Dynamic Parallel Kinetic Resolution of α-Ferrocenyl Cation Initiated by Chiral Brønsted Acid Catalyst

Yasunori Toda,^a Toshinobu Korenaga,^b Ren Obayashi,^a Jun Kikuchi^a and Masahiro Terada^{*a}

^a Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan ^b Department of Chemistry and Biological Sciences, Faculty of Science and Engineering, Iwate University, Morioka 020-8551, Japan

Contents:

1. General information	S1
2. Optimization of reaction conditions	S2
3. Parallel kinetic resolution of an α -ferrocenyl cation catalyzed by a chiral phosphoric acid	S3
4. Determination of absolute configuration	S5
5. Preparation of 1	S 6
6. Preparation of enantio-pure 1	S7
7. Theoretical studies of transition state analysis	S 8
8. Dynamic parallel kinetic resolution	S14
9. Regeneration of 1 (formal dynamic kinetic resolution)	S16
10. Reaction of ferrocenyl derivative having different substituent	S17
11. ¹ H and ¹³ C NMR spectra, HPLC trace	S19

1. General information

¹H NMR spectra were recorded on a JEOL JNM-ECA600 (600 MHz) spectrometer. Chemical shifts are reported in ppm from the solvent resonance as the internal standard (CDCl3: 7.26 ppm, C6D6: 7.16 ppm). Data are reported as follows: chemical shift, integration, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, qui = quintet, br = broad, m = multiplet) and coupling constants (Hz). ^{13}C NMR spectra were recorded on a JEOL JNM-ECA600 (150.9 MHz) spectrometer with complete proton decoupling. Chemical shifts are reported in ppm from the solvent resonance as the internal standard (CDCl₃: 77.0 ppm, C₆D₆: 128.0 ppm). Analytical thin layer chromatography (TLC) was performed on Merck pre-coated TLC plates (silica gel 60 GF254, 0.25 mm). Flash column chromatography was performed on silica gel 60 N (Merck: 0.040-0.063 mm, 230-400 mesh ASTM). Short column chromatography was performed on Al2O3 (Merck: alminium oxide 90 standardized). High-performance liquid chromatography (HPLC) was performed on a Jasco equipped with a variable wavelength detector using Daicel chiral column (0.46×25 cm). Optical rotations were measured on a Jasco P-1020 digital polarimeter with a sodium lamp and reported as follows; $[\alpha]^{T^{\circ}C} D (c = g/100 \text{ mL}, \text{ solvent})$. Infrared (IR) spectra were recorded on a Jasco FT/IR-4100 spectrometer. Mass spectra analysis was performed on a Bruker Daltonics solariX 9.4T and a JEOL JMS-T100GCV spectrometer at the Research and Analytical Center for Giant Molecules, Graduate School of Science, Tohoku University. Unless otherwise noted, all reactions were carried out under argon atmosphere in dried glassware. All substrates were purified by column chromatography to use. Toluene, dichloromethane (CH₂Cl₂), diethyl ether (Et₂O) and tetrahydrofuran (THF) were supplied from Kanto Chemical Co., Inc. as "Dehydrated solvent system". Other solvents were dried over activated MS 4A and used under argon atmosphere. Reagents were purchased from commercial suppliers and used without further purification. The other simple chemicals were used as such.

2. Optimization of reaction conditions

Optimization of reaction conditions is shown in Table S1. We found that MS 5A is necessary for the removal of methanol. It can be considered that the methanol addition to the ferrocenyl cation is competitive to the amination by **3a** in the absence of MS 5A.

antur	(D)	(R)-2 solvent	MS 5A	temn	time	% conv	% y	% ee ^c	
entry	(K)-2	sorvent	MS JA	temp.	time	⁷ 0 COIIV.	4a	5	76 ee
1	2a	toluene	+	rt	6 h	100	50	50	40
2	2a	toluene	-	rt	1.5 d	20	8	11	nd
3	2b	toluene	+	rt	6 h	100	50	50	39
4	2c	toluene	+	rt	12 h	100	16	84	-6
5	2d	toluene	+	rt	6 h	100	50	50	13
6	2e	toluene	+	rt	6 h	100	50	50	<1
7	2f	toluene	+	rt	6 h	100	50	50	-3
8	2g	toluene	+	rt	6 h	100	50	50	33
9	2a	toluene	+	0 °C	8 h	100	50	50	40
10	2a	toluene	+	40 °C	4 h	100	47	53	39
11	2a	CH ₂ Cl ₂	+	rt	24 h	93	35	49	12
12	2a	MeCN	+	rt	24 h	71	6	65	11
13	2a	Et ₂ O	+	rt	24 h	78	23	37	33

^a Unless otherwise noted, all reactions were performed using 0.20 mmol *rac*-1, 5 mol% of catalyst 2, 0.5 equiv. of **3a** in the indicated solvent (0.2 M). ^b Determined by crude ¹H NMR analysis (in C_6D_6) using 1,3-benzodioxole as an internal standard. ^c Determined by chiral stationary phase HPLC analysis.

3. Parallel kinetic resolution of an α -ferrocenyl cation catalyzed by a chiral phosphoric acid

Representative procedure: To a solution of MS 5A (150 mg), **1** (48.8 mg, 200 μ mol), and H₂NNs (**3g**) (80.9 mg, 400 μ mol) in toluene (1 mL) was added (*R*)-**2** (5 mol%, 7.0 mg, 10 μ mol)¹ at room temperature. The atmosphere was replaced with argon (×3), and the mixture was stirred at room temperature for 2 hours. The reaction mixture was quenched by NEt₃, and then passed through a pad of Al₂O₃ with EtOAc. After removing solvents in vacuo, the NMR yield was determined by ¹H NMR spectrum in C₆D₆ using 1,3-benzodioxole as an internal standard. The crude material was purified by flash column chromatography on silica gel (Hexane/EtOAc = 100/1-1/1 as eluent) to give **4g** in 47% yield as a brown solid and vinylferrocene (**5**) in 43% yield as an orange solid. The enantiomeric excess of **4g** was determined by chiral stationary phase HPLC analysis (95% ee).

(*S*)-2-Nitro-*N*-(1-ferrocenylethyl)benzenesulfonamide (4g): Brown solid (mp 86-88 °C); $R_f = 0.40$ (Hexane/EtOAc = 2/1); HPLC analysis Chiralpak IB-3 (Hexane/EtOH = 90/10, 0.8 mL/min, 254 nm, 30 °C) 15.1 (minor), 16.8 (major) min, (95% ee); $[\alpha]^{25}_D = -124.9$ (*c* 1.3, CHCl₃); ¹H NMR (CDCl₃, 600 MHz), δ 1.51 (3H, d, *J* = 6.6 Hz), 3.93-3.94 (1H, m), 3.98-3.99 (1H, m), 4.07-4.09 (2H, m), 4.22 (5H, s), 4.39 (1H, qui, *J* = 6.6 Hz), 5.69 (1H, d, *J* = 6.6 Hz), 7.71-7.75 (2H, m), 7.87-7.91 (1H, m), 8.15-8.19 (1H, m); ¹³C NMR

 $(CDCl_3, 150.9 \text{ MHz})$, δ 22.1, 49.3, 65.3, 67.3, 68.0, 68.2, 68.6, 90.2, 125.3, 130.5, 132.9, 133.3, 135.0, 147.7; IR (ATR): 3359, 3097, 2980, 1540, 1393, 1344, 1168, 1106, 1059, 1029, 1002, 964, 905, 853, 821 cm⁻¹; HRMS (ESI) Calcd for $C_{18}H_{18}FeN_2O_4S$ ([M+Na]⁺) 437.0229, Found 437.0229.

Configuration assignment: The absolute configuration of 4 was determined to be (*S*) by comparing the optical rotation with the stereochemically known compound; see section 4 for detail.

