Electronic Supporting Information for

Defining the conditions for the development of the emerging class of Fe^{III}-based MRI contrast agents

Zsolt Baranyai,^[a] Fabio Carniato,^[b] Alessandro Nucera,^[b] Dávid Horváth,^[a,c] Lorenzo Tei,^[b] Carlos Platas-Iglesias^{*[c]} and Mauro Botta^{*[b]}

[a]	Dr. Z. Baranyai
	Bracco Research Centre
	Bracco Imaging S.p.A.
	Via Ribes 5, 10010, Colleretto Giacosa (Italy)
[b]	Prof. F. Carniato, A. Nucera, Prof. L. Tei, Prof. M. Botta
	Dipartimento di Scienze e Innovazione Tecnologica
	Università del Piemonte Orientale "A. Avogadro",
	Viale T. Michel 11, 15121 Alessandria, Italy
	Email: mauro.botta@uniupo.it
[c]	D. Horváth, Department of Physical Chemistry, University of Debrecen, H-4010, Debrecen, Egyetem tér 1., Hungary
[d]	Prof. C. Platas-Iglesias
	Centro de Investigacións Científicas Avanzadas (CICA) and Departamento de Química, Facultade de Ciencias
	Universidade da Coruña, 15071 A Coruña, Galicia, Spain
	Email: carlos.platas.iglesias@udc.es

Contents

Synthesis of Fe(III) chelates	3
Characterization techniques	3
Computational details	4
Equilibrium properties of Fe(EDTA) ⁻ and Fe(CDTA) ⁻	5
Figure S3. Species distribution of Fe ³⁺ -EDTA system ([Fe ³⁺]=[EDTA]=1.0 mM, 298 K, 0.15 M NaNO ₃).	11
Figure S4. Species distribution of Fe ³⁺ -CDTA system ([Fe ³⁺]=[CDTA]=1.0 mM, 298 K, 0.15 M NaNO ₃).	11
Kinetic studies	11
Redox stability	15
Figure S11. ¹ H NMRD profiles at different temperatures (283, 298 and 310 K) of Fe(CDTA) ⁻ ; [Fe ³⁺] 4.87 mM, pH 6.98	
Figure S12. ¹ H NMRD profiles at different temperatures (283, 298 and 310 K) of Fe(EDTA) ⁻ ; [Fe ³⁺] 8.98 mM, pH 5.3.	

Figure S13. Structure of the [Fe(H ₂ O) ₆] ³⁺ ·12H ₂ O system optimized at the TPSSh/Def2-TZVP level. The Fe-O bond distance is 2.031 Å.
Figure S14. Structure of the [Fe(EDTA)(H ₂ O)] ⁻ ·2H ₂ O (CT) system optimized at the TPSSh/Def2-TZVP level
Figure S15. Structure of the [Fe(EDTA)(H ₂ O)] ⁻ ·2H ₂ O (PB) system optimized at the TPSSh/Def2-TZVP level
Figure S16. Structure of the [Fe(CDTA)(H ₂ O)]-·2H ₂ O (CT) system optimized at the TPSSh/Def2-TZVP level
Figure S17. Structure of the [Fe(CDTA)(H ₂ O)] ⁻ ·2H ₂ O (PB) system optimized at the TPSSh/Def2-TZVP level
Figure S18. ¹ H NMRD profiles at different temperatures (283, 298 and 310 K) of Fe(DTPA) ²⁻ ; $[Fe^{3+}] = 5.31 \text{ mM}$, pH 7.08
Table S2. Calculated r_{FeO} and r_{FeH} distances and hyperfine coupling constants (A_O/\hbar and A_H/\hbar) obtained with DFT calculations and ZFS parameters obtained with CASSF/NEVPT2 calculations. ^[a]
Table S4. Bond distances [Å] of the metal coordination environment obtained with DFT calculations (TPSSh/Def2-TZVP). ^[a]
Table S5. Optimized Cartesian coordinates obtained for $[Fe(H_2O)_6]^{3+.12H_2O}$ with DFT calculations (0 imaginary frequencies)
Table S6. Optimized Cartesian coordinates obtained for [Fe(EDTA)(H ₂ O)] ⁻ ·2H ₂ O (capped trigonal prism, CTP) with DFT calculations (0 imaginary frequencies)
Table S7. Optimized Cartesian coordinates obtained for [Fe(EDTA)(H ₂ O)] ⁻ ·2H ₂ O (pentagonal bipyramidal, PB) with DFT calculations (0 imaginary frequencies)
Table S8. Optimized Cartesian coordinates obtained for [Fe(CDTA)(H ₂ O)] ⁻ ·2H ₂ O (capped trigonal prism, CTP) with DFT calculations (0 imaginary frequencies)
Table S9. Optimized Cartesian coordinates obtained for [Fe(CDTA)(H ₂ O)]-·2H ₂ O (pentagonal bipyramidal, PB) with DFT calculations (0 imaginary frequencies)
References

Synthesis of Fe(III) chelates

 $[Fe(H_2O)_6]^{3+}$: the solution was prepared by dissolving 3.1 mg of FeCl₃·6H₂O in 2 mL of HClO₄ 1 M. The solution was stirred at room temperature for few minutes to promote the complete dissolution of the salt.

Fe(EDTA): the complex was purchased from Sigma Aldrich. The solution used for the relaxometric and NMR analyses was prepared by dissolving the solid in water at pH 5.33.

Fe(CDTA): 4.5 mg of commercially available *trans*-1,2-Cyclohexylenedinitrilotetraacetic Acid (CDTA) were dissolved in 2 mL of milli-Q water and the pH was corrected to 2. A stoichiometric amount of $FeCl_3 \cdot 6H_2O$ was added to the ligand solution. The pH was again correct to 2.5 and the mixture was stirred at room temperature for 18 h. Finally, the pH was increased to 7 with diluted NaOH solution (0.1 M) to promote the precipitation of the free Fe³⁺. The solution was then centrifuged and filtered.

MS (ESI): m/z calcd for C₁₄H₁₈FeN₂O₈: 398.04; found: 400.21 (M + 2H⁺)

 $Fe(DTPA)^{2-}$: 11.6 mg of commercially available Diethylenetriaminepentaacetic acid were dissolved in 3.3 mL of milli-Q water and the pH was correct to 2.4 with nitric acid (0.1 M). An equimolar amount of $Fe(NO_3)_3 \cdot 9H_2O$ was added to the solution. The pH was adjusted to 1.7 with diluted NaOH. After 2h, the pH of solution was increased to 7 to favor the precipitation of free Fe³⁺. Finally, the solution was centrifuged and filtered.

MS (ESI): m/z calcd for $C_{14}H_{18}FeN_3O_{10}$: 444.04; found: 447.26 (M + 3H⁺).

Characterization techniques

Mass spectrometry: The mass spectra, obtained through the MS-ESI technique, were recorded using the Waters SQD 3100 Mass Detector.

Relaxometric analysis: the ¹H $1/T_1$ NMRD profiles were obtained with a fast-field cycling Stelar SmartTracer relaxometer (Mede, Pavia, Italy) varying the magnetic-field strength from 0.00024 to 0.25 T (0.01 – 10 MHz range). The $1/T_1$ values are measured with an absolute uncertainty of ±1%. Temperature was controlled with a Stelar VTC-91 airflow heater equipped with a calibrated copper–constantan thermocouple (uncertainty of ±0.1 K). Data at high fields (0.5–3T, corresponding to 20–120 MHz proton Larmor frequency) were collected with a High Field Relaxometer (Stelar) equipped with the HTS-110 3T Metrology Cryogen-free Superconducting Magnet. The measurements were performed with a standard inversion recovery sequence (20 experiments, 2 scans) with a typical 90° pulse width of 3.5 μ s, and the reproducibility of the data was within ±0.5%.

The Fe^{III} concentration was estimated by ¹H-NMR (Bruker Advance III Spectrometer equipped with a wide bore 11.7 T magnet) measurements using Evans's method.¹

¹⁷O NMR measurements: the spectra were acquired on a Bruker Avance III spectrometer (11.7 T) using a 5 mm probe under temperature control. An aqueous solution of the complexes (≈ 5 mM for [Fe(EDTA)]⁻ and [Fe(CDTA)]⁻ and 39 mM for [Fe(H₂O)₆]³⁺) was enriched to reach 2.0% of the ¹⁷O isotope (Cambridge Isotope). The transverse relaxation rates were measured from the signal width at half-height as a function of temperature in the 278-350 K range.

Computational details

 $[Fe(H_2O)_6]^{3+.12H_2O}$, $[Fe(EDTA)(H_2O)]^{-.2H_2O}$ The geometries of and [Fe(CDTA)(H₂O)]⁻·2H₂O were optimized using density functional theory (DFT) calculations with the TPSSh exchange correlation functional,² which belongs to the group of hybrid meta-GGA functionals, in conjunction with the Def2-TZVP basis set.³ As demonstrated for Mn(II) complexes,⁴ the inclusion of a few second-sphere water molecules is required for a better description of the distance between the metal ion and the coordinated water molecule, as well as the ¹⁷O *A/ħ* values of coordinated water molecules. Bond distances of the metal coordination environments are in good agreement with crystallographic data (Table S3). Geometry optimizations were followed by frequency calculations that confirmed the nature of the optimized structures are true energy minima on the potential energy surfaces. The calculation of hyperfine coupling constants was performed using the TPSSh functional, the aug-ccpVTZ-J⁵ basis set for Fe and the EPR-III⁶ basis set for all other atoms. The output of the calculations provided the isotropic hyperfine coupling constants A_{iso} , which are related to the A/\hbar values obtained from NMR measurements by $A/\hbar = A_{iso} \times 2\pi$. Bulk solvent effects were considered throughout with the integral equation formalism of the polarized continuum model (IEF-PCM).⁷ These calculations were performed with the Gaussian 09 program package (revision E.01).8

The geometries optimized as described above were used for state averaged complete active space self-consistent field (CASSCF) calculations,⁹ which were carried out using the ORCA4 program (version 4.2.0).¹⁰ Solvent effects (water) were incorporated using the SMD

solvation model.¹¹ The active space consisted in the five 3d electrons of Fe distributed over the five metal-based d orbitals [CAS(5,5)], using 1 sextet, 24 quartet and 75 doublet roots. These calculations used the Def2-TZVP basis set and were accelerated with the resolution of identity (RI) approximation¹² employing the Def2/JK¹³ auxiliary basis set. Dynamic correlation was considered with the fully internally contracted variant of N-valence state perturbation theory (FIC-NEVPT2).¹⁴ Spin-orbit coupling was considered in the framework of quasi-degenerate perturbation theory (QDPT).¹⁵ Zero field splitting (ZFS) parameters were obtained within the effective Hamiltonian approximation. The axial (D) and rhombic (E) ZFS parameters are related to the energy of the ZFS Δ by the following expression:¹⁶

$$\Delta = \sqrt{\frac{2}{3}D^2 + 2E^2}$$
[S1]

Equilibrium properties of Fe(EDTA)⁻ and Fe(CDTA)⁻

Experimental

Materials: The chemicals used for the experiments were of the highest analytical grade. Fe(NO₃)₃ was prepared by dissolving Fe₂O₃ (99.9%, Fluka) in 6M HNO₃ and evaporating the excess acid. The solid Fe(NO₃)₃ was dissolved in 0.1 M HNO₃ solution. The concentration of the Fe(NO₃)₃ solution was determined by using excess of the standardized Na₂H₂EDTA solution. The excess of the Na₂H₂EDTA was measured with standardized ZnCl₂ solution and *xylenol orange* as indicator. The H⁺ concentration of the Fe(NO₃)₃ solution was determined by pH potentiometric titration in the presence of excess Na₂H₂EDTA. The concentration of the H₄CDTA, Na₂H₂EDTA and H₂HBED solutions (*Sigma*) was determined by pH-potentiometric titrations in the presence of a 40-fold excess of Ca²⁺. The pH-potentiometric titrations were made with standardized 0.2 M NaOH.

Equilibrium measurements: The stability and protonation constants of Fe^{III} complexes formed with EDTA and CDTA ligands were determined by pH-potentiometric and spectrophotometric studies. The protonation and dimerization constants of the Fe(EDTA)⁻ and the Fe(CDTA)⁻ complexes were determined using pH-potentiometry by titrating the pre-prepared complexes from pH=1.7 to pH=12 with 0.2 M NaOH ([FeL]=0.01 M). For the pH measurements and titrations, *Metrohm 888 Titrando* titration workstation *Metrohm-6.0234.110* combined electrode was used. Equilibrium measurements were carried out at a constant ionic strength

(0.15 M NaNO₃) in 6 ml samples at 298 K. The solutions were stirred, and N₂ was bubbled through them. The titrations were made in the 1.7-12.0 pH range. KH-phthalate (pH=4.005) and borax (pH=9.177) buffers were used to calibrate the pH meter, For the calculation of [H⁺] from the measured pH values, the method proposed by *Irving et al.* was used as follows.¹⁷ A 0.01M HNO₃ solution was titrated with standardized NaOH solution at 0.15 M NaNO₃ ionic strength. The differences (*A*) between the measured (pH_{read}) and calculated pH (-log[H⁺]) values were used to obtain the equilibrium H⁺ concentration from the pH values measured in the titration experiments (*A*=0.01). For the equilibrium calculations, the stoichiometric water ionic product (*pK_w*) was also needed to calculate [OH⁻] values under basic conditions. The V_{NaOH} – pH_{read} data pairs of the HNO₃ – NaOH titration obtained in the pH range 10.5 – 12.0 were used to calculate the p*K_w* value (*pK_w*=13.81).

