl₃):** δ (ppm) = 7.13–7.04 (m, 2H), 6.94–6.86 (m, 1H), 5.79–5.71 (m, 1H), 5.64 (ddt, J = 10.1, 3.0, 1.6 Hz, 1H), 3.97 (dtd, J = 9.8, 4.8, 2.4 Hz, 1H), 3.59 (d, J = 13.4 Hz, 1H), 3.49 (d, J = 13.4 Hz, 1H), 2.47 (p, J = 7.1 Hz, 4H), 2.23–1.61 (m, 6H), 1.01 (t, J = 7.1 Hz, 6H).

¹³**C NMR (101 MHz, CDCl₃):** δ (ppm) = 140.3, 132.5, 132.4, 130.7, 126.6, 126.5, 125.9, 125.6, 114.9, 114.6, 56.2, 46.5, 35.1, 28.7, 24.7, 23.2, 11.8.

MS (EI, 70 eV): m/z (%) = 189 (14), 188 (29), 187 (16), 173 (30), 161 (11), 160 (98), 159 (100), 153 (10), 147 (49), 146 (48), 135 (11), 133 (36), 123 (18), 109 (11).

HRMS (EI): for C₁₇H₂₄FN: calc. [M+]: 261.1893; found: 261.1891.

IR (Diamond-ATR, neat): $\tilde{\nu}$ / cm⁻¹ = 3019 (w), 2967 (s), 2930 (s), 2856 (m), 2834 (m), 2796 (m), 2722 (w), 1652 (vw), 1612 (w), 1577 (m), 1464 (vs), 1383 (m), 1371 (m), 1291 (m), 1239 (vs), 1220 (m), 1198 (m), 1164 (m), 1133 (m), 1118 (w), 1058 (m), 1003 (m), 928 (w), 899 (w), 876 (m), 847 (w), 804 (s), 790 (s), 764 (vs), 746 (vs), 734 (vs), 718 (s), 655 (w).

²¹ G. B. Fisher, J. C. Fuller, J. Harrison, C. T. Goralski, B. Singaram, *Tetrahedron Lett.* **1993**, *34*, 1091-1094.

2'-(Chloromethyl)-6'-fluoro-1,2,3,4-tetrahydro-1,1'-biphenyl (26b)

A dry and argon flushed Schlenk-tube, equipped with a magnetic stirring bar and a septum, was charged with *N*-ethyl-*N*-((6-fluoro-1',2',3',4'-tetrahydro-[1,1'-biphenyl]-2yl)methyl)ethanamine (69 mg, 0.26 mmol, 1.0 equiv) in dry THF (1 mL). Ethyl chloroformate (50 μ L, 0.52 mmol, 2.0 equiv) was added dropwise and the reaction mixture was heated to reflux for 2 h. Purification by short path flash column chromatography (silica gel, *i*hexane/EtOAc = 98:2) afforded the title compound as a colorless oil (**26b**, 56 mg, 0.25 mmol, 97% yield).

¹**H NMR (400 MHz, CDCl₃):** δ (ppm) = 7.22–7.12 (m, 2H), 7.00 (ddd, *J* = 10.9, 7.7, 1.8 Hz, 1H), 5.84 (ddt, *J* = 10.4, 5.3, 2.9 Hz, 1H), 5.69 (dp, *J* = 10.1, 1.6 Hz, 1H), 4.69 (s, 2H), 3.86 (ddh, J = 9.8, 4.8, 2.5 Hz, 1H), 2.27–2.07 (m, 2H), 2.05–1.68 (m, 4H).

¹³C NMR (101 MHz, CDCI₃): δ (ppm) = 163.1, 160.7, 137.8, 132.3, 132.1, 129.7, 127.7, 127.7, 127.7, 127.1, 126.5, 126.5, 116.7, 116.5, 43.9, 35.3, 29.3, 24.6, 23.0.
MS (EI, 70 eV): m/z (%) = 224 (22), 189 (27), 188 (16), 160 (24), 159 (16), 147 (46), 146 (21),

137 (13), 133 (21), 125 (18), 123 (18), 113 (14), 112 (21), 111 (34), 110 (13), 109 (28), 97 (48), 96 (22), 95 (44), 91 (15), 85 (39), 84 (23), 83 (53), 82 (19), 81 (47), 79 (18), 71 (61), 70 (30), 69 (58), 67 (30), 57 (100), 56 (28), 55 (73), 43 (85), 42 (72), 40 (53).

