Supporting Information

Asymmetric Hydrogenation of Exocyclic γ,δ-Unsaturated β-Ketoesters to Functionalized Chiral Allylic Alcohols via Dynamic Kinetic Resolution

Huai-Yu Bin,^a Li Cheng,^a Xiong Wu,^a Chang-Liang Zhu,^a Xiao-Hui Yang,^{*ab} Jian-Hua Xie,^{*a} Qi-Lin Zhou^a

^a State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China; ^b Advanced Research Institute of Multidisciplinary Science, and School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China

Contents

General	S1
(A) Preparation of Exocyclic γ,δ-Unsaturated β-Ketoesters	S2
(B) Asymmetric Hydrogenation of Exocyclic γ,δ-Unsaturated β-Ketoesters	S17
(C) Enantioselective Synthesis of Carbocyclic δ-Amino Acid Ester (-)-16	
(D) Enantioselective Synthesis of (+)-Isogalactofagomine	
(E) Computational Studies	
(F) NMR Spectra for New Compounds	
(G) HPLC Charts for Products	S180
(H) The Cartesian coordinates (Å) and energies at 298 K for the optimized structures	S243

General: All reactions and manipulations which are sensitive to moisture or air were performed under inert atmosphere of nitrogen. All chemicals were purchased from J & K, Acros and Aldrich, and were used as received. The chiral Ru-catalyst (R_a , S, S)-3, Ir-catalysts (R)-4-6 and (S)-6b were available in our lab or were purchased from Zhejiang Jiuzhou Pharmaceutical Co., Ltd. Hydrogen gas (99.999%) was purchased from Boc Gas Inc., Tianjin. Chemical reagents such as nBuLi, KOtBu and Pd/C were purchased from Aldrich, Alfa Aesar, and Strem chemical companies. Petroleum ether refers to the fraction boiling in the 60–90 °C range. Anhydrous THF was distilled from sodium benzophenone ketyl. Anhydrous nPrOH, iPrOH, CH₂Cl₂, NEt₃, DMF and HMPA were freshly distilled from calcium hydride. MeOH and EtOH were distilled from magnesium. TLC were performed on silica gel Huanghai HSGF254 plates and visualization of the developed chromatogram was performed by fluorescence quenching $(\lambda \max = 254 \text{ nm})$. Flash chromatography was performed using Silica gel (200–300 mesh) purchased from Qingdao Haiyang Chemical Co., China. Melting points were measured on a RY-I apparatus and uncorrected. NMR spectra were recorded on a Bruker AV 400 spectrometer at 400 MHz (¹H NMR), 101 MHz (¹³C NMR). Chemical shifts were reported in ppm relative to internal TMS for ¹H NMR data, deuterated solvent for ¹³C NMR data, respectively. Data are presented in the following space: chemical shift, multiplicity, coupling constant in hertz (Hz), and signal area integration in natural numbers. Optical rotations were determined using a Perkin Elmer 341 polarimeter. High resolution mass spectrum (HRMS) were recorded on Varian 7.0T FTMS using an electrospray (ESI) ionization source. HPLC analyses were performed using Hewlett Packard Model HP1100 instruments using Chiral column (AD-H, AD-3, IC-3, OD-H, OD-3, OJ-H, AS-H, AS-3) with hexane and 2-propanol as eluent with, Wavelength = 254, 220 or 210 nm.

(A) Preparation of Exocyclic γ,δ-Unsaturated β-Ketoesters

Method I:¹

General procedure: To a solution of aromatic aldehyde (30.0 mmol) in EtOH (100 mL) were added ethyl 2-oxocyclohexane-1-carboxylate (or ethyl 2-oxocyclopentane-1-carboxylate) (33.0 mmol) and DBU (5.0 g, 33.0 mmol, 5.0 mL) in a 250 mL, three-necked, round-bottomed flask with a condenser tube under argon atmosphere. The reaction mixture was reflux for 24 h to complete the reaction in an oil bath. The reaction mixture was cool to 0 °C with ice-water bath, quenched with saturated aqueous NH₄Cl (100 mL), and extracted with ethyl acetate (100 mL \times 3). The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by a column chromatography on a silica gel with petroleum ether/ethyl acetate (50:1 to 10:1 v/v) as an eluent to give the target products (*rac*-**7a-c**, **7e-t**, **7w**, **7z**, **11b**, **11d**).

Ethyl (E)-3-benzylidene-2-oxocyclohexane-1-carboxylate (7a)

White solid, 5.0 g, 64% yield. $R_f = 0.60$ (petroleum ether/ethyl acetate = 5:1 v/v). M.p. 42–43 °C. ¹H NMR (400 MHz, CDCl₃): δ = 12.46 (s, 1H), 7.35 (s, 1H), 7.39–7.32 (m, 4H), 7.29–7.23 (m, 1H), 4.17 (q, *J* = 7.2 Hz, 2H), 2.71–2.64 (m, 2H), 2.40 (t, *J* = 6.0 Hz, 2H), 1.70–1.62 (m, 2H), 1.32 (t, *J* = 7.1 Hz, 2H)

11d

3H). ¹³C NMR (101 MHz, CDCl₃): $\delta = 173.0$, 164.9, 136.7, 131.6, 129.6, 129.5, 128.1, 127.4, 100.3, 60.5, 27.0, 23.1, 22.5, 14.3. HRMS (ESI): *m*/*z* calcd for C₁₆H₁₈O₃+H⁺: 259.1334 [M+H]⁺; found: 2259.1330.

Ethyl (E)-3-(4-methylbenzylidene)-2-oxocyclohexane-1-carboxylate (7b)

Pale yellow solid, 4.6 g, 56% yield. $R_f = 0.62$ (petroleum CO₂Et ether/ethyl acetate = 5:1 v/v). M.p. 98–99 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 12.46$ (s, 1H), 7.40 (s, 1H), 7.27 (d, J = 8.0 Hz, 2H), 7.17 (d, J = 7.9 Hz, 2H), 4.25 (q, J = 7.1 Hz, 2H), 2.72–2.63 (m,

2H), 2.40 (t, J = 6.1 Hz, 2H), 2.36 (s, 3H), 1.67 (q, J = 6.2 Hz, 2H), 1.33 (t, J = 7.1 Hz, 3H).¹³C NMR (101 MHz, CDCl₃): $\delta = 173.1$, 165.2, 137.4, 133.8, 130.8, 129.7, 129.5, 128.9, 99.0, 60.5, 27.1, 23.1, 22.5, 21.3, 14.3. HRMS (ESI): m/z calcd for C₁₇H₂₀O₃+H⁺: 273.1491 [M+H]⁺; Found: 273.1489.

Ethyl (E)-3-(4-methoxybenzylidene)-2-oxocyclohexane-1-carboxylate (7c)

Pale yellow solid, 5.0 g, 58% yield. $R_{\rm f} = 0.57$ (petroleum ether/ethyl acetate = 5:1 v/v). M.p. 98–99 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 12.48$ (s, 1H), 7.38 (s, 1H), 7.33 (d, J = 8.8 Hz, 2H), 6.90 (d, J = 8.8 Hz, 2H), 4.25 (q, J = 7.1 Hz, 2H), 2.73–2.64 (m,

2H), 2.40 (t, J = 6.1 Hz, 2H), 1.71–1.62 (m, 2H), 1.33 (t, J = 7.1 Hz, 3H).¹³C NMR (101 MHz, CDCl₃): $\delta = 173.1, 165.3, 158.0, 131.2, 129.7, 129.3, 129.2, 113.7, 60.5, 55.3, 27.1, 23.1, 22.5, 14.3.$ HRMS (ESI): m/z calcd for C₁₇H₂₀O₄+H⁺: 289.1440 [M+H]⁺; Found: 289.1435.

Ethyl (E)-3-(4-cyanobenzylidene)-2-oxocyclohexane-1-carboxylate (7e)

White solid, 5.4 g, 63% yield. $R_{\rm f} = 0.33$ (petroleum ether/ethyl acetate = 5:1 v/v). M.p. 141–142 °C. ¹NMR (400 MHz, CDCl₃): δ = 11.32 (br s, 1H), 7.71 (s, 1H), 7.60 (d, J = 8.0, 1H), 7.35–7.27 (m, 2H), 7.20–7.14 (m, 1H), 4.30 (d, J = 7.1 Hz, 2H), 2.47–2.40 (m,

2H), 2.32 (t, J = 7.3 Hz, 2H), 1.88–1.77 (m, 2H), 1.36 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): $\delta = 179.2$, 167.5, 139.3, 136.1, 133.8, 132.7, 130.0, 129.6, 127.2, 123.9, 61.0, 33.4, 26.8, 23.8, 14.2. HRMS (ESI): m/z calcd for C₁₇H₁₇NO₃+H⁺: 284.1284 [M+H]⁺; found: 284.1284.

Ethyl (E)-2-oxo-3-(4-(trifluoromethyl)benzylidene)cyclohexane-1-carboxylate (7f)

White solid, 7.0 g, 71% yield. $R_f = 0.59$ (petroleum ether/ethyl acetate = 5:1 v/v). M.p. 98–99 °C. ¹H NMR (400 MHz, CDCl₃): δ = 12.43 (s, 1H), 7.61 (d, J = 8.1 Hz, 2H), 7.51–7.33 (m, 2H), 4.27 (q, J = 7.1 Hz, 2H), 2.75–2.58 (m, 2H), 2.42 (t, J = 6.1 Hz, 2H),

1.77–1.63 (m, 2H), 1.34 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): $\delta = 173.0$, 164.1, 140.3, 133.6, 129.7, 129.1 (q, ² $J_{C-F} = 32.3$ Hz), 127.8, 125.1 (q, ³ $J_{C-F} = 3.8$ Hz), 124.1 (q, ¹ $J_{C-F} = 272.0$ Hz), 101.2, 60.7, 27.0, 23.1, 22.4, 14.2. HRMS (ESI): m/z calcd for C₁₇H₁₇F₃O₃+H⁺: 327.1204 [M+H]⁺; found: 327.1204.

Ethyl (E)-3-(4-fluorobenzylidene)-2-oxocyclohexane-1-carboxylate (7g)

White solid, 5.0 g, 60% yield. $R_f = 0.60$ (petroleum ether/ethyl acetate $CO_2Et = 5:1 \text{ v/v}$). M.p. 57–58 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 12.45$ (s, 1H), 7.37 (s, 1H), 7.33 (dd, J = 8.6, 5.6 Hz, 1H), 7.05 (t, J = 8.7 Hz, 1H), 4.26 (q, J = 7.1 Hz, 1H), 2.69–2.58 (m, 1H), 2.41 (t, J = 6.1 Hz,

1H), 1.73–1.63 (m, 1H), 1.33 (t, J = 7.1 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃): δ = 173.1, 164.8, 162.0 (d, ¹ J_{C-F} = 248.0 Hz), 132.8 (d, ⁴ J_{C-F} = 3.3 Hz), 131.4, 131.4 (d, ³ J_{C-F} = 7.8 Hz), 128.3, 115.2 (d, ² J_{C-F} = 21.6 Hz), 100.3, 60.6, 26.9, 23.1, 22.4, 14.3. HRMS (ESI): m/z calcd for C₁₆H₁₇FO₃+H⁺: 277.1240 [M+H]⁺; found: 277.1234.

Ethyl (E)-3-(4-chlorobenzylidene)-2-oxocyclohexane-1-carboxylate (7h)

White solid, 5.4 g, 62% yield. $R_f = 0.61$ (petroleum ether/ethyl acetate = 5:1 v/v). M.p. 118–119 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 12.43$ (s, 1H), 7.40–7.20 (m, 5H), 4.26 (q, J = 7.1 Hz, 2H), 2.69–2.54 (m, 2H), 2.41 (t, J = 6.1 Hz, 2H), 1.75–1.62 (m, 2H), 1.33

(t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): $\delta = 173.0$, 164.5, 135.1, 133.2, 132.1, 130.9, 128.4, 128.1, 100.6, 60.6, 27.0, 23.0, 22.4, 14.3. HRMS (ESI): m/z calcd for C₁₆H₁₇ClO₃+H⁺: 293.0944 [M+H]⁺; Found: 293.0941.

Ethyl (E)-3-(4-bromobenzylidene)-2-oxocyclohexane-1-carboxylate (7i)

White solid, 6.0 g, 59% yield. $R_f = 0.60$ (petroleum ether/ethyl acetate = 5:1 v/v). M.p. 126–127 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 12.42$ (s, 1H), 7.48 (d, J = 8.5 Hz, 2H), 7.33 (s, 1H), 7.22 (d, J = 8.5 Hz, 2H), 4.26 (q, J = 7.1 Hz, 2H), 2.66–2.59 (m, 2H), 2.40 (t,

J = 6.1 Hz, 2H), 1.72–1.63 (m, 2H), 1.33 (t, J = 7.1 Hz, 3H).¹³C NMR (101 MHz, CDCl₃): $\delta = 164.5$, 135.6, 132.3, 131.3, 131.2, 128.2, 121.4, 60.7, 26.0, 23.1, 22.4, 14.3. HRMS (ESI): m/z calcd for

C₁₆H₁₇BrO₃+H⁺: 337.0439 [M+H]⁺; found: 337.0433.

Ethyl (E)-3-(3-methylbenzylidene)-2-oxocyclohexane-1-carboxylate (7j)

 $\begin{array}{ll} \mbox{White solid, 4.3 g, 53\% yield. } R_{\rm f} = 0.62 \mbox{ (petroleum ether/ethyl)} \\ \mbox{CO}_2\mbox{Et} & acetate = 5:1 \mbox{v/v}. \mbox{ M.p. 93-94 °C. }^1\mbox{H NMR (400 MHz, CDCl_3): } \delta = \\ \mbox{12.45 (s, 1H), 7.41 (s, 1H), 7.30-7.21 (m, 1H), 7.20-7.12 (m, 2H),} \\ \mbox{7.09 (d, } J = 7.6 \mbox{ Hz, 1H), 4.26 (q, } J = 7.0 \mbox{ Hz, 3H), 2.78-2.60 (m,} \end{array}$

2H), 2.47–2.27 (m, 5H), 1.73–1.62 (m, 2H), 1.33 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): $\delta = 173.2$, 165.2, 137.9, 136.8, 131.6, 130.6, 129.8, 128.4, 128.2, 126.9, 100.3, 60.7, 27.2, 23.3, 22.7, 21.6, 14.5. HRMS (ESI): m/z calcd for C₁₇H₂₀O₃+H⁺: 273.1491 [M+H]⁺; found: 273.1487.

Ethyl (E)-3-(3-bromobenzylidene)-2-oxocyclohexane-1-carboxylate (7k)

White solid, 5.5 g, 54% yield. $R_f = 0.60$ (petroleum ether/ethyl acetate = 5:1 v/v). M.p. 63–64 °C. ¹H NMR (400 MHz, CDCl₃): δ = 12.41 (s, 1H), 7.49 (s, 1H), 7.42–7.37 (m, 2H), 7.33 (s, 1H), 7.29–7.19 (m, 3H), 4.26 (q, J = 7.1 Hz, 3H), 2.68–2.60 (m, 2H), 2.41 (t,

J = 6.1 Hz, 2H), 1.73–1.63 (m, 2H), 1.33 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): $\delta = 173.0$, 164.3, 138.8, 132.9, 132.2, 130.3, 129.7, 128.2, 127.8, 122.3, 100.9, 60.7, 26.9, 23.1, 22.4, 14.3. HRMS (ESI): m/z calcd for C₁₆H₁₇BrO₃+H⁺: 337.0439 [M+H]⁺; Found: 337.0433.

Ethyl (E)-3-(2-methylbenzylidene)-2-oxocyclohexane-1-carboxylate (7l)

White solid, 3.8 g, 47% yield. $R_{\rm f} = 0.63$ (petroleum ether/ethyl acetate = $.CO_2Et$ 5:1 v/v). M.p. 47–48 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 12.43$ (s, 1H), 7.45 (s, 1H), 7.22–7.15 (m, 4H), 4.26 (q, J = 7.1 Hz, 2H), 2.53–2.46 (m, 2H), 2.40 (t, J = 6.1 Hz, 2H), 2.30 (s, 3H), 1.68–1.60 (m, 2H), 1.33 (t, J

= 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ = 173.1, 164.9, 137.1, 135.9, 131.9, 129.9, 129.1, 128.7, 127.5, 125.3, 100.1, 60.5, 26.9, 23.3, 22.6, 20.0, 14.3. HRMS (ESI): *m*/*z* calcd for C₁₇H₂₀O₃+H⁺: 273.1491 [M+H]⁺; found: 273.1482.

Ethyl (E)-3-(2-chlorobenzylidene)-2-oxocyclohexane-1-carboxylate (7m)

White solid, 4.3 g, 49% yield. $R_f = 0.61$ (petroleum ether/ethyl acetate = 5:1 v/v). M.p. 40–41 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 12.39$ (s, 1H), 7.49 (s, 1H), 7.44–7.38 (m, 1H), 7.32–7.28 (m, 1H), 7.27–7.18 (m, 2H), 4.26 (q, J = 7.1 Hz, 2H), 2.57–2.37 (m, 2H), 2.41 (t, J = 6.1 Hz, 2H),

1.72–1.63 (m, 2H), 1.33 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ = 173.0, 164.3, 135.1, 134.4, 133.2, 130.6, 129.5, 128.6, 126.5, 126.1, 100.8, 60.6, 26.9, 23.2, 22.4, 14.3. HRMS (ESI): m/z calcd for C₁₆H₁₇ClO₃+H⁺: 293.0944 [M+H]⁺; found: 293.0939.

Ethyl (E)-3-(2-bromobenzylidene)-2-oxocyclohexane-1-carboxylate (7n)

White solid, 5.3 g, 52% yield. $R_{\rm f} = 0.60$ (petroleum ether/ethyl acetate = 5:1 v/v). M.p. 45–46 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 12.39$ (s, 1H), 7.61 (d, J = 8.2 Hz, 1H), 7.43 (s, 1H), 7.32–7.24 (m, 2H), 7.17–7.10 (m, 1H), 4.26 (q, J = 7.1 Hz, 2H), 2.54–2.47 (m, 2H), 2.41 (t, J = 6.1 Hz, 2H),

1.72–1.63 (m, 2H), 1.33 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ = 172.9, 164.2, 136.9, 132.9,

132.6, 130.6, 128.8, 128.8, 126.7, 100.7, 60.6, 29.6, 26.8, 23.2, 22.4, 14.2. HRMS (ESI): *m/z* calcd for C₁₆H₁₇BrO₃+H⁺: 337.0439 [M+H]⁺; found: 337.0435.

Ethyl (E)-3-(naphthalen-1-ylmethylene)-2-oxocyclohexane-1-carboxylate (70)

Pale yellow oil, 4.4 g, 48% yield. $R_f = 0.56$ (petroleum ether/ethyl acetate CO₂Et = 5:1 v/v). ¹H NMR (400 MHz, CDCl₃): $\delta = 12.49$ (s, 1H), 8.03–7.97 (m, 1H), 7.92 (s, 1H), 7.88–7.83 (m, 1H), 7.79 (d, J = 8.2 Hz, 1H), 7.53–7.43 (m, 3H), 7.36 (d, J = 7.1 Hz, 1H), 4.28 (q, J = 7.1 Hz, 2H), 2.55–2.46 (m,

2H), 2.42 (t, J = 6.1 Hz, 2H), 1.67–1.58 (m, 2H), 1.34 (t, J = 7.1 Hz, 3H).¹³C NMR (101 MHz, CDCl₃): $\delta = 173.1$, 164.7, 133.9, 133.5, 133.3, 131.9, 128.4, 127.9, 127.6, 126.7, 126.1, 125.9, 125.0, 124.9, 100.3, 60.6, 27.1, 23.3, 22.6, 14.3. HRMS (ESI): m/z calcd for C₂₀H₂₀O₃+H⁺: 309.1491 [M+H]⁺; found: 309.1485.

Ethyl (E)-3-(naphthalen-2-ylmethylene)-2-oxocyclohexane-1-carboxylate (7p)

 $\begin{array}{l} & \text{White solid, 4.7 g, 51\% yield. } R_{\rm f} = 0.55 \ (\text{petroleum ether/ethyl acetate} \\ & \text{white solid, 4.7 g, 51\% yield. } R_{\rm f} = 0.55 \ (\text{petroleum ether/ethyl acetate} \\ & = 1:1 \ \text{v/v}). \ \text{M.p. 86-87 °C. }^{1} \text{H NMR} \ (400 \ \text{MHz, CDCl}_3): \ \delta = 12.50 \ (\text{s}, 1\text{H}), 7.87-7.78 \ (\text{m}, 4\text{H}), 7.58 \ (\text{s}, 1\text{H}), 7.53-7.43 \ (\text{m}, 3\text{H}), 4.27 \ (\text{q}, J = 7.1 \ \text{Hz}, 2\text{H}), 2.85-2.74 \ (\text{m}, 2\text{H}), 2.44 \ (\text{t}, J = 6.1 \ \text{Hz}, 2\text{H}), 1.75-1.66 \ (\text{m}, 2\text{H}), 1.34 \ (\text{t}, J = 7.1 \ \text{Hz}, 4\text{H}). \\ ^{13}\text{C NMR} \ (101 \ \text{MHz}, \text{CDCl}_3): \ \delta = 173.1, 164.9, 134.2, 133.1, 132.5, 131.9, 129.5, 128.9, 128.1, 127.6, 127.6, 126.2, 126.2, 100.4, 60.6, 27.2, 23.1, 22.5, 14.3. \ \text{HRMS} \ (\text{ESI}): m/z \ \text{calcd for } C_{20}\text{H}_{20}\text{O}_3 + \text{H}^+: 309.1491 \ [\text{M}+\text{H}]^+; \ \text{found: 309.1488}. \end{array}$

Ethyl (E)-3-(benzo[d][1,3]dioxol-5-ylmethylene)-2-oxocyclohexane-1-carboxylate (7q)

 $\begin{array}{l} \mbox{White solid, 4.2 g, 46\% yield. } R_{\rm f} = 0.43 \mbox{ (petroleum ether/ethyl acetate} \\ \mbox{CO}_2 \mbox{Et} &= 5:1 \mbox{ v/v} \mbox{). } {\rm M.p. 74-75 \ ^oC. \ ^1H \ NMR \ (400 \ MHz, \ CDCl_3): \ \delta} = 12.46 \ ({\rm s}, \\ 1 \ {\rm H}), \ 7.33 \ ({\rm s}, \ 1 \ {\rm H}), \ 6.87 \ ({\rm d}, \ J = 8.3 \ {\rm Hz}, \ 2 \ {\rm H}), \ 6.81 \ ({\rm d}, \ J = 7.9 \ {\rm Hz}, \ 1 \ {\rm H}), \\ 5.97 \ ({\rm s}, \ 2 \ {\rm H}), \ 4.25 \ ({\rm q}, \ J = 7.1 \ {\rm Hz}, \ 2 \ {\rm H}), \ 2.70-2.62 \ ({\rm m}, \ 2 \ {\rm H}), \ 2.40 \ ({\rm t}, \ J = 8.3 \ {\rm Hz}, \ 2 \ {\rm H}), \ 2.40 \ ({\rm t}, \ J = 8.40 \ {\rm Hz}, \ 2 \ {\rm Hz}, \ 3.40 \ {\rm Hz}, \ 4.25 \ {\rm Hz$

6.1 Hz, 2H), 1.72–1.63 (m, 2H), 1.33 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): $\delta = 173.1$, 165.1, 147.5, 146.0, 130.8, 130.3, 129.3, 124.3, 109.6, 108.1, 101.1, 99.9, 60.5, 27.1, 23.0, 22.4, 14.3. HRMS (ESI): m/z calcd for C₁₇H₁₈O₅+H⁺: 303.1232 [M+H]⁺; found: 303.1225.

Ethyl (E)-2-oxo-3-(pyridin-2-ylmethylene)cyclohexane-1-carboxylate (7r)

White solid, 4.1 g, 53% yield. $R_f = 0.26$ (petroleum ether/ethyl acetate = 5:2 v/v). M.p. 66–67 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 12.40$ (s, 1H), 8.70–8.61 (m, 1H), 7.71–7.62 (m, 1H), 7.42–7.29 (m, 2H), 7.17–7.09 (m, 1H), 4.27 (q, J = 7.1 Hz, 2H), 3.09–3.00 (m, 2H), 2.42 (t, J = 6.1 Hz, 2H), 1.76–

1.66 (m, 2H), 1.34 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): $\delta = 173.0$, 164.6, 156.1, 149.2, 136.0, 135.5, 127.4, 125.9, 121.6, 101.6, 60.6, 26.9, 23.1, 22.3, 14.3. HRMS (ESI): m/z calcd for C₁₅H₁₅NO₃+H⁺: 260.1287 [M+H]⁺; Found: 260.1284.

Ethyl (E)-3-(furan-2-ylmethylene)-2-oxocyclohexane-1-carboxylate (7s)

White solid, 5.3 g, 71% yield. $R_f = 0.53$ (petroleum ether/ethyl acetate = 5:1 v/v). M.p. 93–94 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 12.39$ (s, 1H), 7.48 (d, J = 1.7 Hz, 1H), 7.18 (d, J = 1.9 Hz, 1H), 6.52–6.44 (m, 2H), 4.25

(q, J = 7.1 Hz, 2H), 2.56-2.50 (m, 2H), 2.40 (t, J = 6.1 Hz, 2H), 1.71-1.64 (m, 2H), 1.32 (t, J = 7.1 Hz, 3H).3H). ¹³C NMR (101 MHz, CDCl₃): $\delta = 164.8, 143.1, 128.7, 116.7, 113.0, 111.8, 100.3, 60.5, 27.0, 22.9, 21.9, 14.3.$ HRMS (ESI): *m/z* calcd for C₁₄H₁₆O₄+H⁺: 249.1127 [M+H]⁺; found: 249.1123.

Ethyl (E)-2-oxo-3-(thiophen-2-ylmethylene)cyclohexane-1-carboxylate (7t)

White solid, 5.8 g, 73% yield. $R_f = 0.53$ (petroleum ether/ethyl acetate = 5:1 v/v). M.p. 87–88 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 12.46$ (d, J = 1.9 Hz, 1H), 7.08 (dd, J = 5.1, 3.7 Hz, 1H), 4.25 (q, J = 7.1 Hz, 2H), 2.77–2.68 (m, 2H), 2.41 (t, J = 6.1 Hz, 2H), 1.81–1.72 (m, 2H), 1.33 (t, J = 7.1 Hz, 3H).¹³C NMR (101 MHz, CDCl₃): $\delta = 172.9$, 164.9, 140.0, 130.4, 128.5, 127.6, 127.2, 122.5, 100.2, 60.5, 27.2, 22.8, 21.9, 14.3. HRMS (ESI): m/z calcd for C₁₄H₁₆O₃S+H⁺: 265.0898 [M+H]⁺; found: 265.0895.

Ethyl (E)-9-(2-bromobenzylidene)-8-oxo-1,4-dioxaspiro[4.5]decane-7-carboxylate (7w)

White solid, 7.2 g, 61% yield. $R_f = 0.40$ (petroleum ether/ethyl acetate = 5:1 v/v). M.p. 125–126 °C. ¹H NMR (400 MHz, CDCl₃): δ = 7.62 (d, J = 8.0 Hz, 1H), 7.57 (s, 1H), 7.34–7.28 (m, 1H), 7.25 (d, J = 7.7 Hz, 1H), 7.19–7.13 (m, 1H), 4.26 (q, J = 7.1 Hz, 3H), 4.00–3.86 (m, 4H), 2.71 (s, 2H), 2.66 (s, 2H), 1.32 (t, J = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ = 172.4,

163.7, 136.5, 132.8, 131.7, 130.6, 130.4, 129.1, 126.9, 124.7, 106.9, 97.9, 64.6, 60.8, 36.1, 33.5, 14.2. HRMS (ESI): m/z calcd for $C_{18}H_{19}BrO_5+H^+$: 395.0494 [M+H]⁺; found: 395.0490.

Ethyl (E)-2-oxo-3-((E)-3-phenylallylidene)cyclohexane-1-carboxylate (7z)

Pale yellow solid, 3.7 g, 43% yield. $R_f = 0.68$ (petroleum ether/ethyl acetate = 5:1 v/v). M.p. 81–82 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 12.33$ (s, 1H), 7.46 (d, J = 7.4 Hz, 2H), 7.36–7.30 (m, 2H), 7.27–7.23 (m, 1H), 7.18–7.04 (m, 2H), 6.86–6.74 (m, 1H), 4.25 (q, J = 7.2 Hz,

2H), 2.66–2.53 (m, 2H), 2.40 (t, J = 6.1 Hz, 2H), 1.79–1.68 (m, 2H), 1.32 (t, J = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): $\delta = 172.9$, 164.7, 137.2, 136.8, 130.9, 129.2, 128.7, 128.1, 126.8, 124.1, 100.1, 60.5, 25.7, 23.2, 22.1, 14.3. HRMS (ESI): m/z calcd for C₁₈H₂₀O₃+H⁺: 285.1491 [M+H]⁺; found: 285.1485.

Ethyl (E)-3-(4-methylbenzylidene)-2-oxocyclopentane-1-carboxylate (11b)

Pale yellow solid, 4.6 g, 59% yield. $R_f = 0.60$ (petroleum ether/ethyl acetate = 5:1 v/v). M.p. 82–83 °C. Enol/keto = 1.18:1 (determined by ¹H NMR). ¹H NMR (400 MHz, CDCl₃): $\delta = 10.27$ (s), 7.48–7.40 (m), 7.36 (d, J = 8.1 Hz), 7.23 (d, J = 7.9 Hz), 7.18 (d, J = 8.0 Hz), 4.35–4.15 (m), 3.48 (s), 3.40 (t, J = 8.6 Hz), 3.18–3.06 (m), 2.96–

2.82 (m), 2.71–2.61 (m), 2.46–2.25 (m), 1.40–1.26 (m). ¹³C NMR (101 MHz, CDCl₃): δ = 200.9, 169.8, 169.8, 169.5, 140.2, 137.3, 137.0, 134.7, 133.7, 133.4, 132.1, 130.6, 129.4, 129.1, 128.9, 123.8, 105.5, 61.3, 56.0, 54.1, 50.2, 27.5, 26.1, 24.9, 24.1, 21.3, 21.1, 14.2, 14.0. HRMS (ESI): *m*/*z* calcd for C₁₆H₁₈O₃+H⁺: 259.1334 [M+H]⁺; found: 259.1332.

Ethyl (E)-3-(3-methylbenzylidene)-2-oxocyclopentane-1-carboxylate (11d)

White solid, 4.7 g, 61% yield. $R_f = 0.61$ (petroleum ether/ethyl acetate = 5:1 v/v). M.p. 93–94 °C. Enol/keto = 2.4:1 (determined by¹H NMR). ¹H NMR (400 MHz, CDCl₃): $\delta = 10.26$ (s), 7.49–7.42 (m), 7.38–7.30 (m), 7.30–7.23 (m), 7.21 (d, J = 7.2 Hz), 7.13–7.03

(m), 6.92–6.84 (m), 4.40–4.14 (m), 3.41 (t, J = 8.7), 3.22–3.06 (m), 2.96–2.82 (m), 2.70–2.60 (m), 2.44–2.26 (m), 1.37–1.27 (m). ¹³C NMR (101 MHz, CDCl₃): $\delta = 200.8$, 169.9, 169.7, 169.5, 138.4, 138.0, 136.7, 135.0, 134.8, 134.36, 131.4, 130.6, 129.9, 128.6, 128.4, 128.3, 127.7, 126.2, 124.1, 105.9, 61.4, 60.1, 54.2, 27.7, 26.3, 25.1, 24.3, 21.4, 21.4, 14.4, 14.2. HRMS (ESI): *m/z* calcd for C₁₆H₁₈O₃+H⁺: 259.1334 [M+H]⁺; found: 259.1330.

Method II:

General procedure: To a solution of *i*Pr₂NH (2.4 g, 3.4 mL, 24.2 mmol) in THF (40 mL) was added *n*BuLi (2.5 M in hexane, 8.8 mL, 22.0 mmol) at -10 °C in a 250 mL, three-necked, round-bottomed flask with a thermometer under argon atmosphere. The mixture was stirred at -10 °C for 30 min and then a solution of exocyclic α , β -unsaturated ketones (20.0 mmol), which were prepared according to our previous or literature method,² in THF (20 mL) was added over 15 min at -78 °C. After the reaction mixture was stirred at -78 °C for another 1 h, HMPA (4.3 g, 4.2 mL, 24.0 mmol) was added at -78 °C, and the solution of ethyl cyanoacetate (2.2 g, 2.2 ml, 22.0 mmol) in THF (5 mL) was subsequently added over 15 min at the same temperature. The reaction mixture was allowed to warm up to 0 °C over 6 h, then quenched with saturated aqueous NH₄Cl (80 mL). The mixture was extracted with ethyl acetate (80 mL × 3). The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by a column chromatography on a silica gel with petroleum ether/ethyl acetate (10:1 to 5:2 v/v) as an eluent to give target product (*rac*-7d, 7u, 7v, 7x, 7y, 7ak-ap, 9a-i).

Ethyl (E)-3-(4-(dimethylamino)benzylidene)-2-oxocyclohexane-1-carboxylate (7d)

Yellow solid, 3.9 g, 65% yield. $R_f = 0.42$ (petroleum ether/ethyl acetate = 5:1 v/v). M.p. 92–93 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 12.53$ (s, 1H), 7.36 (s, 1H), 7.32 (d, J = 8.6 Hz, 2H), 6.69 (d, J = 8.6 Hz, 2H), 4.24 (q, J = 7.1 Hz, 2H), 2.98 (s, 6H), 2.75–

2.67 (m, 2H), 2.39 (t, J = 6.1 Hz, 2H), 1.72–1.63 (m, 2H), 1.32 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): $\delta = 173.1$, 166.0, 149.7, 131.3, 130.0, 127.5, 124.7, 111.7, 98.7, 60.3, 40.2, 27.3, 23.0, 22.5, 14.3. HRMS (ESI): m/z calcd for C₁₈H₂₃NO₃+H⁺: 302.1756 [M+H]⁺; found: 302.1754.

Ethyl (E)-3-((1-methyl-1H-pyrrol-2-yl)methylene)-2-oxocyclohexane-1-carboxylate (7u)

Pale yellow solid, 3.6 g, 68% yield. $R_{\rm f} = 0.46$ (petroleum ether/ethyl acetate = 5:1 v/v). M.p. 119–120 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 12.51$ (s, 1H), 7.29 (s, 1H), 6.73 (d, J = 3.0 Hz, 1H), 6.43 (d, J = 3.1 Hz, 1H), 6.25 – 6.15 (m, 1H), 4.25 (q, J = 7.1 Hz, 2H), 3.69 (s, 3H),

2.71–2.63 (m, 2H), 2.41 (t, J = 6.1 Hz, 2H), 1.76–1.67 (m, 2H), 1.33 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): $\delta = 173.0$, 165.6, 130.1, 126.9, 124.6, 117.0, 112.6, 108.5, 99.0, 60.4, 34.3, 27.3, 22.8, 22.1, 14.3. HRMS (ESI): m/z calcd for C₁₅H₁₉NO₃+H⁺: 262.1443 [M+H]⁺; found: 262.1436.