The stability constants of Fe(EDTA)⁻ and Fe(CDTA)⁻ were determined by spectrophotometric studies of the Fe³⁺ - EDTA and Fe³⁺ - CDTA systems at the absorption band of Fe^{III} complexes at $[H^+] = 0.02 - 5.6$ M in the wavelength range of 350 - 800 nm. The concentrations of Fe³⁺, EDTA and CDTA were 0.002 M. The H⁺ concentration in the samples was adjusted with the addition of calculated amounts of 6 M HNO_{3.} (I=[Na⁺]+[H⁺]=0.15, [H⁺]≤0.15 M). The samples were kept at 298 K for a week. The absorbance values of the samples were determined at 11 wavelengths (370, 380, 390, 395, 400, 405, 410, 415, 420, 425 and 430 nm). For the calculations of the stability and protonation constants of Fe(EDTA)⁻ and Fe(CDTA)⁻, the molar absorptivities of Fe³⁺, Fe(EDTA)⁻ and Fe(CDTA)⁻ were determined by recording the spectra of 1.0×10⁻³, 1.5×10⁻³, 2.0×10⁻³ and 2.5×10⁻³ M solutions of Fe³⁺, Fe(EDTA)⁻ and Fe(CDTA)⁻ solutions. The absorption spectra of the Fe(EDTA)⁻ and Fe(CDTA)⁻ solutions were recorded in the pH range of 1.7 – 7.5. All spectrophotometric measurements were performed at 298 K in 0.15 M NaNO₃ solution. The pH was adjusted by stepwise addition of concentrated NaOH or HNO₃ solutions. The spectrophotometric measurements were made with the use of PerkinElmer Lambda 365 UV-Vis spectrophotometer, using 1.0 cm cells. The protonation and stability constants were calculated with the PSEQUAD program.¹⁸

Stability and protonation constants of Fe(EDTA)⁻ and Fe(CDTA)⁻.

The protonation constants of EDTA and CDTA ligands, defined by Eq. (S2), were determined by pH-potentiometry.

$$K_{i}^{H} = \frac{[H_{i}L]}{[H_{i-1}L][H^{+}]}$$
[S2]

where i=1, 2...6. The log K_i^{H} values obtained by pH-potentiometry are listed in Table 1. Standard deviations (3 σ) are shown in parentheses.

The stability and protonation constants of Fe^{III} complexes formed with EDTA and CDTA, defined by Eqs. (S3) and (S4), were investigated by pH-potentiometry and spectrophotometry at 298 K in 0.15 M NaNO₃ solution.

$$K_{ML} = \frac{[ML]}{[M][L]}$$
[S3]

$$K_{MHL} = \frac{[MHL]}{[ML][H^+]}$$
[S4]

The stability constants of Fe(EDTA)⁻ and Fe(CDTA)⁻ were determined by spectrophotometry. The equilibrium reaction (Eq. (S5)) was studied in the [H⁺] range of 0.02 - 5.6 M (the ionic strength was constant I=[Na⁺]+[H⁺]=0.15 in the samples [H⁺]≤0.15 M), where the formation of Fe³⁺, FeHL, FeL and H_xL species was assumed (x=4 and 5; y=3, 4 and 5). Some characteristic absorption spectra are shown in Figures S1 and S2.

$$Fe^{3+} + H_xL \implies [Fe(H_{x-y}L)] + yH^+$$
 [S5]

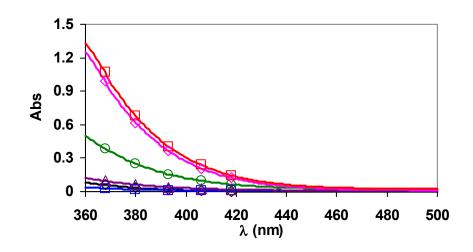


Figure S1. Absoprtion spectra of Fe³⁺ - EDTA systems. Solid lines and open symbols represent the measured and calculated absorbance values ([Fe³⁺]=1.974 mM, [EDTA]=1.996 mM, [H⁺]=5.686 M, 3.000 M, 1.498 M, 0.997 M, 0.329 M and 0.100 M, [H⁺] \leq 0.15 M \rightarrow [HNO₃]+[NaNO₃]=0,15 M, 298 K).

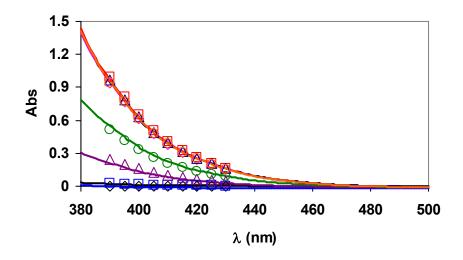


Figure S2. Absoprtion spectra of Fe^{3+} - CDTA systems. Solid lines and open symbols represent the measured and calculated absorbance values, respectively ([Fe³⁺]=1.989 mM, [CDTA]=2.011 mM, [H⁺]=5.687 M, 3.006 M, 1.496 M, 0.999 M, 0.332 M, 0.100 M, 0.030 M and 0.017 M, [H⁺] \leq 0.15 M \rightarrow [HNO₃]+[NaNO₃]=0,15 M, 298 K).

Since the molar absorptivities of Fe^{3+} is significantly lower than that of $Fe(EDTA)^{-}$ and Fe(CDTA) complexes in the wavelength range of 360 - 440 nm, the increase of the absorbance values of the Fe^{3+} - EDTA and Fe^{3+} - CDTA systems can be explained by the formation of FeL and FeHL species dominating at $[H^+] < 1.5$ M.

The protonation constants of Fe(EDTA)⁻ and Fe(CDTA)⁻ complexes were determined by pHpotentiometric titrations of the complexes in the pH range 1.7 - 12.0 ([FeL]=10 mM). At pH>6.0 the titrations curves indicate the base consumption process which can be interpreted by the hydrolysis of the Fe^{III} ion with the coordination of OH⁻ ion (Eq. (S6)) and by the dimerization of the FeL (Eq. (S7)) FeLH₋₁ species (Eq. (S8)) via the formation of μ -oxo dimers.

$$FeLH_{-1} + H^{+} \implies FeL$$

$$K_{FeLH_{-1}} = \frac{[FeL]}{[FeLH_{-1}][H^{+}]}$$
[S6]

2FeL =
$$[(FeL)_2(\mu - O)] + 2H^+$$
 [S7]
 $K_D = \frac{[(FeL)_2(\mu - O)][H^+]^2}{[FeL]^2}$

2FeLH₋₁ = [(FeL)₂(
$$\mu$$
-O)] [S8]
$$K_{d} = \frac{[(FeL)_{2}(\mu - O)]}{[FeLH_{-1}]^{2}}$$

According to the method proposed by Gustafson and Martell,¹⁹ the protonation and dimerization constant of FeL and FeLH.₁ species were calculated from the pH potentiometric titration data ([FeL]_{tot}, [NaOH]_{tot}, pH, p*A* and p*K*_w) obtained in the pH ranges 4.0 - 9.0 for Fe(EDTA)⁻ and 7.5 - 10.5 for Fe(CDTA)⁻. The stability and protonation constants of the Fe^{III}- complexes formed with EDTA and CDTA ligands are reported in Table S1.

Table S1. Protonation constants of EDTA and CDTA, stability and protonation constants of Fe(EDTA)⁻ and Fe(CDTA)⁻ complexes (298 K)

	СДТА		EDTA	
Ι	0.15 M NaNO ₃	0.1 M KNO ₃ ^a	0.15 M NaNO ₃	0.1 M KNO ₃ ^b
$\log K_1^{\mathrm{H}}$	9.54 (2)	12.30	9.40 (1)	10.22
$\log K_2^{\mathrm{H}}$	6.08 (2)	6.12	6.10(1)	6.18
$\log K_3^{\mathrm{H}}$	3.65 (3)	3.49	2.72 (1)	2.70
$\log K_4^{ m H}$	2.69 (3)	2.40	2.08 (1)	2.00
$\log K_5^{\mathrm{H}}$	1.14 (4)	1.60	1.23 (1)	_
$\Sigma \log K_{i}^{H}$	23.11	25.91	20.29 (-logK5 ^H)	21.10
	Fe(CDTA)		Fe(EDTA)	
Ι	I 0.15 M NaNO ₃ 0.1 M KNO ₃ ^c		0.15 M NaNO ₃	0.1 M KNO ₃ ^c
logK _{FeL}	24.36 (2)	29.05	22.14 (4)	24.95
logK _{FeHL}	1.77 (2)	_	1.12 (2)	_
logK _{FeLH-1}	9.50 (2)	9.54	7.51 (1)	7.52
-logK _D	17.64 (4)	18.03	13.00 (3)	12.40
$\log K_{\rm d}$	1.40 (3)	1.07	2.02 (2)	2.64

^a Ref.²⁰; ^bRef.²¹; ^c Ref.²².

It well known that the equilibrium constants are generally determined in the presence of the constant ionic background (some salts like KCl, NaCl, etc.) which should be selected with the necessary care since its cation can react with the donor atoms of the ligand (determination of the protonation constants) or its counterion may interact with the metal ion (determination of the stability and protonation constant). The $\log K_{iH}$ and $\log K_{ML}$ values, published in literature

were most frequently determined in 0.1 M KCl or 0.1 M Me₄NCl.²³ The protonation constants of ligands particularly the log K_1^H values determined in the presence of Na⁺ ion are generally lower than those obtained in solutions, where the constant ionic strength was controlled by K⁺ - or Me₄N⁺ salts. The log K_1^H values obtained in NaCl, NaNO₃ or NaClO₄ solutions are lower because the interaction between the smaller Na⁺ ion and the fully deprotonated ligands is stronger than that of the larger K⁺ or Me₄N⁺ ions. The difference is particularly high for CDTA ligand which form relatively stable complexes with Na⁺ (log $K_{Na(CDTA)}$ =4.66; 0.5 M Me₄NCl, 298 K ;²⁴ log $K_{Na(EDTA)}$ =1.82; 0.1 M Me₄NCl, 298 K)²⁵. Moreover, the Cl⁻ as a counter ion of the ionic background might interact with Fe³⁺ ion via the formation of FeCl_x complexes (x=1, 2, 3 and 4). Therefore, all the equilibrium studies were performed at 298 K in 0.15 M NaNO₃ solution.

Thus, background electrolyte NaNO₃ (0.15 M) was used to mimic the high Na⁺ concentrations present *in vivo* (~0.15 M in blood plasma). Therefore, the $\log K_1^{H}$ values of EDTA and CDTA are lower by 0.8 and 2.8 logK units than in the presence of 0.1 M KNO₃ ionic background, as a result of the formation of Na(EDTA)³⁻ and Na(CDTA)³⁻ complexes. Also the stability constant of the Fe(EDTA)⁻ and Fe(CDTA)⁻ complexes are lower by 2.8 and 4.7 logK units than the $\log K_{\text{FeL}}$ values previously measured in 0.1 M KNO₃ (Table S1).²² These results show that the high Na⁺ concentrations present in vivo (~0.15 M in blood plasma) have a significant impact in the stability of the complexes. The equilibrium constants characterizing the formation of FeLH. 1 (log $K_{\text{FeLH-1}}$, Eq. (S6)) and the dimeric [(FeL)₂(μ -O)] species by the dimerization of FeL (- $\log K_D$, Eq. (S7)) and FeLH₋₁ species ($\log K_d$, Eq. (S8)) of Fe(EDTA)⁻ and Fe(CDTA)⁻ are very similar in 0.15 M NaNO₃ and 0.1 M KNO₃ solutions. In accordance with previous studies,^{19,22} the $K_{\rm D}$ and $K_{\rm d}$ values confirm the lower tendency of Fe(CDTA)⁻ to form the oxo-bridged dimer than Fe(EDTA). The speciation diagrams obtained with the equilibrium constants (Figure S3 and S4) evidence that Fe(CDTA)⁻ does not hydrolyze significantly at physiological pH, while the EDTA complex presents significant populations of the hydroxo-complex and μ -oxo dimer at pH 7.4.

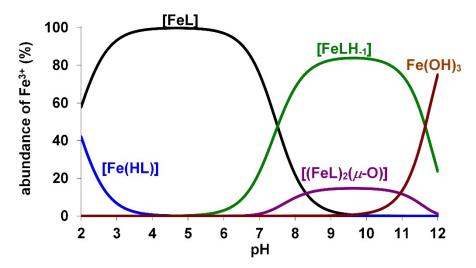


Figure S3. Species distribution of Fe³⁺-EDTA system ([Fe³⁺]=[EDTA]=1.0 mM, 298 K, 0.15 M NaNO₃).

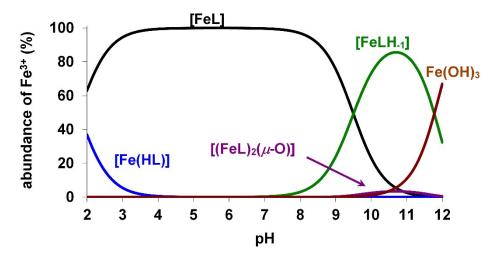


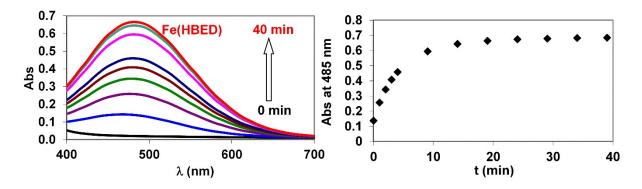
Figure S4. Species distribution of Fe³⁺-CDTA system ([Fe³⁺]=[CDTA]=1.0 mM, 298 K, 0.15 M NaNO₃).

Kinetic studies

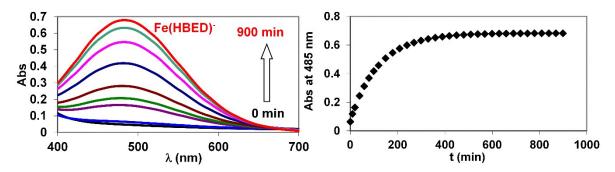
Experimental

The kinetic inertness of the Fe(EDTA)⁻ and Fe(CDTA)⁻ was characterized by the rates of the transchelation reactions taking place with HBED ligand. The exchange reactions with HBED were studied by spectrophotometry, following the formation of the Fe(HBED)⁻ complexes at 480 nm with *PerkinElmer Lambda 365* UV-Vis spectrophotometer. The concentration of the FeL complex was 0.2 mM, while the concentration of the HBED was 10 and 20 times higher, to guarantee pseudo-first-order conditions. The temperature was maintained at 298 K and the ionic strength of the solutions was kept constant, 0.15 M for NaNO₃. The exchange rates were

studied in the pH range about 7.4 – 12.5. For keeping the pH values constant, HEPES (pH range 7.4 – 8.5), piperazine (pH range 8.5 – 10.5) and Na₂HPO₄ (pH range 11.0 – 12.5) buffers (0.01 M) were used. The pseudo-first-order rate constants (k_d) were calculated by fitting the absorbance data to Eq. (S9).


$$A_{t} = (A_{0} - A_{p})e^{-k_{d}t} + A_{p}$$
[S9]

where A_t , A_0 and A_p are the absorbance values at time *t*, the start of the reaction and at equilibrium, respectively. The calculation of the kinetic parameters were performed by the fitting of the absorbance - time data pairs to Eq. (S9) with the *Micromath Scientist* computer program (version 2.0, Salt Lake City, UT, USA).