Vinylferrocene (5): Orange solid (mp 51-53 °C); $R_f = 0.45$ (Hexane); ¹H NMR (CDCl₃, 600 MHz), δ 4.11 (5H, s), 4.21 (2H, t, J = 1.8 Hz), 4.36 (2H, t, J = 1.8 Hz), 5.03 (1H, dd, J = 10.8, 1.2 Hz), 5.34 (1H, dd, J = 17.4, 1.2 Hz), 6.46 (1H, dd, J = 17.4, 10.8 Hz); ¹³C NMR (CDCl₃, 150.9 MHz), δ 66.6, 68.6, 69.2, 83.5, 111.0, 134.6; IR (ATR): 3082, 3006, 1632, 1621, 1409, 1386, 1240, 1103, 1045, 1028, 999, 895, 823, 811 cm⁻¹; HRMS (ESI) Calcd for C₁₂H₁₂Fe ([M+H]⁺) 213.0361,

⁽¹⁾ Chiral phosphoric acid **2** was prepared according to a known method, see: Terada, M.; Toda, Y. J. Am. Chem. Soc. **2009**, 131, 6354-6355. **2** was purified by the following method: **2** purified with silica gel (Merck: Catalog No.109385) column chromatography was dissolved in MeOH. Next, aqueous HCl solution (2 M) was added to the resultant MeOH solution to give a white suspension. The resultant suspension was extracted with CH₂Cl₂ (×3), and then the combined organic layer was washed with water, dried over Na₂SO₄, filtered, and concentrated. The resultant residue was recrystallized from EtOH/hexane, and dried under reduced pressure for more than 12 h to use.

Found 213.0361.

(*S*)-4-Methyl-*N*-(1-ferrocenylethyl)benzenesulfonamide (4a): Orange solid (mp 134-136 °C); $R_f = 0.25$ (Hexane/EtOAc = 4/1); HPLC analysis Chiralpak IA-3 (Hexane/IPA = 90/10, 1.0 mL/min, 254 nm, 30 °C) 22.8 (minor), 24.3 (major) min, (40% ee); $[\alpha]^{24}D = -4.8$ (*c* 1.0, CHCl₃); ¹H NMR (CDCl₃, 600 MHz), δ 1.41 (3H, d, *J* = 6.6 Hz), 2.44 (3H, s), 3.93 (1H, brs), 3.96 (1H, brs), 4.09-4.10 (2H, m), 4.14-4.19 (6H, m), 4.63 (1H, d, *J* = 6.6 Hz), 7.32 (2H, d, *J* = 7.8 Hz), 7.80 (2H, d, *J* = 7.8 Hz); ¹³C

NMR (CDCl₃, 150.9 MHz), δ 21.5, 22.1, 48.4, 65.6, 66.9, 67.9, 68.0, 68.5, 91.0, 127.0, 129.6, 138.0, 143.2; IR (ATR): 3284, 3094, 2979, 2935, 1411, 1328, 1160, 1092, 1028, 966, 906, 815 cm⁻¹; HRMS (ESI) Calcd for C₁₉H₂₁FeNO₂S ([M+Na]⁺) 406.0535, Found 406.0535. **Configuration assignment:** The absolute configuration was assigned as (*S*) by analogy.

Benzyl 1-ferrocenylethylcarbamate (4d): Orange solid (mp 56-58 °C); $R_f = 0.40$ (Hexane/EtOAc = 4/1); HPLC analysis Chiralpak AD-3 (Hexane/EtOH = 90/10, 1.0 mL/min, 254 nm, 30 °C) 15.6, 17.6 min, (<1% ee); ¹H NMR (CDCl₃, 600 MHz), δ 1.47 (3H, d, J = 6.6 Hz), 4.12-4.19 (9H, m), 4.64 (1H, qui, J = 6.6 Hz), 4.93 (1H, d, J = 6.6 Hz), 5.13 (2H, s), 7.31-7.40 (5H, m); ¹³C NMR (CDCl₃, 150.9 MHz), δ 21.3, 45.6, 65.7,

 $66.5, 66.9, 67.6, 67.9, 68.4, 91.5, 128.0, 128.1, 128.5, 136.6, 155.4; IR (ATR): 3429, 3330, 3091, 3033, 2974, 1696, 1497, 1453, 1323, 1221, 1105, 1047, 1026, 1001, 819 cm^{-1}; HRMS (ESI) Calcd for C₂₀H₂₁FeNO₂ ([M+Na]⁺) 386.0814, Found 386.0814.$

(*S*)-4-Methoxy-*N*-(1-ferrocenylethyl)benzenesulfonamide (4e): Orange solid (mp 131-133 °C); R_f = 0.50 (Hexane/EtOAc = 2/1); HPLC analysis Chiralpak IA-3 (Hexane/IPA = 90/10, 1.0 mL/min, 254 nm, 30 °C) 33.2 (minor), 35.7 (major) min, (28% ee); $[\alpha]^{25}_{D}$ = -4.4 (*c* 1.0, CHCl₃); ¹H NMR (CDCl₃, 600 MHz), δ 1.42 (3H, d, *J* = 6.6 Hz), 3.88 (3H, s), 3.92-3.93 (1H, m), 3.96-3.97 (1H, m), 4.09-4.10 (2H, m), 4.12-4.17 (6H, m), 4.63 (1H, d, *J* = 6.6 Hz), 6.99 (2H, d, *J* = 9.0 Hz), 7.85 (2H, d, *J* = 9.0

Hz); 13 C NMR (CDCl₃, 150.9 MHz), δ 22.1, 48.3, 55.6, 65.7, 67.0, 68.0, 68.1, 68.5, 91.1, 114.2, 129.2, 132.7, 162.8; IR (ATR): 3245, 2970, 1596, 1497, 1432, 1316, 1301, 1257, 1155, 1094, 1024, 963, 904, 830, 813 cm⁻¹; HRMS (ESI) Calcd for C₁₉H₂₁FeNO₃S ([M+Na]⁺) 422.0484, Found 422.0484.

Configuration assignment: The absolute configuration was assigned as (S) by analogy.

(*S*)-4-Nitro-*N*-(1-ferrocenylethyl)benzenesulfonamide (4f): Brown solid (mp 175-177 °C); $R_f = 0.20$ (Hexane/EtOAc = 4/1); HPLC analysis Chiralpak AD-3 (Hexane/EtOH = 70/30, 1.0 mL/min, 254 nm, 40 °C) 23.6 (minor), 28.0 (major) min, (82% ee); $[\alpha]^{25}_{D} = +6.2$ (*c* 1.0, CHCl₃); ¹H NMR (CDCl₃, 600 MHz), δ 1.47 (3H, d, *J* = 6.6 Hz), 3.91-3.92 (1H, m), 3.95-3.96 (1H, m), 4.09-4.10 (1H, m), 4.10-4.11 (1H, m), 4.15 (5H, s), 4.29 (1H, qui, *J* = 6.6 Hz), 4.83 (1H, d, *J* = 6.6 Hz), 8.06 (2H, d, *J* = 9.0

Hz), 8.35 (2H, d, *J* = 9.0 Hz); ¹³C NMR (CDCl₃, 150.9 MHz), δ 22.1, 49.2, 65.4, 67.3, 68.2₆, 68.2₈, 68.6, 90.1, 124.3, 128.2, 147.1, 149.9; IR (ATR): 3266, 2926, 2856, 1523, 1416, 1348, 1330, 1311, 1154, 1073, 965, 854 cm⁻¹; HRMS (ESI) Calcd for C₁₈H₁₈FeN₂O₄S ([M+Na]⁺) 437.0229, Found 437.0229.

Configuration assignment: The absolute configuration was assigned as (S) by analogy.

4. Determination of absolute configuration

The absolute configuration of 4g was determined to be (S) by comparing the optical rotation of S3 with the reported data.

Procedure for the derivatization of 4g to S3: To a solution of **4g** (82.9 mg, 200 µmol) in DMF (2 mL) was added 4-mercaptobenzoic acid (0.44 mg, 0.001 mmol) and K₂CO₃ (67.6 mg, 300 µmol). The mixture was stirred at 50 °C for 24 hours, and then the reaction mixture was cooled to 0 °C. The reaction mixture was treated with aqueous KOH solution (1 *M*), and the mixture was extracted with Et₂O (×3). The combined organic layers were washed with H₂O (×2) and brine, dried over Na₂SO₄, filtered, and concentrated. This material was employed for subsequent *N*-acetyl protection without further purification. Next, to a solution of S2 in toluene (4 mL) was added (*i*-Pr)₂NEt (105 µL, 600 µmol) and Ac₂O (37.8 µL, 400 µmol) at 0 °C. After stirring at room temperature for 12 hours, H₂O was added to the reaction mixture, and then the mixtue was extracted with Et₂O (×3). The combined organic layers were washed with H₂O and brine, dried over Na₂SO₄, filtered, and concentrated. Purification by flash column chromatography on silica gel (Hexane/EtOAc = 8/1-1/2 as eluent) afforded S3 in 71% yield over 2 steps as an orange solid. The enantiomeric excess of S3 was determined by chiral stationary phase HPLC analysis (94% ee).