Ethyl (E)-2-oxo-3-((1-tosyl-1H-indol-3-yl)methylene)cyclohexane-1-carboxylate (7v)

Pale yellow solid, 5.7 g, 63% yield. $R_f = 0.25$ (petroleum ether/ethyl acetate = 5:1 v/v). M.p. 163–164 °C. ¹H NMR (400 MHz, CDCl₃): δ = 12.45 (s, 1H), 7.98 (d, J = 8.2 Hz, 1H), 7.78 (d, J = 8.4 Hz, 2H), 7.71–7.66 (m, 1H), 7.65 (s, 1H), 7.48 (s, 1H), 7.38–7.32 (m, 1H),

7.31–7.26 (m, 1H), 7.22 (d, J = 8.1 Hz, 2H), 4.27 (q, J = 7.1 Hz, 2H), 2.77–2.63 (m, 2H), 2.45 (t, J = 6.1 Hz, 2H), 2.33 (s, 3H), 182–1.70 (m, 2H), 1.34 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ = 173.0, 164.4, 145.2, 134.9, 134.4, 132.1, 129.9, 126.8, 125.2, 124.8, 123.5, 119.7, 118.7, 118.0, 113.5, 100.4, 60.6, 28.0, 22.8, 22.0, 21.6, 14.3. HRMS (ESI): m/z calcd for C₂₅H₂₅NO₅S+H⁺: 452.1532 [M+H]⁺; found: 452.1526.

1-(Tert-butyl) 3-ethyl (E)-5-benzylidene-4-oxopiperidine-1,3-dicarboxylate (7x)

White solid, 5.2 g, 72% yield. $R_f = 0.35$ (petroleum ether/ethyl acetate = 5:1 v/v). M.p. 102–103 °C. ¹H NMR (400 MHz, CDCl₃): δ = 12.18 (s, 1H), 7.44 (s, 1H), 7.41–7.28 (m, 5H), 4.48 (s, 2H), 4.37–4.10 (m, 4H), 1.59–1.15 (m, 12H). ¹³C NMR (101 MHz, CDCl₃): δ = 171.1, 163.4, 154.4, 135.4, 130.3, 129.4, 128.4, 128.1, 97.9, 80.2, 60.8, 43.1, 40.8, 28.1, 14.2. HRMS (ESI):

m/*z* calcd for C₂₀H₂₅NO₅+Na⁺: 382.1630 [M+Na]⁺; found: 382.1621.

Ethyl (E)-5-benzylidene-4-oxotetrahydro-2H-pyran-3-carboxylate (7y)

White solid, 4.9 g, 63% yield. $R_f = 0.55$ (petroleum ether/ethyl acetate = 5:1 v/v). M.p. 109–110 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 11.98$ (s, 1H), 7.44–7.35 (m, 3H), 7.35–7.31 (m, 1H), 7.23 (d, J = 72 Hz, 2H), 4.68 (s, 2H), 4.44 (s, 2H), 4.27 (q, J = 7.1 Hz, 2H), 1.32 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz,

CDCl₃): $\delta = 170.5$, 162.4, 135.3, 129.6, 129.2, 128.5, 128.3, 127.9, 98.7, 66.1, 63.7, 60.7, 14.3. HRMS (ESI): m/z calcd for C₁₅H₁₆O₄+H⁺: 261.1127 [M+H]⁺; found: 261.1124.

Ethyl (E)-3-(3,3-diethoxypropylidene)-2-oxocyclohexane-1-carboxylate (7ak)

Pale yellow oil, 4.8 g, 80% yield. $R_f = 0.47$ (petroleum ether/ethyl acetate = 5:1 v/v). ¹H NMR (400 MHz, CDCl₃): δ = 12.29 (s, 1H), 6.45 (t, J = 7.4 Hz, 1H), 4.58 (t, J = 5.8 Hz, 1H), 4.23 (q, J = 7.1 Hz, 2H), 3.74–3.61 (m, 2H), 3.57–3.47 (m, 2H), 2.57 (t, J = 6.6 Hz, 2H),

2.42–2.28 (m, 4H), 1.70–1.62 (m, 2H), 1.31 (t, J = 7.1 Hz, 3H), 1.21 (t, J = 7.1 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃): δ = 173.1, 164.7, 131.9, 126.3, 102.1, 98.8, 61.6, 60.4, 33.2, 25.6, 23.0, 22.0, 15.3, 14.3. HRMS (ESI): m/z calcd for C₁₆H₂₆O₅+H⁺: 299.1858 [M+H]⁺; found: 299.1854.

Ethyl (E)-3-(2-ethoxy-2-oxoethylidene)-2-oxocyclohexane-1-carboxylate (7al)

White solid, 3.5 g, 68% yield. $R_f = 0.43$ (petroleum ether/ethyl acetate = 5:1 v/v). M.p. 46–47 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 12.08$ (s, 1H), 6.58 (s, 1H), 4.25 (q, J = 7.2 Hz, 2H), 4.18 (q, J = 7.1 Hz, 2H), 3.02–2.91 (m, 2H), 2.37 (t, J = 6.1 Hz, 2H), 1.72–1.64 (m, 2H), 1.31 (t, J = 6.0 Hz,

3H), 1.28 (t, J = 6.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): $\delta = 172.5$, 166.6, 162.3, 147.0, 117.4, 104.6, 61.0, 60.1, 26.5, 22.9, 21.7, 14.2, 14.1. HRMS (ESI): m/z calcd for C₁₃H₁₉O₅+H⁺: 255.1232 [M+H]⁺; found: 255.1230.

Benzyl (E)-4-((3-(ethoxycarbonyl)-2-oxocyclohexylidene)methyl)piperidine-1-carboxylate (7am)

Colourless oil, 6.3 g, 79% yield. $R_f = 0.36$ (petroleum ether/ethyl acetate = 5:1 v/v). ¹H NMR (400 MHz, CDCl₃): $\delta = 12.33$ (s, 1H), 7.51–7.20 (m, 5H), 6.25 (d, J = 9.4 Hz, 1H), 5.13 (s, 2H), 4.30–4.13 (m, 4H), 2.96–2.76 (m, 2H), 2.54–2.44 (m, 1H), 2.43–2.31 (m,4H),

1.73–1.58 (m, 4H), 1.44–1.34 (m, 2H), 1.30 (t, J = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ = 173.0, 164.5, 155.2, 136.8, 134.6, 129.7, 128.4, 127.9, 127.7, 99.1, 66.9, 60.4, 43.6, 35.0, 31.1, 25.4, 23.0, 22.1, 14.2. HRMS (ESI): m/z calcd for C₂₃H₂₉NO₅+Na⁺: 422.1943 [M+Na]⁺; found: 422.1939.

Ethyl (E)-9-(2-methylpropylidene)-8-oxo-1,4-dioxaspiro[4.5]decane-7-carboxylate (7an)

White solid, 4.6 g, 82% yield. $R_f = 0.42$ (petroleum ether/ethyl acetate = 5:1 v/v). M.p. 54–56 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 12.35$ (s, 1H), 6.44 (d, J = 9.7 Hz, 1H), 4.22 (q, J = 7.1 Hz, 2H), 4.07–3.98 (m, 4H), 2.65–2.54 (m, 5H), 1.30 (t, J = 7.2 Hz, 3H), 1.04 (d, J = 6.6 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃): $\delta = 172.6$, 164.6, 142.2, 126.0, 107.1, 95.7, 64.6, 60.6, 34.7, 33.2,

27.3, 22.3, 14.2. HRMS (ESI): *m/z* calcd for C₁₅H₂₂O₅+H⁺: 283.1545 [M+H]⁺; found: 283.1540.

1-(Tert-butyl) 3-ethyl (E)-5-(2-methylpropylidene)-4-oxopiperidine-1,3-dicarboxylate (7ao)

Colourless oil, 5.0 g, 77% yield. $R_f = 0.44$ (petroleum ether/ethyl acetate = 5:1 v/v). ¹H NMR (400 MHz, CDCl₃): $\delta = 12.05$ (s, 1H), 6.27 (d, J = 10.6 Hz, 1H), 4.41–3.98 (m, 6H), 2.80–2.50 (m, 1H), 1.46 (s, 9H), 1.30 (t, J = 7.2 Hz, 3H), 1.05 (d, J = 6.6 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃): $\delta = 171.2$, 163.5, 154.3, 139.4, 124.3, 96.6, 80.1, 60.6, 42.2, 40.7, 28.3, 27.5, 22.4, 14.1.

HRMS (ESI): *m/z* calcd for C₁₇H₂₇NO₅+Na⁺: 348.1787 [M+Na]⁺; found: 348.1783.

Ethyl (E)-5-(2-methylpropylidene)-4-oxotetrahydro-2H-pyran-3-carboxylate (7ap)

Colourless oil, 2.7 g, 60% yield. $R_f = 0.46$ (petroleum ether/ethyl acetate = 5:1 v/v). ¹H NMR (400 MHz, CDCl₃): $\delta = 11.85$ (s, 1H), 6.24 (d, J = 10.1 Hz, 1H), 4.41 (s, 2H), 4.37 (s, 2H), 4.23 (q, J = 7.2 Hz, 2H), 2.59–2.45 (m, 1H), 1.29 (t, J = 7.1 Hz, 3H), 1.02 (d, J = 6.6 Hz, 6H). ¹³C NMR (101 MHz,

CDCl₃): $\delta = 170.6$, 162.6, 138.5, 124.7, 97.3, 65.2, 63.7, 60.5, 27.1, 22.4, 14.2. HRMS (ESI): *m*/*z* calcd for C₁₂H₁₈O₄+H⁺: 227.1283 [M+H]⁺; found: 227.1281.

Ethyl (E)-3-(4-methylbenzylidene)-2-oxocycloheptane-1-carboxylate (9a)

Colourless oil, 5.8 g, 67% yield. $R_f = 0.46$ (petroleum ether/ethyl acetate = 5:1 v/v). Enol/keto = 2:3 (determined by ¹H NMR). ¹H NMR (400 MHz, CDCl₃): $\delta = 13.04$ (s), 7.55 (s), 7.41–7.30 (m), 7.30–7.22 (m), 4.33–4.15 (m), 3.89–3.75 (m), 2.96 (dd, J = 14.8, 7.5

Hz), 2.64–2.43 (m), 2.41–2.28 (m), 2.25–2.12 (m), 2.09–1.96 (m), 1.95–1.83 (m), 1.82–1.62 (m), 1.58–1.45 (m), 1.40–1.22 (m). ¹³C NMR (101 MHz, CDCl₃): δ = 199.1, 173.8, 170.9 (d), 139.9, 137.6, 136.1, 135.0, 134.4, 134.01, 133.3, 131.9, 130.6, 130.5, 128.7, 128.5, 101.6, 61.1, 60.8, 57.8, 29.3, 29.2, 28.1, 27.6, 27.0, 26.1, 25.7, 22.8, 14.3, 14.1. HRMS (ESI): *m*/*z* calcd for C₁₈H₂₂O₃+H⁺: 287.1647 [M+H]⁺; found: 287.1649.

Ethyl (E)-3-(4-chlorobenzylidene)-2-oxocycloheptane-1-carboxylate (9b)

White solid, 5.7 g, 62% yield. $R_f = 0.48$ (petroleum ether/ethyl acetate = 5:1 v/v). M.p. 44–45 °C. Enol/keto = 1:6.1 (determined by ¹H NMR). ¹H NMR (400 MHz, CDCl₃): $\delta = 13.06$ (s), 7.61 (s), 7.34–7.11 (m), 4.35–4.15 (m), 3.84 (dd, J = 10.8, 2.1 Hz), 3.05 (dd, J = 15.0, 6.8 Hz),

2.66–2.56 (m), 2.52–2.45 (m), 2.43–2.27 (m), 2.25–2.13 (m), 2.09–1.95 (m), 1.93–1.82 (m), 1.81–1.60 (m), 1.58–1.45 (m), 1.37–1.23 (m). ¹³C NMR (101 MHz, CDCl₃): δ = 199.4, 173.8, 171.6, 171.2, 138.6, 138.5, 137.6, 137.5, 136.1, 133.6, 133.2, 132.7, 129.5, 129.3, 129.2, 129.0, 101.0, 61.0, 60.6, 57.8, 29.3, 29.3, 28.1, 27.7, 27.0, 26.1, 25.7, 22.8, 21.3, 21.2, 14.3, 14.1. HRMS (ESI): *m/z* calcd for C₁₇H₁₉ClO₃+H⁺: 307.1101 [M+H]⁺; found: 307.1101.

Ethyl (E)-3-(3-methoxybenzylidene)-2-oxocycloheptane-1-carboxylate (9c)

Colourless oil, 5.4 g, 59% yield. $R_f = 0.36$ (petroleum ether/ethyl acetate = 5:1 v/v). Enol/keto = 1:10 (determined by ¹H NMR). ¹H NMR (400 MHz, CDCl₃): δ = 7.59 (s), 7.37–7.20 (m), 7.04–6.76 (m), 4.38–4.13 (m), 3.94–3.68 (m), 3.15–2.95 (m), 2.65–2.55 (m),

2.49–2.44 (m), 2.42–2.29 (m), 2.25–2.14 (m), 2.12–1.97 (m), 1.96–1.82 (m), 1.82–1.61 (m), 1.59–1.44 (m), 1.37–1.20 (m). ¹³C NMR (101 MHz, CDCl₃): δ = 199.3, 173.8, 171.3, 171.0, 159.5, 159.4, 139.6, 137.9, 137.4, 137.2, 137.0, 133.1, 129.4, 129.2, 121.7, 114.8, 114.6, 114.0, 113.2, 101.4, 61.0, 60.7, 57.8 (d), 55.2, 29.4, 29.2, 28.1, 27.7, 27.1, 26.3, 25.7, 22.9, 14.3, 14.1. HRMS (ESI): *m/z* calcd for C₁₈H₂₂O₄+H⁺: 303.1596 [M+H]⁺; found: 303.1596.

Ethyl (E)-3-(3-bromobenzylidene)-2-oxocycloheptane-1-carboxylate (9d)

Colourless oil, 7.1 g, 67% yield. $R_f = 0.45$ (petroleum ether/ethyl acetate = 5:1 v/v). Enol/keto = 2:3 (determined by ¹H NMR). ¹H NMR (400 MHz, CDCl₃): δ = 13.03 (s), 7.52 (s), 7.48–7.37 (m), 7.33–7.19 (m), 4.35–4.17 (m), 3.84 (dd, J = 10.7, 2.2 Hz), 2.95 (dd, J = 15.1, 6.9 Hz),

2.60–2.53 (m), 2.52–2.46 (m), 2.39–2.30 (m), 2.24–2.14 (m), 2.07–1.95 (m), 1.94–1.82 (m), 1.81–1.61 (m, 1H), 1.57–1.43 (m), 1.34 (t, J = 7.2 Hz, 1H), 1.30 (t, J = 7.2 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃): δ = 198.9, 173.6, 170.8, 170.6, 140.5, 138.6, 138.2, 137.7, 135.6, 131.9, 131.9, 131.6, 131.2, 130.3, 129.9, 129.7, 127.8, 127.7, 122.4, 122.3, 101.7, 61.0, 60.7, 57.78, 29.2, 29.01, 28.1, 27.5, 26.9, 26.1, 25.6, 22.7, 14.2, 14.1. HRMS (ESI): m/z calcd for C₁₇H₁₉BrO₃+H⁺: 351.0596 [M+H]⁺; found: 351.0600.

Ethyl (E)-3-(2-methylbenzylidene)-2-oxocycloheptane-1-carboxylate (9e)

White solid, 5.5 g, 64% yield. $R_f = 0.45$ (petroleum ether/ethyl acetate = 5:1 v/v). M.p. 57–58 °C. Enol/keto = 2:3 (determined by ¹H NMR). ¹H NMR (400 MHz, CDCl₃): $\delta = 13.04$ (s), 7.77–7.70 (m), 7.40–7.34 (m), 7.30–7.16 (m), 7.14–7.08 (m), 4.35–4.18 (m), 3.91–3.79 (m), 2.89–2.78 (m),

2.57–2.48 (m), 2.47–2.38 (m), 2.36–2.16 (m), 2.07–1.81 (m), 1.78–1.58 (m), 1.52–1.39 (m), 1.37–1.23 (m). ¹³C NMR (101 MHz, CDCl₃): δ = 198.9, 173.6, 170.8, 170.6, 140.5, 138.6, 138.2, 137.7, 135.6, 131.9, 131.9, 131.6, 131.2, 130.3, 129.9, 129.7, 127.8, 127.7, 122.4, 122.3, 101.7, 61.0, 60.7, 57.8, 29.2, 29.1, 28.1, 27.5, 26.9, 26.1, 25.6, 22.7, 14.2, 14.1. HRMS (ESI): *m/z* calcd for C₁₈H₂₂O₃+H⁺: 287.1647 [M+H]⁺; found: 287.1647.

Ethyl (E)-3-(2-fluorobenzylidene)-2-oxocycloheptane-1-carboxylate (9f)

Colourless oil, 5.1 g, 58% yield. $R_f = 0.42$ (petroleum ether/ethyl acetate = 5:1 v/v). Enol/keto = 1:10 (determined by ¹H NMR). ¹H NMR (400 MHz, CDCl₃): $\delta = 13.03$ (s), 7.62 (s), 7.47–7.29 (m), 7.29–7.22 (m), 7.21–7.02 (m), 6.34 (d, J = 6.4 Hz), 4.34–4.13 (m), 3.84 (dd, J = 10.8, 2.1 Hz), 3.49–

3.40 (m), 2.97–2.78 (m), 2.56–2.44 (m), 2.41–2.26 (m), 2.25–2.14 (m), 2.10–1.82 (m), 1.78–1.59 (m), 1.58–1.42 (m), 1.40–1.22 (m). ¹³C NMR (101 MHz, CDCl₃): δ = 198.6, 170.9, 160.4 (d, ¹*J*_{C-F} = 249.3 Hz), 141.21, 130.7 (d, ⁴*J*_{C-F} = 2.0 Hz), 130.3 (d, ³*J*_{C-F} = 4.0 Hz), 130.2 (d, ³*J*_{C-F} = 8.2 Hz), 123.9 (d, ³*J*_{C-F} = 3.0 Hz), 123.6 (d, ²*J*_{C-F} = 15.0 Hz), 115.8 (d, ²*J*_{C-F} = 21.8 Hz), 61.0, 57.8, 29.2, 29.0, 28.1, 27.5, 14.1. HRMS (ESI): *m*/*z* calcd for C₁₇H₁₉FO₃+H⁺: 291.1396 [M+H]⁺; found: 291.1399.

Ethyl (E)-2-oxo-3-(pyridin-2-ylmethylene)cycloheptane-1-carboxylate (9g)

White solid, 6.0 g, 73% yield. $R_f = 0.26$ (petroleum ether/ethyl acetate = 5:1 v/v). M.p. 77–78 °C. Enol/keto = 1:5.7 (determined by ¹H NMR). ¹H NMR (400 MHz, CDCl₃): $\delta = 13.00$ (s), 8.73–8.58 (m), 7.75–7.61 (m), 7.44 (s), 7.37–7.31 (m), 7.24–7.17 (m), 7.16–7.10 (m), 4.33–4.17 (m),

3.97–3.82 (m), 2.97 (t, J = 6.3 Hz), 2.53–2.39 (m), 2.25–2.14 (m), 2.10–1.95 (m), 1.94–1.75 (m), 1.73–1.60 (m), 1.59–1.47 (m), 1.34 (t, J = 7.2 Hz), 1.29 (t, J = 7.1 Hz). ¹³C NMR (101 MHz, CDCl₃): $\delta = 200.3$, 173.7, 171.3, 171.1, 156.0, 155.0, 149.5, 149.3, 143.2, 141.4, 136.2, 136.0, 134.1, 130.9, 126.7, 125.5, 122.6, 121.7, 102.1, 61.0, 60.7, 57.7, 29.3, 29.1, 28.3, 27.9, 26.7, 25.6, 25.5, 23.0, 14.3, 14.1. HRMS (ESI): m/z calcd for C₁₆H₁₉NO₃+H⁺: 274.1443 [M+H]⁺; found: 274.1444.

Ethyl (E)-3-(furan-2-ylmethylene)-2-oxocycloheptane-1-carboxylate (9h)

White solid, 5.4 g, 69% yield. $R_f = 0.42$ (petroleum ether/ethyl acetate = 5:1 v/v). M.p. 83–84 °C. Enol/keto =1:3.4 (determined by ¹H NMR). ¹H NMR (400 MHz, CDCl₃): $\delta = 12.93$ (s), 7.53 (d, J = 2.0 Hz), 7.47 (d, J = 1.9 Hz), 7.28 (s), 7.03 (s), 6.65 (d, J = 3.4 Hz), 6.49 (dd, J = 3.5, 1.9 Hz), 6.46 (dd,

J = 3.5, 1.8 Hz), 4.32-4.15 (m), 3.84 (dd, J = 10.7, 2.1 Hz), 3.47 (dd, J = 14.9, 7.0 Hz), 2.79-2.72 (m), 2.49-2.37 (m), 2.21-2.10 (m), 2.09-1.97 (m), 1.89-1.75 (m), 1.73-1.61 (m), 1.56-1.46 (m), 1.36-1.27 (m). ¹³C NMR (101 MHz, CDCl₃): $\delta = 199.3, 173.7, 171.2, 171.0, 152.6, 151.7, 144.4, 143.0, 135.7, 134.4, 123.5, 120.1, 116.7, 112.6, 112.1, 111.7, 101.1, 60.9, 60.6, 57.5, 29.4, 29.0, 28.0, 27.95, 27.4, 25.4, 24.5, 22.6, 14.3, 14.1. HRMS (ESI): <math>m/z$ calcd for $C_{15}H_{18}O_4$ +H⁺: 263.1283 [M+H]⁺; found: 263.1284.

Ethyl (E)-3-(2-methylpropylidene)-2-oxocycloheptane-1-carboxylate (9i)

Colourless oil, 4.6 g, 65% yield. $R_f = 0.63$ (petroleum ether/ethyl acetate = 5:1 v/v). Enol/keto = 1:10 (determined by ¹H NMR). ¹H NMR (400 MHz, CDCl₃): $\delta = 12.92$ (s), 6.54 (d, J = 9.9 Hz), 6.07 (d, J = 9.8 Hz), 4.32–4.09 (m), 3.72 (dd, J = 10.8, 1.7 Hz), 2.72 (dd, J = 14.9, 6.7 Hz), 2.67–2.56 (m), 2.42–2.35

(m), 2.21–2.07 (m), 2.03–1.91 (m), 1.85–1.72 (m), 1.67–1.54 (m), 1.38–1.25 (m), 1.03 (d, J = 4.7 Hz), 1.02 (d, J = 4.7 Hz). ¹³C NMR (101 MHz, CDCl₃): $\delta = 199.2$, 173.7, 172.2, 171.2, 147.9, 142.2, 136.7, 133.0, 99.7, 60.8, 60.4, 57.7, 29.5, 29.4, 27.8, 27.3, 26.9, 26.5, 26.2, 26.0, 25.3, 22.7, 22.6, 22.2, 22.0, 14.2, 14.1. HRMS (ESI): m/z calcd for C₁₄H₂₂O₃+H⁺: 239.1647 [M+H]⁺; found: 239.1648.

Method III:³

To a solution of ethyl 2-oxocyclohexane-1-carboxylate (8.5 g, 50.0 mmol) in dioxane (80 mL) was sequentially added Et₂NH·HCl (5.8 g, 52.5 mmol), Et₂NH (3.8 g, 52.5 mmol, 5.4 mL) and 37% formaldehyde solution (aq. 4.3 g, 52.5 mmol, 4.0 mL) in a 250 mL, three-necked, round-bottomed flask with a condenser tube at room temperature, and the reaction mixture was allowed to reflux in an oil bath for 24 h. The reaction was quenched by addition of a saturated solution of NH₄Cl (80 mL), and the mixture was extracted with ethyl acetate (3 × 100 mL). The combined organic layers were washed with brine (100 mL), and dried with Na₂SO₄. The solvent was removed in vacuum, and the residue was purified by a column chromatography on a silica gel with petroleum ether/ethyl acetate (100:1 to 50:1 v/v) as an eluent to give target product *rac*-**7ab** (6.5 g, 71% yield) as a colourless oil. *R*_f = 0.61 (petroleum ether/ethyl acetate = 10:1). ¹H NMR (400 MHz, CDCl₃): δ = 12.12 (s, 1H), 5.84 (s, 1H), 5.20 (s, 1H), 4.26 (q, *J* = 7.1 Hz, 2H), 2.48–2.41 (m, 2H), 2.39 (t, *J* = 6.1 Hz, 2H), 1.76–1.65 (m, 2H), 1.34 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ = 172.9, 163.8, 138.6, 115.4, 100.1, 60.5, 31.2, 23.4, 22.5, 14.2. (the spectra are in accordance with those of the compound reported in the literature).

Method IV:¹

General procedure: To a 250 mL flame-dried three-neck flask was added NaOAc (9.8 g, 120.0 mmol, dehydrated under high temperature and reduced pressure), anhydrous ethanol (100 mL), aromatic aldehyde (30.0 mmol) and ethyl 2-oxocyclopentanecarboxylate (5.2 g, 33.0 mmol, 4.9 mL) under argon atmosphere. The reaction mixture was allowed to reflux in an oil bath for 20 h. The reaction mixture was acidified with 2 M HCl once the reaction mixture was allowed to cool to 0 °C. The mixture was extracted with ethyl acetate (100 mL × 3). The combined organic layers were washed with brine and dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by a

column chromatography on a silica gel with petroleum ether/ethyl acetate (50:1 to 20:1 v/v) as an eluent to give target product (*rac*-11a, 11c, 11e-g).

Ethyl (E)-3-benzylidene-2-oxocyclopentane-1-carboxylate (11a)

White solid, 5.6 g, 76% yield. $R_f = 0.57$ (petroleum ether/ethyl acetate = 5:1 v/v). M. p. 88–93 °C. Enol/keto = 2.5:1 (determined by ¹H NMR). ¹H NMR (400 MHz, CDCl₃): $\delta = 10.27$ (s), 7.53 (d, J = 7.7 Hz), 7.49–7.33 (m), 7.30–7.22 (m), 6.91 (s), 4.40–4.13 (m), 3.41 (t, J = 8.7 Hz), 3.19–3.08 (m), 2.98–

2.83 (m), 2.74–2.59 (m), 2.46–2.24 (m), 1.42–1.26 (m). ¹³C NMR (101 MHz, CDCl₃): δ = 200.6, 169.7, 169.5, 169.3, 138.1, 136.5, 134.9, 134.4, 134.3, 130.5, 129.5, 128.9, 128.5, 128.3, 127.2, 123.8, 105.9, 61.2, 60.0, 54.0, 27.4, 26.1, 25.0, 24.1, 14.2, 14.0. HRMS (ESI): *m*/*z* calcd for C₁₅H₁₆O₃+H⁺: 245.1178 [M+H]⁺; found: 245.1174.

Ethyl (E)-3-(4-chlorobenzylidene)-2-oxocyclopentane-1-carboxylate (11c)

White solid, 7.1 g, 85% yield. $R_f = 0.59$ (petroleum ether/ethyl acetate = 5:1 v/v). M. p. 117–118 °C. Enol/keto = 12.5:1 (determined by ¹H NMR). ¹H NMR (400 MHz, CDCl₃): δ = 10.24 (s, 1H), 7.37 (d, *J* = 8.6 Hz, 2H), 7.32 (d, *J* = 8.6 Hz, 2H), 6.84 (s, 1H), 4.28 (q, *J* = 7.1 Hz, 2H), 2.87–2.80 (m, 2H), 2.70–2.58 (m, 2H), 1.33 (t, *J* = 7.2 Hz,

3H). ¹³C NMR (101 MHz, CDCl₃): $\delta = 169.9$, 169.1, 138.9, 135.2, 133.1, 130.2, 128.7, 122.7, 106.5, 60.3, 26.2, 25.2, 14.4. HRMS (ESI): *m/z* calcd for C₁₅H₁₅ClO₃+H⁺ [M+H]⁺: 279.0788; found: 279.0783.

Ethyl (E)-3-(3-fluorobenzylidene)-2-oxocyclopentane-1-carboxylate (11e)

White solid, 6.5 g, 83% yield. $R_f = 0.58$ (petroleum ether/ethyl acetate = 5:1 v/v). M. p. 100–101 °C. Enol/keto = 3.3:1 (determined by ¹H NMR). ¹H NMR (400 MHz, CDCl₃): δ = 10.23 (s), 7.45–7.27 (m), 7.25–7.12 (m), 7.11–7.04 (m), 7.00–6.91 (m), 6.85 (s), 4.49–4.07 (m),

3.42 (t, J = 8.6 Hz), 3.20–3.07 (m), 2.98–2.79 (m), 2.74–2.55 (m), 2.48–2.26 (m), 1.45–1.22 (m). ¹³C NMR (101 MHz, CDCl₃): $\delta = 169.8$, 169.1, 160.6 (d, ¹ $J_{C-F} = 250.7$ Hz), 140.1, 128.9 (d, ³ $J_{C-F} = 7.0$ Hz), 128.9, 124.7 (d, ² $J_{C-F} = 11.9$ Hz), 123.8 (d, ⁴ $J_{C-F} = 3.7$ Hz), 115.5 (d, ² $J_{C-F} = 22.3$ Hz), 115.4 (d, ³ $J_{C-F} = 6.2$ Hz), 106.7, 60.3, 26.2, 25.1, 14.3. HRMS (ESI): m/z calcd for C₁₅H₁₅FO₃+H⁺: 263.1083 [M+H]⁺; found: 263.1082.

Ethyl (E)-3-(2-fluorobenzylidene)-2-oxocyclopentane-1-carboxylate (11f)

Pale yellow solid, 6.6 g, 84% yield. $R_{\rm f} = 0.59$ (petroleum ether/ethyl acetate = 5:1 v/v). M. p. 83–84 °C. ¹H NMR (400 MHz, CDCl₃): δ = 10.20 (s, 1H), 7.51 (t, J = 7.6 Hz, 1H), 7.26–7.19 (m, 1H), 7.17–7.01 (m, 3H), 4.28 (q, J = 7.1 Hz, 3H), 2.98–2.79 (m, 2H), 2.71–2.58 (m, 2H), 1.33 (t,

J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): $\delta = 169.8$, 169.1, 160.6 (d, ¹ $J_{C-F} = 250.7$ Hz), 140.1, 128.9 (d, ³ $J_{C-F} = 7.0$ Hz), 128.9, 124.7 (d, ² $J_{C-F} = 11.9$ Hz), 123.8 (d, ⁴ $J_{C-F} = 3.7$ Hz), 115.5 (d, ² $J_{C-F} = 22.3$ Hz), 115.4 (d, ³ $J_{C-F} = 6.2$ Hz), 106.7, 60.3, 26.2, 25.1, 14.3. HRMS (ESI): m/z calcd for C₁₅H₁₅FO₃+H⁺: 263.1083 [M+H]⁺; found: 263.1080.

Ethyl (E)-2-oxo-3-(thiophen-2-ylmethylene)cyclopentane-1-carboxylate (11g)

White solid, 6.2 g, 82% yield. $R_f = 0.51$ (petroleum ether/ethyl acetate = 5:1 v/v). M. p. 88–89 °C. Enol/keto = 1:3.3 (determined by ¹H NMR). ¹H NMR (400 MHz, CDCl₃): $\delta = 10.21$ (s, 2H), 7.68–7.64 (m), 7.57 (d, J = 5.1 Hz), 7.38 (d, J = 4.7 Hz), 7.17–7.09 (m), 7.10–7.05 (m), 4.38–4.16

(m), 3.43 (t, J = 8.6 Hz,), 3.14–3.00 (m,), 2.87–2.80 (m,), 2.80–2.73 (m), 2.71–2.63 (m), 2.50–2.29 (m,), 1.40–1.25 (m). ¹³C NMR (101 MHz, CDCl₃): $\delta = 200.2$, 169.7 (d), 168.9, 141.1, 139.5, 136.3, 133.3, 132.1, 130.8, 128.5, 128.1, 127.5, 127.2, 126.9, 117.1, 106.6, 61.4, 60.1, 54.5, 27.4, 26.1, 25.1, 23.9, 14.4, 14.1. HRMS (ESI): m/z calcd for C₁₃H₁₄O₃S+H⁺: 251.0742 [M+H]⁺; found: 251.0736.

Method V:

General procedure: To a solution of NaH (0.8 g, 33.0 mmol) in THF (80 mL) was added ethyl 2oxocyclohexane-1-carboxylate (or ethyl 2-oxocyclopentane-1-carboxylate) (30.0 mmol) dropwise over 15 min in a 250 mL, three-necked, round-bottomed flask with a thermometer at 0 °C under argon atmosphere. After stirred at 0 °C for 30 min, a solution of *n*BuLi (2.5 M in hexane, 12.0 mL, 30.0 mmol) was added dropwise to the mixture over 15 min at -40 °C. The reaction mixture was allowed to warm up to -20 °C for 1 h. a solution of aliphatic aldehydes (or acetone) (33.0 mmol) in THF (10 mL) was added dropwise to the mixture over 15 min at -40 °C. The reaction mixture was allowed to warm up to 0 °C over a period of 6 h. Saturated aqueous NH4Cl (100 mL) was added into the reaction mixture at 0 °C. The mixture was extracted with ethyl acetate (100 mL \times 3). The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by a column chromatography on a silica gel with petroleum ether / ethyl acetate (10:1 to 5:1) as an eluent to give the corresponding alcohol. To a solution of alcohol in toluene (100 ml) was then added p-toluenesulfonic acid (10 mol%). The reaction mixture was refluxed in an oil bath for 2 h and the water formed was removed by using a Dean-Stark apparatus. The reaction mixture was quenched with saturated aqueous NaHCO₃ (80 mL) at 0 °C. The mixture was extracted with ethyl acetate $(80 \text{ mL} \times 3)$. The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by a column chromatography on a silica gel with petroleum ether/ethyl acetate (50:1 to 20:1 v/v) as an eluent to give target product (rac-7ab-aj, 7aq, 11h).

Ethyl (E)-3-ethylidene-2-oxocyclohexane-1-carboxylate (7ab)

 $Me \longrightarrow CO_2Et \qquad Colourless oil, 2.4 g, 41\% yield (2 steps). R_f = 0.52 (petroleum ether/ethyl acetate = 5:1 v/v). {}^{1}H NMR (400 MHz, CDCl_3): \delta = 12.32 (s, 1H), 6.54 (q, J = 7.1 Hz, 1H), 4.23 (q, J = 7.1 Hz, 2H), 2.37-2.30 (m, 4H), 1.77 (d, J = 7.2 Hz, 3H), 1.70-1.63 (m, 2H), 1.31 (t, J = 7.1 Hz, 3H). {}^{13}C NMR (101 MHz, CDCl_3) = 12.32 (s, 1H), 6.54 (q, J = 7.1 Hz, 3H), 1.70-1.63 (m, 2H), 1.31 (t, J = 7.1 Hz, 3H). {}^{13}C NMR (101 MHz, CDCl_3) = 12.32 (s, 1H), 6.54 (q, J = 7.1 Hz, 3H), 1.70-1.63 (m, 2H), 1.31 (t, J = 7.1 Hz, 3H). {}^{13}C NMR (101 MHz, CDCl_3) = 12.32 (s, 1H), 6.54 (s, J = 7.2 Hz, 3H), 1.70-1.63 (s, 2H), 1.31 (s, J = 7.1 Hz, 3H). {}^{13}C NMR (s, 2H), 1.70-1.63 (s, 2H), 1.31 (s, J = 7.1 Hz, 3H). {}^{13}C NMR (s, 2H), 1.70-1.63 (s, 2H), 1.31 (s, J = 7.1 Hz, 3H). {}^{13}C NMR (s, 2H), 1.70-1.63 ($

CDCl₃): $\delta = 173.2$, 165.1, 130.8, 126.7, 98.2, 60.3, 25.0, 23.0, 22.1, 14.3, 13.6. HRMS (ESI): *m*/*z* calcd for C₁₁H₁₆O₃+H⁺: 197.1178 [M+H]⁺; found: 197.1176.