HRMS (EI): for C₁₃H₁₄CIF: calc. [M+]: 224.0768; found: 224.0773.

8. NMR Spectra

9. Single Crystal X-Ray Diffraction Studies

Single crystals of compound **22h**, suitable for X-ray diffraction, were obtained by slow evaporation of CH_2Cl_2 solution. The crystals were introduced into perfluorinated oil and a suitable single crystal was carefully mounted on the top of a thin glass wire. Data collection was performed with an Oxford Xcalibur 3 diffractometer equipped with a Spellman generator (50 kV, 40 mA) and a Kappa CCD detector, operating with Mo-K_a radiation ($\lambda = 0.71071$ Å).

Data collection and data reduction were performed with the CrysAlisPro software.²² Absorption correction using the multiscan method²² was applied. The structures were solved with SHELXS-97,²³ refined with SHELXL-97²⁴ and finally checked using PLATON.²⁵ Details for data collection and structure refinement are summarized in Table 1.

CCDC-2061336 contains supplementary crystallographic data for this compound. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre *via* <u>www.ccdc.cam.ac.uk/data_request/cif</u>.

²² Program package 'CrysAlisPro 1.171.40.82a (Rigaku OD, 2020)'.

²³ Sheldrick, G. M. (1997) SHELXS-97: *Program for Crystal Structure Solution*, University of Göttingen, Germany.

²⁴ Sheldrick, G. M. (1997) SHELXL-97: *Program for the Refinement of Crystal Structures*, University of Göttingen, Germany.

²⁵ Spek, A. L. (1999) PLATON: *A Multipurpose Crystallographic Tool*, Utrecht University, Utrecht, The Netherlands.

 Table 2. Details for X-ray data collection and structure refinement for compound 22h.

	22h
Empirical formula	$C_{21}H_{24}BrN_3O_5Si$
Formula mass	506.43
T[K]	123(2)
Crystal size [mm]	$0.35 \times 0.20 \times 0.05$
Crystal description	colorless block
Crystal system	triclinic
Space group	<i>P</i> -1
a [Á]	8.0355(4)
b [Á]	11.4221(6)
c [Á]	13.0590(5)
α [°]	105.984(4)
β [°]	104.098(4)
γ [°]	96.492(4)
V [Á³]	1096.48(9)
Z	2
ρ _{calcd.} [g cm ⁻³]	1.534
μ [mm ⁻¹]	1.968
<i>F</i> (000)	520
Θ range [°]	2.72 – 25.24
Index ranges	-11 ≤ <i>h</i> ≤ 11
	-16 ≤ <i>k</i> ≤ 16
	-18 ≤ <i>I</i> ≤ 18
RefIns. collected	22400
RefIns. obsd.	4584
Reflns. unique	6683 (R _{int} = 0.0601)
R_1 , wR_2 (2 σ data)	0.0475, 0.0929
R_1 , wR_2 (all data)	0.0826, 0.1078
GOOF on <i>F</i> ²	1.032
Peak/hole [e Á ⁻³]	0.757 / -0.430

Figure 1. Molecular structure of compound **22h** in the crystal. DIAMOND²⁶ representation; thermal ellipsoids are drawn at 50 % probability level.

		-	
Br1 – C17	1.895(2)	O5 – C9	1.379(3)
O1 – C19	1.373(3)	O5 – C10	1.412(3)
O1 – C20	1.421(3)	C6 – C7	1.382(3)
N1 – C1	1.346(3)	C6 – C12	1.413(3)
N1 – N2	1.357(2)	C7 – C8	1.393(3)
N1 – C6	1.442(3)	C8 – C9	1.373(3)
C1 – C2	1.375(3)	C9 – C11	1.379(3)
Si1 – C5	1.852(3)	C12 – C11	1.379(3)
Si1 – C4	1.856(3)	C12 – C13	1.526(3)
Si1 – C3	1.861(2)	C13 – C14	1.522(3)
Si1 – C2	1.876(3)	C17 – C16	1.380(4)
N3 – N2	1.315(3)	C17 – C18	1.386(3)
N3 – C2	1.378(3)	C19 – C18	1.386(3)
O3 – C13	1.422(3)	C19 – C14	1.393(3)
O2 – C16	1.371(3)	C16 – C15	1.398(3)
O2 – C21	1.419(3)	C14 – C15	1.390(3)
O4 – C11	1.376(3)	O4 – C10	1.420(3)

Table 3. Selected bond lengths (Å) of compound 22h.