(*S*)-Ferrocenylethylamine (S2): $[\alpha]^{27}_{D} = +23.8 (c \ 1.9, EtOH) \{ \text{lit.}^2 (R)-S2 (>98\% \text{ ee}); [\alpha]^{25}_{D} = -22.1 (c \ 3.3, EtOH) \}; {}^{1}\text{H NMR (CDCl}_3, 600 \text{ MHz}), \delta 1.34 (3H, d, <math>J = 6.6 \text{ Hz}$), 1.68 (2H, brs), 3.78-3.81 (1H, m), 4.11-4.16 (9H, m); {}^{13}\text{C NMR (CDCl}_3, 150.9 \text{ MHz}), \delta 24.8, 46.0, 65.6_5, 65.7_0, 67.3, 67.4, 68.3, 96.5.

(*S*)-*N*-(1-Ferrocenylethyl)acetamide (S3): Orange solid; $R_f = 0.25$ (Hexane/EtOAc = 1/1); HPLC analysis Chiralcel OD-3 (Hexane/IPA = 90/10, 1.5 mL/min, 220 nm, 30 °C) 12.1 (major), 17.6 (minor) min, (94% ee); $[\alpha]^{26}_D = +68.1$ (*c* 1.0, C₆H₆) {lit.³ (*S*)-S3 (>99% ee); $[\alpha]^{25}_D = +73.5$ (*c* 1.0, C₆H₆)}; ¹H NMR (CDCl₃, 600 MHz), δ 1.46 (3H, d, J = 6.6 Hz), 1.98 (3H, s), 4.13-4.16 (3H, m), 4.17 (5H, s), 4.20-4.21 (1H, m), 4.89 (1H, dq, J = 8.4,

6.6 Hz), 5.59 (1H, brs); ¹³C NMR (CDCl₃, 150.9 MHz), δ 20.6, 23.5, 43.8, 65.6, 67.4, 67.6, 68.1, 68.5, 91.1, 168.6; IR (ATR): 3244, 3075, 2974, 2925, 2852, 1631, 1557, 1441, 1374, 1300, 1104, 1039, 818 cm⁻¹; HRMS (ESI) Calcd for C₁₄H₁₇FeNO ([M+Na]⁺) 294.0552, Found 294.0551.

⁽²⁾ Woltersdorf, M.; Kranich, R.; Schmalz, H.-G. Tetrahedron 1997, 53, 7219-7230.

⁽³⁾ Fukuda, T.; Takehara, A.; Haniu, N.; Iwao, M. Tetrahedron: Asymmetry 2000, 11, 4083-4091.

5. Preparation of 1

To a solution of 1-ferrocenylethanol (S1) $(1.15 \text{ g}, 5.00 \text{ mmol})^4$ in MeOH (20 mL) was added (±)-CSA (5 mol%, 58.1 mg, 250 µmol) at room temperature, and the mixture was stirred at room temperature for 5 hours. The reaction mixture was quenched by NEt₃, and then the mixture was diluted with saturated aqueous NaHCO₃, and extracted with Et₂O (×3). The combined organic layers were washed with H₂O and brine, dried over Na₂SO₄, filtered, and concentrated. After purification by flash column chromatography on silica gel (Hexane/EtOAc = 50/1-4/1 as eluent), **1** was obtained in 96% yield as an orange oil.

(1-Methoxyethyl)ferrocene (1): Orange oil; $R_f = 0.40$ (Hexane/EtOAc = 4/1); ¹H NMR (C₆D₆, 600 MHz), δ 1.45 (3H, d, J = 6.6 Hz), 3.14 (3H, s), 3.96-3.98 (2H, m), 3.99-4.03 (6H, m), 4.07-4.08 (1H, m), 4.10-4.11 (1H, m); ¹³C NMR (C₆D₆, 150.9 MHz), δ 20.6, 55.5, 66.2, 67.7, 68.1, 68.7, 68.9, 74.9, 90.2; IR (ATR): 3094, 2975, 2934, 2882, 2816, 1448, 1367, 1308, 1236, 1189, 1106, 1085, 1060, 1039, 1022, 1000, 815 cm⁻¹; HRMS (ESI) Calcd for C₁₃H₁₆FeO

 $([M+Na]^+)$ 267.0443, Found 267.0442.

⁽⁴⁾ Commercially available, purchased from Tokyo Chemical Industry (TCI) Co., Ltd.

6. Preparation of enantio-pure 1

To a solution of (*S*)-1-ferrocenylethanol ((*S*)-S1, 99% ee) (690 mg, 3.00 mmol)⁵ in THF (30 mL) was added NaH (60% dispersion in mineral oil, 180 mg, 4.50 mmol) at 0 °C, the mixture was stirred at 0 °C for 20 minutes. MeI (560 μ L) was added to the mixture at 0 °C, the mixture was allowed to warm to room temperature for 10 hours. The reaction mixture was quenched by H₂O at 0 °C, and then extracted with Et₂O (×3). The combined organic layers were washed with H₂O and brine, dried over Na₂SO₄, filtered, and concentrated. After purification by flash column chromatography on silica gel (Hexane/EtOAc = 50/1-4/1 as eluent, add 1% NEt₃), enantio-pure **1** was obtained in 96% yield as an orange oil. The enantiomeric excess of **1** was determined by chiral stationary phase HPLC analysis (99% ee).

(S)-(1-Methoxyethyl)ferrocene (1): Orange oil; HPLC analysis Chiralpak AD-3 (Hexane/IPA = 98/2, 1 mL/min, 220 nm, 15 °C) 5.8 (major), 6.8 (minor) min, (99% ee); $[\alpha]^{25}_{D} = -33.9$ (c 0.4, CHCl₃) {lit.⁶ (S)-1 (86% ee); $[\alpha]_{D} = -20.0$ (c 0.2, CHCl₃)}.

⁽⁵⁾ The preparation of enantio-pure S1, see: Tappe, K.: Knochel, P. Tetrahedron: Asymmetry 2004, 15, 91-102.

⁽⁶⁾ Vicennati, P.; Cozzi, P. G. Eur. J. Org. Chem. 2007, 2248-2253.

7. Theoretical studies of transition state analysis

All calculations were conducted using Gaussian 09, Revision C.01: M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2010.

7-1. C-N bond formation (amination) step: Cartesian coordinates

TSs

Optimization at the B3LYP/6-31G(d)

E(RB3LYP) = -5257.74455651 Hartree

Thermal correction to Gibbs Free Energy = 0.863682 Hartree

Sum of electronic and thermal Free Energies = -5256.880874 Hartree

Single point calculation at the M062X/6-311+g(d,p)

E(RM062X) = -5257.29542276 Hartree

Center	Atomic	Atomic	Coord	dinates (Ang	stroms)
Number	Number	Туре	Х	Y	Z
1	15	0	0. 189812	0. 259158	-0. 292020
2	8	0	-0. 499543	-0.359105	0.901464
3	8	0	1.815829	0. 178325	0. 053494
4	8	0	-0. 028924	1.909144	-0. 292253
5	8	0	-0. 126251	-0. 196261	-1. 683197
6	6	0	0.543186	2.677244	0. 695457
7	6	0	1.915159	2.901477	0. 678362
8	6	0	0. 243175	4. 051591	2.646028
9	6	0	2.502359	3.648000	1.757552
10	6	0	-0. 322899	3.269423	1.660777
11	6	0	1.644604	4. 241176	2.740679
12	6	0	2.676208	0.963869	-0. 685172
13	6	0	2.738663	2. 327840	-0. 426815
14	6	0	4. 360249	1.106329	-2. 394048
15	6	0	3. 572177	3. 147048	-1. 264503
16	6	0	3. 507047	0. 320871	-1.648209
17	6	0	4. 399533	2.516584	-2. 250512
18	6	0	2.212860	4.992899	3.804611
19	6	0	3.907818	3.798145	1.924346
20	6	0	4. 428396	4. 519833	2.975831
21	6	0	3.575698	5.135953	3. 921996
22	6	0	3.587265	4. 568330	-1.193660
23	6	0	5 23/650	3 31/000	-3 077833

