Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2021

Electronic Supplementary Information

An Amplification-Free Ultra-Sensitive Electrochemical CRISPR/Cas

Biosensor for Drug-Resistant Bacteria Detection

Akkapol Suea-Ngam, Philip D. Howes* and Andrew J. deMello*

Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences,

ETH Zürich, Vladimir-Prelog-Weg1,8093Zürich, Switzerland.

Scheme S1 Schematic of the fluorometric assay for the CRISPR/Cas biosensor.

Figure S1. Fluorometric signal of 1 nM and 50 pM *mecA* compared to the negative control (i.e. without the *mecA* gene target).

Figure S2 Electrochemical reduction optimization for E-Si-CRISPR as function of (a) applied voltage (-100 to -800 mV), and (b) electrodeposition time (0 to 5 minutes).

Figure S3 Thiolated ssDNA length optimization on the electrode surface for E-Si-CRISPR, studied from 10 to 40 nt.

Figure S4 Thiolated ssDNA concentration optimization on electrode surface for E-Si-CRISPR, studied from 0.01 to 50 μ M. The ssDNA was modified and the surface passivated by MCH later.

Figure S5 Trans-cleavage period optimization of the lysed MRSA for E-Si-CRISPR, studied from 10 to 80 minutes.

Figure S6 Electrochemical signal of spiked MRSA cells in human serum with concentration of ca. 10^2 and 10^3 cells per detection using optimized condition as used in Figure 5b.

Name	Oligonucleotide Sequence		
LF	5' AGATTGGGATCATAGCGTCAT 3'		
LB	5' TTGAGGGTGGATAGCAGTACC 3'		
up mec A	5'-TCT TCA TGT TGG AGC TTT TTA TCG <u>TAA A</u> -3'		
down mecA	5'- <u>TTT A</u> CG ATA AAA AGC TCC AAC ATG AAG A-3'		
mmPAM	5' TCTTCATGTTGGAGCTTTTTATCG <u>TATA</u> -3'		
mmT1	5' TCTTCATGTTGGAGCTTTTTATCT <u>TAAA</u> -3'		
mmA5	5' TCTTCATGTTGGAGCTTTTAATCG <u>TAAA</u> -3'		
mmG10	5' TCTTCATGTTGGAGGTTTTTATCG <u>TAAA</u> -3'		
10nt	5' AAAAAAAAA-3'		
20nt	5' ΑΛΑΑΑΑΑΑΤΤΑΑΑΑΑΑΑΑ-3'		
30nt	5' ΑΑΑΑΑΑΑΑΑΑΑΑΑΑΤΤΤΑΑΑΑΑΑΑΑΑΑ.3'		
40nt	5' ΑΛΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΤΤΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑ		
FAM Probe	FAM-TTAATT-BHQ1		
gRNA	5'-uaa uuuu cau cua agu gua gaucga uaa aaa gcu cca aca ug-3'		

Table S1. PCR primers for mecA amplification, and the oligonucleotides for E-Si-CRISPR

Table S2. A comparison of reported electrochemical techniques for CRISPR/Cas biosensors.

Year	Enzyme	Signal	Target	LoD	Electrochemical	Assay	Ref
		Amplification			method	Time (h)	
2019	Cas12a	-	HPV-16	50 pM	SWV	2	1
2019	Cas13a	HRP/AntiFAM	miRNA-19b	10 pM	CA	4	2
2021	Cas13a	Catalytic hairpin assembly	miRNA-21	2.6 fM	DPV	2	3
2020	Cas12a	Catalytic hairpin assembly	HPV-16 and -18	30 pM	DPV	1.5	4
2021	Cas12a	Rolling circle amplification	АТР	0.46 pM	SWV	5	5
2021	Cas13a	Catalytic hairpin DNA circuit	NSCLC-related RNAs	0.5 fM	SWV	1	6
2021	Cas12a	Recombinase- assisted amplification	Listeria monocytogenes	0.68 aM	SWV	1.5	7
2021	Cas12a	-	MRSA	3.5 fM	SWV	1.5	This work

SWV: square wave voltammetry, CA: chronoamperometry, DPV: differential pulse voltammetry

References

- 1. <u>https://doi.org/10.1002/ange.201910772</u>
- 2. https://doi.org/10.1002/adma.201905311
- 3. <u>https://doi.org/10.1016/j.talanta.2020.121878</u>
- 4. https://doi.org/10.1021/acssensors.9b02461
- 5. https://doi.org/10.1021/acs.analchem.1c00805
- 6. <u>https://doi.org/10.1016/j.bios.2021.113027</u>
- 7. https://doi.org/10.1016/j.bios.2021.113073