Supporting Information

Direct Synthesis of Pentasubstituted Pyrroles and Hexasubstituted Pyrrolines from Propargyl Sulfonylamides and Allenamides

Changqing Ye,^{a†} Yihang Jiao,^{a†} Mong-Feng Chiou,^a Yajun Li,^a and Hongli Bao*,^{a,b}

¹ Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis Fujian Institute of Research on the Structure of Matter 155 Yangqiao Road West, Fuzhou, Fujian 350002, P. R. China.

² University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing 100049, P. R. China

> †These two authors contributed equally *E-mail: hlbao@fjirsm.ac.cn*

Materials an	nd methods	S3
Synthesis of propargyl sulfonylamides		S4
General procedure for synthesis of propargyl sulfonylamides 1a-1p, 8		S4
General procedure for synthesis of propargyl sulfonylamides 1q-1s		S5
Genera	l procedure for synthesis of propargyl sulfonylamides 1t-1v	S6
Characterization data for propargyl sulfonylamides		S7
Synthesis of pentasubstituted pyrroles		S17
Genera	l procedure A	S17
Characterization data for pentasubstituted pyrroles		S18
Synthesis of substituted pyrrole 2a directly from allene 3a		S27
Synthesis of tetrasubstituted allenamides		S28
Synthesis of hexasubstituted pyrrolines		S30
General procedure B		S30
Characterization data for hexasubstituted pyrrolines		S31
Synthetic applications		S37
1) Pro	otection of the amine group	S37
2) Sy	nthesis of lactams	S39
3) Sy	nthesis of atorvastatin analogues	S41
Preliminary mechanism study		S46
a) Ra	dical trapping reaction	S46
b) ¹ H	NMR of crude reaction solution	S47
Single crystal data of 5a		S48
Single crystal data of 7		S49
Computational methods and details		S50
Coordinate of optimized structures		S53
References		S61
NMR spectra		

Materials and methods

All reactions were carried out under an atmosphere of nitrogen in a flame-dried glassware with magnetic stirring unless otherwise indicated. Commercially obtained reagents were used as received. Solvents were dried by Innovative Technology Solvent Purification System. Liquids and solutions were transferred via syringe. All reactions were monitored by thin-layer chromatography. GC-MS data were recorded on Thermo ISQ QD. ¹H, ¹⁹F, and ¹³C NMR spectra were recorded on Bruker-BioSpin AVANCE III HD and JEOL ECZ600S. Data for ¹H NMR spectra are reported relative to TMS as an internal standard and are reported as follows: chemical shift (ppm), multiplicity, coupling constant (Hz), and integration. Data for ¹³C NMR spectra are reported relative to chloroform as an internal standard and are reported in terms of chemical shift (ppm). HRMS data were recorded on Thermo Fisher Scientific LTQ FTICR-MS, Waters Micromass GCT Premier or Thermo Finnigan DECAX-30000 LCQ Deca XP. Optical rotations were measured using a 1 mL cell with a 5 dm path length on an INESA SGW-1 polarimeter. All melting points were determined on a Beijing Science Instrument Dianguang Instrument Factory XT4B melting point apparatus without correction. IR data were recorded on Bruker Vertex 70.

Synthesis of propargyl sulfonylamides

All alkynes, aldehyde, sulfamide and primary amine were purchased from Adamas-beta, Energy Chemical and Bidepharmatech.

General procedure for synthesis of propargyl sulfonylamides 1a-1p, 8.

To a 50 mL round bottomed flask was charged with terminal alkyne (5 mmol, 1 equiv) and 10 mL of THF. The solution was cooled to -78 °C and *n*-BuLi (2.5 M in THF, 2 mL, 5 mmol, 1 equiv) was added. The resulting solution was stirred for 20 minutes at room temperature and then cooled to -78 °C again. Aldehyde (5 mmol, 1 equiv) in THF solution was added dropwise. The reaction mixture was then allowed to warm to room temperature and was monitored by TLC for completion. On completion the reaction was quenched with saturated aqueous NH₄Cl (40 mL). The aqueous layer was extracted with ethyl acetate and the combined organic layers were washed with brine (30 mL), dried over MgSO₄ and filtered. Then the solution was concentrated under reduced pressure to afford the crude propargyl alcohol.

A solution of the resulting crude propargyl alcohol and sulfonamide (1.2 equiv) in DCM was taken in a round bottom flask under nitrogen atmosphere and then $TsOH \cdot H_2O$ was added at room temperature. The reaction mixture was heated to reflux overnight and was monitored by TLC for completion. On completion the reaction was quenched with saturated aqueous NaHCO₃. The aqueous layer was extracted with ethyl acetate and the combined organic layers were washed with brine, dried over MgSO₄ and filtered. Then the solution was concentrated under reduced pressure. The crude material was purified by flash chromatography to yield the corresponding propargyl sulfonylamide.

General procedure for synthesis of propargyl sulfonylamides 1q-1s.

To a 50 mL round bottomed flask was charged with CuBr (1 mmol, 20 mol %), phenylacetylene (5 mmol, 1 equiv), benzaldehyde (7.5 mmol, 1.5 equiv), primary amine (7.5 mmol, 1.5 equiv) and 10 mL of toluene. The solution was heated to reflux and was monitored by TLC for completion. On completion the reaction was quenched with saturated aqueous NaHCO₃. The aqueous layer was extracted with ethyl acetate and the combined organic layers were washed with brine, dried over MgSO₄ and filtered. Then the solution was concentrated under reduced pressure to afford the crude propargylamides.

The resulting crude propargylamine and Et₃N (3 equiv) were dissolved in dry DCM, and the mixture was cooled to 0 °C with a cooling bath. To this solution benzenesulfonyl chloride (1.5 equiv) was slowly added in drops, and the mixture was allowed to warm up to room temperature and was monitored by TLC for completion. On completion the reaction was quenched with saturated aqueous NaHCO₃. The aqueous layer was extracted with ethyl acetate and the combined organic layers were washed with brine, dried over MgSO₄ and filtered. Then the solution was concentrated under reduced pressure. The crude material was purified by flash chromatography to yield the desired product.

General procedure for synthesis of propargyl sulfonylamides **1t-1v**.

To a 50 mL round bottomed flask was charged with CuBr (1 mmol, 20 mol %), dihydroisoquinoline (5 mmol, 1 equiv), terminal alkyne (7.5 mmol, 1.5 equiv) and 10 mL of toluene. The solution was heated to reflux and was monitored by TLC for completion. On completion the reaction was quenched with saturated aqueous NaHCO₃. The aqueous layer was extracted with ethyl acetate and the combined organic layers were washed with brine, dried over MgSO₄ and filtered. Then the solution was concentrated under reduced pressure to afford the crude material.

The resulting crude material and Et_3N (3 equiv) were dissolved in dry DCM, and the mixture was cooled to 0 °C with a cooling bath. To this solution benzenesulfonyl chloride (1.5 equiv) was slowly added in drops, and the mixture was allowed to warm up to room temperature and was monitored by TLC for completion. On completion the reaction was quenched with saturated aqueous NaHCO₃. The aqueous layer was extracted with ethyl acetate and the combined organic layers were washed with brine, dried over MgSO₄ and filtered. Then the solution was concentrated under reduced pressure. The crude material was purified by flash chromatography to yield the desired product.

Characterization data for propargyl sulfonylamides

Compound **1a** was obtained as yellow solid (m.p. = 67-68 °C, Rf = 0.64 (petroleum ether/ ethyl acetate = 5:1)). ¹H NMR (400 MHz, CDCl₃) δ 7.86 (d, *J* = 8.2 Hz, 2H), 7.70 (d, *J* = 7.5 Hz, 2H), 7.42 – 7.26 (m, 8H), 7.15 (d, *J* = 8.1 Hz, 2H), 6.27 (s, 1H), 3.36 – 3.21 (m, 1H), 3.20 – 3.05 (m, 1H), 2.36 (s, 3H), 0.84 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 143.35, 137.03, 136.25, 131.55, 129.50, 128.63, 128.48, 128.35, 128.23, 128.10, 127.84, 122.12, 88.11, 83.68, 54.15, 40.72, 21.47, 16.04. HRMS (ESI) calcd for [C₂₄H₂₃NNaO₂S] ([M+Na]⁺): 412.1342, found: 412.1346. IR (thin film) *v* 1598.55, 2873.51, 2932.83, 2976.15 cm⁻¹.

Compound **1b** was obtained as white solid (m.p. = 90-91 °C, Rf = 0.54 (petroleum ether/ ethyl acetate = 5:1)). ¹H NMR (400 MHz, CDCl₃) δ 7.98 – 7.90 (m, 2H), 7.71 – 7.62 (m, 2H), 7.55 – 7.44 (m, 3H), 7.40 – 7.36 (m, 2H), 7.34 – 7.20 (m, 4H), 7.12 – 7.09 (m, 2H), 6.27 (s, 1H), 2.64 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 137.80, 136.04, 132.84, 131.64, 129.00, 128.81, 128.67, 128.52, 128.31, 128.02, 127.93, 121.84, 88.90, 82.20, 54.18, 29.97. HRMS (ESI) calcd for [C₂₂H₁₉NNaO₂S] ([M+Na]⁺): 384.1029, found: 384.1031. IR (thin film) *v* 1490.72, 1636.48, 2933.26 cm⁻¹.

Compound **1c** was obtained as white solid (m.p. = 71-72 °C, Rf = 0.59 (petroleum ether/ ethyl acetate = 5:1)). ¹H NMR (400 MHz, CDCl₃) δ 8.00 – 7.90 (m, 2H), 7.71 – 7.63 (m, 2H), 7.58 – 7.45 (m, 3H), 7.42 – 7.29 (m, 3H), 7.11 – 6.99 (m, 4H), 6.27 (s, 1H), 2.64 (s, 3H), 2.60 (q, *J* = 7.6 Hz, 2H), 1.20 (t, *J* = 7.6 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 145.25, 137.92, 136.21, 132.77, 131.64, 128.97, 128.61, 128.44, 128.01, 127.93, 127.84, 119.04, 89.08, 81.51, 54.21, 29.92, 28.86, 15.42. HRMS (ESI) calcd for [C₂₄H₂₃NNaO₂S] ([M+Na]⁺): 412.1342, found: 412.1342. IR (thin film) *v* 1447.31, 1492.92, 1511.14, 2931.97, 2965.49 cm⁻¹.

Compound **1d** was obtained as white solid (m.p. = 134-135 °C, Rf = 0.57 (petroleum ether/ ethyl acetate = 5:1)). ¹H NMR (400 MHz, CDCl₃) δ 7.99 – 7.92 (m, 2H), 7.68 – 7.62 (m, 2H), 7.60 – 7.47 (m, 3H), 7.44 – 7.31 (m, 3H), 7.13 – 7.05 (m, 2H), 6.95 (t, *J* = 8.6 Hz, 2H), 6.26 (s, 1H), 2.64 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 162.66 (d, *J* = 250.2 Hz), 137.88, 135.85, 133.52 (d, *J* = 8.4 Hz), 132.71, 128.90, 128.62, 128.49, 128.00, 127.84, 117.93 (d, *J* = 3.6 Hz), 115.55 (d, *J* = 22.1 Hz), 87.67, 82.02, 82.00, 54.06, 29.91. HRMS (ESI) calcd for [C₂₂H₁₈FNNaO₂S] ([M+Na]⁺): 402.0934, found: 402.0934. IR (thin film) *v* 1507.19, 1600.47, 2931.24 cm⁻¹.

Compound **1e** was obtained as white solid (m.p. = 116-117 °C, Rf = 0.59 (petroleum ether/ ethyl acetate = 5:1)). ¹H NMR (400 MHz, CDCl₃) δ 7.99 – 7.89 (m, 2H), 7.63 (d, J = 7.6 Hz, 2H), 7.58 – 7.46 (m, 3H), 7.45 – 7.30 (m, 3H), 7.27 – 7.18 (m, 2H), 7.07 – 6.97 (m, 2H), 6.26 (s, 1H), 2.64 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 137.83, 135.72, 134.78, 132.82, 132.76, 128.93, 128.65, 128.59, 128.53, 128.00, 127.83, 120.30, 87.60, 83.31, 54.08, 29.94. HRMS (ESI) calcd for [C₂₄H₂₃ClNNaO₂S] ([M+Na]⁺): 418.0639, found: 418.0640. IR (thin film) *v* 1447.40, 1489.84, 2930.86 cm⁻¹.

Compound **1f** was obtained as yellow liquid (Rf = 0.43 (petroleum ether/ ethyl acetate = 5:1)). ¹H NMR (600 MHz, CDCl₃) δ 7.83 (d, *J* = 8.1 Hz, 2H), 7.66 – 7.61 (m, 2H), 7.56 (d, *J* = 8.1 Hz, 2H), 7.41 – 7.34 (m, 3H), 7.27 (d, *J* = 8.1 Hz, 2H), 7.21 (d, *J* = 8.2

Hz, 2H), 6.27 (s, 1H), 3.27 (dq, J = 14.4, 7.1 Hz, 1H), 3.08 (dq, J = 14.4, 7.1 Hz, 1H), 2.35 (s, 3H), 0.83 (t, J = 7.1 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 143.52, 136.32, 136.26, 132.15, 132.01, 129.59, 128.71, 128.04, 127.93, 126.96, 118.29, 112.15, 88.62, 86.34, 54.08, 40.88, 21.58, 16.09. HRMS (ESI) calcd for [C₂₅H₂₂N₂NaO₂S] ([M+Na]⁺): 437.1294, found: 437.1294. IR (thin film) v 1602.44, 1640.70, 2228.90, 2978.34 cm⁻¹.

Compound **1g** was obtained as white solid (m.p. = 80-81 °C, Rf = 0.61 (petroleum ether/ ethyl acetate = 5:1)). ¹H NMR (600 MHz, CDCl₃) δ 7.90 – 7.81 (m, 2H), 7.67 (d, *J* = 5.4 Hz, 2H), 7.41 – 7.37 (m, 2H), 7.36 – 7.33 (m, 1H), 7.30 (d, *J* = 7.9 Hz, 2H), 7.26 – 7.22 (m, 1H), 7.04 – 7.00 (m, 1H), 6.97 – 6.95 (m, 1H), 6.75 – 6.72 (m, 1H), 6.25 (s, 1H), 3.28 (dq, *J* = 13.8, 6.9 Hz, 1H), 3.09 (dq, *J* = 14.4, 7.2 Hz, 1H), 2.38 (s, 3H), 0.84 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 162.25 (d, *J* = 246.1 Hz), 143.60, 136.71, 136.23, 129.97 (d, *J* = 8.6 Hz), 129.63, 128.62, 128.54, 128.12, 127.94, 127.47, 127.46, 123.92 (d, *J* = 9.7 Hz), 118.50 (d, *J* = 23.0 Hz), 116.10 (d, *J* = 20.7 Hz), 86.90, 84.78, 54.15, 40.86, 21.48, 16.15. HRMS (ESI) calcd for [C₂₄H₂₂FNNaO₂S] ([M+Na]⁺): 430.1247, found: 430.1249. IR (thin film) *v* 1581.02, 1644.09, 2935.68 cm⁻¹.

Compound **1h** was obtained as white solid (m.p. = 122-123 °C, Rf = 0.57 (petroleum ether/ ethyl acetate = 5:1)). ¹H NMR (600 MHz, CDCl₃) δ 7.89 – 7.81 (m, 2H), 7.76 (d, J = 7.7 Hz), 7.44 – 7.31 (m, 4H), 7.28 – 7.22 (m, 3H), 7.19 – 7.15 (m, 1H), 7.13 – 7.10 (m, 1H), 6.32 (s, 1H), 3.30 (dq, J = 14.4, 7.2 Hz, 1H), 3.18 (dq, J = 14.3, 7.0 Hz, 1H), 2.31 (s, 3H), 0.84 (t, J = 7.2 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 143.49, 136.98, 136.29, 136.02, 133.39, 129.81, 129.61, 129.33, 128.60, 128.47, 128.22, 127.85, 126.45, 122.18, 89.04, 85.02, 54.32, 40.95, 21.52, 16.17. HRMS (ESI) calcd for [C₂₄H₂₃ClNNaO₂S] ([M+Na]⁺): 446.0952, found: 446.0952. IR (thin film) v 1599.48, 1644.58, 2934.90, 2977.97, cm⁻¹.

Compound **1i** was obtained as colorless liquid (m.p. = 67-68 °C, Rf = 0.68 (petroleum ether/ ethyl acetate = 5:1)). ¹H NMR (400 MHz, CDCl₃) δ 7.97 – 7.88 (m, 2H), 7.61 – 7.50 (m, 5H), 7.40 – 7.28 (m, 3H), 6.03 (s, 1H), 2.55 (s, 3H), 1.99 – 1.94 (m, 2H), 1.29 – 1.19 (m, 8H), 0.89 (t, *J* = 5.7 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 138.00, 136.58, 132.52, 128.69, 128.38, 128.16, 128.02, 127.86, 89.55, 72.90, 53.77, 31.25, 29.65, 28.49, 28.38, 22.53, 18.44, 14.07. HRMS (ESI) calcd for [C₂₂H₂₇NNaO₂S] ([M+Na]⁺): 392.1655, found: 392.1655. IR (thin film) *v* 1448.00, 1493.44, 2858.23, 2931.09 cm⁻¹.