Kinetic inertness of Fe(EDTA)⁻ and Fe(CDTA)⁻

The rates of the transchelation reactions (Eq. (S10)) between FeL complexes and HBED were studied by spectrophotometry. Some characteristic absorption spectra are shown in Figures S5 and S6.

$$FeL + HBED \rightleftharpoons Fe(HBED) + L$$
 (L=EDTA, CDTA) [S10]

Figure S5. Absoprtion spectra of $Fe(EDTA)^{-}$ – HBED reacting system $[Fe(EDTA)^{-}]=2.0\times10^{-4}$ M, [HBED]= 2.0×10^{-3} M, pH=11.05, $[Na_2HPO_4]=0.01$ M, 0.15 M NaNO₃, 298 K).

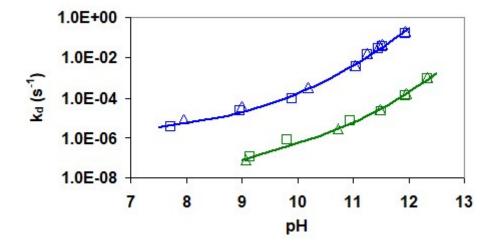


Figure S6. Absoprtion spectra of Fe(CDTA)⁻ – HBED reacting system ([Fe(CDTA)⁻]= 2.0×10^{-4} M, [HBED]= 2.0×10^{-3} M, pH=11.94, [Na₂HPO₄]=0.01 M, 0.15 M NaNO₃, 298 K).

In the presence of excess exchanging HBED ligand the transchelation can be treated as a pseudo-first-order process and the rate of the reactions can be expressed with the Eq. (S11), where k_d is a pseudo-first-order rate constant and $[GdL]_t$ is the total concentration of the complex.

$$-\frac{d[FeL]_{t}}{dt} = k_{d}[FeL]_{t}$$
[S11]

The rates of the transmetallation reactions were studied at different concentrations of the HBED ligand in the pH range 7.4 – 12.5. The obtained pseudo-first order rate constants k_d are presented in Figure S7 as a function of pH.

Figure S7. k_d pseudo-first-order rate constant characterizing the transchelation reactions of **Fe(EDTA)**⁻ and **Fe(CDTA)**⁻ with **HBED** ligand. Solid lines and the open symbols represent the calculated and measured k_d rate constants. ([Fe(EDTA)⁻]=[Fe(CDTA)⁻]=2.0×10⁻⁴ M, [HBED]=2.0 (•,•) and 4.0 mM (□,□), [HEPES]=[piperazine]=[Na₂HPO₄]=0.01 M, 0.15 M NaNO₃, 298 K).

The kinetic data presented in Figure S7 show that the k_d values are independent on [HBED] and increase with pH, indicating that the rate-determining step of the transchelation reactions is the dissociation of the Fe(EDTA)⁻ and Fe(CDTA)⁻ complexes, followed by the fast reaction between the free Fe³⁺ ion and the exchanging HBED ligand. By considering the species distribution of Fe³⁺ - EDTA and Fe³⁺ - CDTA systems, the dependence of the k_d values on pH can be interpreted as spontaneous dissociation (k_0 , Eq. (S12)) and OH⁻-ion assisted dissociation (k_{OH} , Eq. (S13) and k_{OH}^2 , Eq. (S14)) of the FeLH₋₁ species dominates in the investigated pH ranges.

$$FeLH_{-1} \xrightarrow{k_0} Fe^{3+} + L + OH^{-}$$
 [S12]

$$FeLH_{-1} + OH^{-} \xrightarrow{k_{OH}} Fe^{3+} + L + 2OH^{-}$$
 [S13]

$$FeLH_{-1} + 2OH^{-} \xrightarrow{k_{OH^2}} Fe^{3+} + L + 3OH^{-}$$
[S14]

By taking into account all possible pathways and Eq. (S11), the rate of the dissociation of $Fe(EDTA)^{-}$ and $Fe(CDTA)^{-}$ can be expressed by Eq. (S15).

$$-\frac{d[FeL]_{t}}{dt} = k_{d}[FeL]_{t} = k_{0}[FeLH_{-1}] + k_{OH}[FeLH_{-1}][OH^{-}] + k_{OH}^{2}[FeLH_{-1}][OH^{-}]^{2}$$
[S15]

Considering the total concentration of the Fe(EDTA)⁻ and Fe(CDTA)⁻ complexes $([FeL]_t=[FeL]+[FeLH_1])$ and the protonation constant of FeLH_1 (K_{FeLH-1} , Eq. (S6)), the k_d pseudo-first-order rate constants presented can be expressed by Eq. (S16). Based on the species distribution of the Fe³⁺ - EDTA and Fe³⁺ - CDTA systems at $[Fe^{3+}]=[EDTA]=[CDTA]=0.2$ mM, the formation of the dimeric $[(FeL)_2(\mu-O)]$ species can be neglected in our experimental conditions.

$$k_{d} = \frac{k_{0} + k_{OH} (K_{W} / [H^{+}]) + k_{OH}^{2} (K_{W} / [H^{+}])^{2}}{1 + K_{FeLH_{-1}} [H^{+}]}$$
[S16]

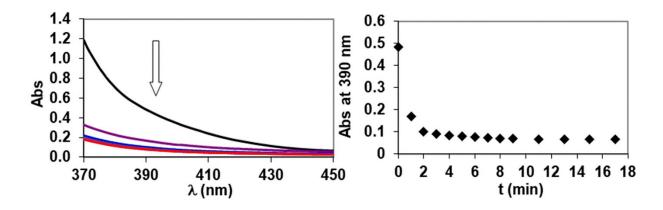
wherein k_0 , k_{OH} and k_{OH}^2 are the rate constants characterizing the spontaneous and OH⁻ assisted dissociation of FeLH₋₁ species, K_w is the stoichiometric water ionic product, whereas K_{FeLH-1} is the protonation constant of the FeLH₋₁ species. The rate and protonation constants characterizing the transchelation reactions of $Fe(EDTA)^{-}$ and $Fe(CDTA)^{-}$ complexes with HBED were calculated by fitting the k_d values presented in Figure S7 to the Eq. (S16).

Redox stability

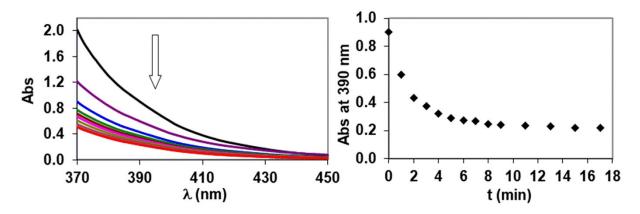
Experimental

The redox stability of the Fe(EDTA)⁻ and Fe(CDTA)⁻ was characterized by the rates of their reduction with ascorbic acid (*Sigma Aldrich*). The reduction of the Fe^{III}-complexes was studied by spectrophotometry, following the formation of the Fe^{III}L complexes at 390 nm with *PerkinElmer Lambda 365* UV-Vis spectrophotometer. The concentration of the Fe(EDTA)⁻ and Fe(CDTA)⁻ complexes was 2.0 mM, while the concentration of the ascorbic acid was 5 - 40 times higher, in order to guarantee the pseudo-first-order condition. In all experiments a fourfold excess of free ligand was added to the Fe(EDTA)⁻ and Fe(CDTA)⁻ complexes. Under these conditions, the reaction which was assumed to take place is the reduction of the Fe^{III}-complex to the Fe^{III}-complex. The temperature was maintained at 298 K and the ionic strength of the solutions was kept constant, 0.15 M for NaNO₃. The exchange rates were studied at pH=7.4. For keeping the pH values constant HEPES buffer were used ([HEPES]=0.01 M). In the sample preparation Ar was bubbled through all solutions to maintain oxygen free condition. The pseudo-first-order rate constants (k_{obs}) were calculated by fitting the absorbance - time data pairs to Eq. (S9) ($k_d = k_{obs}$) with the *Micromath Scientist* computer program (version 2.0, Salt Lake City, UT, USA).

Redox stability of Fe(EDTA)⁻ and Fe(CDTA)⁻


The redox stability of Fe(EDTA)⁻ and Fe(CDTA)⁻ was studied by following the reduction of the Fe^{III}-complexes (Eq. (S17)) by spectrophotometry in the presence of ascorbic acid. Some characteristic absorption spectra are shown in Figures S8 and S9.

$$2Fe^{III}L + HA^{-} \longrightarrow 2Fe^{II}L + A + H^{+}$$
 (L=EDTA, CDTA) [S17]


In the presence of excess ascorbic acid the reduction of the Fe^{III}-complexes can be treated as a pseudo-first-order process and the rate of reactions can be expressed with Eq. (S18), where k_{obs} is a pseudo-first-order rate constant and [FeL]_t is the total concentration of the Fe^{III}-complexes.

$$-\frac{d[FeL]_{t}}{dt} = k_{obs}[FeL]_{t}$$
[S18]

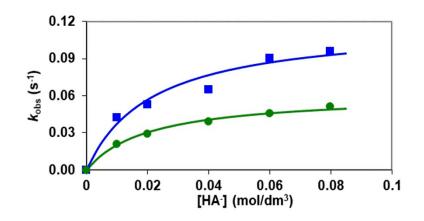

Rates of the reduction of the Fe^{III}-complexes were studied at pH=7.4 and at different concentrations of ascorbic acid. The obtained pseudo-first order rate constants k_{obs} as a function of [HA-] are presented in Figure S10.

Figure S8. Absorption spectra and absorbance values of the Fe(EDTA)⁻ – ascorbic acid reacting system ([Fe(EDTA)⁻]=2.0×10⁻³ M, [ascorbic acid]=0.02 M, pH=7.40, [HEPES]=0.01 M, 0.15 M NaNO₃, 298 K).

Figure S9. Absorption spectra and absorbance values of the Fe(CDTA)⁻ – ascorbic acid reacting system ([Fe(CDTA)⁻]=2.0×10⁻³ M, [ascorbic acid]=0.02 M, pH=7.40, [HEPES]=0.01 M, 0.15 M NaNO₃, 298 K)

Figure S10. k_{obs} pseudo-first-order rate constant characterizing the reduction of **Fe(EDTA)**⁻ (**O**) and **Fe(CDTA)**⁻ (**SO**) by ascorbic acid Solid lines and the open symbols represent the calculated and measured k_d rate constants. ([Fe^{III}L]=2.0×10⁻³ M, [HEPES]=0.01 M, 0.15 M NaNO₃, 298 K).

The kinetic data in Figure S10 indicates that the k_{obs} shows a saturation curve as a function of [HA⁻], which might be interpreted by the formation of the reaction intermediate and the rate determining transformation of the intermediate to the final product. By taking into account the protonation constants of ascorbic acid (log K_1^{H} =11.34, log K_2^{H} =4.04, 0.1 M KNO₃, 298 K),²⁶ the monohydrogenascorbate HA⁻ species dominates in our experimental conditions (pH=7.4, 298 K, 0.15 M NaNO₃). According to the kinetic data, the electron-transfer might occur by the formation of the ternary Fe^{III}L-HA intermediate between the ascorbate anion (HA⁻) and the Fe^{III}L complex (Eq. (S20)) replacing the inner-sphere water molecule ({Fe^{III}L-HA}, Eq. (S19)). The Fe^{III}L might also react rapidly with the radical (Eq. (S21)) formed in the previous step. The presence of free radicals in the oxidation of ascorbic acid was confirmed by EPR measurements.²⁷

$$Fe^{III}L + HA^{-} \overset{K_{\underline{Fel} \neq A}}{\longleftarrow} \{Fe^{III}L - HA^{-}\}$$
 [S19]

$$K_{FeL-HA} = \frac{[\{Fe^{III}L - HA^{-}\}]}{[Fe^{III}L][HA^{-}]}$$

$$\{Fe^{III}L-HA^{-}\} \xrightarrow{\kappa_{HA}} Fe^{II}L + radical$$
[S20]

$$Fe^{III}L + radical \xrightarrow{fast} Fe^{II}L + A + H^+$$
 [S21]

By taking into account all possible pathways and Eq. (S18), the rate of the reduction of $Fe(EDTA)^{-}$ and $Fe(CDTA)^{-}$ with ascorbic acid can be expressed by Eq. (S22).

$$-\frac{d[FeL]_{t}}{dt} = k_{obs}[FeL]_{t} = k_{HA}[Fe^{III}L - HA]$$
[S22]

Considering the total concentration of the Fe^{III}L ([FeL]_t=[FeL]+[FeLH₋₁]+[Fe^{III}L-HA]), the formation of FeLH₋₁ species (Eq. (S6)) and the ternary Fe^{III}L-HA intermediate (Eq. (S19)), the k_{obs} pseudo-first-order rate constants presented can be expressed by Eq. (S23).

$$k_{obs} = \frac{k[HA^{-}]}{1 + K_{FeL-HA}[HA^{-}] + (K_{FeLH-1}[H^{+}])^{-1}}$$
[S23]

where $k=k_{\text{HA}}K_{\text{FeL-HA}}$ and $K_{\text{FeL-HA}}$ are the rate and the equilibrium constants characterize the ascorbate anion assisted reduction of the Fe^{III}-complexes and the formation of the ternary Fe^{III}L-HA intermediate, respectively. The k_{HA} and $K_{\text{FeL-HA}}$ values of Fe(EDTA)⁻ and Fe(CDTA)⁻ complexes have been calculated by fitting of the kinetic data (Figure S10) to Eq. (S23).

