Electronic Supplementary Information

Coexistence of Magnetic and Electric Orderings in a Divalent Cr²⁺-Based Multiaxial Molecular Ferroelectric

Yong Ai,^{a†} Rong Sun,^{b†} Yu-Ling Zeng,^a Jun-Chao Liu,^a Yuan-Yuan Tang,^a Bing-Wu Wang,^b Zhe-Ming Wang,^b Song Gao,^{*b} and Ren-Gen Xiong^{*a}

Figure S1. Packing view of crystal structures for TMCM-CrCl₃ in (a) LTP and (b) HTP. H atoms were omitted for clarity.

Figure S2. (a) Packing view of crystal structure for TMCM-CrCl₃ along *b*-axis in LTP. (b) Hirshfeld d_{norm} surfaces of TMCM cations in TMCM-CrCl₃ in LTP. The pink dotted lines represent the C–Cl···Cl–Cr halogen bonds. H atoms were omitted for clarity.

Figure S3. Packing view of crystal structures for TMCM-CrCl₃ in (a) LTP and (b) HTP. The brown dashed lines represent the distances between adjacent Cr atoms. TMCM cations were omitted for clarity.

Figure S4. Ferroelectric polarization evolution of TMCM-CrCl₃ as a function of structure parameter λ .

Figure S5. Temperature dependences of $1/\chi$ for TMCM-CrCl₃ measured in the temperature range of 2-300 K. The black solid lines are fitted by the Curie-Weiss law.

Figure S6. The frequency-independent peaks on ac susceptibilities data for TMCM-CrCl₃.

Figure S7. Phase mapping (a) and amplitude mapping (b) of the vertical PFM overlaid on the 3D topography for the thin film of TMCM-CrCl₃.

Figure S8. Vertical PFM phase (top) and amplitude (bottom) images of the thin film for TMCM-CrCl₃. (a) Initial state. (b) After the first switching with negative bias at -50 V. (c) After the succeeding switching with positive bias at +30 V.

Figure S9. The measured PXRD pattern of TMCM-CrCl₃ at 293 K match well with the simulated one from crystal data in LTP, verifying the good phase purity.

Figure S10. TGA plot of TMCM-CrCl₃, measured under nitrogen atmosphere.

Compound	ТМСМ-	℃rCl ₃
Formula	C ₄ H ₁₁ CI	NCrCl₃
Temperature	223 K	415 K
Weight	533.88	266.96
Crystal system	Monoclinic	Hexagonal
Space group	Pc	P6₃/m
a (Å)	6.6436(7)	9.4058(10)
b (Å)	9.1155(10)	9.4058(10)
c (Å)	16.003(19)	6.6531(8)
α	90	90
β (°)	90.97	90
Ŷ	90	120
V (Å ³)	969.0(12)	509.74(12)
Ζ	2	2
R _{int}	0.1300	0.0805

Table S1. Crystal data and structure refinement for TMCM-CrCl₃.

<i>R</i> ₁	0.0861	0.1247
wR ₂	0.2438	0.3474
GOF	1.002	1.006

Table S2. Selected bond lengths [Å] and bond angles [°] for TMCM-CrCl₃.

Temperature		bond lengths [Å] and bond angles [°]		
223 K	Cr1—Cl1	2.382 (5)	Cr2—Cl6	2.398 (6)
	Cr1—Cl4	2.411 (5)	Cr2—Cl2 ⁱ	2.467 (5)
	Cr1—Cl3	2.450 (5)	Cr2—Cl3	2.470 (5)
	Cr1—Cl2	2.473 (5)	Cl2—Cr2 ^{<u>i</u>i}	2.467 (5)
	Cr2—Cl5	2.377 (6)		
	CI1—Cr1—CI4	177.6 (2)	Cl5—Cr2—Cl2 ⁱ	92.48 (19)
	Cl1—Cr1—Cl3	92.49 (16)	Cl6—Cr2—Cl2 ⁱ	87.16 (18)
	Cl4—Cr1—Cl3	87.83 (19)	CI5—Cr2—CI3	87.18 (19)
	CI1—Cr1—CI2	87.59 (19)	Cl6—Cr2—Cl3	93.05 (18)
	Cl4—Cr1—Cl2	92.04 (16)	Cl2 ⁱ —Cr2—Cl3	177.3 (2)
	Cl3—Cr1—Cl2	178.8 (2)	Cr1—Cl3—Cr2	85.37 (16)
	CI5—Cr2—CI6	177.4 (2)	Cr2 ^{<u>⊫</u>} —Cl2—Cr1	84.09 (15)
415 K	Cr1—Cl1 ⁱ	2.552 (5)	Cr1—Cl1⊻	2.552 (5)
	Cr1—Cl1 [≝]	2.552 (5)	Cr1—Cl1	2.552 (5)
	Cr1—Cl1≝	2.552 (5)	Cl1—Cr1⊻i	2.552 (5)
	Cr1—Cl1⊻	2.552 (5)		

Cl1 ⁱ —Cr1—Cl1 [≝]	180.0 (4)	Cl1≝—Cr1—Cl1⊻	82.12 (16)
Cl1 ⁱ —Cr1—Cl1 ⁱ	82.12 (16)	Cl1 <u>⊻</u> Cr1—Cl1⊻	180.0 (4)
Cl1≝—Cr1—Cl1≝	97.88 (16)	Cl1 ⁱ —Cr1—Cl1	97.88 (16)
Cl1 ⁱ —Cr1—Cl1 ⁱ ⊻	97.88 (16)	Cl1 ⁱⁱ —Cr1—Cl1	82.12 (16)
Cl1≝—Cr1—Cl1⊻	82.12 (16)	Cl1 —Cr1—Cl1	180.0
Cl1 <u>[⊞]</u> —Cr1—Cl1 ^{<u>⊮</u>}	97.88 (16)	Cl1≝—Cr1—Cl1	82.12 (16)
Cl1 ⁱ —Cr1—Cl1⊻	82.12 (16)	Cl1⊻—Cr1—Cl1	97.88 (16)
Cl1≝—Cr1—Cl1⊻	97.88 (16)	Cr1 <u>vi</u> —Cl1—Cr1	81.3 (2)