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1. General methods

Small organic molecules, other reagents, and solvents were purchased from commercial 

suppliers (Manchester Organics, Sigma Aldrich, Alfa Aesar, Fluorochem, Ark Pharm, Apollo, 

Combi-Blocks, TCI Europe, Carbosynth, TRC Canada, etc.) and used with no further 

purification. PCN1 and CTF2 were prepared using previous methods. Water for the hydrogen 

evolution experiments was purified using an ELGA LabWater system with a Purelab Option S 

filtration and ion exchange column (ρ = 15 MΩ cm) without pH level adjustment. 

2. Photocatalytic tests

High-Throughput Hydrogen Evolution Experiments. Agilent Technologies vials (10 mL) 

were charged with 5.0 ± 0.1 mg of small molecules and transferred to a Chemspeed Accelerator 

SWING robot for liquid transfer. Degassed jars with triethylamine, methanol, and a stock 

solution of H2PtCl6 were loaded into the automated liquid handling platform. The system was 

then closed and purged for 4 h with nitrogen. The automated liquid handling platform then 

dispensed the liquids as specified, which were degassed aqueous H2PtCl6 solution (1.7 mL, 3wt % 

Pt to small molecules), triethylamine (1.7 mL), and methanol (1.7 mL). The pH of the solution 

was around 11.5. The vials were then capped using the capper/crimper tool under inert 

conditions. Once capped, the samples were taken out, shaken briefly, and transferred to an 

ultrasonic bath to disperse the photocatalysts. An Oriel Solar Simulator 94123A with an output 

of 1.0 sun was then used to illuminate the vials on a Stuart roller bar SRT9 for the time specified 

(classification IEC 60904-9 2007 spectral match A, uniformity classification A, temporal 

stability A, 1600 W xenon light source, 12 × 12 in.2 output beam, air mass 1.5 G filter, 

350−1000 nm). After photocatalysis, the gaseous products of the samples were measured on an 

Agilent gas connected to a headspace sampler (HS) and Shimadzu GC-HS. No hydrogen 

evolution was observed for mixtures of water/triethylamine/methanol or 

water/triethylamine/methanol/H2PtCl6 under the identical conditions.
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Figure S1. (a) Molecular structures for the selected molecules. (b) Selected examples of molecular 
photocatalysts showing improved hydrogen evolution after incorporating carbonyl groups or heavy atoms; 
both functionalities are known to facilitate the formation of triplet excited states, although it should be 
noted that the introduction of these moieties will affect other photophysical properties, too. 

Figure S2. Hydrogen evolution rates (HERs) plotted as the function of their corresponding yields of the 
triplet states for a selection of the molecules in the library, as measured experimentally and reported in the 
literature. The raw data for making this plot and the relevant references are given in the supporting 
spreadsheet file. 
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Figure S3. HER measurement repeats for a selected subset of molecules: (a) 14 molecules with HERs 
spanning the whole activity range covered by the complete library of 572 molecules; (b) 14 molecules 
with HERs below 1 µmol h-1. For each molecule, the average HER from multiple (at least 2) repeats are 
shown, together with error bars indicating the maximum value and the minimum value among the repeats. 
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3. Computational details
3.1. Structure generation

To generate atomistic structures for the molecules, the simplified molecular-input line-entry 
system (SMILES) representation of each molecule was converted to a 3D structure using Open 
Babel.3The gen3d operation was used, which starts with 250 steps of steepest-descent geometry 
optimization with the MMFF94 forcefield, followed by 200 iterations of a Weighted Rotor 
conformational search, before a final 250-step conjugated-gradient geometry optimization. The 
resulting 3D structure was subjected to a further conformer search, generating 50 conformers. 
The lowest-energy conformer from the search was finally geometry-optimized at the B3LYP/6-
31G* level of theory; this structure was then used as the starting geometry for the molecule in all 
following computational and machine-learning studies. 

3.2. Molecular descriptors
A total of 13 descriptors were calculated for all of the 572 molecules: IP, EA, EA*, IP*, Sr, Δσ, 

HCT, ΔD, Eeb, Esol, Eb, ΔES1→S0, and ΔES1→T1. 

IP, EA, EA* and IP* are standard reduction potentials of half-reactions for free electrons/holes 

and excitons and were calculated using (TD-)DFT (see Methods section for details). The exciton 

binding energy, Eeb, was calculated as Eeb = IP - EA* or Eeb = IP* - EA. It is clear that IP and IP* 

are related to EA* and EA, respectively, through Eeb. Therefore, only EA, EA* and Eeb were 

included in the descriptor vectors for machine learning. 

