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Neural Network Architecture and Training Procedure 

The neural network architecture used in our work is HIPNN1 with tensor 
sensitivities.2  In particular, the network has 2 interaction blocks, each consisting of 1 
interaction layer, followed by 3 on-site layers, and a linear layer to form a hierarchical 
contribution to target energy.  In the HIP-loc model, localization weights are determined 
using linear layers in the same way as how atomic energy contributions are constructed.  
The target energy at each linear layer is computed as a sum over all atomic contributions. 
 The training procedure closely follows that described in Ref. 1.  In addition to 
training the model to molecular energies, we also trained to atomic forces, as this has 
been shown to improve energy predictions.3,4  The cost function reflects this additional 
information and consists of the root-mean-square error (RMSE) and mean-absolute error 
(MAE) of the singlet (S0) and triplet (T1) state energies as well as the RMSEs and MAEs 
of the atomic forces: 
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where angle brackets 〈	⋯ 〉	denote an average over the training batch, which was taken 
to be 512 structures.  Primed versus unprimed represents ML versus reference quantum 
mechanical quantities and the scaling factors were set to 𝜆$ = 1 10⁄  and 𝜆+⃗ = 1 30⁄ .  We 
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also included ℒ!" regularization (𝜆!" = 10-.) and ℒ# hierarchicality regularization (𝜆# =
10-/) to prevent overfitting.1  The factor of 1/3 is a normalization that reflects the three 
degrees of freedom in an atomic force.   

The dataset used to build and test the HIPNN and HIP-loc models was split using 
an 80-10-10 scheme, where 80% of the dataset was used for training, 10% for validation, 
and 10% for testing.  Additional training parameters include minimum and maximum 
number of epochs of 10 and 500, 𝑡01234564 = 10 epochs, and initial learning rate of 𝜂 =
10-7.  See Ref. 1 for more details of the training procedure including the gradient-based 
optimization with the Adam optimizer5 and annealing/early stopping algorithm. 

The cost function shown above was used to train both the HIPNN and HIP-loc 
models described in the main text.  The only difference between the models is that HIPNN 
trains directly to the S0 and T1 state energies and atomic forces, whereas for HIP-loc, the 
triplet state energy is represented as the energy of the singlet plus the singlet-triplet 
energy gap,	𝐸* = 𝐸( + ∆𝐸, where now ∆𝐸 is computed as a weighted sum over atomic 
contributions.  This feature of HIP-loc encompasses the novelty of the approach because 
unlike total energy, which is an extensive property that increases with system size, the 
energy gap is a non-extensive quantity that does not vary with molecule size in a clear 
way (Fig. S2).  Furthermore, the singlet-triplet transition may be attributed to only a 
handful of atoms or localized regions of the molecule which, by way of the HIP-loc 
localization weights, can be accounted for by weighting atomic contributions 
disproportionately. 
 
Localization Metric 

To quantify the agreement in localization computed using HIP-loc and DFT, we 
introduce a localization metric, 𝜂, defined as the distance between the centers of 
localization computed using HIP-loc weights (�⃗�89:-;<6)	and DFT spin density (𝑟=>?) divided 
by the relative size of the molecule (𝑅):  
 

𝜂 = 	
|𝑟89:-;<6 −	𝑟=>?|

𝑅 	 (𝑆2) 

 
 
The center of localization is defined as 
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where the coefficient 𝛼% 	is the “density” contribution on the 𝑖-th atom and 𝑟% is the position 
of the atom.  For computing 𝑟=>?, these coefficients are taken to be atom-centered 
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densities (𝑞%) approximated from Hirshfeld charge partitioning,6 while for 𝑟89:-;<6, they are 
the localization weights (𝑤%).  Finally, we quantify the relative size of the molecule (𝑅) with 
the radius of gyration (𝑅A), assuming atoms are of equal mass, 
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where the center of mass or, more accurately, the center of atomic distribution is defined 
as 
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For 𝜂 ≪ 1,  the centers of localizations are in close proximity to one another, whereas 
𝜂~1 or greater signifies that the centers of localization differ by approximately the radius 
of the molecule and therefore there is very little or no agreement in the predicted 
localization. 
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GDB # of 
Compounds 

