Supporting Information

"Anti-electrostatic" halogen bonding in solution

Cody Loy, ${ }^{\text {a }}$ Jana M. Holthoff, ${ }^{\text {b }}$ Robert Weiss, ${ }^{\text {c }}$ Stefan M. Huber, ${ }^{* b}$ and Sergiy V. Rosokha*a
Table of Content Pages
Details of UV-Vis measurements and calculations of the equilibria constants S2
Figure S1. Dependence of $\Delta \mathrm{Abs}$ on concentration of I^{-}for the solutions of $\mathbf{1}$ in $\mathrm{CH}_{3} \mathrm{CN}$ S4
Figure S2. UV-Vis spectra of mixtures of iodide with TDACl (A) or 2TDA (B) in $\mathrm{CH}_{3} \mathrm{CN}$ S4
Figure S3. Dependence of NMR shift of proton of $\mathbf{2}$ on concentration of I^{-}in $\mathrm{CD}_{3} \mathrm{CN}$ S5
Figure S4. Dependence of UV-Vis spectra and ΔA bs on concentration of I^{-}for the solutions of $\mathbf{1}$ in S5$\mathrm{CH}_{2} \mathrm{Cl}_{2}$
Figure S5. Dependence of UV-Vis spectra and $\Delta \mathrm{Abs}$ on concentration of Br^{-}for the solutions of $\mathbf{1}$ in S6 $\mathrm{CH}_{3} \mathrm{CN}$
Figure S6. Dependence of UV-Vis spectra and $\Delta \mathrm{Abs}$ on concentration of Cl^{-}for the solutions of $\mathbf{1}$ in S6
$\mathrm{CH}_{3} \mathrm{CN}$
Figure S7. Optimized geometries, AIM and NCI analysis of the AEXB [1, $\left.\mathrm{Br}^{-}\right]$and $\left[\mathbf{1}, \mathrm{Cl}^{-}\right]$ S7
complexes
Table S1. Characteristics of the ($3,-1$) bond critical points along I \cdots X halogen bonds in the AEXB S7
[1, X^{-}] complexes.
Figure S8. MO shapes and energies, and electronic transitions in the AEXB $\left[\mathbf{1}, \mathrm{X}^{-}\right]$complexes S7
Table S2. Energies and HOMO/LUMO energies of the calculated AEXB [1, X^{-}] complexes S8
Table S3. Calculated characteristics of the hypothetical anion- $\pi\left[\mathbf{1}, \mathrm{X}^{-}\right]$complexes. S9
Atomic coordinates of the optimized AEXB complexes S9

[^0]
Details of the UV-Vis measurements and evaluation of equilibrium constant K.

Formation constants (K), of the XB complexes [$\mathbf{1}, \mathrm{X}^{-}$] between 1,2-bis(dicyanomethylene)-3-iodocyclopropanide anion (1) (taken as salt with tris(dimethylamino)cyclopropenium counter-ions) and halide anions ($\mathrm{X}=\mathrm{Cl}, \mathrm{Br}, \mathrm{I}$) were established via UV-Vis measurements of the acetonitrile or dichloromethane solutions containing mixtures of these reactants. The measurements were carried out under argon atmosphere (in a Teflon-capped 1 mm -cuvette equipped with a sidearm) on a CARY 500 spectrophotometer at $22^{\circ} \mathrm{C}$. For each $\left[\mathbf{1}, \mathrm{X}^{-}\right]$complex, the values of K were established based on the UV -Vis measurements of 3-5 series of solutions. Each series included 10-18 solutions. The concentrations of $\mathbf{1}$ (about 1 mM) were kept constant in each series and the concentrations of halides varied from 0 to 0.25 M . (Halides were taken as salts with tetra- n-butyl- or tetra- n-propylammonium cations, $\mathrm{Bu}_{4} \mathrm{NX}$ or $\mathrm{Pr}_{4} \mathrm{NX}$, measurements with both cations afforded the same - within accuracy limit - formation constants). The ionic strength of the solutions was kept constant with $\mathrm{Bu}_{4} \mathrm{NPF}_{6}$.