Sr, Δσ, HCT, and ΔD are descriptors from quantitative characterization of hole and electron 

distributions in real space, performed for the first singlet (S1) state on the optimized, ground-state 

geometry, using the Multiwfn software. Briefly:

Sr index quantifies the overlap between the hole distribution (ρhole(r)) and the electron 

distribution (ρelectron(r)). Sr varies between 0 (no overlap) and 1 (complete overlap); the larger the 

value is, the greater the extent of overlap is.

Δσ index is the difference between σelectron and σhole, given by 

Δσ index = | σelectron | - | σhole |, 
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where σelectron and σhole are a measure of the sparsity of ρelectron(r) and ρhole(r), respectively. Δσ 

index can be positive or negative for different molecules. 

HCT is the average of σelectron and σhole in the charge-transfer (CT) direction, given by

HCT = | H · uCT |,

where H = (σelectron + σhole)/2 and uCT is the unit vector along the CT direction. 

ΔD is the difference in dipole moment between the excited-state and the ground-state of the 

molecule—i.e., ΔD = Dexcited-state – Dground-state—a measure of the extent of charge redistribution 

between the two states. 

ΔES1→S0 is the energy difference between the S1 state and the S0 state. ΔES1→S0 is also referred to 

as the calculated optical gap in this study. 

ΔES1→T1 is the energy difference between the S1 state and the first triplet (T1) state. The smaller 

the ΔES1→T1 value, the larger the spin-orbital coupling, and ultimately the more probable and 

faster the intersystem crossing. 

Esol is an approximation of the solvation energy, simply given by 

Esol = Esolvated – Egas, 

where Esolvated and Egas are the total energy of the molecule in solvation (water, PCM/SMD) and 

gas phase, respectively. The molecular geometry was relaxed in each state. 

Eb is the binding energy between two molecules of the same identity—intended as an indicator 

of the molecule’s propensity for aggregating—which is given by

Ebinding = Edimer – 2×Emonomer, 

where Edimer and Emonomer are the total energy of the dimer and that of an isolated molecule, 

respectively. Stable binding conformations of a particular dimer were searched by a grid-based 

approach, together with the Amber forcefield, as implemented in the Autodock software.4 The 

most stable dimer from the Autodock search was then geometry-optimized using the GFN-xTB 

semiempirical tight binding method,5 with implicit water solvation. The isolated molecule in 

water solvation was geometry-optimized using the same computational settings. 
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Figure S4. One-to-one correlation between all pairs of the calculated molecular descriptors and the 

measured HER: HER in µmol h-1; EA* and EA in eV; Sr in a.u.; Δσ and HCT in Å; ΔD in a.u.; Eeb, Esol, Eb, 

ΔES1→S0 and ΔES1→T1 in eV. 
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Figure S5. Comparison of TD-DFT calculated optical gap (ΔES1→S0) with experimental UV-vis  data 𝜆 1𝑠𝑡𝑚𝑎𝑥

for a selected subset of 46 molecules. The raw data and source references are available in the supporting 
spreadsheet file. 

Figure S6. Comparison of TD-B3LYP-calculated and experimental ΔES1→T1 values for 22 out of the 572 
molecules studied in this work. The dashed line indicates a linear fit to the data, with the resulting 
equation and goodness of fit displayed. 
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Figure S7. Calculated values of the Λ diagnostic tests6 for the vertical S1 states of all 572 molecules at the 
B3LYP/6-31G* level of theory. The blue, dashed line indicates the Λ value of 0.3, an empirical threshold 
below which potential TD-DFT charge-transfer problems may be expected. 

Figure S8. Comparison of EA* (a), EA (b) and ΔES1→S0 (c) of all 572 molecules using different levels of 
theory: (TD-)B3LYP/6-31G* or (TD-)CAM-B3LYP/Def2-SVP. 
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3.3. The chemical space of the photocatalyst library as encoded by different 
representations 