Compound **1j** was obtained as white solid (m.p. = 86-87 °C, Rf = 0.68 (petroleum ether/ ethyl acetate = 5:1)). ¹H NMR (400 MHz, CDCl₃) δ 8.01 – 7.88 (m, 2H), 7.59 – 7.44 (m, 5H), 7.34 – 7.15 (m, 5H), 7.10 (d, *J* = 6.8 Hz, 2H), 6.24 (s, 1H), 2.64 (s, 3H), 2.36 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 138.27, 137.91, 133.03, 132.70, 131.59, 129.28, 128.91, 128.67, 128.22, 127.99, 127.84, 121.94, 88.61, 82.48, 53.91, 29.83, 21.18. HRMS (ESI) calcd for [C₂₃H₂₁NNaO₂S] ([M+Na]⁺): 398.1185, found: 398.1184. IR (thin film) *v* 1510.60, 2882.00, 2925.102970.0, 3026.20, 3057.96 cm⁻¹.

Compound **1k** was obtained as white solid (m.p. = 89-90 °C, Rf = 0.58 (petroleum ether/ ethyl acetate = 5:1)). ¹H NMR (600 MHz, CDCl₃) δ 8.00 – 7.91 (m, 2H), 7.58 (d, *J* = 8.3 Hz, 2H), 7.54 (t, *J* = 7.3 Hz, 1H), 7.52 – 7.48 (m, 2H), 7.30 (t, *J* = 7.4 Hz, 1H), 7.27 – 7.23 (m, 2H), 7.14 – 7.08 (m, 2H), 6.95 – 6.90 (m, 2H), 6.23 (s, 1H), 3.80 (s, 3H), 2.65 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 159.82, 137.92, 132.84, 131.69, 129.31, 129.04, 128.82, 128.35, 128.08, 121.98, 114.02, 88.74, 82.58, 55.45, 53.73, 29.81. HRMS (ESI) calcd for [C₂₃H₂₁NnaO₃S] ([M+Na]⁺): 414.1134, found: 414.1134. IR (thin film) *v* 1510.33, 2838.59, 2929.89, 2957.89, 3036.67 cm⁻¹.

Compound **11** was obtained as white solid (m.p. = 111-112 °C, Rf = 0.68 (petroleum ether/ ethyl acetate = 5:1)). ¹H NMR (400 MHz, CDCl₃) δ 7.84 (d, *J* = 8.0 Hz, 2H), 7.68 (dd, *J* = 8.5, 5.3 Hz, 2H), 7.34 – 7.24 (m, 5H), 7.14 (d, *J* = 8.4 Hz, 2H), 7.06 (t, *J* = 8.5 Hz, 2H), 6.23 (s, 1H), 3.38 - 3.25 (m, 1H), 3.24 - 3.02 (m, 1H), 2.33 (s, 3H), 0.85 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 162.70 (d, *J* = 247.3 Hz), 143.52, 136.04, 133.02 (d, *J* = 3.2 Hz), 131.57, 129.86 (d, *J* = 8.2 Hz), 129.57, 128.81, 128.30, 127.80, 121.86, 115.37 (d, *J* = 21.7 Hz), 88.43, 83.28, 53.60, 40.69, 21.45, 16.15. HRMS (ESI) calcd for [C₂₄H₂₂FNNaO₂S] ([M+Na]⁺): 430.1247, found: 430.1249. IR (thin film) *v* 1604.61, 1644.26, 2875.05, 2935.37, 2978.05 cm⁻¹.

Compound **1m** was obtained as white solid (m.p. = 105-106 °C, Rf = 0.68 (petroleum ether/ ethyl acetate = 5:1)). ¹H NMR (600 MHz, CDCl₃) δ 7.85 – 7.80 (m, 2H), 7.57 (d, J = 8.6 Hz, 2H), 7.53 – 7.48 (m, 2H), 7.34 – 7.25 (m, 5H), 7.15 – 7.11 (m, 2H), 6.19 (s, 1H), 3.25 - 3.29 (m, 1H), 3.02 - 3.24 (m, 1H), 2.35 (s, 3H), 0.85 (t, J = 7.1 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 143.59, 136.41, 136.02, 131.68, 131.62, 129.84, 129.62, 128.88, 128.35, 127.87, 122.55, 121.88, 88.61, 83.00, 53.77, 40.88, 21.55, 16.19. HRMS (ESI) calcd for [C₂₄H₂₂BrNNaO₂S] ([M+Na]⁺): 490.0447, found: 490.0444. IR (thin film) v 1597.80, 2874.07, 2933.91, 2976.31, 3062.60 cm⁻¹.

Compound **1n** was obtained as white solid (m.p. = 134-135 °C, Rf = 0.66 (petroleum ether/ ethyl acetate = 5:1)). ¹H NMR (600 MHz, CDCl₃) δ 7.85 (d, *J* = 8.3 Hz, 2H), 7.80 (dd, *J* = 8.7, 5.9 Hz, 1H), 7.38 (dd, *J* = 8.1, 2.6 Hz, 1H), 7.35 – 7.29 (m, 1H), 7.29 – 7.25 (m, 2H), 7.18 (d, *J* = 7.9 Hz, 2H), 7.15 – 7.08 (m, 2H), 7.05 (td, *J* = 8.2, 2.5 Hz, 1H), 6.46 (s, 1H), 3.23 – 3.12 (m, 1H), 3.07 – 2.95 (m, 1H), 2.30 (s, 3H), 0.72 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 162.52 (d, *J* = 252.9 Hz), 143.45, 136.01, 132.17 (d, *J* = 8.7 Hz), 131.61, 129.36, 128.89, 128.40, 128.33, 125.36 (d, *J* = 9.6 Hz),

121.87, 121.18 (d, J = 24.5 Hz), 114.49 (d, J = 20.9 Hz), 88.59, 84.20, 53.88, 40.25, 21.52, 15.70. HRMS (ESI) calcd for [C₂₄H₂₁BrFNNaO₂S] ([M+Na]⁺): 508.0353, found: 508.0354. IR (thin film) v 1597.73, 2872.98, 2934.49, 2977.16, 3064.44 cm⁻¹.

Compound **10** was obtained as white solid (m.p. = 93-94 °C, Rf = 0.68 (petroleum ether/ ethyl acetate = 5:1)). ¹H NMR (400 MHz, CDCl₃) δ 7.87 (d, *J* = 8.0 Hz, 2H), 7.77 (d, *J* = 8.0 Hz, 2H), 7.65 – 7.59 (m, 4H), 7.45 (t, *J* = 7.6 Hz, 2H), 7.40 – 7.26 (m, 6H), 7.17 (d, *J* = 7.0 Hz, 2H), 6.31 (s, 1H), 3.75 - 3.24 (m, 1H), 3.23 - 3.10 (m, 1H), 2.37 (s, 3H), 0.90 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 143.36, 141.20, 140.47, 136.25, 136.06, 131.56, 129.51, 128.84, 128.65, 128.51, 128.24, 127.83, 127.53, 127.15, 127.13, 122.10, 88.15, 83.69, 53.94, 40.79, 21.47, 16.12. HRMS (ESI) calcd for [C₃₀H₂₇NNaO₂S] ([M+Na]⁺): 488.1655, found: 488.1656. IR (thin film) *v* 1639.29, 2854.78, 2874.72, 2932.84 cm⁻¹.

Compound **1p** was obtained as yellow liquid (Rf = 0.43 (petroleum ether/ ethyl acetate = 5:1)). ¹H NMR (600 MHz, CDCl₃) δ 7.93 – 7.89 (m, 2H), 7.56 – 7.51 (m, 1H), 7.50 – 7.46 (m, 2H), 7.41 – 7.40 (m, 1H), 7.32 – 7.28 (m, 1H), 7.27 – 7.22 (m, 2H), 7.16 – 7.11 (m, 2H), 6.51 – 6.50 (m, 1H), 6.34 (dd, *J* = 3.2, 1.8 Hz, 1H), 6.27 (s, 1H), 2.73 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 149.05, 143.61, 138.00, 132.84, 131.73, 128.96, 128.94, 128.32, 128.00, 121.68, 110.44, 110.26, 86.93, 81.07, 48.88, 30.24. HRMS (ESI) calcd for [C₂₀H₁₇NNaO₃S] ([M+Na]⁺): 374.0821, found: 374.0822. IR (thin film) *v* 1446.77, 1490.87, 2929.88, 2966.80, 3061.39 cm⁻¹.

Compound **1q** was obtained as white solid (m.p. = 108-109 °C, Rf = 0.68 (petroleum ether/ ethyl acetate = 5:1)). ¹H NMR (600 MHz, CDCl₃) δ 8.04 – 7.94 (m, 2H), 7.59 (t, J = 7.4 Hz, 1H), 7.55 – 7.50 (m, 4H), 7.38 – 7.34 (m, 1H), 7.34 – 7.30 (m, 2H), 7.25 –

7.22 (m, 2H), 7.21 – 7.15 (m, 3H), 7.07 – 7.01 (m, 5H), 6.42 (s, 1H), 4.58 (d, J = 10.4 Hz, 1H), 4.26 (d, J = 15.4 Hz, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 139.35, 136.53, 136.15, 132.87, 131.79, 129.11, 128.94, 128.72, 128.46, 128.44, 128.27, 128.22, 127.95, 127.86, 127.07, 122.05, 89.09, 83.41, 54.76, 49.37. HRMS (ESI) calcd for [C₂₈H₂₃NNaO₂S] ([M+Na]⁺): 460.1342, found: 460.1341. IR (thin film) v 1446.37, 1492.01, 2922.60, 3031.68, 3062.26 cm⁻¹.

Compound **1r** was obtained as white solid (m.p. = 128-129 °C, Rf = 0.25 (petroleum ether/ ethyl acetate = 5:1)). ¹H NMR (600 MHz, CDCl₃) δ 8.02 – 7.94 (m, 2H), 7.72 (d, J = 7.7 Hz, 2H), 7.57 – 7.52 (m, 1H), 7.51 – 7.47 (m, 2H), 7.42 (t, J = 7.4 Hz, 2H), 7.37 (t, J = 7.3 Hz, 1H), 7.31 – 7.27 (m, 1H), 7.26 – 7.22 (m, 2H), 7.14 – 7.09 (m, 2H), 6.67 (d, J = 8.2 Hz, 1H), 6.43 (dd, J = 8.1, 1.9 Hz, 1H), 6.35 (d, J = 1.9 Hz, 1H), 6.29 (s, 1H), 3.79 (s, 3H), 3.74 (s, 3H), 3.40 – 3.31 (m, 1H), 3.18 – 3.13 (m, 1H), 2.81 – 2.71 (m, 1H), 2.12 – 2.03 (m, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 148.82, 147.56, 139.02, 136.81, 132.81, 131.65, 131.44, 129.05, 128.86, 128.69, 128.41, 128.34, 127.91, 121.89, 120.66, 111.99, 111.20, 88.46, 83.33, 55.95, 55.83, 54.44, 47.87, 36.91. HRMS (ESI) calcd for [C₃₁H₂₉NNaO₄S] ([M+Na]⁺): 534.1710, found: 534.1708. IR (thin film) v 1590.69, 2833.82, 2870.09, 2935.17 cm⁻¹.

Compound **1h** was obtained as colorless liquid (Rf = 0.52 (petroleum ether/ ethyl acetate = 5:1)). ¹H NMR (400 MHz, CDCl₃) δ 7.97 (d, *J* = 7.8 Hz, 2H), 7.69 (t, *J* = 7.6 Hz, 2H), 7.60 – 7.47 (m, 3H), 7.43 – 7.24 (m, 6H), 7.17 (t, *J* = 7.3 Hz, 2H), 6.30 (d, *J* = 7.6 Hz, 1H), 4.15 – 4.00 (m, 1H), 3.73 – 3.45 (m, 1H), 3.42 – 3.29 (m, 1H), 3.27 – 3.03 (m, 1H), 2.36 – 2.12 (m, 2H), 1.47 – 1.40 (m, 9H), 1.39 (m, 1.5H), 1.38 – 1.29 (m, 2H), 1.30 – 1.28 (m, 1.5H), 1.25 – 1.22 (m, 3H), 0.94 – 0.83 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 170.26, 170.22, 138.89, 138.86, 137.06, 136.82, 132.69, 132.66,

131.60, 128.94, 128.75, 128.60, 128.55, 128.49, 128.28, 128.16, 127.87, 127.84, 121.93, 98.69, 98.50, 88.85, 88.54, 83.23, 82.90, 80.55, 80.50, 66.69, 66.13, 66.03, 65.94, 54.33, 54.18, 42.72, 42.70, 42.07, 41.94, 36.37, 36.02, 35.91, 30.01, 29.96, 28.10, 19.69, 19.66. HRMS (ESI) calcd for $[C_{35}H_{41}NNaO_6S]$ ($[M+Na]^+$): 626.2547, found: 626.2546. IR (thin film) *v* 1638.29, 1727.00, 2936.94, 2979.87 cm⁻¹. $[\alpha]D^{26.6}$ - 7.01 (*c* 0.38, CHCl₃).

Compound **1t** was obtained as white solid (m.p. = 124-125 °C, Rf = 0.52 (petroleum ether/ ethyl acetate = 5:1)). ¹H NMR (600 MHz, CDCl₃) δ 7.94 (d, *J* = 7.5 Hz, 2H), 7.48 – 7.39 (m, 3H), 7.30 – 7.26 (m, 1H), 7.26 – 7.15 (m, 5H), 7.14 – 7.11 (m, 1H), 7.00 (d, *J* = 7.2 Hz, 2H), 6.01 (s, 1H), 4.06 (dd, *J* = 12.4, 6.5 Hz, 1H), 3.38 (td, *J* = 12.2, 4.0 Hz, 1H), 3.23 – 3.08 (m, 1H), 2.90 – 2.77 (m, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 139.07, 133.98, 132.72, 132.63, 131.63, 129.39, 128.90, 128.52, 128.11, 127.93, 127.72, 127.36, 126.76, 122.15, 86.67, 85.77, 48.81, 40.12, 28.78. HRMS (ESI) calcd for [C₂₃H₁₉NNaO₂S] ([M+Na]⁺): 396.1029, found: 369.1029. IR (thin film) *v* 1446.29, 1489.76, 2864.23, 2926.61, 3061.05 cm⁻¹.

Compound **1h** was obtained as colorless liquid (Rf = 0.52 (petroleum ether/ ethyl acetate = 5:1)). ¹H NMR (400 MHz, CDCl₃) δ 7.94 (d, *J* = 7.6 Hz, 2H), 7.42 (dt, *J* = 14.7, 7.0 Hz, 3H), 7.30 – 7.24 (m, 1H), 7.24 – 7.15 (m, 2H), 7.16 – 7.08 (m, 1H), 6.99 (d, *J* = 7.9 Hz, 2H), 6.90 (d, *J* = 7.9 Hz, 2H), 6.01 (s, 1H), 4.04 (dd, *J* = 12.5, 6.4 Hz, 1H), 3.38 (td, *J* = 12.2, 4.1 Hz, 1H), 3.14 (ddd, *J* = 18.0, 11.9, 6.5 Hz, 1H), 2.82 (dd, *J* = 16.5, 3.9 Hz, 1H), 2.29 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 139.07, 138.54, 134.09, 132.58, 132.53, 131.44, 129.26, 128.78, 128.76, 127.85, 127.57, 127.28, 126.63, 119.02, 86.72, 85.01, 48.78, 40.01, 28.71, 21.46. HRMS (ESI) calcd for [C₂₄H₂₁NNaO₂S] ([M+Na]⁺): 410.1185, found: 410.1186. IR (thin film) *v* 1509.07, 1644.39, 2866.97, 2924.75, 3030.04 cm⁻¹.

Compound **1h** was obtained as yellow solid (m.p. = 63-64 °C, Rf = 0.16 (petroleum ether/ ethyl acetate = 5:1)). ¹H NMR (600 MHz, CDCl₃) δ 7.94 – 7.89 (m, 2H), 7.44 (t, J = 7.3 Hz, 1H), 7.40 (t, J = 7.3 Hz, 2H), 7.25 – 7.22 (m, 1H), 7.18 (t, J = 7.4 Hz, 2H), 7.06 – 6.95 (m, 2H), 6.73 (s, 1H), 6.57 (s, 1H), 5.91 (s, 1H), 4.04 (dd, J = 12.5, 6.5 Hz, 1H), 3.86 (s, 3H), 3.83 (s, 3H), 3.34 (td, J = 12.3, 4.1 Hz, 1H), 3.11 – 3.02 (m, 1H), 2.72 (dd, J = 16.2, 2.9 Hz, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 148.64, 147.98, 139.15, 132.66, 131.63, 128.87, 128.50, 128.11, 127.87, 125.78, 124.72, 122.19, 111.46, 109.72, 86.41, 85.90, 56.15, 55.99, 48.44, 40.12, 28.38. HRMS (ESI) calcd for [C₂₅H₂₃NNaO₄S] ([M+Na]⁺): 456.1240, found: 456.1240. IR (thin film) v 1489.56, 1518.76, 2835.24, 2933.10 cm⁻¹.