6	0	5. 240413	4. 685913	-2.966499
6	0	4. 396936	5.315096	-2. 020970
1	0	-0. 399208	4. 521938	3. 386345
1	0	5.010330	0.636280	-3. 127873
1	0	1. 544289	5. 444872	4. 533747
1	0	4. 576383	3. 326189	1.213805
1	0	5. 506018	4. 613078	3. 081827
1	0	3.999124	5. 708571	4. 742684
1	0	2.939739	5.068088	-0. 482476
1	0	5.863458	2.816988	-3.812264
1	0	5.879080	5.286402	-3.608535
1	0	4. 383221	6.399497	-1.949713
6	0	3. 488529	-1.165363	-1.828531
6	0	4. 177101	-1.987144	-0.905386
6	0	2.836854	-1.738932	-2.944153
6	0	4.874916	-1.458638	0. 228733
6	0	4. 207376	-3. 417883	-1.105400
6	0	2.886134	-3. 170571	-3. 140348
6	0	2. 115583	-0.957698	-3.903825
6	0	5. 545911	-2. 279011	1.099991
1	0	4.875560	-0. 385848	0. 388495
6	0	4.910659	-4. 238001	-0.168460
6	0	3.563107	-3.969614	-2. 216169
6	0	2. 242879	-3. 739707	-4. 284366
1	0	2.033257	0. 111030	-3. 749322
6	0	1.516110	-1.541691	-4. 988440
6	0	5, 563084	-3. 690414	0.903619

51	1	0	6.081045	-1.849031	1.943331	90	1	0	-4.987899	-3. 220940	-2.086339
52	1	0	4.918004	-5. 313146	-0. 331446	91	1	0	-5. 457539	0.712598	-0. 252089
53	1	0	3. 591060	-5. 047044	-2. 364787	92	6	0	-2. 217911	-2. 446862	-1.374691
54	6	0	1.583132	-2. 951071	-5. 187746	93	6	0	-2.050886	-3. 743930	-2. 085837
55	1	0	2. 295315	-4. 817521	-4. 420402	94	1	0	-2.844503	-4. 462944	-1.868803
56	1	0	0.976091	-0. 925511	-5. 702673	95	1	0	-2.054347	-3. 531856	-3. 165346
57	1	0	6.099456	-4. 325734	1.603486	96	1	0	-1.074819	-4. 176724	-1.858247
58	1	0	1.105709	-3.395100	-6.057739	97	1	0	-1.355919	-1.779046	-1.368649
59	6	0	-1.807121	3.077315	1.617657	98	6	0	-3. 441060	-0. 771399	-4. 366134
60	6	0	-2. 440939	2. 283753	2.603777	99	6	0	-2.665689	0. 206434	-3.659684
61	6	0	-2. 579654	3.743643	0. 636281	100	6	0	-3. 543947	1. 252517	-3. 267290
62	6	0	-1.708674	1.537007	3. 582994	101	6	0	-4. 859381	0.925532	-3. 719073
63	6	0	-3. 884271	2. 195445	2.632247	102	6	0	-4. 792139	-0. 322175	-4. 408244
64	6	0	-4. 020712	3. 632072	0.662759	103	1	0	-3.067401	-1.694909	-4. 790019
65	6	0	-1.993555	4. 549066	-0. 392683	104	1	0	-1.618911	0. 133147	-3. 386103
66	6	0	-2. 352014	0.791584	4. 535376	105	1	0	-3. 269882	2. 119033	-2. 679288
67	1	0	-0. 626283	1.552895	3. 546724	106	1	0	-5. 752889	1. 513320	-3. 553956
68	6	0	-4. 515256	1.411647	3.649107	107	1	0	-5.626430	-0. 848233	-4. 854481
69	6	0	-4. 633199	2.874775	1.666907	108	6	0	1.783743	-3. 057711	2. 437823
70	6	0	-4. 790857	4. 311461	-0. 333438	109	6	0	2.545962	-2. 757351	3.568900
71	1	0	-0.915046	4.654444	-0. 423680	110	6	0	2.052125	-3. 034993	4.841272
72	6	0	-2.765954	5.179062	-1.333816	111	6	0	0. 785312	-3. 598308	4. 988448
73	6	0	-3. 774570	0. 732782	4. 578081	112	6	0	0.013921	-3. 865248	3.860177
74	1	0	-1.772417	0. 228750	5.262125	113	6	0	0.510133	-3. 610914	2. 570528
75	1	0	-5. 601842	1.365266	3.663826	114	16	0	-0. 316055	-4. 066813	1.016596
76	1	0	-5. 720068	2.818114	1.701824	115	7	0	-1.502148	-2. 889213	0.758258
77	6	0	-4. 185505	5.059669	-1. 307741	116	8	0	-0. 973312	-5. 360172	1. 188930
78	1	0	-5.874656	4. 224534	-0. 293955	117	8	0	0.671048	-3. 863382	-0. 043642
79	1	0	-2. 293792	5.779995	-2. 106206	118	1	0	2. 174348	-2. 870259	1. 444577
80	1	0	-4. 266155	0. 138746	5.343877	119	1	0	3. 528675	-2. 316568	3. 437339
81	1	0	-4. 782564	5. 572289	-2.057340	120	1	0	0.374879	-3. 824186	5.965294
82	26	0	-4. 161167	-0. 543140	-2.455519	121	1	0	-2.268910	-3. 034729	1. 417982
83	6	0	-5. 704486	-1.274036	-1.266172	122	1	0	-1.092634	-1.917990	0.859732
84	6	0	-3.650310	-0. 549814	-0. 493681	123	1	0	2. 644378	-2. 812802	5. 723688
85	6	0	-3. 474542	-1.871339	-1.078957	124	7	0	-1.348120	-4. 365402	4. 117697
86	6	0	-4.774369	-2. 295315	-1. 569294	125	8	0	-1.511348	-5. 070689	5. 107843
87	6	0	-5. 018143	-0. 215141	-0. 592151	126	8	0	-2.251360	-4. 005280	3.361705
88	1	0	-6. 754816	-1.279245	-1.527269						
89	1	0	-2.863275	0. 031574	-0. 032196						

TSr

Optimization at the B3LYP/6-31G(d)

E(RB3LYP) = -5257.74190987 Hartree

Thermal correction to Gibbs Free Energy = 0.864716 Hartree

Sum of electronic and thermal Free Energies = -5256.877194 Hartree

Single point calculation at the M062X/6-311+g(d,p)

E(RM062X) = -5257.29278678 Hartree

Center	Atomic	Atomic	Coord	Coordinates (Angstroms)				
Number	Number	Туре	Х	Y	Z			
1	15	0	-0. 471579	0. 055009	-0. 227729			
2	8	0	0.031159	-1. 100247	0. 605532			
3	8	0	-1.346180	0.970776	0.849681			
4	8	0	-1.693557	-0. 446611	-1.238447			
5	8	0	0.463113	0.862882	-1.072635			
6	6	0	-2. 812776	-1.011615	-0. 669767			

7	6	0	-3.743402	-0. 192008	-0. 043627
8	6	0	-4. 098494	-2. 993767	-0. 225083
9	6	0	-4. 856189	-0. 809520	0. 626061
10	6	0	-2.986464	-2. 420539	-0. 803368
11	6	0	-5. 033691	-2. 228086	0. 517961
12	6	0	-2.337550	1.815043	0. 409644
13	6	0	-3. 538015	1.287326	-0. 051861
14	6	0	-3. 098043	4. 077961	0. 112950
15	6	0	-4. 530187	2. 193177	-0. 565556
16	6	0	-2. 104729	3. 217261	0. 529889