In a typical series of measurements, stock solutions of individual $\mathbf{1}(10.0 \mathrm{~mL}, \sim 2.0 \mathrm{mM}), \mathrm{Bu} \mathrm{NXX}^{2}$ ($5.00 \mathrm{~mL}, 0.50 \mathrm{M}$) and $\mathrm{Bu}_{4} \mathrm{NPF}_{6}\left(5.00 \mathrm{~mL}, 0.50 \mathrm{M}\right.$) in $\mathrm{CH}_{3} \mathrm{CN}$ (or $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) were prepared in Schlenk tubes under Ar atmosphere. (The solvents were freshly distilled over $\mathrm{P}_{2} \mathrm{O}_{5}$ under argon.) Then, 0.500 mL of the solution of $\mathbf{1}$ were mixed in Teflon-capped (1 mm) cuvettes with x mL of stock solution of Bu4NX and ($0.500-\mathrm{x}$) mL of 0.50 M solution of $\mathrm{Bu}_{4} \mathrm{NPF}_{6}$ (where x typically were $0.500,0.400,0.330,0.250$, $0.200,0.160,0.130,0.100,0.080,0.065,0.050,0.035,0.020$ or similar numbers) using gas-tight micro syringes with capacities from 0.050 mL to 0.500 mL . The UV-vis spectra were measured immediately after mixing. (Control experiments taken 5-20 min after mixing showed no substantial changes of absorption of the solutions containing $\mathbf{1}$ and I^{-}or Br^{-}anions. However, small spectral changes were observed in solutions with Cl^{-}anions if measurements were repeated $10-20 \mathrm{~min}$ after mixing.) Alternatively, series of UV-Vis measurements with I^{-}or Br^{-}anions were done by mixing 0.250 mL of the stock solution of $\mathbf{1}$ (prepared as described above) with 0.250 mL of the stock solution of Bu4NX in Teflon-capped (1 mm) cuvettes equipped with a sidearm (solution A). Separately, 5.0 mL of the stock solution of $\mathbf{1}$ was mixed with 5.0 mL of a 0.50 M -solution of $\mathrm{Bu}_{4} \mathrm{NPF}_{6}$ in acetonitrile (solution B with the same concentration of $\mathbf{1}$ and ionic strength as solution A). After measuring the UV-Vis spectrum of solution $\mathrm{A}, \mathrm{x} \mathrm{ml}$ portions of the diluted solution B (where $\mathrm{x}=0.125,0.150,0.200,0.250,0.300,0.400$, $0.500,0.600,0.750,0.900,1.000,1.500,2.000$ or similar number) were added progressively and the spectra were measured after each addition. Since the concentration of $\mathbf{1}$ and the ionic strength of solution B are the same as solution A, an addition of B to A decreased concentration of iodide in the mixture, but kept the concentration of $\mathbf{1}$ and the ionic strength constant. Thus, regardless of the method of preparation of the solutions for the UV-Vis measurements, the concentrations of $\mathbf{1}$ and the ionic strength were kept constant, and the concentrations of $\mathrm{Bu}_{4} \mathrm{NX}$ varied in a series of measurements; and the values of
formation constants derived from both types of the UV-Vis experiments were the same within the accuracy limit, except for the studies of interaction of $\mathbf{1}$ with Cl^{-}. Since slow side reactions were observed in the solutions containing mixtures of $\mathbf{1}$ and $\mathrm{Cl}^{-}, \mathrm{UV}-\mathrm{V}$ is measurements of the interaction of Cl^{-}with $\mathbf{1}$ were done only using the first method, i.e. each measurement was done immediately after mixing of the reactants.

Formation constants of complexes [1, $\left.\mathrm{X}^{-}\right], \mathrm{K}$ in Table 1 were established via regression analysis of the UV-Vis data. An addition of X^{-}anions to the solutions of $\mathbf{1}$ leads to the formation of XB complexes

$$
\begin{equation*}
1+\mathrm{X}^{-} \quad \stackrel{\mathrm{K}}{\rightleftarrows}\left[1, \mathrm{X}^{-}\right] \tag{S1}
\end{equation*}
$$