Compound **8** was obtained as white solid (m.p. = 77-78 °C, Rf = 0.51 (petroleum ether/ ethyl acetate = 5:1)). ¹H NMR (600 MHz, CDCl₃) δ 8.07 – 7.95 (m, 2H), 7.65 (d, *J* = 7.5 Hz, 2H), 7.58 (t, *J* = 7.4 Hz, 1H), 7.53 (t, *J* = 7.5 Hz, 2H), 7.37 (t, *J* = 7.3 Hz, 2H), 7.34 – 7.30 (m, 2H), 7.27 (t, *J* = 7.4 Hz, 2H), 7.22 – 7.13 (m, 2H), 6.20 (s, 1H), 3.98 (d, *J* = 17.5 Hz, 1H), 3.88 (d, *J* = 17.5 Hz, 1H), 3.38 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 169.26, 139.00, 135.12, 133.16, 131.76, 129.12, 129.00, 128.88, 128.62, 128.55, 128.39, 128.10, 121.73, 88.55, 82.76, 54.46, 52.12, 45.97. HRMS (ESI) calcd for [C₂₄H₂₁NNaO₄S] ([M+Na]⁺): 442.1083, found: 442.1085. IR (thin film) *v* 1739.41, 1760.98, 2951.37, 3033.04, 3063.36 cm⁻¹.

Compound **10** was obtained as white solid (m.p. = 82-83 °C, Rf = 0.46 (petroleum ether/ ethyl acetate = 5:1)). ¹H NMR (400 MHz, CDCl₃) δ 7.89 (d, *J* = 7.9 Hz, 2H), 7.61 (t, *J* = 7.1 Hz, 1H), 7.53 (t, *J* = 7.6 Hz, 2H), 7.39 – 7.35 (m, 2H), 7.16 – 7.08 (m, 3H), 7.03 – 6.89 (m, 5H), 6.10 (s, 1H), 4.44 (d, *J* = 15.4 Hz, 1H), 4.11 (d, *J* = 15.4 Hz, 1H), 3.68 (s, 3H), 2.41 – 2.31 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 172.07, 139.37, 136.53, 136.14, 132.63, 128.83, 128.50, 128.26, 127.99, 127.94, 127.84, 127.66, 126.85, 87.54, 74.99, 54.17, 51.89, 48.95, 33.11, 14.55. HRMS (ESI) calcd for [C₂₆H₂₅NNaO₄S] ([M+Na]⁺): 460.1342, found: 460.1341. IR (thin film) *v* 1644.39, 1737.03, 2849.83, 2922.26, 2952.68 cm⁻¹.

Synthesis of pentasubstituted pyrroles

General procedure A: In a flame-dried Schlenk tube, propargyl sulfonylamide

1 (0.2 mmol, 1 equiv), TMSCN (0.6 mmol, 3 equiv) and Cs_2CO_3 (0.6 mmol, 3 equiv) were dissolved in DMF (2 mL) under a nitrogen atmosphere. The reaction mixture was stirred at 80 °C for 10 h. Upon completion of the reaction as monitored by TLC, the reaction was quenched with water (5 mL). The aqueous layer was extracted with ethyl acetate and the combined organic layers were washed with brine (10 mL*3), water (10 mL*3), dried over MgSO₄ and filtered. Then the solution was concentrated under reduced pressure. The crude material was purified by neutral alumina flash chromatography to yield the corresponding pentasubstituted pyrrole.

Characterization data for pentasubstituted pyrroles

Following the general procedure **A**, **2a** was obtained as a brown solid (37.3 mg, 65% yield, m.p. = 151-152 °C, Rf = 0.45 (petroleum ether/ ethyl acetate = 2:1)). ¹H NMR (400 MHz, CDCl₃) δ 7.51 (d, *J* = 7.8 Hz, 2H), 7.49 – 7.35 (m, 7H), 7.27 (d, *J* = 7.4 Hz, 1H), 3.90 (q, *J* = 7.1 Hz, 2H), 3.49 (s, 2H), 1.27 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 136.50, 133.27, 133.11, 129.91, 129.58, 129.08, 128.89, 128.71, 128.05, 126.47, 117.66, 109.57, 90.45, 38.85, 15.76. HRMS (DART) calcd for [C₁₉H₁₈N₃]⁺ ([M+H]⁺): 288.1495, found: 288.1496. IR (thin film) *v* 2211.10 cm⁻¹.

Following the general procedure **A**, **2b** was obtained as a brown liquid (36.0 mg, 66% yield, Rf = 0.34 (petroleum ether/ ethyl acetate = 2:1)).¹H NMR (400 MHz, CDCl₃) δ 7.52 – 7.37 (m, 9H), 7.31 – 7.25 (m, 1H), 3.49 (m, 5H). ¹³C NMR (100 MHz, CDCl₃) δ 136.61, 134.05, 133.08, 129.61, 129.33, 129.10, 128.87, 128.55, 128.00, 126.50, 117.69, 109.12, 90.05, 31.25. HRMS (ESI) calcd for [C₁₈H₁₅N₃Na] ([M+Na]⁺): 296.1158, found: 296.1160. IR (thin film) *v* 2209.60 cm⁻¹.

Following the general procedure **A**, **2c** was obtained as a brown liquid (47.0 mg, 78% yield, Rf = 0.41 (petroleum ether/ ethyl acetate = 2:1)). ¹H NMR (600 MHz, CDCl₃) δ 7.46 - 7.43 (m, 4H), 7.42 - 7.36 (m, 3H), 7.29 - 7.25 (m, 2H), 3.50 (s, 2H), 3.46 (s,

3H), 2.67 (q, J = 7.6 Hz, 2H), 1.26 (t, J = 7.6 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 142.59, 136.48, 134.12, 130.43, 129.78, 129.38, 128.93, 128.68, 128.54, 128.02, 118.02, 109.14, 90.05, 31.33, 28.69, 15.66. HRMS (ESI) calcd for [C₂₀H₁₉N₃Na] ([M+Na]⁺): 324.1471, found: 324.1471. IR (thin film) v 2209.93 cm⁻¹.

Following the general procedure **A**, **2d** was obtained as a brown solid (37.2 mg, 64% yield, m.p. = 160-161 °C, Rf = 0.31 (petroleum ether/ ethyl acetate = 2:1)). ¹H NMR (600 MHz, CDCl₃) δ 7.49 – 7.43 (m, 6H), 7.42 – 7.38 (m, 1H), 7.15 – 7.09 (m, 2H), 3.49 (s, 3H), 3.45 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 161.55 (d, *J* = 246.1 Hz), 136.58, 133.84, 129.71 (d, *J* = 8.0 Hz), 129.51, 129.30, 129.03, 128.90, 128.62, 117.54, 116.03 (d, *J* = 21.4 Hz), 108.44, 90.09, 31.27. HRMS (ESI) calcd for [C₁₈H₁₄FN₃Na] ([M+Na]⁺): 314.1064, found: 314.1065. IR (thin film) *v* 2209.30 cm⁻¹.

Following the general procedure **A**, **2e** was obtained as a brown solid (39.3 mg, 64% yield, m.p. = 103-104 °C, Rf = 0.34 (petroleum ether/ ethyl acetate = 2:1)). ¹H NMR (600 MHz, CDCl₃) δ 7.49 – 7.45 (m, 4H), 7.45 – 7.41 (m, 3H), 7.41 – 7.38 (m, 3H), 3.49 (s, 3H), 3.47 (s, 2H). ¹³C NMR (150 MHz, CDCl₃) δ 136.90, 134.16, 132.32, 131.63, 129.50, 129.38, 129.35, 129.30, 129.00, 128.77, 117.53, 108.07, 90.03, 31.34. HRMS (ESI) calcd for [C₁₈H₁₄ClN₃Na] ([M+Na]⁺): 330.0768, found: 330.0767. IR (thin film) *v* 2211.78 cm⁻¹.

Following the general procedure **A**, **2f** was obtained as a brown liquid (41.8 mg, 67% yield, Rf = 0.21 (petroleum ether/ ethyl acetate = 2:1)). ¹H NMR (600 MHz, CDCl₃) δ 7.73 – 7.68 (m, 2H), 7.66 – 7.61 (m, 2H), 7.53 – 7.47 (m, 2H), 7.46 – 7.43 (m, 3H), 3.90 (q, *J* = 7.2 Hz, 2H), 3.61 (s, 2H), 1.30 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 138.36, 137.59, 134.64, 132.91, 129.62, 129.40, 129.20, 129.09, 128.08, 119.21, 117.24, 109.29, 106.98, 90.18, 38.98, 15.62. HRMS (ESI) calcd for [C₂₀H₁₆N₄Na] ([M+Na]⁺): 335.1267, found: 335.1267. IR (thin film) *v* 2213.94 cm⁻¹.

Following the general procedure **A**, **2g** was obtained as a brown soild (48.8 mg, 80% yield, m.p. = 112-113 °C, Rf = 0.45 (petroleum ether/ ethyl acetate = 2:1)). ¹H NMR (600 MHz, CDCl₃) δ 7.49 – 7.36 (m, 6H), 7.29 (d, *J* = 7.6 Hz, 1H), 7.21 (d, *J* = 10.0 Hz, 1H), 6.95 (t, *J* = 7.5 Hz, 1H), 3.89 (q, *J* = 7.2 Hz, 2H), 1.27 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 163.29 (d, *J* = 246.7 Hz), 136.86, 135.38 (d, *J* = 9.7 Hz), 133.69, 130.68 (d, *J* = 8.6 Hz), 129.72, 129.64, 129.00, 128.93, 123.75, 117.46, 114.73 (d, *J* = 21.6 Hz), 113.33 (d, *J* = 21.6 Hz), 108.15, 90.38, 38.94, 15.75. HRMS (ESI) calcd for [C₁₉H₁₆FN₃Na] ([M+Na]⁺): 328.1220, found: 328.1222. IR (thin film) *v* 2211.63 cm⁻¹.

Following the general procedure **A**, **2h** was obtained as a brown liquid (39.8 mg, 62% yield, Rf = 0.48 (petroleum ether/ ethyl acetate = 2:1)).¹H NMR (600 MHz, CDCl₃) δ 7.51 – 7.43 (m, 6H), 7.43 – 7.39 (m, 1H), 7.33 (td, *J* = 7.6, 1.3 Hz, 1H), 7.27 (td, *J* = 7.7, 1.8 Hz, 1H), 3.93 (q, *J* = 7.2 Hz, 2H), 3.27 (s, 2H), 1.27 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 136.60, 133.72, 133.53, 132.69, 131.62, 130.09, 129.96, 129.62, 128.95, 128.89, 128.80, 127.26, 117.33, 108.70, 91.60, 39.00, 15.96. HRMS (ESI) calcd for [C₁₉H₁₆ClN₃Na] ([M+Na]⁺): 344.0925, found: 344.0925. IR (thin film) *v* 2212.23 cm⁻¹.

Following the general procedure **A**, **2i** was obtained as a brown liquid (29.8 mg, 53% yield, Rf = 0.45 (petroleum ether/ ethyl acetate = 2:1)). ¹H NMR (600 MHz, CDCl₃) δ 7.46 – 7.38 (m, 4H), 7.37 – 7.32 (m, 1H), 3.44 (s, 3H), 3.01 (s, 2H), 2.48 (t, *J* = 7.5 Hz, 2H), 1.61 – 1.54 (m, 2H), 1.39 – 1.32 (m, 2H), 1.32 – 1.28 (m, 4H), 0.88 (t, *J* = 6.9 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 135.53, 132.67, 130.18, 129.18, 128.83, 128.24, 117.90, 111.53, 90.69, 31.81, 31.19, 30.60, 29.24, 24.69, 22.76, 14.22. HRMS (ESI) calcd for [C₁₈H₂₃N₃Na] ([M+Na]⁺): 304.1784, found: 304.1784. IR (thin film) *v* 2202.50 cm⁻¹.

Following the general procedure **A**, **2j** was obtained as a brown solid (46.5 mg, 81% yield, Rf = 0.36 (petroleum ether/ ethyl acetate = 2:1)).¹H NMR (600 MHz, CDCl₃) δ 7.51 – 7.47 (m, 2H), 7.43 (t, *J* = 7.7 Hz, 2H), 7.36 (d, *J* = 8.0 Hz, 2H), 7.29 – 7.25 (m, 3H), 3.48 (s, 5H), 2.40 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 138.67, 136.95, 133.95, 133.25, 129.66, 129.30, 129.16, 128.04, 126.75, 126.50, 117.97, 108.96, 89.75, 31.27, 21.44. HRMS (ESI) calcd for [C₁₉H₁₇N₃Na] ([M+Na]⁺): 310.1315, found: 310.1316. IR (thin film) *v* 2207.86 cm⁻¹.

Following the general procedure **A**, **2k** was obtained as a brown liquid (42.4 mg, 70% yield, Rf = 0.24 (petroleum ether/ ethyl acetate = 2:1)). ¹H NMR (400 MHz, CDCl₃) δ 7.52 – 7.46 (m, 2H), 7.43 (t, *J* = 7.6 Hz, 2H), 7.40 – 7.36 (m, 2H), 7.29 – 7.23 (m, 1H), 7.02 – 6.96 (m, 2H), 3.84 (s, 3H), 3.48 (s, 2H), 3.45 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 159.82, 136.74, 133.67, 133.22, 130.72, 129.06, 127.94, 126.38, 121.94, 117.97, 114.36, 108.75, 89.47, 55.38, 31.10. HRMS (ESI) calcd for [C₁₉H₁₇N₃NaO] ([M+Na]⁺): 326.1264, found: 326.1263. IR (thin film) *v* 2207.57 cm⁻¹.

Following the general procedure **A**, **2I** was obtained as a brown solid (48.2 mg, 79% yield, m.p. = 179-180 °C, Rf = 0.39 (petroleum ether/ ethyl acetate = 2:1)). ¹H NMR (400 MHz, CDCl₃) δ 7.50 (d, *J* = 8.2 Hz, 2H), 7.45 – 7.41 (m, 4H), 7.31 – 7.24 (m, 1H), 7.21 – 7.12 (m, 2H), 3.87 (q, *J* = 7.2 Hz, 2H), 3.48 (s, 2H), 1.26 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 162.92 (d, *J* = 249.2 Hz), 135.27, 133.28, 132.97, 131.50 (d, *J* = 8.4 Hz), 129.09, 128.00, 126.52, 125.97 (d, *J* = 3.4 Hz), 117.49, 116.06 (d, *J* = 21.8 Hz), 109.53, 90.69, 38.80, 15.73. HRMS (ESI) calcd for [C₁₉H₁₆FN₃Na] ([M+Na]⁺): 328.1220, found: 328.1216. IR (thin film) *v* 2210.73 cm⁻¹.

Following the general procedure **A**, **2m** was obtained as a brown solid (55.5 mg, 76% yield, m.p. = 143-144 °C, Rf = 0.45 (petroleum ether/ ethyl acetate = 2:1)).¹H NMR (600 MHz, CDCl₃) δ 7.63 – 7.57 (m, 2H), 7.50 – 7.47 (m, 2H), 7.43 (t, *J* = 7.7 Hz, 2H), 7.35 – 7.32 (m, 2H), 7.29 – 7.25 (m, 1H), 3.88 (q, *J* = 7.2 Hz, 2H), 3.49 (s, 2H), 1.27 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 135.04, 133.71, 132.92, 132.26, 131.10, 129.19, 128.86, 128.09, 126.69, 123.12, 117.43, 109.87, 90.96, 38.98, 15.84.

HRMS (ESI) calcd for $[C_{19}H_{16}BrN_3Na]$ ($[M+Na]^+$): 388.0420, found: 388.0421. IR (thin film) v 2210.48 cm⁻¹.

Following the general procedure **A**, **2n** was obtained as a brown liquid (55.2 mg, 72% yield, Rf = 0.45 (petroleum ether/ ethyl acetate = 2:1)).¹H NMR (400 MHz, CDCl₃) δ 7.56 – 7.50 (m, 2H), 7.49 – 7.39 (m, 4H), 7.32 – 7.25 (m, 1H), 7.16 (td, *J* = 8.2, 2.6 Hz, 1H), 3.92 - 3.75 (m, 1H), 3.74 - 3.61 (m, 1H), 3.48 (s, 2H), 1.17 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 163.03 (d, *J* = 254.3 Hz), 134.26 (d, *J* = 8.8 Hz), 133.24, 133.01, 132.82, 129.15, 128.02, 127.49 (d, *J* = 4.0 Hz), 126.59, 126.33 (d, *J* = 9.9 Hz), 120.71 (d, *J* = 24.6 Hz), 116.81, 115.17 (d, *J* = 21.6 Hz), 109.60, 91.81, 39.05, 15.54. HRMS (ESI) calcd for [C₁₉H₁₅BrFN₃Na] ([M+Na]⁺): 406.0326, found: 406.0327. IR (thin film) *v* 2214.18 cm⁻¹.

