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Figure S1. (a) A GAP model for molecular water (fitted using the P1 parameter set, Table S1) as characterized by its 
accuracy on external validation data not encountered in training; dark and light shaded area bound the ‘chemically accurate’ 
±1 kcal mol–1 and ±2 kcal mol–1 regions, respectively. (b) The resulting difference between predicted and true single point 
energies on MD frames at 300 K (δt = 0.5 fs). Dynamics with 30 water molecules in a cubic box (l = 10 Å, ρ ~ 1 g cm–3). Error 
range (min–max, shaded) and average of five simulations using the same trained GAP from different initial randomly placed 
then minimized points. DFTB(3ob) ground truth. Orange lines depict the total cumulative error (solid) and cumulative error 
above 0.1 eV (dashed). 
 
 
Table S1. Parameter sets for GAPs, SOAPs and 2/3b descriptors.  
 

Set Type Parameter Value 

P1 

GAP 
σE 0.316 meV 
σF 0.1 eV Å-1 
ζ 4 

2b descriptors:  
O–H, H–H, O–O 

rc 5.5 Å 
nsparse 30 
𝛿2b 1.0 eV 
θ 1.0 Å 

sparse method Uniform 

SOAP descriptor: 
O 

rc 3.0 Å 
nsparse 100 
𝛿SOAP 0.1 eV 
σat

SOAP 0.5 Å 
nmax, lmax 6 

sparse method CUR points 

P2 

GAP 
σE 0.316 meV 

σF 0.1 eV Å-1 

ζ 4 

SOAP descriptors 

rc 
DFTB: 3.0 Å 
PBE:   3.5 Å 
rPBE0: 4.0Å 

nsparse 500 

σat
SOAP 0.5 Å 

nmax, lmax 6 

 sparse method CUR points 
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Table S2. Outline of training strategies used to train a GAP for bulk water (Figure 1). N total ground truth evaluations used 
to train the final potential. Errors are quoted as standard errors in the mean from 5 independent samples where appropriate to 
one significant figure. All training used 10 water molecules in a cubic box with side length 7 Å. 
 

 Strategy Notes τacc / ps N 

1 MM-MD 

 
Classical molecular mechanics MD simulations were performed at 
100, 300, 500 and 1000 K using GROMACS v. 2019.2 with a 
timestep of 1 fs and TIP3P water. Following a 1 ns NVT equilibration 
of a random configuration of water 10 ns of NVT dynamics were 
performed taking 1000 evenly spaced frames from the simulation.  
 

0 1000 

2 rand. 

Configurations were generated by adding GFN2–XTB optimised 
water molecules into the box in a random position and orientation, 
ensuring that there are no intermolecular distances < 1.5 Å. Random 
displacements were added to each Cartesian coordinate sampled from 
a random normal distribution with σ=0.05 Å, which samples over 
intramolecular bond stretches and bends.  
 

0 1000 

3 rand. min. 

As rand. where each random configuration is minimized to |Fi| < 1 
eV Å–1, where Fi is the force on atom i. Subsequently, random normal 
displacements were added to each atom to ensure some sampling of 
the intramolecular modes. 
 

0.0008 ± 
0.0007 7490 ± 20 

4 AIMD 

Ab-initio MD simulations were performed at the ground truth level 
(DFTB, 3ob parameters) for 1 ps at 300 K with a 0.5 fs timestep. 
Frames were randomly selected from the trajectory with at least a 2 fs 
interval. 
 

0.011 ± 0.003 2570 ± 10 

5 AL 

Active learning is initiated from a GAP trained on 10 random 
configurations with a 1.5 Å minimum distance between water 
molecules. MD simulations at 300 K was then propagated using this 
potential for n3 + 2 fs, where n is the number of iterations of the MD 
trajectory. The error between the ground truth (E0) and predicted 
energy (EGAP) is evaluated for the final frame (|E0 – EGAP|) and, if 
above 0.1 eV the configuration is added to the training data. If above 
10× the threshold then the error is backtracked in intervals of 2 fs until 
a suitable configuration is obtained, as to not add any very high energy 
configurations. If the error is 100× the threshold, then the first frame 
of the trajectory is returned, as the backtracking is likely to be too 
slow. If the error is below the threshold, then a further MD trajectory 
is propagated, and n incremented by one. If n > 10 then no 
configuration is added from this set of trajectories. 
 

