A Combined Computational and Experimental Study of Methane Activation during Oxidative Coupling of Methane (OCM) by Surface Metal Oxide Catalysts

Daniyal Kiani, Sagar Sourav, Israel E. Wachs* and Jonas Baltrusaitis*

Department of Chemical and Biomolecular Engineering, Lehigh University, B336 Iacocca Hall, 111 Research Drive, Bethlehem, PA 18015, USA

* Corresponding author: job314@lehigh.edu, iew0@lehigh.edu

Table S1. Calculated values for $\mu O(T, p)$ in eV, referenced to 300K, 101325Pa (1atm) highlighted in red.

	1.00									1.00E
	E-10	0.1	0.15	0.2	0.25	0.3	0.35	0.4	1	+10
300	-0.30	-0.03	-0.02	-0.02	-0.02	-0.02	-0.01	-0.01	0.00	0.30
350	-0.41	-0.10	-0.09	-0.09	-0.08	-0.08	-0.08	-0.08	-0.06	0.29
400	-0.52	-0.16	-0.16	-0.15	-0.15	-0.14	-0.14	-0.14	-0.12	0.27
450	-0.63	-0.23	-0.22	-0.22	-0.21	-0.21	-0.21	-0.21	-0.19	0.26
500	-0.75	-0.30	-0.29	-0.29	-0.28	-0.28	-0.28	-0.27	-0.25	0.24
600	-0.98	-0.44	-0.43	-0.43	-0.42	-0.42	-0.41	-0.41	-0.38	0.21
700	-0.98	-0.59	-0.58	-0.57	-0.56	-0.56	-0.55	-0.55	-0.52	0.17
800	-1.21	-0.74	-0.72	-0.71	-0.71	-0.70	-0.69	-0.69	-0.66	0.13
900	-1.45	-0.89	-0.87	-0.86	-0.85	-0.85	-0.84	-0.83	-0.80	0.09
1000	-1.69	-1.04	-1.02	-1.01	-1.00	-0.99	-0.99	-0.98	-0.94	0.05
1100	-1.93	-1.20	-1.18	-1.16	-1.15	-1.14	-1.14	-1.13	-1.09	0.00
1200	-2.18	-1.35	-1.33	-1.32	-1.31	-1.30	-1.29	-1.28	-1.23	-0.04
1300	-2.43	-1.51	-1.49	-1.47	-1.46	-1.45	-1.44	-1.44	-1.38	-0.09

Figure S1. $\mu O(T,P)$ taken from table S1, calculated according to eq(4) shown in experimental section.

The positive values for " O_2 balance" in **Table S2** indicate that oxygen needs to be added into the system to form the respective Mn_aO_b cluster, while a negative value signifies release of O_2 from the solid to the gas-phase.

Cluster	a = Mn atoms in the	b = O atoms in the	Fraction of	O_2 balance =
Stoichiometry	cluster	cluster	$Mn_2O_3 =$	b-48(a/32)
			(a/32)	
MnO	1	1	0.03125	-0.5
MnO ₂	1	2	0.03125	0.5
MnO ₃	1	3	0.03125	1.5
Mn ₂ O	2	1	0.0625	-2
Mn ₂ O ₂	2	2	0.0625	-1
Mn ₂ O ₃	2	3	0.0625	0
Mn ₂ O ₄	2	4	0.0625	1
Mn ₂ O ₅	2	5	0.0625	2

Bader charge-oxidation state correlation using bulk reference compounds. Often, calculated values of Bader charges, especially transitional metals, are reported in the literature as misnomers for formal oxidation states. While Bader charge and oxidation state are indirectly related, Bader charges cannot be explicitly used as oxidation state. To ascertain oxidation state of a metal center from its Bader charge, the calculated data needs to be calibrated with compounds where formal oxidation state is experimentally known. Using the calibrated correlation then, one can back out oxidation state of a metal center from its Bader charge value, which has been demonstrated implicitly in various literature reports.¹⁰ This approach of data calibration was used to generate linear correlations, shown below, for both Mn and W centers, so their formal oxidation state under various conditions could be ascertained from the Bader charge calculation. Reference compounds used for each case are labelled on the plot in **Figure S2**.

Figure S2. Linear correlation of calculated Bader charge values with formal oxidation state of transition metals using bulk reference compounds.

Table S3. Summar	y of various	pathways	studied for	CH ₄ dissociation	on over Na ₂ WO	surface sites.
------------------	--------------	----------	-------------	------------------------------	----------------------------	----------------

CH ₄ dissociation pathways over Na ₂ WO ₄ /SiO ₂ catalyst`					
,	TS	Final	Descriptor		

Table S4. Summary of various pathways studied for CH_4 dissociation over Mn_2O_5 - Na_2WO_4 surface sites.