Ethyl (E)-3-propylidene-2-oxocyclohexane-1-carboxylate (7ac)

Colourless oil, 2.7 g, 43% yield (2 steps). $R_f = 0.56$ (petroleum ether/ethyl acetate = 5:1 v/v). ¹H NMR (400 MHz, CDCl₃): $\delta = 12.34$ (s, 1H), 6.28 (d, J = 9.7, 1H), 4.22 (q, J = 7.1 Hz, 2H), 2.70–2.57 (m, 1H), 2.42–2.28 (m, 4H), 1.71–1.63 (m, 2H), 1.31 (t, J = 7.1 Hz, 3H), 1.02 (d, J = 6.6 Hz, 6H).¹³C

NMR (101 MHz, CDCl₃): δ =173.1, 165.2, 139.2, 127.9, 98.6, 60.4, 27.2, 25.2, 23.1, 22.4, 22.2, 14.3. HRMS (ESI): *m*/*z* calcd for C₁₂H₁₈O₃+H⁺: 211.1334 [M+H]⁺; found: 211.1330.

Ethyl (E)-3-butylidene-2-oxocyclohexane-1-carboxylate (7ad)

Colourless oil, 3.2 g, 47% yield (2 steps). $R_f = 0.63$ (petroleum ether/ethyl acetate = 5:1 v/v). ¹H NMR (400 MHz, CDCl₃): $\delta = 12.34$ (s, 1H), 6.46 (t, J = 7.5 Hz, 1H), 4.23 (q, J = 7.1 Hz, 2H), 2.40–2.31 (m, 4H), 2.14 (q, J = 7.4 Hz, 2H), 1.70–1.62 (m, 2H), 1.52–1.42 (m, 2H), 1.31 (t, J = 7.1 Hz,

3H), 0.93 (t, J = 7.4 Hz, 3H).¹³C NMR (101 MHz, CDCl₃): $\delta = 173.2$, 165.1, 132.4, 130.1, 98.4, 60.3, 30.1, 25.4, 23.1, 22.2, 22.2, 14.3, 13.9. HRMS (ESI): m/z calcd for C₁₃H₂₀O₃+H⁺: 225.1491 [M+H]⁺; found: 225.1483.

Ethyl (E)-2-oxo-3-pentylidenecyclohexane-1-carboxylate (7ae)

Colourless oil, 3.5 g, 49% yield (2 steps). $R_f = 0.63$ (petroleum ether/ethyl acetate = 5:1 v/v). ¹H NMR (400 MHz, CDCl₃): δ = 12.33 (s, 1H), 6.46 (t, J = 7.6 Hz, 1H), 4.23 (q, J = 7.2 Hz, 2H), 2.42–2.28 (m, 4H), 2.21–2.10 (m, 2H), 1.71–1.62 (m, 2H), 1.47–1.38 (m, 2H), 1.38–1.25 (m, 5H), 0.91 (t, J = 7.2 Hz, 2H) = 0.63

7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): $\delta = 173.2$, 165.1, 132.6, 129.9, 98.3, 60.3, 31.2, 27.7, 25.3, 23.1, 22.5, 22.2, 14.3, 13.9. HRMS (ESI): *m*/*z* calcd for C₁₄H₂₂O₃+H⁺: 239.1647 [M+H]⁺; found: 239.1645.

Ethyl (E)-2-oxo-3-(2-phenylethylidene)cyclohexane-1-carboxylate (7af)

Colourless liquid, 4.1 g, 50% yield (2 steps). $R_f = 0.58$ (petroleum ether/ethyl acetate = 5:1 v/v). ¹H NMR (400 MHz, CDCl₃): δ = 12.30 (s, 1H), 7.33–7.25 (m, 2H), 7.24–7.15 (m, 3H), 6.64 (t, *J* = 7.6 Hz, 1H), 4.23 (q, *J* = 7.1 Hz, 2H), 3.52 (d, *J* = 7.8 Hz, 2H), 2.47 (t, *J* = 6.3 Hz, 2H), 2.37 (t, *J* = 6.1 Hz, 2H),

1.75–1.66 (m, 2H), 1.31 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ = 173.0, 164.7, 139.8, 130.7, 130.1, 128.5, 128.4, 126.1, 98.9, 60.4, 34.1, 25.4, 23.0, 22.1, 14.2. HRMS (ESI): m/z calcd for C₁₇H₂₀O₃+H⁺: 273.1491 [M+H]⁺; found: 273.1479.

Ethyl (E)-3-(2-methylpropylidene)-2-oxocyclohexane-1-carboxylate (7ag)

Colourless oil, 3.3 g, 49% yield (2 steps). $R_f = 0.61$ (petroleum ether/ethyl acetate = 5:1 v/v). ¹H NMR (400 MHz, CDCl₃): δ = 12.35 (s, 1H), 6.28 (d, J = 9.6 Hz, 1H), 4.22 (q, J = 7.1 Hz, 2H), 2.70–2.58 (m, 1H), 2.42–2.31 (m, 4H), 1.70–1.62 (m, 2H), 1.31 (t, J = 7.1 Hz, 3H), 1.02 (d, J = 6.7 Hz, 6H).

¹³C NMR (101 MHz, CDCl₃): δ = 173.1, 165.2, 139.1, 127.9, 98.4, 60.3, 27.1, 25.2, 23.0, 22.3, 22.2, 14.2. HRMS (ESI): *m/z* calcd for C₁₃H₂₀O₃+H⁺: 225.1491 [M+H]⁺; found: 225.1486.

Ethyl (E)-3-(cyclohexylmethylene)-2-oxocyclohexane-1-carboxylate (7ah)

Colourless oil, 3.5 g, 44% yield (2 steps). $R_{\rm f} = 0.65$ (petroleum ether/ethyl acetate = 5:1 v/v). ¹H NMR (400 MHz, CDCl₃): $\delta = 12.35$ (s, 1H), 6.29 (d, J = 9.5 Hz, 1H), 4.22 (q, J = 7.1 Hz, 2H), 2.44–2.25 (m, 5H), 1.77–1.70 (m, 2H), 1.68–1.60 (m, 5H), 1.35–1.09 (m, 8H). ¹³C NMR (101 MHz, CDCl₃): δ

= 173.1, 165.3, 137.7, 128.3, 98.5, 60.3, 37.0, 32.4, 25.9, 25.76, 25.4, 23.1, 22.3, 14.3. HRMS (ESI): m/z calcd for C₁₆H₂₄O₃+H⁺: 265.1804 [M+H]⁺; found: 265.1799.

Ethyl (E)-3-(2,2-dimethylpropylidene)-2-oxocyclohexane-1-carboxylate (7ai)

Colourless oil, 2.6 g, 36% yield (2 steps). $R_f = 0.64$ (petroleum ether/ethyl acetate = 5:1 v/v). ¹H NMR (400 MHz, CDCl₃): $\delta = 12.47$ (s, 1H), 6.53 (s, 1H), 4.22 (q, J = 7.1 Hz, 2H), 2.56–2.48 (m, 2H), 2.33 (t, J = 6.1 Hz, 2H), 1.71–1.62 (m, 2H), 1.31 (t, J = 7.1 Hz, 3H), 1.18 (s, 9H). ¹³C NMR (101

MHz, CDCl₃): δ = 173.2, 165.8, 141.8, 129.5, 98.4, 60.4, 32.6, 30.5, 26.4, 22.9, 22.2, 14.3. HRMS (ESI): *m*/*z* calcd for C₁₄H₂₂O₃+H⁺: 239.1647 [M+H]⁺; found: 239.1642.

(+)-Ethyl (E)-3-(3-(allyloxy)propylidene)-2-oxocyclohexane-1-carboxylate (7aj)

Pale yellow oil, 3.3 g, 41% yield (2 steps). $R_f = 0.62$ (petroleum ether/ethyl acetate = 5:1 v/v). ¹H NMR (400 MHz, CDCl₃): $\delta = 12.30$ (s, 1H), 6.44 (t, J = 7.2 Hz, 1H), 6.03–5.81 (m, 1H), 5.27 (dd, J = 17.2, 1.7 Hz, 1H), 5.18 (dd, J = 10.4, 1.6 Hz, 1H), 4.23

(q, J = 7.1 Hz, 2H), 3.99 (d, J = 5.7 Hz, 2H), 3.52 (t, J = 7.0 Hz, 2H), 2.47 (q, J = 7.1 Hz, 2H), 2.40–2.29 (m, 4H), 1.71–1.64 (m, 2H), 1.31 (t, J = 7.1 Hz, 3H).¹³C NMR (101 MHz, CDCl₃): $\delta = 173.1$, 164.7, 134.7, 131.6, 128.0, 116.9, 98.7, 71.9, 69.1, 60.4, 28.8, 25.4, 23.0, 22.0, 14.2. HRMS (ESI): m/z calcd for C₁₅H₂₂O₄+H⁺: 267.1596 [M+H]⁺; found: 267.1592.

Ethyl 2-oxo-3-(propan-2-ylidene)cyclohexane-1-carboxylate (7aq)

Colourless oil, 3.9 g, 62% yield (2 steps). $R_f = 0.59$ (petroleum ether/ethyl acetate = 5:1 v/v). Enol/keto = 10:1 (determined by ¹H NMR). ¹H NMR (400 MHz, CDCl₃): δ = 12.89 (s, 1H), 4.22 (q, *J* = 7.1 Hz, 2H), 2.30 (t, *J* = 6.3 Hz, 2H), 2.18 (s, 3H), 1.83 (s, 3H), 1.68–1.61 (m, 2H), 1.31 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃): δ = 173.6, 169.1, 139.6, 124.8, 98.3, 60.2, 28.4, 23.9, 23.9, 23.3, 22.7, 14.3. HRMS (ESI): *m/z* calcd for C₁₂H₁₈O₃+H⁺: 211.1334 [M+H]⁺; found: 211.1319.

Ethyl (E)-3-(2-methylpropylidene)-2-oxocyclopentane-1-carboxylate (11h)

Colourless oil, 1.8 g, 29% yield (2 steps). $R_f = 0.57$ (petroleum ether/ethyl acetate = 5:1 v/v). Enol/keto = 3.2:1 (determined by ¹H NMR). ¹H NMR (400 MHz, CDCl₃): $\delta = 10.15$ (s), 6.48 (dt, J = 9.8, 2.7 Hz), 5.82 (d, J = 9.7 Hz), 4.32–4.16 (m), 3.32 (t, J = 8.7 Hz), 2.82–2.71 (m), 2.60–2.40 (m), 2.36–

2.18 (m), 1.35–1.27 (m), 1.08–0.97 (m). ¹³C NMR (101 MHz, CDCl₃): δ = 200.3, 170.1, 169.7, 169., 145.2, 135.6, 133.7, 133.2, 104.9, 61.3, 59.9, 54.9, 29.3, 28.8, 24.7, 24.2, 23.9, 23.0, 22.2, 21.6, 21.5, 14.3, 14.1. HRMS (ESI): *m/z* calcd for C₁₂H₁₈O₃+H⁺: 211.1334 [M+H]⁺; found: 211.1332.

(B) Asymmetric Hydrogenation of Exocyclic γ,δ-Unsaturated β-Ketoesters

General procedure I (S/C = 1000): To a 40 mL hydrogenation vessel in an autoclave (50 mL) were added exocyclic γ , δ -unsaturated β -ketoesters 7a-al, 7an, 7aq, 9a-i or 11a-h (1.0 mmol), a solution of iridium catalyst Ir-(*R*)-6b or 6g in EtOH (0.001 mmol/mL, 1.0 mL, 0.001 mmol, 0.1 mol%), a solution of KO*t*Bu in EtOH (0.01 mmol/mL, 1.0 mL, 0.01 mmol, 1.0 mol%), and EtOH (2.0 mL) under argon atmosphere. The autoclave was purged with hydrogen by pressurizing to 5 atm and releasing the pressure. This procedure was repeated three times and then pressurized to 10 atm of H₂. The reaction mixture was stirred at room temperature (25–30 °C) until no obvious hydrogen pressure drop was observed. After releasing the hydrogen pressure, the reaction mixture was then quenched with saturated NH₄Cl (5 mL) and extracted with ethyl acetate (5 mL × 3). The combined extracts were washed with brine, dried over anhydrous MgSO₄, filtered, and concentrated under reduced pressure. The residue was purified by flash column chromatography on silical gel with petroleum ether/ethyl acetate as an eluent to afford the chiral alcohols 8a-al, 8an, 8aq, 10a-i, 11a-h.

General procedure II (S/C = 500): To a 40 mL hydrogenation vessel in an autoclave (50 mL) were added exocyclic γ , δ -unsaturated β -ketoesters **7am**, **7ao**, **7ap** (1.0 mmol), a solution of iridium catalyst Ir-(*R*)-**6b** in EtOH (0.002 mmol/mL, 1.0 mL, 0.002 mmol, 0.2 mol%), a solution of KO*t*Bu in EtOH (0.02 mmol/mL, 1.0 mL, 0.02 mmol%), and EtOH (2.0 mL) under argon atmosphere. The autoclave was purged with hydrogen by pressurizing to 5 atm and releasing the pressure. This procedure was repeated three times and then pressurized to 10 atm of H₂. The reaction mixture was stirred at room temperature (25–30 °C) until no obvious hydrogen pressure drop was observed. After releasing the hydrogen pressure, the reaction mixture was then quenched with saturated NH₄Cl (5 mL) and extracted with ethyl acetate (5 mL × 3). The combined extracts were washed with brine, dried over anhydrous MgSO₄, filtered, and concentrated under reduced pressure. The residue was purified by flash column chromatography on silical gel with petroleum ether/ethyl acetate as an eluent to afford the chiral alcohols **8am**, **8ao**, **8ap**.

(+)-cis-Ethyl 3-((E)-benzylidene)-2-hydroxycyclohexane-1-carboxylate ((+)-cis-8a)

Colourless oil, 250 mg, 96% yield, 99% ee. $R_{\rm f} = 0.53$ (petroleum ether/ethyl acetate = 5:2 v/v). $[\alpha]_{\rm D}^{25} = +78.5$ (c = 1.0, CHCl₃). ¹H NMR (400 MHz, CDCl₃): $\delta = 7.37-7.28$ (m, 2H), 7.25–7.18 (m, 2H), 6.54 (s, 1H), 4.56 (d, J = 2.8 Hz, 1H), 4.21 (q, J = 7.2 Hz, 2H), 3.26 (s, 1H), 2.69–2.57 (m, 2H), 2.45–2.34 (m,

1H), 2.19–2.05 (m, 1H), 1.91–1.71 (m, 2H), 1.44–1.34 (m, 1H), 1.30 (t, J = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): $\delta = 175.0$, 141.0, 137.0, 128.9, 128.1, 126.6, 125.5, 74.1, 60.8, 48.6, 25.7, 24.2, 23.5, 14.2. HRMS (ESI): m/z calcd for C₁₆H₂₀O₃+Na⁺: 283.1305 [M+Na]⁺; Found: 283.1302. HPLC conditions: Chiralcel IC-3 column (25 cm × 0.46 cm ID); *n*-hexane/2-propanol = 90:10; temp, rt; flow rate = 1.0

mL/min; 254 nm UV detector; $t_R = 18.38 \text{ min (minor)}$; $t_R = 11.61 \text{ min (major)}$.

The *trans*-product of the asymmetric hydrogenation of 7a is (+)-*trans*-ethyl 3-((*E*)-benzylidene)-2-hydroxycyclohexane-1-carboxylate ((+)-*trans*-8a).

Colourless oil, 46.9 mg, 18% yield, 87% ee. $R_{\rm f} = 0.53$ (petroleum ether/ethyl acetate = 5:2 v/v). $[\alpha]_{\rm D}^{25} = +8.0$ (c = 1.0, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.36–7.29 (m, 2H), 7.24–7.18 (m, 3H), 6.72 (s, 1H), 4.42 (d, J = 10.1 Hz, 1H), 4.22 (q, J = 7.0 Hz, 2H), 3.01–2.91 (m, 2H), 2.49–2.40 (m, 1H),

2.16–2.09 (m, 1H), 1.88–1.78 (m, 2H), 1.71–1.62 (m, 1H), 1.30 (t, J = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 174.9, 141.0, 137.8, 128.9, 128.1, 126.3, 120.9, 73.1, 60.8, 52.8, 28.2, 27.9, 26.2, 14.2. HRMS (ESI): m/z calcd for C₁₆H₂₀O₃+Na⁺: 283.1305 [M+Na]⁺; Found: 283.1301. HPLC conditions: Chiralcel IC-3 column (25 cm × 0.46 cm ID); *n*-hexane/2-propanol = 90:10; temp, rt; flow rate = 1.0 mL/min; 254 nm UV detector; $t_R = 9.19$ min (minor); $t_R = 11.10$ min (major).

Asymmetric Hydrogenation of *rac*-7a at S/C = 50000.

To a 200 mL hydrogenation vessel in an autoclave (250 mL) were added *rac*-7a (5.0 g, 20.0 mmol), a solution of iridium catalyst Ir-(*R*)-6b in EtOH (0.0002 mmol/mL, 2.0 mL, 0.0004 mmol, 0.0002 mol%), a solution of KOtBu in EtOH (0.02 mmol/mL, 2.0 mL, 0.04 mmol, 0.02 mol%), and EtOH (46.0 mL) under argon atmosphere. The autoclave was purged with hydrogen by pressurizing to 10 atm and releasing the pressure. This procedure was repeated three times and then pressurized to 50 atm of H₂. The reaction mixture was stirred at room temperature (25–30 °C) for 24 h. After releasing the hydrogen pressure, the reaction mixture was then quenched with saturated NH₄Cl (50 mL) and extracted with ethyl acetate (50 mL × 3). The combined extracts were washed with brine, dried over anhydrous MgSO₄, filtered, and concentrated under reduced pressure. The residue was purified by flash column chromatography on silical gel with petroleum ether/ethyl acetate (10:1 to 5:1 v/v) as an eluent to afford the chiral alcohol (+)-8a as a colourless oil in 98% yield (5.1 g, 19.6 mmol, >99% conversion) with 99% ee.

(+)-Ethyl 2-hydroxy-3-((E)-4-methylbenzylidene)cyclohexane-1-carboxylate ((+)-8b)

Colourless oil, 258 mg, 94% yield, 98% ee. $R_{\rm f} = 0.55$ (petroleum CO₂Et ether/ethyl acetate = 5:2 v/v). $[\alpha]_{\rm D}^{25} = +54.2$ (c = 1.0, CHCl₃). ¹H NMR (400 MHz, CDCl₃): $\delta = 7.17-7.07$ (m, 4H), 6.49 (s, 1H), 4.54 (d, J = 2.6 Hz, 1H), 4.20 (q, J = 7.1 Hz, 2H), 3.23 (s, 1H), 2.67–

2.59 (m, 2H), 2.42–2.36 (m, 1H), 2.33 (s, 3H), 2.17–2.04 (m, 1H), 1.89–1.77 (m, 2H), 1.45–1.33(m, 1H), 1.29 (t, J = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): $\delta = 174.9$, 140.4, 136.3, 134.0, 128.8 (4C), 125.4, 74.2, 60.7, 48.6, 25.7, 24.1, 23.4, 21.1, 14.1. HRMS (ESI): m/z calcd for C₁₇H₂₂O₃+Na⁺: 297.1467 [M+Na]⁺; Found: 297.1461. HPLC conditions: Chiralcel IC-3 column (25 cm × 0.46 cm ID); *n*-hexane/2-propanol = 90:10; temp, rt; flow rate = 1.0 mL/min; 254 nm UV detector; $t_R = 16.15$ min (minor); $t_R = 12.04$ min (major).

(+)-Ethyl 2-hydroxy-3-((E)-4-methoxybenzylidene)cyclohexane-1-carboxylate ((+)-8c)

Colourless oil, 285 mg, 98% yield, 99% ee. $R_{\rm f} = 0.49$ (petroleum CO_2Et ether/ethyl acetate = 5:2 v/v). $[\alpha]_{\rm D}^{25} = +56.6$ (c = 1.0 CHCl₃). ¹H NMR (400 MHz, CDCl₃): $\delta = 7.14$ (d, J = 8.0 Hz, 2H), 6.85 (d, J = 8.0 Hz, 2H), 6.46 (s, 1H), 4.54 (d, J = 2.7 Hz, 1H), 4.19 (q, J = 8.0 Hz, 2H), 6.46 (s, 1H), 4.54 (d, J = 2.7 Hz, 1H), 4.19 (q, J = 8.0 Hz, 2H), 6.46 (s, 1H), 4.54 (d, J = 2.7 Hz, 1H), 4.19 (q, J = 8.0 Hz, 2H), 6.46 (s, 1H), 4.54 (d, J = 2.7 Hz, 1H), 4.19 (q, J = 8.0 Hz, 2H), 6.46 (s, 1H), 4.54 (d, J = 2.7 Hz, 1H), 4.19 (q, J = 8.0 Hz, 2H), 6.46 (s, 1H), 4.54 (d, J = 2.7 Hz, 1H), 4.19 (q, J = 8.0 Hz, 2H), 6.46 (s, 1H), 4.54 (d, J = 2.7 Hz, 1H), 4.19 (q, J = 8.0 Hz, 2H), 6.46 (s, 1H), 4.54 (d, J = 2.7 Hz, 1H), 4.19 (q, J = 8.0 Hz, 2H), 6.46 (s, 1H), 4.54 (d, J = 2.7 Hz, 1H), 4.19 (q, J = 8.0 Hz, 2H), 6.46 (s, 1H), 4.54 (d, J = 2.7 Hz, 1H), 4.19 (q, J = 8.0 Hz, 2H), 6.46 (s, 1H), 4.54 (d, J = 2.7 Hz, 1H), 4.19 (q, J = 8.0 Hz, 2H), 6.46 (s, 1H), 4.54 (d, J = 2.7 Hz, 1H), 4.19 (q, J = 8.0 Hz, 2H), 6.46 (s, 1H), 4.54 (d, J = 8.0 Hz, 2H), 6.46 (s, 1H), 4.54 (d, J = 8.0 Hz, 2H), 6.46 (s, 1H), 4.54 (d, J = 8.0 Hz, 2H), 6.46 (s, 1H), 4.54 (d, J = 8.0 Hz, 2H), 6.46 (s, 1H), 4.54 (d, J = 8.0 Hz, 2H), 6.46 (s, 1H), 4.54 (d, J = 8.0 Hz, 2H), 6.46 (s, 1H), 4.54 (d, J = 8.0 Hz, 2H), 6.40 (s, 1H), 4.54 (d, J = 8.0 Hz, 2H), 6.40 (s, 1H), 4.54 (d, J = 8.0 Hz, 2H), 6.40 (s, 1H), 4.54 (s, 1H), 4. 7.2 Hz, 2H), 3.79 (s, 3H), 3.24 (s, 1H), 2.66–2.57 (m, 2H), 2.42–2.31 (m, 1H), 2.17–2.01 (m, 1H), 1.90– 1.75 (m, 2H), 1.45–1.35 (m, 1H), 1.27 (t, J = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): $\delta = 174.9$, 158.2, 139.7, 130.0, 129.4, 125.0, 113.5, 74.2, 60.6, 55.1, 48.5, 25.6, 24.0, 23.3, 14.1. HRMS (ESI): m/z calcd for C₁₇H₂₂O₄+Na⁺: 313.1411 [M+Na]⁺; Found: 313.1408. HPLC conditions: Chiralcel IC-3 column (25 cm × 0.46 cm ID); *n*-hexane/2-propanol = 90:10; temp, rt; flow rate = 1.0 mL/min; 254 nm UV detector; $t_R = 28.60$ min (minor); $t_R = 18.61$ min (major).

(+)-Ethyl 3-((E)-4-(dimethylamino)benzylidene)-2-hydroxycyclohexane-1-carboxylate ((+)-8d)

Colourless oil, 291 mg, 96% yield, 99% ee. $R_f = 0.42$ (petroleum ether/ethyl acetate = 5:2 v/v). $[\alpha]_D^{25}$ +33.9 (*c* 1.0 CHCl₃). ¹H NMR (400 MHz, CDCl₃) : δ = 7.13 (d, *J* = 8.6 Hz, 2H), 6.69 (d, *J* = 8.8 Hz, 2H), 6.44 (s, 1H), 4.54 (d, *J* = 2.6 Hz, 1H), 4.20 (q, *J* = 7.1

Hz, 2H), 3.08 (s, 1H), 2.95 (s, 6H), 2.75–2.67 (m, 1H), 2.66–2.57 (m, 1H), 2.42–2.31 (m, 1H), 2.17–2.03 (m, 1H), 1.89–1.79 (m, 2H), 1.43–1.33 (m, 1H), 1.29 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): $\delta = 175.1$, 149.2, 138.1, 129.9, 125.8, 125.1, 112.0, 74.5, 60.7, 48.6, 40.5, 25.7, 24.1, 23.3, 14.2. HRMS (ESI): m/z calcd for C₁₈H₂₅NO₃+H⁺: 304.1913 [M+H]⁺; found: 304.1911. HPLC conditions: Chiralcel IC-3 column (25 cm × 0.46 cm ID); *n*-hexane/2-propanol = 83:17; temp, rt; flow rate = 1.0 mL/min; 254 nm UV detector; $t_R = 20.02$ min (minor); $t_R = 15.87$ min (major).

(+)-Ethyl 3-((E)-4-cyanobenzylidene)-2-hydroxycyclohexane-1-carboxylate ((+)-8e)

Colourless oil, 257 mg, 90% yield, 98% ee. $R_{\rm f} = 0.31$ (petroleum CO₂Et ether/ethyl acetate = 5:2 v/v). $[\alpha]_{\rm D}^{25}$ +81.4 (*c* 1.0 CHCl₃). ¹H NMR (400 MHz, CDCl₃): δ = 7.61 (d, *J* = 8.3 Hz, 2H), 7.31 (d, *J* = 8.3 Hz, 2H), 6.54 (s, 1H), 4.55 (d, *J* = 2.6 Hz, 1H), 4.21 (q, *J* = 6.2, 5.3

Hz, 2H), 3.44 (s, 1H), 2.75–2.62 (m, 1H), 2.51–2.37 (m, 2H), 2.21–2.04 (m, 1H), 1.93–1.76 (m, 2H), 1.49–1.37 (m, 1H), 1.30 (t, J = 7.1 Hz, 3H).¹³C NMR (101 MHz, CDCl₃): $\delta = 174.7$, 144.2, 141.9, 132.0, 129.5, 123.6, 118.9, 110.1, 73.8, 60.9, 48.4, 25.5, 24.6, 23.6, 14.2. HRMS (ESI): m/z calcd for C₁₇H₁₉NO₃+Na⁺: 308.1263 [M+Na]⁺; found: 308.1255. HPLC conditions: Chiralcel AS-H column (25 cm × 0.46 cm ID); *n*-hexane/2-propanol = 80:20; temp, rt; flow rate = 1.0 mL/min; 254 nm UV detector; $t_R = 14.69$ min (minor); $t_R = 19.57$ min (major).

(+)-Ethyl 2-hydroxy-3-((E)-4-(trifluoromethyl)benzylidene)cyclohexane-1-carboxylate ((+)-8f)

White soild, 318 mg, 97% yield, 96% ee. $R_{\rm f} = 0.52$ (petroleum CO_2Et ether/ethyl acetate = 5:2 v/v). M.p. 58–59 °C. $[\alpha]_{\rm D}^{25} = +62.0$ (c = 1.0 CHCl₃). ¹H NMR (400 MHz, CDCl₃): $\delta = 7.57$ (d, J = 7.9 Hz, 2H), 7.31 (d, J = 8.0 Hz, 2H), 6.55 (s, 1H), 4.57 (s, 1H), 4.21 (q, J

= 7.1 Hz, 2H), 3.47 (s, 1H), 2.76–2.63 (m, 1H), 2.57–2.36 (m, 2H), 2.21–2.05 (m, 1H), 1.95–1.77 (m, 2H), 1.48–1.35 (m, 1H), 1.29 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): $\delta = 174.7$, 143.2, 140.7, 129.1, 128.5 (q, ² $J_{C-F} = 33.3$ Hz), 125.0 (q, ³ $J_{C-F} = 3.0$ Hz), 124.2 (q, ¹ $J_{C-F} = 271.9$ Hz), 123.9, 73.8, 60.8, 48.5, 25.5, 24.4, 23.5, 14.1. HRMS (ESI): m/z calcd for C₁₇H₁₉F₃O₃+Na⁺: 351.1184 [M+Na]⁺; found: 351.1173. HPLC conditions: Chiralcel AD-H column (25 cm × 0.46 cm ID); *n*-hexane/2-propanol = 90:10; temp, rt; flow rate = 1.0 mL/min; 254 nm UV detector; $t_R = 9.41$ min (minor); $t_R = 8.24$ min (major).

(+)-Ethyl 3-((E)-4-fluorobenzylidene)-2-hydroxycyclohexane-1-carboxylate ((+)-8g)

Colourless oil, 270 mg, 97% yield, 97% ee. $R_{\rm f} = 0.53$ (petroleum ether/ethyl acetate = 5:2 v/v). [α]_D²⁵ = +74.5 (c = 1.0 CHCl₃). ¹H NMR (400 MHz, CDCl₃): δ = 7.21–7.09 (m, 2H), 7.04–6.90 (m, 2H), 6.47 (s, 1H), 4.52 (d, J = 2.7 Hz, 1H), 4.18 (q, J = 7.1 Hz, 1H), 3.34 (s,

1H), 2.66–2.56 (m, 1H), 2.55–2.43 (m, 1H), 2.41–2.29 (m, 1H), 2.17–2.01 (m, 1H), 1.88–1.75 (m, 2H), 1.42–1.30 (m, 1H), 1.27 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): $\delta = 174.8$, 161.5 (d, ¹ $J_{C-F} = 245.9$ Hz), 141.1, 132.9 (d, ⁴ $J_{C-F} = 3.3$ Hz), 130.4 (d, ³ $J_{C-F} = 8.0$ Hz), 124.2, 114.9 (d, ² $J_{C-F} = 21.3$ Hz), 73.9, 60.7, 48.5, 25.6, 24.1, 23.4, 14.1. HRMS (ESI): m/z calcd for C₁₆H₁₉FO₃+Na⁺: 301.1216 [M+Na]⁺; found: 301.1211. HPLC conditions: Chiralcel IC-3 column (25 cm × 0.46 cm ID); *n*-hexane/2-propanol = 93:7; temp, rt; flow rate = 1.0 mL/min; 254 nm UV detector; $t_R = 19.18$ min (minor); $t_R = 13.42$ min (major).

(+)-Ethyl 3-((*E*)-4-chlorobenzylidene)-2-hydroxycyclohexane-1-carboxylate ((+)-8h)

Colourless oil, 283 mg, 96% yield, 95% ee. $R_{\rm f} = 0.54$ (petroleum CO₂Et ether/ethyl acetate = 1:1 v/v). $[\alpha]_{\rm D}^{25} = +58.4$ (c = 1.0 CHCl₃). ¹H NMR (400 MHz, CDCl₃): $\delta = 7.27$ (d, J = 8.4 Hz, 2H), 7.13 (d, J = 8.4 Hz, 2H), 6.47 (s, 1H), 4.54 (d, J = 2.6 Hz, 1H), 4.20 (q, J = 7.2

Hz, 2H), 3.40 (s, 1H), 2.68–2.62 (m, 1H), 2.59–2.45 (m, 1H), 2.42–2.33 (m, 1H), 2.17–2.02 (m, 1H), 1.89–1.76 (m, 2H), 1.45–1.35 (m, 1H), 1.28 (s, J = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): $\delta = 174.9$, 141.8, 135.6, 132.3, 130.2, 128.3, 124.2, 73.9, 60.8, 48.4, 25.6, 24.2, 23.5, 14.1. HRMS (ESI): m/z calcd for C₁₆H₁₉ClO₃+Na⁺: 317.0915 [M+Na]⁺; Found: 317.0913. HPLC conditions: Chiralcel AD-3 column (25 cm × 0.46 cm ID); *n*-hexane/2-propanol = 90:10; temp, rt; flow rate = 1.0 mL/min; 254 nm UV detector; $t_R = 14.30$ min (minor); $t_R = 12.54$ min (major).

(+)-Ethyl 3-((E)-4-bromobenzylidene)-2-hydroxycyclohexane-1-carboxylate ((+)-8i)

Colourless oil, 326 mg, 96% yield, 97% ee. $R_{\rm f} = 0.54$ (petroleum ether/ethyl acetate = 5:2 v/v). $[\alpha]_{\rm D}^{25} = +69.8$ (c = 1.0 CHCl₃). ¹H NMR (400 MHz, CDCl₃): $\delta = 7.43$ (d, J = 7.6 Hz, 2H), 7.07 (d, J = 7.9 Hz, 2H), 6.45 (s, 1H), 4.53 (d, J = 2.5 Hz, 1H), 4.20 (q, J = 6.6

Hz, 2H), 3.37 (s, 1H), 2.70–2.61 (m, 1H), 2.57–2.48 (m, 1H), 2.44–2.33 (m, 1H), 2.18–2.05 (m, 1H), 1.91–1.74 (m, 2H), 1.45–1.33 (m, 1H), 1.29 (t, J = 6.7 Hz, 3H).¹³C NMR (101 MHz, CDCl₃): $\delta = 174.8$, 141.8, 135.8, 131.2, 130.5, 124.2, 120.4, 73.9, 60.7, 48.4, 25.5, 24.2, 23.4, 14.1. HRMS (ESI): m/z calcd for C₁₆H₁₉BrO₃+Na⁺: 361.0410 [M+Na]⁺; Found: 361.0408. HPLC conditions: Chiralcel AD-3 column (25 cm × 0.46 cm ID); *n*-hexane/2-propanol = 92:8; temp, rt; flow rate = 1.0 mL/min; 254 nm UV detector; $t_R = 14.39$ min (minor); $t_R = 12.61$ min (major).

(+)-Ethyl 2-hydroxy-3-((E)-3-methylbenzylidene)cyclohexane-1-carboxylate ((+)-8j)

Colourless oil, 261 mg, 95% yield, 97% ee. $R_{\rm f} = 0.56$ (petroleum ether/ethyl acetate = 5:2 v/v). $[\alpha]_{\rm D}^{25} = +63.5$ (c = 1.0 CHCl₃). ¹H NMR (400 MHz, CDCl₃): $\delta = 7.21$ (t, J = 7.8 Hz, 1H), 7.12–6.97 (m, 3H), 6.51 (s, 1H), 4.55 (d, J = 2.6 Hz, 1H), 4.21 (q, J = 7.1 Hz,

2H), 3.22 (s, 1H), 2.71–2.58 (m, 2H), 2.42–2.36 (m, 1H), 2.34 (s, 3H), 2.17–2.05 (m, 1H), 1.88–1.79 (m,

2H), 1.44–1.34 (m, 1H), 1.30 (t, J = 7.1 Hz, 3H).¹³C NMR (101 MHz, CDCl₃): $\delta = 175.0$, 140.8, 137.7, 136.9, 129.6, 128.0, 127.4, 125.9, 125.6, 74.2, 60.8, 48.6, 25.7, 24.2, 23.4, 21.4, 14.2. HRMS (ESI): m/z calcd for C₁₇H₂₂O₃+Na⁺: 297.1467 [M+Na]⁺; Found: 297.1465. HPLC conditions: Chiralcel AD-3 column (25 cm × 0.46 cm ID); *n*-hexane/2-propanol = 80:20; temp, rt; flow rate = 1.0 mL/min; 254 nm UV detector; $t_R = 12.71$ min (minor); $t_R = 14.63$ min (major).