The formation constant of the complex, K , is expressed as

$$
\begin{equation*}
\mathrm{K}=\mathrm{C}_{\mathrm{com}} /\left(\left(\mathrm{C}^{\mathrm{o}}{ }_{1}-\mathrm{C}_{\mathrm{com}}\right)\left(\mathrm{C}^{\mathrm{o}} \mathrm{X}-\mathrm{C}_{\mathrm{com}}\right)\right) \tag{S2}
\end{equation*}
$$

where $\mathrm{C}_{\text {com }}, \mathrm{C}^{\mathrm{o}}{ }_{1}$ and $\mathrm{C}^{\mathrm{o}}{ }_{\mathrm{X}}$ are equilibrium concentration of complex and initial concentrations of $\mathbf{1}$ and halide in the mixture. Solving equation S 2 leads to expression for concentration of complex as:

$$
\begin{equation*}
\mathrm{C}_{\mathrm{com}}=\left\{\left(\mathrm{C}^{\mathrm{o}}{ }_{1}+\mathrm{C}^{\mathrm{o}} \mathrm{x}+1 / \mathrm{K}\right)-\left(\left(\mathrm{C}^{\mathrm{o}}{ }_{1}+\mathrm{C}^{\mathrm{o}} \mathrm{x}+1 / \mathrm{K}\right)^{2}-4 \mathrm{C}^{\mathrm{o}}{ }_{1} \mathrm{C}^{\mathrm{o}} \mathrm{x}\right)^{0.5}\right\} / 2 \tag{S3}
\end{equation*}
$$

The changes of absorption intensity at a certain wavelength upon formation of complex are

$$
\begin{equation*}
\left.\Delta \mathrm{Abs}=\left(\varepsilon_{\mathrm{com}} \times \mathrm{C}_{\mathrm{com}}+\varepsilon_{1} \times\left(\mathrm{C}^{\mathrm{o}}{ }_{\mathbf{1}}-\mathrm{C}_{\mathrm{com}}\right)+\varepsilon_{\mathrm{X}} \times\left(\mathrm{C}^{\mathrm{o}} \mathbf{x}-\mathrm{C}_{\mathrm{com}}\right)\right)-\left(\varepsilon_{1} \times \mathrm{C}^{\mathrm{o}}{ }_{\mathbf{1}}+\varepsilon_{\mathrm{X}} \times \mathrm{C}^{\mathrm{o}} \mathrm{x}\right)\right) l \tag{S4}
\end{equation*}
$$

where $\varepsilon_{\text {com, }} \varepsilon_{1}$, and ε_{x} are extinction coefficients of complex, 1 and X^{-}at this wavelength and l is length of the UV-Vis cuvette. Since the extinction coefficients of the halide salts (and their absorption) were negligible in the spectral range which was used in the analysis, $\Delta \mathrm{Abs}$ can be expressed as:

$$
\begin{equation*}
\Delta \mathrm{Abs}=\Delta \varepsilon \underline{l} \times \mathrm{C}_{\mathrm{com}} \tag{S5}
\end{equation*}
$$

where $\Delta \varepsilon$ is a difference in extinction coefficients of complex and 1 . Thus, values of $\Delta A b s$ measured in a series of solutions with the same concentration of $\mathbf{1}$ and variable concentration of X^{-}can be expressed as:

$$
\begin{equation*}
\Delta \mathrm{Abs}=\Delta \varepsilon l \times \mathrm{C}_{\mathrm{com}}=\varepsilon l \times\left\{\left(\mathrm{C}^{\mathrm{o}}{ }_{1}+\mathrm{C}^{\mathrm{o}}{ }_{\mathrm{X}}+1 / \mathrm{K}\right)-\left(\left(\mathrm{C}^{\mathrm{o}}{ }_{1}+\mathrm{C}^{\mathrm{o}}{ }_{\mathrm{X}}+1 / \mathrm{K}\right)^{2}-4 \mathrm{C}^{\mathrm{o}}{ }_{1} \mathrm{C}^{\mathrm{o}} \mathrm{x}\right)^{0.5}\right\} / 2 \tag{S6}
\end{equation*}
$$

Fittings of the results of the UV-Vis titrations to eq. S6 was done using Origin Pro 2016 (with Δ Abs and $\mathrm{C}^{\mathrm{o}}{ }_{\mathrm{X}}$ as dependent and independent variables y and x , respectively, $\mathrm{C}^{\circ}{ }_{1}$ as a constant and $\Delta \varepsilon$ and K as adjustable parameters). Such fittings (illustrated in Figures S1-S4) produced values of K and $\Delta \varepsilon$ in Table 1.