Following the general procedure **A**, **20** was obtained as a yellow solid (56.6 mg, 78% yield, m.p. = 183-184 °C, Rf = 0.45 (petroleum ether/ ethyl acetate = 2:1)). NMR (600 MHz, CDCl₃) δ 7.69 (d, *J* = 8.2 Hz, 2H), 7.63 (d, *J* = 7.8 Hz, 2H), 7.54 – 7.51 (m, 4H), 7.48 – 7.43 (m, 4H), 7.38 (t, *J* = 7.4 Hz, 1H), 7.28 (t, *J* = 7.7 Hz, 1H), 3.94 (q, *J* = 7.2 Hz, 2H), 3.51 (s, 2H), 1.31 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 141.37, 140.30, 136.14, 133.63, 133.12, 129.87, 129.10, 128.93, 128.76, 128.04, 127.70, 127.57, 127.11, 126.48, 117.83, 109.51, 90.49, 38.97, 15.80. HRMS (ESI) calcd for [C₂₅H₂₁N₃Na] ([M+Na]⁺): 386.1628, found: 386.1627. IR (thin film) *v* 2210.51 cm⁻¹.

Following the general procedure **A**, **2p** was obtained as a brown liquid (32.0 mg, 61% yield, Rf = 0.21 (petroleum ether/ ethyl acetate = 2:1)). ¹H NMR (600 MHz, CDCl₃) δ 7.51 (d, *J* = 1.9 Hz, 1H), 7.47 – 7.41 (m, 5H), 7.28 (t, *J* = 7.2 Hz, 1H), 6.80 (d, *J* = 3.4 Hz, 1H), 6.52 (dd, *J* = 3.4, 1.9 Hz, 1H), 3.67 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 144.34, 142.43, 134.49, 132.81, 129.20, 128.12, 126.78, 126.29, 117.31, 111.70, 109.95, 109.76, 89.78, 31.69. HRMS (ESI) calcd for [C₁₆H₁₃N₃NaO] ([M+Na]⁺): 286.0951, found: 286.0951. IR (thin film) *v* 2209.37 cm⁻¹.

Following the general procedure **A**, **2q** was obtained as a yellow solid (37.7 mg, 54% yield, m.p. = 193-194 °C, Rf = 0.6 (petroleum ether/ ethyl acetate = 2:1)).¹H NMR (400 MHz, CDCl₃) δ 7.54 (d, *J* = 7.4 Hz, 2H), 7.48 – 7.36 (m, 9H), 7.34 – 7.26 (m, 2H), 7.09 (d, *J* = 7.4 Hz, 2H), 5.14 (s, 2H), 3.36 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 137.04, 136.57, 134.11, 132.95, 129.46, 129.37, 129.29, 129.12, 128.97, 128.78, 128.02, 127.99, 126.55, 125.70, 117.57, 109.17, 90.78, 47.54. HRMS (DART) calcd for [C₂₄H₂₀N₃]⁺ ([M+H]⁺): 350.1652, found: 350.1652. IR (thin film) *v* 2211.83 cm⁻¹.

Following the general procedure **A**, **2r** was obtained as a brown liquid (39.8 mg, 47% yield, Rf = 0.45 (petroleum ether/ ethyl acetate = 2:1)). ¹H NMR (600 MHz, CDCl₃) δ 7.45 – 7.38 (m, 7H), 7.35 – 7.31 (m, 2H), 7.29 – 7.21 (m, 1H), 6.70 (d, *J* = 8.1 Hz, 1H), 6.45 (dd, *J* = 8.1, 1.9 Hz, 1H), 6.27 (d, *J* = 1.9 Hz, 1H), 4.12 (t, *J* = 7.0 Hz, 2H), 3.83 (s, 3H), 3.69 (s, 3H), 3.06 (s, 2H), 2.71 (t, *J* = 6.7 Hz, 2H). ¹³C NMR (150 MHz, CDCl₃) δ 149.04, 148.10, 136.84, 133.84, 133.13, 130.06, 129.93, 129.78, 129.18, 128.88, 128.82, 128.12, 126.61, 120.87, 117.64, 111.74, 111.39, 109.73, 90.68, 56.04, 55.76,

45.24, 35.98. HRMS (DART) calcd for $[C_{27}H_{26}O_2N_3]^+$ ($[M+H]^+$): 424.2020, found: 424.2020. IR (thin film) ν 2210.37, cm⁻¹.

Following the general procedure **A**, **2s** was obtained as a brown liquid (69.0 mg, 67% yield, Rf = 0.21 (petroleum ether/ ethyl acetate = 2:1)). ¹H NMR (600 MHz, CDCl₃) δ 7.51 – 7.48 (m, 2H), 7.47 – 7.37 (m, 7H), 7.27 – 7.24 (m, 1H), 4.20 – 4.15 (m, 1H), 4.01 (td, *J* = 13.6, 12.3, 6.2 Hz, 2H), 3.85 (s, 2H), 3.77 – 3.60 (m, 1H), 2.36 (dd, *J* = 15.3, 7.1 Hz, 1H), 2.23 (dd, *J* = 15.3, 6.0 Hz, 1H), 1.82 – 1.60 (m, 4H), 1.47 – 1.43 (m, 1H), 1.41 (s, 9H), 1.40 – 1.38 (m, 1H), 1.35 (s, 3H), 1.32 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 170.16, 136.03, 134.36, 133.29, 129.99, 129.57, 129.18, 129.01, 128.77, 127.97, 126.40, 117.74, 107.79, 99.07, 90.78, 80.89, 77.35, 77.14, 76.93, 66.03, 65.99, 42.49, 39.13, 36.72, 36.08, 30.08, 28.17, 19.79. HRMS (DART) calcd for [C₃₁H₃₈O₄N₃]⁺ ([M+H]⁺): 516.2857, found: 516.2856. IR (thin film) *v* 2212.20, 1726.00 cm⁻¹. ^[a]D^{26.6} 23.69 (*c* 0.38, CHCl₃).

Following the general procedure **A**, **2t** was obtained as a brown liquid (43.9 mg, 77% yield, Rf = 0.26 (petroleum ether/ ethyl acetate = 2:1)).¹H NMR (400 MHz, CDCl₃) δ 8.18 (d, *J* = 7.8 Hz, 1H), 7.59 – 7.35 (m, 4H), 7.35 – 7.20 (m, 4H), 3.97 (t, *J* = 6.6 Hz, 2H), 3.50 (s, 2H), 3.09 (t, *J* = 6.6 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 132.80, 132.46, 130.80, 130.32, 129.12, 128.13, 128.00, 127.83, 127.50, 127.14, 126.67,

123.51, 118.23, 110.72, 86.17, 39.22, 28.72. HRMS (DART) calcd for $[C_{19}H_{16}N_3]^+$ ($[M+H]^+$): 286.1339, found: 286.1340. IR (thin film) v 2205.09 cm⁻¹.

Following the general procedure **A**, **2u** was obtained as a brown liquid (44.3 mg, 74% yield, Rf = 0.30 (petroleum ether/ ethyl acetate = 2:1)). ¹H NMR (400 MHz, DMSO*d*₆) δ 7.95 (d, *J* = 7.5 Hz, 1H), 7.45 – 7.28 (m, 4H), 7.28 – 7.18 (m, 3H), 5.11 (s, 2H), 3.97 (t, *J* = 6.4 Hz, 2H), 3.04 (t, *J* = 6.1 Hz, 2H), 2.33 (s, 3H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 136.45, 135.24, 131.80, 130.72, 129.74, 128.89, 128.65, 127.99, 127.74, 127.42, 127.29, 122.18, 119.03, 105.91, 85.27, 28.40, 21.22. HRMS (ESI) calcd for [C₂₀H₁₈N₃] ([M+H]⁺): 300.1495, found: 300.1496. IR (thin film) *v* 2212.23 cm⁻¹.

Following the general procedure **A**, **2v** was obtained as a brown liquid (30.4 mg, 44% yield, Rf = 0.1 (petroleum ether/ ethyl acetate = 2:1)).¹H NMR (600 MHz, DMSO-*d*₆) δ 7.52 (s, 1H), 7.43 (d, *J* = 7.0 Hz, 2H), 7.38 (t, *J* = 7.8 Hz, 2H), 7.19 (t, *J* = 7.3 Hz, 1H), 6.93 (s, 1H), 5.07 (s, 2H), 3.89 (t, *J* = 6.7 Hz, 2H), 3.76 (s, 3H), 3.73 (s, 3H), 2.94 (t, *J* = 6.7 Hz, 2H). ¹³C NMR (150 MHz, DMSO-*d*₆) δ 148.59, 148.30, 136.20, 133.99, 129.96, 129.22, 127.97, 125.94, 124.93, 119.86, 119.50, 112.57, 106.30, 104.99, 83.69, 56.13, 56.01, 27.92. HRMS (ESI) calcd for [C₂₁H₂₀O₂N₃] ([M+H]⁺): 346.1550, found: 346.1551. IR (thin film) *v* 2212.23 cm⁻¹.

Synthesis of substituted pyrrole 2a directly from allene

3a

In a flame-dried Schlenk tube, allenamide **3a** (0.2 mmol, 1 equiv), TMSCN (0.6 mmol, 3 equiv) and Cs_2CO_3 (0.6 mmol, 3 equiv) were dissolved in DMF (2 mL) under a nitrogen atmosphere. The reaction mixture was stirred at 80 °C for 10 h. Upon completion of the reaction as monitored by TLC, the reaction was quenched with water (5 mL). The aqueous layer was extracted with ethyl acetate and the combined organic layers were washed with brine (10 mL*3), water (10 mL*3), dried over MgSO₄ and filtered. Then the solution was concentrated under reduced pressure. The crude material was purified by neutral alumina flash chromatography to yield the product **2a** in 82% yield.

Compound **3a** was obtained as colorless oil (Rf = 0.64 (petroleum ether/ ethyl acetate = 5:1)).¹H NMR (400 MHz, CDCl₃) δ 7.67 (d, *J* = 8.2 Hz, 2H), 7.62 (d, *J* = 7.4 Hz, 2H), 7.38 – 7.25 (m, 6H), 7.20 – 7.07 (m, 4H), 6.47 (s, 1H), 3.57 – 3.33 (m, 2H), 2.34 (s, 3H), 1.20 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 206.66, 143.39, 135.04, 134.91, 132.22, 129.34, 128.84, 128.51, 128.35, 128.21, 127.93, 127.64, 126.15, 115.34, 103.72, 46.05, 21.53, 13.74. HRMS (ESI) calcd for [C₂₄H₂₃NNaO₂S] ([M+Na]⁺): 412.1342, found: 412.1342. IR (thin film) *v* 1910.63, 2827.17, 2924.17, 2976.03, 3027.14, 3057.01, 3081.99 cm⁻¹.

Synthesis of tetrasubstituted allenamides

Tetrasubstituted allenamides **4a-4k** were prepare according our previous work.¹ And **4l** was prepared as following procedure.

To a 50 mL round bottomed flask was charged with 1-ethynyl-4-methylbenzene (5 mmol, 1 equiv) and 10 mL of THF. The solution was cooled to -78 °C and *n*-BuLi (2.5 M in THF, 2 mL, 5 mmol, 1 equiv) was added. The resulting solution was stirred for 20 minutes at room temperature and then cooled to -78 °C again. benzophenone (5 mmol, 1 equiv) in THF solution was added dropwise. The reaction mixture was then allowed to warm to room temperature and was monitored by TLC for completion. On completion the reaction was quenched with saturated aqueous NH₄Cl (40 mL). The aqueous layer was extracted with ethyl acetate and the combined organic layers were washed with brine (30 mL), dried over MgSO₄ and filtered. Then the solution was concentrated under reduced pressure. The crude material was purified by flash chromatography to yield the propargyl alcohol.

To a 50 mL round bottomed flask was charged with Yb(OTf)₃ (10 mol %), the resulting propargyl alcohol (1 equiv), *N*-ethyl-4-methylbenzenesulfonamide (1.5 equiv), 4A MS (2 g) and DCE (0.2 M). The solution was heated to 50 °C and stirred for 12 h. On completion the reaction was quenched with saturated aqueous NaHCO₃. The aqueous layer was extracted with ethyl acetate and the combined organic layers were washed with brine, dried over MgSO₄ and filtered. Then the mixture was concentrated under reduced pressure. The crude material was purified by flash chromatography to yield the corresponding tetrasubstituted allenamide.²

Compound **4I** was obtained as white solid (m.p. = 147-148 °C, Rf = 0.73 (petroleum ether/ ethyl acetate = 3:1)).¹H NMR (600 MHz, CDCl₃) δ 7.52 (d, *J* = 8.2 Hz, 4H), 7.35 – 7.25 (m, 6H), 7.19 – 7.10 (m, 6H), 6.91 (d, *J* = 8.0 Hz, 2H), 3.53 (q, *J* = 7.1 Hz, 2H), 2.35 (s, 3H), 2.28 (s, 3H), 1.10 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 206.37, 143.07, 138.15, 135.60, 135.39, 132.45, 129.38, 129.30, 128.78, 128.52, 128.32, 127.83, 126.15, 119.05, 114.39, 46.14, 21.59, 21.33, 13.91. HRMS (ESI) calcd for [C₃₁H₂₉NNaO₂S] ([M+Na]⁺): 502.1811, found: 502.1812. IR (thin film) *v* 1911.00, 2872.17, 2977.26, 3082.60 cm⁻¹.

Synthesis of hexasubstituted pyrrolines

General procedure B: In a flame-dried Schlenk tube, tetrasubstituted allenamide 4 (0.1 mmol, 1 equiv), TMSCN (0.3 mmol, 3 equiv) and K_2CO_3 (0.3 mmol, 3 equiv) were dissolved in DMF (1 mL) under a nitrogen atmosphere. The reaction mixture was stirred at 80 °C for 10 h. Upon completion of the reaction as monitored by TLC, the reaction was quenched with water (5 mL). The aqueous layer was extracted with ethyl acetate and the combined organic layers were washed with brine (10 mL*3), water (10 mL*3), dried over MgSO₄ and filtered. Then the solution was concentrated under reduced pressure. The crude material was purified by silica gel flash chromatography to yield the corresponding hexasubstituted pyrroline.

Characterization data for hexasubstituted pyrrolines

Following the general procedure **B**, **5a** was obtained as a white solid (32.8 mg, 73% yield, m.p. = 128-129 °C, Rf = 0.53 (petroleum ether/ ethyl acetate = 3:1)). ¹H NMR (400 MHz, CDCl₃) δ 10.10 (s, 1H), 7.57 – 7.47 (m, 3H), 7.46 – 7.37 (m, 3H), 7.32 – 7.26 (m, 2H), 7.22 (d, *J* = 7.6 Hz, 3H), 7.20 – 7.09 (m, 4H), 6.36 (t, *J* = 54.6 Hz, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 159.35 (d, *J* = 8.2 Hz), 158.32, 136.16, 134.99, 133.79, 132.06, 129.73, 129.41, 129.31, 129.09, 128.43, 127.57, 127.41, 126.49, 116.61 (dd, *J* = 251.4, 247.0 Hz), 114.28, 94.07, 61.08 (t, *J* = 21.6 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -122.87 – -125.82(m, 2F). HRMS (ESI) calcd for [C₂₄H₁₇F₂N₃NaO₂S] ([M+Na]⁺): 472.0902, found: 472.0899. IR (thin film) *v* 1690.80, 2223.19 cm⁻¹.

Following the general procedure **B**, **5b** was obtained as a white solid (36.3 mg, 76% yield, m.p. = 137-138 °C, Rf = 0.35 (petroleum ether/ ethyl acetate = 3:1)). ¹H NMR (600 MHz, CDCl₃) δ 10.12 (s, 1H), 7.52 – 7.48 (m, 1H), 7.48 – 7.44 (m, 2H), 7.30 (d, J = 7.9 Hz, 2H), 7.25 – 7.22 (m, 4H), 7.21 – 7.18 (m, 2H), 7.08 (d, J = 8.1 Hz, 2H), 6.38 (t, J = 54.7 Hz, 1H), 2.45 (s, 3H), 2.33 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 159.61 (d, J = 7.4 Hz), 158.30, 142.65, 138.98, 136.25, 134.72, 130.88, 130.03, 129.67, 129.21, 129.09, 127.48, 126.35, 124.68, 116.55 (dd, J = 246.5, 246.5 Hz), 114.50, 93.77, 60.78 (t, J = 20.9 Hz), 21.83, 21.15. ¹⁹F NMR (376 MHz, CDCl₃) δ -122.94 – 125.98 (m, 2F). HRMS (ESI) calcd for [C₂₆H₂₁F₂N₃NaO₂S] ([M+Na]⁺): 500.1215, found: 500.1210. IR (thin film) v 1687.51, 2219.73 cm⁻¹.