17	6	0	-4. 305013	3.605227	-0. 461868	73	6	0	0.905038	-5. 657764	0. 374325
18	6	0	-6. 134688	-2.846953	1.169152	74	1	0	0.081998	-4. 848062	2.218000
19	6	0	-5, 776013	-0.084059	1, 433737	75	1	0	1, 502925	-6. 276025	-1.585216
20	6	0	-6 824438	-0 716250	2 065353	76	1	0	0 461790	-5 481555	-3 650582
21	6	0	-7 017118	-2 110619	1 925070	77	6	0	-2 161555	-3 300888	-5 837098
22	6	Ő	-5 719783	1 756524	-1 213136	78	1	Ő	-0 547505	-4 701146	-5 736146
22	6	0	-5 285120	1.500024	_0 053800	70	1	0	-3 701774	-1 876450	-5 62/570
23	6	0	-6 131286	4. 050653	-1 554640	80	1	0	1 6/0700	-6 261086	0 885072
24	0	0	-0. 434280	4.050055	1 004150	01	1	0	1.049700	-0. 201080	0.000972
20	0	0	-0. 043224	2.000499	-1.094109	01	1	0	-2.211700	-3. 309140	-0.922073
20	1	0	-4. 2089//	-4.004044	-0. 323428	82	20	0	4. 095349	1.282009	-2. /14344
27	1	0	-2.948/10	5. 150744	0.207543	83	6	0	4. /12521	2.282997	-1.006350
28	I	0	-6. 258/39	-3. 922539	1.065919	84	6	0	5.3/1014	0. 140186	-1.5/2698
29	I	0	-5. 638568	0.983667	1.559188	85	6	0	4.007858	0.083366	-1.0/6/25
30	1	0	-7. 507980	-0. 137672	2. 681191	86	6	0	3.609233	1.441746	-0. 752666
31	1	0	-7.852170	-2. 596264	2. 422645	87	6	0	5. 788187	1. 491111	-1. 521812
32	1	0	-5. 892451	0. 693943	-1.337796	88	1	0	4. 721799	3. 357251	-0. 878970
33	1	0	-5. 100078	5. 576319	-0. 855647	89	1	0	5.963704	-0. 697841	-1.913386
34	1	0	-7. 173707	4.751398	-1.932629	90	1	0	2.627127	1.718316	-0. 395679
35	1	0	-7. 539233	2. 295991	-2. 191055	91	1	0	6.751573	1.866266	-1.841678
36	6	0	-0. 828268	3. 738346	1.111028	92	6	0	3.092093	-0. 989869	-1. 196796
37	6	0	-0. 580693	3.605818	2. 498672	93	1	0	2.047218	-0. 691279	-1. 209031
38	6	0	0.112200	4. 393954	0.281629	94	6	0	3, 463256	-2. 315087	-1.786933
39	6	0	-1.507239	2.977223	3, 390966	95	1	0	2.685505	-3.062190	-1.612139
40	6	0	0 639962	4 134262	3 062426	96	1	0	3 563448	-2 196391	-2 873875
41	6	0	1 319247	4 939666	0 862791	97	1	0	4 418899	-2 682516	-1 402486
42	6	ů 0	-0 070523	4 541108	-1 132063	98	6	Ő	2 934104	0 545447	-4 258645
13	6	0	-1 2/3061	2 866105	1 732025	00	6	0	1 2/0566	0.824042	-1 720528
43	1	0	-2 /26501	2.500193	2 001266	100	6	0	4.249500	2 210786	-4. 501882
44	6	0	0 001122	2.000201	2. 331200 A A64706	100	6	0	2 244262	2.210700	-2 005165
40	6	0	0.001133	3. 990301	4.404/00	101	6	0	3.344203 0.370633	2. //0000 1. 74061E	-3. 690100
40	0	0	1. 000094	4. /09303	2. 231714	102	0	0	2.3/2033	1. /40010	-3. /31124
4/	0	0	2. 24///3	5. 031130	0. 021502	103	1	0	2. 443145	-0.419183	-4. 2/39/3
48	I	0	-0.949273	4. 104448	-1.591498	104	I	0	4. 933098	0.114255	-5.1//018
49	6	0	0.841603	5. 213366	-1.903253	105	1	0	5.42160/	2. /35932	-4. /41081
50	6	0	-0. 030/41	3.3/4489	5.2/9891	106	1	0	3. 235954	3.803882	-3.566130
51	1	0	-1.972089	2.394557	5. 387294	107	1	0	1.415026	1.833071	-3. 233207
52	1	0	1.807561	4. 389631	4.870880	108	6	0	1.407199	-0. 596905	4. 082150
53	1	0	2.466876	5. 194882	2.662623	109	6	0	0. 608932	-0. 852160	5. 198936
54	6	0	2.014349	5.776019	-1. 320134	110	6	0	0.670723	-2. 089323	5.836340
55	1	0	3. 140123	6.052542	0. 479167	111	6	0	1.519815	-3. 081562	5. 348292
56	1	0	0.671176	5. 318473	-2.971567	112	6	0	2. 286955	-2. 834787	4. 211949
57	1	0	0. 161116	3. 281306	6.345739	113	6	0	2.250816	-1. 584692	3. 573352
58	1	0	2.718101	6. 322059	-1.943745	114	16	0	3. 315484	-1.069606	2. 188776
59	6	0	-2.009430	-3. 247041	-1.582698	115	7	0	2.597410	-1.756104	0.813043
60	6	0	-1.054129	-4.045605	-0.912442	116	8	0	4, 641882	-1.654180	2.366229
61	6	0	-2.072071	-3. 246687	-2.996406	117	8	0	3, 134944	0.374310	2,066080
62	6	0	-0 933856	-4 072976	0 514631	118	1	0	1 388045	0 373250	3 599942
63	6	0	-0 142092	-4 864327	-1 681260	119	1	0	-0.052091	-0 072143	5 563062
64	6	Ő	-1 159471	-4 072654	-3 753568	120	1	Ő	1 589133	-4 052595	5 823958
65	6	0	-3 020747	-2 460021	-3 726326	120	1	0	2 704757	-2 772302	0.867150
66	6	0	0 008424	_1 951100	1 122020	121	1	0	1 562220	_1 /013/0	0.762036
67	1	0	-1 507000	-2 110620	1 100710	122	1	0	0.0502250	-2 200002	6 710400
60	6	0	0 020402	-5 661042	-0.002102	120	י ד	0	0.009320	2. 290993	2 700016
00	U C	0	0.020492	-0.001043	-0. 330192 0. 070770	124	/	0	3.0/3204	-3. 9/4034	J. 109010
09	6	U	-0.221369	-4.85///6	-3.0/6//2	125	ð	U	3.52808/	-4. /55420	4. 53/491
/0	6	0	-1.239322	-4. 0/1115	-5. 181458	126	8	0	3. 180383	-4. 111900	2.4884/3
/1	1	0	-3. 715453	-1.835976	-3. 176199						
72	6	0	-3. 063257	-2. 485110	-5. 095775						

7-2. Deprotonation of cation A (protonation of vinylferrocene): Cartesian coordinates

TS of the deprotonation of (S_p) -cation A by conjugate base (R)-2-

Optimization at the B3LYP/6-31G(d)

E(RB3LYP) = -4217.05232634 Hartree

Thermal correction to Gibbs Free Energy = 0.743203 Hartree

Sum of electronic and thermal Free Energies = -4216.309123 Hartree

Single point calculation at the M062X/6-311+g(d,p)

E(RM062X) = -4216.65624117 Hartree

-2. 891964

-4. 445727

1.488638

Center	Atomic	Atomic	Coord	dinates (Ang	stroms)
Number	Number	Туре	Χ	Υ	Ζ
1	15	0	0. 267923	0. 153221	0. 397147
2	8	0	0. 110240	0.957907	1.683790
3	8	0	0.978746	-1.264055	0.881450
4	8	0	1.469021	0.784152	-0. 541309
5	8	0	-0. 928138	-0. 070832	-0. 470808
6	6	0	2.786986	0.703672	-0. 137107
7	6	0	3. 445577	-0. 519573	-0. 179527
8	6	0	4. 749150	1.852667	0.637582
9	6	0	4. 795210	-0. 586953	0. 313128
10	6	0	3. 428584	1.917033	0.246343
11	6	0	5. 452707	0. 623866	0. 707435
12	6	0	1. 507223	-2. 072679	-0. 104701
13	6	0	2. 724441	-1. 728185	-0. 677454
14	6	0	1.317886	-4. 060945	-1. 438942
15	6	0	3. 222808	-2. 532746	-1.759718
16	6	0	0. 788819	-3. 252750	-0. 454517
17	6	0	2.511640	-3. 722456	-2. 125381
18	6	0	6. 790169	0. 571136	1. 184804
19	6	0	5. 504538	-1.810493	0.471706
20	6	0	6. 794853	-1.829835	0.95362
21	6	0	7. 453681	-0. 627763	1. 303201
22	6	0	4. 373317	-2. 184426	-2. 520970
23	6	0	3.002220	-4. 533032	-3. 184578
24	6	0	4. 131803	-4. 177661	-3. 884106
25	6	0	4.813906	-2.983186	-3. 553101
26	1	0	5. 262616	2. /6695/	0. 9243/1
27	1	0	0. /96//4	-4.9/4151	-1. /15528
28	1	0	7.275082	1.502336	1.468499
29	1	0	5.012487	-2. /42414	0.218976
30	1	0	7.309799	-2. //9651	1.071283
3 I 20	1	0	8.4/4034	-0. 656283	1.0/508
3Z 22	1	0	4.902000	-1.208000 E 420174	-2.28/03
33	1	0	2.400000	-0. 430174	-3. 439434
34 25	1	0	4.494109 E 601004	-4.802304	-4. 090900
30	I c	0	0, 400096	-2.089504	-4. 122144
30 27	Ŭ	0	-0.490080	-3. 023039	1 550472
37 20	0	0	-0.407390	4. 133040 _2 51/6/6	_0 /6027/
30 30	6	0	0 750122	_1 278250	0. +002/4 0. 20101/
39 40	6	0		4. 270009 -1 515666	2. 291310
40	6	0	-2 0/1666	-3 0/7/20	2. 1090/C
41	6	0	-1 821322	-2 982701	-1 787329
12	6	0	0 761354	_ <u>4</u> 770/16	3 566500
43	1	0	1 693121	-3 982388	1 827186
45	6	0	-1 6/0017	-5 063237	3 521400