²⁶ DIAMOND, Crystal Impact GbR., Version 3.2i

 Table 4. Selected bond angles (°) of compound 22h.

C19 – O1 – C20	118.3(2)	C8 – C9 – C11	122.1(2)
C1 – N1 – N2	110.7(2)	O5 – C9 – C11	109.5(2)
C1 – N1 – C6	130.8(2)	O5 – C10 – O4	108.9(2)
N2 – N1 – C6	118.5(2)	C11 – C12 – C6	113.8(2)
N1 – C1 – C2	106.4(2)	C11 – C12 – C13	119.5(2)
C5 – Si1 – C4	109.9(1)	C6 – C12 – C13	126.7(2)
C5 – Si1 – C3	109.9(1)	O4 – C11 – C12	126.2(2)
C4 – Si1 – C3	111.5(1)	O4 – C11 – C9	109.8(2)
C5 – Si1 – C2	108.8(1)	C12 – C11 – C9	123.9(2)
C4 – Si1 – C2	109.5(1)	O3 – C13 – C14	109.2(2)
C3 – Si1 – C2	107.3(1)	O3 – C13 – C12	109.4(2)
N2 – N3 – C2	110.6(2)	C14 – C13 – C12	111.9(2)
C1 – C2 – N3	106.1(2)	C16 – C17 – C18	122.1(2)
C1 – C2 – Si1	130.5(2)	C16 – C17 – Br1	119.7(2)
N3 – C2 – Si1	123.7(2)	C18 – C17 – Br1	118.1(2)
C16 – O2 – C21	117.3(2)	O1 – C19 – C18	123.5(2)
N3 – N2 – N1	106.3(2)	O1 – C19 – C14	115.7(2)
C11 - O4 - C10	104.3(2)	C18 – C19 – C14	120.8(2)
C9 – O5 – C10	104.6(2)	O2 – C16 – C17	117.6(2)
C7 – C6 – C12	122.4(2)	O2 – C16 – C15	124.3(2)
C7 – C6 – N1	116.7(2)	C17 – C16 – C15	118.1(2)
C12 – C6 – N1	120.8(2)	C15 – C14 – C19	119.0(2)
C6 - C7 - C8	122.0(2)	C15 – C14 – C13	121.2(2)
C9 – C8 – C7	115.7(2)	C19 – C14 – C13	119.7(2)
C8 – C9 – O5	128.3(2)	C14 – C15 – C16	121.1(2)
C19 - C18 - C17	118.8(2)		

 Table 5. Selected torsion angles (°) of compound 22h.

N2 – N1 – C1 – C2	0.6(3)	C13 – C12 – C11 – O4	0.7(3)
C6 - N1 - C1 - C2	177.8(2)	C6 – C12 – C11 – C9	0.1(3)
N1 – C1 – C2 – N3	-0.8(3)	C13 – C12 – C11 – C9	177.1(2)
N1 – C1 – C2 – Si1	175.0(2)	C8 – C9 – C11 – O4	175.8(2)
N2 - N3 - C2 - C1	0.7(3)	O5 – C9 – C11 – O4	-0.9(3)
N2 – N3 – C2 – Si1	-175.4(2)	C8 – C9 – C11 – C12	-1.0(4)
C5 – Si1 – C2 – C1	-76.1(3)	O5 – C9 – C11 – C12	-177.7(2)
C4 – Si1 – C2 – C1	44.0(3)	C11 – C12 – C13 – O3	-66.7(2)
C3 – Si1 – C2 – C1	165.1(2)	C6 – C12 – C13 – O3	109.8(2)
C5 – Si1 – C2 – N3	99.0(2)	C11 – C12 – C13 – C14	54.5(3)