Following the general procedure **B**, **5c** was obtained as a white soild (33.8 mg, 74% yield, m.p. = 73-74 °C, Rf = 0.44 (petroleum ether/ ethyl acetate = 3:1)). ¹H NMR (600 MHz, CDCl₃) δ 10.01 (s, 1H), 7.57 – 7.53 (m, 3H), 7.37 – 7.33 (m, 2H), 7.29 – 7.26 (m, 1H), 7.26 – 7.21 (m, 4H), 6.36 (t, *J* = 54.8 Hz, 1H), 3.04 – 2.99 (m, 1H), 2.96 – 2.90 (m, 1H), 1.82 – 1.75 (m, 2H), 1.47 – 1.40 (m, 2H), 1.36 – 1.31 (m, 4H), 0.90 (t, *J* = 7.0 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃)) δ 161.50, 159.13 (d, *J* = 8.3 Hz), 136.78, 135.02, 133.82 (d, *J* = 4.2 Hz), 129.72, 129.28, 128.99, 126.82, 126.44, 118.07, 116.42 (dd, *J* = 250.7, 246.4 Hz), 93.02, 60.45 (t, *J* = 21.7 Hz), 31.35, 29.99, 28.69, 22.56, 14.08. ¹⁹F NMR (376 MHz, CDCl₃) δ -123.35 – -125.93(m, 2F). HRMS (ESI) calcd for [C₂₄H₂₅F₂N₃NaO₂S] ([M+Na]⁺): 480.1528, found: 480.1529. IR (thin film) *v* 1688.44, 2221.13 cm⁻¹.

Following the general procedure **B**, **5d** was obtained as a colorless liquid (31.8 mg, 77% yield, Rf = 0.29 (petroleum ether/ ethyl acetate = 3:1)). ¹H NMR (400 MHz, CDCl₃) δ 10.03 (s, 1H), 7.72 – 7.62 (m, 3H), 7.46 (t, *J* = 7.8 Hz, 2H), 7.42 – 7.28 (m, 5H), 6.43 (t, *J* = 54.6 Hz, 1H), 2.16 – 2.07 (m, 1H), 1.32 – 1.23 (m, 1H), 1.24 – 1.15 (m, 1H), 1.14 – 0.99 (m, 2H). ¹³C NMR (150 MHz, CDCl₃) δ 160.36, 158.67 (d, *J* = 7.8 Hz), 137.87, 134.98, 133.94, 129.65, 129.35, 129.11, 126.91, 126.61, 116.56 (dd, *J* = 251.1, 245.9 Hz), 114.02, 89.98, 60.89 (t, *J* = 23.8 Hz), 11.08, 9.72, 9.63. ¹⁹F NMR (376 MHz, CDCl₃) δ -123.95 – -125.87 (m, 2F). HRMS (ESI) calcd for [C₂₁H₁₇F₂N₃NaO₂S] ([M+Na]⁺): 436.0902, found: 436.0902. IR (thin film) *v* 1670.92, 2219.26 cm⁻¹.

Following the general procedure **B**, **5e** was obtained as a colorless liquid (35.5 mg, 75% yield, Rf = 0.18 (petroleum ether/ ethyl acetate = 3:1)). ¹H NMR (400 MHz, CDCl₃) δ 10.04 (s, 1H), 7.62 – 7.53 (m, 3H), 7.41 – 7.34 (m, 2H), 7.33 – 7.18 (m, 5H), 6.36 (t, *J* = 54.7 Hz, 1H), 3.72 (s, 3H), 3.16 – 2.98 (m, 2H), 2.48 (t, *J* = 7.4 Hz, 2H), 2.25 – 2.10 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 172.77, 160.03, 158.84 (d, *J* = 7.4 Hz), 136.54,

135.00, 133.48, 129.66, 129.25, 128.99, 126.77, 126.33, 116.25 (dd, J = 251.4, 246.6 Hz), 113.63, 93.87, 60.44 (t, J = 21.8 Hz), 51.87, 32.77, 28.97, 23.70. ¹⁹F NMR (376 MHz, CDCl₃) δ -123.20 – -125.85 (m, 2F). HRMS (ESI) calcd for [C₂₃H₂₁F₂NaO₄S] ([M+Na]⁺): 496.1113, found: 496.1113. IR (thin film) v 1687.26, 1734.93, 2221.07 cm⁻¹.

Following the general procedure **B**, **5f** was obtained as a colorless liquid (35.4 mg, 69% yield, Rf = 0.52 (petroleum ether/ ethyl acetate = 3:1)). ¹H NMR (400 MHz, CDCl₃) δ 10.00 (s, 1H), 7.61 – 7.54 (m, 3H), 7.37 (t, *J* = 7.8 Hz, 2H), 7.13 (d, *J* = 8.0 Hz, 2H), 7.03 (d, *J* = 8.0 Hz, 2H), 6.35 (t, *J* = 54.8 Hz, 1H), 3.06 – 2.97 (m, 1H), 2.97 – 2.89 (m, 1H), 2.42 (d, *J* = 7.2 Hz, 2H), 1.86 – 1.76 (m, 3H), 1.49 – 1.40 (m, 2H), 1.38 – 1.31 (m, 4H), 0.93 – 0.87 (m, 9H). ¹³C NMR (150 MHz, CDCl₃) δ 161.26, 159.26 (d, *J* = 8.5 Hz), 142.71, 136.92, 134.92, 131.02, 129.95, 129.69, 126.88, 126.13, 116.44 (dd, *J* = 251.2, 246.6 Hz), 114.19, 93.20, 60.27 (t, *J* = 21.7 Hz), 44.95, 31.35, 30.17, 29.98, 28.71, 22.57, 22.44, 22.44, 14.07. ¹⁹F NMR (376 MHz, CDCl₃) δ -123.34 – -125.98(m, 2F). HRMS (DART) calcd for [C₂₈H₃₄O₂N₃F₂S]⁺ ([M+H]⁺): 514.2334, found: 514.2325. IR (thin film) *v* 1689.73, 2222.35 cm⁻¹.

Following the general procedure **B**, **5g** was obtained as a colorless liquid (32.5 mg, 67% yield, Rf = 0.32 (petroleum ether/ ethyl acetate = 3:1)). ¹H NMR (400 MHz, CDCl₃) δ 9.98 (s, 1H), 7.61 – 7.54 (m, 3H), 7.37 (t, *J* = 7.9 Hz, 2H), 6.92 (s, 1H), 6.77 (s, 2H), 6.37 (t, *J* = 54.8 Hz, 1H), 3.07 – 2.88 (m, 2H), 2.22 (s, 6H), 1.87 – 1.74 (m, 2H), 1.51 – 1.40 (m, 2H), 1.39 – 1.32 (m, 4H), 0.91 (t, *J* = 6.8 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 161.05, 159.31 (d, *J* = 8.0 Hz), 138.74, 136.70, 134.81, 133.64, 130.69, 129.48, 126.81, 123.99, 116.31 (dd, *J* = 250.4, 246.4 Hz), 114.05, 93.40, 60.36 (t, *J* = 21.6 Hz), 31.31, 29.95, 28.60, 28.58, 22.53, 21.48, 14.03. ¹⁹F NMR (376 MHz, CDCl₃) δ -123.66, – -125.76 (m, 2F). HRMS (ESI) calcd for [C₂₆H₂₉F₂N₃NaO₂S] ([M+Na]⁺): 508.1841, found: 508.1843. IR (thin film) *v* 1623.75, 1687.50, 2212.23 cm⁻¹.

Following the general procedure **B**, **5h** was obtained as a white soild (38.9 mg, 73% yield, m.p. = 95-96 °C, Rf = 0.32 (petroleum ether/ ethyl acetate = 3:1)). ¹H NMR (400 MHz, CDCl₃) δ 10.05 (s, 1H), 7.58 (d, *J* = 8.0 Hz, 2H), 7.53 (d, *J* = 7.6 Hz, 3H), 7.50 – 7.42 (m, 4H), 7.41 – 7.26 (m, 5H), 6.40 (t, *J* = 54.7 Hz, 1H), 3.09 – 2.93 (m, 2H), 1.87 – 1.77 (m, 2H), 1.51 – 1.40 (m, 2H), 1.41 – 1.30 (m, 4H), 0.91 (t, *J* = 6.7 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 161.52, 159.14 (d, *J* = 7.9 Hz), 141.83, 139.90, 136.70, 134.87, 132.59, 129.65, 128.99, 127.91, 127.85, 127.06, 126.82, 116.29 (dd, *J* = 247.9, 248.3 Hz), 113.84, 92.99, 60.23 (t, *J* = 21.8 Hz), 31.30, 30.00, 28.65, 22.53, 14.05. ¹⁹F NMR (376 MHz, CDCl₃) δ -123.19 – -125.83(m, 2F). HRMS (ESI) calcd for [C₃₀H₂₉F₂N₃NaO₂S] ([M+Na]⁺): 556.1841, found: 556.1832. IR (thin film) *v* 1621.19, 1688.47, 2220.92 cm⁻¹.

Following the general procedure **B**, **5i** was obtained as a colorless liquid (39.4 mg, 83% yield, m.p. = 60-61 °C, Rf = 0.42 (petroleum ether/ ethyl acetate = 3:1)). ¹H NMR (400 MHz, CDCl₃) δ 10.03 (s, 1H), 7.57 (d, *J* = 8.3 Hz, 3H), 7.38 (t, *J* = 7.8 Hz, 2H), 7.28 – 7.21 (m, 2H), 6.94 (t, *J* = 8.5 Hz, 2H), 6.31 (t, *J* = 54.7 Hz, 1H), 3.08 – 2.99 (m, 1H), 2.98 – 2.89 (m 1H), 1.84 – 1.74 (m, 2H), 1.49 – 1.39 (m, 2H), 1.38 – 1.30 (m, 4H), 0.90 (t, *J* = 6.9 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 162.77 (d, *J* = 249.6 Hz), 161.70, 158.90 (d, *J* = 8.2 Hz), 136.58, 134.99, 129.67, 129.53, 128.39 (d, *J* = 8.4 Hz), 126.74, 116.15 (d, *J* = 21.7 Hz), 116.19 (t, *J* = 249.0 Hz), 113.96, 92.66, 59.75 (t, *J* = 21.9 Hz), 31.25, 29.94, 28.60, 28.58, 22.48, 14.00. ¹⁹F NMR (376 MHz, CDCl₃) δ -112.18 (s, 1F), -121.45 – -126.16 (m, 2F). HRMS (ESI) calcd for [C₂₄H₂₄F₃N₃NaO₂S] ([M+Na]⁺): 498.1434, found: 498.1434. IR (thin film) *v* 1621.49, 1688.86, 2221.47 cm⁻¹.

Following the general procedure **B**, **5j** was obtained as a colorless liquid (30.4 mg, 62% yield, m.p. = 63-64 °C, Rf = 0.45 (petroleum ether/ ethyl acetate = 3:1)). ¹H NMR (400 MHz, CDCl₃) δ 9.96 (s, 1H), 7.55 (t, *J* = 7.5 Hz, 1H), 7.50 (d, *J* = 7.8 Hz, 2H), 7.33 (t, *J* = 7.8 Hz, 2H), 7.21 – 7.09 (m, 4H), 6.22 (t, *J* = 54.7 Hz, 1H), 3.00 – 2.91 (m, 1H), 2.90 – 2.81 (m, 1H), 1.77 – 1.66 (m, 2H), 1.40 – 1.32 (m, 2H), 1.32 – 1.25 (m, 4H), 0.84 (t, *J* = 6.7 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 161.80, 158.78 (d, *J* = 8.2 Hz), 136.61, 135.23, 134.99, 132.20, 129.69, 129.34, 127.83, 126.76, 116.04 (dd, *J* = 250.7, 247.4 Hz), 113.85, 92.52, 59.84 (t, *J* = 22.0 Hz), 31.26, 29.98, 28.62, 28.60, 22.49, 14.01. ¹⁹F NMR (376 MHz, CDCl₃) δ -123.03 – -125.93 (m, 2F). HRMS (ESI) calcd for [C₂₄H₂₄ClF₂N₃NaO₂S] ([M+Na]⁺): 514.1138, found: 514.1139. IR (thin film) *v* 1652.87, 1685.26, 2221.18 cm⁻¹.

Following the general procedure **B**, **5k** was obtained as a colorless liquid (34.2 mg, 64% yield, m.p. = 85-86 °C, Rf = 0.53 (petroleum ether/ ethyl acetate = 3:1)). ¹H NMR (400 MHz, CDCl₃) δ 10.03 (s, 1H), 7.63 (t, *J* = 7.5 Hz, 1H), 7.59 – 7.53 (m, 2H), 7.43 – 7.36 (m, 4H), 7.15 – 7.09 (m, 2H), 6.29 (t, *J* = 54.7 Hz, 1H), 3.07 – 2.98 (m, 1H), 2.97 – 2.89 (m, 1H), 1.84 – 1.74 (m, 2H), 1.51 – 1.39 (m, 2H), 1.39 – 1.30 (m, 4H), 0.91 (t, *J* = 6.9 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 161.83, 158.72 (d, *J* = 8.1 Hz), 136.59, 135.00, 132.73 (d, *J* = 4.3 Hz), 132.30, 129.69, 128.10, 126.75, 123.46, 115.97 (dd, *J* = 251.0, 247.5 Hz), 113.83, 92.46, 59.91 (t, *J* = 22.9 Hz), 31.25, 29.98, 28.60, 22.49, 14.01. ¹⁹F NMR (376 MHz, CDCl₃) δ -123.02 – -125.92 (m, 2F). HRMS (ESI) calcd for [C₂₄H₂₄BrF₂N₃NaO₂S] ([M+Na]⁺): 558.0633, found: 558.0624. IR (thin film) *v* 1620.44, 1688.56, 2221.17 cm⁻¹.

Following the general procedure **B**, **5**I was obtained as a white solid (30.9 mg, 82% yield, m.p. = 155-156 °C, Rf = 0.2 (petroleum ether/ ethyl acetate = 3:1)). ¹H NMR (400 MHz, CDCl₃) δ 7.47 – 7.37 (m, 6H), 7.37 – 7.26 (m, 8H), 3.70 (q, *J* = 7.0 Hz, 2H), 2.42 (s, 3H), 1.11 (t, *J* = 7.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 172.08, 159.36,

141.34, 140.67, 129.82, 129.16, 128.37, 127.91, 127.88, 125.23, 117.06, 92.38, 64.24, 37.67, 21.55, 13.57. HRMS (DART) calcd for $[C_{26}H_{24}N_3]^+$ ($[M+H]^+$): 378.1965, found: 378.1963. IR (thin film) *v* 1598.08, 1617.54, 1650.46, 2198.45, 2212.23 cm⁻¹.
Synthetic applications

1) Protection of the amine group

In a flame-dried Schlenk tube was charged with pentasubstituted pyrrole (2a, 0.2 mmol), Et₃N (1.2 mmol), toluene (1 mL) and BzCl (0.8 mmol). The resulting suspension was stirred under reflux for 10 h. Upon completion of the reaction as monitored by TLC, the solvent was concentrated under vacuum. The crude residue was purified by flash column chromatography on silica gel to give product **6** as a white soild in 76% yield.

Compound **6** was obtained as white solid (m.p. = 79-80 °C, Rf = 0.48 (petroleum ether/ ethyl acetate = 2:1)). ¹H NMR (600 MHz, CDCl₃) δ 7.52 – 7.45 (m, 9H), 7.42 (t, *J* = 7.5 Hz, 2H), 7.35 – 7.29 (m, 5H), 7.27 (t, *J* = 7.8 Hz, 4H), 4.00 (q, *J* = 7.2 Hz, 2H), 1.14 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 173.28, 140.64, 133.85, 132.93, 130.92, 129.75, 129.72, 129.25, 129.16, 129.02, 128.89, 128.85, 128.53, 128.28, 125.27, 124.41, 116.12, 93.03, 39.94, 15.66. HRMS (DART) calcd for [C₃₃H₂₅O₂N₃]⁺ ([M+H]⁺): 495.1941, found: 495.1938. IR (thin film) *v* 1698.71, 2220.56.23 cm⁻¹.

In a flame-dried Schlenk tube was charged with pentasubstituted pyrrole (2a, 0.2 mmol), pyridine (1 mL) and BzCl (0.4 mmol). The resulting suspension was stirred under reflux for 1 h. Upon completion of the reaction as monitored by TLC, the solvent was concentrated under vacuum. The crude residue was purified by flash column chromatography on silica gel to give product 7 as a white solid in 97% yield.

Compound 7 was obtained as white solid (m.p. = 186-187 °C, Rf = 0.32 (petroleum ether/ ethyl acetate = 2:1)). ¹H NMR (600 MHz, CDCl₃) δ 7.86 – 7.81 (m, 2H), 7.79 (s, 1H), 7.57 (t, *J* = 7.5 Hz, 1H), 7.52 – 7.40 (m, 9H), 7.33 (t, *J* = 7.6 Hz, 2H), 7.26 (t, *J* = 7.4 Hz, 1H), 3.89 (q, *J* = 7.2 Hz, 2H), 1.15 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 168.79, 140.07, 132.82, 131.68, 129.77, 129.49, 129.44, 129.08, 129.05, 128.92, 128.34, 127.62, 127.59, 122.92, 122.13, 116.88, 91.65, 39.91, 16.26. HRMS (DART) calcd for [C₂₆H₂₂ON₃]⁺ ([M+H]⁺): 392.1757, found: 392.1757. IR (thin film) *v* 1657.70, 2218.22 cm⁻¹.