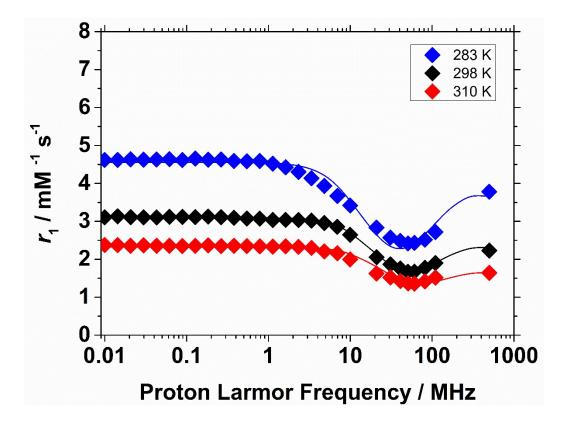
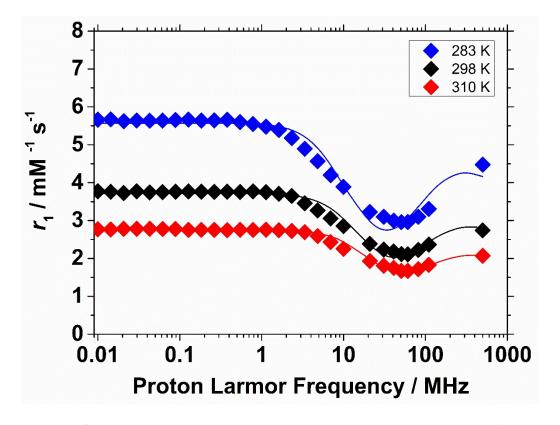
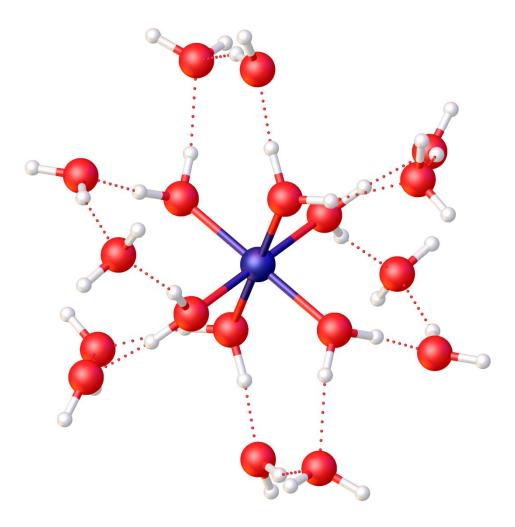
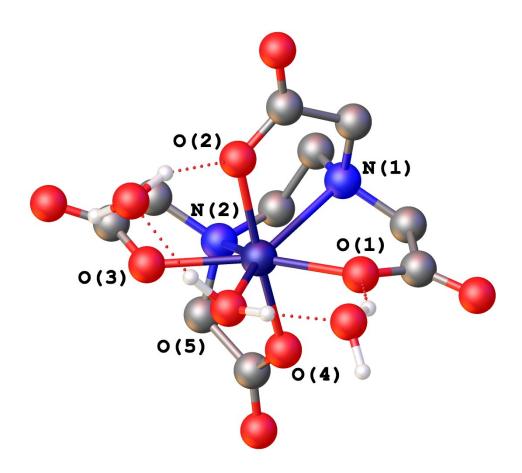
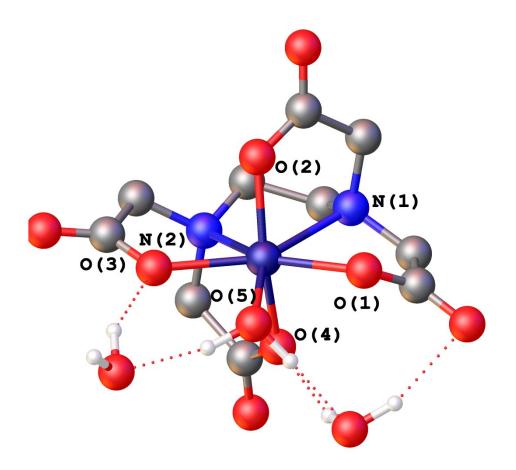
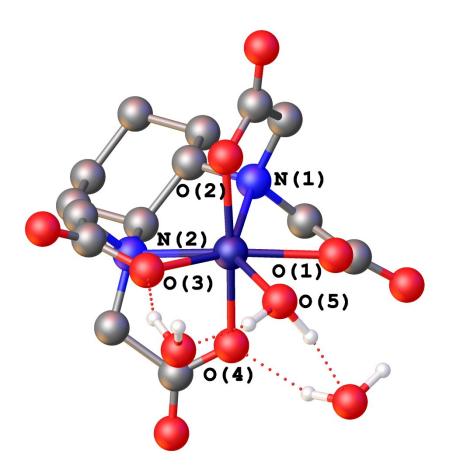
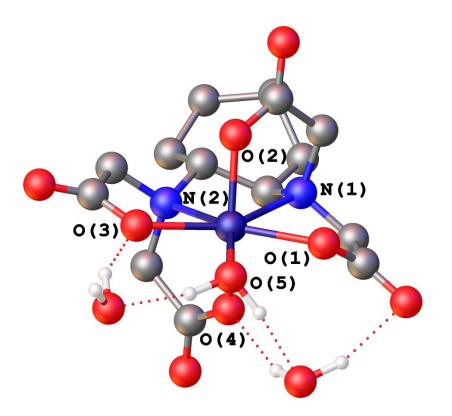


Figure S11. ¹H NMRD profiles of Fe(CDTA)⁻ (4.87 mM; pH = 6.9) at 283 (\blacklozenge), 298 (\blacklozenge) and 310 K (\blacklozenge).


Figure S12. ¹H NMRD profiles of Fe(EDTA)⁻ (8.98 mM; pH = 5.3) at 283 (\diamondsuit), 298 (\diamondsuit) and 310 K (\diamondsuit).


Figure S13. Structure of the [Fe(H₂O)₆]^{3+.}12H₂O system optimized at the TPSSh/Def2-TZVP level. The Fe-O bond distance is 2.031 Å.


Figure S14. Structure of the [Fe(EDTA)(H₂O)]⁻·2H₂O (CT) system optimized at the TPSSh/Def2-TZVP level.

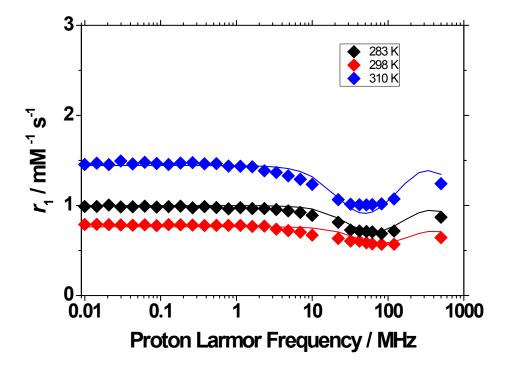

Figure S15. Structure of the [Fe(EDTA)(H₂O)]⁻·2H₂O (PB) system optimized at the TPSSh/Def2-TZVP level.

Figure S16. Structure of the [Fe(CDTA)(H₂O)]⁻·2H₂O (CT) system optimized at the TPSSh/Def2-TZVP level.

Figure S17. Structure of the [Fe(CDTA)(H₂O)]-·2H₂O (PB) system optimized at the TPSSh/Def2-TZVP level.

Figure S18. ¹H NMRD profiles at different temperatures (283 (blue), 298 (black) and 310 K (red)) of Fe(DTPA)²⁻; [Fe³⁺] = 5.31 mM, pH 7.08.

Equations used for the analysis of ¹⁷O NMR and NMRD data

Reduced ¹⁷O NMR chemical shifts of aqueous solutions of the Fe(III) complexes, $\Delta \omega_r$, were determined from the angular frequencies of the paramagnetic solutions ω and of the acidified water ω_A (Eq (S24)):

$$\Delta \omega_{\rm r} = \frac{1}{P_{\rm m}} (\omega - \omega_{\rm A}) = \frac{\Delta \omega_{\rm m}}{\left(1 + \tau_{\rm m} T_{\rm 2m}^{-1}\right)^2 + \tau_{\rm m}^2 \Delta \omega_{\rm m}^2} + \Delta \omega_{os}$$
[S24]

Similarly, the reduced transverse relaxation rates, $1/T_{2r}$ and were obtained from the measured ¹⁷O NMR relaxation rates of the paramagnetic solutions $1/T_2$ and of the acidified water reference $1/T_{2A}$:

$$\frac{1}{T_{2r}} = \frac{1}{P_m} \left[\frac{1}{T_2} - \frac{1}{T_{2A}} \right] = \frac{1}{\tau_m} \frac{T_{2m}^{-2} + \tau_m^{-1} T_{2m}^{-1} + \Delta \omega_m^2}{\left(\tau_m^{-1} + T_{2m}^{-1}\right)^2 + \Delta \omega_m^2} + \frac{1}{T_{2OS}}$$
[S25]

In these equations $1/T_{2m}$ is the relaxation rate of water molecules coordinated to the Fe(III) ion and $\Delta \omega_m$ is the chemical shift difference between bound and bulk water, while P_m is the mole fraction of the bound water and τ_m represents the mean residence time of a water molecule in the first coordination sphere of Fe(III) ($\tau_m = 1/k_{ex}$).^{28,29}

 $\Delta \omega_m$ is dominated by the scalar mechanism, which is determined by the hyperfine or scalar coupling constant, A/\Box :

$$\Delta \omega_{\rm m} = \frac{g_L \mu_{\rm B} S(S+1) B}{3k_{\rm B} T} \frac{A}{\rm h}$$
[S26]

In Eq [3] *B* is the magnetic field strength, *S* represents the electron spin (S = 5/2 for highspin Fe(III) complex) and g_L is the isotropic Landé *g* factor.³⁰ The outer sphere contributions to the ¹⁷O chemical shifts was neglected for Fe(EDTA)⁻ and Fe(CDTA)⁻, while for [Fe(H₂O)]³⁺ we included an outer-sphere contribution given by:

$$\Delta\omega_{OS} = C_{OS} \Delta\omega_m \tag{S27}$$

The water exchange rate is assumed to follow an Eyring behaviour with temperature according to Eq [5], where ΔS^{\ddagger} and ΔH^{\ddagger} are the activation entropy and enthalpy, respectively, and k_{ex}^{298} is the water exchange rate at 298.15 K:

$$\frac{1}{\tau_m} = k_{ex} = \frac{k_B T}{h} \exp\left\{\frac{\Delta S^{\ddagger}}{R} - \frac{\Delta H^{\ddagger}}{RT}\right\} = \frac{k_{ex}^{298} T}{298.15} \exp\left\{\frac{\Delta H^{\ddagger}}{R} \left(\frac{1}{298.15} - \frac{1}{T}\right)\right\}$$
[S28]

Transverse relaxation rates were approximated using the scalar contribution, $1/T_{2sc}$, as given by Eqs (S29) and (S30), where T_{1e} is the longitudinal electronic relaxation time.

$$\frac{1}{T_{2m}} \cong \frac{1}{T_{2SC}} = \frac{S(S+1)}{3} \left(\frac{A}{h}\right)^2 \tau_{S1}$$
 [S29]

$$\frac{1}{\tau_{S1}} = \frac{1}{\tau_m} + \frac{1}{T_{1e}}$$
[S30]

The observed ¹H longitudinal proton relaxation rate (R_1^{obs}) contains both paramagnetic and diamagnetic contributions, and relates to ¹H relaxivity r_{1p} as shown in Eq (S31):

$$R_{1}^{obs} = R_{1}^{d} + R_{1}^{p} = R_{1}^{d} + r_{1p}[Fe(III)]$$
[S31]

 r_{1p} receives both inner- and outer-sphere contributions:

$$r_1 = r_{1is} + r_{1os}$$
 [S32]

The inner-sphere contribution is directly proportional to the number of coordinated water molecules q³¹.

$$r_{1is} = \frac{1}{1000} \times \frac{q}{55.55} \times \frac{1}{T_{1m}^H + \tau_m}$$
[S33]

The longitudinal relaxation rate of proton nuclei of an inner-sphere water molecule, $1/T_{1m}^{H}$ can be expressed as:

$$\frac{1}{T1_m^H} = \frac{2}{15} \left(\frac{\mu_0}{4\pi}\right)^2 \frac{\gamma_I^2 g^2 \mu_B^2}{r_{FeH}^6} S(S+1) \left[\frac{3\tau_{d1}}{1+\omega_I^2 \tau_{d1}^2} + \frac{7\tau_{d2}}{1+\omega_S^2 \tau_{d2}^2}\right]$$
[S34]

$$\frac{1}{\tau_{\rm di}} = \frac{1}{\tau_{\rm m}} + \frac{1}{\tau_{\rm R}} + \frac{1}{T_{\rm ie}} \qquad i = 1, 2 \qquad [S35]$$

where r_{FeH} is the effective distance between the electron charge of Fe(III) and the ¹H nucleus, ω_I is the proton resonance frequency and ω_S is the Larmor frequency of the electron spin of Fe(III).