C4 – Si1 – C2 – N3	-140.9(2)	C6 – C12 – C13 – C14	-129.0(2)
C3 – Si1 – C2 – N3	-19.8(2)	C20 – O1 – C19 – C18	-2.7(3)
C2 – N3 – N2 – N1	-0.3(2)	C20 – O1 – C19 – C14	178.1(2)
C1 – N1 – N2 – N3	-0.2(2)	C21 – O2 – C16 – C17	-164.7(2)
C6 – N1 – N2 – N3	-177.8(2)	C21 – O2 – C16 – C15	16.9(3)
C1 - N1 - C6 - C7	-131.2(3)	C18 – C17 – C16 – O2	-177.5(2)
N2 - N1 - C6 - C7	45.8(3)	Br1 – C17 – C16 – O2	3.9(3)
C1 - N1 - C6 - C12	49.8(3)	C18 – C17 – C16 – C15	1.1(4)
N2 - N1 - C6 - C12	-133.2(2)	Br1 – C17 – C16 – C15	-177.5(2)
C12 - C6 - C7 - C8	-0.2(4)	O1 – C19 – C14 – C15	-179.1(2)
N1 - C6 - C7 - C8	-179.2(2)	C18 – C19 – C14 – C15	1.6(3)
C6 - C7 - C8 - C9	-0.6(3)	O1 – C19 – C14 – C13	0.5(3)
C7 - C8 - C9 - O5	177.3(2)	C18 – C19 – C14 – C13	-178.7(2)
C7 - C8 - C9 - C11	1.2(3)	O3 – C13 – C14 – C15	-0.6(3)
C10 - O5 - C9 - C8	173.9(3)	C12 – C13 – C14 – C15	-121.8(2)
C10 - O5 - C9 - C11	-9.6(3)	O3 – C13 – C14 – C19	179.8(2)
C9 - O5 - C10 - O4	16.5(3)	C12 – C13 – C14 – C19	58.6(3)
C11 - O4 - C10 - O5	-17.0(3)	C19 – C14 – C15 – C16	-1.8(3)
C7 - C6 - C12 - C11	0.5(3)	C13 – C14 – C15 – C16	178.5(2)
N1 – C6 – C12 – C11	179.3(2)	O2 – C16 – C15 – C14	179.0(2)
C7 – C6 – C12 – C13	-176.2(2)	C17 – C16 – C15 – C14	0.5(4)
N1 - C6 - C12 - C13	2.7(3)	O1 – C19 – C18 – C17	-179.3(2)
C10 - O4 - C11 - C12	-172.3(2)	C14 – C19 – C18 – C17	-0.1(4)
C10 - O4 - C11 - C9	10.9(3)	C16 – C17 – C18 – C19	-1.3(4)
C6 - C12 - C11 - O4	-176.2(2)	Br1 – C17 – C18 – C19	177.4(2)

Single Crystal X-Ray Diffraction Studies

Single crystals of compound **19b**, suitable for X-ray diffraction, were obtained by slow evaporation of CH_2CI_2 solution. The crystals were introduced into perfluorinated oil and a suitable single crystal was carefully mounted on the top of a thin glass wire. Data collection was performed with an Oxford Xcalibur 3 diffractometer equipped with a Spellman generator (50 kV, 40 mA) and a Kappa CCD detector, operating with Mo-K_a radiation ($\lambda = 0.71071$ Å).

Data collection and data reduction were performed with the CrysAlisPro software.²⁷ Absorption correction using the multiscan method²⁷ was applied. The structures were solved with SHELXS-97,²⁸ refined with SHELXL-97²⁹ and finally checked using PLATON.³⁰ Details for data collection and structure refinement are summarized in Table 5.

CCDC-2061337 contains supplementary crystallographic data for this compound. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre *via* <u>www.ccdc.cam.ac.uk/data_request/cif</u>.

²⁷ Program package 'CrysAlisPro 1.171.40.82a (Rigaku OD, 2020)'.

²⁸ Sheldrick, G. M. (1997) SHELXS-97: *Program for Crystal Structure Solution*, University of Göttingen, Germany.

²⁹ Sheldrick, G. M. (1997) SHELXL-97: *Program for the Refinement of Crystal Structures*, University of Göttingen, Germany.

³⁰ Spek, A. L. (1999) PLATON: *A Multipurpose Crystallographic Tool*, Utrecht University, Utrecht, The Netherlands.

 Table 6. Details for X-ray data collection and structure refinement for compound 19b.

	19b
Empirical formula	$C_9H_6CI_2IN_3S$
Formula mass	386.03
T[K]	123(2)
Crystal size [mm]	$0.40 \times 0.25 \times 0.05$
Crystal description	colorless platelet
Crystal system	orthorhombic
Space group	lba2
a [Á]	29.5021(13)
b [Á]	9.0794(3)
c [Á]	9.4820(4)
α [°]	90.0
β [°]	90.0
γ [°]	90.0
V [Á³]	2539.86(18)
Z	8
ρ _{calcd.} [g cm⁻³]	2.019
μ [mm ⁻¹]	3.082
<i>F</i> (000)	1472
Θ range [°]	2.34 – 25.24
Index ranges	$-36 \le h \le 36$
	-11 ≤ <i>k</i> ≤ 11
	-11 ≤ <i>I</i> ≤ 11
RefIns. collected	15592
Reflns. obsd.	2254
Reflns. unique	2462 (R _{int} = 0.0560)
R_1 , wR_2 (2 σ data)	0.0317, 0.0722
R_1 , wR_2 (all data)	0.0369, 0.0757
GOOF on <i>F</i> ²	1.059
Peak/hole [e Á ⁻³]	1.370 / -0.491