2) Synthesis of lactams

In a flame-dried Schlenk tube, propargyl sulfonylamide **8** (0.2 mmol, 1 equiv), TMSCN (0.6 mmol, 3 equiv) and Cs_2CO_3 (0.6 mmol, 3 equiv) were dissolved in DMF (2 mL) under a nitrogen atmosphere. The reaction mixture was stirred at 80 °C for 10 h. Upon completion of the reaction as monitored by TLC, the reaction was quenched with water (5 mL). The aqueous layer was extracted with ethyl acetate and the combined organic layers were washed with brine (10 mL*3), water (10 mL*3), dried over MgSO₄ and filtered. Then the solution was concentrated under reduced pressure. The crude material was purified by silica gel flash chromatography to yield the product **9** as a white solid in 44% yield.

Compound **9** was obtained as white solid (m.p. = 100-101 °C, Rf = 0.79 (petroleum ether/ ethyl acetate = 2:1)).¹H NMR (400 MHz, DMSO- d_6) δ 11.66 (s, 1H), 7.67 (d, *J* = 7.8 Hz, 2H), 7.47 (t, *J* = 7.4 Hz, 4H), 7.37 (t, *J* = 7.6 Hz, 3H), 7.21 (t, *J* = 7.3 Hz, 1H), 4.80 (s, 2H).¹³C NMR (100 MHz, DMSO- d_6) δ 173.07, 135.17, 134.74, 131.64, 129.68, 129.30, 129.24, 129.10, 127.28, 127.02, 126.89, 118.24, 102.67, 89.00, 50.10. HRMS (ESI) calcd for [C₁₉H₁₃N₃NaO] ([M+Na]⁺): 322.0951, found: 322.0951. IR (thin film) *v* 1673.73, 2218.03 cm⁻¹.

In a flame-dried Schlenk tube, propargyl sulfonylamide 10 (0.2 mmol, 1 equiv),

TMSCN (0.6 mmol, 3 equiv) and Cs_2CO_3 (0.6 mmol, 3 equiv) were dissolved in DMF (2 mL) under a nitrogen atmosphere. The reaction mixture was stirred at 80 °C for 10 h. Upon completion of the reaction as monitored by TLC, the reaction was quenched with water (5 mL). The aqueous layer was extracted with ethyl acetate and the combined organic layers were washed with brine (10 mL*3), water (10 mL*3), dried over MgSO₄ and filtered. Then the solution was concentrated under reduced pressure. The crude material was purified by silica gel flash chromatography to yield the product 11 in 47% yield.

Compound **11** was obtained as white solid (m.p. = 189-190 °C, Rf = 0.23 (petroleum ether/ ethyl acetate = 2:1)).¹H NMR (600 MHz, CDCl₃) δ 9.19 (s, 1H), 7.42 – 7.36 (m, 3H), 7.36 – 7.33 (m, 2H), 7.32 – 7.25 (m, 3H), 6.92 (d, *J* = 6.6 Hz, 2H), 5.10 (s, 2H), 2.84 (t, *J* = 7.7 Hz, 2H), 2.61 (t, *J* = 7.7 Hz, 2H).¹³C NMR (150 MHz, CDCl₃) δ 171.91, 137.17, 135.82, 130.03, 129.38, 129.22, 129.17, 128.86, 128.19, 125.85, 116.40, 102.99, 90.65, 47.33, 31.76, 17.80. HRMS (DART) calcd for [C₂₁H₁₈ON₃]⁺ ([M+H]⁺): 328.1444, found: 328.1444. IR (thin film) *v* 1673.43, 2218.09 cm⁻¹.

3) Synthesis of atorvastatin analogues

To a 50 mL round bottomed flask was charged with CuBr (1 mmol, 20 mol %), phenylacetylene (5 mmol, 1 equiv), benzaldehyde (7.5 mmol, 1.5 equiv), primary amine (7.5 mmol, 1.5 equiv) and 10 mL of toluene. The solution was heated to reflux and was monitored by TLC for completion. On completion the reaction was quenched with saturated aqueous NaHCO₃. The aqueous layer was extracted with ethyl acetate and the combined organic layers were washed with brine, dried over MgSO₄ and filtered. Then the solution was concentrated under reduced pressure to afford the crude propargylamide.

The resulting crude propargylamide and Et₃N (3 equiv) were dissolved in dry DCM, and the mixture was cooled to 0 °C with a cooling bath. To this solution benzenesulfonyl chloride (1.5 equiv) was slowly added in drops, and the mixture was allowed to warm to room temperature and was monitored by TLC for completion. On completion the reaction was quenched with saturated aqueous NaHCO₃. The aqueous layer was extracted with ethyl acetate and the combined organic layers were washed with brine, dried over MgSO₄ and filtered. Then the solution was concentrated under reduced pressure. The crude material was purified by flash chromatography to yield the desired product **12** in 80% yield.

Compound **12** was obtained as colorless liquid (Rf = 0.75 (petroleum ether/ ethyl acetate = 2:1)). ¹H NMR (400 MHz, CDCl₃) δ 7.96 (d, *J* = 7.5 Hz, 2H), 7.74 – 7.63 (m, 2H), 7.59 – 7.48 (m, 3H), 7.35 – 7.25 (m, 3H), 7.17 (t, *J* = 7.2 Hz, 2H), 7.08 (t, *J* = 8.4 Hz, 2H), 6.27 (s, 1H), 4.21 – 4.02 (m, 1H), 3.78 – 3.47 (m, 1H), 3.42 – 3.29 (m, 1H),

3.29 – 3.02 (m, 1H), 2.41 – 2.14 (m, 2H), 1.82 – 1.57 (m, 1H), 1.50 – 1.35 (m, 12H), 1.29 – 1.26 (m, 3H), 1.22 – 0.90 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 170.22, 170.17, 162.73 (d, *J* = 247.9 Hz), 138.80, 138.73, 132.92 (d, *J* = 3.1 Hz), 132.77 (d, *J* = 3.9 Hz), 131.59, 129.92 (d, *J* = 8.3 Hz), 128.98, 128.88, 128.32, 128.31, 127.81, 127.78, 121.72, 115.48 (d, *J* = 21.8 Hz), 115.46 (d, *J* = 21.6 Hz), 98.69, 98.52, 88.96, 88.80, 82.89, 82.73, 80.58, 80.55, 66.60, 66.10, 66.08, 66.03, 53.70, 53.63, 42.68, 42.66, 41.94, 36.33, 36.31, 36.00, 35.86, 30.01, 29.96, 28.08, 19.67, 19.63. ¹⁹F NMR (376 MHz, CDCl₃) δ -113.36 (s, 1F), -113.53 (s, 1F). HRMS (DART) calcd for [C₃₅H₄₁O₆NFS]⁺ ([M+H]⁺): 622.2633, found: 622.2632. ^[α]D^{26.6} 28.65 (*c* 0.44, CHCl₃).

In a flame-dried Schlenk tube, propargyl sulfonylamide **12** (0.2 mmol, 1 equiv), TMSCN (0.6 mmol, 3 equiv) and Cs_2CO_3 (0.6 mmol, 3 equiv) were dissolved in DMF (2 mL) under a nitrogen atmosphere. The reaction mixture was stirred at 80 °C for 10 h. Upon completion of the reaction as monitored by TLC, the reaction was quenched with water (5 mL). The aqueous layer was extracted with ethyl acetate and the combined organic layers were washed with brine (10 mL*3), water (10 mL*3), dried over MgSO₄ and filtered. Then the solution was concentrated under reduced pressure. The crude material was purified by neutral alumina flash chromatography to yield the product **13** as a brown liquid in 62% yield.

Compound **13** was obtained as brown liquid (Rf = 0.43 (petroleum ether/ ethyl acetate = 2:1)).¹H NMR (400 MHz, CDCl₃) δ 7.56 – 7.39 (m, 6H), 7.27 (t, *J* = 7.2 Hz, 1H), 7.17 (t, *J* = 8.5 Hz, 2H), 4.27 – 4.12 (m, 1H), 3.98 (t, *J* = 6.6 Hz, 2H), 3.84 (s, 2H), 3.73

(t, J = 10.1 Hz, 1H), 2.39 (dd, J = 15.3, 7.0 Hz, 1H), 2.25 (dd, J = 15.3, 6.1 Hz, 1H), 1.71 – 1.62 (m, 2H), 1.43 (s, 9H), 1.37 (s, 3H), 1.34 (s, 3H), 1.23 – 1.05 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 170.04, 162.89 (d, J = 249.4 Hz), 134.74, 134.26, 133.09, 131.45 (d, J = 8.2 Hz), 129.10, 127.86, 126.39, 125.99 (d, J = 3.5 Hz), 117.46, 116.09 (d, J = 21.8 Hz), 107.76, 99.00, 90.98, 80.81, 65.95, 65.90, 42.41, 39.07, 36.67, 36.03, 30.01, 28.09, 19.72. ¹⁹F NMR (376 MHz, CDCl₃) δ -112.08 (s, 1F). HRMS (DART) calcd for [C₃₁H₃₇O₄N₃F]⁺ ([M+H]⁺): 534.2763, found: 534.2760. IR (thin film) v1686.42, 1731.14, 2214.02 cm⁻¹. ^[α]D^{26.6} -8.02 (*c* 0.69, CHCl₃).

In a flame-dried Schlenk tube was charged with pentasubstituted pyrrole (**13**, 0.2 mmol), pyridine (1 mL) and BzCl (0.3 mmol). The resulting suspension was stirred under reflux for 1 h. Upon completion of the reaction as monitored by TLC, the solvent was concentrated under vacuum. The crude residue was purified by flash column chromatography on silica gel to give the product **14** as a yellow solid in 72% yield.

Compound 7 was obtained as yellow solid (m.p. = 68-69 °C, Rf = 0.43 (petroleum ether/ ethyl acetate = 2:1)).¹H NMR (400 MHz, CDCl₃) δ 7.87 (d, *J* = 7.5 Hz, 2H), 7.70 (s, 1H), 7.62 – 7.44 (m, 7H), 7.38 (t, *J* = 7.5 Hz, 2H), 7.30 (d, *J* = 7.3 Hz, 1H), 7.22 (t, *J* = 8.6 Hz, 2H), 4.16 – 4.07 (m, 2H), 3.99 – 3.89 (m, 1H), 3.63 – 3.56 (m, 1H), 2.31 (dd, *J* = 15.4, 7.0 Hz, 1H), 2.18 (dd, *J* = 15.3, 6.1 Hz, 1H), 1.68 – 1.65 (m, 2H), 1.41 (s, 9H), 1.36 – 1.29 (m, 2H), 1.25 (s, 3H), 1.12 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 170.10, 168.65, 163.29 (d, *J* = 250.4 Hz), 138.87, 132.97, 132.70, 131.65 (d, *J* = 8.5 Hz), 131.45, 128.97, 128.86, 128.21, 127.62, 127.51, 125.39 (d, J = 3.2 Hz), 122.88, 122.55, 116.31 (d, J = 21.8 Hz), 98.78, 92.10, 80.81, 66.11, 65.86, 42.31, 40.84, 36.76, 35.89, 29.83, 28.07, 19.58. ¹⁹F NMR (376 MHz, CDCl₃) δ -110.89 (s, 1F). HRMS (DART) calcd for [C₃₈H₄₁O₅N₃F]⁺ ([M+H]⁺): 638.3025, found: 638.3017. IR (thin film) v 1662.18, 1726.90, 2218.74 cm⁻¹. ^[α]D^{26.6} 17.71 (c 0.41, CHCl₃).

In a flame-dried Schlenk tube was charged with 14 (0.1 mmol), DCM (0.5 mL) and TFA (0.5 mL). The resulting suspension was stirred at room temperature for 3 h. Upon completion of the reaction as monitored by TLC, the solvent was concentrated under vacuum. The crude residue was extracted with ethyl acetate and saturated aqueous NaHCO₃. And the combined organic layers were washed with brine (10 mL*3), water (10 mL*3), dried over MgSO₄ and filtered. Then the solution was concentrated under reduced pressure to afford the crude material.

The resulting crude material and NaOH (3 equiv) were dissolved in MeOH (0.5 mL). The resulting suspension was stirred at room temperature for 12 h. Upon completion of the reaction as monitored by TLC, the reaction was quenched with 2 M HCl. The aqueous layer was extracted with ethyl acetate and the combined organic layers were washed with brine, dried over MgSO₄ and filtered. Then the solution was concentrated under reduced pressure. The crude material was purified by flash chromatography to yield the desired product **15** as a white solid in 70% yield.

Compound **15** was obtained as white solid (m.p. = 145-146 °C, Rf = 0.38 (DCM/MeOH = 10:1)).¹H NMR (400 MHz, DMSO-*d*₆) δ 10.43 (s, 1H), 7.97 (d, *J* = 7.3 Hz, 2H), 7.72 – 7.58 (m, 3H), 7.53 (q, *J* = 7.3 Hz, 4H), 7.43 (q, *J* = 8.5, 8.0 Hz, 4H), 7.30 (t, *J* = 7.4 Hz, 1H), 4.00 (dd, *J* = 17.3, 7.3 Hz, 1H), 3.86 – 3.74 (m, 2H), 2.12 (d, *J* = 4.2 Hz, 1H), 1.99 (dd, *J* = 15.2, 8.1 Hz, 1H), 1.78 – 1.68 (m, 1H), 1.65 – 1.55 (m, 1H), 1.37 (dd, *J* = 15.0, 7.6 Hz, 1H), 1.24 (t, *J* = 8.1 Hz, 2H). ¹³C NMR (150 MHz, DMSO-*d*₆) δ 170.92 168.69, 163.15 (d, *J* = 247.8 Hz), 138.50, 133.71, 132.74, 132.60 (d, *J* = 8.3 Hz), 132.33, 129.21, 129.17, 128.33, 128.23, 127.79, 125.98, 124.73, 121.82, 117.20, 116.70 (d, *J* = 21.6 Hz), 90.64, 66.40, 44.31, 43.73, 42.08, 38.09. ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -111.47 (s, 1F). HRMS (ESI) calcd for [C₃₁H₂₈N₃FNaO₅] ([M+Na]⁺): 564.1905, found: 564.1906. IR (thin film) *v* 1655.41, 2221.13 cm⁻¹. ^[α]D^{26.6} -168.4 (*c* 0.29, MeOH).

Preliminary mechanism study

a) Radical trapping reaction

In a flame-dried Schlenk tube, propargyl sulfonylamide **1a** (0.2 mmol, 1 equiv), TMSCN (0.6 mmol, 3 equiv) Cs_2CO_3 (0.6 mmol, 3 equiv) and TEMPO (0.6 mmol, 3 equiv) were dissolved in DMF (2 mL) under a nitrogen atmosphere. The reaction mixture was stirred at 80 °C for 10 h. Upon completion of the reaction as monitored by TLC, the reaction was quenched with water (5 mL). The aqueous layer was extracted with ethyl acetate and the combined organic layers were washed with brine (10 mL*3), water (10 mL*3), dried over MgSO₄ and filtered. Then the solution was concentrated under reduced pressure. The crude material was purified by silica gel flash chromatography to yield the product **2a** in 62% yield.

b) ¹H NMR of crude reaction solution

In a flame-dried NMR tube, propargyl sulfonylamide **1a** (0.1 mmol, 1 equiv), TMSCN (0.3 mmol, 3 equiv) Cs_2CO_3 (0.3 mmol, 3 equiv) and were dissolved in DMSO-*d* (0.5 mL) under a nitrogen atmosphere. And the reaction was carried out in NMR machine at 80 °C and was monitored in situ after 10, 20, 40 and 60 minutes.

Single crystal data of 5a

Table S1 Crystal data and structure refinement for 5a.

Identification code	5a
Empirical formula	$C_{24}H_{17}F_2N_3O_2S$
Formula weight	449.46
Temperature/K	292.90(11)
Crystal system	monoclinic
Space group	C2/c
a/Å	27.864(4)
b/Å	9.0235(19)
c/Å	17.39(2)
α/°	90
β/°	94.11(4)
γ/°	90
Volume/Å ³	4362(6)
Ζ	8
$\rho_{calc}g/cm^3$	1.369
µ/mm ⁻¹	1.699
F(000)	1856.0
Crystal size/mm ³	0.3 imes 0.2 imes 0.1
Radiation	$CuK\alpha$ ($\lambda = 1.54184$)
2Θ range for data collection/°	10.198 to 130.88
Index ranges	-27 \leq h \leq 32, -10 \leq k \leq 6, -20 \leq l \leq 19
Reflections collected	8983
Independent reflections	$3649 [R_{int} = 0.0214, R_{sigma} = 0.0249]$
Data/restraints/parameters	3649/0/297
Goodness-of-fit on F ²	1.047
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0406$, $wR_2 = 0.1061$
Final R indexes [all data]	$R_1 = 0.0499, wR_2 = 0.1155$
Largest diff. peak/hole / e Å ⁻³	0.14/-0.30

Single crystal data of 7

Table S2 Crystal data and structure refinement for 7.