Figure S9. 2D UMAP embedding of the chemical space of the photocatalyst library, as defined by 
Morgan fingerprints, together with Tanimoto index as the similarity measure, in (a) or defined by the (TD)-
DFT-calculated molecular descriptors, together with Euclidean distance as the similarity measure, in (b). 
Symbol size denotes the experimental hydrogen evolution rate; symbol colour denotes the k-means 
cluster as shown in Figure 2a in the main text, where the chemical space of the library is defined by the 
SOAP descriptors, together with a REMatch kernel as the similarity measure. 
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Figure S10. Distribution of the molecular photocatalyst library (572 molecules) as a function of the 
number of rotatable bonds within individual molecules: the number of molecules (a) or the hydrogen 
evolution rate (HER; b) is plotted against the number of rotatable bonds. For the ten molecules 
highlighted in red in (b), the effect of different conformers representing the same molecule on the 
resultant SOAP descriptors for the molecule was investigated. For each of these molecules, a conformer 
search was performed to screen all torsion angles that were not in a ring or with terminal hydrogen atoms. 
A Boltzmann jump search method was used, together with filtering the generated conformers by imposing 
the minimum variation in the root-mean-square of all sampled torsion angles being larger than 15°. After 
filtering, the five lowest-energy conformers were selected for representing the molecule for calculations 
of SOAP descriptors. The COMPASSIII force field was used. All conformer searches were performed in 
BIOVIA Materials Studio 2020. All the conformers thus generated were then geometry-optimized using 
B3LYP/6-3G*. Different 2D UMAP embeddings using the different conformers of the ten molecules are 
shown in Figure S11. 
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Figure S11. Aligned UMAP plots for the 572-molecule library, with the ten highlighted molecules (in 
blue) represented by the different conformers of them (see Figure S10) in the different plots; all the other 
molecules (in grey) were represented by the same molecular geometries across the different UMAP plots. 
The molecular geometries used throughout this work are shown in the UMAP plot in the top-left panel, 
while each of the other five panels shows a UMAP plot using a different local-minimum conformer for 
the ten highlighted molecules. This comparison shows that the 2D UMAP embeddings of the SOAP space 
of the 572 molecules are not markedly sensitive to the choice of molecular conformation for the ten 
highlighted molecules that are among the molecules in the library having a large number of rotatable 
bonds. 



14

3.4. Machine learning with molecular descriptors 

Table S1: Classifier threshold and model hyperparameters for each model after optimization.
Model Binary Threshold Binary hyperparameters Ternary threshold Ternary hyperparameters

GP 1.07 nu = 0.25

length_scale=251

 (1.07, 12.5) nu = 0.25

length_scale=251

RF 1.07 n_estimators = 10

max_features = 11

min_samples_split = 2

min_samples_leaf = 1

max_depth = 5

(1.07, 12.5) n_estimators = 10

max_features = 11

min_samples_split = 2

min_samples_leaf = 1

max_depth = 5

GB-DT 1.07 learning_rate=0.001

n_estimators = 10000

min_samples_split = 73

min_samples_leaf = 1

max_depth = 5

(1.07, 12.5) learning_rate=0.001

n_estimators = 10000

min_samples_split = 73

min_samples_leaf = 1

max_depth = 5

SVM 1.07 gamma = 1.945

C = 15.695

(1.07, 12.5) gamma = 1.945

C = 15.695

MLP 1.07 epochs = 150

batch_size = 16

dropout = 0.05

dense_nodes = [16, 9]

(1.07, 12.5) epochs = 150

batch_size = 16

dropout = 0.05

dense_nodes = [16, 9]

KNN 1.07 n_neighbors = 2 (1.07, 12.5) n_neighbors = 2

Table S2. Area under the curve for the receiver operating characteristic curve (AUC ROC) and 
the precision-recall curve (AUC PR) for all the models across a 10-fold cross-validation.

Model AUC ROC AUC PR
KNN 0.749 0.417
GP 0.837 0.525
RF 0.852 0.606

GB-DT 0.875 0.629
SVM 0.871 0.563
MLP 0.691 0.354
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Figure S12. Confusion matrix for binary and ternary classifiers based on gradient boosted decision trees.

Figure S13. Confusion matrix for binary and ternary classifiers based on Gaussian processes.
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Figure S14. Confusion matrix for binary and ternary classifiers based on multilayer perceptrons.

Figure S15. Confusion matrix for binary and ternary classifiers based on random forests.
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Figure S16. Confusion matrix for binary and ternary classifiers based on support vector machines.

Figure S17. Confusion matrix for binary and ternary classifiers based on k-nearest neighbours. 
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Figure S18. Plot of feature importance for the classifiers based on gradient boosted decision trees.

Figure S19. Plot of feature importance for the classifiers based on Gaussian processes.
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Figure S20. Plot of feature importance for the classifiers based on multilayer perceptrons.

Figure S21. Plot of feature importance for the classifiers based on random forests.
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Figure S22. Plot of feature importance for the classifiers based on support vector machines.