The longitudinal and transverse relaxation rates of the slectron spin, $1/T_{le}$ and $1/T_{2}$, were approximated by Eqs. (36) – (38),³² where Δ^2 is the mean square zero-field-splitting energy, τ_V is the electronic correlation time for the modulation of the zero-field-splitting interaction and E_V the corresponding activation energy.

$$\frac{1}{T_{1e}} = \frac{1}{25} \Delta^2 \tau_V \left\{ 4S(S+1) - 3 \right\} \left(\frac{1}{1 + \omega_s^2 \tau_v^2} + \frac{4}{1 + 4\omega_s^2 \tau_v^2} \right)$$
[S36]

$$\frac{1}{T_{2e}} = \left(\left(0.02 \times \left(4S^2 + 4S - 3 \right) \times \tau_V \times \Delta^2 \times \left(\left(\frac{5}{1 + \omega_s^2 \tau_V^2} \right) \right) \right) + \left(\frac{2}{1 + 4\omega_s^2 \tau_V^2} \right) + 3 \right) [S37]$$

$$\tau_{\nu} = \tau_{\nu}^{298} \exp\left\{\frac{E_{\nu}}{R} \left(\frac{1}{T} - \frac{1}{298.15}\right)\right\}$$
[S38]

The zero field splitting energy was assumed to follow an Arrhenius behaviour with temperature with an activation energy E_{Δ} :

$$\Delta = \Delta^{298} exp\left\{\frac{E_{\Delta}}{R} \left(\frac{1}{298.15} - \frac{1}{T}\right)\right\}$$
[S39]

The outer-sphere contribution to relaxivity was described as in Eqs (40) – (41), where N_A is the Avogadro number, and J_{os} is the associated spectral density function.^{33,34}

$$r_{1os} = \frac{32N_A \pi}{405} \left(\frac{\mu_0}{4\pi}\right)^2 \frac{\hbar^2 \gamma_S^2 \gamma_I^2}{a_{FeH} D_{FeH}} S(S+1) [3J_{OS}(\omega_I; T_{1e}) + 7J_{OS}(\omega_S; T_{2e})]$$
[S40]

$$J_{OS}(\omega;T_{je}) = Re \left[\frac{1 + \frac{1}{4} \left(i\omega\tau_{FeH} + \frac{\tau_{FeH}}{T_{je}} \right)^{1/2}}{1 + \left(i\omega\tau_{FeH} + \frac{\tau_{FeH}}{T_{je}} \right)^{1/2} + \frac{4}{9} \left(i\omega\tau_{FeH} + \frac{\tau_{FeH}}{T_{je}} \right) + \frac{1}{9} \left(i\omega\tau_{FeH} + \frac{\tau_{FeH}}{T_{je}} \right)^{3/2}} \right]$$
[S41]

$$\tau_{FeH} = \frac{a_{FeH}^2}{D_{FeH}}$$

The relative diffusion of the Fe(III) complex and water protons, D_{FeH} , is assumed to follow an exponential behavior with an activation energy E_{FeH} and a diffusion coefficient at 298.15 K $D_{\text{FeH}}^{298:}$

$$D_{FeH} = D_{FeH}^{298} exp\left\{\frac{E_{FeH}}{R}\left(\frac{1}{298.15} - \frac{1}{T}\right)\right\}$$
[S42]

	$[Fe(H_2O)_6]^{3+} \cdot 12H_2O$	Fe(EDTA) ⁻		Fe(CDTA) ⁻	
Isomer		СТР	РВ	СТР	PB
r _{FeH} [Å]	2.688	2.690	2.714	2.704	2.719
$r_{\rm FeO}$ [Å]	2.031	2.173	2.204	2.192	2.212
$A_{\rm O}/\hbar \ [10^6 \ {\rm rad \ s^{-1}}]$	-99.2	-64.8	-59.4	-62.9	-58.5
$A_{\rm H}/\hbar$ [10 ⁶ rad s ⁻¹]	8.69	0.43	-0.52	-0.05	-0.66
$D [{ m cm}^{-1}]$	0.01466	-0.1354	0.1446	-0.1415	0.1471
$E [\mathrm{cm}^{-1}]$	1.14×10 ⁻⁴	-0.0279	0.0407	0.0339	0.0426
Δ [cm ⁻¹]	0.036	0.117	0.131	0.125	0.134
$\Delta^2 [10^{20} \mathrm{s}^{-2}]$	0.051	4.89	6.1	5.6	6.4

Table S2. Calculated r_{FeO} and r_{FeH} distances and hyperfine coupling constants (A_O/\hbar and A_H/\hbar) obtained with DFT calculations and ZFS parameters obtained with CASSF/NEVPT2 calculations.^[a]

^[a] CTP and PB denote the capped trigonal prismatic and pentagonal bipyramidal isomers, respectively.

	Fe(DTPA) ²⁻
²⁹⁸ <i>r</i> ₁ 20 MHz [mM ⁻¹ s ⁻¹]	0.81
$^{298}\Delta^2 [10^{20} \text{ s}^{-2}]$	3.9 ± 0.1
E_{Δ} [kJ mol ⁻¹]	8.1 <u>+</u> 2.5
²⁹⁸ τ _V [ps]	3.4 <u>+</u> 0.9
$E_{\rm v}$ [kJ mol ⁻¹]	1.0 ^[a]
$^{298}D [10^5 \text{ cm}^2 \text{ s}^{-1}]$	2.24 ^[a]
$E_{\rm D}$ [kJ mol ⁻¹]	20.0 ^[a]
q	O [a]
$a_{ m FeH}$ [Å]	3.5 ^[a]

Table S3. Parameters obtained from the simultaneous fit of ¹H NMRD data.^[a]

[a] parameters fixed during the firring procedure.

[Fe(EDTA)(H ₂ O)]-·2H ₂ O		[Fe(CDTA)(H ₂ O)]	-·2H ₂ O	
	СТ	PB	СТ	PB
Fe-N(1)	2.318	2.388 (2.309)	2.331 (2.317)	2.392
Fe-N(2)	2.326	2.347 (2.313)	2.321 (2.273)	2.360
Fe-O(1)	2.125	2.081 (2.075)	2.075 (2.096)	2.081
Fe-O(2)	2.042	1.966 (1.984)	1.990 (1.973)	1.965
Fe-O(3)	2.085	2.100 (2.093)	2.108 (2.074)	2.096
Fe-O(4)	1.993	1.999 (1.992)	2.039 (2.011)	1.995
Fe-O(5)	2.173	2.204 (2.083)	2.192 (2.141)	2.212

Table S4. Bond distances [Å] of the metal coordination environment obtained with DFT calculations (TPSSh/Def2-TZVP).^[a]

^[a] Data in parenthesis observed in the X-ray Crystal structures, refs. 22 and 35.

Table S5. Optimized Cartesian coordinates obtained for $[Fe(H_2O)_6]^{3+.12H_2O}$ with DFT calculations (0 imaginary frequencies).

Center	Atomic		dinates (Ang	
Number	Number	Х	Y	Z
1	8	1.609269	-0.420218	-1.164838
2	1	2.011705	0.249528	-1.767369
3	8	-0.441270	1.604039	-1.164573
4	1	-0.334404	2.545797	-0.792561
5	8	-1.169000	-1.183315	-1.164739
6	1	-2.037824	-1.561924	-0.792464
7	8	0.440859	-1.603935	1.164444
8	1	1.222252	-1.617770	1.766786
9	8	1.168640	1.183615	1.164541
10	1	0.790172	1.867610	1.766639
11	8	-1.609307	0.420296	1.165056
12	1	-2.011662	-0.249510	1.767586
13	1	2.371646	-0.983209	-0.792565
14	1	0.334299	-2.545590	0.792126
15	1	2.037973	1.561344	0.792625
16	1	-1.222889	1.617813	-1.766675
17	1	-0.790134	-1.866791	-1.767126
18	1	-2.371769	0.983403	0.793150
19	8	3.276472	2.268871	0.155440
20	8	3.181597	1.427958	-2.564128
21	1	3.446330	2.122497	-0.795503
22	1	4.126673	2.439450	0.581451
23	1	3.985728	1.048221	-2.951109
24	1	2.873945	2.075777	-3.215969
25	8	0.355535	3.470123	2.563336
26	1	-0.358249	3.527657	3.216345
27	1	1.087031	3.976881	2.948943
28	8	3.604336	-1.700313	-0.154696
29	1	3.561901	-1.921933	0.795955
30	1	4.178123	-2.350259	-0.581050
31	8	2.827557	-2.042546	2.563476

32	1	2.900793		2.948837
33	1	3.234268	-1.453 ²⁵ 5	3.216573
34	8	0.328847	-3.971758	0.154109
35	1	0.116173	-4.045768	-0.796632
36	1	0.052844	-4.793745	0.580234
37	8	-0.354688	-3.469145	-2.564180
38	1	-1.085843		
39	1	0.359539		-3.216740
40	8	-3.275476	-2.270435	-0.154844
41	1		-2.441617	
42	1	-3.445725	-2.123772	0.796010
43	8	-3.181748	-1.428411	2.564357
44	1	-2.874016	-2.075392	3.216991
45	1	-3.986370	-1.048856	2.950491
46	8		1.700761	0.155859
47	1	-3.562778	1.921972	-0.794868
48	1	-4.178205	2.350923	0.582211
49	8	-2.828014	2.041920	-2.563212
50	1	-3.234689	1.452089	-3.215848
51	1		2.928614	
52	8	-0.328637	3.972087	-0.155110
53	1		4.046439	
54	1	-0.053467	4.794266	-0.581405
55	26	-0.000106	0.000150	-0.000091
		7488 Hartree		
	correction	- 0.450081 Energy = 0.497288		
		Energy = 0.497288 Enthalpy = 0.498232		
		Gibbs Free Energy = 0.36	CO14	
		zero-point Energies = -2		
		thermal Energies = -2638		
	ctronic and	thermal Enthalpies = -26	0.00.91001/	