	CH ₄ dissociation pathways over Mn ₂ O ₅ -Na ₂ WO ₄ /SiO ₂ catalyst`: WO ₅ moiety						
#	TS	Final	Descriptor				

Optimized POSCAR of Mn₂O₅-Na₂WO₄/SiO₂

SiOHW NaMn				
1.000000000000000			~~	
15.20800000000000		<i>3000000</i> 000000000000000000000000000000	00	
0.000000000000000		30000000	00	
0.00000000000000		20000000	99	
SI O H W	Na Mn			
24 64 14	1 2 2			
Selective dynamics				
Direct		_		
0.9999066279999980	0.250084330000000 0.32970785700000	25 F	F	F
0.3332397420000035	0.250084330000000 0.32970785700000	25 F	F	F
0.6665735139999995	0.250084330000000 0.32970785700000	25 F	F	F
0.9999066279999980	0.7500833439999965 0.32970785700000	25 F	F	F
0.3332397420000035	0.7500833439999965 0.32970785700000	25 F	F	F
0.6665735139999995	0.7500833439999965 0.32970785700000	25 F	F	F
0.1665728560000019	0.250084330000000 0.39569214299999	80 F	F	F
0.4999066279999980	0.250084330000000 0.39569214299999	80 F	F	F
0.8332404000000011	0.250084330000000 0.39569214299999	80 F	F	F
0.1665728560000019	0.7500833439999965 0.39569214299999	80 F	F	F
0.4999066279999980	0.7500833439999965 0.39569214299999	80 F	F	F
0.8332404000000011	0.7500833439999965 0.39569214299999	80 F	F	F
0.1532268054213830	0.9967523311787900 0.46342507446531	30 T	Т	Т
0.4879422218042109	0.9974407486753947 0.46351695411076	58 T	Т	Т
0.8193699529735241	0.9968319137017616 0.46280627222681	40 T	т	т
0.1793058062795225	0.5043578577506977 0.46457812992989	74 T	т	т
0.5102187620006120	0.5041927658054774 0.46182095571830	22 T	Т	Т
0.8426041478787027	0.5025772817025000 0.46248935683263	43 T	Т	Т
0.9892929645618622	0.9010562125522554 0.51555778038233	26 T	Ť	т
0.3234166717243880	0.9052169313888783 0.51489945291101	69 T	Ť	T
0.6570521189737022	0.9076782773248198 0.51897591705976	25 T	Ť	Ť
0 0054896735953065	0 5969326676573772 0 51390796671690	-э : аа т	Ť	Ť
0 3426610528344796	0 6059482016061821 0 51802519582920	30 Т 33 Т	Ť	, T
0 6714991466819171	0 5946038828055293 0 51721742498939	70 T	Ť	т
0 5577081614557571	0 52/3663579551026 0 657/263038939/	, с т 21 т	Ť	T
0 5114062682617941	0 7110963957290792 0 59384777350518	<u></u> і 19 Т	Ť	т Т
0 6712020141537920	0 7481070138235566 0 65309090566928	15 Т 26 Т	Ť	т Т
0.0/1202017100/020	0,,+010,01002000000000000000000000000000	50 I		