0.07 ± 0.02 3200 ± 
200 

6 AL-I+I 

Intra- and intermolecular interactions were trained independently, and 
separate GAPs trained for each term. The intramolecular GAP is 
trained on a cubic grid of configurations rO-Ha, rO-Hb ∈ [0.8, 1.5] Å, 
rHa-Hb ∈ [1.0, 2.5] Å with 8 points in each dimension with 2- and 3-
body descriptors with 3 Å cut-offs and 30 sparse points. The 
intermolecular GAP is trained using the active learning method 
outlined above. Energies and forces were calculated as a sum of terms 
and the intramolecular GAP prediction evaluated in a box expanded 
by a factor of 10 while maintaining the fractional coordinate of the 
centre of mass of each water molecule fixed, as to ensure no 
intermolecular hydrogens are in the radius of the intramolecular 
descriptors. 
 

31 ± 7 1160 ± 90 
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Figure S2. (a) Comparison of active learning and a grid-based approach for training a water monomer. 2b+3b GAP with rc = 
3.0 Å without a SOAP all other parameters as P2 (Table S2). max(τacc) = 1 ps calculated in a 2500 K simulation for a ~1% 
probability of accessing a configuration 1 eV above the minimum, El = 0.043 eV, Et = 0.43 eV. (b, c) Energy and force 
distribution of the test data used to calculate a root mean squared error (RMSE) generated on a grid over rOHa, rOHb ∈	[1.0, 1.3] 
Å and rHaHb ∈	[1.0, 2.5] Å and truncated above 1 eV of the minimum to 103 datapoints that are not coincident with any training 
data.  
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Figure S3. Water dimer PES predicted using SOAP and 2b GAPs with the ground truth (DFTB(3ob)) in black. Trained on 
then evaluated on the PES points. Intramolecular component subtracted using the same intra-GAP as Figure 1 (2b+3b, rc=3.0 
Å) evaluated in separate boxes.  
 
 
 

 
 
Figure S4. Learning curves for a bulk water GAP trained on random configurations, with or without selection strategies. Water 
molecules randomized in the box by applying a random rotation and translation to each water molecule ensuring no 
intermolecular distance < 1.5 Å, apart from rand. 1.7 Å min (purple triangles) where the minimum distance is 1.7 Å. τacc 
calculated with a 1 fs interval, El = 0.1 eV, Et = 1 eV averaged over 5 initial random configurations. Error bars are standard 
error in the mean over 5 independent iterations. CUR-K 1/10 is a CUR selection of the square kernel matrix between SOAP 
descriptors calculated using Dscribe,1 keeping 1 in 10 rows, CUR is selection on the SOAP matrix averaged over atoms in the 
box. 
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Figure S5. Learning curves for a bulk water GAP trained on classical molecular mechanics configurations at different 
temperatures. Initial random configuration minimized then equilibrated for 1 ns, TIP3P parameters, flexible water. 
Configurations taken evenly spaced from a total of 10 ns of simulation time. τacc calculated with a 10 fs interval, El = 0.1 eV, 
Et = 1 eV averaged over 5 initial random configurations. Error bars are standard error in the mean over 5 independent iterations. 
 
 
 
 
 
 
 
 

 
Figure S6. Correlation plot between predicted and ‘true’ (DFTB) energies and forces on MM training data (300 K) for bulk 
water (TIP3P parameters). 
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Figure S7. Kernel matrices on normalised SOAP vectors between MM-MD and AIMD frames simulated at 300 K calculated 
using Dscribe,1 with ‘inner’ averaging (average coefficients over sites before summation over angular projection, m) over 
unique elements (H, O), rc =5 Å, nmax=lmax=6, raised to the 4th power (i.e. ζ=4). Values 0–1 correspond to minimal–maximal 
similarity in configurations. 
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Figure S7 cont. Histogram of atomic positions in (a) MM(TIP3P) and (b) AIMD(DFTB) configurations generated over a 300 
K trajectory. All water molecules fitted to an initial reference in the xy plane with the Kabash algorithm, oxygen centred at (0, 
0). Only molecules wholly within the box included. 
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Figure S8. Learning curves for a bulk water GAP trained on classical ‘ab-initio’ [AIMD, DFTB(3ob)] configurations at 
different temperatures.  Initial random configuration minimized at DFTB. Configurations taken evenly spaced from a total of 
1 ps of simulation time. τacc calculated with a 10 fs interval, El = 0.1 eV, Et = 1 eV averaged over 5 initial random configurations. 
Error bars are standard error in the mean over 5 independent iterations. 
 