Sum of electronic and thermal Free Energies = -2639.049835

Center NumberAcounce NumberCoordinates (Angstrons)18 -2.107131 -0.293884 -0.607000 28 -3.705478 -1.794134 -0.607000 38 -1.150870 3.006794 2.242724 448 -0.150553 1.800196 0.644755 58 0.111959 -1.727542 -1.288911 68 1.36662 3.47044 -0.1942920 78 1.774284 0.899950 -1.051493 88 3.633078 1.877129 -0.28308 97 1.737798 -1.006212 0.660262 107 -0.884673 -0.541482 1.656774 116 1.248921 -1.745122 1.862623 121 0.827060 -2.686223 1.506744 131 2.07278 -1.994020 2.540376 146 0.195333 -0.325616 2.587134 151 0.63001 -0.018811 2.966543 161 -0.205783 -1.502314 3.435026 176 -1.837155 -1.619811 1.347979 181 -1.290273 -2.537662 1.124069 191 -2.512279 -1.821729 2.185511 206 2.68449 -1.33056 1.07402 216 -2.684249 -1.636080 0.68719 221 -2.603608 0.68719 1.72279 <		· · · · · · · · · · · · · · · · · · ·			,
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
2 8 -3.705478 -1.794134 -0.144056 3 8 -1.150870 3.006794 2.242724 4 8 -0.150553 1.800196 0.644757 5 8 0.111959 -1.727542 -1.288311 6 8 1.366662 -3.470464 -1.914320 7 8 1.774284 0.899950 -1.051493 8 8 3 .633078 1.877129 -0.282308 9 7 1.737798 -1.006212 0.680562 10 7 -0.884673 -0.541482 1.656774 11 6 1.248921 -1.745122 1.862629 12 1 0.0627060 -2.686823 1.506744 13 1 2.072378 -1.994020 2.540976 14 6 0.195333 -0.936506 2.587134 15 1 0.6330801 -0.018811 2.986543 16 1 -0.205783 -1.502314 3.435026 17 6 -1.837155 -1.619881 1.347979 18 1 -0.250783 -1.502314 3.435026 17 6 -1.837155 -1.619881 1.347979 18 1 -2.512279 -1.821729 2.185511 20 6 -2.642449 -1.233056 0.107402 21 6 -1.584266 0.655520 2.162754 22 1 -2.603608 0.668719 1.771270 23 1 -1.649028 0.647627 3.253333 24 6 -0.317613 1.941308 1.6822869 25 6 2.283563 -1.933567 -0.33874 26 1 2.998918 -1.402120 -0.954241 27 1 2.809563 -2.770354 0.145253 28 6 1.184674 -2.454391 -1.220270 29 6 2.687181 0.073818 0.985517 30 1 2.341312 0.629525 1.859166 31 1 3.689042 -0.308973 1.204847 32 6 2.733784 1.039676 -0.20006 33 8 -0.494991 1.1403577 -0.238074 26 2.733784 1.039876 -0.20006 33 8 -0.494991 1.1403577 -0.238074 26 2.733784 1.039876 -0.20006 33 8 -0.494991 1.12512 -2.586366 34 1 -1.456146 1.251773 -2.438197 35 1 -0.111595 2.048383 -2.112785 36 8 0.623809 3.556086 -1.380476 37 8 -3.204180 1.123512 -2.586366 38 1 0.350224 3.163033 -0.2112785 36 8 0.623809 3.556086 -1.380476 37 8 -3.204180 1.123512 -2.586366 38 1 0.350224 3.163033 -0.2112785 36 8 0.623809 3.556086 -1.380476 37 8 -3.204180 1.123512 -2.586366 38 1 0.350224 3.163033 -0.2112785 36 8 0.623809 3.556086 -1.380476 37 8 -3.204180 1.123512 -2.586366 38 1 0.350224 3.163033 -0.2112785 36 8 0.623809 3.556086 -1.380476 37 8 -3.204180 1.123512 -2.586366 38 1 0.350224 3.163033 -0.404947 40 1 -3.475333 0.609635 -3.357840 41 1 -3.475333 0.609635 -3.357840 41 1 -3.475333 0.609635 -3.357840 41 1 -3.475333 0.609635 -3.357840 51 Hermal correction to Enthalpy = 0.338692 Thermal c	Number	Number	X	¥	۲
3 8 -1.150870 3.006794 2.242724 4 8 -0.150553 1.800196 0.644575 5 8 0.111959 -1.77542 -1.228911 6 8 0.111959 -1.77542 -1.228911 7 8 1.366662 -3.470464 -1.914920 7 8 1.774284 0.89950 -1.051493 8 8 3.633078 1.877129 -0.282308 9 7 1.737788 -1.006212 0.680562 10 7 -0.884673 -0.541482 1.656774 11 6 1.248921 -1.745122 1.862629 12 1 0.827060 -2.666823 1.506744 13 1 2.072378 -1.994020 2.54076 14 6 0.195333 -0.936506 2.587134 15 1 0.633001 -0.018811 2.986543 16 1 -0.205783 -1.502314 3.435026 17 6 -1.837155 -1.619881 1.347979 18 1 -1.290273 -2.537662 1.124089 19 1 -2.512279 -1.821729 2.185511 20 6 -2.642449 -1.233056 0.107402 21 6 -1.584826 0.655920 2.162754 22 1 6 -2.642449 -1.233056 0.107402 21 6 -2.642449 -1.23056 0.107402 23 1 -1.649028 0.64767 3.253933 24 6 2.283563 -1.93567 -0.325874 25 6 2.283563 -1.93567 -0.325874 26 1 2.998918 -1.40210 -0.954241 27 1 2.289553 -2.770354 0.145253 28 6 -1.184674 -2.454391 -1.250720 29 6 2.687181 0.073818 0.985517 30 1 2.344312 0.629525 1.589166 31 1 3.689042 -0.30873 1.204847 32 6 2.733784 1.039376 -0.200006 33 8 -0.434891 1.14557 -2.228350 34 1 -1.456146 1.251773 -2.438197 35 1 -0.11555 2.048383 -2.112785 36 8 0.623809 3.556066 -1.380476 37 8 -3.204180 1.123512 -2.586366 38 1 0.0.350224 3.163093 -0.521903 39 1 -1.531884 3.22807 -4.747561 40 1 -3.475933 0.609635 -3.357840 41 1 -3.658149 0.464497 -1.452524 42 26 -0.020856 0.056273 -0.409054 Termal correction to Enter	1	8	-2.107131	-0.293884	-0.607000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			-3.705478	-1.794134	-0.144056
580.111959-1.727542-1.28911681.36662-3.47044-1.914920781.7742440.899950-1.051493883.6330781.877129-0.222308971.737798-1.062120.60562107-0.884673-0.5414821.6567741161.248921-1.7451221.8626291210.827060-2.6686231.506741312.072378-1.9940202.5409761460.19533-0.9365062.5871341510.630801-0.0188112.986543161-0.205783-1.5023143.435026176-1.837155-1.619811.347979181-2.90273-2.5376621.124089191-2.612279-1.8217292.185511206-2.642449-1.2330560.107402216-1.5848260.66559202.162754221-2.6036080.6687191.771270231-1.6490280.6476273.253333246-2.2998918-1.402120-0.9542412712.809563-2.7703440.1452532861.184674-2.454391-1.2507202962.6871810.0738180.9855173012.3413120.622551.8591663113.669042-0.3089731.204847<			-1.150870	3.006794	2.242724
6 8 1.366662 -3.470464 -1.914220 7 8 1.774284 0.899950 -1.051493 8 8 3.633078 1.877129 -0.262308 9 7 1.737798 -1.006212 0.680562 10 7 -0.884673 -0.541482 1.656774 11 6 1.248921 -1.745122 1.862629 12 1 0.827060 -2.686823 1.506744 13 1 2.072376 -1.994020 2.540976 14 6 0.195333 -0.936506 2.587134 15 1 0.630801 -0.018811 2.345729 16 1 -2.05783 -1.502344 3.435026 17 6 -1.837155 -1.619881 1.347379 18 1 -1.290273 -2.537662 1.124089 19 1 -2.262449 -1.233056 0.107402 21 6 -1.54826 0.655202 2.162754 22 1 -2.603608 0.668719 1.771270			-0.150553		0.644575
781.7742840.89950-1.051493883.6330781.877129-0.282308971.737798-1.0062120.680562107-0.884673-0.5414821.6567741161.248921-1.7451221.8626291210.827060-2.6868231.5067441312.072378-1.9940202.5409761460.195333-0.9365062.5871341510.630801-0.0188112.986543161-0.205783-1.5023143.435026176-1.837155-1.6199811.347979181-1.290273-2.5376621.124089191-2.512279-1.8217292.185511206-2.642449-1.2330560.107402216-1.5848260.6559202.162754221-2.603680.667191.771270231-1.6490280.6476273.258742612.998918-1.402120-0.9542412712.809563-2.7703540.1452532861.184674-2.454391-1.2507202962.6871810.0773180.9855173012.341320.6295251.6891663113.689042-0.3089731.2048473262.7337841.039876-2.28350341-1.4561461.251773-2.38636					
883.633078 1.877129 -0.282308 97 1.737798 -1.006212 0.680562 107 -0.884673 -0.541482 1.656774 116 1.248921 -1.745122 1.862629 121 0.827060 -2.686823 1.506744 131 2.072378 -1.994020 2.540976 146 0.195333 -0.936506 2.587134 151 0.630801 -0.018811 2.986543 161 -0.205783 -1.502314 3.435026 176 -1.837155 -1.619881 1.347879 181 -1.290273 -2.537662 1.124089 191 -2.512279 -1.821729 2.185511 206 -2.642449 -1.233056 0.107402 216 -1.584266 0.66713 2.53933 246 -0.917613 1.941308 1.662269 256 2.283563 -1.493567 -0.325874 261 2.998918 -1.402120 -0.954241 271 2.809563 -2.770354 0.145253 286 1.184674 -2.454391 -1.250720 296 2.687181 0.073818 0.985517 301 2.341312 0.629525 1.859166 311 3.689042 -0.308973 -2.283563 341 -1.4561661 1.251773 -2.28850 35					
9 7 1.737798 -1.006212 0.680562 10 7 -0.884673 -0.541482 1.656774 11 6 1.248921 -1.745122 1.662629 12 1 0.827060 -2.686823 1.506744 13 1 2.072378 -1.994020 2.540976 14 6 0.195333 -0.936506 2.587134 15 1 0.630801 -0.018811 2.986543 16 1 -0.205783 -1.502314 3.435026 17 6 -1.837155 -1.619881 1.347979 18 1 -1.290273 -2.537662 1.124089 19 1 -2.512279 -1.821729 2.185511 20 6 -2.642449 -1.23056 0.107402 21 6 -1.584826 0.655920 2.162754 22 1 -2.603608 0.668719 1.771270 23 1 -1.649028 0.647627 3.253933 24 6 -0.917613 1.941308 1.682869 25 6 2.283563 -1.935657 -0.325874 26 1 2.99918 -1.402120 -0.954241 27 1 2.809563 -2.773354 0.145253 28 6 1.184674 -2.454391 -1.250720 29 6 2.687181 0.073818 0.985517 30 1 2.341312 0.629525 1.85916 31 1 3.689042 -0.308973 1.204847 32 6 2.733784 1.039876 -0.20006 33 8 -0.494891 1.145357 -2.228363 34 1 -1.456164 1.251773 -2.4283597 35 1 -0.111595 2.048383 -2.112785 36 8 0.623809 3.55608 -1.380476 41 1 -3.475933 0.609635 -3.357840 41 1 -3.457933 0.609635 -3.357840 41 1 -3.457933 0.609635 -3.357840 41 1 -3.457933 0.609635 -3.357840 41 1 -3.457933 0.609635 -3.357840 42 26 -0.020856 0.056273 -0.409054 42 26 -0.020856 0.056273 -0.409054 42 26 -0.020856 0.055273 -0.409054 41 1 -3.475933 0.609635 -3.357840 41 1 -3.457933 0.609635 -3.357840 42 26 -0.020856 0.055273 -0.409054 5.009635 -3.357840 41 1 -3.457933 0.609635 -3.357840 42 26 -0.020856 0.055273 -0.409054 5.009635 -3.357840 42 26 -0.020856 0.055273 -0.409054 5.009635 -3.357840 5.009635 -3.					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
1161.248921-1.7451221.8626291210.827060-2.6688231.5067441312.072378-1.9940202.5409761460.195333-0.9365062.5871341510.630801-0.0108112.986543161-0.205783-1.5023143.435026176-1.837155-1.6198811.347979181-1.290273-2.5376621.124089191-2.512279-1.8217292.185511206-2.642449-1.230560.107402216-1.5848260.6687191.771270231-1.6490280.6476273.253933246-0.9176131.9413081.6828692562.283563-1.935657-0.3258742612.998918-1.402120-0.9542412712.809563-2.7703540.1452532861.184674-2.454391-1.2507202962.6871810.0738180.9855173013.689042-0.3089731.2048473262.7337841.039876-0.200006338-0.4948911.145357-2.288356341-1.4561461.251773-2.438197351-0.1115952.048383-2.1127853680.6238093.556086-1.380476378-3.2041801.123512					
121 0.827060 -2.686823 1.506744 131 2.072378 -1.994020 2.540976 146 0.195333 -0.936506 2.587134 151 0.630801 -0.018811 2.986543 161 -0.205783 -1.502314 3.435026 176 -1.837155 -1.619881 1.347979 181 -1.290273 -2.537662 1.124089 191 -2.512279 -1.821729 2.185511 206 -2.642449 -1.233056 0.07402 216 -1.584826 0.655920 2.162754 221 -2.603608 0.668719 1.771270 231 -1.649028 0.647627 3.253933 246 -0.917613 1.941308 1.682869 256 2.283563 -1.935657 -0.325874 261 2.998918 -1.402120 -0.954241 271 2.809563 -2.770354 0.145253 286 1.184674 -2.454391 -1.250720 296 2.687181 0.073818 0.985517 301 2.341312 0.629525 1.859166 311 3.689042 -0.308973 1.204847 351 -0.111595 2.048333 -2.112785 368 0.623209 3.550086 -1.380476 378 -3.204180 1.123512 -2.586366 <t< td=""><td></td><td></td><td></td><td></td><td></td></t<>					
131 2.072378 -1.994020 2.540976 146 0.195333 -0.936506 2.587134 151 0.630801 -0.018811 2.986543 161 -0.205783 -1.502314 3.435026 176 -1.837155 -1.619811 1.24089 181 -1.290273 -2.537662 1.24089 191 -2.512279 -1.821729 2.185511 206 -2.642449 -1.233056 0.107402 216 -1.584826 0.668719 1.771270 231 -1.649028 0.647627 3.253933 246 -0.917613 1.941308 1.682269 256 2.283563 -1.935657 -0.325874 261 2.999818 -1.402120 -0.954241 271 2.609563 -2.770354 0.145253 286 1.184674 -2.454391 -1.250720 296 2.687181 0.073818 0.985517 301 2.341312 0.629525 1.859166 311 3.689042 -0.308973 1.204847 326 2.733784 1.039876 -0.200006 338 -0.494891 1.145357 -2.288350 341 -1.456146 1.251773 -2.438197 351 0.350224 3.163093 -0.521903 391 1.531844 3.228007 -1.47761					
146 0.195333 -0.936506 2.587134 151 0.630801 -0.018811 2.986543 161 -0.205783 -1.502314 3.435026 176 -1.837155 -1.619881 1.347979 181 -1.290273 -2.537662 1.124089 191 -2.512279 -1.821729 2.185511 206 -2.642449 -1.233056 0.107402 216 -1.584826 0.658720 2.162754 221 -2.603608 0.668719 1.771270 231 -1.649028 0.647627 3.253933 246 -0.917613 1.941308 1.682869 256 2.283563 -1.935657 -0.325874 261 2.99818 -1.402120 -0.954241 271 2.809563 -2.770354 0.145253 286 1.184674 -2.454991 -1.250720 296 2.67181 0.073818 0.985517 301 2.341312 0.629525 1.859166 311 3.689042 -0.30973 1.20487 326 2.770354 1.20487 3.228307 338 -0.494891 1.145357 -2.228350 341 -1.365149 0.623809 3.556086 381 0.350224 3.163093 -0.521933 391 1.531844 3.228007 -1.477561 40 </td <td></td> <td></td> <td></td> <td></td> <td></td>					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
161 -0.205783 -1.502314 3.435026 176 -1.837155 -1.619881 1.347879 181 -1.290273 -2.537662 1.124089 191 -2.512279 -1.821729 2.185511 206 -2.642449 -1.233056 0.107402 216 -1.584826 0.655920 2.162754 221 -2.603608 0.668719 1.771270 231 -1.649028 0.647627 3.253933 246 -0.917613 1.941308 1.682869 256 2.283553 -1.935557 -0.325874 261 2.998918 -1.402120 -0.954241 271 2.809563 -2.770354 0.145253 286 1.184674 -2.454331 -1.250720 296 2.687181 0.073818 0.985517 301 2.341312 0.629255 1.859166 311 3.689042 -0.308973 1.204847 326 2.733784 1.039876 -0.200006 338 -0.494891 1.145357 -2.228350 341 -1.456146 1.251773 -2.438197 351 -0.511595 2.048383 -2.112785 368 0.623809 3.556086 -1.380476 378 -3.204180 1.123512 -2.586366 381 0.35024 3.163093 -0.521903 <tr<< td=""><td></td><td></td><td></td><td></td><td></td></tr<<>					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