Figure 2. Molecular structure of compound **19b** in the crystal. DIAMOND³¹ representation; thermal ellipsoids are drawn at 50 % probability level.

Table 7. Selected bond lengths (Å) of compound 19b.

l1 – C2	2.095(7)	N3 – C9	1.323(10)
S1 – C6	1.779(9)	C3 – C4	1.381(11)
S1 – C7	1.798(10)	C4 – C5	1.390(11)
Cl1 – C3	1.745(8)	C6 – C5	1.386(12)
N1 – C8	1.311(12)	C8 – C9	1.374(17)
N1 – N2	1.332(9)	N2 – N3	1.330(9)
C1 – C2	1.408(11)	Cl2 – C5	1.733(8)
C1 – C6	1.411(11)	C2 – C3	1.379(11)
C1 – N2	1.412(10)		

 Table 8. Selected bond angles (°) of compound 19b.

C6 – S1 – C7	101.5(4)	C5 – C6 – C1	117.2(7)
C8 – N1 – N2	102.6(8)	C5 – C6 – S1	124.4(6)
C2 - C1 - C6	121.7(7)	C1 – C6 – S1	118.1(6)
C2 - C1 - N2	118.9(7)	C6 – C5 – C4	122.0(8)
C6 - C1 - N2	119.3(7)	C6 - C5 - Cl2	120.8(6)
N3 – N2 – N1	115.3(6)	C4 - C5 - Cl2	117.2(6)

³¹ DIAMOND, Crystal Impact GbR., Version 3.2i.

N3 - N2 - C1	123.3(6)	N1 – C8 – C9	110.5(9)
N1 - N2 - C1	121.4(6)	N3 – C9 – C8	108.3(8)
C3 - C2 - C1	118.2(7)	C2 - C3 - C4	121.7(7)
C3 – C2 – I1	122.2(6)	C2 – C3 – Cl1	121.2(6)
C1 – C2 – I1	119.7(6)	C4 – C3 – Cl1	117.1(6)
C9 – N3 – N2	103.3(7)	C3 – C4 – C5	119.3(8)

 Table 9. Selected torsion angles (°) of compound 19b.

-			
C8 – N1 – N2 – C1	-179.8(7)	C2 – C1 – C6 – C5	0.1(11)
C2 – C1 – N2 – N3	82.3(9)	N2 – C1 – C6 – C5	-175.0(6)
C6 - C1 - N2 - N3	-102.5(8)	C2 – C1 – C6 – S1	174.4(5)
C2 - C1 - N2 - N1	-96.3(9)	N2 – C1 – C6 – S1	-0.8(9)
C6 - C1 - N2 - N1	78.9(9)	C7 – S1 – C6 – C5	-66.7(7)
C6 - C1 - C2 - C3	-0.4(10)	C7 – S1 – C6 – C1	119.5(7)
N2 - C1 - C2 - C3	174.7(6)	C1 - C6 - C5 - C4	-0.5(11)
C6 - C1 - C2 - I1	180.0(5)	S1 – C6 – C5 – C4	-174.3(6)
N2 - C1 - C2 - I1	-4.9(9)	C1 – C6 – C5 – Cl2	175.9(6)
N1 - N2 - N3 - C9	-1.4(9)	S1 – C6 – C5 – Cl2	2.1(10)
C1 - N2 - N3 - C9	179.9(7)	C3 - C4 - C5 - C6	1.2(11)
C1 - C2 - C3 - C4	1.1(11)	C3 – C4 – C5 – Cl2	-175.4(6)
I1 - C2 - C3 - C4	-179.3(5)	N2 – N1 – C8 – C9	-1.(1)
C1 - C2 - C3 - C11	-175.1(5)	N2 – N3 – C9 – C8	0.7(9)
I1 - C2 - C3 - CI1	4.5(9)	N1 – C8 – C9 – N3	0.2(11)
C2 - C3 - C4 - C5	-1.5(11)		