 
Figure S9. (a, b) Potential energy surfaces and (c) error in gas phase monomer dynamics generated by GAPs trained on 65 
data points in a grid over r1, r2 ∈ [0.8, 1.5] Å, r3 ∈ [1.0, 2.5] Å including the minimum at the DFTB(3ob parameters) level of 
theory. Two-body + three body GAP trained with 3.0 Å cut-offs. 
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Figure S10. Schematic representation of an intra+inter (II) energy evaluation using two GAPs. Total energy is a sum of the 
intermolecular interactions in a box, plus the intramolecular energy calculated by expanding the box by a factor λ, keeping the 
fractional centre of masses of each molecule fixed. 
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Figure S11. Attempted DFT (PBE/400 eV) uplift of DFTB GAP with single point energy and force evaluations on a set of 
configurations used to train a stable inter GAP (AL-II, Figure 1). Intramolecular energy evaluated using a DFT GAP trained 
using active learning at 1600 K with a 2 eV maximum energy threshold. (a) Energy and force histograms, where the DFT 
configurations are referenced to the lowest energy located in an active learning cycle at the DFT level. (b) Pair radial 
distribution functions calculated from a 10 ps, 300 K MD simulations with the inter (+intra) GAP trained on the DFTB 
configurations, compared to a PBE reference from ref. 2. 
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S1. Other solvents 
 
To demonstrate the transferability of the intra+inter active learning training method to other solvents 

presented here are learning curves in τacc for a selection of small, commonly used, organic solvents. The 

accuracy of the potential is quantified by the final error metric following the full active learning, and as a 

quick validation the radial distribution functions are shown for all pairs in each system. Given the much 

higher dimensionality of the intramolecular PES in all of the solvents a dense grid over all coordinates is not 

possible (e.g. Natoms = 6 in MeCN ⇒ 8(3×6) – 6 ~ 1011 points) and active learning needs to be employed for the 

intra surface. Employing active learning on the intramolecular modes of water requires both a high 

temperature, as to sample the curvature of the PES at regions often sampled at 300 K, and an energy threshold 

to prevent high energy configurations entering the fit (Figure S13). 

 

Active learning at 1600 K then readily dissociates Cl• with a DFTB ground truth. 

 

 

 
 

Figure S12. Comparison between DFT (PBE/def2-SVP) and DFTB energies for the C–Cl dissociation curve in CH2Cl2. 
Geometries from unrelaxed PES scan from the DFT geometry. Experimental data indicated with dash grey line from ref. 3.  
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Figure S13. Absolute errors between GAP and the ground truth DFTB on GAP-MD trajectories propagated at 300 K of a 
water box. Intramolecular GAP(2b+3b) trained using active learning using intermediate GAP-MD at the quoted temperature. 
1600 K, 2 eV also specifies an energy cut-off on GAP training data. Intermolecular GAP trained as Figure 1 (AL-I+I). Error 
ranges are generally not shown for clarity. Initial random configurations to start the active training loop are identical for each 
training run. 
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Figure S14. Learning curves (a) intra- and (b)intermolecular components in different molecular solvents. Parameters for each 
system shown in Table S3. 1600 K for all intramolecular active learning and 300 K for the intermolecular equivalent from 10 
initial random normal displacements of all atoms (σ = 0.05 Å, µ = 0 Å). Maximum τacc shown as dashed lines and min(τacc) = 
0.1 fs for plotting. Error bars plotted as the standard error in the mean from 5 independent repeats. Active learning halted if no 
configurations have error above the threshold. 
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Table S3. Box sizes for intermolecular training and SOAP descriptors used for GAPs shown in Figure S14. All intermolecular 
training used 10 molecules initially optimised at the GFN2-XTB level of theory. Box size chosen to ensure P(generated) ⪆ 
0.1 when molecules are added to the box ensuring a minimum distance of >2 ×XVdW – 0.5 Å where XVdW is the van der Waals 
radius of the largest atom (X) in the system. All descriptors used rc

SOAP = 3 Å and other parameters as Table S1. SOAP 
descriptors shown as e.g. X: Y, Z, as a SOAP on atom type X which includes other types Y and Z. 0.04 eV ~ 1 kcal mol–1. 
 