2 2 

3 6 

4 24 

5 108 

6 727 

7 4701 

8 3625 

9 2241 

10 1770 

11 900 

12 449 
Table S1: Number of molecules sampled from each GDB dataset.  Here, GDB# means the 
sampled compounds are made up of # heavy atoms. 
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Figure S1:  Energies as a function of number of atoms (including H) for all molecules in the 
dataset.  (a) Triplet (ET1), (b) singlet (ES0), and (c) absolute |ΔE| energies are shown.  Each box 
plot shows the median (orange line), first (𝑄!) to third (𝑄") quartiles (blue box), and whiskers (black 
lines), capped at 𝑄!/" ∓ 1.5(𝑄" − 𝑄!).  Unlike ET1 and ES0 that decrease with molecule size, ΔE 
does not.  The extensivity assumption of HIPNN does not apply for ΔE, prompting development 
of HIP-loc. 



 

5 

 
Figure S2:  Distributions of molecule size for the dataset used to train the ML models as well as 
the extensibility test set with (top panel) and without (bottom panel) hydrogen included.  Statistical 
values of the distributions including the minimum value, 25th percentile (Q1), 50th percentile (Q2), 
75th percentile (Q3), and maximum value are shown to the right of the corresponding panel. 
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Figure S3:  Histograms of percentage error in ΔE energy.  Data are of thermal conformers 
sampled around the triplet equilibria of molecules in the held-out test set (left panels) and the 
extensibility set (right panels) using HIPNN (top panels) and HIP-loc (bottom panels).  In each 
panel, the first (𝑄!) to third (𝑄") quartiles (orange shaded regime) and median (𝑄$) (black dashed 
line) are labeled and whose values are explicitly shown.  HIP-loc outperforms HIPNN, especially 
on the extensibility set. 
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Figure S4: Parity plots of predicted versus true ΔE energy on thermal conformers sampled around 
the singlet-optimized (left panels) and triplet-optimized (right panels) geometries of the full dataset 
using HIPNN (top panels) and HIP-loc (bottom panels).  Prediction errors are expressed in root-
mean-square error (RMSE) and mean-absolute error (MAE). 
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Figure S5: Parity plots of predicted versus true ΔE energy on thermal conformers sampled around 
the singlet-optimized (left panels) and triplet-optimized (right panels) geometries of the held-out 
test set using HIPNN (top panels) and HIP-loc (bottom panels).  Prediction errors are expressed 
in root-mean-square error (RMSE) and mean-absolute error (MAE). 
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Figure S6: Root-mean-square deviation (RMSD) between DFT and HIP-loc for triplet-optimized 
geometries on a subset of thermal conformers in the held-out test set. 
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Figure S7: S0 energies (top panel), T1 energies (middle panel), and singlet-triplet energy gaps 
(bottom panel) on a subset of molecules from the held-out test set optimized using DFT (x-axes) 
and HIP-loc (y-axes).  All molecules were optimized on the T1 PES. 
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Figure S8: Absolute error in ΔE energy as a function of molecule size (including H).  Data are of 
thermal conformers sampled around the singlet-optimized (left panels) and triplet-optimized (right 
panels) geometries of the extensibility set using HIPNN (top panels) and HIP-loc (bottom panels).  
Each box plot shows the median (orange line), first (𝑄!) to third (𝑄") quartiles (blue box), and 
whiskers (black lines), capped at 𝑄!/" ∓ 1.5(𝑄" − 𝑄!).  Perfect agreement between ML and 
reference DFT is labeled with a red dashed line.  HIP-loc outperforms HIPNN, especially as 
molecule size increases. 
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Figure S9: Percentage error in ΔE energy as a function of molecule size (including H).  Data are 
of thermal conformers sampled around the singlet-optimized (left panels) and triplet-optimized 
(right panels) geometries of the extensibility set using HIPNN (top panels) and HIP-loc (bottom 
panels).  Each box plot shows the median (orange line), first (𝑄!) to third (𝑄") quartiles (blue box), 
and whiskers (black lines), capped at 𝑄!/" ∓ 1.5(𝑄" − 𝑄!).  Perfect agreement between ML and 
reference DFT is labeled with a red dashed line.  HIP-loc outperforms HIPNN, especially as 
molecule size increases. 
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Figure S10: Parity plots of predicted versus true ΔE energy on thermal conformers sampled 
around the singlet-optimized (left panels) and triplet-optimized (right panels) geometries of the 
extensibility set using HIPNN (top panels) and HIP-loc (bottom panels).  Predicted ΔE energies 
are significantly improved with HIP-loc.  Prediction errors are expressed in root-mean-square error 
(RMSE) and mean-absolute error (MAE). 
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Figure S11: Parity plots of predicted versus true ΔE energy for a group of chemically similar 
molecules of the extensibility set, each overlaid with the results of all molecules in the extensibility 
set.  The optimized structure is labeled with a red square and thermal conformers are labeled with 
blue circles.  Prediction errors are expressed in root-mean-square error (RMSE) and mean-
absolute error (MAE). 
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Figure S12:   Parity plots of predicted versus true ΔE energy for a group of chemically similar 
molecules of the extensibility set, each overlaid with the results of all molecules in the extensibility 
set.  The optimized structure is labeled with a red square and thermal conformers are labeled with 
blue circles.  Prediction errors are expressed in root-mean-square error (RMSE) and mean-
absolute error (MAE).  
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Figure S13: Parity plots of predicted versus true ΔE energy for a group of chemically similar 
molecules of the extensibility set, each overlaid with the results of all molecules in the extensibility 
set.  The optimized structure is labeled with a red square and thermal conformers are labeled with 
blue circles.  Prediction errors are expressed in root-mean-square error (RMSE) and mean-
absolute error (MAE).  