Figure S1. Dependence of differential absorbance Δ Abs (obtained by subtraction of absorption of components from the absorption of the mixture) on the concentration of $\mathrm{Bu}_{4} \mathrm{I}$ in the acetonitrile solutions containing 0.8 mM of $\mathbf{1}$ and $\mathrm{Bu}{ }_{4} \mathrm{NI}$ (ionic strength was kept constant with $\mathrm{Bu}_{4} \mathrm{NIPF}_{6}$).

A

B

Figure S2. (A) Spectra of acetonitrile solutions of 1.5 mM TDACl (green dashed line), 250 mM Bu 4 NI (red dashed line) and their mixtures (solid line) with the same concentrations of components. (B) Spectra of acetonitrile solutions with constant concentration of 2TDA (2.0 mM) and various concentrations of $\mathrm{Bu}_{4} \mathrm{NI}$ (from 0 to 250 mM). Dashed lines show spectra of the individual solutions of 2.0 mM 2TDA (black) and of 250 mM Bu4 NI (red). Ionic strength was maintained with $\mathrm{Bu}_{4} \mathrm{NPF}_{6}$. Insert: Differential spectra of the solutions obtained by subtraction of the absorption of components from the spectra of their mixtures.

Figure S3. Dependence NMR shifts of the protons of $\mathbf{2}$ on the concentration of I- anions in the solutions with constant initial concentration of 2 of 11 mM (as compared to the chemical shift of the individual 2, in $\mathrm{CD}_{3} \mathrm{CN}, 22^{\circ} \mathrm{C}$, ionic strength was maintained with $\mathrm{Bu}_{4} \mathrm{NPF}_{6}$) Solid line represent a fit of the data to the expression $\Delta \delta=\Delta \delta_{\infty} \mathrm{C}_{\mathrm{com}} / \mathrm{C}^{\circ}{ }_{2}=\left(\Delta \delta_{\infty} / \mathrm{C}^{0}{ }_{2}\right) \times\left\{\left(\mathrm{C}^{0}{ }_{2}+\mathrm{C}^{\mathrm{o}}{ }_{\mathrm{X}}+1 / \mathrm{K}\right)-\left(\left(\mathrm{C}^{0}{ }_{2}+\mathrm{C}^{0}{ }_{\mathrm{X}}+1 / \mathrm{K}\right)^{2}-4 \mathrm{C}^{0}{ }_{2} \mathrm{C}^{\mathrm{o}} \mathrm{x}^{0.5}\right\} / 2\right.$, where $\mathrm{C}_{\text {com }}$ is an equilibrium concentration of complex in solution, C° and $\mathrm{C}^{\circ}{ }_{x}$ are initial concentrations of $\mathbf{2}$ and halide in the mixture, and $\Delta \delta_{\infty}$ is a limiting shift (when all 2 are hydrogen-bonded with iodide). This fitting produced value of $K=0.22$. Note that the dependence of $\Delta \delta$ on $\left[\mathrm{Bu}_{4} \mathrm{NI}\right]$ is almost linear (since only a very small fraction of 2 are hydrogen bonded with iodides in the accessible concentration range of $\left.\mathrm{Bu}_{4} \mathrm{NI}\right)$. Therefore the value of $\Delta \delta_{\infty}=2.23 \mathrm{ppm}$ were taken from the calculated chemical shifts of the protons of $2(8.11 \mathrm{ppm})$ and its hydrogen-bonded complex with iodide [2, $\left.\mathrm{I}^{-}\right](10.34 \mathrm{ppm})$ (GIAO ${ }^{1} \mathrm{H}$ NMR calculations at the M062X/def2trzvpp level in $\mathrm{CH}_{3} \mathrm{CN}$ as a medium). I

Figure S4. Left: Spectra of dichloromethane solutions with constant concentration of $\mathbf{1}(0.85 \mathrm{mM})$ and various concentrations of $\mathrm{Bu}_{4} \mathrm{NI}$ (solid lines from the bottom to the top). Dashed lines show spectra of the individual solutions of 0.80 mM 1 (red) and of 250 mM Bu $u_{4} \mathrm{NI}$ (blue). Ionic strength was maintained with $\mathrm{Bu}_{4} \mathrm{NPF}_{6}$. Insert: Differential spectra of the solutions obtained by subtraction of the absorption of components from the spectra of their mixtures. (Right) Dependence of differential absorbance $\Delta \mathrm{Abs}$ (obtained by subtraction of absorption of components from the absorption of the mixture) on the concentration of $\mathrm{Bu}_{4} \mathrm{NI}$ in these solutions.