Molecule Inter/intra Box length / 
Å Descriptors El / eV Et / eV max(τacc) / ps 

Acetonitrile 
intra 10 C: H, C, N 0.043 0.43 1 

inter 
 

13 C: H, C, N 
N: H, C, N 

0.1 1.0 5 

Acetone 
intra 10 C: H, C, O 0.043 0.43 1 

inter 
 

15 C: H, C, O 
O: H, C, O 

0.1 1.0 5 

Water intra 10 O: H 0.043 0.43 1 

Methanol 
intra 10 C: H, C, O 

O: H, C, O 0.043 0.43 1 

inter 
 

12 C: H, C, O 
O: H, C, O 

0.1 1.0 5 

Ammonia 
intra 10 N: H 0.043 0.43 1 

inter 
 

11 N: H, N 
 

0.1 1.0 5 

Pyridine 
intra 10 C: H, C, N 0.043 0.43 1 

inter 15 C: H, C, N 
N: H, C, N 

0.1 1.0 5 
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Figure S15. Radial distributions functions for acetonitrile generated using GAPs (purple) trained with active learning on inter 
and intramolecular degrees of freedom (as Figure S14) ground truth DFTB(3ob) level (black). Dynamics run for 30 ps at 300 
K in a 13.8 Å length box with a time-step of 0.5 fs. 
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S2. Reactions 
 
 
 

 
 
Figure S16. (a) Learning curve for TS originated dynamics in the gas phase for Cl– + CH3Cl → Cl– + CH3Cl. Number of 
ground truth evaluations does not include those used to find the initial transition state. SOAP descriptors with rc = 3.5 Å on C 
and Cl. TS optimisation and energy/force evaluations performed with ORCA at the PBE/ma-def2-SVP level of theory. τacc 
calculated using a 2 fs time interval, 1 kcal mol–1 error threshold, 10 kcal mol–1 maximum total error to a maximum of τacc = 
100 fs, as only short time dynamics are required from the TS. (b) Intrinsic reaction coordinate (IRC) for Cl– + CH3Cl → Cl– + 
CH3Cl calculated in ORCA at the ground truth (PBE/ma-def2-SVP) and predicted with 5 trained GAPs. Average shown as 
the blue line and the range of predictions in blue. IRC configurations were not present in the training data. (c) As (b) for CN– 
+ CH3Cl → Cl– + CH3CN but trained using uphill active learning i.e. without knowledge of the TS. 0.5 eV of energy was 
added to the breaking C–Cl bond and dynamics propagated for up to 500 fs at a temperature of 200 K. (d) Predicted IRC using 
the active-learnt GAP with configurations added from close to the minimum energy pathway with NEB relaxation (final 
geometry selected manually) using the GAP, energies and forces calculated, then re-predicted. Coupled cluster single point 
energies and numerical frequencies were then calculated on the 200 configurations and the IRC compared. *CCSD(T) ≡ 
DLPNO-CCSD(T)/ma-def2-TZVPP) energy values on the MP2/ma-def2-TZVPP. 
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Figure S17. (a) Accuracy of a GAP trained on configurations generated from DFT (PBE/ma-def2-SVP) active learning (see 
Figure S16) for Cl– + CH3Cl → for Cl– + CH3Cl from the TS. The energy profile is compared to the values obtained with an 
IRC calculation at the MP2/ma-def2-TZVPP level of theory from a MP2 optimised TS. CCSD(T)/ma-def2-TZVPP energy 
calculations on DFT configurations used numerical gradients over 55 configurations. (b/c) Error in dynamics calculated from 
300 K MD simulations propagated with the trained GAP from the MP2 transition state. SOAP only descriptors on C and Cl 
with rc

SOAP = 3.5 Å. 
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Figure S18. 2D PES along the forming bond distances (r1, r2) in the [4+2] dimerization of cyclopentadiene as a function of 
time. GAP–propagated reactive dynamics (300 K, yellow lines) overlaid on the relaxed 2D PES. TS1 (7N in ref. 5) is shown 
as the black point. All trajectories lead to reactants (cyclopentadiene x 2) after ~100 fs. GAP trained on ground truth 
B3LYP/def2-SVP. Active learning performed at 500 K initiated at r1, r2 = 2.9 Å. 
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Figure S19. Intrinsic reaction coordinate generated in ORCA from the TS reported in ref. 5 (νimag = 384.64i cm-1) for the [4+2] 
dimerization of cyclopentadiene at B3LYP/def2-SVP and unrestricted B3LYP/6-31G(d). Hessian calculations on the forward 
geometry (TS1’, νimag = 152.78i cm-1) indicate a TS to forming products. 
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Figure S20. As Figure S18 but GAP active learning then dynamics initiated from TS1’ (r1, r2 = 2.77 Å). 
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Figure S21. Comparison of 2D relaxed potential energy surfaces at (a) B3LYP/6-31G(d) as reported in ref. 5 and (b) a slightly 
improved level, B3LYP/def2-SVP. 
 