 

17 

 
Figure S14: Parity plots of predicted versus true ΔE energy for a group of chemically similar 
molecules of the extensibility set, each overlaid with the results of all molecules in the extensibility 
set.  The optimized structure is labeled with a red square and thermal conformers are labeled with 
blue circles.  Prediction errors are expressed in root-mean-square error (RMSE) and mean-
absolute error (MAE). 
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Figure S15: Parity plots of predicted versus true ΔE energy for a group of chemically similar 
molecules of the extensibility set, each overlaid with the results of all molecules in the extensibility 
set.  The optimized structure is labeled with a red square and thermal conformers are labeled with 
blue circles.  Prediction errors are expressed in root-mean-square error (RMSE) and mean-
absolute error (MAE). 
 
  



 

19 

 
Figure S16: Parity plots of predicted versus true ΔE energy for a group of chemically similar 
molecules of the extensibility set, each overlaid with the results of all molecules in the extensibility 
set.  The optimized structure is labeled with a red square and thermal conformers are labeled with 
blue circles.  Prediction errors are expressed in root-mean-square error (RMSE) and mean-
absolute error (MAE). 
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Figure S17: A comparison of DFT spin density and HIP-loc localization weights for a select 
molecule of the extensibility set.  Conformers with the best and worst predicted ΔE energy, 
measured in absolute error (Abs. err.), are shown.  Predominant localities associated with the 
spin transitions are circled.  Localities inferred by HIP-loc weights are in qualitative agreement 
with reference DFT spin densities for the best performing conformer.  The root-mean-square error 
(RMSE) and mean-absolute error (MAE) over all 27 conformers are also shown. 
  

DFT HIP-loc

Abs. err.  ∆EHIP-loc =  1.31 kcal/mol

Abs. err.  ∆EHIP-loc =  9.76 kcal/mol
RMSE over all conformations = 5.67 kcal/mol
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Figure S18: A comparison of DFT spin density and HIP-loc localization weights for a select 
molecule of the extensibility set.  Conformers with the best and worst predicted ΔE energy, 
measured in absolute error (Abs. err.), are shown.  Predominant localities associated with the 
spin transitions are circled.  Localities inferred by HIP-loc weights are in qualitative agreement 
with reference DFT spin densities for the best performing conformer.  The root-mean-square error 
(RMSE) and mean-absolute error (MAE) over all 27 conformers are also shown.  