Figure S5. Left: Spectra of acetonitrile solutions with constant concentration of $\mathbf{1}(0.80 \mathrm{mM})$ and various concentrations of $\mathrm{Bu}_{4} \mathrm{NBr}$ (solid lines from the bottom to the top). Dashed lines show spectra of the individual solutions of 0.80 mM 1 (red) and of $250 \mathrm{mM} \mathrm{Bu} 4 \mathrm{NBr}^{2}$ (blue). Ionic strength was maintained with $\mathrm{Bu}_{4} \mathrm{NPF}_{6}$. Insert: Differential spectra of the solutions obtained by subtraction of the absorption of components from the spectra of their mixtures. Right: Dependence of differential absorbance $\Delta \mathrm{Abs}$ (obtained by subtraction of absorption of components from the absorption of the mixture) on the concentration of $\mathrm{Bu}_{4} \mathrm{NBr}$ in these solutions containing.

Figure S6. Left: Spectra of acetonitrile solutions with constant concentration of $\mathbf{1}(0.80 \mathrm{mM})$ and various concentrations of $\mathrm{Pr}_{4} \mathrm{NCl}$ (solid lines from the bottom to the top). Dashed lines show spectra of the individual solutions of 0.80 mM 1 (red) and of $250 \mathrm{mM} \mathrm{Pr} 4{ }_{4} \mathrm{NCl}$ (blue). Ionic strength was maintained with $\mathrm{Pr}_{4} \mathrm{NPF}_{6}$. Insert: Differential spectra of the solutions obtained by subtraction of the absorption of components from the spectra of their mixtures. Right: Dependence of differential absorbance $\Delta \mathrm{Abs}$ (obtained by subtraction of absorption of components from the absorption of the mixture) on the concentration of $\mathrm{Pr}_{4} \mathrm{NCl}$ in these solutions.

Figure S7. Optimized geometries of the $\left[1, \mathrm{Br}^{-}\right]$(left) and $\left[1, \mathrm{Cl}^{-}\right]$complexes with $(3,-1)$ critical points (yellow spheres) and bond paths (green line) from AIM analysis and the blue-green disc indicating intermolecular attractive interactions resulting from the NCI treatments ($\mathrm{s}=0.4$ au isosurfaces, a color scale of -0.035 (blue) $<\rho<0.02$ (red) au).

Table S1. Characteristics of the (3,-1) bond critical points along I $\cdots \mathrm{X}^{-}$halogen bonds (in a.u.)

Complex	ρ (density)	H (Energy density)	$\nabla^{2} \rho$ (Laplacian of electron density)
$\left[\mathbf{1}, \mathrm{I}^{-}\right]$	$1.49 \mathrm{E}-02$	$4.68 \mathrm{E}-04$	$3.46 \mathrm{E}-02$
$\left[\mathbf{1}, \mathrm{Br}^{-}\right]$	$1.79 \mathrm{E}-02$	$4.53 \mathrm{E}-04$	$4.60 \mathrm{E}-02$
$\left[\mathbf{1}, \mathrm{Cl}^{-}\right]$	$2.21 \mathrm{E}-02$	$4.37 \mathrm{E}-04$	$6.15 \mathrm{E}-02$

Figure S8. MO shapes and energies for $\left[\mathbf{1}, \mathrm{I}^{-}\right]$(left), $\left[\mathbf{1}, \mathrm{Br}^{-}\right]$(center) and $\left[\mathbf{1}, \mathrm{Cl}^{-}\right]$(right). Blue and red arrows represent components of the transitions responsible for the appearance of the lowest-energy absorption bands in the complexes (see details from the output files of TD DFT computations below, note that oscillators strengths of exited state $\mathbf{1}$ in each case are essentially negligible, and they are not shown).