181 -1.290273 -2.537662 1.124089 191 -2.512279 -1.821729 2.185511 206 -2.642449 -1.233056 0.107402 216 -1.584826 0.655920 2.162754 221 -2.603608 0.668719 1.771270 231 -1.649028 0.647627 3.253933 246 -0.917613 1.941308 1.68269 256 2.283563 -1.935657 -0.325874 261 2.998918 -1.402120 -0.954241 271 2.809563 -2.770354 0.145253 286 1.184674 -2.454391 -1.250720 296 2.687181 0.03818 0.985517 301 2.341312 0.629525 1.859166 311 3.689042 -0.308973 1.204847 326 2.733784 1.039876 -0.200006 338 -0.494891 1.145357 -2.28350 341 -1.456146 1.251773 -2.438197 351 -0.523842 3.163093 -0.521903 391 1.531884 3.228007 -1.477561 401 -3.475933 0.609635 -3.357840 411 -3.058149 0.464947 -1.862252 4226 -0.020856 0.056273 -0.409054 Thermal correction to Energy = 0.338692Ther					
191 -2.512279 -1.821729 2.185511 206 -2.642449 -1.233056 0.107402 216 -1.584826 0.668719 1.771270 231 -2.603608 0.668719 1.771270 231 -1.649028 0.647627 3.253933 246 -0.917613 1.941308 1.682869 256 2.283563 -1.935657 -0.32874 261 2.998918 -1.402120 -0.954241 271 2.809563 -2.770354 0.145253 286 1.184674 -2.454391 -1.250720 296 2.687181 0.073818 0.985517 301 2.341312 0.629525 1.859166 311 3.689042 -0.308973 1.204847 326 2.733784 1.039876 -0.200006 338 -0.494891 1.145357 -2.228350 341 -1.456146 1.251773 -2.438197 351 -0.111595 2.04833 -2.112785 368 0.623809 3.556086 -1.380476 378 -3.204180 1.123512 -2.586366 381 0.350224 3.163093 -0.521903 391 1.531884 3.228007 -1.477561 401 -3.75930 0.60635 -3.37840 411 -3.058149 0.464947 -1.862252 4					
20 6 -2.642449 -1.233056 0.107402 21 6 -1.584826 0.655920 2.162754 22 1 -2.603608 0.668719 1.771270 23 1 -1.649028 0.647627 3.253933 24 6 -0.917613 1.941308 1.682869 25 6 2.283563 -1.935657 -0.325874 26 1 2.989918 -1.402120 -0.954241 27 1 2.809563 -2.770354 0.145253 28 6 1.184674 -2.454391 -1.250720 29 6 2.687181 0.073818 0.985517 30 1 2.341312 0.629525 1.859166 31 1 3.689042 -0.308973 1.204847 32 6 2.733784 1.039876 -0.200006 33 8 -0.494891 1.145357 -2.228350 34 1 -1.456146 1.251773 -2.438197 35 1 -0.111595 2.04838 -2.112785 36 8 0.623809 3.556086 -1.380476 37 8 -3.204180 1.123512 -2.586366 38 1 0.350224 3.163093 -0.521903 39 1 1.531884 3.228007 -1.477561 40 1 -3.475933 0.609635 -3.357840 41 1 -3.058149 0.464947 -1.862252 42 26 -0.020856 0.056273 -0.409054 					
21 6 -1.584826 0.655920 2.162754 22 1 -2.603608 0.668719 1.771270 23 1 -1.649028 0.647627 3.253933 24 6 -0.917613 1.941308 1.682869 25 6 2.283563 -1.935657 -0.325874 26 1 2.998918 -1.402120 -0.954241 27 1 2.809563 -2.770354 0.145253 28 6 1.184674 -2.454391 -1.250720 29 6 2.687181 0.073818 0.985517 30 1 2.341312 0.629525 1.859166 31 1 3.689042 -0.308973 1.204847 32 6 2.733784 1.039876 -0.200006 33 8 -0.494891 1.145357 -2.228350 34 1 -1.456146 1.251773 -2.438197 35 1 -0.111595 2.048383 -2.112785 36 8 0.623809 3.556086 -1.380476 37 8 -3.204180 1.123512 -2.586366 38 1 0.350224 3.163093 -0.521903 39 1 1.531884 3.228007 -1.477561 40 1 -3.475933 0.609635 -3.357840 41 1 -3.058149 0.464947 -1.862252 42 26 -0.020856 0.056273 -0.409054 					
221 -2.603608 0.668719 1.771270 231 -1.649028 0.647627 3.253933 246 -0.917613 1.941308 1.682869 256 2.283563 -1.935657 -0.325874 261 2.998918 -1.402120 -0.954241 271 2.809563 -2.770354 0.145253 286 1.184674 -2.454391 -1.250720 296 2.687181 0.073818 0.985517 301 2.341312 0.629525 1.859166 311 3.689042 -0.308973 1.204847 326 2.7733784 1.039876 -0.200006 338 -0.494891 1.145557 -2.28350 341 -1.456146 1.251773 -2.438197 351 -0.111595 2.048383 -2.112785 368 0.623809 3.556086 -1.380476 378 -3.204180 1.123512 -2.586366 381 0.350244 3.163093 -0.521903 391 1.531884 3.228007 -1.477561 401 -3.475933 0.609635 -3.357840 411 -3.058149 0.464947 -1.862252 4226 -0.020856 0.056273 -0.409054 411 -3.475933 0.609635 -3.357840 4226 -0.020856 0.056273 -0.409054 <					
23 1 -1.649028 0.647627 3.253933 24 6 -0.917613 1.941308 1.662869 25 6 2.283563 -1.935657 -0.325874 26 1 2.998918 -1.402120 -0.954241 27 1 2.809563 -2.770354 0.145253 28 6 1.184674 -2.454391 -1.250720 29 6 2.687181 0.073818 0.985517 30 1 2.341312 0.629525 1.859166 31 1 3.689042 -0.308973 1.204847 32 6 2.733784 1.039876 -0.200006 33 8 -0.494891 1.145357 -2.228350 34 1 -1.456146 1.251773 -2.438197 35 1 -0.111595 2.048383 -2.112785 36 8 0.623809 3.556086 -1.380476 37 8 -3.204180 1.123512 -2.586366 38 1 0.350224 3.163093 -0.521903 39 1 1.531884 3.228007 -1.477561 40 1 -3.475933 0.609635 -3.357840 41 1 -3.058149 0.464947 -1.862252 42 26 -0.020856 0.056273 -0.409054 					
24 6 -0.917613 1.941308 1.682869 25 6 2.283563 -1.935657 -0.325874 26 1 2.998918 -1.402120 -0.954241 27 1 2.809563 -2.770354 0.145253 28 6 1.184674 -2.454391 -1.250720 29 6 2.687181 0.073818 0.985517 30 1 2.341312 0.629525 1.859166 31 1 3.689042 -0.308973 1.204847 32 6 2.733784 1.039876 -0.20006 33 8 -0.494891 1.145357 -2.228350 34 1 -1.456146 1.251773 -2.438197 35 1 -0.111595 2.048383 -2.112785 36 8 0.623809 3.556086 -1.380476 37 8 -3.204180 1.123512 -2.586366 38 1 0.350224 3.163093 -0.521903 39 1 1.531884 3.228007 -1.477561 40 1 -3.475933 0.609635 -3.357840 41 1 -3.058149 0.464947 -1.862252 42 26 -0.020856 0.056273 -0.409054 					
25 6 2.283563 -1.935657 -0.325874 26 1 2.998918 -1.402120 -0.954241 27 1 2.809563 -2.770354 0.145253 28 6 1.184674 -2.454391 -1.250720 29 6 2.687181 0.073818 0.985517 30 1 2.341312 0.629525 1.859166 31 1 3.689042 -0.308973 1.204847 32 6 2.733784 1.039876 -0.200006 33 8 -0.494891 1.145357 -2.228350 34 1 -1.456146 1.251773 -2.438197 35 1 -0.111595 2.048383 -2.112785 36 8 0.623809 3.556086 -1.380476 37 8 -3.204180 1.123512 -2.586366 38 1 0.350224 3.163093 -0.521903 39 1 1.531884 3.228007 -1.477561 40 1 -3.475933 0.609635 -3.357840 41 1 -3.058149 0.464947 -1.862252 42 26 -0.020856 0.056273 -0.409054 					
27 1 1 2.809563 -2.770354 0.145253 28 6 1.184674 -2.454391 -1.250720 29 6 2.687181 0.073818 0.985517 30 1 2.341312 0.629525 1.859166 31 1 3.689042 -0.308973 1.204847 32 6 2.733784 1.039876 -0.20006 33 8 -0.494891 1.145357 -2.228350 34 1 -1.456146 1.251773 -2.438197 35 1 -0.111595 2.048383 -2.112785 36 8 0.623809 3.556086 -1.380476 37 8 -3.204180 1.123512 -2.586366 38 1 0.350224 3.163093 -0.521903 39 1 1.531884 3.228007 -1.477561 40 1 -3.475933 0.609635 -3.357840 41 1 -3.058149 0.464947 -1.862252 42 26 -0.020856 0.056273 -0.409054 Thermal correction = 0.311580 Thermal correction to Energy = 0.338692 Thermal correction to Enthalpy = 0.339636 Thermal correction to Enthalpy = 0.339636 Sum of electronic and zero-point Energies = -2593.257448 Sum of electronic and thermal Energies = -2593.229391					
28 6 1.184674 -2.454391 -1.250720 29 6 2.687181 0.073818 0.985517 30 1 2.341312 0.629525 1.859166 31 1 3.689042 -0.308973 1.204847 32 6 2.733784 1.039876 -0.200006 33 8 -0.494891 1.145357 -2.228350 34 1 -1.456146 1.251773 -2.438197 35 1 -0.111595 2.048383 -2.112785 36 8 0.623809 3.556086 -1.380476 37 8 -3.204180 1.123512 -2.586366 38 1 0.350224 3.163093 -0.521903 39 1 1.531884 3.228007 -1.477561 40 1 -3.475933 0.609635 -3.357840 41 1 -3.058149 0.464947 -1.862252 42 26 -0.020856 0.056273 -0.409054 $\cdot E(UTPSSh) = -2593.5690276 Hartree$ Zero-point correction = 0.311580 Thermal correction to Energy = 0.338692 Thermal correction to Energy = 0.339636 Thermal correction to Energy = 0.253628 Sum of electronic and zero-point Energies = -2593.257448 Sum of electronic and thermal Energies = -2593.229391					
2962.6871810.0738180.9855173012.3413120.6295251.8591663113.689042 -0.308973 1.2048473262.7337841.039876 -0.20006 338 -0.494891 1.145357 -2.228350 341 -1.456146 1.251773 -2.438197 351 -0.111595 2.048383 -2.112785 368 0.623809 3.556086 -1.380476 378 -3.204180 1.123512 -2.586366 381 0.350224 3.163093 -0.521903 391 1.531884 3.228007 -1.477561 401 -3.475933 0.609635 -3.357840 411 -3.058149 0.464947 -1.862252 4226 -0.020856 0.056273 -0.409054 'E(UTPSSh) = -2593.5690276 HartreeZero-point correction = 0.311580 Thermal correction to Energy = 0.338692 Thermal correction to Energy = 0.253628 Sum of electronic and zero-point Energies = -2593.257448 Sum of electronic and thermal Energies = -2593.257448 Sum of electronic and thermal Energies = -2593.230336	27	1	2.809563	-2.770354	0.145253
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	28		1.184674	-2.454391	-1.250720
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
326 2.733784 1.039876 -0.200006 33 8 -0.494891 1.145357 -2.228350 34 1 -1.456146 1.251773 -2.438197 35 1 -0.111595 2.048383 -2.112785 36 8 0.623809 3.556086 -1.380476 37 8 -3.204180 1.123512 -2.586366 38 1 0.350224 3.163093 -0.521903 39 1 1.531884 3.228007 -1.477561 40 1 -3.475933 0.609635 -3.357840 41 1 -3.058149 0.464947 -1.862252 42 26 -0.020856 0.056273 -0.409054 * E(UTPSSh) = -2593.5690276 HartreeZero-point correction = 0.311580 Thermal correction to Energy = 0.338692 Thermal correction to Energy = 0.339636 Thermal correction to Gibbs Free Energy = 0.253628 Sum of electronic and zero-point Energies = -2593.257448 Sum of electronic and thermal Energies = -2593.220336 Sum of electronic and thermal Energies = -2593.220336					
33 8 -0.494891 1.145357 -2.228350 34 1 -1.456146 1.251773 -2.438197 35 1 -0.111595 2.048383 -2.112785 36 8 0.623809 3.556086 -1.380476 37 8 -3.204180 1.123512 -2.586366 38 1 0.350224 3.163093 -0.521903 39 1 1.531884 3.228007 -1.477561 40 1 -3.058149 0.464947 -1.862252 42 26 -0.020856 0.056273 -0.409054					
341-1.4561461.251773-2.438197351-0.1115952.048383-2.1127853680.6238093.556086-1.380476378-3.2041801.123512-2.5863663810.3502243.163093-0.5219033911.5318843.228007-1.477561401-3.4759330.609635-3.357840411-3.0581490.464947-1.8622524226-0.0208560.056273-0.409054					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
36 8 0.623809 3.556086 -1.380476 37 8 -3.204180 1.123512 -2.586366 38 1 0.350224 3.163093 -0.521903 39 1 1.531884 3.228007 -1.477561 40 1 -3.475933 0.609635 -3.357840 41 1 -3.058149 0.464947 -1.862252 42 26 -0.020856 0.056273 -0.409054					
37 8 -3.204180 1.123512 -2.586366 38 1 0.350224 3.163093 -0.521903 39 1 1.531884 3.228007 -1.477561 40 1 -3.475933 0.609635 -3.357840 41 1 -3.058149 0.464947 -1.862252 42 26 -0.020856 0.056273 -0.409054					
38 1 0.350224 3.163093 -0.521903 39 1 1.531884 3.228007 -1.477561 40 1 -3.475933 0.609635 -3.357840 41 1 -3.058149 0.464947 -1.862252 42 26 -0.020856 0.056273 -0.409054					
39 1 1.531884 3.228007 -1.477561 40 1 -3.475933 0.609635 -3.357840 41 1 -3.058149 0.464947 -1.862252 42 26 -0.020856 0.056273 -0.409054					
40 1 -3.475933 0.609635 -3.357840 41 1 -3.058149 0.464947 -1.862252 42 26 -0.020856 0.056273 -0.409054					
41 1 -3.058149 0.464947 -1.862252 42 26 -0.020856 0.056273 -0.409054 . E(UTPSSh) = -2593.5690276 Hartree Zero-point correction = 0.311580 Thermal correction to Energy = 0.338692 Thermal correction to Enthalpy = 0.339636 Thermal correction to Gibbs Free Energy = 0.253628 Sum of electronic and zero-point Energies = -2593.257448 Sum of electronic and thermal Energies = -2593.230336 Sum of electronic and thermal Energies = -2593.229391					
42 26 -0.020856 0.056273 -0.409054 •E(UTPSSh) = -2593.5690276 Hartree Zero-point correction = 0.311580 Thermal correction to Energy = 0.338692 Thermal correction to Enthalpy = 0.339636 Thermal correction to Gibbs Free Energy = 0.253628 Sum of electronic and zero-point Energies = -2593.257448 Sum of electronic and thermal Energies = -2593.230336 Sum of electronic and thermal Enthalpies = -2593.229391					
<pre>'E(UTPSSh) = -2593.5690276 Hartree Zero-point correction = 0.311580 Thermal correction to Energy = 0.338692 Thermal correction to Enthalpy = 0.339636 Thermal correction to Gibbs Free Energy = 0.253628 Sum of electronic and zero-point Energies = -2593.257448 Sum of electronic and thermal Energies = -2593.230336 Sum of electronic and thermal Enthalpies = -2593.229391</pre>			-0.020856	0.056273	-0.409054
Zero-point correction = 0.311580 Thermal correction to Energy = 0.338692 Thermal correction to Enthalpy = 0.339636 Thermal correction to Gibbs Free Energy = 0.253628 Sum of electronic and zero-point Energies = -2593.257448 Sum of electronic and thermal Energies = -2593.230336 Sum of electronic and thermal Enthalpies = -2593.229391					
Thermal correction to Energy = 0.338692 Thermal correction to Enthalpy = 0.339636 Thermal correction to Gibbs Free Energy = 0.253628 Sum of electronic and zero-point Energies = -2593.257448 Sum of electronic and thermal Energies = -2593.230336 Sum of electronic and thermal Enthalpies = -2593.229391					
Thermal correction to Enthalpy = 0.339636 Thermal correction to Gibbs Free Energy = 0.253628 Sum of electronic and zero-point Energies = -2593.257448 Sum of electronic and thermal Energies = -2593.230336 Sum of electronic and thermal Enthalpies = -2593.229391	_				
Thermal correction to Gibbs Free Energy = 0.253628 Sum of electronic and zero-point Energies = -2593.257448 Sum of electronic and thermal Energies = -2593.230336 Sum of electronic and thermal Enthalpies = -2593.229391					
Sum of electronic and zero-point Energies = -2593.257448 Sum of electronic and thermal Energies = -2593.230336 Sum of electronic and thermal Enthalpies = -2593.229391					
Sum of electronic and thermal Energies = -2593.230336 Sum of electronic and thermal Enthalpies = -2593.229391					
Sum of electronic and thermal Enthalpies = -2593.229391					
			_		
Sum of electronic and thermal Free Energies = -2593.315400					
	Sum of e	electronic and	thermal Free Energie	s = -2593.3	15400