(+)-Ethyl 3-((*E*)-3-bromobenzylidene)-2-hydroxycyclohexane-1-carboxylate ((+)-8k)

Colourless oil, 329 mg, 97% yield, 97% ee. $R_f = 0.54$ (petroleum CO_2Et ether/ethyl acetate = 5:2 v/v). $[\alpha]_D^{25} = +66.5$ (c = 1.0 CHCl₃). ¹H NMR (400 MHz, CDCl₃): $\delta = 7.38-7.32$ (m, 2H), 7.17 (t, J = 8.1Hz, 1H), 7.12 (d, J = 7.6 Hz, 1H), 6.46 (s, 1H), 4.53 (d, J = 2.6 Hz,

1H), 4.20 (q, J = 7.2 Hz, 2H), 3.45 (br s, 1H), 2.69–2.58 (m, 1H), 2.58–2.48 (m, 1H), 2.45–2.35 (m, 1H), 2.17–2.04 (m, 1H), 1.90–1.75 (m, 2H), 1.45–1.33 (m, 1H), 1.28 (s, J = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): $\delta = 174.8$, 142.4, 139.1, 131.7, 129.6, 129.6, 127.5, 123.9, 122.2, 73.8, 60.8, 48.4, 25.6, 24.3, 23.5, 14.12. HRMS (ESI): m/z calcd for C₁₆H₁₉BrO₃+Na⁺: 361.0410 [M+Na]⁺; Found: 361.0407. HPLC conditions: Chiralcel IC-3 column (25 cm × 0.46 cm ID); *n*-hexane/2-propanol = 94:6; temp, rt; flow rate = 1.0 mL/min; 254 nm UV detector; $t_R = 28.88$ min (minor); $t_R = 17.55$ min (major).

(+)-Ethyl 2-hydroxy-3-((E)-2-methylbenzylidene)cyclohexane-1-carboxylate ((+)-8l)

White soild, 255 mg, 93% yield, 97% ee. $R_f = 0.57$ (petroleum ether/ethyl acetate = 1:1 v/v). M.p. 50–51 °C. $[\alpha]_D^{25} = +63.5$ (c = 1.0 CHCl₃). ¹H NMR (400 MHz, CDCl₃): $\delta = 7.19-7.05$ (m, 4H), 6.49 (s, 1H), 4.59 (d, J = 2.9 Hz, 1H), 4.20 (q, J = 7.1 Hz, 2H), 3.38 (br s, 1H), 2.71–2.63 (m, 1H),

2.36–2.28 (m, 2H), 2.23 (s, 3H), 2.17–2.06 (m, 1H), 1.87–1.72 (m, 2H), 1.41–1.31 (m, 1H), 1.29 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): $\delta =$ 174.8, 140.9, 136.4, 136.0, 129.6, 129.1, 126.8, 125.2, 124.2, 73.8, 60.6, 48.6, 25.6, 24.4, 23.5, 19.8, 14.1. HRMS (ESI): m/z calcd for C₁₇H₂₂O₃+Na⁺: 297.1467 [M+Na]⁺; Found: 297.1459. HPLC conditions: Chiralcel IC-3 column (25 cm × 0.46 cm ID); *n*-hexane/2-propanol = 90:10; temp, rt; flow rate = 1.0 mL/min; 254 nm UV detector; $t_R =$ 15.09 min (minor); $t_R =$ 9.71 min (major).

(+)-Ethyl 3-((E)-2-chlorobenzylidene)-2-hydroxycyclohexane-1-carboxylate ((+)-8m)

Colourless oil, 289 mg, 98% yield, 98% ee. $R_{\rm f} = 0.53$ (petroleum ether/ethyl acetate = 5:2 v/v). $[\alpha]_{\rm D}^{25} = +48.0$ (c = 1.0 CHCl₃). ¹H NMR (400 MHz, CDCl₃): $\delta = 7.37$ (d, J = 7.4 Hz, 1H), 7.26–7.14 (m, 3H), 6.54 (s, 1H), 4.62 (d, J = 2.9 Hz, 1H), 4.21 (q, J = 7.1 Hz, 2H), 3.36 (s, 1H),

2.77–2.58 (m, 1H), 2.40–2.32 (m, 2H), 2.19–2.02 (m, 1H), 1.88–1.73 (m, 2H), 1.47–1.34 (m, 1H), 1.30 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): $\delta = 174.7$, 142.5, 135.3, 133.8, 130.7, 129.2, 128.1, 126.2, 122.5, 73.7, 60.7, 48.5, 25.5, 24.6, 23.5, 14.1. HRMS (ESI): m/z calcd for C₁₆H₁₉ClO₃+Na⁺: 317.0920 [M+Na]⁺; found: 317.0917. HPLC conditions: Chiralcel AD-3 column (25 cm × 0.46 cm ID); *n*-hexane/2-propanol = 95:5; temp, rt; flow rate = 1.0 mL/min; 210 nm UV detector; $t_R = 19.16$ min (minor); $t_R = 16.60$ min (major).

(+)-Ethyl 3-((E)-2-bromobenzylidene)-2-hydroxycyclohexane-1-carboxylate ((+)-8n)

Colourless oil, 322 mg, 95% yield, 97% ee. $R_f = 0.54$ (petroleum ether/ethyl acetate = 5:2 v/v). [α]_D²⁵ = +41.3 (c = 1.0 CHCl₃). ¹H NMR (400 MHz, CDCl₃): δ = 7.56 (d, J = 8.0 Hz, 1H), 7.26 (t, J = 7.4 Hz, 1H), 7.20 (d, J = 7.1 Hz, 1H), 7.10 (t, J = 7.6 Hz, 1H), 6.49 (s, 1H), 4.62 (d, J

= 2.6 Hz, 1H), 4.21 (q, J = 6.9 Hz, 2H), 3.37 (s, 1H), 2.75–2.64 (m, 1H), 2.38–2.28 (m, 2H), 2.17–2.04 (m, 1H), 1.87–1.74 (m, 2H), 1.45–1.33 (m, 1H), 1.30 (t, J = 6.9 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): $\delta = 174.8, 142.1, 137.1, 132.4, 130.8, 128.3, 126.8, 124.8, 124.2, 73.6, 60.8, 48.5, 25.5, 24.6, 23.5, 14.1.$ HRMS (ESI): m/z calcd for C₁₆H₁₉BrO₃+Na⁺: 361.0410 [M+Na]⁺; Found: 361.0405. HPLC conditions: Chiralcel AD-3 column (25 cm × 0.46 cm ID); *n*-hexane/2-propanol = 92:8; temp, rt; flow rate = 1.0 mL/min; 210 nm UV detector; $t_R = 14.48$ min (minor); $t_R = 12.04$ min (major).

(+)-Ethyl (E)-2-hydroxy-3-(naphthalen-1-ylmethylene)cyclohexane-1-carboxylate ((+)-80)

White solid, 292 mg, 94% yield, 98% ee. $R_f = 0.32$ (petroleum ether/ethyl acetate = 1:1 v/v). M.p. 83–84 °C. $[\alpha]_D^{25} = +42.1$ (c = 1.0 CHCl₃). ¹H NMR (400 MHz, CDCl₃): $\delta = 8.03-7.91$ (m, 1H), 7.88–7.82 (m, 1H), 7.76 (d, J = 8.2 Hz, 1H), 7.52–7.40 (m, 3H), 7.28 (d, J

= 7.0 Hz, 1H), 6.94 (s, 1H), 4.72 (d, J = 2.9 Hz, 1H), 4.24 (q, J = 7.1 Hz, 2H), 3.44 (s, 1H), 2.82–2.73 (m, 1H), 2.39–2.25 (m, 2H), 2.19–2.08 (m, 1H), 1.91–1.80 (m, 1H), 1.77–1.67 (m, 1H), 1.42–1.34 (m, 1H), 1.32 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): $\delta = 175.0$, 142.7, 134.2, 133.5, 132.1, 128.3, 127.3, 126.5, 125.8, 125.8, 125.2, 125.1, 123.2, 73.9, 60.8, 48.8, 25.7, 25.1, 23.9, 14.2. HRMS (ESI): m/z calcd for C₂₀H₂₂O₃+Na⁺: 333.1467 [M+Na]⁺; found: 333.1457. HPLC conditions: Chiralcel AS-3 column (25 cm × 0.46 cm ID); *n*-hexane/2-propanol = 92:8; temp, rt; flow rate = 1.0 mL/min; 220 nm UV detector; $t_R = 10.37$ min (minor); $t_R = 15.36$ min (major).

(+)-Ethyl (E)-2-hydroxy-3-(naphthalen-2-ylmethylene)cyclohexane-1-carboxylate ((+)-8p)

White soild, 298 mg, 96% yield, 92% *ee*. $R_f = 0.33$ (petroleum ether/ethyl acetate = 1:1 v/v). M.p. 62–63 °C. $[\alpha]_D^{25} = +79.0$ ($c = 1.0 \text{ CHCl}_3$). ¹H NMR (400 MHz, CDCl₃): $\delta = 7.84-7.75$ (m, 3H), 7.66 (s, 1H), 7.49–7.41 (m, 2H), 7.35 (dd, J = 8.4, 1.7 Hz, 1H),

6.69 (s, 1H), 4.61 (d, J = 2.9 Hz, 1H), 4.22 (q, J = 7.1 Hz, 2H), 3.30 (s, 1H), 2.75–2.62 (m, 2H), 2.52–2.41 (m, 1H), 2.21–2.07 (m, 1H), 1.91–1.79 (m, 1H), 1.48–1.34 (m, 1H), 1.31 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): $\delta = 175.0$, 141.4, 134.5, 133.2, 132.1, 127.8, 127.6 (2C), 127.5, 127.3, 126.0, 125.7, 125.5, 74.1, 60.8, 48.6, 25.7, 24.4, 23.5, 14.2. HRMS (ESI): m/z calcd for C₂₀H₂₂O₃+Na⁺: 333.1467 [M+Na]⁺; found: 333.1463. HPLC conditions: Chiralcel IC-3 column (25 cm × 0.46 cm ID); *n*-hexane/2-propanol = 90:10; temp, rt; flow rate = 1.0 mL/min; 254 nm UV detector; $t_R = 20.52$ min (minor); $t_R = 14.91$ min (major).

(+)-Ethyl (E)-3-(benzo[d][1,3]dioxol-5-ylmethylene)-2-hydroxycyclohexane-1-carboxylate ((+)-8q)

Colourless oil, 295 mg, 97% yield, 98% ee. $R_{\rm f} = 0.46$ (petroleum ether/ethyl acetate = 5:2 v/v). $[\alpha]_{\rm D}^{25} = +61.2$ (c = 1.0 CHCl₃). ¹H NMR (400 MHz, CDCl₃): $\delta = 6.77$ (d, J = 7.9 Hz, 1H), 6.75–6.64 (m, 2H), 6.43 (s, 1H), 5.99–5.88 (m, 2H), 4.52 (d, J = 2.8 Hz, 1H), 4.20 (q, J = 7.1 Hz, 2H), 3.33–3.17 (m, 1H), 2.68–2.53 (m, 2H), 2.43–2.30 (m, 1H), 2.16–2.03 (m, 1H), 1.91–1.76 (m, 2H), 1.43–1.32 (m, 1H), 1.29 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): $\delta = 174.9$, 147.3, 146.4, 140.2, 130.9, 125.1, 122.4, 109.2, 108.0, 100.9, 74.1, 60.7, 48.5, 25.6, 24.1, 23.3, 14.1. HRMS (ESI): m/z calcd for C₁₇H₂₀O₅+Na⁺: 327.1208 [M+Na]⁺; found: 327.1207. HPLC conditions: Chiralcel AD-3 column (25 cm × 0.46 cm ID); *n*-hexane/2-propanol = 92:8; temp, rt; flow rate = 1.0 mL/min; 254 nm UV detector; $t_R = 20.35$ min (minor); $t_R = 25.07$ min (major).

(+)-Ethyl (E)-2-hydroxy-3-(pyridin-2-ylmethylene)cyclohexane-1-carboxylate ((+)-8r)

White soild, 248 mg, 95% yield, >99% ee. $R_{\rm f} = 0.21$ (petroleum ether/ethyl acetate = 1:1 v/v). M.p. 54–55 °C. $[\alpha]_{\rm D}^{25} = +104.4$ (c = 1.0 CHCl₃). ¹H NMR (400 MHz, CDCl₃): $\delta = 8.57$ (d, J = 4.7 Hz, 1H), 7.67–7.57 (m, 1H), 7.19 (d, J = 6.4 Hz, 1H), 7.15–7.06 (m, 1H), 6.53 (s, 1H),

4.62–4.54 (m, 1H), 4.19 (q, J = 7.2 Hz, 2H), 3.42 (br s, 1H), 3.10–2.98 (m, 1H), 2.72–2.65 (m, 1H), 2.62–2.51 (m, 1H), 2.19–2.03 (m, 1H), 1.87–1.80 (m, 2H), 1.48–1.34 (m, 1H), 1.28 (t, J = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): $\delta = 174.3$, 156.1, 149.0, 145.6, 136.0, 124.3, 124.3, 124.2, 121.2, 74.0, 60.5, 25.4, 24.2, 23.1, 14.1. HRMS (ESI): m/z calcd for C₁₅H₁₉NO₃+H⁺: 262.1443 [M+H]⁺; Found: 262.1440. HPLC conditions: Chiralcel OJ-H column (25 cm × 0.46 cm ID); *n*-hexane/2-propanol = 97:3; temp, rt; flow rate = 1.0 mL/min; 254 nm UV detector; $t_R = 35.04$ min (major).

(+)-Ethyl (E)-3-(furan-2-ylmethylene)-2-hydroxycyclohexane-1-carboxylate ((+)-8s)

Colourless oil, 238 mg, 95% yield, 99% ee. $R_f = 0.46$ (petroleum CO₂Et ether/ethyl acetate = 5:2 v/v). $[\alpha]_D^{25} = +96.3$ (c = 1.0 CHCl₃). ¹H NMR (400 MHz, CDCl₃): $\delta = 7.40-7.32$ (m, 1H), 6.41–6.32 (m, 1H), 6.30–6.17 (m, 2H), 4.49 (d, J = 3.2 Hz, 1H), 4.19 (q, J = 7.1 Hz, 2H), 3.26 (s, 1H),

3.03–2.89 (m, 1H), 2.67–2.58 (m, 1H), 2.58–2.48 (m, 1H), 2.16–2.04 (m, 1H), 1.90–1.79 (m, 2H), 1.48–1.37 (m, 1H), 1.28 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ = 174.7, 152.3, 141.4, 139.5, 113.7, 110.9, 109.7, 73.9, 60.7, 48.5, 25.3, 24.9, 23.4, 14.1. HRMS (ESI): m/z calcd for C₁₄H₁₈O₄+Na⁺: 273.1103 [M+Na]⁺; found: 273.1093. HPLC conditions: Chiralcel AD-H column (25 cm × 0.46 cm ID); *n*-hexane/2-propanol = 90:10; temp, rt; flow rate = 1.0 mL/min; 254 nm UV detector; t_R = 10.36 min (minor); t_R = 12.67 min (major).

(+)-Ethyl (E)-2-hydroxy-3-(thiophen-2-ylmethylene)cyclohexane-1-carboxylate ((+)-8t)

Colourless oil, 256 mg, 96% yield, 99% ee. $R_f = 0.47$ (petroleum ether/ethyl acetate = 5:2 v/v). $[\alpha]_D^{25} = +103.7$ (c = 1.0 CHCl₃). ¹H NMR (400 MHz, CDCl₃): $\delta = 7.28$ (d, J = 4.8 Hz, 1H), 7.02–6.94 (m, 2H), 6.60 (s, 1H), 4.54 (d, J = 2.8 Hz, 1H), 4.20 (q, J = 7.1 Hz, 2H), 3.20 (s, 1H),

2.92–2.82 (m, 1H), 2.68–2.58 (m, 1H), 2.55–2.46 (m, 1H), 2.17–2.04 (m, 1H), 1.93–1.81 (m, 2H), 1.48–1.37 (m, 1H), 1.29 (t, J = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ = 174.9, 139.8, 139.5, 127.9, 126.7, 125.0, 118.4, 74.2, 60.8, 48.6, 25.3, 25.1, 23.4, 14.2. HRMS (ESI): m/z calcd for C₁₄H₁₈O₃S+Na⁺: 289.0874 [M+Na]⁺; found: 289.0870. HPLC conditions: Chiralcel AD-H column (25 cm × 0.46 cm ID); *n*-hexane/2-propanol = 90:10; temp, rt; flow rate = 1.0 mL/min; 254 nm UV detector; $t_{\rm R}$ = 11.72 min (minor); $t_{\rm R}$ = 14.59 min (major).

(+)-Ethyl (*E*)-2-hydroxy-3-((1-methyl-1*H*-pyrrol-2-yl)methylene)cyclohexane-1-carboxylate ((+)-8u)

Colourless oil, 250 mg, 95% yield, >99% ee. $R_f = 0.43$ (petroleum ether/ethyl acetate = 5:2 v/v). $[\alpha]_D^{25} = +61.3$ (c = 1.0 CHCl₃). ¹H NMR (400 MHz, CDCl₃): $\delta = 6.65-6.55$ (m, 1H), 6.25 (s, 1H), 6.18–6.14 (m, 1H), 6.14–6.09 (m, 1H), 4.53 (d, J = 2.7 Hz, 1H), 4.19 (q, J = 7.1 Hz,

2H), 3.56 (s, 3H), 3.20 (s, 1H), 2.80–2.72 (m, 1H), 2.66–2.59 (m, 1H), 2.48–2.38 (m, 1H), 2.18–2.04 (m, 1H), 1.89–1.77 (m, 2H), 1.46–1.34 (m, 1H), 1.29 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): $\delta = 174.9$, 139.6, 129.1, 122.2, 114.3, 109.2, 107.3, 74.2, 60.7, 48.6, 34.1, 25.3, 24.7, 23.4, 14.1. HRMS (ESI): m/z calcd for C₁₅H₂₁NO₃+H⁺: 264.1600 [M+H]⁺; found: 264.1595. HPLC conditions: Chiralcel IC-3 column (25 cm × 0.46 cm ID); *n*-hexane/2-propanol = 90:10; temp, rt; flow rate = 1.0 mL/min; 254 nm UV detector; $t_R = 14.90$ min (major).

(1*S*,2*S*)-(+)-Ethyl (*E*)-2-hydroxy-3-((1-tosyl-1H-indol-3-yl)methylene)cyclohexane-1-carboxylate ((1*S*,2*S*)-8v)

White soild, 417 mg, 92% yield, >99% ee. $R_{\rm f} = 0.51$ (petroleum ether/ethyl acetate = 1:1 v/v). M.p. 119–120 °C. $[\alpha]_{\rm D}^{25} = +39.4$ (c = 1.0 CHCl₃). ¹H NMR (400 MHz, CDCl₃): $\delta = 7.98$ (d, J = 8.4 Hz, 1H), 7.75 (d, J = 8.4 Hz, 2H), 7.52–7.44 (m, 2H), 7.35–7.29 (m, 1H),

7.24 (d, J = 7.8 Hz, 1H), 7.20 (d, J = 8.3 Hz, 2H), 6.43 (s, 1H), 4.61 (d, J = 2.6 Hz, 1H), 4.21 (q, J = 7.1 Hz, 2H), 3.37 (s, 1H), 2.71–2.64 (m, 1H), 2.62–2.54 (m, 1H), 2.51–2.42 (m, 1H), 2.32 (s, 3H), 2.20–2.08 (m, 1H), 1.91–1.80 (m, 2H), 1.45–1.33 (m, 1H), 1.30 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): $\delta = 174.9$, 144.9, 143.1, 135.0, 134.6, 130.9, 129.8, 126.7, 124.8, 123.7, 123.2, 119.7, 118.5, 114.4, 113.6, 73.9, 60.8, 48.4, 25.5, 23.5, 21.5, 14.2. HRMS (ESI): m/z calcd for C₂₅H₂₇NO₅S+Na⁺: 476.1508 [M+Na]⁺; found: 476.1501. HPLC conditions: Chiralcel AD-3 column (25 cm × 0.46 cm ID); *n*-hexane/2-propanol = 90:10; temp, rt; flow rate = 1.0 mL/min; 220 nm UV detector; $t_R = 35.35$ min (major).

The product **8v** (10 mg) was dissolved in the mixture solvent of CH₂Cl₂ (0.5 mL) and *n*-hexane (1.5 mL). After slowly evaporation of solvents at ambient temperature, the fine crystals which were suitable for the X-ray diffraction analyses were obtained. The intensity data were collected on an a Rigaku 007HF Saturn724 diffractometer using graphite-monochromated Mo K α ($\lambda = 0.71073$ Å) radiation. The absolute configuration of **8v** was determined as (1*S*,2*S*). The crystal structure (OPTEP representation, 50% thermal probability ellpsoids) and the data were outlined below (**Table S1**).

S24

Empirical formula	C ₂₅ H ₂₇ NO ₅ S
Formula weight	453.55
Temperature	113(2) K
Wavelength	0.71073 Å
Crystal system, space group	Monoclinic, P2(1)
	$a = 9.954(2) A$ $\alpha = 90 deg.$
Unit cell dimensions	$b = 14.826(3) A$ $\beta = 94.53(3) deg.$
	$c = 15.404(3) A$ $\gamma = 90 deg.$
Volume	2266.4(8) Å ³
Z, Calculated density	4, 1.329 Mg/m ³
Absorption coefficient	0.180 mm ⁻¹
F(000)	960
Crystal size	0.200 x 0.180 x 0.120 mm
Theta range for data collection	1.909 to 27.909 deg.
Limiting indices	-13≤h≤12, -19≤k≤19, -20≤1≤20
Reflections collected / unique	24519 / 10608 [R(int) = 0.0460]
Completeness to theta $= 67.684$	99.9 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	1 and 0.8206
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	10608 / 1 / 583
Goodness-of-fit on F ²	0.994
Final R indices [I>2sigma(I)]	$R_1 = 0.0465, wR_2 = 0.1097$
R indices (all data)	$R_1 = 0.0568, wR_2 = 0.1169$
Absolute structure parameter	-0.02(4)
Extinction coefficient	n/a
Largest diff. peak and hole	0.273 and -0.330 e.A ⁻³

Table S1. Crystal data and structure refinement for 8v (CCDC Number: 1936853)

(+)-Ethyl 9-((E)-2-bromobenzylidene)-8-hydroxy-1,4-dioxaspiro[4.5]decane-7-carboxylate ((+)-8w)

White solid, 381 mg, 96% yield. 99% ee. $R_{\rm f} = 0.41$ (petroleum ether/ethyl acetate = 1:1 v/v). M.p. 72–73 °C. $[\alpha]_{\rm D}^{25} = +55.5$ (*c* = 1.0 CHCl₃). ¹H NMR (400 MHz, CDCl₃): $\delta = 7.57$ (d, J = 8.0 Hz, 1H), 7.37 (d, J = 7.4 Hz, 1H), 7.30–7.23 (m, 2H), 7.16–7.07 (m, 1H), 6.62 (s, 1H), 4.70 (d, J = 2.7 Hz, 1H), 4.22 (q, J = 7.1 Hz, 2H), 4.01–3.89 (m, 3H),

3.88–3.80 (m, 1H), 2.96 (s, 1H), 2.91 (d, J = 12.7 Hz, 1H), 2.61 (d, J = 14.1 Hz, 1H), 2.55 (d, J = 14.1 Hz, 1H), 2.35 (t, J = 13.1 Hz, 1H), 1.95 (d, J = 13.1 Hz, 1H), 1.31 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): $\delta = 174.0$, 138.3, 136.6, 132.5, 131.0, 128.6, 127.8, 126.8, 124.3, 108.5, 72.67, 64.6, 64.4, 61.0, 45.4, 33.8, 32.0, 14.2. HRMS (ESI): m/z calcd for C₁₈H₂₁BrO₅+Na⁺: 419.0470 [M+Na]⁺; found: 419.0464. HPLC conditions: Chiralcel AD-3 column (25 cm × 0.46 cm ID); *n*-hexane/2-propanol = 90:10; temp, rt; flow rate = 1.0 mL/min; 254 nm UV detector; $t_{\rm R} = 20.91$ min (minor); $t_{\rm R} = 18.57$ min (major).

(+)-1-(tert-Butyl) 3-ethyl 5-((E)-benzylidene)-4-hydroxypiperidine-1,3-dicarboxylate ((+)-8x)

Colourless oil, 350 mg, 97% yield, 98% ee. $R_{\rm f} = 0.32$ (petroleum ether/ethyl acetate = 5:2 v/v). $[\alpha]_{\rm D}^{25} = +46.4$ (c = 1.0 CHCl₃). ¹H NMR (400 MHz, CDCl₃): $\delta = 7.40-7.31$ (m, 2H), 7.30–7.22 (m, 4H), 6.63 (s, 1H), 4.75 (d, J = 14.5 Hz, 1H), 4.71–4.64 (m, 1H), 4.22 (q, J = 7.1 Hz, 2H), 4.19–4.07 (m, 1H), 3.88 (d, J = 15.4 Hz, 1H), 3.55 (br s, 1H), 3.22–3.03 (m, 1H), 2.90–

2.77 (m, 1H), 1.45–1.08 (m, 12H). ¹³C NMR (101 MHz, CDCl₃): $\delta = 172.2$, 154.3, 135.7, 135.3, 128.8, 128.3, 127.7, 127.3, 79.9, 72.3, 61.1, 47.3, 41.4, 40.3, 28.0, 14.1. HRMS (ESI): *m/z* calcd for C₂₀H₂₇NO₅+H⁺: 362.1967 [M+H]⁺; found: 362.1959. HPLC conditions: Chiralcel AD-H column (25 cm × 0.46 cm ID); *n*-hexane/2-propanol = 92:8; temp, rt; flow rate = 1.0 mL/min; 254 nm UV detector; $t_R = 8.95$ min (minor); $t_R = 10.56$ min (major).

(+)-Ethyl 5-((E)-benzylidene)-4-hydroxytetrahydro-2H-pyran-3-carboxylate ((+)-8y)

White solid, 244 mg, 93% yield, 97% ee. $R_{\rm f} = 0.47$ (petroleum ether/ethyl CO₂Et acetate = 5:2 v/v). M.p. 58–59 °C. $[\alpha]_{\rm D}^{25}$ +7.2 (*c* 1.0 CHCl₃). ¹H NMR (400 MHz, CDCl₃): $\delta = 7.37-7.29$ (m, 2H), 7.28–7.21 (m, 2H), 7.13 (d, *J* = 7.2 Hz, 2H), 6.68 (s, 1H), 4.72–4.64 (m, 1H), 4.41 (s, 1H), 4.27–4.11 (m, 3H),

3.92 (dd, J = 11.5, 4.3 Hz, 1H), 3.43 (d, J = 4.6 Hz, 1H), 3.07–2.91 (m, 1H), 1.28 (t, J = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): $\delta = 171.8$, 136.3, 135.5, 128.8, 128.2, 127.5, 127.2, 71.1, 64.3, 64.0, 60.9, 48.2, 14.0. HRMS (ESI): m/z calcd for C₁₅H₁₈O₄+Na⁺: 285.1103 [M+Na]⁺; found: 285.1093. HPLC conditions: Chiralcel AS-3 column (25 cm × 0.46 cm ID); *n*-hexane/2-propanol = 90:10; temp, rt; flow rate = 1.0 mL/min; 254 nm UV detector; $t_R = 21.57$ min (minor); $t_R = 14.61$ min (major).

(+)-Ethyl (E)-2-hydroxy-3-((E)-3-phenylallylidene)cyclohexane-1-carboxylate ((+)-8z)

Colourless oil, 272 mg, 95% yield, 99% ee. $R_{\rm f} = 0.40$ (petroleum ether/ethyl acetate = 5:2 v/v). $[\alpha]_{\rm D}^{25} = +175.4$ (c = 1.0 CHCl₃). ¹H NMR (400 MHz, CDCl₃): $\delta = 7.40$ (d, J = 7.4 Hz, 2H), 7.34–7.28 (m, 2H), 7.25–7.18 (m, 1H), 7.01 (dd, J = 15.5, 11.0 Hz, 1H), 6.57 (d, J = 15.5

Hz, 1H), 6.22 (d, J = 11.0 Hz, 1H), 4.49 (d, J = 2.7 Hz, 1H), 4.19 (q, J = 7.2 Hz, 2H), 3.17 (s, 1H), 2.67–2.53 (m, 2H), 2.47–2.37 (m, 1H), 2.16–2.04 (m, 1H), 1.92–1.80 (m, 2H), 1.45–1.33 (m, 1H), 1.28 (t, J = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): $\delta = 174.8$, 141.2, 137.4, 133.1, 128.6, 127.5, 126.3, 125.2, 123.9, 73.8, 60.7, 48.5, 25.6, 24.5, 23.5, 14.2. HRMS (ESI): m/z calcd for C₁₈H₂₂O₃+Na⁺: 309.1467 [M+Na]⁺; found: 309.1467. HPLC conditions: Chiralcel AD-3 column (25 cm × 0.46 cm ID); *n*-hexane/2-propanol = 90:10; temp, rt; flow rate = 1.0 mL/min; 254 nm UV detector; $t_R = 10.83$ min (minor); $t_R = 12.59$ min (major).

(+)-Ethyl 2-hydroxy-3-methylenecyclohexane-1-carboxylate ((+)-8aa)

Colourless liquid, 99 mg, 54% yield, 94% ee. $R_{\rm f} = 0.15$ (petroleum ether/ethyl acetate = 5:1 v/v). $[\alpha]_{\rm D}^{25} = +41.6$ (c = 1.0 CHCl₃). ¹H NMR (400 MHz, CDCl₃): $\delta = 4.95$ (s, 1H), 4.83 (s, 1H), 4.46 (d, J = 3.3 Hz, 1H), 4.18 (q, J = 7.1 Hz, 2H), 3.24 (s, 1H), 2.61–2.53 (m, 1H), 2.47–2.37 (m, 1H), 2.15–2.00 (m, 2H),

1.83–1.73 (m, 2H), 1.46–1.35 (m, 1H), 1.28 (t, J = 7.1 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃): $\delta = 174.8$, 147.9, 110.1, 72.2, 60.7, 48.2, 30.2, 25.9, 23.6, 14.1. HRMS (ESI): m/z calcd for C₁₀H₁₆O₃+Na⁺: 207.0997 [M+Na]⁺; found: 207.0993. HPLC conditions: Chiralcel AD-3 column (25 cm × 0.46 cm ID);

n-hexane/2-propanol = 95:5; temp, rt; flow rate = 1.0 mL/min; 254 nm UV detector; t_R = 13.52 min (minor); t_R = 14.46 min (major).

The by-product of the asymmetric hydrogenation of **8aa** is *cis,cis*-ethyl 2-hydroxy-3-methylcyclohexane-1-carboxylate.

Colourless liquid, 76 mg, 41% yield, 1.2% ee. $R_f = 0.23$ (petroleum ether/ethyl acetate = 5:1 v/v). ¹H NMR (400 MHz, CDCl₃): $\delta = 4.16$ (q, J = 7.2 Hz, 2H), 4.03 (s, 1H), 2.92 (s, 1H), 2.55–2.23 (m, 1H), 1.83–1.67 (m, 3H), 1.55–1.30 (m, 4H), 1.27 (t, J = 7.1 Hz, 3H), 1.01 (d, J = 6.1 Hz, 3H). ¹³C NMR (101 MHz,

CDCl₃): $\delta = 175.8$, 69.9, 60.4, 47.8, 36.2, 27.0, 25.1, 22.3, 18.4, 14.1. HRMS (ESI): *m/z* calcd for C₁₂H₁₆O₃+Na⁺: 209.1154 [M+Na]⁺; found: 209.1150. HPLC conditions: Chiralcel AC-3 column (25 cm × 0.46 cm ID); *n*-hexane/2-propanol = 90:10; temp, rt; flow rate = 1.0 mL/min; 210 nm UV detector; *t*_R = 25.43 min (minor); *t*_R = 10.37 min (major).

(+)-Ethyl (E)-3-ethylidene-2-hydroxycyclohexane-1-carboxylate ((+)-8ab)

Colourless oil, 186 mg, 94% yield, 95% ee. $R_f = 0.58$ (petroleum ether/ethyl acetate = 5:2 v/v). $[\alpha]_D^{25} = +94.0$ (c = 1.0 CHCl₃). ¹H NMR (400 MHz, CDCl₃): $\delta = 5.51$ (q, J = 6.6 Hz, 1H), 4.39 (d, J = 2.4 Hz, 1H), 4.17 (q, J = 7.1 Hz, 2H), 3.03 (s, 1H), 2.53–2.48 (m, 1H), 2.42–2.32 (m, 1H), 2.21–2.10

(m, 1H), 2.09–1.97 (m, 1H), 1.87–1.77 (m, 1H), 1.65–1.57 (d, J = 6.8 Hz, 1H), 1.34–1.21 (m, 4H). ¹³C NMR (101 MHz, CDCl₃): $\delta = 175.1$, 138.6, 120.2, 73.9, 60.5, 48.4, 25.5, 23.3, 22.8, 14.1, 12.5. HRMS (ESI): m/z calcd for C₁₁H₁₈O₃+Na⁺: 221.1154 [M+Na]⁺; found: 221.1149. HPLC conditions: Chiralcel IC-3 column (25 cm × 0.46 cm ID); *n*-hexane/2-propanol = 90:10; temp, rt; flow rate = 1.0 mL/min; 210 nm UV detector; $t_R = 11.69$ min (minor); $t_R = 13.44$ min (major).

(+)-Ethyl (E)-2-hydroxy-3-propylidenecyclohexane-1-carboxylate ((+)-8ac)

Colourless oil, 204 mg, 96% yield, >99% ee. $R_{\rm f}$ = 0.60 (petroleum ether/ethyl acetate = 5:2 v/v). [α]_D²⁵ = +57.6 (*c* = 1.0 CHCl₃). ¹H NMR (400 MHz, CDCl₃): δ = 5.43 (t, *J* = 7.0 Hz, 1H), 4.37 (d, *J* = 2.6 Hz, 1H), 4.17 (q, *J* = 7.1 Hz, 2H), 3.04 (s, 1H), 2.54–2.45 (m, 1H), 2.37–2.30 (m, 1H), 2.21–2.12 (m, 1H),

2.08–1.99 (m, 3H), 1.87–1.78 (m, 2H), 1.33–1.21 (m, 4H), 0.96 (t, J = 7.5 Hz, 3H).¹³C NMR (101 MHz, CDCl₃): $\delta = 175.1$, 137.4, 127.8, 74.0, 60.5, 48.5, 25.8, 23.4, 23.2, 20.2, 14.3, 14.1. HRMS (ESI): m/z calcd for C₁₂H₂₀O₃+Na⁺: 235.1310 [M+Na]⁺; found: 235.1306. HPLC conditions: Chiralcel IC-3 column (25 cm × 0.46 cm ID); *n*-hexane/2-propanol = 90:10; temp, rt; flow rate = 1.0 mL/min; 210 nm UV detector; $t_{\rm R} = 10.19$ min (major).

(+)-Ethyl (E)-3-butylidene-2-hydroxycyclohexane-1-carboxylate ((+)-8ad)

Colourless oil, 220 mg, 97% yield, 99% ee. $R_f = 0.61$ (petroleum ether/ethyl acetate = 5:2 v/v). [α]_D²⁵ = +72.3 (c = 1.0 CHCl₃). ¹H NMR (400 MHz, CDCl₃): δ = 5.43 (t, J = 7.2 Hz, 1H), 4.39 (d, J = 2.5 Hz, 1H), 4.17 (q, J = 7.1 Hz, 2H), 3.04 (s, 1H), 2.57–2.42 (m, 1H), 2.39–2.28 (m, 1H), 2.22–2.12

(m, 1H), 2.10–1.95 (m, 3H), 1.86–1.76 (m, 2H), 1.44–1.30 (m, 3H), 1.27 (t, J = 7.1 Hz, 3H), 0.89 (t, J = 7.4 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): $\delta = 175.1$, 138.1, 126.0, 74.1, 60.5, 48.6, 28.9, 25.7, 23.4, 23.3, 22.7, 14.10, 13.7. HRMS (ESI): m/z calcd for C₁₃H₂₂O₃+Na⁺: 249.1467 [M+Na]⁺; found: 249.1464.

HPLC conditions: Chiralcel IC-3 column (25 cm × 0.46 cm ID); *n*-hexane/2-propanol = 90:10; temp, rt; flow rate = 1.0 mL/min; 210 nm UV detector; $t_R = 10.73$ min (minor); $t_R = 11.22$ min (major).