 
 

 
 
Figure S22. C-Cl distances as a function of time for one of the ten GAP-MD propagated from the TS of Cl+CH3Cl in explicit 
water. A barrier recrossing event is observed at ~170 fs. 
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Figure S23. Error between GAP predicted and ground truth (CPCM(Water)-PBE/def2-SVP) referenced to the closest point 
on the surface to the TS (r1=r2=2.4 Å) i.e. the starting point for the GAP active learning at 1600 K. Regions above 2 eV on the 
ground truth surface masked, as the training explicitly does not include any configurations > 2 eV from the minimum.  
 
 
 

 
 
Figure S24. Gas-phase potential energy surfaces for Cl––H2O, with and without a first solvation shell at PBE/ma-def2-TZVP. 
Coordination number of chloride is 6 from ref. 4. Initial partially solvated chloride generated by hand and optimised with 
ORCA constraining the Cl–O distance and the O–Cl–O angles to generate a close to octahedral geometry. The solvated ion 
shows a faster decaying potential; based on this model and rc

SOAP = 4.5 Å was chosen as a compromise between efficiency 
and accuracy.  
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Figure S25. Comparison of selection strategies used in the ‘active’ learning loop for the intermolecular component of a water 
GAP trained in a 7 Å cubic box with 10 waters at the DFTB(3ob) level of theory. GAP-MD performed at 300 K with a 0.5 fs 
timestep for n3+2 fs iterations sequentially until 1 ps of dynamics was performed. τacc used a 0.1 eV lower energy threshold 
and 1 eV total averaged over 5 random initial configurations (identical for each learning curve). (a) Adds a configuration when 
the maximum atomic energy variance predicted by the Gaussian Process exceeds a threshold Et (in eV, where the max is taken 
over all the atoms in a frame of GAP-MD). (b) Query-by-committee (QBC), where a configuration is added if the standard 
deviation between GAPs trained on the same data (with different random noise) exceeds a threshold Et (in eV). Values are 
chosen to span where the first frame from the iterative GAP-MD is chosen to the maximum 1ps allowed. (c) Adds a 
configuration where the true difference of the total energy exceeds a threshold (in eV).  



 26 

References 
 
 
(1)  Himanen, L.; Jäger, M. O. J.; Morooka, E. V.; Federici Canova, F.; Ranawat, Y. S.; Gao, D. Z.; Rinke, 

P.; Foster, A. S. DScribe: Library of Descriptors for Machine Learning in Materials Science. Comput. 
Phys. Commun. 2020, 247, 106949. 

(2)  Zheng, L.; Chen, M.; Sun, Z.; Ko, H.-Y.; Santra, B.; Dhuvad, P.; Wu, X. Structural, Electronic, and 
Dynamical Properties of Liquid Water by Ab Initio Molecular Dynamics Based on SCAN Functional 
within the Canonical Ensemble. J. Chem. Phys. 2018, 148 (16), 164505. 

(3)  Darwent, B. deB. Bond Dissociation Energies in Simple Molecules: NSRDS-NBS 31; U.S. National 
Bureau of Standards.: Washington DC, 1970. 

(4)  Busch, S.; Pardo, L. C.; O’Dell, W. B.; Bruce, C. D.; Lorenz, C. D.; McLain, S. E. On the Structure of 
Water and Chloride Ion Interactions with a Peptide Backbone in Solution. Phys. Chem. Chem. Phys. 
2013, 15 (48), 21023. 

(5)  Caramella, P.; Quadrelli, P.; Toma, L. An Unexpected Bispericyclic Transition Structure Leading to 
4+2 and 2+4 Cycloadducts in the E Ndo Dimerization of Cyclopentadiene. J. Am. Chem. Soc. 2002, 124 
(7), 1130–1131. 

 
 
 
 
 
 
 
 
 
 