6	0	-4. 177191	-3.866157	-0. 534915
1	0	-0.925187	-2. 610232	-2. 267937
6	0	-3. 024041	-2. 922955	-2. 442573
6	0	-0. 453588	-5. 176620	4. 194299
1	0	1.698849	-4. 875223	4. 107509
1	0	-2. 574018	-5.369001	3.987434
1	0	-3.812885	-4. 772351	1.968310
6	0	-4. 220031	-3. 378788	-1.814279
1	0	-5. 081617	-4. 219112	-0. 043791
1	0	-3.068098	-2. 523962	-3. 452665
1	0	-0. 432014	-5. 571912	5. 206344
1	0	-5. 161580	-3. 342194	-2. 356780
6	0	2.709583	3. 230185	0.216374
6	0	2.299197	3.835826	1. 426826
6	0	2.496245	3.885576	-1.018917
6	0	2.461536	3. 205674	2. 703034
6	0	1.678699	5. 141599	1.395473
6	0	1.861944	5. 183638	-1. 037864
6	0	2.898840	3. 322635	-2. 272195
6	0	2.070169	3.828253	3. 858688
1	0	2.887435	2. 210332	2.743265
6	0	1.287338	5.756726	2. 626152
6	0	1.476555	5.777123	0. 167617
6	0	1.655267	5.839277	-2. 291784
1	0	3. 382802	2.352176	-2. 278430
6	0	2. 682454	3.983273	-3. 453095
6	0	1.480915	5. 124633	3.824463
1	0	2. 199560	3. 324652	4.812898
1	0	0.831043	6.743418	2. 585397
1	0	1.010223	6.760550	0.149322
6	0	2.050583	5. 259486	-3. 466967
1	0	1.176094	6.815828	-2. 288571
1	0	2.994791	3. 530808	-4. 390513
1	0	1.180440	5.603898	4.752695
1	0	1.887566	5.769066	-4. 413013
26	0	-5. 578436	1.466639	-0. 478254
6	0	-4.642173	3. 110015	-1. 322469
6	0	-3.859019	0.941537	-1.442767
6	0	-3.565857	1.451775	-0. 120813
6	0	-4.080177	2.802287	-0.059119
6	0	-4. 498967	1.968671	-2. 173385
1	0	-5. 121338	4.042130	-1. 591841
1	0	-3. 572954	-0. 039605	-1.796370
1	0	-4. 044622	3. 458074	0. 799890
1	0	-4.844830	1.898345	-3. 196278
6	0	-3.046778	0.660548	0.939703
6	0	-6. 683048	-0. 233839	-0. 151828
6	0	-7. 309712	0.584464	-1. 137812

c	0	7 FOFCEA	1 050070	0 547000	100	1	0	6 140076	0 107405	1 000114
0	0	-7. 595654	1.852073	-0.547309	102	1	0	-0.1488/0	0. 19/485	1.983114
6	0	-7. 152854	1.816436	0.809742	103	6	0	-2. 528634	1.137102	2.163669
6	0	-6. 591884	0. 529959	1.053183	104	1	0	-2. 582870	0. 439848	3. 002586
1	0	-6. 322551	-1. 244148	-0. 295153	105	1	0	-1.299515	1.105935	1.928724
1	0	-7. 509618	0. 303380	-2. 163647	106	1	0	-2. 741403	2.173499	2. 429743
1	0	-8. 057999	2.695303	-1.043642	107	1	0	-2. 992309	-0. 405857	0.745126
1	0	-7.219016	2.627209	1.523295						
	6 6 1 1 1 1	6 0 6 0 1 0 1 0 1 0 1 0	$\begin{array}{ccccccc} 6 & 0 & -7.595654 \\ 6 & 0 & -7.152854 \\ 6 & 0 & -6.591884 \\ 1 & 0 & -6.322551 \\ 1 & 0 & -7.509618 \\ 1 & 0 & -8.057999 \\ 1 & 0 & -7.219016 \end{array}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6 0 -7.595654 1.852073 -0.547309 102 1 0 -6.148876 6 0 -7.152854 1.816436 0.809742 103 6 0 -2.528634 6 0 -6.591884 0.529959 1.053183 104 1 0 -2.582870 1 0 -6.322551 -1.244148 -0.295153 105 1 0 -1.299515 1 0 -7.509618 0.303380 -2.163647 106 1 0 -2.741403 1 0 -8.057999 2.695303 -1.043642 107 1 0 -2.992309 1 0 -7.219016 2.627209 1.523295	6 0 -7.595654 1.852073 -0.547309 102 1 0 -6.148876 0.197485 6 0 -7.152854 1.816436 0.809742 103 6 0 -2.528634 1.137102 6 0 -6.591884 0.529959 1.053183 104 1 0 -2.582870 0.439848 1 0 -6.322551 -1.244148 -0.295153 105 1 0 -1.299515 1.105935 1 0 -7.509618 0.303380 -2.163647 106 1 0 -2.992309 -0.405857 1 0 -8.057999 2.695303 -1.043642 107 1 0 -2.992309 -0.405857 1 0 -7.219016 2.627209 1.523295				

 TS of the deprotonation of (R_p) -cation A by conjugate base (R)-2⁻

Optimization at the B3LYP/6-31G(d)

E(RB3LYP) = -4217.05152780 Hartree

Thermal correction to Gibbs Free Energy = 0.744503 Hartree

Sum of electronic and thermal Free Energies = -4216.307025 Hartree

Single point calculation at the M062X/6-311+g(d,p)

E(RM062X) = -4216.65720497 Hartree

Center	Atomic	Atomic	Coord	dinates (Ang	stroms)
Number	Number	Туре	X	Y	Z
1	15	0	-0. 247238	0. 194468	-0. 329588
2	8	0	-0. 109465	1.013992	-1.605966
3	8	0	-0.869290	-1.251930	-0. 836599
4	8	0	-1.509185	0.764572	0.583943
5	8	0	0.925106	0.054977	0. 588875
6	6	0	-2.764616	0.777372	0.011524
7	6	0	-3. 457043	-0. 418442	-0. 124815
8	6	0	-4. 558475	2.049053	-0.955042
9	6	0	-4. 718297	-0. 404388	-0. 813731
10	6	0	-3. 312907	2.038039	-0. 363563
11	6	0	-5. 272229	0.852823	-1. 222145
12	6	0	-1.575523	-2. 043523	0.045424
13	6	0	-2.858668	-1.669437	0. 426521
14	6	0	-1.668055	-4. 061039	1. 348643
15	6	0	-3. 548654	-2. 475241	1.397584
16	6	0	-0.964954	-3. 257223	0. 475798
17	6	0	-2. 943184	-3. 693928	1.846533
18	6	0	-6. 523146	0.879339	-1.895945
19	6	0	-5. 432211	-1. 588368	-1.149434
20	6	0	-6. 635824	-1. 529621	-1.816815
21	6	0	-7. 196725	-0. 284377	-2. 185972
22	6	0	-4. 795069	-2. 101075	1.974155
23	6	0	-3. 619574	-4. 504229	2.798238
24	6	0	-4. 834419	-4. 122169	3. 317519
25	6	0	-5. 418183	-2. 900718	2.906707
26	1	0	-5. 003769	2.998797	-1. 240872
27	1	0	-1. 225988	-4. 996862	1.681428
28	1	0	-6.932997	1.843247	-2. 188711
29	1	0	-5. 011433	-2. 550905	-0. 882008
30	1	0	-7. 156905	-2. 449922	-2. 067121
31	1	0	-8. 149773	-0. 251637	-2. 706885
32	1	0	-5. 253501	-1.164698	1.678997
33	1	0	-3. 147587	-5. 430695	3. 117219
34	1	0	-5. 340008	-4. 746531	4. 049147
35	1	0	-6.366320	-2. 586720	3. 335219
36	6	0	0 385593	-3 683988	-0 010543