Figure S23. Plot of feature importance for the classifiers based on k-nearest neighbours. 
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3.5. Machine learning with molecular fingerprints and SOAP descriptors

Table S3. Binary and ternary classification metrics across models based molecular fingerprints 
or SOAP descriptors, obtained by 10-fold cross-validation procedures. 

Representation Model Binary a Ternary a
Accuracy F1-score MCC f Accuracy F1-score

Fingerprints b KNN d 0.88 0.68 0.40 0.88 0.63
Fingerprints SVM e 0.77 0.48 -0.04 0.77 0.34

SOAP c KNN d 0.88 0.73 0.43 0.88 0.60
SOAP SVM e 0.75 0.47 -0.06 0.84 0.32

a The class thresholds were the same as those in Table S1. 
b Morgan fingerprints with a radius = 2, generated by RDKit (http://www.rdkit.org); similarity measure: 
Tanimoto index. 
c SOAP descriptors with r = 6.0 Å, n = 8, l = 6, generated by DScribe (https://singroup.github.io/dscribe); 
similarity measure: regularized entropy match (REMatch) kernel. The similarity matrix for the 572 
molecules used here is the same as the one used for Figure 2a in the main text. 
d n_neighbors = 5; metric = precomputed. 
e C = 15.6; metric = precomputed. 
f The Matthews correlation coefficient, calculated directly from the binary confusion matrix (Figures 
S24–S27). 

http://www.rdkit.org/
https://singroup.github.io/dscribe
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Figure S24. Confusion matrix for binary and ternary classifiers based on k-nearest neighbours and 

Morgan fingerprints. 

Figure S25. Confusion matrix for binary and ternary classifiers based on support vector machines and 

Morgan fingerprints. 
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Figure S26. Confusion matrix for binary and ternary classifiers based on k-nearest neighbours and SOAP 

descriptors. 

Figure S27. Confusion matrix for binary and ternary classifiers based on support vector machines and 

SOAP descriptors. 
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4. Virtual experiments with the 572 molecules

Figure S28. Virtual experiments comparing an adaptive ML approach and a random sampling approach: 
(a) Molecules were encoded by molecular descriptors (MD) and trained with MLP models; (b) molecules 
were encoded by SOAP descriptors and trained with KNN models. Active samples: HER > 1.07 µmol h-1; 
high-activity samples: HER > 12.5 µmol h-1. 200 in silico experiments, each with a different random 
starting point, were carried out for each case to obtain the average results shown. Each batch comprised 
16 samples (molecules) – note that the experiments shown in the main text (Fig. 4) uses a batch size of 48, 
rather than 16. The performance increase attained for the smaller batch size of 16 is marginal. 
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5. Blind tests for 96 molecules, unseen by the models trained on the 572-
molecule library 

5.1. Molecules encoded by molecular optoelectronic descriptors

Figure S29. Confusion matrix for binary and ternary classifiers based on gradient boosted decision trees.

Figure S30. Confusion matrix for binary and ternary classifiers based on Gaussian processes.
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Figure S31. Confusion matrix for binary and ternary classifiers based on multilayer perceptrons.

Figure S32. Confusion matrix for binary and ternary classifiers based on random forests.
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Figure S33. Confusion matrix for binary and ternary classifiers based on support vector machines.

Figure S34. Confusion matrix for binary and ternary classifiers based on k-nearest neighbours. 
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5.2. Molecules encoded by SOAP descriptors 

Figure S35. Confusion matrix for binary and ternary classifiers based on k-nearest neighbours and SOAP 

descriptors. 
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6. Experimental investigation of the effects of the amount of Pt cocatalyst 
and the choice of sacrificial agent on HERs
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Figure S36. Measured HER as a function of the loading amount of Pt cocatalyst. Conditions: 5 mg 

molecular catalyst, triethylamine/methanol/H2O (1:1:1 vol%) mixture, 0-5 wt% Pt (formed in situ), solar 

simulator irradiation (spectral range of source: 350 nm-1000 nm).
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Figure S37. Measured HER as a function of the chosen sacrificial agent. 5 mg molecular catalyst, 3 wt% 

Pt (formed in situ), solar simulator irradiation (spectral range of source: 350 nm-1000 nm). Triethylamine 

conditions: Triethylamine/MEOH/H2O (1:1:1 vol%) mixture; methanol conditions: MEOH/H2O (1:2 

vol%) mixture; ascorbic acid condition: 0.1 M ascorbic acid in MEOH/H2O (1:2 vol%) mixture.
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