(+)-Ethyl (E)-2-hydroxy-3-pentylidenecyclohexane-1-carboxylate ((+)-8ae)

Colourless oil, 236 mg, 98% yield, 99% ee. $R_{\rm f} = 0.51$ (petroleum ether/ethyl acetate = 5:2 v/v). $[\alpha]_{\rm D}^{25} = +66.8$ (c = 1.0 CHCl₃). ¹H NMR (400 MHz, CDCl₃): $\delta = 5.43$ (t, J = 7.4 Hz, 1H), 4.39 (d, J = 2.7 Hz, 1H), 4.17 (q, J = 7.2 Hz, 2H), 3.01 (s, 1H), 2.54–2.46 (m, 1H), 2.38–2.31 (m, 1H), 2.22–2.13

(m, 1H), 2.09–1.97 (m, 3H), 1.88–1.77 (m, 2H), 1.38–1.24 (m, 8H), 0.89 (t, J = 6.9 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): $\delta = 174.9$, 137.9, 126.0, 74.0, 60.4, 48.5, 31.7, 26.4, 25.6, 23.3, 23.2, 22.1, 14.0, 13.8. HRMS (ESI): m/z calcd for C₁₄H₂₄O₃+Na⁺: 263.1623 [M+Na]⁺; found: 263.1622. HPLC conditions: Chiralcel IC-3 column (25 cm × 0.46 cm ID); *n*-hexane/2-propanol = 92:8; temp, rt; flow rate = 1.0 mL/min; 210 nm UV detector; $t_R = 11.44$ min (minor); $t_R = 12.45$ min (major).

(+)-Ethyl (E)-2-hydroxy-3-(2-phenylethylidene)cyclohexane-1-carboxylate ((+)-8af)

Colourless oil, 263 mg, 96% yield, 99% ee. $R_f = 0.54$ (petroleum ether/ethyl acetate = 5:2 v/v). [α]_D²⁵ = +40.2 (c = 1.0 CHCl₃). ¹H NMR (400 MHz, CDCl₃): $\delta = 7.30-7.23$ (m, 2H), 7.22–7.10 (m, 3H), 5.61 (t, J = 7.1 Hz, 1H), 4.42 (d, J = 2.7 Hz, 1H), 4.16 (q, J = 7.1 Hz, 2H), 3.46–3.31 (m, 2H), 3.13 (s, 1H),

2.57–2.50 (m, 1H), 2.50–2.42 (m, 1H), 2.34–2.24 (m, 1H), 2.14–2.01 (m, 1H), 1.90–1.79 (m, 2H), 1.40– 1.29 (m, 1H), 1.25 (t, J = 7.2 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃): $\delta = 175.0$, 140.7, 139.0, 128.4, 128.3, 125.9, 124.2, 73.9, 60.6, 48.5, 33.1, 25.7, 23.5, 14.1. HRMS (ESI): m/z calcd for C₁₇H₂₂O₃+Na⁺: 297.1467 [M+Na]⁺; found: 297.1461. HPLC conditions: Chiralcel IC-3 column (25 cm × 0.46 cm ID); *n*-hexane/2-propanol = 92:8; temp, rt; flow rate = 1.0 mL/min; 210 nm UV detector; $t_R = 21.59$ min (minor); $t_R = 16.90$ min (major).

(+)-Ethyl (E)-2-hydroxy-3-(2-methylpropylidene)cyclohexane-1-carboxylate ((+)-8ag)

Colourless oil, 215 mg, 95% yield, >99% ee. $R_{\rm f} = 0.61$ (petroleum ether/ethyl acetate = 5:2 v/v). $[\alpha]_{\rm p}^{25} = +68.5$ (c = 1.0 CHCl₃). ¹H NMR (400 MHz, CDCl₃): $\delta = 5.25$ (d, J = 8.3 Hz, 1H), 4.35 (d, J = 2.2 Hz, 1H), 4.17 (q, J = 7.2 Hz, 2H), 3.03 (s, 1H), 2.60–2.47 (m, 2H), 2.37–2.30 (m, 1H),

2.24–2.14 (m, 1H), 2.09–1.98 (m, 1H), 1.89–1.74 (m, 2H), 1.34–1.23 (m, 4H), 0.96 (d, J = 6.6 Hz, 3H), 0.93 (d, J = 6.6 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): $\delta = 175.1$, 135.8, 133.6, 74.0, 60.5, 48.6, 26.1, 25.9, 23.5, 23.5, 23.4, 23.0, 14.1. HRMS (ESI): m/z calcd for C₁₃H₂₂O₃+Na⁺: 249.1467 [M+Na]⁺; found: 249.1465. HPLC conditions: Chiralcel IC-3 column (25 cm × 0.46 cm ID); *n*-hexane/2-propanol = 90:10; temp, rt; flow rate = 1.0 mL/min; 210 nm UV detector; $t_R = 11.55$ min (major).

(+)-Ethyl (E)-3-(cyclohexylmethylene)-2-hydroxycyclohexane-1-carboxylate ((+)-8ah)

White solid, 256 mg, 96% yield, 98% ee. $R_{\rm f} = 0.67$ (petroleum ether/ethyl acetate = 5:2 v/v). M.p. 49–50 °C. $[\alpha]_{\rm D}^{25} = +65.3$ (c = 1.0 CHCl₃). ¹H NMR (400 MHz, CDCl₃): $\delta = 5.26$ (d, J = 8.8 Hz, 1H), 4.34 (d, J = 2.7 Hz, 1H), 4.17 (q, J = 7.1 Hz, 2H), 2.99 (s, 1H), 2.56–2.42 (m, 1H), 2.37–2.29 (m, 1H),

2.26–2.13 (m, 2H), 2.10–1.96 (m, 1H), 1.87–1.76 (m, 2H), 1.74–1.60 (m, 4H), 1.58–1.50 (m, 1H), 1.34– 1.13 (m, 7H), 1.11–0.97 (m, 2H). ¹³C NMR (101 MHz, CDCl₃): δ = 175.1, 136.4, 132.2, 74.1, 60.6, 48.7, 35.9, 33.6, 33.1, 26.1, 26.0, 25.9, 25.9, 23.7, 23.5, 14.1. HRMS (ESI): m/z calcd for C₁₆H₂₆O₃+Na⁺: 289.1780 [M+Na]⁺; found: 289.1778. HPLC conditions: Chiralcel AS-3 column (25 cm × 0.46 cm ID); *n*-hexane/2-propanol = 95:5; temp, rt; flow rate = 1.0 mL/min; 210 nm UV detector; t_R = 6.18 min (minor); t_R = 8.33 min (major).

(+)-Ethyl (E)-3-(2,2-dimethylpropylidene)-2-hydroxycyclohexane-1-carboxylate ((+)-8ai)

Colourless liquid, 233 mg, 97% yield, 98% ee. $R_f = 0.65$ (petroleum ether/ethyl acetate = 5:2 v/v). $[\alpha]_D^{25} = +68.4$ (c = 1.0 CHCl₃). ¹H NMR (400 MHz, CDCl₃): $\delta = 5.48$ (s, 1H), 4.29 (d, J = 2.5 Hz, 1H), 4.17 (q, J = 7.1 Hz, 2H), 2.98 (s, 1H), 2.64–2.56 (m, 1H), 2.54–2.47 (m, 1H), 2.28–2.18 (m,

1H), 2.07–1.95 (m, 1H), 1.87–1.76 (m, 2H), 1.37–1.30 (m, 1H), 1.27 (t, J = 7.1 Hz, 3H), 1.11 (s, 9H). ¹³C NMR (101 MHz, CDCl₃): $\delta = 175.2$, 137.7, 136.5, 75.2, 60.6, 48.8, 31.8, 31.2, 25.7, 24.1, 23.1, 14.2. HRMS (ESI): m/z calcd for C₁₄H₂₄O₃+Na⁺: 263.1623 [M+Na]⁺; found: 263.1619. HPLC conditions: Chiralcel AS-3 column (25 cm × 0.46 cm ID); *n*-hexane/2-propanol = 95:5; temp, rt; flow rate = 1.0 mL/min; 210 nm UV detector; $t_R = 5.52$ min (minor); $t_R = 86.58$ min (major).

(+)-Ethyl (E)-3-(3-(allyloxy)propylidene)-2-hydroxycyclohexane-1-carboxylate ((+)-8aj)

Colourless oil, 255 mg, 95% yield. >99% ee. $R_{\rm f} = 0.45$ (petroleum ether/ethyl acetate = 5:2 v/v). $[\alpha]_{\rm D}^{25} = +40.0$ (c = 1.0 CHCl₃). ¹H NMR (400 MHz, CDCl₃): $\delta = 6.00-5.81$ (m, 1H), 5.47 (t, J = 7.1 Hz, 1H), 5.28 (d, J = 15.7 Hz, 1H), 5.18 (d, J = 1

10.4 Hz, 1H), 4.41 (s, 1H), 4.19 (q, J = 7.1 Hz, 2H), 3.98 (dt, J = 5.6, 1.5 Hz, 2H), 3.48–3.41 (m, 2H), 3.05 (s, 1H), 2.55–2.48 (m, 1H), 2.40–2.31 (m, 3H), 2.26–1.99 (m, 1H), 2.1–1.98 (m, 1H), 1.89–1.79 (m, 2H), 1.29 (t, J = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): $\delta = 175.0$, 140.1, 134.8, 121.7, 116.8, 73.8, 71.7, 69.7, 60.6, 48.4, 27.6, 25.7, 23.4, 23.4, 14.1. HRMS (ESI): m/z calcd for C₁₅H₂₄O₄+Na⁺: 291.1572 [M+Na]⁺; Found: 291.1569. HPLC conditions: Chiralcel IC-3 column (25 cm × 0.46 cm ID); *n*-hexane/2-propanol = 95:5; temp, rt; flow rate = 1.0 mL/min; 210 nm UV detector; $t_R = 25.42$ min (major).

(+)-Ethyl (E)-3-(3,3-diethoxypropylidene)-2-hydroxycyclohexane-1-carboxylate ((+)-8ak)

Colourless oil, 273 mg, 91% yield. 97% ee. $R_{\rm f} = 0.34$ (petroleum ether/ethyl acetate = 5:2 v/v). [α]_D²⁵ = +39.0 (c = 1.0 CHCl₃). ¹H NMR (400 MHz, CDCl₃): δ = 5.42–5.29 (m, 1H), 4.40 (t, J = 5.8 Hz, 1H), 4.36 (s, 1H), 4.10 (q, J = 7.1 Hz, 2H), 3.64–3.50 (m, 2H), 3.48–3.36

(m, 2H), 3.00 (s, 1H), 2.43 (dt, J = 12.2 Hz, 1H), 2.37–2.23 (m, 3H), 2.22–2.10 (m, 1H), 2.04–1.89 (m, 1H), 1.85–1.75 (m, 2H), 1.20 (t, J = 7.1 Hz, 3H), 1.13 (t, J = 7.1 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃): $\delta = 174.9$, 140.4, 120.1, 102.3, 73.8, 61.2, 61.1, 60.5, 48.4, 31.8, 25.6, 23.5, 23.26, 15.2, 14.1. HRMS (ESI): m/z calcd for C₁₆H₂₈O₅+Na⁺: 323.1834 [M+Na]⁺; Found: 323.1827. HPLC conditions: Chiralcel IC-3 column (25 cm × 0.46 cm ID); *n*-hexane/2-propanol = 95:5; temp, rt; flow rate = 1.0 mL/min; 210 nm UV detector; $t_R = 21.51$ min (major); $t_R = 23.97$ min (minor).

(+)-Ethyl (E)-3-(2-ethoxy-2-oxoethylidene)-2-hydroxycyclohexane-1-carboxylate ((+)-8al)

Colourless oil, 246 mg, 96% yield. 86% ee. $R_{\rm f} = 0.48$ (petroleum ether/ethyl acetate = 5:2 v/v). $[\alpha]_{\rm D}^{25} = +68.2$ (c = 1.0 CHCl₃). ¹H NMR (400 MHz, CDCl₃): $\delta = 5.90$ (s, 1H), 4.37 (d, J = 4.1 Hz, 1H), 4.20–4.13 (m, 4H), 3.56 (s, 1H), 3.05–2.96 (m, 1H), 2.90–2.81 (m, 1H), 2.75–2.68

(m, 1H), 2.19–2.08 (m, 1H), 1.84–1.73 (m, 2H), 1.56–1.44 (m, 1H), 1.32–1.23 (m, 6H). ¹³C NMR (101 MHz, CDCl₃): δ = 174.1, 166.4, 159.2, 114.8, 73.2, 60.8, 59.8, 48.4, 25.2, 25.0, 24.0, 14.1, 14.0. HRMS (ESI): *m/z* calcd for C₁₃H₂₀O₅+Na⁺: 279.1208 [M+Na]⁺; Found: 279.1203. HPLC conditions: Chiralcel AD-3 column (25 cm × 0.46 cm ID); *n*-hexane/2-propanol = 95:5; temp, rt; flow rate = 1.0 mL/min; 210 nm UV detector; *t*_R = 12.88 min (major); *t*_R = 11.89 min (minor).

(+)-Benzyl 4-((*E*)-(3-(ethoxycarbonyl)-2-hydroxycyclohexylidene)methyl)piperidine-1-carboxylate ((+)-8am)

Colourless oil, 377 mg, 94% yield. 96% ee. $R_{\rm f} = 0.29$ (petroleum ether/ethyl acetate = 5:2 v/v). $[\alpha]_{\rm D}^{25} = +32.4$ (c = 1.0 CHCl₃). ¹H NMR (400 MHz, CDCl₃): $\delta = 7.43-7.28$ (m, 5H), 5.24 (d, J = 8.8 Hz, 1H), 5.12 (s, 2H), 4.35 (d, J = 2.7 Hz, 1H), 4.24–4.06 (m, 4H),

3.17 (s, 1H), 2.95–2.68 (m, 2H), 2.50 (dt, J = 11.9, 3.4 Hz, 1H), 2.45–2.18 (m, 3H), 2.11–1.97 (m, 1H), 1.87–1.76 (m, 2H), 1.65–1.48 (m, 2H), 1.35–1.21 (m, 6H). ¹³C NMR (101 MHz, CDCl₃): $\delta = 175.0$, 155.2, 138.1, 136.8, 129.4, 128.4, 127.8, 127.7, 73.7, 66.9, 60.6, 48.5, 43.7, 43.7, 34.0, 32.1, 31.8, 25.9, 23.8, 23.4, 14.1. HRMS (ESI): m/z calcd for C₂₃H₃₁NO₅+H⁺: 402.228 [M+H]⁺; found: 402.225. HPLC conditions: Chiralcel AD-3 column (25 cm × 0.46 cm ID); *n*-hexane/2-propanol = 90:10; temp, rt; flow rate = 1.0 mL/min; 210 nm UV detector; $t_R = 31.94$ min (major); $t_R = 27.06$ min (minor).

(+)-Ethyl (*E*)-8-hydroxy-9-(2-methylpropylidene)-1,4-dioxaspiro[4.5]decane-7-carboxylate ((+)-8an)

White solid, 276 mg, 97% yield, 96% ee. $R_{\rm f} = 0.44$ (petroleum ether/ethyl acetate = 5:2 v/v). M.p. 42–43 °C. $[\alpha]_{\rm D}^{25} = +14.0$ (c = 1.0 CHCl₃). ¹H NMR (400 MHz, CDCl₃): $\delta = 5.38$ (d, J = 9.0 Hz, 1H), 4.40 (s, 1H), 4.18 (q, J = 7.2 Hz, 2H), 4.05–3.89 (m, 4H), 2.86 (s, 1H), 2.78–2.68 (m, 1H), 2.58–2.42 (m, 3H), 2.28 (t, J = 13.2 Hz, 1H), 1.93–1.84 (m, 1H), 1.27 (t, J = 7.2 Hz, 3H), 0.97 (d, J = 6.7 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃): $\delta = 174.1$, 136.6,

132.4, 108.3, 73.0, 64.5, 64.3, 60.7, 45.4, 33.2, 31.8, 26.2, 23.0, 22.7, 14.1. HRMS (ESI): m/z calcd for C₁₅H₂₄O₅+Na⁺: 307.1521 [M+Na]⁺; Found: 307.1518. HPLC conditions: Chiralcel AD-3 column (25 cm × 0.46 cm ID); *n*-hexane/2-propanol = 95:5; temp, rt; flow rate = 1.0 mL/min; 210 nm UV detector; t_R = 16.06 min (major); t_R = 19.20 min (minor).

(+)-1-(*tert*-Butyl) 3-ethyl (*E*)-4-hydroxy-5-(2-methylpropylidene)piperidine-1,3-dicarboxylate ((+)-8ao)

Colourless oil, 311 mg, 95% yield. 94% ee. $R_f = 0.36$ (petroleum ether/ethyl acetate = 5:2 v/v). $[\alpha]_D^{25} = +7.6$ (c = 1.0 CHCl₃). ¹H NMR (400 MHz, CDCl₃): $\delta = 5.30$ (d, J = 9.7 Hz, 1H), 4.64–4.38 (m, 2H), 4.28–3.91 (m, 3H), 3.60 (d, J = 14.3 Hz, 1H), 3.53–3.25 (m, 1H), 2.96 (s, 1H), 2.69–2.49 (m, 2H), 1.44 (s, 9H), 1.25 (t, J = 7.2 Hz, 3H), 0.96 (d, J = 6.7 Hz, 6H). ¹³C NMR (101

MHz, CDCl₃): $\delta = 172.3$, 154.3, 135.9, 130.7, 79.9, 72.2, 60.9, 47.5, 40.9, 40.4, 28.3, 26.5, 23.2, 22.9, 14.1. HRMS (ESI): *m/z* calcd for C₁₇H₂₉NO₅+H⁺: 328.2124 [M+H]⁺; found: 328.2120. HPLC conditions: Chiralcel AD-3 column (25 cm × 0.46 cm ID); *n*-hexane/2-propanol = 99:1; temp, rt; flow rate = 1.0 mL/min; 210 nm UV detector; $t_R = 25.83$ min (major); $t_R = 13.42$ min (minor).

(+)-Ethyl (E)-4-hydroxy-5-(2-methylpropylidene)tetrahydro-2H-pyran-3-carboxylate ((+)-8ap)

Colourless oil, 215 mg, 94% yield. >99% *ee*. $R_{\rm f}$ = 0.43 (petroleum ether/ethyl acetate = 5:2 v/v). [α]_D²⁵ = +37.6 (*c* = 1.0 CHCl₃). ¹H NMR (400 MHz, CDCl₃): δ = 5.39 (d, *J* = 9.5 Hz, 1H), 4.49 (d, *J* = 2.9 Hz, 1H), 4.29–4.15 (m, 4H), 4.09 (dd, *J* = 11.3, 9.6 Hz, 1H), 3.91 (dd, *J* = 11.4, 4.4 Hz, 1H), 3.06 (s, 1H),

2.91–2.83 (m, 1H), 2.62–2.51 (m, 1H), 1.28 (t, J = 7.2 Hz, 3H), 0.98 (d, J = 5.4 Hz, 3H), 0.96 (d, J = 5.4 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): $\delta = 172.0$, 135.7, 131.5, 71.1, 64.3, 63.4, 60.9, 48.3, 26.2, 23.1, 23.0, 14.1. HRMS (ESI): m/z calcd for C₁₂H₂₀O₄+Na⁺: 251.1259 [M+Na]⁺; Found: 251.1255. HPLC conditions: Chiralcel IC-3 column (25 cm × 0.46 cm ID); *n*-hexane/2-propanol = 90:10; temp, rt; flow rate = 1.0 mL/min; 210 nm UV detector; $t_R = 15.71$ min (major).

(+)-Ethyl 2-hydroxy-3-(propan-2-ylidene)cyclohexane-1-carboxylate ((+)-8aq)

Colourless oil, 208 mg, 98% yield, 99% ee. $R_f = 0.60$ (petroleum ether/ethyl acetate = 5:2 v/v). $[\alpha]_D^{25} = +86.1$ (c = 1.0 CHCl₃). ¹H NMR (400 MHz, CDCl₃): $\delta = 5.05$ (s, 1H), 4.18 (q, J = 6.8 Hz, 2H), 2.94 (s, 1H), 2.52–2.42 (m, 1H), 2.39–2.27 (m, 1H), 2.21–2.08 (m, 1H), 2.06–1.93 (m, 1H), 1.89–

1.78 (m, 2H), 1.76 (s, 3H), 1.69 (s, 3H),1.29 (t, J = 7.1 Hz, 3H).¹³C NMR (101 MHz, CDCl₃): $\delta = 175.7$, 130.7, 126.5, 66.3, 60.6, 48.0, 25.9, 24.0, 22.9, 20.3, 19.8, 14.1. HRMS (ESI): m/z calcd for C₁₂H₂₀O₃+Na⁺: 235.1310 [M+Na]⁺; found: 235.1308. HPLC conditions: Chiralcel IC-3 column (25 cm × 0.46 cm ID); *n*-hexane/2-propanol = 90:10; temp, rt; flow rate = 1.0 mL/min; 210 nm UV detector; t_R = 9.69 min (minor); $t_R = 13.76$ min (major).

(+)-Ethyl 2-hydroxy-3-((E)-4-methylbenzylidene)cycloheptane-1-carboxylate ((+)-10a)

Colourless oil, 274 mg, 95% yield, 98% ee. $R_{\rm f} = 0.52$ (petroleum ether/ethyl acetate = 5:2 v/v). $[\alpha]_{\rm D}^{25} = +107.5$ (c = 1.0 CHCl₃). ¹H NMR (400 MHz, CDCl₃): $\delta = 7.20-7.05$ (m, 4H), 6.54 (s, 1H), 4.76 (d, J = 2.9 Hz, 1H), 4.19 (q, J = 7.2 Hz, 2H), 3.17 (s, 1H),

2.73–2.55 (m, 2H), 2.53–2.41 (m, 1H), 2.34 (s, 3H), 2.00–1.70 (m, 5H), 1.42–1.32 (m, 1H), 1.29 (t, J = 7.2 Hz, 4H). ¹³C NMR (101 MHz, CDCl₃): $\delta = 176.0$, 141.9, 136.2, 134.5, 128.8, 128.7, 127.8, 77.0, 60.8, 51.5, 26.6, 26.2, 26.1, 26.0, 21.1, 14.2. HRMS (ESI): m/z calcd for C₁₈H₂₄O₃+H⁺: 289.1804 [M+H]⁺; found: 289.1805. HPLC conditions: Chiralcel IC-3 column (25 cm × 0.46 cm ID); *n*-hexane/2-propanol = 90:10; temp, rt; flow rate = 1.0 mL/min; 254 nm UV detector; $t_R = 10.67$ min (minor); $t_R = 9.52$ min (major).

(+)-Ethyl 3-((E)-4-chlorobenzylidene)-2-hydroxycycloheptane-1-carboxylate ((+)-10b)

Colourless oil, 296 mg, 96% yield, 99% ee. $R_{\rm f} = 0.45$ (petroleum ether/ethyl acetate = 5:2 v/v). $[\alpha]_{\rm D}^{25} = +89.6$ (*c* = 1.0 CHCl₃). ¹H NMR (400 MHz, CDCl₃): $\delta = 7.28$ (d, J = 8.4 Hz, 1H), 7.16 (d, J = 8.4 Hz, 1H), 6.52 (s, 1H), 4.76 (d, J = 3.2 Hz, 1H), 4.20 (q, J = 7.1

Hz, 2H), 3.26 (s, 1H), 2.68–2.55 (m, 2H), 2.46–2.35 (m, 1H), 2.00–1.71 (m, 5H), 1.40–1.32 (m, 1H), 1.30 (t, J = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ = 175.9, 143.5, 135.8, 132.2, 130.0, 128.2, 126.6, 76.7, 60.8, 51.3, 26.6, 26.2, 26.1, 25.9, 14.1. HRMS (ESI): m/z calcd for C₁₇H₂₁ClO₃+Na⁺: 331.1077 [M+Na]⁺; found: 331.1075. HPLC conditions: Chiralcel IC-3 column (25 cm × 0.46 cm ID); *n*-hexane/2-propanol = 95:5; temp, rt; flow rate = 1.0 mL/min; 254 nm UV detector; $t_{\rm R}$ = 13.17 min (minor); $t_{\rm R}$ = 12.34 min (major).

(+)-Ethyl 2-hydroxy-3-((E)-3-methoxybenzylidene)cycloheptane-1-carboxylate ((+)-10c)

Colourless oil, 289 mg, 95% yield, >99% ee. $R_{\rm f} = 0.47$ (petroleum ether/ethyl acetate = 5:2 v/v). $[\alpha]_{\rm D}^{25} = +109.6$ (*c* = 1.0 CHCl₃). ¹H NMR (400 MHz, CDCl₃): $\delta = 7.26-7.20$ (m, 1H), 6.83 (d, *J* = 7.6 Hz, 1H), 6.81-6.73 (m, 2H), 6.56 (s, 1H), 4.77 (d, *J* = 1.7 Hz, 1H),

4.20 (q, J = 7.1 Hz, 2H), 3.80 (s, 3H), 3.18 (s, 1H), 2.68–2.59 (m, 2H), 2.52–2.42 (m, 1H), 2.00–1.73 (m, 5H), 1.42–1.34 (m, 1H), 1.30 (t, J = 7.1 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃): $\delta = 176.0$, 159.3, 143.0, 138.9, 129.0, 127.8, 121.3, 114.4, 112.0, 76.9, 60.8, 55.1, 51.5, 26.6, 26.3, 26.1, 26.0, 14.2. HRMS (ESI): m/z calcd for C₁₈H₂₄O₄+Na⁺: 327.1572 [M+Na]⁺; found: 327.1572. HPLC conditions: Chiralcel AD-3 column (25 cm × 0.46 cm ID); *n*-hexane/2-propanol = 90:10; temp, rt; flow rate = 1.0 mL/min; 254 nm UV detector; $t_R = 9.06$ min (major).

(+)-Ethyl 3-((E)-3-bromobenzylidene)-2-hydroxycycloheptane-1-carboxylate ((+)-10d)

Colourless oil, 325 mg, 92% yield, 98% ee. $R_f = 0.48$ (petroleum ether/ethyl acetate = 5:2 v/v). $[\alpha]_D^{25} = +84.2$ (c = 1.0 CHCl₃). ¹H NMR (400 MHz, CDCl₃): $\delta = 7.41-7.33$ (m, 2H), 7.23-7.12 (m, 2H), 6.51 (s, 1H), 4.76 (d, J = 3.2 Hz, 1H), 4.20 (q, J = 7.1 Hz, 2H), 3.27

(s, 1H), 2.67–2.57 (m, 2H), 2.46–2.36 (s, 1H), 1.98–1.83 (m, 3H), 1.82–1.71 (m, 2H), 1.40–1.32 (m, 1H), 1.30 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ = 175.9, 144.2, 139.5, 131.6, 129.6, 129.5, 127.3, 126.3, 122.1, 76.6, 60.8, 51.3, 26.6, 26.2, 26.1, 25.9, 14.1. HRMS (ESI): m/z calcd for C₁₇H₂₁BrO₃+Na⁺: 375.0572 [M+Na]⁺; found: 375.0561. HPLC conditions: Chiralcel IC-3 column (25 cm × 0.46 cm ID); *n*-hexane/2-propanol = 90:10; temp, rt; flow rate = 1.0 mL/min; 254 nm UV detector; t_R = 9.11 min (minor); t_R = 10.45 min (major).

(+)-Ethyl 2-hydroxy-3-((E)-2-methylbenzylidene)cycloheptane-1-carboxylate ((+)-10e)

Colourless oil, 271 mg, 94% yield, 98% ee. $R_{\rm f} = 0.53$ (petroleum ether/ethyl acetate = 5:2 v/v). $[\alpha]_{\rm D}^{25} = +86.8$ (c = 1.0 CHCl₃). ¹H NMR (400 MHz, CDCl₃): $\delta = 7.21-7.06$ (m, 4H), 6.54 (s, 1H), 4.8d (d, J = 2.1 Hz, 1H), 4.21 (q, J = 7.1 Hz, 2H), 2.67–2.59 (m, 1H), 2.51–2.41 (m, 1H), 2.33–2.25 (m, 1H), 2.23 (s, 3H), 1.97–1.80 (m, 3H), 1.76–1.60 (m, 2H),

1.40–1.33 (m, 1H), 1.31 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ = 176.2, 142.7, 136.8, 136.3, 129.7, 129.0, 127.0, 126.8, 125.3, 76.6, 60.8, 51.8, 26.8, 26.5, 26.1, 26.0, 20.0, 14.2. HRMS (ESI): m/z calcd for C₁₈H₂₄O₃+Na⁺: 311.1623 [M+Na]⁺; found: 311.1617. HPLC conditions: Chiralcel AD-3 column (25 cm × 0.46 cm ID); *n*-hexane/2-propanol = 96:4; temp, rt; flow rate = 1.0 mL/min; 254 nm UV detector; t_R = 10.84 min (minor); t_R = 11.33 min (major).

(+)-Ethyl 3-((E)-2-fluorobenzylidene)-2-hydroxycycloheptane-1-carboxylate ((+)-10f)

Colourless oil, 281 mg, 96% yield, 98% ee. $R_{\rm f} = 0.53$ (petroleum ether/ethyl acetate = 5:2 v/v). [α]_D²⁵ = +92.3 (c = 1.0 CHCl₃). ¹H NMR (400 MHz, CDCl₃): $\delta = 7.27-7.16$ (m, 2H), 7.11–6.98 (m, 2H), 6.54 (s, 1H), 4.84 (d, J = 2.8 Hz, 1H), 4.20 (q, J = 7.1 Hz, 1H), 3.34 (s, 1H), 2.69–2.61 (m, 1H), 2.61–2.52 (m, 1H), 2.41–2.30 (m, 1H), 1.98–1.68 (m, 5H),

1.41–1.32 (m, 1H), 1.29 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): $\delta = 175.7$, 160.0 (d, ¹ $J_{C-F} = 246.7$ Hz), 145.1, 130.4 (d, ³ $J_{C-F} = 3.5$ Hz), 128.3 (d, ³ $J_{C-F} = 8.1$ Hz), 125.0 (d, ² $J_{C-F} = 14.8$ Hz), 123.4 (d, ³ $J_{C-F} = 3.6$ Hz), 120.2 (d, ⁴ $J_{C-F} = 2.9$ Hz), 115.1 (d, ² $J_{C-F} = 22.3$ Hz), 76.4, 60.7, 51.3, 26.5, 26.4, 26.2, 14.0. HRMS (ESI): m/z calcd for $C_{17}H_{21}FO_3+Na^+$: 315.1372 [M+Na]⁺; found: 315.1373. HPLC conditions: Chiralcel AD-3 column (25 cm × 0.46 cm ID); *n*-hexane/2-propanol = 90:10; temp, rt; flow rate = 1.0 mL/min; 254 nm UV detector; $t_R = 7.62$ min (minor); $t_R = 9.10$ min (major).

(+)-Ethyl (E)-2-hydroxy-3-(pyridin-2-ylmethylene)cycloheptane-1-carboxylate ((+)-10g)

Colourless oil, 256 mg, 93% yield, 98% ee. $R_{\rm f} = 0.26$ (petroleum ether/ethyl acetate = 1:1 v/v). $[\alpha]_{\rm D}^{25} = +78.6$ (c = 1.0 CHCl₃). ¹H NMR (400 MHz, CDCl₃): $\delta = 8.66-8.54$ (m, 1H), 7.69–7.58 (m, 1H), 7.22 (d, J = 7.9 Hz, 1H), 7.13–7.05 (m, 1H), 6.63 (s, 1H), 4.83 (s, 1H), 4.19 (q, J)

= 7.1 Hz, 2H), 3.56 (br s, 1H), 2.94–2.84 (m, 1H), 2.80–2.64 (m, 2H), 1.97–1.79 (m, 5H), 1.42–1.32 (m, 1H), 1.29 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ = 175.3, 156.4, 149.0, 147.6, 135.9, 126.5, 123.9, 121.0, 76.7, 60.6, 51.4, 26.7, 26.2, 25.9, 25.5, 14.1. HRMS (ESI): m/z calcd for C₁₆H₂₁NO₃+H⁺: 276.1600 [M+H]⁺; found: 276.1600. HPLC conditions: Chiralcel OJ-H column (25 cm × 0.46 cm ID); *n*-hexane/2-propanol = 95:5; temp, rt; flow rate = 1.0 mL/min; 254 nm UV detector; t_R = 22.52 min (minor); t_R = 14.45 min (major).

(+)-Ethyl (E)-3-(furan-2-ylmethylene)-2-hydroxycycloheptane-1-carboxylate ((+)-10h)

Pale yellow oil, 251 mg, 95% yield, 99% ee. $R_{\rm f} = 0.50$ (petroleum ether/ethyl acetate = 5:2 v/v). $[\alpha]_{\rm D}^{25} = +47.6$ (c = 1.0 CHCl₃). ¹H NMR (400 MHz, CDCl₃): $\delta = 7.38$ (d, J = 2.0 Hz, 1H), 6.45–6.34 (m, 2H), 6.29 (d, J = 3.4 Hz, 1H), 4.73 (d, J = 3.7 Hz, 1H), 4.18 (q, J = 7.1 Hz, 2H), 3.14 (s,

1H), 2.83–2.71 (m, 1H), 2.66–2.59 (m, 1H), 2.58–2.49 (m, 1H), 1.97–1.79 (m, 5H), 1.40–1.31 (m, 1H), 1.28 (t, J = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): $\delta = 175.6$, 152.6, 141.4, 141.1, 116.1, 111.2, 109.2, 76.4, 60.8, 51.4, 27.7, 27.3, 25.7, 25.4, 14.1. HRMS (ESI): m/z calcd for C₁₅H₂₀O₄+Na⁺: 287.1259 [M+Na]⁺; found: 287.1259. HPLC conditions: Chiralcel AD-3 column (25 cm × 0.46 cm ID); *n*-hexane/2-propanol = 90:10; temp, rt; flow rate = 1.0 mL/min; 254 nm UV detector; $t_R = 9.92$ min (minor); $t_R = 12.39$ min (major).

(+)-Ethyl (E)-2-hydroxy-3-(2-methylpropylidene)cycloheptane-1-carboxylate ((+)-10i)

Colourless oil, 216 mg, 90% yield, >99% ee. $R_{\rm f} = 0.54$ (petroleum ether/ethyl acetate = 5:2 v/v). [α]_D²⁵ = +46.4 (c = 1.0 CHCl₃). ¹H NMR (400 MHz, CDCl₃): $\delta = 5.28$ (d, J = 9.4 Hz, 1H), 4.55 (d, J = 2.8 Hz, 1H), 4.17 (q, J = 7.1 Hz, 2H), 2.97 (s, 1H), 2.58–2.38 (m, 3H), 2.28–2.18 (m, 1H), 1.90–1.78 (m, 3H),

1.73–1.64 (m, 2H), 1.35–1.21 (m, 5H), 0.96 (d, J = 6.6 Hz, 3H), 0.93 (d, J = 6.7 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): $\delta = 176.1$, 136.9, 136.0, 76.5, 60.6, 51.9, 29.7, 26.8, 26.5, 25.8, 25.5, 24.7, 23.0, 22.9,

14.2. HRMS (ESI): m/z calcd for C₁₄H₂₄O₃+Na⁺: 263.1623 [M+Na]⁺; found: 263.1624. HPLC conditions: Chiralcel IC-3 column (25 cm × 0.46 cm ID); *n*-hexane/2-propanol = 98:2; temp, rt; flow rate = 1.0 mL/min; 210 nm UV detector; $t_R = 12.21$ min (major).