6	0	1.500671	-3. 620679	0.857208
6	0	-0. 569888	-4. 315346	-2. 229303
6	0	1.808108	-4. 727893	-1.742185
6	0	2.774169	-4. 149926	0. 422497
6	0	1. 430830	-3. 042651	2. 166356
6	0	-0. 406787	-4. 847690	-3. 481295
1	0	-1. 543142	-3.949469	-1.922008
6	0	1.935123	-5. 276922	-3. 056421
6	0	2.893408	-4. 686364	-0.862036
6	0	3.884368	-4. 121897	1. 324931
1	0	0. 496723	-2. 600285	2. 491487
6	0	2. 521067	-3. 025389	2.996888
6	0	0.862600	-5. 334866	-3. 904782
1	0	-1. 253046	-4. 898809	-4. 161039
1	0	2.908663	-5. 650387	-3. 366087
1	0	3.853397	-5. 085437	-1. 184582
6	0	3.764132	-3. 583263	2. 578278
1	0	4.827667	-4. 549865	0.991682
1	0	2. 439133	-2. 581471	3. 985518
1	0	0.972804	-5. 753692	-4. 901556
1	0	4. 612508	-3. 578714	3. 258355
6	0	-2. 586351	3. 318201	-0. 086908
6	0	-1.962256	4. 026123	-1.140334
6	0	-2. 575505	3.840622	1. 228514
6	0	-1.916007	3. 531877	-2. 484278
6	0	-1.327576	5. 297307	-0. 867534
6	0	-1.929467	5. 106585	1. 489913
6	0	-3. 196498	3. 170613	2.331110
6	0	-1.315059	4. 249117	-3. 485084
1	0	-2. 343467	2. 559942	-2. 696936
6	0	-0. 712891	6.013974	-1. 942951
6	0	-1.327831	5.800733	0. 436174
6	0	-1.929647	5. 627433	2.821789
1	0	-3. 691463	2. 222004	2. 155578
6	0	-3. 173840	3. 702772	3. 593668
6	0	-0. 710125	5. 510647	-3. 215980
1	0	-1.288763	3.847545	-4. 494405
1	0	-0. 250088	6.973708	-1.723423
1	0	-0.851850	6.759239	0.635387

0. 524219

-4. 224891

-1.310473

77	6	0	-2. 531512	4.948366	3.846558	93	6	0	2. 139352	2. 517972	-1. 335140
78	1	0	-1. 439725	6.581995	3.000741	94	1	0	1.694799	3.467199	-1.028376
79	1	0	-3. 650421	3. 170791	4. 412689	95	1	0	2.632478	2. 552224	-2. 307956
80	1	0	-0. 243082	6.067071	-4. 024662	96	1	0	2.389206	1.860339	0.695677
81	1	0	-2. 524699	5.355692	4.854123	97	6	0	6.066061	2. 248616	1.852145
82	26	0	5.705592	1.173624	0. 137364	98	6	0	7.162055	1.381046	1.567281
83	6	0	5.653895	-0. 331761	-1. 284564	99	6	0	7.678012	1.725378	0. 282055
84	6	0	4. 201264	-0. 157223	0.501256	100	6	0	6.905236	2.812875	-0. 227220
85	6	0	3. 797242	0.805791	-0. 502602	101	6	0	5.913391	3. 136167	0.742694
86	6	0	4.731505	0.694603	-1. 602416	102	1	0	5.457758	2. 234945	2.746816
87	6	0	5. 320300	-0. 860052	0.002392	103	1	0	7.524019	0. 584305	2. 203953
88	1	0	6. 486003	-0. 647273	-1.900326	104	1	0	8. 503514	1.240305	-0. 222208
89	1	0	3.667204	-0. 346761	1. 421647	105	1	0	7.040108	3. 297679	-1. 185130
90	1	0	4. 727095	1. 291989	-2. 503859	106	1	0	5. 158281	3.905465	0.644963
91	1	0	5.841980	-1.655610	0. 516414	107	1	0	1. 137332	1.826932	-1. 501687
92	6	0	2.776932	1.772838	-0.313650						

8. Dynamic Parallel Kinetic Resolution

8-1. Hydroamination of vinylferrocene (5)

Screening of reaction conditions is shown in Table S2.

entry	solvent	equivalent of 3g	% yield ^b	% ee ^c	
1 ^d	toluene	2.0	15	95	
2	toluene	2.0	24	94	
3	PhCl	2.0	91	96	
4	PhCl	3.0	77	96	
5	PhCl	4.0	89	94	
6	PhCF ₃	2.0	83	92	

^a Unless otherwise noted, all reactions were performed using 0.20 mmol of **5**, 5 mol% of catalyst **2** (G = 9-anthryl), X equivalent of **3g**, and MS 5A in the indicated solvent (0.2 M) at room temperature for 24 h. ^b Isolated yield. ^c Determined by chiral stationary phase HPLC analysis. ^d For 2 h (Fig. 3d).

To a solution of MS 5A (150 mg), **5** (42.4 mg, 200 μ mol), and H₂NNs (**3g**) (80.9 mg, 400 μ mol) in chlorobenzene (1 mL) was added (*R*)-**2** (5 mol%, 7.0 mg, 10 μ mol) at room temperature. The atmosphere was replaced with argon (×3), and the mixture was stirred at room temperature for 24 hours. The reaction mixture was quenched by NEt₃, and then passed through a pad of Al₂O₃ with EtOAc. After removing solvents in vacuo, the crude material was purified by flash column chromatography on silica gel (Hexane/EtOAc = 100/1-1/1

as eluent) to give **4g** in 91% yield as a brown solid. The enantiomeric excess of **4g** was determined by chiral stationary phase HPLC analysis (96% ee).

8-2. Substitution reaction of racemic 1

To a solution of MS 5A (150 mg), *rac*-1 (48.8 mg, 200 μ mol), and H₂NNs (**3g**) (80.9 mg, 400 μ mol) in chlorobenzene (1 mL) was added (*R*)-**2** (5 mol%, 7.0 mg, 10 μ mol) at room temperature. The atmosphere was replaced with argon (×3), and the mixture was stirred at room temperature for 24 hours. The reaction mixture was quenched by NEt₃, and then passed through a pad of Al₂O₃ with EtOAc. After removing solvents in vacuo, the crude material was purified by flash column chromatography on silica gel (Hexane/EtOAc = 100/1-1/1 as eluent) to give **4g** in 85% yield as a brown solid. The enantiomeric excess of **4g** was determined by chiral stationary phase HPLC analysis (95% ee).

9. Regeneration of 1 (formal dynamic kinetic resolution)

To a solution of vinylferrocene (5) (42.4 mg, 200 μ mol) in MeOH (4 mL) was added *p*-TsOH (10 mol%, 3.4 mg, 20 μ mol) at room temperature. The mixture was stirred at room temperature for 24 hours, and then the reaction mixture was quenched by NEt₃. The mixture was diluted with saturated aqueous NaHCO₃, and extracted with Et₂O (×3). The combined organic layers were washed with H₂O and brine, dried over Na₂SO₄, filtered, and concentrated. After purification by flash column chromatography on silica gel (Hexane/EtOAc = 50/1-4/1 as eluent), **1** was obtained in 92% yield as an orange oil.

10. Reaction of ferrocenyl derivative having different substituent

In order to enhance the utility of the developed DPKR, we attempted the reaction of ferrocenyl derivative methyl ether rac-S6 having ethyl substituent, instead of methyl substituent of 1, with NsNH2 3g was conducted. As shown in Table S3, entry 1, however, substitution product S7g was not formed at all under the optimized reaction conditions [(R)-2, chlorobenzene, MS 5A, rt] despite the complete consumption of starting methyl ether S6. Meanwhile demethoxylation product 1-propenyl ferrocene S8 was formed as the sole product. Similarly, the use of more nucleophilic TsNH₂ 3a than NsNH₂ 3g was also unsuccessful, affording S8 in a nearly quantitative manner (entry 2). These results suggest that the acidity of parent CPA (R)-2 (G = 9-anthryl) is insufficient to protonate S8. Therefore CPAs having strong acidity, such as triflylamide derivative (R)-S4 and bisphosphoric acid (R)-S5, were further investigated. Although, in the presence of MS 5A, a significant amount of unexpected dimer S9 was formed using (R)-S4 (G = 9-anthryl) even by using 3a (entry 3), desired substitution product S7a was obtained in fairly good yield without using MS 5A, albeit in a racemic form (entry 4). In order to improve the enantioselectivity of S7a, we further employed bisphosphoric acid (R)-S5 (G = 9-anthryl) (entries 5 and 6). Desired S7a was formed in moderate yield, irrespective of using MS 5A or not. However, enantioselectivity was not markedly improved. Currently, we have not succeeded in the formation of S7 in a highly enantioselective manner. The present intriguing DPKR is established by the well-balanced system between the deprotonation of cation A and the selective introduction of a nucleophile to enantiomeric cations A. Hence it is considered that optimization of CPAs and reaction conditions would be strictly required to achieve the efficient DPKR with high enantioselectivity for each substrate.