Excitation energies and oscillator strengths calculated for [1, I^{-}]:
Excited State 1: Singlet-A $4.7537 \mathrm{eV} 260.82 \mathrm{~nm} \mathrm{f}=0.0051<\mathrm{S}^{* *} 2>=0.000$

$61->69$	0.17095
$67->69$	0.66012
$67->71$	0.10259

Excited State 2: Singlet-A $4.8580 \mathrm{eV} 255.22 \mathrm{~nm} \mathrm{f}=0.6738$ <S**2>=0.000
65 -> $69-0.15352$

67 -> $68 \quad 0.67137$
Excited State 3: Singlet-A $4.9441 \mathrm{eV} 250.77 \mathrm{~nm} \mathrm{f}=0.7223<$ S $^{* *} 2>=0.000$

$63->68$	-0.11512
$64->70$	0.11454
$67->70$	0.67911

Excitation energies and oscillator strengths calculated for [1, Br^{-}]:
Excited State 1: Singlet-A $4.8664 \mathrm{eV} 254.77 \mathrm{~nm} \mathrm{f}=0.0075\left\langle\mathrm{~S}^{* *} 2>=0.000\right.$

$66->74$	0.13754
$68->77$	0.14542
$72->74$	0.58566
$72->76$	0.30052

Excited State 2: Singlet-A 4.8866 eV $253.72 \mathrm{~nm} f=0.5213<S^{* *} 2>=0.000$ 72 -> $73 \quad 0.69240$
Excited State 3: Singlet-A $4.9458 \mathrm{eV} 250.69 \mathrm{~nm} \mathrm{f}=0.7170<\mathrm{S}^{* *} 2>=0.000$
68 -> $73 \quad-0.11416$

72 -> 750.68518

Excitation energies and oscillator strengths for [1, Cl^{-}]:
Excited State 1: Singlet-A $4.9035 \mathrm{eV} 252.85 \mathrm{~nm} \mathrm{f}=0.0210<S^{* *} 2>=0.000$

$59->68$	-0.26929
$63->64$	-0.11527
$63->66$	0.29147
$63->67$	0.53349

Excited State 2: Singlet-A 4.9066 eV $252.69 \mathrm{~nm} \mathrm{f}=0.4459<\mathrm{S}^{* *} 2>=0.000$ 63 -> $64 \quad 0.68575$
Excited State 3: Singlet-A $4.9479 \mathrm{eV} 250.58 \mathrm{~nm} \mathrm{f}=0.7169$ <S**2>=0.000

$59->64$	-0.11330
$63->65$	0.68017

Table S2. Energies and HOMO/LUMO energies of the complexes and individual reactants (M062X/def2tzvpp calculations, PCM model)

	Solvent	E, Hartree	E+ZPE, Hartree	E(HOMO), eV	E(LUMO), eV
$\left[\mathbf{1}, \mathrm{l}^{-}\right]$	$\mathrm{CH}_{3} \mathrm{CN}$	-1157.451835	-1157.387045	-0.25026	0.00922
$\left[\mathbf{1}, \mathrm{Br}^{-}\right]$	$\mathrm{CH}_{3} \mathrm{CN}$	-3434.011928	-3433.946936	-0.24975	0.01048
$\left[\mathbf{1}, \mathrm{Cl}^{-}\right]$	$\mathrm{CH}_{3} \mathrm{CN}$	-1320.007332	-1319.942294	-0.24873	0.01217
$\left[\mathbf{1}, \mathrm{l}^{-}\right]$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	-1157.433215	-1157.368343	-0.23414	0.02483
$\mathbf{1}$	$\mathrm{CH}_{3} \mathrm{CN}$	-859.6273823	-859.562732	-0.25604	-0.00746
I^{-}	$\mathrm{CH}_{3} \mathrm{CN}$	-297.818415	-297.818415	-0.26435	0.21877
$\mathrm{~B}^{-}$	$\mathrm{CH}_{3} \mathrm{CN}$	-2574.37678	-2574.37678	-0.27940	0.31332
Cl^{-}	$\mathrm{CH}_{3} \mathrm{CN}$	-460.370291	-460.370291	-0.28893	0.43374
I^{-}	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	-297.810083	-297.810083	-0.24750	0.23449

Table S3. Calculated characteristics of the hypothetical anion- $\pi\left[1, \mathrm{X}^{-}\right]$complexes. ${ }^{a}$

Complex	$\Delta \mathrm{E}, \mathrm{kJ} \mathrm{mol}^{-1}$	$\lambda_{\max }, \mathrm{nm}$	$10^{-4} \varepsilon, \mathrm{M}^{-1} \mathrm{~cm}^{-1}$
$\mathbf{1} \cdot \mathrm{I}^{-}$	0.7	252	3.76
$\mathbf{1} \cdot \mathrm{Br}^{-}$	4.6	252	3.46
$1 \cdot \mathrm{Cl}^{-}$	6.9	251	3.80

a) From M06-2X/def2tzvpp calculations, In $\mathrm{CH}_{3} \mathrm{CN}, \mathrm{PCM}$ model.