(+)-Ethyl 3-((E)-benzylidene)-2-hydroxycyclopentane-1-carboxylate ((+)-12a)

White solid, 239 mg, 97% yield, M.p. 44–45 °C. 92% ee. $R_{\rm f}$ = 0.41 (petroleum ether/ethyl acetate = 5:2 v/v). [α]_D²⁵ = +7.6 (*c* = 1.0 CHCl₃). ¹H NMR (400 MHz, CDCl₃): δ = 7.38–7.30 (m, 4H), 7.25–7.19 (m, 1H), 6.64 (s, 1H), 4.76–4.68 (m, 1H), 4.20 (q, *J* = 7.2 Hz, 2H), 3.13–3.06 (m, 1H), 2.93–2.81

(m, 2H), 2.65–2.51 (m, 1H), 2.36–2.20 (m, 1H), 2.16–2.04 (m, 1H), 1.29 (t, J = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): $\delta = 173.8$, 144.4, 137.3, 128.5, 128.3, 126.8, 125.4, 77.4, 60.7, 48.2, 28.1, 26.0, 14.2. HRMS (ESI): m/z calcd for C₁₅H₁₈O₃+Na⁺: 269.1149 [M+Na]⁺; Found: 269.1147. HPLC conditions: Chiralcel AD-3 column (25 cm × 0.46 cm ID); *n*-hexane/2-propanol = 92:8; temp, rt; flow rate = 1.0 mL/min; 254 nm UV detector; $t_R = 14.49$ min (minor); $t_R = 15.22$ min (major).

(+)-Ethyl 2-hydroxy-3-((E)-4-methylbenzylidene)cyclopentane-1-carboxylate ((+)-12b)

White solid, 247 mg, 95% yield. 93% ee. $R_f = 0.35$ (petroleum ether/ethyl acetate = 5:2 v/v). M.p. 40–41 °C. $[\alpha]_D^{25} = +3.1$ (c = 1.0 CHCl₃). ¹H NMR (400 MHz, CDCl₃): $\delta = 7.25$ (d, J = 7.8 Hz, 2H), 7.15 (d, J = 7.8 Hz, 2H), 6.61 (s, 1H), 4.76–4.68 (m, 1H), 4.20 (q, J = 7.1 Hz, 2H), 3.07 (br s, 1H), 2.92–2.82 (m, 2H), 2.62–2.52 (m, 1H),

2.34 (s, 3H), 2.32–2.23 (m, 1H), 2.14–2.03 (m, 1H), 1.29 (t, J=7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ = 173.8, 143.3, 136.6, 134.5, 129.0, 128.5, 125.4, 77.5, 60.7, 48.3, 28.2, 26.1, 21.2, 14.2. HRMS (ESI): *m/z* calcd for C₁₆H₂₀O₃+Na⁺: 283.1310 [M+Na]⁺; found: 283.1307. HPLC conditions: Chiralcel AD-3 column (25 cm × 0.46 cm ID); *n*-hexane/2-propanol = 94:6; temp, rt; flow rate = 1.0 mL/min; 254 nm UV detector; *t*_R = 15.63 min (minor); *t*_R = 19.86 min (major).

(+)-Ethyl 3-((E)-4-chlorobenzylidene)-2-hydroxycyclopentane-1-carboxylate ((+)-12c)

Pale yellow solid, 270 mg, 96% yield. 89% ee. $R_{\rm f} = 0.40$ (petroleum ether/ethyl acetate = 5:2 v/v). M.p. 44–45 °C. $[\alpha]_{\rm D}^{25} = +8.7$ (c = 1.0 CHCl₃). ¹H NMR (400 MHz, CDCl₃): $\delta = 7.34-7.22$ (m, 4H), 6.58 (s, 1H), 4.74–4.67 (m, 1H), 4.20 (q, J = 7.2 Hz, 2H), 3.19 (s, 1H), 2.95–2.76 (m, 2H), 2.61–2.48 (m, 1H), 2.34–2.22 (m, 1H), 2.13–2.04 (m,

1H), 1.28 (t, J = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): $\delta = 173.7$, 145.0, 135.8, 132.4, 129.7, 128.4, 124.1, 77.2, 60.8, 48.1, 28.1, 25.9, 14.1. HRMS (ESI): m/z calcd for C₁₅H₁₇ClO₃+Na⁺: 303.0764 [M+Na]⁺; found: 303.0760. HPLC conditions: Chiralcel AD-H column (25 cm × 0.46 cm ID); *n*-hexane/2-propanol = 90:10; temp, rt; flow rate = 1.0 mL/min; 254 nm UV detector; $t_R = 12.05$ min (minor); $t_R = 13.47$ min (major).

(+)-Ethyl 2-hydroxy-3-((E)-3-methylbenzylidene)cyclopentane-1-carboxylate ((+)-12d)

White solid, 250 mg, 96% yield. 93% ee. $R_{\rm f} = 0.45$ (petroleum ether/ethyl acetate = 5:2 v/v). M. p. 59–60 °C. $[\alpha]_{\rm D}^{25} = +8.4$ (c = 1.0 CHCl₃). ¹H NMR (400 MHz, CDCl₃): $\delta = 7.28-7.20$ (m, 1H), 7.16 (d, J = 5.5 Hz, 2H), 7.04 (d, J = 7.4 Hz, 1H), 6.61 (s, 1H), 4.78–4.62

(m, 1H), 4.19 (q, J = 6.8 Hz, 2H), 3.17–2.99 (m, 1H), 2.97–2.76 (m, 2H), 2.64–2.47 (m, 1H), 2.34 (s, 3H), 2.31–2.21 (m, 1H), 2.13–2.01 (m, 1H),1.28 (t, J = 7.0 Hz, 3H).¹³C NMR (101 MHz, CDCl₃): $\delta = 173.7$, 144.2, 137.7, 137.2, 129.3, 128.1, 127.6, 125.5, 125.4, 77.4, 60.7, 48.2, 28.1, 25.9, 21.4, 14.1. HRMS (ESI): m/z calcd for C₁₆H₂₀O₃+Na⁺: 283.1310 [M+Na]⁺; found: 283.1305. HPLC conditions: Chiralcel AD-3 column (25 cm × 0.46 cm ID); *n*-hexane/2-propanol = 92:8; temp, rt; flow rate = 1.0 mL/min; 254 nm UV detector; $t_R = 60.84$ min (minor); $t_R = 25.67$ min (major).

(+)-Ethyl 3-((E)-3-fluorobenzylidene)-2-hydroxycyclopentane-1-carboxylate ((+)-12e)

White solid, 259 mg, 98% yield. 92% ee. $R_f = 0.34$ (petroleum ether/ethyl acetate = 5:2 v/v). M. p. 59–60 °C. $[\alpha]_D^{25} = +19.6$ (c = 1.0 CHCl₃). ¹H NMR (400 MHz, CDCl₃): $\delta = 7.36-7.24$ (m, 1H), 7.10 (d, J = 7.8 Hz, 1H), 7.05 (d, J = 10.4 Hz, 1H), 6.97–6.87 (m, 1H), 6.60 (s,

1H), 4.75–4.68 (m, 1H), 4.20 (q, J = 7.2 Hz, 5H), 3.22 (br s, 1H), 2.93–2.80 (m, 2H), 2.63–2.52 (m, 1H), 2.33–2.22 (m, 1H), 2.14–2.02 (m, 1H), 1.28 (t, J = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): $\delta = 173.4$, 162.6 (d, ¹ $J_{C-F} = 244.3$ Hz), 145.8, 139.4 (d, ³ $J_{C-F} = 8.2$ Hz), 129.5 (d, ³ $J_{C-F} = 8.6$ Hz), 124.2 (d, ⁴ $J_{C-F} = 2.7$ Hz), 123.9 (d, ⁴ $J_{C-F} = 2.3$ Hz), 114.7 (d, ² $J_{C-F} = 21.8$ Hz), 113.4 (d, ² $J_{C-F} = 21.3$ Hz), 77.1, 60.6, 48.0, 27.9, 25.6, 14.0. HRMS (ESI): m/z calcd for C₁₅H₁₇FO₃+Na⁺: 287.1059 [M+Na]⁺; found: 287.1056. HPLC conditions: Chiralcel OD-3 column (25 cm × 0.46 cm ID); *n*-hexane/2-propanol = 90:10; temp, rt; flow rate = 1.0 mL/min; 254 nm UV detector; $t_R = 7.83$ min (minor); $t_R = 9.39$ min (major).

(1S,2S)-(+)-Ethyl 3-((E)-2-fluorobenzylidene)-2-hydroxycyclopentane-1-carboxylate ((1S,2S)-12f)

Pale yellow solid, 254 mg, 96% yield. 92% ee. $R_{\rm f} = 0.40$ (petroleum •CO₂Et ether/ethyl acetate = 5:2 v/v). M. p. 66–67 °C. $[\alpha]_{\rm D}^{25} = +2.4$ (c = 1.0 CHCl₃). ¹H NMR (400 MHz, CDCl₃): $\delta = 7.47-7.35$ (m, 1H), 7.24–7.17 (m, 1H), 7.11 (t, J = 7.5 Hz, 1H), 7.04 (dd, J = 10.6, 8.1 Hz, 1H), 6.81 (s, 1H),

4.78–4.70 (m, 1H), 4.21 (q, J = 7.1 Hz, 2H), 3.07 (s, 1H), 2.95–2.87 (m, 1H), 2.86–2.73 (m, 1H), 2.59–2.43 (m, 1H), 2.33–2.20 (m, 1H), 2.14–2.00 (m, 1H), 1.29 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): $\delta = 173.7$, 160.2 (d, ¹ $J_{C-F} = 248.7$ Hz), 146.6, 129.1 (d, ⁴ $J_{C-F} = 3.1$ Hz), 128.4 (d, ³ $J_{C-F} = 8.5$ Hz), 125.1 (d, ² $J_{C-F} = 12.9$ Hz), 123.6 (d, ⁴ $J_{C-F} = 3.8$ Hz), 117.1 (d, ³ $J_{C-F} = 5.4$ Hz), 115.3 (d, ² $J_{C-F} = 22.3$ Hz), 77.2, 60.8, 48.2, 27.8, 25.8, 14.2. HRMS (ESI): m/z calcd for C₁₅H₁₇FO₃+Na⁺: 287.1059 [M+Na]⁺; found: 287.1057. HPLC conditions: Chiralcel AD-H column (25 cm × 0.46 cm ID); *n*-hexane/2-propanol = 90:10; temp, rt; flow rate = 1.0 mL/min; 254 nm UV detector; $t_R = 11.13$ min (minor); $t_R = 10.02$ min (major).

The product **12f** (10 mg) was dissolved in the mixture solvent of diethyl ether (0.5 mL) and *n*-hexane (1.5 mL). After slowly evaporation of solvents at ambient temperature, the fine crystals which were suitable for the X-ray diffraction analyses were obtained. The intensity data were collected on an a Rigaku 002 Saturn 994 diffractometer using graphite-monochromated Cu K α ($\lambda = 1.54184$ Å) radiation. The absolute configuration of **12f** was determined as (1*S*,2*S*). The crystal structure (OPTEP representation, 30% thermal probability ellpsoids) and the data were outlined below (**Table S2**).

Table S2. Crystal data and structure refinement for 12f (CCDC Number: 2054732)

Empirical formula	C ₁₅ H ₁₇ FO ₃
Formula weight	264.28
Temperature	291.15 К
Crystal system, space group	orthorhombic, $P2_12_12_1$
	$a = 8.22580(10) A$ $\alpha = 90 deg.$
Unit cell dimensions	$b = 11.19040(10) A$ $\beta = 90 deg.$
	$c = 14.72280(10) A$ $\gamma = 90 deg.$
Volume	1355.23(2) Å ³
Z, Calculated density	4, 1.295 Mg/m ³
Absorption coefficient	0.817 mm ⁻¹
F(000)	560
Crystal size	0.220 x 0.180 x 0.160 mm
Radiation	Cu Ka ($\lambda = 1.54184$)
Theta range for data collection	9.928 to 158.81 deg.
Index ranges	$-9 \leqslant h \leqslant 12, -19 \leqslant k \leqslant 19, -20 \leqslant l \leqslant 20$
Reflections collected	10637
Independent reflections	2751 [$R_{int} = 0.0249, R_{sigma} = 0.0165$]
Data/restraints/parameters	2751/28/195
Goodness-of-fit on F ²	1.064
Final R indices $[I \ge 2\sigma(I)]$	$R_1 = 0.0340, wR_2 = 0.0912$
R indices (all data)	$R_1 = 0.0355, wR_2 = 0.0924$
Largest diff. peak and hole	0.21 and -0.15 e.A ⁻³
Flack parameter	0.04(5)

(+)-Ethyl (E)-2-hydroxy-3-(thiophen-2-ylmethylene)cyclopentane-1-carboxylate ((+)-12g)

White solid, 242 mg, 96% yield. 89% ee. $R_f = 0.36$ (petroleum ether/ethyl acetate = 5:2 v/v). M. p. 32–33 °C. $[\alpha]_D^{25} = +7.0$ (c = 1.0 CHCl₃). ¹H NMR (400 MHz, CDCl₃): $\delta = 7.35-7.26$ (m, 1H), 7.10–6.98 (m, 2H), 6.87 (s, 1H), 4.82–4.67 (m, 1H), 4.20 (q, J = 7.1 Hz, 2H), 3.08 (s, 1H), 2.95–2.87

(m, 1H), 2.85–2.73 (m, 1H), 2.60–2.46 (m, 1H), 2.39–2.25 (m, 1H), 2.18–2.05 (m, 1H), 1.29 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): $\delta = 173.7$, 142.3, 141.3, 127.0, 126.8, 125.5, 118.7, 76.8, 60.8, 48.7, 28.5, 25.9, 25.9, 14.2. HRMS (ESI): m/z calcd for C₁₃H₁₆O₃S+Na⁺: 275.0718 [M+Na]⁺; found: 275.0715. HPLC conditions: Chiralcel AD-3 column (25 cm × 0.46 cm ID); *n*-hexane/2-propanol = 90:10; temp, rt; flow rate = 1.0 mL/min; 254 nm UV detector; $t_R = 11.85$ min (minor); $t_R = 14.18$ min (major).
(+)-Ethyl (E)-2-hydroxy-3-(2-methylpropylidene)cyclopentane-1-carboxylate ((+)-12h)

Colourless oil, 206 mg, 97% yield. 87% ee. $R_{\rm f} = 0.55$ (petroleum ether/ethyl acetate = 5:2 v/v). $[\alpha]_{\rm D}^{25} = +5.2$ (c = 1.0 CDCl₃). ¹H NMR (400 MHz, CDCl₃): $\delta = 5.46$ (d, J = 9.3 Hz, 1H), 4.59–4.42 (m, 1H), 4.19 (q, J = 7.2 Hz, 2H), 2.85–2.70 (m, 2H), 2.58–2.48 (m, 1H), 2.44–2.32 (m, 1H), 2.28–2.11 (m, 2H),

2.04–1.99 (m, 1H), 1.28 (t, J = 7.2 Hz, 4H), 1.02–0.92 (m, 6H). ¹³C NMR (101 MHz, CDCl₃): $\delta = 173.9$, 140.2, 133.8, 75.7, 60.6, 49.1, 28.6, 25.6, 25.4, 22.5, 22.4, 14.2. HRMS (ESI): m/z calcd for C₁₂H₂₀O₃+H⁺: 213.1491 [M+H]⁺; found: 213.1489. HPLC conditions: Chiralcel IC-3 column (25 cm × 0.46 cm ID); *n*-hexane/2-propanol = 90:10; temp, rt; flow rate = 1.0 mL/min; 210 nm UV detector; $t_R = 13.35$ min (minor); $t_R = 9.58$ min (major).

(C) Enantioselective Synthesis of Carbocyclic δ-Amino Acid Ester (-)-16

The route for the enantioselective synthesis of the δ -amino acids ester (-)-16 is outlined below.

Asymmetric hydrogenation of 7ag on a gram-scale.

To a 200 mL hydrogenation vessel in an autoclave (250 mL) was added **7ag** (4.5 g, 20.0 mmol), a solution of iridium catalyst (*S*)-**6b** in EtOH (2.0 mg, 0.001 mmol/mL, 2.0 mL, 0.002 mmol, 0.001 mol%), a solution of KO*t*Bu in EtOH (2.2 mg, 0.01 mmol/mL, 2.0 mL, 0.02 mmol, 0.01 mol%), and EtOH (36 mL) under argon atmosphere. The autoclave was purged with hydrogen by pressurizing to 10 atm and releasing the pressure. This procedure was repeated three times and then pressurized to 30 atm of H₂. The reaction mixture was stirred at room temperature (25–30 °C) for 8 h. After releasing the hydrogen

pressure, the reaction mixture was then quenched with saturated NH₄Cl (40 mL) and extracted with ethyl acetate (40 mL × 3). The combined extracts were washed with brine, dried over anhydrous MgSO₄, filtered, and concentrated under reduced pressure. The residue was purified by flash column chromatography on silical gel with petroleum ether/ethyl acetate (10:1 to 5:1 v/v) as an eluent to afford the chiral alcohol (–)-**8ag** (4.4 g, 19.4 mmol, 98% ee) as colourless oil in 97% yield (R_f = 0.61, petroleum ether/ethyl acetate= 5:2 v/v) with 98% ee. [α]_D²⁵ = -67.8 (*c* = 1.0 CHCl₃). ¹H NMR (400 MHz, CDCl₃): δ = 5.25 (d, *J* = 9.0 Hz, 1H), 4.35 (d, *J* = 2.7 Hz, 1H), 4.17 (q, *J* = 7.1 Hz, 2H), 3.00 (s, 1H), 2.60–2.46 (m, 2H), 2.37–2.30 (m, 1H), 2.23–2.13 (m, 1H), 2.09–1.97 (m, 1H), 1.87–1.77 (m, 2H), 1.36–1.21 (m, 4H), 0.96 (d, *J* = 6.6 Hz, 3H), 0.93 (d, *J* = 6.6 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ = 175.2, 135.9, 133.7, 74.1, 60.6, 48.6, 26.1, 26.0, 23.6, 23.5, 23.4, 23.0, 14.1. HRMS (ESI): *m/z* calcd for C₁₃H₂₂O₃+Na⁺: 249.1467 [M+Na]⁺; found: 249.1463. HPLC conditions: Chiralcel IC-3 column (25 cm × 0.46 cm ID); *n*-hexane/2-propanol = 90:10; temp, rt; flow rate = 1.0 mL/min; 210 nm UV detector; *t*_R = 10.13 min (minor); *t*_R = 13.25 min (major).

Synthesis of enecarbamate (-)-13.4

To a solution of (–)-**8ag** (2.5 g, 11.0 mmol) in CH₂Cl₂ (60 ml) was added trichloroacetyl isocyanate (4.1 g, 22.0 mmol, 2.6 mL) over 10 min in a 250 mL, three-necked, round-bottomed flask with a thermometer at 0 °C under argon atmosphere. The reaction mixture was allowed to warm up to ambient temperature naturally during 1 h, then CH₂Cl₂ was evaporated. The resulting residue was dissolved in a mixture of EtOH/H₂O (100 mL, 1:1 v/v), and K₂CO₃ (9.2 g, 66.0 mmol) was added in one portion. After 5 h, EtOH was removed and the aqueous residue was extracted with CH₂Cl₂ (60 mL × 3). The combined extracts were washed with brine, dried over anhydrous MgSO₄, filtered, and concentrated under reduced pressure. The residue was purified by flash column chromatography on silical gel with petroleum ether/ethyl acetate (5:1 v/v) as an eluent to afford (–)-**13** (2.8 g, 10.6 mmol) as white solid in 96% yield (R_f = 0.49, petroleum ether/ethyl acetate = 1:1 v/v). M.p. 123–124 °C. [α]_D²⁵ = -98.2 (c = 1.0 CHCl₃). ¹H NMR (400 MHz, CDCl₃): δ = 5.48 (d, J = 2.9 Hz, 1H), 5.42 (d, J = 9.0 Hz, 1H), 4.81 (s, 2H), 4.28–3.93 (m, 2H), 2.65–2.47 (m, 2H), 2.47–2.33 (m, 1H), 2.03–1.82 (m, 4H), 1.36–1.17 (m, 4H), 1.02–0.83 (m, 6H). ¹³C NMR (101 MHz, CDCl₃): δ = 172.3, 155.9, 136.4, 132.5, 76.7, 60.5, 47.8, 26.2, 25.4, 23.9, 23.2, 23.0, 22.7, 14.1. HRMS (ESI): m/z calcd for C₁₄H₂₃NO₄+Na⁺: 292.1525 [M+Na]⁺; found: 292.1522.

Synthesis of compound (+)-15.⁵

To a solution of (-)-13 (862 mg, 3.2 mmol) and Et₃N (1.9 g, 19.2 mmol, 2.7 mL) in dry THF (20 mL)

cooled to 0 °C was added TFAA (1.3 g, 6.4 mmol, 0.9 mL) in a 100 mL, three-necked, round-bottomed flask with a thermometer, and the resulting mixture was warmed to room temperature naturally. After 1 h, dry MeOH (5 mL) and *n*Bu₃SnOMe (103 mg, 0.3 mmol, 92 µL) were added, and the reaction mixture was stirred overnight. After the removal of the solvents, the residue was purified by flash column chromatography on silical gel with petroleum ether/ethyl acetate (5:1 v/v) as an eluent to afford (+)-**15** (834 mg, 2.9 mmol) as white solid in 92% yield (R_f = 0.37, petroleum ether/ethyl acetate = 5:2 v/v). M.p. 73–74 °C. [α]_D²⁵ = +1.0 (*c* = 1.0 CHCl₃). ¹H NMR (400 MHz, CDCl₃): δ = 5.61 (s, 1H), 4.77 (d, *J* = 9.7 Hz, 1H), 4.14 (q, *J* = 7.1 Hz, 2H), 3.94–3.77 (m, 1H), 3.67 (s, 3H), 3.15–3.06 (m, 1H), 1.99–1.69 (m, 6H), 1.64–1.52 (m, 1H), 1.26 (t, *J* = 7.1 Hz, 3H), 0.92 (d, *J* = 6.7 Hz, 3H), 0.84 (d, *J* = 6.7 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ = 174.5, 156.7, 139.4, 119.5, 61.5, 60.5, 52.1, 41.4, 29.8, 26.0, 25.2, 21.2, 20.1, 17.0, 14.2. HRMS (ESI): *m/z* calcd for C₁₅H₂₅NO₄+Na⁺: 306.1681 [M+Na]⁺; Found: 306.1676.

Synthesis of carbocyclic δ -amino acid ester (–)-16.

To a 40 mL hydrogenation vessel in an autoclave (50 mL) was added a solution of (+)-**15** (142 mg, 0.5 mmol) in MeOH (6 mL) and 10% Pd/C (53 mg, 0.05 mmol). The autoclave was purged with hydrogen by pressurizing to 10 atm and releasing the pressure. This procedure was repeated three times and then pressurized to 30 atm of H₂. The reaction mixture was stirred at room temperature for 20 h. After releasing the hydrogen pressure, the catalyst was removed by filtration through a pad of Celite, which was washed with ethyl acetate. The filtrate was concentrated under reduced pressure. The residue was purified by a column chromatography on a silica gel with petroleum ether/ethyl acetate (20:1 to 10:1 v/v) as an eluent to give (-)-**16** (140 mg, 0.49 mmol) as colourless oil (R_f = 0.39, petroleum ether/ethyl acetate = 5:2 v/v) in 99% yield. dr = 6:1 (determined by ¹H NMR). [α]_D²⁵ = -12.2 (*c* = 1.0, CHCl₃). ¹H NMR (400 MHz, CDCl₃): δ = 4.45 (d, *J* = 10.5 Hz, 1H), 4.11 (q, *J* = 7.1 Hz, 2H), 3.66 (s, 3H), 3.38-3.22 (m, 1H), 2.34-2.22 (m, 1H), 2.00-1.80 (m, 4H), 1.79-1.69 (m, 2H), 1.52-1.39 (m, 1H), 1.37-1.16 (m, 6H), 0.99-0.87 (m, 4H), 0.84 (d, *J* = 6.7 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ = 175.7, 157.4, 60.6, 60.2, 52.0, 43.4, 39.1, 32.6, 28.9, 28.7, 27.2, 25.1, 20.1, 17.1, 14.2. HRMS (ESI): *m/z* calcd for C₁₅H₂₇NO₄+H⁺: 286.2018 [M+H]⁺; Found: 286.2018.

(D) Enantioselective Synthesis of (+)-Isogalactofagomine

The route for enantioselective synthesis of (+)-isogalactofagomine is outlined below.

Asymmetric hydrogenation of 7x on a gram-scale.

To a 200 mL hydrogenation vessel in an autoclave (250 mL) was added 7x (3.6 g, 10.0 mmol), a solution of iridium catalyst (R)-6b in EtOH (2.0 mg, 0.0025 mmol/mL, 2.0 mL, 0.002 mmol, 0.002 mol%), a solution of KOtBu in EtOH (2.3 mg, 0.025 mmol/mL, 2.0 mL, 0.02 mmol, 0.02 mol%), and EtOH (36 mL) under argon atmosphere. The autoclave was purged with hydrogen by pressurizing to 10 atm and releasing the pressure. This procedure was repeated three times and then pressurized to 20 atm of H₂. The reaction mixture was stirred at room temperature (25–30 $^{\circ}$ C) for 4 h. After releasing the hydrogen pressure, the reaction mixture was then quenched with saturated NH₄Cl (40 mL) and extracted with ethyl acetate (40 mL \times 3). The combined extracts were washed with brine, dried over anhydrous MgSO₄, filtered, and concentrated under reduced pressure. The residue was purified by flash column chromatography on silical gel with ether petroleum/ethyl acetate (6:1 v/v) as an eluent to afford the chiral alcohols (+)-8x (3.5 g, 9.8 mmol, 98% ee) as colourless oil in 97% yield ($R_f = 0.32$, ether petroleum/ethyl acetate = 5:2 v/v). $[\alpha]_{D}^{25}$ = +46.4 (*c* = 1.0 CHCl₃). ¹H NMR (400 MHz, CDCl₃): δ = 7.45–7.31 (m, 3H), 7.30-7.16 (m, 3H), 6.62 (s, 1H), 4.76 (d, J = 14.5 Hz, 1H), 4.69 (d, J = 2.8 Hz, 1H), 4.22 (q, J = 7.2 Hz, 2H), 3.88 (d, J = 14.5 Hz, 1H), 3.57 (s, 1H), 2.90–2.74 (m, 1H), 1.57–1.18 (m, 13H). ¹³C NMR (101 MHz, CDCl₃): $\delta = 172.0, 154.3, 135.7, 135.3, 128.7, 128.2, 127.6, 127.2, 79.9, 72.3, 61.0, 47.3, 41.4, 12.5, 1$ 40.2, 28.0, 14.0. HRMS (ESI): *m/z* calcd for C₂₀H₂₇NO₅+H⁺: 362.1967 [M+H]⁺; found: 362.1959. HPLC conditions: Chiralcel AD-H column (25 cm \times 0.46 cm ID); *n*-hexane/2-propanol = 92:8; temp, rt; flow rate = 1.0 mL/min; 254 nm UV detector; $t_R = 8.95 \text{ min (minor)}$; $t_R = 10.56 \text{ min (major)}$.

Synthesis of compound (+)-18.

To a solution of (+)-**8x** (1.4 g, 4.0 mmol) in THF (20 ml) was added LiAlH₄ (1.0 M in THF, 5.6 mmol, 5.6 mL) in a 100 mL, three-necked, round-bottomed flask with a thermometer over 10 min at 0 °C under argon atmosphere. The reaction mixture was stirred at 0 °C for 3 h. The solution was quenched with saturated aqueous potassium sodium tartrate (20 mL) at 0 °C. The mixture was extracted with ethyl acetate (20 mL × 3). The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, and concentrated. The residue was purified by a column chromatography on a silica gel with ether petroleum/ethyl acetate (2:1 to 1:1 v/v) as an eluent to give (+)-**18** (1.0 g, 3.2 mmol) as colourless oil ($R_{\rm f}$ = 0.35, ether petroleum/ethyl acetate = 3:1 v/v) in 81% yield. [α]_D²⁵ = +2.8 (*c* = 1.0, CHCl₃). ¹H NMR (400 MHz, CDCl₃): δ = 7.37–7.29 (m, 2H), 7.28–7.17 (m, 3H), 6.61 (s, 1H), 4.54 (s, 1H), 4.25 (m, 2H), 3.88–3.41 (m, 6H), 2.11 (br s, 1H), 1.20 (s, 9H). ¹³C NMR (101 MHz, CDCl₃): δ = 155.2, 136.4, 136.2, 128.8, 128.2, 127.0, 125.6, 80.0, 74.3, 61.7, 43.5, 42.8, 42.0, 28.0. HRMS (ESI): *m/z* calcd for C₁₈H₂₅NO₄+Na⁺: 342.1681 [M+Na]⁺; found: 342.1675.

Synthesis of compound (+)-19.

To a solution of (+)-**18** (639 mg, 2.0 mmol) and TsOH·H₂O (38 mg, 0.2 mmol) in dry CH₂Cl₂ (10 mL) was added 2,2-dimethoxypropane (1.0 g, 10.0 mmol, 1.2 mL) dropwise over 5 min in a 25 mL Schlenk tube. The reaction mixture was stirred at room temperature for 4 h. The solution was quenched with saturated aqueous NaHCO₃ (10 mL) at 0 °C. The mixture was extracted with CH₂Cl₂ (10 mL × 3). The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by a column chromatography on a silica gel with ether petroleum/ethyl acetate (10:1 to 5:1 v/v) as an eluent to give (+)-**19** (676 mg, 1.9 mmol) as white solid (R_f = 0.69, ether petroleum/ethyl acetate = 3:1 v/v) in 94% yield. M. p. 49–50 °C. [α]²⁵_D = +28.0 (*c* = 1.0, CHCl₃). ¹H NMR (400 MHz, CDCl₃): δ = 7.36–7.31 (m, 2H), 7.30–7.20 (m, 3H), 6.59 (s, 1H), 5.04–4.87 (m, 1H), 4.55 (d, *J* = 2.6 Hz, 1H), 4.21–4.12 (m, 1H), 4.03–3.92 (m, 1H), 3.67–3.49 (m, 3H), 1.78–1.69 (br s, 1H), 1.56 (s, 3H), 1.47 (s, 3H), 1.21 (s, 9H). ¹³C NMR (101 MHz, CDCl₃): δ = 154.6, 135.7, 134.6, 128.9, 128.3, 128.1, 127.2, 98.7, 79.4, 73.2, 62.0, 41.4, 35.7, 29.6, 28.3, 28.0, 18.9. HRMS (ESI): *m/z* calcd for C₂₁H₂₉NO₄+Na⁺: 382.1994 [M+Na]⁺; found: 382.1990.

Synthesis of compound (+)-20.

To a 25 mL Schlenk tube was added a solution of (+)-**19** (360 mg, 1.0 mmol) in dry CH₂Cl₂ (8 mL), and the mixture was cooled to -78 °C while ozone was passed through the solution via a gas dispersion tube until the solution became blue in color (in 20–30 seconds). The reaction mixture was stirred at -78 °C for 30 min, and then argon was passed through the solution at -78 °C for 15 min. Then MeOH (2 mL) and NaBH₄ (76 mg, 2.0 mmol) were added, and the reaction mixture was allowed to warm up to 0 °C over a period of 2 h. The reaction mixture was quenched with saturated aqueous NH₄Cl (10 mL), and extracted with ethyl acetate (10 mL × 3). The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by a column chromatography on a silica gel with ether petroleum/ethyl acetate (5:2 to 1:1 v/v) as an eluent to give (+)-**20** (244 mg, 0.85 mmol) as white solid in 85% yield ($R_{\rm f}$ = 0.45, ether petroleum/ethyl acetate = 1:1 v/v). M. p. 60–61 °C. [α]_D²⁵ = +4.0 (*c* = 1.0, CHCl₃). ¹H NMR (400 MHz, CDCl₃): δ = 4.27 (s, 1H), 4.18–3.72 (m, 3H), 3.70–3.44 (m, 2H), 3.22 (br s, 1H), 2.82 (br s, 1H), 2.40 (br s, 1H), 1.49 (s, 3H), 1.46 (s, 9H), 1.42 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): δ = 154.9, 99.2, 79.9, 67.9, 67.3, 61.7, 45.0, 40.2, 33.6, 29.5, 28.4, 18.8. HRMS (ESI): *m/z* calcd for C₁₄H₂₅NO₅+Na⁺: 310.1630 [M+Na]⁺; found: 310.1627.

Synthesis of (+)-isogalactofagomine.

To a solution of (+)-**20** (86 mg, 0.3 mmol) in CH₂Cl₂ (3 mL) was added TFA (3 mL) in a 25 mL Schlenk tube at 0 °C. The reaction mixture was allowed to warm up to room temperature over 1 h, and then concentrated in vacuo to provide (+)-isogalactofagomine (74 mg, quant, pale yellow oil) as a TFA salt ($R_{\rm f} = 0.29$, MeOH/NH₄OH (25%) = 1:5 v/v). [α]_D²⁵ = +2.6 (c = 1.0, H₂O) [lit.⁶ [α]_D²² = +2.5 (c = 1.0, H₂O)]. ¹H NMR (400 MHz, D₂O): $\delta = 4.15$ (br s, 1H), 4.02–3.92 (ddd, J = 11.5, 5.0, 2.7 Hz, 1H), 3.74 (dd, J = 11.3, 6.6 Hz, 1H), 3.63 (dd, J = 11.3, 7.3 Hz, 1H), 3.36–3.22 (m, 2H), 3.09 (t, J = 11.8 Hz, 1H), 2.95 (t, J = 12.7 Hz, 1H), 2.20–2.07 (m, 1H). ¹³C NMR (101 MHz, D₂O): $\delta = 68.7$, 68.5, 62.7, 44.8, 42.4, 41.9. HRMS (ESI): m/z calcd for C₆H₁₃NO₃+H⁺: 148.0974 [M+H]⁺; found: 148.0970. The characterization data were consistent with those reported. ^[6]

(E) Computational Studies.

1. Density functional theory (DFT) Details.

All DFT calculations have been carried out using the Gaussian 16-RevA.03 quantum program package.⁷

The B3LYP⁸ functional with Def2-SVP⁹ basis set has been selected for geometry optimizations and calculation of Gibbs energy corrections at 298 K, including the GD3BJ¹⁰ dispersion correction scheme developed by Grimme¹¹. Final energies were retrieved from single-point calculations at the B3LYP/Def2-TZVPP¹² level, including the GD3BJ dispersion correction scheme developed by Grimme. Intrinsic reaction coordinate (IRC)¹³ calculations were done to confirm that the transition states proposed connected the appropriate reactants and products. All structures have been optimized considering solvent effects using the SMD¹⁴ Model for MeOH. All energetics reported throughout the text are in kcal/mol. Transition states were optimized starting from the X-ray crystal structure of the Ir-catalyst (*R*)-**6b**¹⁵. The independent gradient model (IGM) analysis¹⁶ was performed by Multiwfn program (Version 3.8)¹⁷ to visualize the non-covalent interactions (NCIs). Graphical structures were visualized with CYLview (Version 1.0b)¹⁸ and VMD (Version 1.9.3)¹⁹.

2. DFT Structures

The proposed mechanism for the iridium catalyzed asymmetric hydrogenation (AH) of exocyclic γ , δ unsaturated β -ketoesters was shown in **Scheme S1**. Owing to the effective chiral recognition of the catalyst, i.e., the iridium-hydride (Ir-H) generated *in situ* from Ir-complex (*R*)-**6b**, one enantiomer of the racemic exocyclic γ , δ -unsaturated β -ketoester [e.g., (*S*)-**7ab**] would undergo a preferential reduction by the Ir-H species, thus leading to a faster hydrogenation than the other under the reaction conditions. Meanwhile, the residual enantioenriched exocyclic γ , δ -unsaturated β -ketoester undergoes rapid racemization by base-catalyzed enol-keto tautomerization, eventually generating two contiguous chiral centers by asymmetric hydrogenation via a dynamic kinetic resolution (DKR) process.