			_	_	_
0.7459980031478608	0.9917209788932340	0.6626507496394041	T	T	Т
0.8274751546374404	0.8060297169546118	0.6072580795792533	Т	Т	Т
0.9721541290000033	0.1250850699999972	0.2967157140000012	F	F	F
0.0276591269999997	0.3750835909999992	0.2967157140000012	F	F	F
0.3054865860000007	0.1250850699999972	0.2967157140000012	F	F	F
0.3609928979999992	0.3750835909999992	0.2967157140000012	F	F	F
0.6388203579999967	0.1250850699999972	0.2967157140000012	F	F	F
0.6943266700000024	0.3750835909999992	0.2967157140000012	F	F	F
0.9721541290000033	0.6250830970000010	0.2967157140000012	F	F	F
0.0276591269999997	0.8750826039999993	0.2967157140000012	F	F	F
0.3054865860000007	0.6250830970000010	0.2967157140000012	F	F	F
0.3609928979999992	0.8750826039999993	0.2967157140000012	F	F	F
0.6388203579999967	0.6250830970000010	0.2967157140000012	F	F	F
0.6943266700000024	0.8750826039999993	0.2967157140000012	F	F	F
0.0832397420000035	0.2084547330000035	0.36269999999999967	F	F	F
0.2499066279999980	0.2917139280000001	0.36269999999999967	F	F	F
0 1165735139999995	0.2084547330000035	0.36269999999999967	F	F	F
0.583239742000035	0.2004347550000055	0.36269999999999997	F	F	F
0.3032337420000033	0.2084547330000035	0.3626999999999999999	5	5	5
0.1455000275555500	0.2084347330000033	0.30209999999999999907		г С	- -
0.9103/33139999999	0.291/139280000001	0.30209999999999999999	г г	г г	г г
0.0832397420000035	0.7084537470000001	0.3626999999999999999	F F	r r	r r
0.2499066279999980	0.79171294199999966	0.362699999999999999	г г	г г	- -
0.4165/35139999995	0.7084537470000001	0.362699999999999999	F	F	
0.5832397420000035	0.79171294199999966	0.362699999999999967	F _	F	+
0.7499066279999980	0./08453/4/0000001	0.36269999999999967	F	F	F
0.9165735139999995	0.7917129419999966	0.36269999999999967	F	F	F
0.1803880974439807	0.1250385524243995	0.4319223440802347	Т	Т	Т
0.1533858960287589	0.3743642848600928	0.4329864643084775	Т	Т	Т
0.5169524158426810	0.1248384898947137	0.4317339619186455	Т	Т	Т
0.4829403232376848	0.3737579362334742	0.4317242006050535	Т	Т	Т
0.8491731693124009	0.1259435548661472	0.4321572716972852	Т	Т	Т
0.8137210852486447	0.3743426602613980	0.4318925443226291	Т	Т	Т
0.1922798097670295	0.6245441425204703	0.4274528860832518	Т	Т	Т
0.1389926864801154	0.8754875263136341	0.4270224076210525	Т	Т	Т
0.5302757977268016	0.6224270907924492	0.4250225326535784	Т	Т	Т
0.4743103305639451	0.8737873167745747	0.4280163025467374	Т	Т	Т
0.8594128970590660	0.6240826046018739	0.4269585622579868	Т	Т	Т
0.8049510725429343	0.8752011898692018	0.4266663023177699	т	Т	Т
0.0616032809748930	0.0039326235984447	0.4940455304121585	т	Т	Т
0.2280709629079354	0.9672279799837966	0.5028427626915075	Т	Т	т
0.3947098838713288	0.0093422901673748	0.4919525105781233	Т	Т	Т
0.5615106165227814	0.9641065381969085	0.5036895347212393	Ť	Т	Ť
0 7273815352718955	0 0063650597205651	0 4922616925852594	Ť	т	Ť
0 8941599358585250	0 9615052963847148	0 5018467150671952	Ť	Ť	Ť
0 1002320491231714	0 5346066241777052	0 5023932943485079	т Т	т	Ť
0 2675647616818182	0.5017716045951133	0.1071561198153635	Ť	Ť	Ť
0.20700+7010010102	0.5017710045551155	0 1987769517001011	т Т	י ד	т Т
0.4017375002020575	0.J+0J0JJ0ZIJ4JJJ2 0./03/1520/0152711	0 1028100812512520	т Т	י ד	т Т
0.02C0CCC00C1C1C1C00C1C20	0.4304102500102/11	0.49201900499212999	т Т	т Т	1 - T
0.0000/2020002038	0,1006056427127127	0.202210412/433100	ו ד	ו ד	1 -
0.93385262945/6042	0.490085643/13/1/9	0.4928055380493154	1	1	1

0.9995672101362985	0.7494565638228394	0.4937632176999003	Т	Т	Т
0.9950564357315343	0.8876849337344197	0.5741062019086840	Т	Т	Т
0.3314026214241181	0.7547103754511255	0.4933317241002513	Т	Т	Т
0.3335550461648111	0.8978344377817749	0.5728907284468079	Т	Т	Т
0.6642584483457057	0.7505253120245214	0.5020192184169403	Т	Т	Т
0.6667260139778293	0.9155092641003364	0.5765014802014008	Т	Т	Т
0.9833161514753925	0.6038030177681009	0.5719337283023265	Т	Т	Т
0.3482760058060350	0.6226518790011610	0.5748812569596282	Т	Т	Т
0.3600077287429926	0.7148893706922479	0.6647031200187925	Т	Т	Т
0.4571564998027569	0.9316070491133459	0.6429528523372738	Т	Т	Т
0.6734925507395602	0.5792829089434477	0.5757751142218268	Т	Т	Т
0.9366136240000031	0.1554933079999969	0.2701178570000025	F	F	F
0.9751808259999990	0.4167210789999984	0.2840807139999981	F	F	F
0.2699736980000011	0.1554696359999994	0.2701382139999993	F	F	F
0.3085132819999998	0.4167220650000019	0.2840807139999981	F	F	F
0.6032976070000018	0.1554785129999985	0.2701307139999969	F	F	F
0.6418325879999998	0.4167329140000007	0.2840771429999975	F	F	F
0.9366418990000014	0.6554676639999997	0.2701389289999980	F	F	F
0.9751663600000029	0.9167309420000009	0.2840775000000022	F	F	F
0.2699644919999997	0.6554765400000022	0.2701314290000028	F	F	F
0.3085152550000032	0.9167191060000022	0.2840810710000028	F	F	F
0.6033081269999983	0.6554686500000031	0.2701385709999968	F	F	F
0.6418470540000030	0.9167210789999984	0.2840807139999981	F	F	F
0.9370657765877155	0.8861482815335364	0.5901160927725044	Т	Т	Т
0.0012684999754811	0.6897596956007064	0.5852640079882363	Т	Т	Т
0.4064800213067699	0.7980229958050487	0.6157519282677413	Т	Т	Т
0.3975635739783385	0.5015493057527109	0.6377618729824945	Т	Т	Т
0.8313157653449252	0.5842250477547424	0.5875029276123769	Т	Т	Т
0.6008541985120175	0.6352965010988001	0.6230112561895851	Т	Т	Т
0.7345182862766747	0.8721123825800773	0.6253228052671211	Т	Т	Т