Table S3. Screening of reaction conditions using ferrocenyl derivative methyl ether S6^a

(R)-2 (G = 9-anthryl)

Fe	OMe , Et
rac-	S 6

CPAs (5 mol%) H₂NR (3) (2.0 equiv) MS 5A, PhCl (0.2 M), rt, 2-3 days

> **a**: R = Ts g: R = Ns

entry	CPAs	3	% conv.	% yield ^b			0/ f. C.7 6
				S7	S 8	S9	70 ee 01 S7
1	2	3g(R = Ns)	100	-	>98	-	-
2	2	3a (R = Ts)	100	<1	>99	-	-
3	S4	3 a	100	<5	4	45	-
4^d	S4	3 a	100	75 (67)	10	7	<1
5	S 5	3 a	100	39 (29)	34	2	15
6 ^d	S5	3 a	93	45 (21)	30	-	21

^a Unless otherwise noted, all reactions were performed using 0.20 mmol of rac-S6, 5 mol% of CPAs (G = 9-anthryl), 2.0 equiv. of 3, and MS 5A in chlorobenzene (0.2 M) at room temperature for 2-3 days. ^b Determined by crude ¹H NMR analysis (in CDCl₃) using 1,1-dibromomethane as the internal standard. Isolated yields are shown in parentheses. ° Determined by chiral stationary phase HPLC analysis. ^d Without using MS 5A.

(1-Methoxypropyl)ferrocene (S6): Orange oil; R_f = 0.74 (Hexane/EtOAc = 4/1); ¹H NMR (CDCl₃, 600 MHz), δ 1.02 (3H, t, *J* = 7.8 Hz), 1.73-1.81 (1H, m), 1.91-1.99 (1H, m), 3.29 (3H, s), 3.92 (1H, dd, *J* = 9.0, 1.8 Hz), 4.11-4.15 (8H, m), 4.19-4.20 (1H, m); ¹³C NMR (CDCl₃, 150.9 MHz), δ 10.6, 27.9, 56.0, 66.1, 67.2, 67.6, 68.1, 68.5, 80.4, 89.0; IR (ATR): 3095, 2969, 2931, 2875, 2816, 1462, 1320, 1236, 1120, 1105, 1094, 1079, 1024, 1000, 817 cm⁻¹; HRMS (FD+) Calcd for C₁4H₁₈FeO [M] 258.0707, Found 258.0704.

4-Methyl-N-(1-ferrocenylpropyl)benzenesulfonamide (S7a): Yellow solid (mp 163-169 °C); R_f = 0.40 (Hexane/EtOAc = 4/1); HPLC analysis Chiralpak IC-3 (Hexane/IPA = 90/10, 1.0 mL/min, 254 nm, 30 °C) 33.4 (major), 35.9 (minor) min, (21% ee); $[\alpha]^{24}_{D}$ = -1.7 (*c* 1.1, CHCl₃); ¹H NMR (CDCl₃, 600 MHz), δ 0.83 (3H, t, *J* = 7.8 Hz), 1.63-1.70 (1H, m), 1.76-1.83 (1H, m), 2.44 (3H, s), 3.91-3.94 (2H, m), 3.97-4.01 (1H, m), 4.06-4.09 (2H, m), 4.10-4.13 (5H, m), 4.73 (1H, d, *J* = 7.2

Hz), 7.32 (2H, d, *J* = 7.8 Hz), 7.80 (2H, d, *J* = 8.4Hz); ¹³C NMR (CDCl₃, 150.9 MHz), δ 10.2, 21.5, 28.9, 54.3, 66.5, 66.7, 67.8, 67.9, 68.6, 90.6, 127.1, 129.6, 138.3, 143.3; IR (ATR): 3398, 3296, 3086, 2965, 2927, 2873, 1597, 1456, 1411, 1378, 1328, 1161, 1093, 1002, 907, 814 cm⁻¹; HRMS (FD+) Calcd for C₂₀H₂₃FeNO₂S [M]⁺ 397.0799, Found 397.0798.

2-Propenylferrocene (S8): Orange oil; R_f = 0.40 (Hexane); ¹H NMR (CDCl₃, 600 MHz) for *E*-isomer (*major*), δ 1.73 (3H, dd, *J* = 6.6, 1.8 Hz), 4.08-4.11 (5H, m), 4.14 (2H, t, *J* = 1.8 Hz), 4.27 (2H, t, *J* = 1.8 Hz), 5.81 (1H, dq, *J* = 15.0, 6.6 Hz), 6.09 (1H, dd, *J* = 15.6, 1.8 Hz); ¹³C NMR (CDCl₃, 150.9 MHz) for *E*-isomer (*major*), δ 18.5, 66.2, 68.0, 68.96, 68.99, 84.4, 122.9, 127.6, one carbon was not found due to overlapping.; ¹H NMR (CDCl₃, 600

MHz) for *Z*-isomer (*minor*), δ 1.82 (3H, dd, *J* = 7.2, 1.8 Hz), 4.08-4.11 (5H, m), 4.19 (2H, t, *J* = 1.8 Hz), 4.33 (2H, t, *J* = 1.8 Hz), 5.57 (1H, dq, *J* = 11.4, 7.2 Hz), 6.07-6.12 (1H, m); ¹³C NMR (CDCl₃, 150.9 MHz) for *Z*-isomer (*minor*), δ 14.8, 68.2, 69.1, 123.5, 126.8, some carbons could not be assigned due to the low intensity of minor isomer.; IR (ATR): 3094, 2958, 2927, 2854, 1608, 1473, 1411, 1376, 1260, 1105, 1042, 1024, 1000, 958, 910, 815 cm⁻¹; HRMS (FD+) Calcd for C₁₃H₁₄Fe [M] 226.0445, Found 226.0440.

(2-methylpent-1-ene-1,3-diyl)diferrocene (S9): Orange oil; $R_f = 0.15$ (Hexane); ¹H NMR (CDCl₃, 600 MHz) for major isomer, $\delta 0.96$

(3H, t, *J* = 7.2 Hz), 1.53 (3H, d, *J* = 0.6 Hz), 1.58-1.66 (1H, m), 1.87-1.95 (1H, m), 3.07 (1H, dd, *J* = 11.4, 3.6 Hz), 4.05-4.18 (16H, m), 4.28-4.32 (2H, m), 5.99 (1H, s); IR (ATR): 3093, 2959, 2926, 2871, 1747, 1697, 1679, 1456, 1410, 1375, 1260, 1260, 1217, 1104, 1023, 999, 866 cm⁻¹; HRMS (FD+) Calcd for C₂₆H₂₈Fe₂ [M] 452.0890, Found 452.0889.

11. ¹H and ¹³C NMR spectra, HPLC trace

 ^1H NMR (C6D6, 600 MHz) and ^{13}C NMR (C6D6, 150.9 MHz) spectra of 1

 ^1H NMR (CDCl₃, 600 MHz) and ^{13}C NMR (CDCl₃, 150.9 MHz) spectra of 4g

 ^1H NMR (CDCl₃, 600 MHz) and ^{13}C NMR (CDCl₃, 150.9 MHz) spectra of 5

 ^1H NMR (CDCl₃, 600 MHz) and ^{13}C NMR (CDCl₃, 150.9 MHz) spectra of 4a

 ^1H NMR (CDCl₃, 600 MHz) and ^{13}C NMR (CDCl₃, 150.9 MHz) spectra of 4e

 ^1H NMR (CDCl₃, 600 MHz) and ^{13}C NMR (CDCl₃, 150.9 MHz) spectra of 4f

 ^1H NMR (CDCl₃, 600 MHz) and ^{13}C NMR (CDCl₃, 150.9 MHz) spectra of S $\pmb{3}$

 ^1H NMR (CDCl₃, 600 MHz) and ^{13}C NMR (CDCl₃, 150.9 MHz) spectra of S8

HPLC trace of 4g

S30

HPLC trace of 4a

HPLC trace of 4e

HPLC trace of 4f

S33

HPLC trace of S7a