Scheme S1 Asymmetric hydrogenation of exocyclic γ , δ -unsaturated β -ketoesters via dynamic kinetic resolution.

Both diastereo- and enantioselectivity were rationalized by DFT calculations on the stereo-determining hydride/proton transfer step, assuming a Noyori bifunctional mechanism in which the keto carbonyl of the substrate forms a hydrogen bond to the N–H group of the ligand, via a six-membered cyclic transition state.²⁰ For the (*R*)-**6b** catalyzed asymmetric hydrogenation, the chiral Ir-H intermediate can be generated in situ from the reaction mixture. Since Ir-H may act as an effective reductant for the *Si*- or *Re*-attack on either of the exocyclic γ , δ -unsaturated β -ketoesters [(*S*)-**7ab** and (*R*)-**7ab**], four initial guessed structures of transition states need to be considered for the stereochemistry of the hydride/proton transfer step (**Figure S1**).

Figure S1 *Si*- or *Re*-attack of the Ir-H species onto the ketocarbonyl of (*S*)- or (*R*)-exocyclic γ , δ -unsaturated β -ketoester **7ab**.

According to the bifunctional mechanism depicted in **Figure S1**, different spatial arrangements can exist for the reaction of Ir-H and the exocyclic γ , δ -unsaturated β -ketoester [two conformers each for (*S*)-**7ab** or (*R*)-**7ab**, *Re*- or *Si*-attack] for the H⁻/H⁺ transfer step. Although this can in principle lead to a number of distinct initially guessed transition state (**TS**) structures, some of them can safely be excluded due to the severe steric clashes between the substrate and the catalyst. For the reaction of Ir-H with **7ab**, four **TS** structures [**TS**-*SS*, **TS**-*SR*, **TS**-*RR*, and **TS**-*RS*] were found to be energetically viable, which would lead to stereoisomeric products (1*S*,2*S*)-, (1*S*,2*R*)-, (1*R*,2*R*)-, and (1*R*,2*S*)-**8ab**, respectively. These identified **TS** structures were and collectively shown in **Figure S2**. Remarkably, a comparison of the relative heights in free energy barriers for these **TS**s indicated that the hydride/proton transfer step was dominated by the reactivity of Ir-H.

Figure S2 The transition state structures for the H⁻/H⁺ transfer to the exocyclic γ , δ -unsaturated β -ketoester 7ab

For this multiple transition states reaction, the Boltzmann analysis of the four competing TS structures were summarized in **Table S3**. A calculation of the ee and dr values, based on the Boltzmann distribution for each TS structure, indicated that **TS-SS** is the most important single TS, leading to formation of (1S,2S)-**8ab** as the major product with a calculated >99:1 dr (*cis/trans*) and 97.3% ee, which are in agreement with the experimental results (>99:1 *cis/trans*, 95.0% ee).

Table S3 DFT-calculated Boltzmann distribution of the TS structures for (R)-**6b** catalyzedhydride/proton transfer to **7ab**^[a]

Transition States	Free energy in solution (a.u.)	relative G (kcal/mol)	Boltzmann weights
TS- <i>SS</i>	-3232.65148186	0.0000000	0.98656559
TS-SR	-3232.63281451	11.71376212	0.00000000
TS-RR	-3232.64742785	2.543891275	0.01343432
TS-RS	-3232.63615853	9.61538958	0.00000009
		Total	1.0000000
		dr (<i>cis/trans</i>) ^b	>99:1
		ee (%) ^c	97.3

^{*a*} DFT-calculated transition states for the stereoselectivity-determining hydride/proton transfer to **7ab**. ^{*b*} Diastereomeric ratio (dr) = *cis/trans* = [**TS-SS** + **TS-RR**]/[**TS-SR** + **TS-RS**]. ^{*c*} Enantiomeric excess (%) of the (1*S*,2*S*)-**8ab** = [**TS-SS** - **TS-RR**]/[**TS-SS** + **TS-RR**].

3. Rationalization of the diastereo- and enantioselectivities

From these calculation results, it is clear that stereochemical outcomes of the reaction are dominated by the distinct reactivity of Ir-H towards (*S*)- and (*R*)-**7ab**, as a result of effective chiral discrimination in the assembly of the TS structures. To rationalize the diastereo- and enantioselectivities of the reaction, a comparative study was performed on **TS-SS**, **TS-SR**, **TS-RR** and **TS-RS**, based on the analysis of NCIs with IGM method in each of these TS structures. IGM analysis in these TS structures were studied using the Multiwfn program, and were visualized by VMD program. Only intermolecular NCIs between Ir-H and **7ab** were displayed graphically as colored isosurfaces, with color codes indicating qualitatively the nature and strength of NCIs (strongly attractive, blue; weak, green; strongly repulsive, red).

The most favorable transition state leading to the (1*S*,2*S*)-**8ab**, **TS-SS**, features a very strong Ir-H···C interaction in the region of the forming C–H bond, a N–H···O H-bond between the ligand and **7ab**, a significant C–H/ π interactions between α -C–H bond of ester group and the ligand benzene ring (2.52 Å), as well as several sites of less prominent van der Waals interactions between the C(sp³)–H atoms of the exocyclic γ , δ -unsaturated β -ketoester **7ab** and the ligand (**Figure S3**). These attractive interactions work together to stabilize the TS structure.

Figure S3 Intermolecular NCIs in TS-SS as visualized by VMD

IGM analysis of **TS-***SR*, the transition state leading to the (1S,2R)-**8ab**, also revealed the presence of very strong Ir-H···C interaction and a N–H···O H-bond, along with several sites of relatively weak van der Waals interactions in regions between substrate (*S*)-**7ab** and the Ir-H catalyst (**Figure S4**). The most striking difference from that of **TS-***SS*, is that no attractive C–H/ π interactions between α -C–H bond of ester group and the ligand benzene ring of the substrate **7ab** can be found in **TS-***SS*.

Figure S4 Intermolecular NCIs in TS-SR as visualized by VMD

IGM analysis of **TS-***RR*, the transition state leading to the (1*R*,2*R*)-**8ab**, also revealed the presence of very strong Ir-H···C interaction and a N–H···O H-bond, along with several sites of relatively weak van der Waals interactions in regions between substrate (*R*)-**7ab** and the Ir-H catalyst (**Figure S5**). The most striking difference from that of **TS-***SS*, is that no attractive C–H/ π interactions between α -C–H bond of ester group and the ligand benzene ring of the substrate **7ab** can be found in **TS-***SS*.

Figure S5 Intermolecular NCIs in TS-RR as visualized by VMD

IGM analysis of **TS-***RS*, the transition state leading to the (1*R*,2*S*)-**8ab**, also revealed the presence of very strong Ir-H···C interaction and a N–H···O H-bond, along with several sites of relatively weak van der Waals interactions in regions between substrate (*R*)-**7ab** and the Ir-H catalyst (**Figure S6**). The most striking difference from that of **TS-***SS*, is that no attractive C–H/ π interactions between α -C–H bond of ester group and the ligand benzene ring of the substrate **7ab** can be found in **TS-***SS*.

Figure S6 Intermolecular NCIs in TS-RS as visualized by VMD

4. Energy summary

Table	S4 .	Energy	summary ^a
-------	-------------	--------	----------------------

TS	Opt freq b3lyp- GD3BJ/def2svp		SP b3lyp-GD3BJ/def2tzvpp scrf (SMD-MeOH)		
	Hcorr	Gcorr	E(b3lyp)	Enthalpy (total)	Gibbs (total)
TS-SS	1.40049900	1.22322300	-3233.87470486	-3232.47420586	-3232.65148186
TS-SR	1.40036500	1.22383800	-3233.85665251	-3232.45628751	-3232.63281451
TS-RR	1.40069200	1.22289100	-3233.87031885	-3232.46962685	-3232.64742785
TS-RS	1.39984800	1.22302900	-3233.85918753	-3232.45933953	-3232.63615853

 a H_{corr} = Thermal correction to Enthalpy; G_{corr} = Thermal correction to Gibbs Free Energy; Gibbs (total) = E(b3lyp) + G_{corr}; Enthalpy (total) = E(b3lyp) + H_{corr}

References:

(1) H.-Y. Bin, K. Wang, D. Yang, X.-H. Yang, J.-H. Xie and Q.-L. Zhou, *Angew. Chem., Int. Ed.* 2019, 58, 1174.

(2) (a) J.-B. Xie, J.-H. Xie, X.-Y. Liu, W.-L. Kong, S. Li and Q.-L. Zhou, *J. Am. Chem. Soc.* 2010, *132*, 4538; (b) L. Lempenauer, E. Duñach and G. Lemière, *Chem. Eur. J.* 2017, *23*, 10285; (c) D. S. Macdonald, X. Garrabou, C. Klaus, R. Verez, T. Mori and D. Hilvert, *J. Am. Chem. Soc.* 2020, *142*, 10250.

(3) W. Shao, J. Huang, K. Guo, J. Gong and Z. Yang, Org. Lett. 2018, 20, 1857.

(4) (a) Y. Ichikawa and Y. Igarashi, *Tetrahedron Lett.* **1995**, *36*, 4585; (b) Y. Ichikawa, Y. Igarashi, M. Ichikawa and Y. Suhara, J. Am. Chem. Soc. **1998**, *120*, 3007; (c) P. Spanu, C. Candia and F. Ulgheri, *Tetrahedron Lett.* **2010**, *51*, 2400.

(5) P. Szcześniak, M. Pieczykolan and S. Stecko, J. Org. Chem. 2016, 81, 1057.

(6) X. Liang, A. Lohse and M. Bols, J. Org. Chem. 2000, 65, 7432.

(7) M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani,

V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko,

R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman and D. J. Fox, Gaussian 16, Revision A.03 (Gaussian, Inc., 2016).

(8) (a) C. Lee, W. Yang and R. G. Parr, *Phys. Rev. B.* **1988**, *37*, 785; (b) A. D. Becke, *J. Chem. Phys.* **1993**, *98*, 1372; (c) A. D. Becke, *J. Chem. Phys.* **1993**, *98*, 5648.

(9) D. Rappoport and F. Furche, J. Chem. Phys. 2010, 133, 134105.

(10) S. Grimme, S. Ehrlich and L. Goerigk, J. Comput. Chem. 2011, 32, 1456.

(11) S. Grimme, J. Antony, S. Ehrlich and H. Krieg, J. Chem. Phys. 2010, 132, 154104.

(12) F. Weigend and R. Ahlrichs, Phys. Chem. Chem. Phys. 2005, 7, 3297.

(13) (a) K. Fukui, J. Phys. Chem. 1970, 74, 4161; (b) K. Fukui, Acc. Chem. Res. 1981, 14, 363.

(14) A. V. Marenich, C. J. Cramer and D. G. Truhlar, J. Phys. Chem. B 2009, 113, 6378.

(15) J.-H. Xie, X.-Y. Liu, X.-H. Yang, J.-B. Xie, L.-X. Wang and Q.-L. Zhou, *Angew. Chem., Int. Ed.* **2012**, *51*, 201–203.

(16) C. Lefebvre, G. Rubez, H. Khartabil, J.-C. Boisson, J. Contreras-García and E. Hénon, *Phys. Chem. Chem. Phys.* **2017**, *19*, 17928.

(17) T. Lu and F. Chen, Multiwfn: A multifunctional wavefunction analyzer. *J. Comput. Chem.* **2012**, *33*, 580.

(18) C. Y. Legault, CYLview, 1.0b (Université de Sherbrooke, 2009).

(19) W. Humphrey, A. Dalke and K. Schulten, J. Molec. Graphics 1996, 14, 33.

(20) (a) K. Abdur-Rashid, M. Faatz, A. J. Lough and R. H. Morris, J. Am. Chem. Soc. 2001, 123, 7473;

(b) K. Abdur-Rashid, S. E. Clapham, A. Hadzovic, J. N. Harvey, A. J. Lough and R. H. Morris, *J. Am. Chem. Soc.* **2002**, *124*, 15104; (c) C. A. Sandoval, T. Ohkuma, K. Muñiz and R. Noyori, *J. Am. Chem. Soc.* **2003**, *125*, 13490.

(F) NMR Spectra for New Compounds

Ethyl (E)-3-(4-methylbenzylidene)-2-oxocyclohexane-1-carboxylate (7b)

S51

Ethyl (E)-3-(4-(dimethylamino)benzylidene)-2-oxocyclohexane-1-carboxylate (7d)

Ethyl (E)-2-oxo-3-(4-(trifluoromethyl)benzylidene)cyclohexane-1-carboxylate (7f)

Ethyl (E)-3-(4-fluorobenzylidene)-2-oxocyclohexane-1-carboxylate (7g)

Ethyl (E)-3-(4-chlorobenzylidene)-2-oxocyclohexane-1-carboxylate (7h)

S57

Ethyl (E)-3-(4-bromobenzylidene)-2-oxocyclohexane-1-carboxylate (7i)

¹³C NMR (CDCl₃, 101 MHz)

190 180

170 160 150

130

140

120 110 100 90 80 70 60 50 40 30 20 10 O

Ethyl (E)-3-(2-methylbenzylidene)-2-oxocyclohexane-1-carboxylate (7l)

Ethyl (E)-3-(naphthalen-1-ylmethylene)-2-oxocyclohexane-1-carboxylate (70)

Ethyl (E)-3-(naphthalen-2-ylmethylene)-2-oxocyclohexane-1-carboxylate (7p)

Ethyl (E)-2-oxo-3-(thiophen-2-ylmethylene)cyclohexane-1-carboxylate (7t)

Ethyl (*E*)-2-oxo-3-((1-tosyl-1H-indol-3-yl)methylene)cyclohexane-1-carboxylate (7v)

Ethyl (E)-9-(2-bromobenzylidene)-8-oxo-1,4-dioxaspiro[4.5]decane-7-carboxylate (7w)
1-(tert-Butyl) 3-ethyl (E)-5-benzylidene-4-oxopiperidine-1,3-dicarboxylate (7x)

Ethyl 3-methylene-2-oxocyclohexane-1-carboxylate (7aa)

S76

Ethyl (E)-3-ethylidene-2-oxocyclohexane-1-carboxylate (7ab)

Ethyl (E)-3-butylidene-2-oxocyclohexane-1-carboxylate (7ad)

Ethyl (E)-2-oxo-3-pentylidenecyclohexane-1-carboxylate (7ae)

Ethyl (E)-2-oxo-3-(2-phenylethylidene)cyclohexane-1-carboxylate (7af)

Ethyl (E)-3-(2-methylpropylidene)-2-oxocyclohexane-1-carboxylate (7ag)

Ethyl (E)-3-(cyclohexylmethylene)-2-oxocyclohexane-1-carboxylate (7ah)

(+)-Ethyl (E)-3-(3-(allyloxy)propylidene)-2-oxocyclohexane-1-carboxylate (7aj)

S85

Ethyl (E)-3-(2-ethoxy-2-oxoethylidene)-2-oxocyclohexane-1-carboxylate (7al)

Benzyl (E)-4-((3-(ethoxycarbonyl)-2-oxocyclohexylidene)methyl)piperidine-1-carboxylate (7am)

1-(tert-Butyl) 3-ethyl (E)-5-(2-methylpropylidene)-4-oxopiperidine-1,3-dicarboxylate (7ao)

Ethyl (E)-5-(2-methylpropylidene)-4-oxotetrahydro-2H-pyran-3-carboxylate (7ap)

Ethyl (E)-3-(4-methylbenzylidene)-2-oxocycloheptane-1-carboxylate (9a)

13.041 7.555 7.7559 7.7559 7.7559 7.7559 7.75250 7.7270 7.72700 7.72700 7.72700 7.72700 7.72700 7.72700 7.72700 7.72700 7.727000

Ethyl (*E*)-3-(4-chlorobenzylidene)-2-oxocycloheptane-1-carboxylate (9b)

130.059 130.059

Ethyl (E)-3-(3-methoxybenzylidene)-2-oxocycloheptane-1-carboxylate (9c)

7,539 7,7308 7,7308 7,7308 7,7308 7,7308 7,7308 7,7308 7,7308 7,7308 7,7308 7,7308 7,7308 6,834 7,2308 6,834 4,225 6,834 4,225 6,834 4,225 3,338 7,233 3,338 7,233 3,338 7,234 4,225 3,338 2,3388 2,3388 2,3388 2,3388 2,3388 2,3388 2,3388 2,3388 2,3388 2,

Ethyl (E)-3-(3-bromobenzylidene)-2-oxocycloheptane-1-carboxylate (9d)

Ethyl (*E*)-3-(2-methylbenzylidene)-2-oxocycloheptane-1-carboxylate (9e)

113.042. 7.734 7.735 7.735 7.735 7.735 7.725

Ethyl (E)-3-(2-fluorobenzylidene)-2-oxocycloheptane-1-carboxylate (9f)

77,752 72,752

Ethyl (E)-2-oxo-3-(pyridin-2-ylmethylene)cycloheptane-1-carboxylate (9g)

112.996

210 200 160 150 140 130 120

Ethyl (*E*)-3-(furan-2-ylmethylene)-2-oxocycloheptane-1-carboxylate (9h)

Ethyl (E)-3-(2-methylpropylidene)-2-oxocycloheptane-1-carboxylate (9i)

(15282) (15282) (15282) (15280

Ethyl (E)-3-benzylidene-2-oxocyclopentane-1-carboxylate (11a)

Ethyl (E)-3-(4-methylbenzylidene)-2-oxocyclopentane-1-carboxylate (11b)

17,10,277 17,445 17,745 17,745 17,745 17,745 17,745 17,755 17,175

Ethyl (E)-3-(3-methylbenzylidene)-2-oxocyclopentane-1-carboxylate (11d)

Ethyl (E)-3-(3-fluorobenzylidene)-2-oxocyclopentane-1-carboxylate (11e)

Ethyl (E)-3-(2-fluorobenzylidene)-2-oxocyclopentane-1-carboxylate (11f)

¹³C NMR (CDCl₃, 101 MHz)

Ethyl (E)-2-oxo-3-(thiophen-2-ylmethylene)cyclopentane-1-carboxylate (11g)

Ethyl (E)-3-(2-methylpropylidene)-2-oxocyclopentane-1-carboxylate (11h)

(1014) (1

(+)-cis-Ethyl 3-((E)-benzylidene)-2-hydroxycyclohexane-1-carboxylate ((+)-cis-8a)

(+)-*trans*-Ethyl 3-((*E*)-benzylidene)-2-hydroxycyclohexane-1-carboxylate ((+)-*trans*-8a)

¹H NMR (CDCl₃, 400 MHz)

(+)-Ethyl 2-hydroxy-3-((*E*)-4-methylbenzylidene)cyclohexane-1-carboxylate ((+)-8b)

100

110

80

70 60

90

50

40 30 20

10

0

140 130 120

150

00 190 180 170 160

(+)-Ethyl 2-hydroxy-3-((*E*)-4-methoxybenzylidene)cyclohexane-1-carboxylate ((+)-8c)

S114

(+)-Ethyl 3-((*E*)-4-cyanobenzylidene)-2-hydroxycyclohexane-1-carboxylate ((+)-8e)

. 7,525 (1,759) (1,759) (1,759) (1,759) (1,759) (1,759) (1,759) (1,759) (1,459) (1,459) (1,459) (1,4420) (1,440

(+)-Ethyl 2-hydroxy-3-((*E*)-4-(trifluoromethyl)benzylidene)cyclohexane-1-carboxylate ((+)-8f)

(+)-Ethyl 3-((*E*)-4-fluorobenzylidene)-2-hydroxycyclohexane-1-carboxylate ((+)-8g)

7.171 7.167 7.167 7.167 7.167 7.167 7.166 6.698 6.69866 6.69866 6.69866 6.69866 6.69866 6.69866 6.69866 6.69866 6.69866 6.69866

(+)-Ethyl 3-((*E*)-4-chlorobenzylidene)-2-hydroxycyclohexane-1-carboxylate ((+)-8h)

7.7294 6.4712 6.4712 6.4712 6.4712 6.4712 6.4712 6.4712 6.4712 6.4712 6.4712 6.4712 6.4712 6.4712 6.6722 6.6672 6.6726 6.6726 6.

100 90 f1 (ppm) 80 70

190 180 170 160 150 140 130 120 110

60 50

40 30 20 10 0

(+)-Ethyl 3-((*E*)-3-bromobenzylidene)-2-hydroxycyclohexane-1-carboxylate ((+)-8k)

(+)-Ethyl 2-hydroxy-3-((*E*)-2-methylbenzylidene)cyclohexane-1-carboxylate ((+)-8l)

7,7178 7,7178 7,71318

(+)-Ethyl 3-((*E*)-2-chlorobenzylidene)-2-hydroxycyclohexane-1-carboxylate ((+)-8m)

(+)-Ethyl 3-((*E*)-2-bromobenzylidene)-2-hydroxycyclohexane-1-carboxylate ((+)-8n)

(+)-Ethyl (E)-2-hydroxy-3-(naphthalen-1-ylmethylene)cyclohexane-1-carboxylate ((+)-80)

(+)-Ethyl (E)-2-hydroxy-3-(naphthalen-2-ylmethylene)cyclohexane-1-carboxylate ((+)-8p)

7,819 7,778 7,778 7,778 7,778 7,745

(+)-Ethyl (E)-3-(benzo[d][1,3]dioxol-5-ylmethylene)-2-hydroxycyclohexane-1-carboxylate ((+)-8q)

(+)-Ethyl (E)-2-hydroxy-3-(pyridin-2-ylmethylene)cyclohexane-1-carboxylate ((+)-8r)

(+)-Ethyl (E)-3-(furan-2-ylmethylene)-2-hydroxycyclohexane-1-carboxylate ((+)-8s)

(+)-Ethyl (E)-2-hydroxy-3-(thiophen-2-ylmethylene)cyclohexane-1-carboxylate ((+)-8t)

7,2245 (6,978) (7,978)

(+)-Ethyl (*E*)-2-hydroxy-3-((1-methyl-1H-pyrrol-2-yl)methylene)cyclohexane-1-carboxylate ((+)-8u)

6.60 6.60 6.616 6.616 6.616 6.616 6.616 6.616 6.616 6.615 6.617 6.615 6.

Ethyl (1*S*,2*S*,*E*)-2-hydroxy-3-((1-tosyl-1H-indol-3-yl)methylene)cyclohexane-1-carboxylate ((1*S*,2*S*)-8v)

(+)-Ethyl 5-((*E*)-benzylidene)-4-hydroxytetrahydro-2H-pyran-3-carboxylate ((+)-8y)

(+)-Ethyl (E)-2-hydroxy-3-((E)-3-phenylallylidene)cyclohexane-1-carboxylate ((+)-8z)

7,413 7,7308 7,7308 7,7308 7,7308 7,7208 7,7

(+)-Ethyl 2-hydroxy-3-methylenecyclohexane-1-carboxylate ((+)-8aa)

(cis,cis)-Ethyl 2-hydroxy-3-methylcyclohexane-1-carboxylate

S138

(+)-Ethyl (E)-3-ethylidene-2-hydroxycyclohexane-1-carboxylate ((+)-8ab)

S139

(+)-Ethyl (E)-2-hydroxy-3-propylidenecyclohexane-1-carboxylate ((+)-8ac)

5,5445 5,5445 5,445 4,43778 4,43778 4,43778 4,43778 4,43778 4,43778 4,43778 4,43778 4,43778 4,43778 4,43778 4,43778 4,44166 4,44166 4,43778 4,44166 4,44166 4,44166 4,44166 4,44166 4,44166 4,44166 4,44166 4,44166 4,44166 4,44166 4,44166 4,44166 4,44166 4,44166 4,44166 4,44166 4,44166 4,44164,4416 4,4416 4,4416 4,4416 4,4416 4,4416 4,44164,4416 4,4416 4,4416 4,44164,4416 4,4416 4,44164,4416 4,4416 4,44164,4416 4,4416 4,44164,4416 4,4416 4,44164,4416 4,44164,4416 4,4416 4,44164,44164,4416 4,44164,44164,4416 4,44164,44164,44164,441

(+)-Ethyl (E)-3-butylidene-2-hydroxycyclohexane-1-carboxylate ((+)-8ad)

5,5,445 5,5,445 5,5,426 5,5,427 5,5,428 4,4,183 3,3,038 3,3,038 4,1183 3,3,038 4,1183 3,3,038 4,1182 3,3,044 4,1182 3,3,045 3,3,045 4,1182 3,3,045 4,1182 3,3,045 4,1182 3,3,045 4,1182 2,2,115 2,2,11

(+)-Ethyl (E)-2-hydroxy-3-pentylidenecyclohexane-1-carboxylate ((+)-8ae)

5,5445 5,5425 5,5427 5,4227 5,4227 5,4227 5,4227 5,4227 5,427 5,427 5,427 5,427 5,425 5,425 5,425 5,425 5,425 5,416 5,425 5,416 5,425 5,416 5,425 5,416 5,425 5,416 5,425 5,416 5,425 5,416 5,425 5,416 5,425 5,416 5,425 5,416 5,425 5,416 5,515 5

(+)-Ethyl (E)-2-hydroxy-3-(2-phenylethylidene)cyclohexane-1-carboxylate ((+)-8af)

(+)-Ethyl (E)-2-hydroxy-3-(2-methylpropylidene)cyclohexane-1-carboxylate ((+)-8ag)

(+)-Ethyl (E)-3-(cyclohexylmethylene)-2-hydroxycyclohexane-1-carboxylate ((+)-8ah)

(+)-Ethyl (E)-3-(2,2-dimethylpropylidene)-2-hydroxycyclohexane-1-carboxylate ((+)-8ai)

5,5,477 4,416344,4163 4,4163 4,4163 4,4163 4,4163 4,4163 4,41634,4163 4,4163 4,4163 4,4163 4,41634,4163 4,4163 4,41634,4163 4,4163 4,41634,4163 4,4163 4,41634,4163 4,4163 4,41634,4163 4,4163 4,4163

(+)-Ethyl (E)-3-(3-(allyloxy)propylidene)-2-hydroxycyclohexane-1-carboxylate ((+)-8aj)

5.955 5.591 5.591 5.591 5.591 5.591 5.591 5.591 5.591 5.546 5.546 5.546 5.546 5.546 5.546 5.546 5.546 5.546 5.546 5.546 5.546 5.546 5.546 5.546 5.546 5.546 5.5546 5.546 5.546 5.546 5.546 5.5

Ethyl (E)-3-(3,3-diethoxypropylidene)-2-hydroxycyclohexane-1-carboxylate ((+)-8ak)

Ethyl (E)-3-(2-ethoxy-2-oxoethylidene)-2-hydroxycyclohexane-1-carboxylate ((+)-8al)

5,5897 4,42150 4,42150 4,42150 4,41754 4,4167 4,41764 4,4167 4,41764,4176 4,4176 4,4176 4,4176 4,41764,4176 4,4176 4,4176 4,41764,4176 4,4176 4,4176 4,41764,4176 4,4176 4,41764,4176 4,4176 4,41764,4176 4,4176 4,41764,4176 4,4176 4,41764,4176 4,4176 4,41764,4176 4,4176 4,41764,4176 4,4176 4,41764,4176 4,41764,4176 4,4176 4,41764,4176 4,41

(+)-Benzyl 4-((*E*)-((2S,3S)-3-(ethoxycarbonyl)-2-hydroxycyclohexylidene)methyl)piperidine-1carboxylate ((+)-8am)

(+)-Ethyl (E)-8-hydroxy-9-(2-methylpropylidene)-1,4-dioxaspiro[4.5]decane-7-carboxylate ((+)-8an)

(+)-1-(*tert*-Butyl) 3-ethyl (*E*)-4-hydroxy-5-(2-methylpropylidene)piperidine-1,3-dicarboxylate ((+)-8ao)

(+)-Ethyl (E)-4-hydroxy-5-(2-methylpropylidene)tetrahydro-2H-pyran-3-carboxylate ((+)-8ap)

5,5403 4,42379 4,4287 4,4287 4,4287 4,4287 4,41864,4186 4,4186 4,4186 4,4186 4,4186 4,4186 4,4186 4,4186 4,41864,4186 4,4186 4,4186 4,41864,4186 4,4186 4,41864,4186 4,4186 4,41864,4186 4,4186 4,41864,4186 4,4186 4,41864,4186 4,4186 4,41864,4186 4,41864,4186 4,41864,4186 4,4186 4,41864,4186 4,4186 4,41864,4186 4,41864,4186 4,4186 4,41864,41864,4186 4,41864,41864,4186 4,41864,4186 4,41864,41864,4186 4,41864,41864,4186 4,41864,41864,4186 4,41864,41864,4186 4,41864,41864,4186 4,41864,41864,4186 4,41864,41864,4186 4,41864,41864,4186 4,41864,41864,41864,4186 4,41864,41864,41864,41864,41864,41864

(+)-Ethyl 2-hydroxy-3-(propan-2-ylidene)cyclohexane-1-carboxylate ((+)-8aq)

5.5056 5.5056 5.5050 5.5040 5.5040 5.5040 5.5040 5.5040 5.5040 5.5040 5.5040 5.5040 5.5040 5.5040 5.5040 5.2046

(+)-Ethyl 2-hydroxy-3-((*E*)-4-methylbenzylidene)cycloheptane-1-carboxylate ((+)-10a)

S155

(+)-Ethyl 3-((*E*)-4-chlorobenzylidene)-2-hydroxycycloheptane-1-carboxylate ((+)-10b)

7,7295 (6,52,295) (6,52,214) (6,52,214) (6,52,214) (4,4,172)(4,4,172) (4,4,172) (4,4,172)(4,4,172) (4,4,172)(4,4,172) (4,4,172)(4,4,

(+)-Ethyl 2-hydroxy-3-((*E*)-3-methoxybenzylidene)cycloheptane-1-carboxylate ((+)-10c)

7,258 7,228 7,228 6,528 6,528 6,528 6,578 7,228

(+)-Ethyl 3-((*E*)-3-bromobenzylidene)-2-hydroxycycloheptane-1-carboxylate ((+)-10d)

7,377 7,375 7,159 7,150 6,509 6,509 6,509 6,509 6,509 6,519 6,509 6,519 7,150 6,509 6,509 6,509 1,175 2,567 1,175 1,1950 1,17500 1,17500 1,17500 1,17500 1,17500 1,17500 1,17500

(+)-Ethyl 2-hydroxy-3-((*E*)-2-methylbenzylidene)cycloheptane-1-carboxylate ((+)-10e)

7,717 7,715 7,215

(+)-Ethyl 3-((*E*)-2-fluorobenzylidene)-2-hydroxycycloheptane-1-carboxylate ((+)-10f)

(+)-Ethyl (E)-2-hydroxy-3-(pyridin-2-ylmethylene)cycloheptane-1-carboxylate ((+)-10g)

ŌН OEt

¹³C NMR (CDCl₃, 101 MHz)

(+)-Ethyl (E)-3-(furan-2-ylmethylene)-2-hydroxycycloheptane-1-carboxylate ((+)-10h)

7,7383 6,6390 6,6394 6,6394 6,6394 6,6394 4,4730 6,6283 4,6362 6,6283 4,6362 6,6283 4,6362 6,6283 4,6362 6,6283 4,6362 6,6283 4,6362 6,6283 4,6362 6,6283 4,6362 6,6283 4,6362 6,6283 4,6362 6,6283 4,6362 6,6283 4,6362 6,6283 4,6362 6,6283 4,6362 6,6283 4,6362 6,6283 4,6362 6,6283 4,6362 6,6283 4,6362 6,6283 4,6362 6,6283 4,6362 6,

(+)-Ethyl (E)-2-hydroxy-3-(2-methylpropylidene)cycloheptane-1-carboxylate ((+)-10i)

(+)-Ethyl 3-((*E*)-benzylidene)-2-hydroxycyclopentane-1-carboxylate ((+)-12a)

7,7362 7,7318 7,7318 7,7318 7,7318 7,7318 7,7219 7,7229 7,2258 7,

(+)-Ethyl 2-hydroxy-3-((*E*)-4-methylbenzylidene)cyclopentane-1-carboxylate ((+)-12b)

7,7250 (5,712)

(+)-Ethyl 3-((*E*)-4-chlorobenzylidene)-2-hydroxycyclopentane-1-carboxylate ((+)-12c)

(+)-Ethyl 2-hydroxy-3-((*E*)-3-methylbenzylidene)cyclopentane-1-carboxylate ((+)-12d)

(+)-Ethyl 3-((*E*)-3-fluorobenzylidene)-2-hydroxycyclopentane-1-carboxylate ((+)-12e)

7,7310 7,7205 7,7205 7,7275 7,7275 7,7275 7,7275 7,7295 6,937 7,7055 6,937 7,2055 7,2055 6,937 7,20555 7,20555 7,20555 7,205555 7,2055555555555555555555555555555

Ethyl (1*S*,2*S*)-3-((*E*)-2-fluorobenzylidene)-2-hydroxycyclopentane-1-carboxylate ((1*S*,2*S*)-12f)

77,72,23 77,73 74,43 72,29 74,29 74,29 74,29 74,29

(+)-Ethyl (E)-2-hydroxy-3-(thiophen-2-ylmethylene)cyclopentane-1-carboxylate ((+)-12g)

ΟН 2 CO₂Et

¹H NMR (CDCl₃, 400 MHz)

(+)-Ethyl (E)-2-hydroxy-3-(2-methylpropylidene)cyclopentane-1-carboxylate ((+)-12h)

5,5260 4,4325 4,4345 4,4345 4,4345 4,4345 4,4345 4,4165 4,4464,446 4,446 4,446 4,446 4,446 4,446 4,446 4,4464,446 4,446 4,446 4,446 4,4464,446 4,446 4,446 4,446 4,446 4,4464,446 4,446 4,446 4,4464,446 4,446 4,446 4,4464,446 4,446 4,446 4,4464,446 4,446 4,4464,446 4,446 4,4464,446 4,446 4,4464,446 4,446 4,4464,446 4,446 4,4464,446 4,446 4,4464,446 4,446 4,4464,446 4,446 4,4464,446 4,446 4,4464,446 4,446 4,4464,446 4,446 4,4464,446 4,446 4,4464,446 4,446 4,4464,446 4,446 4,4464,446 4,446 4,4464,446 4,446 4,4464,446 4,4464,446 4,446 4,4464,446 4,446 4,4464,446 4,446 4,4464,446 4,4464,446 4,446 4,4464,446 4,4464,446 4,446 4,4464,446 4,4464,446 4,4464,446 4,446 4,4464,44

S172

Compound (+)-15

4,4461 4,1122 4,1122 3,503 3,503 3,503 3,504 4,1125 4,1128 3,505 1,945 1,175 1

 $\begin{array}{c} 4270\\ 4270\\ 4214\\ 4144\\ 4144\\ 4014\\ 4014\\ 4016\\ 3016\\ 3016\\ 3016\\ 3016\\ 3016\\ 3016\\ 3016\\ 3016\\ 3016\\ 3016\\ 3016\\ 3016\\ 3016\\ 1014\\ 300\\ 300\\ 1014\\ 1$

(+)-isogalactofagomine

68.70
68.48
68.48
62.73
44.76
42.44
41.86

60

50 40

70

30 20

10 0

OH HO ЪЮ •TFA

¹³C NMR (D₂O, 101 MHz)

00

190 180

170

160 150 140

130

120 110 100 90 80

(G) HPLC Charts for Products

For compound (+)-cis-8a

For compound (+)-trans-8a

For compound (+)-8b

For compound (+)-8c

For compound (+)-8d

For compound (+)-8e

For compound (+)-8f

For compound (+)-8g

For compound (+)-8h

For compound (+)-8i

For compound (+)-8j

For compound (+)-8k

For compound (+)-8l

For compound (+)-8m

For compound (+)-8n

For compound (+)-80

#	[min]		[min]	[mAU*s]	[mAU]	%
		-				
1	10.374	BB	0.2226	310.85187	21.50903	1.0858
2	15.355	BB	0.4660	2.80056e4	928.28369	97.8252
3	18.904	BB	0.4894	311.75031	9.43752	1.0890