DFT HIP-loc

Abs. err.  ∆EHIP-loc =   3.84 kcal/mol

Abs. err.  ∆EHIP-loc = 27.53 kcal/mol

RMSE over all conformations = 17.04 kcal/mol
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Figure S19: A comparison of DFT spin density and HIP-loc localization weights for a select 
molecule of the extensibility set.  Conformers with the best and worst predicted ΔE energy, 
measured in absolute error (Abs. err.), are shown.  Predominant localities associated with the 
spin transitions are circled.  Localities inferred by HIP-loc weights are in qualitative agreement 
with reference DFT spin densities for the best performing conformer.  The root-mean-square error 
(RMSE) and mean-absolute error (MAE) over all 27 conformers are also shown. 
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Figure S20: A comparison of DFT spin density and HIP-loc localization weights for a select 
molecule of the extensibility set.  Conformers with the best and worst predicted ΔE energy, 
measured in absolute error (Abs. err.), are shown.  Predominant localities associated with the 
spin transitions are circled.  Localities inferred by HIP-loc weights are in qualitative agreement 
with reference DFT spin densities for the best performing conformer.  The root-mean-square error 
(RMSE) and mean-absolute error (MAE) over all 27 conformers are also shown. 
 
 
 
 

DFT HIP-loc

Abs. err.  ∆EHIP-loc =   0.10 kcal/mol

Abs. err.  ∆EHIP-loc =   14.84 kcal/mol
RMSE over all conformations = 5.67 kcal/mol
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Figure S21: Dihedral scans of molecules with a single torsional angle.  Absolute error (Abs. err.) 
in ΔE computed with HIPNN and HIP-loc (left panels).  Participation ratio (PR) estimated using 
atom-centered DFT spin density (right panels, left axis) and HIP-loc localization weights (right 
panels, right axis) as a function of dihedral angle.  HIP-loc outperforms HIPNN in predicting ΔE 
for all molecules.  For the top two molecules with relatively low ΔE errors, the trend in the PRs 
computed with DFT and HIP-loc qualitatively agree with one another.  By contrast, the trends in 
PR differ significantly between DFT and HIP-loc for the bottom two molecules and coincidently 
the errors in ΔE are relatively large for HIP-loc, albeit considerably lower than the errors without 
accounting for localization (HIPNN). 
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Figure S22: Scan of the central dihedral angle in a representative molecule in Fig. 4 of the main 
text.  Participation ratios (PRs) are computed using atom-centered DFT density (top panel) and 
HIP-loc localization weights (bottom panel) as a function of dihedral angle.  For both DFT and 
HIP-loc, the PR in the planar structure (dihedral of 0° and 180°) is delocalized across atoms on 
each ring, whereas the PR in the non-planar structure (dihedral of 90°) is localized to more atoms 
exclusively on the larger ring.  The net effect is an increase in PR for the non-planar conformation.  
Compared to DFT, HIP-loc infers more delocalized transitions, but qualitative agreement between 
the methods’ PRs is observed.  An animated figure covering all molecular conformations can be 
found in the ESI. 
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Figure S23: Scan of the central dihedral angle in a representative molecule in Fig. S19 of the 
main text.  Participation ratios (PRs) are computed using atom-centered DFT density (top panel) 
and HIP-loc localization weights (bottom panel) as a function of dihedral angle. An animated figure 
covering all molecular conformations can be found in the ESI. 
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Figure S24: Scan of the central dihedral angle in a representative molecule in Fig. S19 of the 
main text.  Participation ratios (PRs) are computed using atom-centered DFT density (top panel) 
and HIP-loc localization weights (bottom panel) as a function of dihedral angle. An animated figure 
covering all molecular conformations can be found in the ESI. 
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Figure S25: Scan of the central dihedral angle in a representative molecule in Fig. S19 of the 
main text.  Participation ratios (PRs) are computed using atom-centered DFT density (top panel) 
and HIP-loc localization weights (bottom panel) as a function of dihedral angle. An animated figure 
covering all molecular conformations can be found in the ESI. 
 