Atomic coordinates of the optimized AEXB complexes

[1, İ] $\mathrm{CH}_{3} \mathrm{CN}$				[1, $\left.\mathrm{Br}^{-}\right] \mathrm{CH}_{3} \mathrm{CN}$			
I	0.74561200	-0.04678700	-0.01608500	I	1.25029400	-0.00020500	-0.00001400
N	-1.77282400	4.10762300	-0.00658700	N	-1.37232600	4.11671800	-0.02427500
C	-1.30316400	-0.01995800	-0.01162700	C	-0.80107500	-0.00017200	-0.00000300
N	-5.68510000	2.04487600	0.02168800	N	-5.23235800	1.95630000	0.04622300
C	-2.48905700	-0.69742000	-0.00384000	C	-1.97189400	-0.70396400	0.00017400
C	-2.38275200	3.12932000	-0.00292200	C	-1.95792500	3.12363400	-0.01190200
C	-3.12129500	1.92169900	0.00144000	C	-2.66638900	1.89839300	0.00115100
N	-5.78229600	-1.85968500	0.01984900	N	-5.23287700	-1.95519300	-0.04618800
C	-2.45625900	0.71128200	-0.00407200	C	-1.97173900	0.70388500	-0.00015600
N	-1.98151800	-4.12524600	-0.00401800	N	-1.37308200	-4.11676400	0.02422400
C	-4.53377700	1.98535600	0.01237800	C	-4.07990700	1.92697300	0.02396600
C	-3.21506300	-1.87256300	0.00202500	C	-2.66687900	-1.89829000	-0.00114600
C	-2.54019600	-3.11680200	-0.00126800	C	-1.95879200	-3.12374500	0.01189500
C	-4.62932000	-1.86217900	0.01176900	C	-4.08040900	-1.92644300	-0.02393300
I	4.28415200	0.00442100	0.01156000	Br	4.54682800	0.00005100	0.00001700
	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$			[1, $\left.\mathrm{Cl}^{-}\right] \mathrm{CH}_{3} \mathrm{CN}$			
I	-0.75284700	-0.07080700	0.04252100	I	1.81581100	-0.06615900	0.00073900
N	1.72847800	4.10777500	0.01823500	N	-0.74975400	4.10492700	0.01712400
C	1.29824800	-0.03179400	0.03164900	C	-0.23997900	-0.02303700	0.00163500
N	5.65467500	2.09642100	-0.05634500	N	-4.64064000	2.00224700	-0.03381900
C	2.49297600	-0.69483100	0.01078700	C	-1.42373100	-0.70626700	0.00145800
C	2.34314800	3.13246400	0.00850400	C	-1.34957100	3.12018800	0.00860700
C	3.09339000	1.93163800	-0.00292600	C	-2.07588000	1.90574100	-0.00034600
N	5.80492900	-1.80665600	-0.05564300	N	-4.70361800	-1.91179700	0.03327600
C	2.44303600	0.71321800	0.01167500	C	-1.40001300	0.69963400	0.00125000
N	2.05285600	-4.13716100	0.01117500	N	-0.87347300	-4.12680700	-0.01438400
C	4.50492300	2.01510500	-0.03202400	C	-3.48857100	1.95571100	-0.01726900
C	3.23800000	-1.85829900	-0.00542200	C	-2.13683300	-1.89083000	0.00251900
C	2.58745700	-3.11573100	0.00330000	C	-1.44595900	-3.12592700	-0.00613200
C	4.65225900	-1.82484000	-0.03248700	C	-3.55058800	-1.89919300	0.01805700
I	-4.27747700	0.00619900	-0.03082800	Cl	4.89393300	-0.16076300	-0.00330100

[^0]: a. Department of Chemistry Ball State University
 Muncie, Indiana 47306 USA
 E-mail: svrosokha@bsu.edu
 b. Fakultät für Chemie und Biochemie

 Ruhr-Universität Bochum
 Universitätsstr. 150, 44801 Bochum, Germany
 E-mail: stefan.m.huber@rub.de
 c. Institut für Organische Chemie

 Friedrich-Alexander-Universität Erlangen-Nürnberg
 Henkestr. 42, 91054 Erlangen, Germany