Identification code	7
Empirical formula	$C_{26}H_{21}N_3O$
Formula weight	391.46
Temperature/K	110.43(10)
Crystal system	monoclinic
Space group	C2/c
a/Å	24.8324(4)
b/Å	9.05410(10)
c/Å	21.9042(4)
$\alpha/^{\circ}$	90
β/°	109.819(2)
$\gamma/^{\circ}$	90
Volume/Å ³	4633.12(14)
Z	8
$ ho_{calc}g/cm^3$	1.122
μ/mm^{-1}	0.351
F(000)	1648.0
Crystal size/mm ³	0.9 imes 0.7 imes 0.5
Radiation	GaKa ($\lambda = 1.3405$)
2Θ range for data collection/°	9.108 to 120.92
Index ranges	$\textbf{-31} \leq h \leq \textbf{31}, \textbf{-8} \leq k \leq \textbf{11}, \textbf{-28} \leq \textbf{l} \leq \textbf{27}$
Reflections collected	28636
Independent reflections	5187 [$R_{int} = 0.0193$, $R_{sigma} = 0.0123$]
Data/restraints/parameters	5187/0/272
Goodness-of-fit on F ²	1.040
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0362, wR_2 = 0.0944$
Final R indexes [all data]	$R_1 = 0.0376, wR_2 = 0.0953$
Largest diff. peak/hole / e Å ⁻³	0.28/-0.20

Computational methods and details

All of structures were optimized at B3LYP³-D3⁴/Def2-SVP⁵ level of theory in gasphase to analyze the frequencies and thermal energies at 353K. Single point energies based upon the optimized structures were then calculated at the B3LYP-D3/Def2-TZVP level of theory with SMD solvation model⁶ calculation in N,Ndimethylformamide (DMF) solution. The presented Gibbs free energies are obtained by adding the solution-phase electronic energy with the gas-phase Gibbs free energy correction. In addition, natural bond orbital (NBO) charge analysis⁷ was calculated at the same level in solution-phase. The intrinsic reaction coordinate (IRC) path calculations have also been conducted to confirm the connections of cyanation from TSs to intermediates. The integration grid option were required at ultrafine for all of calculations. All calculations were carried out by the Gaussian 09 package.⁸

For the cynao nucleophilic addition, we calculated two conformations of **3b** with different C-N(Me)(SO₂Ph) orientations. Figure S1 depicts the other pathways of cyanation in which the cyanide anion adds onto the internal and terminal carbons of **3b**_{rot}. The tendency of cyanide addition onto **3b**_{rot} is similar to addition onto **3b** where the preference site is still the internal carbon. Similarly, the NBO charges on the carbons of the allene moieties in **3b**_{rot} are 0.13 and -0.27 for internal and terminal carbons, respectively. It is worth noting that the relative free energy of **3b**_{rot} is -3.7 kcal/mol lower than that of **3b**, but the barrier of **TS1**_{rot} is 2.9 kcal/mol higher than that of **TS1**. This means that the path of cynao nucleophilic addition possibly should be **3b**_{rot}-**3b**-**TS1-int1-int1**_{rot}.

Figure S1. Energy profile of cyano nucleophilic addition on $\mathbf{3b}_{rot}$.

Entry	Structure	F	F.	c7PE	cUras	cHees	cG.	Imaginary
Linu y	Suucture	Lel,sol	Lel,gas	CZI Egas	CO298,gas	C11298,gas	CO _{298,gas}	Frequency
1	3b	-1453.593562	-1452.225456	0.355749	0.386686	0.387804	0.286481	
2	4 a	-2432.034066	-2429.801818	0.432580	0.476165	0.477284	0.346261	
3	CN^{-}	-92.998838	-92.763823	0.004942	0.007740	0.008858	-0.018278	
4	TS1	-1546.569519	-1545.002565	0.360230	0.394883	0.396002	0.284072	-165.0093
5	int1	-1546.614548	-1545.082624	0.363713	0.397410	0.398529	0.291358	
6	TS2	-1546.542124	-1544.994107	0.360575	0.394836	0.395954	0.285244	-339.5953
7	int2	-1546.561623	-1545.015106	0.362757	0.396463	0.397582	0.290727	
8	3b _{rot}	-1453.597893	-1452.224831	0.355781	0.386753	0.387872	0.284880	
9	TS1 _{rot}	-1546.567503	-1545.018789	0.360806	0.395198	0.396317	0.286664	-216.2856
10	int1 _{rot}	-1546.613913	-1545.086779	0.363731	0.397460	0.398579	0.289711	
11	TS2 _{rot}	-1546.540377	-1544.995730	0.360667	0.394886	0.396004	0.284300	-376.3601
12	int2 _{rot}	-1546.568726	-1545.025977	0.363309	0.396936	0.398054	0.289010	

Table S3. Electronic potential energies and correction to zero point energies, thermal energies, enthalpies, free energies (in Hartree) and imaginary frequencies (cm⁻¹)

 of optimized structures calculated at the B3LYP-D3/Def2-TZVP/(SMD-DMF)//B3LYP-D3/Def2-SVP.

Coor	rdinate	of	optimized
struc	ctures		
Structu E(B3 E(B3L	ure S1. 3b _{rot} SLYP)sol = YP)gas = -1452	2.22483148	-1453.59789306
	-1 118341	-0 173967	1 273376
16	-1 944718	-1 594932	0 792919
6	-0.734051	-2.499756	-0.175708
6	-0.676908	-2.288308	-1.557142
6	0.178508	-3.332109	0.479589
6	0.331578	-2.915055	-2.292699
1	-1.418449	-1.645120	-2.033240
6	1.183405	-3.951589	-0.268222
1	0.085751	-3.496346	1.554483
6	1.263060	-3.738787	-1.648978
1	0.387756	-2.763232	-3.373435
1	1.902738	-4.607363	0.228104
1	2.050733	-4.226027	-2.229187
8	-3.012898	-1.170847	-0.109088
8	-2.208883	-2.344725	2.021437
6	5.289563	2.058872	0.768680
6	4.052336	2.465881	1.285579
6	2.869197	1.926181	0.784898
6	2.899006	0.964303	-0.243807
6	4.145780	0.566828	-0.757737
6	5.331581	1.108362	-0.254967
1	4.012377	3.212536	2.082893
1	1.904756	2.250601	1.184287
1	4.182661	-0.177997	-1.557750
1	6.292208	0.786684	-0.665370
6	1.664997	0.361500	-0.786394
6	0.442157	0.567388	-0.350021
6	-0.757016	0.715186	0.191617
1	6.215895	2.484659	1.162260

6	-1.742050	1.749513	-0.212141
6	-2.955634	1.892745	0.479585
6	-1.467360	2.616173	-1.286684
6	-3.868583	2.882252	0.107888
1	-3.182629	1.213381	1.300088
6	-2.379976	3.603029	-1.654727
1	-0.528081	2.509922	-1.835607
6	-3.586652	3.741417	-0.957467
1	-4.810551	2.977381	0.654002
1	-2.150887	4.267505	-2.491909
1	-4.303825	4.513501	-1.247604
1	1.793863	-0.336768	-1.625938
6	-0.148404	-0.332322	2.358783
1	0.785790	-0.825119	2.031432
1	0.100028	0.668790	2.738880
1	-0.609211	-0.915945	3.164933

Structure S	S2. 4a
-------------	--------

E(B3	BLYP)sol =	-2	432.03406623
E(B3L	YP)gas = -2429	.80181839	
9	4.232993	0.225018	1.485734
7	-0.698204	0.561060	0.068069
16	-0.676042	2.075023	0.910070
6	0.855984	2.826638	0.394316
6	2.000128	2.595960	1.162110
6	0.880260	3.582820	-0.781940
6	3.214336	3.129125	0.724475
1	1.936745	2.002438	2.072949
6	2.101203	4.116922	-1.196660
1	-0.032928	3.724632	-1.359182
6	3.263369	3.887234	-0.449552
1	4.121398	2.935088	1.299712
1	2.146252	4.710158	-2.112942
1	4.216270	4.301106	-0.788973
8	-0.582998	1.713647	2.322692
8	-1.799644	2.850771	0.392412
16	-1.343108	0.400438	-1.538499
8	-1.091283	1.655993	-2.237258

8	-0.804146	-0.870883	-2.024461			
6	-3.101145	0.198146	-1.293877			
6	-3.609603	-1.096226	-1.151085	Structu	re S3. CN ⁻	
6	-3.915473	1.332621	-1.236514	E(B3	LYP)sol =	
6	-4.979658	-1.253691	-0.934994	E(B3LY	(P)gas = -92.7	638229989
1	-2.940258	-1.955635	-1.200246			
6	-5.283356	1.155193	-1.019569	7	0.000000	0.00000
1	-3.476257	2.324063	-1.341236	6	0.000000	0.00000
6	-5.812810	-0.131720	-0.867679			
1	-5.393928	-2.257007	-0.813952			
1	-5.938246	2.028037	-0.967852	Structu	re S4. TS1 _{ro}	t
1	-6.884399	-0.260587	-0.695550	E(B3	LYP)sol =	
6	4.322467	-3.128055	-2.636084	E(B3LY	(P)gas = -154.	5.01878855
6	2.967347	-2.780152	-2.699272			
6	2.359709	-2.109220	-1.640173	7	-1.748061	-0.579814
6	3.098689	-1.774914	-0.486259	6	5.284059	2.086674
6	4.464195	-2.112111	-0.439583	6	4.273036	2.35564
6	5.067046	-2.786470	-1.505374	6	2.960877	1.93696
1	2.377797	-3.026318	-3.585928	6	2.632277	1.22130
1	1.308631	-1.820987	-1.715233	6	3.661893	0.96172
1	5.079840	-1.833870	0.416583	6	4.970287	1.38679
1	6.128926	-3.039109	-1.449803	1	4.508003	2.90123
6	3.267641	-0.674110	1.846114	1	2.176167	2.135554
1	3.775667	-1.548045	2.291826	1	3.422736	0.40220
6	2.431016	-1.075588	0.644776	1	5.750892	1.16806
6	1.138023	-0.828008	0.665780	6	1.281851	0.746522
6	-0.163050	-0.628213	0.676412	6	0.214362	0.61058
1	4.796354	-3.653142	-3.469218	6	-1.127105	0.553693
6	-1.147232	-1.602632	1.215535	1	6.308889	2.421943
6	-2.279249	-1.146524	1.910543	6	-1.998900	1.669328
6	-0.978547	-2.979467	0.997003	6	-3.368866	1.448919
6	-3.224467	-2.057943	2.382689	6	-1.501474	2.981191
1	-2.406821	-0.077162	2.083514	6	-4.200348	2.496248
6	-1.929256	-3.887661	1.467380	1	-3.761693	0.434876
1	-0.110578	-3.327700	0.432131	6	-2.334567	4.022058
6	-3.055248	-3.428963	2.160523	1	-0.446856	3.174035
1	-4.101330	-1.693801	2.923551	6	-3.693465	3.790406
1	-1.796187	-4.956730	1.283093	1	-5.256941	2.294144
1	-3.801701	-4.139812	2.524145	1	-1.921379	5.029202
9	2.511366	-0.094417	2.810894	1	-4.347428	4.609194

0.000000

0.000000

-0.579814

2.086674

2.355647

1.936963

1.221309

0.961724

1.386790 2.901231

2.135554

0.402208

1.168063

0.746522

0.610583

0.553693

2.421943

1.669328

1.448919

2.981191

2.496248

0.434876

4.022058

3.174035

3.790406

2.294144

5.029202

4.609194

-92.9988381353

0.544137

-0.634826

-1546.56750275

0.917673

0.172556

1.101923

0.872278

-0.298880

-1.228895

-0.999042

2.020582

1.600633

-2.138362

-1.734062

-0.591470

0.192744

0.304512

0.357481

-0.119084

-0.376312

-0.278193

-0.778016

-0.296790

-0.685723

-0.068884

-0.936562

-0.979017

-0.798294

-1.250058

1	1.123817	0.383996	-1.616815	1	-2.847739	2.370421	1.624793
6	-2.319061	-0.470976	2.259012	1	-5.308438	2.501710	1.654724
1	-3.159219	0.246399	2.263167	6	-1.264556	1.164792	-0.101962
1	-2.688296	-1.455488	2.570989	6	-0.295835	0.445432	-0.802213
1	-1.531732	-0.154073	2.956414	6	1.126293	0.499992	-0.606398
7	0.910260	-0.825080	3.180603	1	-6.661465	1.408272	-0.155798
6	1.044494	0.008244	2.363052	6	1.888020	1.637613	-0.124666
16	-1.960796	-1.957214	-0.007904	6	3.252454	1.493929	0.261588
6	-0.285528	-2.422365	-0.468263	6	1.368394	2.964667	-0.084336
6	0.062055	-2.459851	-1.820294	6	4.023268	2.585172	0.655271
6	0.640669	-2.693905	0.541253	1	3.692419	0.498019	0.281521
6	1.378030	-2.775288	-2.169735	6	2.149698	4.048717	0.307757
1	-0.693244	-2.220348	-2.570187	1	0.339722	3.143923	-0.397955
6	1.954430	-2.994021	0.177764	6	3.487703	3.879319	0.689279
1	0.371977	-2.588747	1.593159	1	5.063904	2.417287	0.952337
6	2.323397	-3.036492	-1.171230	1	1.704045	5.049290	0.310915
1	1.669018	-2.800936	-3.223633	1	4.094207	4.731948	1.007404
1	2.697083	-3.156092	0.962062	1	-0.863446	1.758147	0.722333
1	3.358997	-3.255950	-1.445842	6	2.622317	-0.712544	-2.228429
8	-2.659835	-1.626221	-1.262895	1	3.405828	0.065949	-2.219646
8	-2.522398	-2.993771	0.869847	1	3.093627	-1.698140	-2.343900
				1	1.953038	-0.544275	-3.087238
Frequ	encies21	6.2856		7	-0.964574	-1.248515	-2.670948
Red. r	nasses	8.5020		6	-0.685084	-0.505988	-1.819833
Frc co	onsts	0.2343		16	2.067072	-1.920984	0.127290
IR Int	en 1	57.1470		6	0.417590	-2.126394	0.812063
				6	0.065095	-1.423520	1.966421
Structu	ure S5. int1 _{rot}	t		6	-0.491551	-2.949640	0.145990
E(B3	BLYP)sol =	-1	546.61391251	6	-1.240886	-1.528862	2.446517
E(B3L	YP)gas = -1543	5.08677918		1	0.807848	-0.788081	2.450541
				6	-1.793403	-3.053640	0.641780
7	1.836691	-0.679748	-1.000056	1	-0.183830	-3.464379	-0.764685
6	-5.569310	1.354528	-0.166293	6	-2.170036	-2.338619	1.782902
6	-4.891890	0.680798	-1.191529	1	-1.541993	-0.959914	3.329641
6	-3.500529	0.606346	-1.218488	1	-2.523379	-3.674719	0.116925
6	-2.704731	1.202846	-0.199422	1	-3.198620	-2.397839	2.147904
6	-3.419809	1.891056	0.824214	8	2.926546	-1.503540	1.251162
6	-4.809093	1.963259	0.842328	8	2.435278	-3.139204	-0.617067
1	-5.461073	0.203470	-1.996042				
1	-3.021931	0.078900	-2.041384				

Structure	e S6. TS2 _{ro}	t		6
E(B3L)	YP)sol =	-1	546.54037749	1
E(B3LYP)gas = -154	4.99573027		1
				1
7	-1.392566	0.501690	-1.318600	1
16	-2.091362	1.821314	-0.543772	6
6	-0.781323	2.565372	0.445996	1
6	-0.540977	2.074967	1.733527	1
6	0.026071	3.554088	-0.119675	1
6	0.540844	2.577756	2.458774	7
1	-1.195684	1.304779	2.142597	6
6	1.106601	4.051301	0.615466	
1	-0.201598	3.921249	-1.121871	Freq
6	1.367431	3.559703	1.898523	Red.
1	0.745593	2.192802	3.461084	Frc o
1	1.749007	4.823171	0.182934	IR Iı
1	2.219705	3.943164	2.466246	
8	-3.092879	1.306281	0.393395	Struc
8	-2.464636	2.800765	-1.577989	E(H
6	5.155676	-1.205293	-1.642757	E(B3]
6	3.899829	-1.392063	-2.231430	
6	2.734901	-1.227451	-1.476760	7
6	2.801678	-0.887130	-0.118394	16
6	4.065759	-0.717512	0.466615	6
6	5.232819	-0.865314	-0.287858	6
1	3.826011	-1.663505	-3.288876	6
1	1.752319	-1.354711	-1.936642	6
1	4.126727	-0.478780	1.532269	1
1	6.208372	-0.719918	0.186039	6
6	1.551001	-0.706850	0.710323	1
6	0.387472	-0.396511	0.019441	6
6	-0.864460	-0.546719	-0.396661	1
1	6.067541	-1.325916	-2.235045	1
6	-1.849097	-1.632127	-0.130564	1
6	-3.106412	-1.669008	-0.766281	8
6	-1.533798	-2.675768	0.762776	8
6	-4.004487	-2.712469	-0.529305	6
1	-3.377085	-0.857291	-1.440262	6
6	-2.433902	-3.715121	0.999388	6
1	-0.576828	-2.675526	1.282035	6