For compound (+)-8p

1	14.913	BB	0.2851	2.58824e4	1404.03076	94.0779
2	16.545	BB	0.3373	607.11633	27.74102	2.2068
3	20.520	BB	0.4099	1022.16034	38.23585	3.7154

For compound (+)-8q

For compound (+)-8r

For compound (+)-8s

For compound (+)-8t

983.05237

97.4865

0.2992 1.89746e4

14.593 BB

3

For compound (+)-8u

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	12.791	BB	0.2339	52.39444	3.43636	0.4667
2	14.901	BB	0.2697	1.11743e4	633.87640	99.5333

For compound (1*S*,2*S*)-8v

For compound (+)-8w

For compound (+)-8x

For compound (+)-8y

For compound (+)-8z

For compound (+)-8aa

For (cis,cis)-ethyl 2-hydroxy-3-methylcyclohexane-1-carboxylate

For compound (+)-8ab

For compound (+)-8ac

For compound (+)-8ad

For compound (+)-8ae

For compound (+)-8af

For compound (+)-8ag

For compound (+)-8ah

S215

59.23974

2.23270

0.8948

0.3755

3

16.796 BB

For compound (+)-8aj

S217

For compound (+)-8ak

For compound (+)-8al

For compound (+)-8am

For compound (+)-8an

For compound (+)-8ao

For compound (+)-8ap

For compound (+)-8aq

For compound (+)-10a

For compound (+)-10b

For compound (+)-10c

For compound (+)-10d

For compound (+)-10e

For compound (+)-10f

For compound (+)-10g

For compound (+)-10h

For compound (+)-10i

For compound (+)-12a

For compound (+)-12b

0.5147 317.34354

8.80044

2.1398

3 24.554 BB

For compound (+)-12c

For compound (+)-12d

For compound (+)-12e

For compound (1*S*,2*S*)-12f

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	10.173	VB	0.2387	4279.45166	276.24265	15.5009
2	11.340	BB	0.2698	4317.56982	247.19951	15.6390
3	13.560	MM	0.3570	9459.91797	441.67776	34.2655
4	16.907	BB	0.4149	9550.74805	356.15527	34.5945

For compound (+)-12g

Peak RetTime Type Width Area Height Area # [min] [min] [mAU*s] [mAU] % ----|-----|-----|------| ----| ----| 1 11.847 BB 0.1772 414.29309 36.28078 5.3164 2 14.183 BB 0.2202 7378.49023 518.00116 94.6836

For compound (+)-12h

For compound (-)-8ah

(H) The Cartesian coordinates (Å) and energies at 298 K for the optimized structures

TS-SS

01			
Ir	0.86295900	-0.11532500	-1.28005800
Р	-0.85099400	0.34043000	0.12828700
С	0.09502100	-2.19039500	2.41402200
С	1.36408300	-2.69712500	3.15397400
С	1.55893600	-1.70237800	4.31121000
С	0.88477600	-0.44728300	3.80996500
С	0.22971500	-0.66127200	2.58055500
С	-0.34165600	0.43979900	1.90204200
С	-0.35783200	1.68583700	2.56240200
С	0.18729600	1.84782600	3.83553600
С	0.84952600	0.78662600	4.44988100
С	-1.19042400	-2.57588900	3.23307900
С	-1.71227900	-3.89197400	2.65373400
С	-1.15506000	-3.89986700	1.25585800
С	-0.13673100	-2.93919100	1.10367200
С	0.57598500	-2.90207700	-0.10467600
С	0.18482900	-3.75548100	-1.15297700
С	-0.84399900	-4.67854600	-0.98850700
С	-1.51758000	-4.76839700	0.23109100
Ν	1.65183500	-1.99781400	-0.31552600
С	2.79860600	-2.50979800	-1.08560400
С	3.03926600	-1.82731000	-2.40561800
С	4.04870700	-2.29544300	-3.27085100
С	4.27181300	-1.58431900	-4.45162700
С	3.51738700	-0.44405500	-4.73662900
С	2.55692500	-0.03420500	-3.82398700
Ν	2.33000000	-0.71276900	-2.68215100
С	-1.69064400	1.94768100	-0.24187400
С	-3.07042200	2.02946300	-0.47029500
С	-3.67547500	3.23995500	-0.82687000
С	-2.86423000	4.38211200	-0.92054900
С	-1.47984100	4.33448500	-0.70881200

С	-0.90739000	3.09543100	-0.39023000
С	-5.19181600	3.33257200	-1.06635600
С	-5.84689500	3.93289700	0.19602900
С	-5.81058400	1.94938800	-1.33712400
С	-5.49808500	4.23305600	-2.27930300
С	-0.57697000	5.57326600	-0.81780000
С	0.05746300	5.85081200	0.56180400
С	-1.35415800	6.82455100	-1.25355700
С	0.53445000	5.30651300	-1.85450200
С	-2.30957800	-0.78094500	0.17124100
С	-2.65038700	-1.53951000	-0.95363100
С	-3.87212600	-2.21630600	-1.01087700
С	-4.72980200	-2.13369200	0.10066800
С	-4.41931600	-1.38088000	1.23994700
С	-3.19115100	-0.70201100	1.25326300
С	-4.32854400	-2.97925100	-2.26411900
С	-3.24956100	-2.98010600	-3.35798100
С	-4.66230200	-4.44053400	-1.90256900
С	-5.58995500	-2.28848600	-2.82660000
С	-5.39899800	-1.20842000	2.41413900
С	-4.69748900	-1.52071400	3.75076200
С	-6.62131200	-2.13075400	2.28848500
С	-5.89006500	0.25551700	2.43188100
Н	-0.21933600	-0.79172000	-2.29259300
Н	0.50662600	1.23189100	-2.03270400
Н	1.24678000	-3.74047300	3.48232500
Н	2.22612200	-2.64098800	2.47621800
Н	1.09280400	-2.05673600	5.24689600
Н	2.62283900	-1.52268500	4.53321500
Н	-0.81219400	2.54541200	2.07138700
Н	0.12626100	2.82130000	4.32768100
Н	1.34250800	0.92126700	5.41623700
Н	-0.98277300	-2.61902300	4.31097900
Н	-1.94035000	-1.79452700	3.08133300
Н	-1.33622000	-4.76755300	3.21246200
Н	-2.81189800	-3.95312300	2.66565300
Н	0.68144600	-3.66963400	-2.11971000
Н	-1.12047700	-5.32911000	-1.82152200
Н	-2.31344800	-5.50059000	0.38303400
Н	2.06049900	-1.59106900	0.52211100
Н	2.70998600	-3.59477300	-1.23884100
Н	3.69864800	-2.35076700	-0.47098600
Н	5.04769400	-1.92071200	-5.14384800
Н	1.94186000	0.85165000	-3.97711000

Н	-3.67477800	1.13302000	-0.38553200
Н	-3.32754200	5.33200700	-1.17796900
Н	0.17022900	3.00751100	-0.26757100
Н	-6.93803400	4.02384800	0.06527400
Н	-5.44348300	4.93395000	0.41410200
Н	-5.65775900	3.29542100	1.07355500
Н	-5.33662000	1.45841400	-2.20118800
Н	-6.88488900	2.05727300	-1.55310000
Н	-5.71559400	1.27425400	-0.47560100
Н	-4.99862500	3.85662400	-3.18567000
Н	-5.17431200	5.27206200	-2.12088700
Н	-6.58292300	4.25544500	-2.46952800
Н	-0.72021600	6.04725800	1.31661600
Н	0.71982000	6.73066600	0.51378400
Н	0.65700500	4.99803900	0.91080400
Н	-2.13882900	7.09280100	-0.52946400
Н	-1.82750800	6.68782400	-2.23808800
Н	-0.66699900	7.68147500	-1.32942700
Н	1.20125400	6.18031200	-1.93589200
Н	0.10152000	5.10974100	-2.84767000
Н	1.15081200	4.43850400	-1.58296100
Н	-1.94478600	-1.56545700	-1.78117100
Н	-5.68290200	-2.65777500	0.05741500
Н	-2.93028800	-0.06412200	2.09903900
Н	-3.60396200	-3.55171600	-4.22993100
Н	-2.31634900	-3.43999700	-3.00421200
Н	-3.01463800	-1.96080200	-3.69901700
Н	-5.00481700	-4.98772100	-2.79577600
Н	-5.45984900	-4.50442800	-1.14703500
Н	-5.37863700	-1.23753700	-3.07913400
Н	-6.41816000	-2.29902000	-2.10187100
Н	-5.93476700	-2.79958400	-3.74035500
Н	-4.32278000	-2.55516000	3.76865700
Н	-5.40336600	-1.39921300	4.58780000
Н	-3.84676800	-0.84997000	3.93776100
Н	-7.21385600	-1.90776300	1.38839600
Н	-7.28166800	-1.99557500	3.15896100
Н	-6.32677900	-3.19112200	2.25125500
Н	-5.05105500	0.96164900	2.52432200
Н	-6.57300500	0.42532100	3.28022700
Н	-6.43156800	0.49801800	1.50494700
Н	-3.77650800	-4.95318300	-1.50176900
Н	2.02564500	0.63803800	-0.27739100
Н	3.67665600	0.12856200	-5.65153400

С	4.88836700	-3.48232100	-2.89007100
Н	5.46231600	-3.24831300	-1.97941400
Н	4.27281200	-4.37157900	-2.67907100
Н	5.59470000	-3.73882500	-3.69196200
С	2.99422000	3.09049000	0.76862800
С	3.61169000	3.09945300	-0.64141700
С	4.85096100	2.20402600	-0.66336400
Н	5.39478500	2.30036600	-1.61723300
Н	2.88172100	2.73155200	-1.37729500
Н	3.87192500	4.12991200	-0.93064500
Н	3.43465223	3.89703692	1.37359139
Н	1.91476783	3.31316268	0.71176500
Н	5.54099100	2.51719700	0.13586600
С	3.30965400	0.53838400	0.62540600
0	3.20369459	-0.61719383	1.13326240
С	3.17825200	1.77270900	1.47722800
Н	2.41979127	1.20408981	2.06833880
С	4.22049084	2.42055457	2.40762271
0	5.44050143	2.51899644	2.28334414
0	3.65668594	2.95012153	3.52256345
С	4.65464375	3.54092939	4.35917942
С	4.05816394	3.99021633	5.66037239
Н	5.10290178	4.40471992	3.81059378
Н	5.45728913	2.78354269	4.53275426
Н	4.83741586	4.45174333	6.31423303
Н	3.25550540	4.74754342	5.48638203
Н	3.60977060	3.12624542	6.20861700
С	4.45324700	0.73270200	-0.45005700
С	5.03100460	-0.25639467	-1.11784228
Н	4.58464988	-0.70775432	-2.01407401
С	6.38224356	-0.86532626	-0.69956536
Н	6.65987387	-1.62926162	-1.39542754
Н	7.13083227	-0.10083045	-0.69174854
Н	6.29487199	-1.28897537	0.27910089

TS-SR

S246

01			
Ir	1.05652300	-0.01018900	-1.15133500
Р	-0.78777400	0.31527400	0.13437100
С	0.20194300	-2.02985600	2.60561700
С	1.42686900	-2.33320300	3.51030400
С	1.30357500	-1.32496400	4.66722800
С	0.51267200	-0.19116100	4.05457500
С	0.09759500	-0.49799800	2.74175800
С	-0.52148900	0.50100100	1.96125200
С	-0.85541800	1.71426200	2.59484000
С	-0.57000200	1.94684900	3.94013000
С	0.15990000	1.00705100	4.66848200
С	-1.11175700	-2.57281100	3.27967300
С	-1.36254100	-3.96762400	2.70801900
С	-0.64579500	-3.92932100	1.38552600
С	0.23388700	-2.83035500	1.30720800
С	1.06665600	-2.71589800	0.18404100
С	0.92767100	-3.65245800	-0.86048600
С	0.03372700	-4.71429600	-0.77176500
С	-0.75709000	-4.87087800	0.36837300
Ν	2.02190200	-1.67315200	0.03429800
С	3.27750000	-2.06310100	-0.62902000
С	3.41838000	-1.59631100	-2.05430500
С	4.40754000	-2.13942900	-2.89501500
С	4.52458200	-1.61386400	-4.18186600
С	3.69229900	-0.57109700	-4.59006200
С	2.75232900	-0.07988100	-3.69674000
Ν	2.61939300	-0.59050300	-2.45862300
С	-1.75370000	1.81515900	-0.35114100
С	-3.07652400	1.71119400	-0.80220600
С	-3.79526300	2.84017600	-1.20493300
С	-3.16322600	4.09061400	-1.11454600
С	-1.83833900	4.23038400	-0.68234100
С	-1.13332800	3.06807900	-0.32957800
С	-5.24850800	2.73922400	-1.69545300
С	-6.17383000	3.35906800	-0.62681400
C	-5.67624000	1.28025100	-1.92815000
C	-5.41091100	3.50302700	-3.02521700
C	-1.14460800	5.59774500	-0.58050000
C	-0.69076300	5.81950500	0.87780600
C	-2.07192300	6.75733700	-0.97449800
C	0.07818600	5 61425400	-1 51978400
C	-2 12480400	-0.95756100	0.08628500
C	_2.12+00+00	-1 81615600	-1 00905200
\sim	-2.2030+300	1.01010000	1.00703200

С	-3.39217300	-2.62984600	-1.14059600
С	-4.36745900	-2.58106300	-0.12884100
С	-4.25911000	-1.73386600	0.98068900
С	-3.11964300	-0.92001200	1.06784600
С	-3.62377300	-3.51533000	-2.37473100
С	-2.44528300	-3.44601100	-3.35814300
С	-3.81559900	-4.98263100	-1.94140600
С	-4.89347500	-3.02330800	-3.10267100
С	-5.35819700	-1.61634200	2.05054400
С	-4.75614000	-1.83053800	3.45389100
С	-6.47831000	-2.64750700	1.84619500
С	-5.97489200	-0.20286500	1.97246300
Н	0.11415600	-0.90080300	-2.12065200
Н	0.55769500	1.20022800	-2.04453600
Н	1.43822400	-3.38333400	3.83734900
Н	2.34861100	-2.13832100	2.94319400
Н	0.77767100	-1.75478200	5.53688500
Н	2.28442700	-0.97862800	5.03032800
Н	-1.36126800	2.49270400	2.02656500
Н	-0.87479500	2.88916000	4.40023300
Н	0.45564100	1.20660500	5.70203900
Н	-1.04513600	-2.54826200	4.37562100
Н	-1.93709500	-1.91508600	2.99203700
Н	-0.93281800	-4.76004300	3.34665500
Н	-2.43517000	-4.19213400	2.59606900
Н	1.51323300	-3.52379100	-1.77055400
Н	-0.04436900	-5.42133800	-1.60097300
Н	-1.44813700	-5.71076700	0.46591000
Н	2.29231000	-1.13452300	0.85334800
Н	3.41299000	-3.15222900	-0.57418400
Н	4.09567300	-1.62930600	-0.03709100
Н	5.28599500	-2.01012100	-4.85816800
Н	2.07202900	0.73241500	-3.94981600
Н	-3.54382600	0.73368900	-0.84595700
Н	-3.72418800	4.97909100	-1.39799200
Н	-0.08848700	3.13044800	-0.02320300
Н	-7.22723400	3.31129800	-0.94870300
Н	-5.92285800	4.41481500	-0.44172500
Н	-6.08146000	2.81877200	0.32828600
Н	-5.03155900	0.78176500	-2.66832900
Н	-6.71006000	1.25120700	-2.30584700
Н	-5.64466700	0.68701400	-1.00327200
Н	-4.74102500	3.09246500	-3.79676500
Н	-5.18480800	4.57410100	-2.91780400

Н	-6.44728400	3.41882100	-3.39001600
Н	-0.01305600	5.02412400	1.21827200
Н	-1.55687000	5.83191100	1.55808700
Н	-0.16044100	6.78034200	0.97827600
Н	-2.96036000	6.81024500	-0.32644600
Н	-2.41180400	6.67217000	-2.01798500
Н	-1.53241300	7.71230000	-0.87841500
Н	0.61778400	6.57186600	-1.43707800
Н	-0.23597300	5.48528400	-2.56717600
Н	0.78311000	4.80699200	-1.28559000
Н	-1.47540700	-1.81297100	-1.75870700
Н	-5.24850700	-3.21254500	-0.22901900
Н	-3.01925800	-0.21424700	1.89339200
Н	-2.63923500	-4.10552800	-4.21838200
Н	-1.50609300	-3.76711400	-2.88662400
Н	-2.29703800	-2.42654000	-3.74458900
Н	-3.99571100	-5.62224100	-2.82065000
Н	-4.67341700	-5.10071800	-1.26216700
Н	-4.78380000	-1.97104300	-3.40881000
Н	-5.78525500	-3.09478800	-2.46170400
Н	-5.07854300	-3.62706200	-4.00612500
Н	-4.29404000	-2.82609200	3.53683000
Н	-5.54221200	-1.75362800	4.22205500
Н	-3.98750100	-1.08107100	3.69138600
Н	-6.99254200	-2.50914400	0.88305500
Н	-7.23261800	-2.54163800	2.64113700
Н	-6.09322300	-3.67836300	1.88434900
Н	-5.21503100	0.57947300	2.11853500
Н	-6.74871200	-0.07443500	2.74679200
Н	-6.44380400	-0.03465900	0.99088500
Н	-2.92030800	-5.35272800	-1.42193100
Н	2.13762500	1.00086500	-0.27599800
Н	3.77286200	-0.13641500	-5.58745500
С	5.35988900	-3.18151500	-2.38051300
Н	5.96951400	-2.75412800	-1.56769600
Н	4.83675200	-4.06447200	-1.97935100
Н	6.04026800	-3.51957200	-3.17451000
С	2.82653700	3.65122700	0.64158200
С	3.04299000	3.37688300	-0.84739700
С	4.21050800	2.40867800	-1.10738700
С	4.49847300	1.48486600	0.08677700
Н	3.99620100	1.78440300	-1.98336800
Н	2.12392800	2.94317600	-1.26241800
Н	3.21614400	4.32666800	-1.37686900

Н	3.66766500	4.25571200	1.03421700
Н	1.93784200	4.28661900	0.78259900
Н	5.05695900	2.06460300	0.84341600
Н	5.13411700	2.96137000	-1.34268400
С	3.19808300	1.09718100	0.89527600
0	3.14648400	0.01188700	1.55232200
С	5.42345600	0.35122100	-0.31277400
0	5.63707400	0.04447800	-1.46257000
0	6.06177200	-0.34547200	0.64998200
С	6.10060000	0.04511400	2.03381200
С	6.77808000	-1.07444400	2.79565700
Н	5.07893700	0.20493200	2.39982700
Н	6.67722100	0.98305400	2.12003500
Н	6.87107200	-0.80372400	3.85898700
Н	6.18557100	-1.99963700	2.72593700
Н	7.78365900	-1.27598000	2.39573200
С	2.70130900	2.39635200	1.48412200
С	2.40718000	2.44362200	2.79134100
Н	2.41634000	1.49700400	3.33329600
С	2.11417800	3.71159300	3.53855600
Н	1.88304900	3.51758200	4.59485200
Н	2.97087700	4.40922200	3.50225700
Н	1.25527900	4.25281400	3.10666600

TS-RR

01			
Ir	0.88516500	-0.05606500	-1.26586400
Р	-0.87242800	0.35596800	0.11388100
С	0.01890500	-2.29884300	2.30747600
С	1.26807100	-2.83315100	3.06244500
С	1.41887400	-1.89304400	4.27094700
С	0.76761400	-0.61453400	3.79887500
С	0.14452000	-0.77813300	2.54580100
С	-0.39667100	0.35352400	1.89736600
С	-0.39751200	1.58205400	2.58709900
С	0.11978800	1.69807200	3.87627400

С	0.73217200	0.59881200	4.47851200
С	-1.28642700	-2.73331000	3.06594500
С	-1.77012200	-4.03030600	2.41417400
С	-1.17597600	-3.96583900	1.03315700
С	-0.16583800	-2.98843400	0.95674800
С	0.58522100	-2.89079700	-0.22441600
С	0.24009800	-3.69966200	-1.32255200
С	-0.78409100	-4.63831200	-1.23361200
С	-1.49591700	-4.78994700	-0.04167400
Ν	1.65711900	-1.96727000	-0.35089100
С	2.84600100	-2.42815300	-1.08986100
С	3.13422300	-1.68616300	-2.36662400
С	4.19123400	-2.09770100	-3.20335300
С	4.45204500	-1.33297900	-4.34194700
С	3.68706800	-0.19639200	-4.61354400
С	2.67863000	0.15598500	-3.72949000
Ν	2.41563400	-0.57478000	-2.62786300
С	-1.67180600	2.00750800	-0.17115300
С	-3.05720000	2.19341900	-0.11990700
С	-3.63869000	3.42997700	-0.43765000
С	-2.79083800	4.48860100	-0.78867900
С	-1.39569800	4.34416800	-0.83312700
С	-0.85616400	3.08884300	-0.52875600
С	-5.16651800	3.58868200	-0.36963000
С	-5.58688000	3.61030100	1.11511800
С	-5.85503400	2.40742700	-1.08514600
С	-5.64520300	4.89062000	-1.03183200
С	-0.45778400	5.50461300	-1.20446100
С	0.34539500	5.91211100	0.04890900
С	-1.22737000	6.73491500	-1.70982700
С	0.51439900	5.05445700	-2.31460000
С	-2.33670300	-0.76054700	0.04801700
С	-2.62691800	-1.44957200	-1.13497800
С	-3.81757100	-2.16818500	-1.26839100
С	-4.70101300	-2.19527200	-0.17515600
С	-4.44436100	-1.51603700	1.02216000
С	-3.24224900	-0.79465100	1.11410800
С	-4.21256800	-2.86379600	-2.58026500
С	-3.09435000	-2.78033300	-3.63085000
С	-4.52983800	-4.35006100	-2.31964600
С	-5.46732500	-2.16400100	-3.14637400
С	-5.46192900	-1.47198700	2.17723900
С	-4.79921600	-1.88244100	3.50649700
С	-6.65753900	-2.40522700	1.93113300

С	-5.98827100	-0.02793500	2.30866100
Н	-0.14289400	-0.70485100	-2.34734300
Н	0.54510600	1.30156800	-2.00234700
Н	1.14837700	-3.89185600	3.33621600
Н	2.15108500	-2.73899900	2.41625600
Н	0.91507200	-2.28828100	5.17011500
Н	2.47322700	-1.72668800	4.54270200
Н	-0.81345000	2.46468800	2.10132600
Н	0.08324300	2.66180800	4.38932200
Н	1.19487200	0.68849400	5.46489200
Н	-1.11547800	-2.81920200	4.14770100
Н	-2.04047900	-1.95564900	2.91990600
Н	-1.39206100	-4.92335600	2.94323100
Н	-2.86795800	-4.11186700	2.39395200
Н	0.76840200	-3.56568700	-2.26679000
Н	-1.02662800	-5.25266900	-2.10387100
Н	-2.28754400	-5.53652200	0.05096900
Н	2.02346700	-1.59483200	0.52155600
Н	2.78141200	-3.50724800	-1.29047600
Н	3.71538800	-2.27896600	-0.42966200
Н	5.26517000	-1.62457800	-5.01135100
Н	2.05260500	1.03554800	-3.87357600
Н	-3.69782200	1.35666100	0.14533000
Н	-3.22818400	5.44964900	-1.04328800
Н	0.21562800	2.92188600	-0.60247500
Н	-6.68196100	3.69643500	1.21092200
Н	-5.12702300	4.46380000	1.63733100
Н	-5.27161200	2.69269900	1.63019700
Н	-5.55397700	2.36075200	-2.14341600
Н	-6.94995200	2.52407800	-1.04423800
Н	-5.60805500	1.43962400	-0.62635300
Н	-5.33371000	4.94712000	-2.08646000
Н	-5.26304500	5.78281600	-0.51315900
Н	-6.74468300	4.94115000	-1.00105600
Н	-0.32890700	6.24696500	0.85283800
Н	1.03762400	6.73768700	-0.18512300
Н	0.93844300	5.07224900	0.43592300
Н	-1.89279600	7.15054800	-0.93780100
Н	-1.83589500	6.49806800	-2.59636200
Н	-0.51680900	7.52719700	-1.99203000
Н	1.18576500	5.88303700	-2.59248200
Н	-0.03733000	4.74077000	-3.21447200
Н	1.14180900	4.21084100	-1.99594800
Н	-1.89972600	-1.39853200	-1.94237500
Н	-5.63015100	-2.75253100	-0.27758700
---	-------------	-------------	-------------
Н	-3.01652400	-0.22231900	2.01543000
Н	-3.40300300	-3.30973200	-4.54580100
Н	-2.16409400	-3.23900300	-3.26727800
Н	-2.87082200	-1.73904200	-3.90671200
Н	-4.82270200	-4.84878500	-3.25770000
Н	-5.35749700	-4.47491800	-1.60526800
Н	-5.26843700	-1.09671600	-3.33095900
Н	-6.31856200	-2.23194300	-2.45182500
Н	-5.77115000	-2.62779000	-4.09917400
Н	-4.41099400	-2.91033600	3.45623700
Н	-5.53378400	-1.83580600	4.32618900
Н	-3.96535000	-1.21807900	3.77419700
Н	-7.22826500	-2.11505200	1.03612200
Н	-7.34595400	-2.36209800	2.78917200
Н	-6.33771700	-3.45180700	1.80974700
Н	-5.17334800	0.67305400	2.54166800
Н	-6.73348000	0.04260600	3.11772200
Н	-6.46327800	0.30671600	1.37401700
Н	-3.65122500	-4.86901500	-1.91164700
Н	1.99235900	0.66149500	-0.17776300
Н	3.87494600	0.41748600	-5.49567700
С	5.03728200	-3.28333900	-2.83380000
Н	5.56692000	-3.07450300	-1.89081200
Н	4.43127000	-4.19148400	-2.68483100
Н	5.78225400	-3.49432500	-3.61368700
С	2.74601900	2.95498100	0.89288900
С	3.43559400	2.99472100	-0.48871400
С	4.70880900	2.14728600	-0.46916800
С	4.35980700	0.66217200	-0.26744700
Н	5.27697000	2.26578100	-1.40630700
Н	2.75586800	2.60200500	-1.25977300
Н	3.66777000	4.03564100	-0.76330200
Н	3.06405400	3.81879700	1.49430300
Н	1.65601000	3.04604900	0.76803600
Н	5.36180000	2.48475500	0.35056400
С	3.20830900	0.43891100	0.79464300
0	3.12226600	-0.71273700	1.31704800
С	3.03351200	1.67579200	1.63473300
С	3.32292900	1.57416900	2.94212300
Н	3.53966700	0.56426500	3.30297700
С	3.43130800	2.68236400	3.94130600
Н	3.10673000	3.65523500	3.54686100
Н	2.82549100	2.46777300	4.83667500

Н	4.47479200	2.78778100	4.29038100
С	5.51944000	-0.18774800	0.19861900
0	5.85977400	-1.23747800	-0.30612600
0	6.11973700	0.32372700	1.28142900
С	7.10988600	-0.48574500	1.92699100
С	7.50872900	0.21455600	3.20807500
Н	7.96502700	-0.62436600	1.24501600
Н	6.68050800	-1.48249200	2.11555700
Н	8.26711600	-0.37627900	3.74477400
Н	7.92919800	1.20992200	2.99732400
Н	6.63532500	0.34320700	3.86546100
Н	4.05302900	0.23441100	-1.22118800

TS-RS

01			
Ir	0.86295900	-0.11532500	-1.28005800
Р	-0.85099400	0.34043000	0.12828700
С	0.09502100	-2.19039500	2.41402200
С	1.36408300	-2.69712500	3.15397400
С	1.55893600	-1.70237800	4.31121000
С	0.88477600	-0.44728300	3.80996500
С	0.22971500	-0.66127200	2.58055500
С	-0.34165600	0.43979900	1.90204200
С	-0.35783200	1.68583700	2.56240200
С	0.18729600	1.84782600	3.83553600
С	0.84952600	0.78662600	4.44988100
С	-1.19042400	-2.57588900	3.23307900
С	-1.71227900	-3.89197400	2.65373400
С	-1.15506000	-3.89986700	1.25585800
С	-0.13673100	-2.93919100	1.10367200
С	0.57598500	-2.90207700	-0.10467600
С	0.18482900	-3.75548100	-1.15297700
С	-0.84399900	-4.67854600	-0.98850700
С	-1.51758000	-4.76839700	0.23109100
Ν	1.65183500	-1.99781400	-0.31552600

S254

С	2.79860600	-2.50979800	-1.08560400
С	3.03926600	-1.82731000	-2.40561800
С	4.04870700	-2.29544300	-3.27085100
С	4.27181300	-1.58431900	-4.45162700
С	3.51738700	-0.44405500	-4.73662900
С	2.55692500	-0.03420500	-3.82398700
Ν	2.33000000	-0.71276900	-2.68215100
С	-1.69064400	1.94768100	-0.24187400
С	-3.07042200	2.02946300	-0.47029500
С	-3.67547500	3.23995500	-0.82687000
С	-2.86423000	4.38211200	-0.92054900
С	-1.47984100	4.33448500	-0.70881200
С	-0.90739000	3.09543100	-0.39023000
С	-5.19181600	3.33257200	-1.06635600
С	-5.84689500	3.93289700	0.19602900
С	-5.81058400	1.94938800	-1.33712400
С	-5.49808500	4.23305600	-2.27930300
С	-0.57697000	5.57326600	-0.81780000
С	0.05746300	5.85081200	0.56180400
С	-1.35415800	6.82455100	-1.25355700
С	0.53445000	5.30651300	-1.85450200
С	-2.30957800	-0.78094500	0.17124100
С	-2.65038700	-1.53951000	-0.95363100
С	-3.87212600	-2.21630600	-1.01087700
С	-4.72980200	-2.13369200	0.10066800
С	-4.41931600	-1.38088000	1.23994700
С	-3.19115100	-0.70201100	1.25326300
С	-4.32854400	-2.97925100	-2.26411900
С	-3.24956100	-2.98010600	-3.35798100
С	-4.66230200	-4.44053400	-1.90256900
С	-5.58995500	-2.28848600	-2.82660000
С	-5.39899800	-1.20842000	2.41413900
С	-4.69748900	-1.52071400	3.75076200
С	-6.62131200	-2.13075400	2.28848500
С	-5.89006500	0.25551700	2.43188100
Н	-0.21933600	-0.79172000	-2.29259300
Н	0.50662600	1.23189100	-2.03270400
Н	1.24678000	-3.74047300	3.48232500
Н	2.22612200	-2.64098800	2.47621800
Н	1.09280400	-2.05673600	5.24689600
Н	2.62283900	-1.52268500	4.53321500
Н	-0.81219400	2.54541200	2.07138700
Н	0.12626100	2.82130000	4.32768100
Н	1.34250800	0.92126700	5.41623700

Н	-0.98277300	-2.61902300	4.31097900
Н	-1.94035000	-1.79452700	3.08133300
Н	-1.33622000	-4.76755300	3.21246200
Н	-2.81189800	-3.95312300	2.66565300
Н	0.68144600	-3.66963400	-2.11971000
Н	-1.12047700	-5.32911000	-1.82152200
Н	-2.31344800	-5.50059000	0.38303400
Н	2.06049900	-1.59106900	0.52211100
Н	2.70998600	-3.59477300	-1.23884100
Н	3.69864800	-2.35076700	-0.47098600
Н	5.04769400	-1.92071200	-5.14384800
Н	1.94186000	0.85165000	-3.97711000
Н	-3.67477800	1.13302000	-0.38553200
Н	-3.32754200	5.33200700	-1.17796900
Н	0.17022900	3.00751100	-0.26757100
Н	-6.93803400	4.02384800	0.06527400
Н	-5.44348300	4.93395000	0.41410200
Н	-5.65775900	3.29542100	1.07355500
Н	-5.33662000	1.45841400	-2.20118800
Н	-6.88488900	2.05727300	-1.55310000
Н	-5.71559400	1.27425400	-0.47560100
Н	-4.99862500	3.85662400	-3.18567000
Н	-5.17431200	5.27206200	-2.12088700
Н	-6.58292300	4.25544500	-2.46952800
Н	-0.72021600	6.04725800	1.31661600
Н	0.71982000	6.73066600	0.51378400
Н	0.65700500	4.99803900	0.91080400
Н	-2.13882900	7.09280100	-0.52946400
Н	-1.82750800	6.68782400	-2.23808800
Н	-0.66699900	7.68147500	-1.32942700
Н	1.20125400	6.18031200	-1.93589200
Н	0.10152000	5.10974100	-2.84767000
Н	1.15081200	4.43850400	-1.58296100
Н	-1.94478600	-1.56545700	-1.78117100
Н	-5.68290200	-2.65777500	0.05741500
Н	-2.93028800	-0.06412200	2.09903900
Н	-3.60396200	-3.55171600	-4.22993100
Н	-2.31634900	-3.43999700	-3.00421200
Н	-3.01463800	-1.96080200	-3.69901700
Н	-5.00481700	-4.98772100	-2.79577600
Н	-5.45984900	-4.50442800	-1.14703500
Н	-5.37863700	-1.23753700	-3.07913400
Н	-6.41816000	-2.29902000	-2.10187100
Н	-5.93476700	-2.79958400	-3.74035500

Н	-4.32278000	-2.55516000	3.76865700
Н	-5.40336600	-1.39921300	4.58780000
Н	-3.84676800	-0.84997000	3.93776100
Н	-7.21385600	-1.90776300	1.38839600
Н	-7.28166800	-1.99557500	3.15896100
Н	-6.32677900	-3.19112200	2.25125500
Н	-5.05105500	0.96164900	2.52432200
Н	-6.57300500	0.42532100	3.28022700
Н	-6.43156800	0.49801800	1.50494700
Н	-3.77650800	-4.95318300	-1.50176900
Н	2.02564500	0.63803800	-0.27739100
Н	3.67665600	0.12856200	-5.65153400
С	4.88836700	-3.48232100	-2.89007100
Н	5.46231600	-3.24831300	-1.97941400
Н	4.27281200	-4.37157900	-2.67907100
Н	5.59470000	-3.73882500	-3.69196200
С	2.99422000	3.09049000	0.76862800
С	3.61169000	3.09945300	-0.64141700
С	4.85096100	2.20402600	-0.66336400
Н	5.39478500	2.30036600	-1.61723300
Н	2.88172100	2.73155200	-1.37729500
Н	3.87192500	4.12991200	-0.93064500
Н	3.43465223	3.89703692	1.37359139
Н	1.91476783	3.31316268	0.71176500
Н	5.54099100	2.51719700	0.13586600
С	3.30965400	0.53838400	0.62540600
0	3.20369459	-0.61719383	1.13326240
С	4.45324700	0.73270200	-0.45005700
С	5.03100460	-0.25639467	-1.11784228
Н	4.58464988	-0.70775432	-2.01407401
С	6.38224356	-0.86532626	-0.69956536
Н	6.65987387	-1.62926162	-1.39542754
Н	7.13083227	-0.10083045	-0.69174854
Н	6.29487199	-1.28897537	0.27910089
С	3.17825200	1.77270900	1.47722800
Н	4.07148830	1.77658754	2.06630683
С	2.48830523	1.27677057	2.76160276
0	2.60984517	0.16746118	3.27950481
0	1.80986067	2.22472227	3.45623255
С	2.36254255	2.93280345	4.56891570
С	1.49647148	4.07218584	5.01889207
Н	3.39331717	3.29052019	4.32900330
Н	2.44013114	2.15568705	5.36771013
Н	1.91994805	4.55359988	5.93359562

Н	1.41906208	4.84906420	4.21980166
Н	0.46569231	3.71419604	5.25850024