6	-3.676096	-3.745441	0.353929		
1	-4.974657	-2.712221	-1.036498		
1	-2.155468	-4.507523	1.700441		
1	-4.381273	-4.560858	0.542123		
1	1.715912	0.012807	1.525759		
6	-0.549610	0.816093	-2.467702		
1	0.456532	1.157889	-2.161532		
1	-0.431152	-0.107105	-3.055339		
1	-1.041273	1.575223	-3.089676		
7	1.411075	-2.996869	2.674650		
6	1.680020	-2.187646	1.874124		
requencies376.3601					

requencies	570.5001
Red. masses	11.6671
Frc consts	0.9737
IR Inten	- 514.4017

Structure S7. int2_{rot}

E(B3LYP)sol	=
E(B3LYP)gas =	-1545.02597729

-1546.56872606

	us	10 10.0	
_		~ -	 ~ -

7	-1.176285	1.698985	-0.682732
6	-0.241324	2.543146	0.418694
6	1.495616	2.127530	0.177656
6	2.019227	0.985572	0.791829
6	2.284405	2.944526	-0.633830
6	3.363682	0.666793	0.595064
1	1.378054	0.369060	1.419295
6	3.627185	2.607180	-0.839235
1	1.844042	3.837156	-1.081147
6	4.164081	1.471281	-0.225370
1	3.774927	-0.228812	1.064316
1	4.255216	3.238906	-1.473948
1	5.214000	1.209243	-0.386378
8	-0.597661	2.061450	1.761726
8	-0.372754	3.974060	0.089575
6	3.491272	-3.129545	1.265674
6	3.443248	-2.822262	-0.101092
6	2.233190	-2.474480	-0.702041
6	1.044330	-2.454914	0.042807

6	1.099423	-2.758583	1.407768	6	-6.094594	0.521873	-0.433227
6	2.316082	-3.087367	2.020223	1	-4.059881	-0.714872	-2.876507
1	4.360270	-2.838127	-0.697370	1	-2.398551	-0.545781	-1.039403
1	2.194632	-2.192929	-1.756524	1	-5.468953	0.997436	1.580084
1	0.179873	-2.723559	1.999247	1	-7.133668	0.811516	-0.256048
1	2.341983	-3.312718	3.090435	6	-2.843449	0.392935	1.494381
6	-0.276838	-2.026066	-0.595933	6	-1.539803	0.284550	1.360188
6	-0.225989	-0.517642	-0.849876	6	-0.233580	0.168825	1.208699
6	-1.294139	0.233194	-0.508817	1	-6.433497	-0.038254	-2.495827
1	4.441834	-3.392087	1.739248	6	0.639965	1.325448	0.870937
6	-2.650242	-0.159256	-0.019779	6	1.951449	1.393484	1.370540
6	-3.289316	0.531279	1.033495	6	0.173919	2.355404	0.036587
6	-3.343561	-1.242015	-0.600826	6	2.778643	2.467434	1.041570
6	-4.545413	0.137833	1.496937	1	2.320280	0.582811	2.000592
1	-2.769732	1.372755	1.492179	6	1.003044	3.429952	-0.290446
6	-4.601493	-1.637537	-0.133726	1	-0.838291	2.293165	-0.370233
1	-2.901958	-1.762190	-1.453231	6	2.308987	3.488786	0.208682
6	-5.210711	-0.952523	0.921133	1	3.799246	2.503106	1.430618
1	-5.011521	0.688035	2.320841	1	0.631677	4.220237	-0.948004
1	-5.112802	-2.479734	-0.610534	1	2.960596	4.325591	-0.055553
1	-6.196069	-1.258035	1.286152	1	-3.259423	0.601574	2.490331
1	-1.095537	-2.373137	0.075950	6	-0.136271	-2.019489	2.375300
6	-1.099377	2.144854	-2.070162	1	-1.157871	-2.362579	2.135633
1	-0.228523	1.696159	-2.583010	1	0.518923	-2.892756	2.473696
1	-2.012987	1.805212	-2.582993	1	-0.162095	-1.473849	3.329001
1	-1.055965	3.241706	-2.114092	16	0.792517	-1.876831	-0.146560
7	-0.712663	-3.269767	-2.873927	6	2.315072	-1.075841	-0.642734
6	-0.503426	-2.733827	-1.865455	6	2.277617	-0.084430	-1.623884
				6	3.505613	-1.460453	-0.020649
				6	3.467843	0.557325	-1.972962
Structu	re S8. 3b			1	1.326345	0.184077	-2.083736
E(B3	LYP)sol =	-]	453.59356227	6	4.687814	-0.811681	-0.380062
E(B3LY	(P)gas = -145	2.22545574		1	3.496432	-2.255584	0.726907
				6	4.667104	0.198623	-1.349723
7	0.416980	-1.107495	1.365882	1	3.454774	1.346285	-2.728047
6	-5.702305	0.046691	-1.687791	1	5.629467	-1.096465	0.095425
6	-4.369463	-0.329257	-1.901658	1	5.594866	0.707628	-1.622698
6	-3.431351	-0.226598	-0.875438	8	-0.231635	-1.536986	-1.142492
6	-3.817078	0.261982	0.389718	8	1.091439	-3.272724	0.184247
6	-5.158832	0.625462	0.599223				

					Ũ	0.000 .00	0.01/2.0
Structu	re S9. T	'S1			6	-4.127854	-1.439632
E(B3	LYP)sol	=	-	1546.56951874	6	-4.635372	1.077135
E(B3LY	(P)gas = .	-1545	.00256512		1	-2.549104	1.035275
					6	-5.399212	-0.868827
7	-0.7482	69	-0.950090	-0.858090	1	-3.912817	-2.432700
6	6.2912	295	0.148675	1.196332	6	-5.652805	0.390124
6	5.0657	/34	-0.300739	1.703667	1	-4.831957	2.058161
6	3.9158	392	-0.289764	0.913333	1	-6.197769	-1.413104
6	3.9738	890	0.171548	-0.421837	1	-6.649179	0.833338
6	5.2172	280	0.609573	-0.924895	8	-0.789308	-0.760940
6	6.3612	282	0.603482	-0.126238	8	-1.663850	-2.898661
1	5.0042	252	-0.672114	2.730885			
1	2.9666	549	-0.674020	1.291734	Freque	ncies1	165.0093
1	5.2784	86	0.958511	-1.960758	Red. m	asses	7.5313
1	7.3141	24	0.950705	-0.537809	Frc cor	nsts	0.1208
6	2.7867	/21	0.209981	-1.271496	IR Inte	n	98.9277
6	1.5562	268	-0.154774	-0.917027			
6	0.2501	27	0.066670	-0.771717	Structu	re S10. int1	
1	7.1868	302	0.140469	1.824820	E(B3]	LYP)sol	= .
6	-0.2452	40	1.449928	-0.534562	E(B3LY	(P)gas = -15	45.08262417
6	-1.4752	48	1.869780	-1.074154			
6	0.4935	512	2.372915	0.231377	7	0.717893	-1.190469
6	-1.9452	93	3.169180	-0.868594	6	-6.749573	0.349383
1	-2.0676	17	1.155807	-1.649135	6	-5.924293	-0.753754
6	0.0220)65	3.668804	0.438868	6	-4.559351	-0.722734
1	1.4377	71	2.049626	0.673995	6	-3.942318	0.427079
6	-1.2008	51	4.077953	-0.110573	6	-4.803609	1.538303
1	-2.9059	52	3.468617	-1.298041	6	-6.165129	1.500697
1	0.6084	77	4.364512	1.046305	1	-6.352350	-1.661703
1	-1.5713	67	5.093085	0.058569	1	-3.958632	-1.599768
1	2.9370	90	0.525527	-2.313193	1	-4.370937	2.448145
6	-0.7349	21	-1.926151	-1.954950	1	-6.781630	2.381868
1	-0.0228	58	-2.743134	-1.763737	6	-2.542030	0.577474
1	-1.7500	11	-2.327346	-2.102331	6	-1.495441	-0.348466
1	-0.4419	90	-1.381163	-2.864056	6	-0.114213	-0.076420
7	1.8827	788	-3.552349	-0.601733	1	-7.819316	0.315133
6	1.8054	44	-2.523301	-0.039346	6	0.530740	1.226164
16	-1.4527	55	-1.450180	0.601855	6	1.753724	1.423732
6	-3.1141	43	-0.732022	0.500485	6	0.062236	2.348264

6

-3 359459

0.517246

1.075352

0.969749

1.589234

-0.259224

-0.551651

0.298341

1.410240 -0.770993

0.215359

1.709564 0.560379

-1546.61454754

0.967298

-0.623492

-0.881421

-0.602933

-0.032130

0.207351

-0.077433

-1.318957

-0.837562

0.635536

0.129940

0.288929

0.362749

0.619386

-0.848042

0.624774

1.331273

-0.117344

-0.152873

6	2.443344	2.630181	1.298561	6	-3.395012	0.613781	2.091064
1	2.176800	0.588591	1.890576	1	-1.357587	-0.149945	2.038324
6	0.763696	3.552742	-0.151137	6	-4.907267	-0.332931	0.446450
1	-0.840559	2.248841	-0.719330	1	-4.036917	-1.831813	-0.871762
6	1.959204	3.719032	0.559228	6	-4.663976	0.547040	1.507882
1	3.382552	2.720682	1.853696	1	-3.200505	1.311580	2.908599
1	0.370489	4.376782	-0.756056	1	-5.902000	-0.387013	-0.004349
1	2.502471	4.667586	0.532977	1	-5.467904	1.189045	1.878176
1	-2.264263	1.597328	0.558105	8	-0.241485	-2.120821	0.908620
6	0.688963	-1.788093	2.300224	8	-1.883057	-3.290303	-0.646444
1	-0.228439	-2.380901	2.456984	6	5.324333	-1.164215	1.811895
1	1.554269	-2.449564	2.441996	6	3.964492	-1.492377	1.814310
1	0.725057	-0.979460	3.047426	6	3.109400	-0.990976	0.827395
7	-2.068663	-2.892614	0.320394	6	3.602659	-0.137286	-0.173056
6	-1.808856	-1.759937	0.300365	6	4.967678	0.192473	-0.163989
16	1.570259	-1.959495	-0.264891	6	5.823622	-0.319209	0.813818
6	2.910759	-0.814832	-0.652191	1	3.560919	-2.153880	2.586721
6	2.689428	0.207507	-1.578007	1	2.054050	-1.276165	0.817313
6	4.125432	-0.932331	0.026869	1	5.348778	0.879626	-0.924458
6	3.697184	1.146560	-1.803973	1	6.884560	-0.050825	0.801906
1	1.727243	0.267809	-2.087040	6	2.694115	0.417370	-1.243543
6	5.131562	0.006602	-0.214513	6	1.442599	-0.173147	-1.343818
1	4.265813	-1.756165	0.729160	6	0.137141	-0.020830	-1.159738
6	4.914530	1.049747	-1.121789	1	5.991658	-1.563495	2.581835
1	3.522454	1.968053	-2.502737	6	-0.574119	1.193582	-0.673269
1	6.087305	-0.073393	0.311036	6	-1.830933	1.564727	-1.191805
1	5.697286	1.793279	-1.295381	6	-0.013970	1.993411	0.338673
8	0.752488	-2.029794	-1.479167	6	-2.501826	2.691114	-0.716898
8	2.189972	-3.167836	0.306919	1	-2.288269	0.933447	-1.956408
				6	-0.680661	3.126657	0.808264
				1	0.951689	1.714124	0.758689
Struct	ure S11. TS2			6	-1.929809	3.480304	0.288649
E(B3	3LYP)sol =	-1	546.54212439	1	-3.482426	2.951553	-1.126945
E(B3L	YP)gas = -154	4.99410699		1	-0.214394	3.738134	1.585566
				1	-2.455325	4.363518	0.663811
7	-0.776830	-1.137120	-1.483066	1	3.207273	0.542498	-2.204706
16	-1.276110	-2.048335	-0.134784	6	-0.430171	-1.937721	-2.659631
6	-2.613463	-1.050390	0.542291	1	-0.371456	-1.245438	-3.511944
6	-2.360541	-0.194333	1.614101	1	0.551276	-2.431305	-2.557658
6	-3.877761	-1.138330	-0.044120	1	-1.210624	-2.686734	-2.844943

7	2.762983	3.534427	-0.860890
6	2.871510	2.370334	-0.893417
Freque	encies33	39.5953	
Red. m	nasses	11.3836	
Fre con	nsts	0.7735	
IR Inte	en 4	45.2308	
Structu	re S12. int2		
E(B3	LYP)sol =	-1	546.56162271
E(B3LY	P)gas = -154	5.01510624	
7	0.897824	-1.304830	1.373823
16	1.476928	-1.941817	-0.084244
6	2.705521	-0.722953	-0.600890
6	2.404286	0.172244	-1.626240
6	3.939080	-0.693441	0.054475
6	3.350589	1.135573	-1.985403
1	1.425767	0.123222	-2.103480
6	4.880150	0.269185	-0.314531
1	4.145670	-1.420528	0.842011
6	4.584452	1.186873	-1.330625
1	3.111611	1.860175	-2.767437
1	5.847645	0.307136	0.193974
1	5.318625	1.948542	-1.607842
8	0.448117	-1.952779	-1.138199
8	2.227133	-3.175737	0.217615
6	-4.918761	-0.739836	-2.219344
6	-3.636725	-1.267365	-2.042674
6	-2.920805	-1.027459	-0.862513
6	-3.486931	-0.250186	0.158856
6	-4.775940	0.274970	-0.025090
6	-5.488163	0.037430	-1.203446
1	-3.177661	-1.871451	-2.830727
1	-1.916803	-1.437095	-0.730131
1	-5.218786	0.889514	0.764831
1	-6.489004	0.461575	-1.330145
6	-2.729531	0.007504	1.473974
6	-1.465414	-0.825053	1.575134
6	-0.251958	-0.371879	1.220339

1	-5.472069	-0.928047	-3.144600
6	0.212959	0.949236	0.704452
6	1.345068	1.586691	1.254772
6	-0.445014	1.597915	-0.356859
6	1.789098	2.818559	0.778305
1	1.888575	1.079288	2.054944
6	-0.001621	2.832215	-0.838574
1	-1.304232	1.111766	-0.820276
6	1.117822	3.451591	-0.275921
1	2.672928	3.286435	1.223019
1	-0.534392	3.309872	-1.666467
1	1.468214	4.415891	-0.655840
1	-3.421282	-0.342539	2.268704
6	0.827172	-2.262028	2.480840
1	0.694542	-1.673049	3.399565
1	-0.040843	-2.934173	2.394003
1	1.759934	-2.838752	2.537331
7	-2.617705	2.586342	2.068081
6	-2.660686	1.470017	1.747265

References

- 1. M. Taj Muhammad, Y. Jiao, C. Ye, M.-F. Chiou, M. Israr, X. Zhu, Y. Li, Z. Wen, A. Studer and H. Bao, *Nat. Commun.*, 2020, **11**, 416.
- 2. G. Yin, Y. Zhu, L. Zhang, P. Lu and Y. Wang, *Org. Lett.*, 2011, **13**, 940.
- 3. (a) C. Lee, W. Yang and R. G. Parr, *Phys. Rev. B*, 1988, **37**, 785; (b) A. D. Becke, *J. Chem. Phys.*, 1993, **98**, 5648.
- 4. (a) S. Grimme, J. Antony, S. Ehrlich and H. Krieg, J. Chem. Phys., 2010, 132, 154104; (b) S. Grimme, S. Ehrlich and L. Goerigk, J. Comput. Chem., 2011, 32, 1456.
- 5. (a) F. Weigend, *Phys. Chem. Chem. Phys.*, 2006, **8**, 1057; (b) F. Weigend and R. Ahlrichs, *Phys. Chem. Chem. Phys.*, 2005, **7**, 3297.
- 6. A. V. Marenich, C. J. Cramer and D. G. Truhlar, *J. Phys. Chem. B*, 2009, **113**, 6378.
- 7. (a) J. P. Foster and F. Weinhold, *J. Am. Chem. Soc.*, 1980, **102**, 7211; (b) A. E. Reed and F. Weinhold, *J. Chem. Phys.*, 1985, **83**, 1736; (c) A. E. Reed, R. B. Weinstock and F. Weinhold, *J. Chem. Phys.*, 1985, **83**, 735; (d) A. E. Reed, L. A. Curtiss and F. Weinhold, *Chem. Rev.*, 1988, **88**, 899.
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, N. J. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian 09, Revision D.01 ed.; Gaussian, Inc.: Wallingford, CT, USA, 2013.

NMR spectra

S71

S83

S91

S96