Table S6. Optimized Cartesian coordinates obtained for [Fe(EDTA)(H₂O)]⁻·2H₂O (capped trigonal prism, CTP) with DFT calculations (0 imaginary frequencies).

Center	Atomic	Coordinates (Angstroms)			
Number	Number	Х	Y	Z 	
1	7	-1.025765		1.19444	
2	7	1.737167		0.50881	
3	8	-0.458060	1.932847	-1.72467	
4	8	-2.147129	0.213923	-0.72708	
5	8	1.752589	0.883140	-1.19111	
6	8	3.598140	1.879907	-0.42487	
7	8	-4.119637	-0.826740	-0.57340	
8	6	2.749745	0.979235	-0.38847	
9	8	0.082406	1.333684	1.13180	
10 11	6 8	-2.928407	-0.722871	-0.29084	
11	8	-0.004263 -0.465635	-1.462968 1.773336	-1.58926 3.25355	
12	о б	-0.504878	1.059233	2.25836	
13	8	1.067368	-3.289061	-2.29730	
14	6	0.969907	-2.318659	-1.55205	
15	6	2.815488	-0.082058	0.70268	
17	6	-1.338361	-0.223710	2.28215	
18	6	-2.252798	-1.744454	0.61285	
19	6	2.077738	-2.054984	-0.52944	
20	6	1.304751	-1.678246	1.77518	
21	6	-0.092257	-2.238669	1.62270	
22	ů 1	-1.979998	-2.599439	-0.00896	
23	1	3.805348	-0.550597	0.71794	
24	1	2.931035	-1.685995	-1.10210	
25	1	-2.951609	-2.089992	1.38040	
26	1	-1.244415	-0.698105	3.26276	
27	1	1.322706	-0.906999	2.54689	
28	1	2.378639	-3.005553	-0.07951	
29	1	-0.106076	-3.017890	0.85917	
30	1	-0.422197	-2.693071	2.56408	
31	1	1.994641	-2.471085	2.08777	
32	1	-1.371947	2.304362	-1.69022	
33	1	0.158078	2.625359	-1.38903	
34	1	-2.377833	0.096343	2.17773	
35	1	2.671747	0.421745	1.65929	
36	8	-3.132816	2.568768	-1.59901	
37	1	-3.558766	2.553328	-2.46590	
38	1	-3.069869	1.625312	-1.31618	
39	8	1.172464		-0.22142	
40	1	0.847091			
41	1		3.317634		
42	2 6	-0.063009	U.158637	-0.4/891	
Zero-poi Thermal Thermal Thermal	correction to correction to	3534 Hartree = 0.311680 Energy = 0.338762 Enthalpy = 0.339706 Gibbs Free Energy =			
		zero-point Energies			
		thermal Energies = - thermal Enthalpies =			

Table S7. Optimized Cartesian coordinates obtained for $[Fe(EDTA)(H_2O)]$ ·2H₂O (pentagonal bipyramidal, PB) with DFT calculations (0 imaginary frequencies).

Center	Atomic	Coordinates (Angstroms)			
Number	Number	Х	Y	Z 	
1	8	1.704482	-1.751555	0.63191	
2	8	1.164806	-3.756698	1.47034	
3	8	1.082781	-0.781577	-3.67699	
4	8	1.160803	0.270674	-1.70323	
5	8	0.481911	0.067554	2.25681	
6	8	-0.537498	0.961070	4.03543	
7	8	1.191623	2.234134	0.1913	
8	8	0.558623	3.937879	-1.10802	
9	7	-1.156870	1.218001	0.4938	
10	7	-0.586260	-1.363187	-0.5314	
11	6 1	-2.272594	0.245774	0.3116	
12 13	1 6	-2.337044 -1.926104	-0.299255 -0.752326	1.2595 -0.7882	
14	1	-1.813193	-0.201034	-1.7279	
14	6	-0.569711	-2.440421	0.4743	
16	1	-1.135979	-2.127753	1.3539	
17	1	-1.005645	-3.370282	0.0999	
18	6	0.871490	-2.704110	0.9102	
19	6	0.014570	-1.815542	-1.8038	
20	1	0.724040	-2.619940	-1.6018	
21	1	-0.739710	-2.209035	-2.4889	
22	6	0.801455	-0.700948	-2.4862	
23	6	-1.162738	1.754783	1.8694	
24	1	-0.679943	2.733216	1.8751	
25	1	-2.179692	1.886600	2.2466	
26	6	-0.368665	0.864888	2.8230	
27	6	-1.084457	2.297583	-0.5050	
28	1	-1.261721	1.888689	-1.5014	
29	1	-1.821856	3.085475	-0.3273	
30	6	0.322021	2.898698	-0.4887	
31	8	3.072103	0.556948	0.5388	
32	1	3.663623	-0.233024	0.4840	
33	1	3.309627	1.161840	-0.2030	
34	8	3.294401	2.074121	-1.8277	
35	8	4.377314	-1.853080	0.5340	
36	1	2.564042	1.453852	-2.0453	
37	1	2.814344	2.851270	-1.4978	
38	1	4.816543	-2.039923	1.3738	
39	1	3.426474	-2.087740	0.6704	
40	26	0.923664	0.180868	0.3197	
41	6 1	-3.630709	0.911535	0.0436	
42 43	1	-3.564682	1.507416	-0.8723	
43 44	6	-3.871527 -3.049319	1.598694 -1.784736	0.8590 -0.9655	
44 45	0	-3.140949	-2.378348	-0.0503	
45	1	-2.794872	-2.474871	-1.7741	
40	6	-4.391784	-1.105415	-1.2460	
48	6	-4.740623	-0.128598	-0.1241	
49	1	-4.342425	-0.567407	-2.1996	
50	1	-5.169100	-1.867205	-1.3484	
51	1	-5.685148	0.379323	-0.3361	
52	1	-4.876337	-0.679573	0.8135	

Table S8. Optimized Cartesian coordinates obtained for [Fe(CDTA)(H₂O)]⁻·2H₂O (capped trigonal prism, CTP) with DFT calculations (0 imaginary frequencies).

E(UTPSSh) = -2749.6849137 Hartree

```
Zero-point correction = 0.404725
Thermal correction to Energy = 0.435239
Thermal correction to Enthalpy = 0.436183
Thermal correction to Gibbs Free Energy = 0.343475
Sum of electronic and zero-point Energies = -2749.280188
Sum of electronic and thermal Energies = -2749.249675
Sum of electronic and thermal Enthalpies = -2749.248730
Sum of electronic and thermal Free Energies = -2749.341438
```

Table	S9.	Optimized	Cartesian	coordinates	obtained	for	$[Fe(CDTA)(H_2O)]$ $\cdot 2H_2O$		
(pentagonal bipyramidal, PB) with DFT calculations (0 imaginary frequencies).									

Center	Atomic	Coordinates (Angstroms)			
Number	Number	Х	Y	Z	
1	7	0.615592	-1.404821	0.510583	
2	7	1.096552	1.332774	-0.169384	
3	8	-3.092920	0.392672	-0.813080	
4	8	-1.751887	-1.828667	-0.562727	
5	8	-1.279151	2.112764	-0.827115	
6	8	-1.222279	4.060117	0.264065	
7	8	-1.437990		-0.816707	
8	6		2.990632	-0.086957	
9	8	-1.213958	0.404325	1.498780	
10	6	-1.023608		-0.557594	
11	8	-0.017137		-2.162429	
12	8	-0.912970	-0.248695	3.614026	
13	6	-0.707118	-0.369078	2.411537	
14	8	1.565588	0.330525		
15	6	1.024498	0.453273	-2.542947	
16	6	0.683527	2.618273	0.413555	
17	6	0.157300	-1.529219	1.912600	
18	6	0.442678	-2.672632	-0.218894	
19	6	1.561439	1.497410	-1.561179	
20	6	2.027491	0.593746	0.721399	
21	6	2.000913	-0.882455	0.352266	
22	1	0.987736	-2.608108	-1.163232	
23	1		3.426559	0.192198	
24	1		2.459415	-1.932744	
25	1	0.827965	-3.530512	0.338653	
26	1	0.990068	-1.668416	2.603149	
27	1	1.591558	0.693150	1.718599	
28	1	2.650520	1.521681	-1.626930	
29	1	2.214579	-0.984929	-0.715757	
30	1	-3.685460	-0.364145	-0.590165	
31	1	-3.345123	1.146944	-0.231198	
32	1	-0.468761	-2.421023	1.993890	
33	1		2.516170	1.498268	
34	8	-4.435555		-0.313448	
35	1	-4.912147	-2.290406	-1.086963	
36	1	-3.491999	-2.214584	-0.455496	
37	8	-3.430688	2.283682	1.254383	
38	1	-2.739295	1.712739	1.642739	
39	1	-2.923033	3.042306	0.907496	
40	26	-0.930813	0.096148	-0.451419	
41	6	3.482390	1.135335	0.783673	
42	1	3.774971	1.205493	1.834802	
43	1	3.513931	2.155218	0.391880	
44	6	3.099015	-1.623146	1.125675	

45	1	3.014223	-1.387193	2.190475
46	1	2.979027	-2.703820	1.027118
47	6	4.490706	-1.190891	0.612566
48	6	4.483235	0.240928	0.045000
49	1	5.205217	-1.262019	1.436286
50	1	4.830343	-1.883429	-0.161676
51	1	5.483252	0.676170	0.112033
52	1	4.237137	0.209394	-1.020637

'E(UTPSSh) = -2749.6743768 Hartree Zero-point correction = 0.404298 Thermal correction to Energy = 0.435212 Thermal correction to Enthalpy = 0.436157 Thermal correction to Gibbs Free Energy = 0.341944 Sum of electronic and zero-point Energies = -2749.270079 Sum of electronic and thermal Energies = -2749.239164 Sum of electronic and thermal Enthalpies = -2749.238220 Sum of electronic and thermal Free Energies = -2749.332433

References

- (1) (a) D. F. Evans, J. Chem. Soc. 1959, 2003–2005; (b) D. F. Evans, G. V. Fazakerley, R. F. Phillips, J. Chem. Soc. (A) 1971, 1931–1934; (c) D. M. Corsi, C. P.-Iglesias, H. van Bekkum, J. A. Peters, Magn. Reson. Chem. 2001, 39, 723–726.
- (2) J. M. Tao, J. P. Perdew, V. N. Staroverov, G. E. Scuseria, Phys. Rev. Lett. 2003, 91, 146401.
- (3) F. Weigend, R. Ahlrichs, *Phys. Chem. Chem. Phys.* 2005, 7, 3297–3305.
- (4) V. Patinec, G. A. Rolla, M. Botta, R. Tripier, D. Esteban-Gómez, C. Platas-Iglesias, *Inorg. Chem.* 2013, *52*, 11173–11184.
- (5) E. D. Hedegard, J. Kongsted, S. P. A. Sauer, J. Chem. Theory Comput. 2011, 7, 4077–4087.
- (6) N. Rega, M. Cossi, V. Barone, J. Chem. Phys. 1996, 105, 11060-11067.
- (7) J. Tomasi, B. Mennucci, R. Cammi, Chem. Rev. 2005, 105, 2999-3093.
- (8) Gaussian 09, Revision E.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.
- (9) (a) B. O. Roos, P. R. Taylor, P. E. M. Siegbahn, *Chem. Phys.* 1980, 48(2), 157–173; (b) P. Siegbahn, A. Heiberg, B. Roos, B. Levy, *Phys. Scr.* 1980, 21 (3–4), 323; (c) P. E. M. Siegbahn, J. Almlöf, A. Heiberg, B. O. Roos, *J. Chem. Phys.* 1981, 74 (4), 2384–2396.
- (10) (a) F. Neese, Software Update: the ORCA Program System, Version 4.0. *Wiley Interdisciplinary Reviews: Computational Molecular Science* 2018, 8 (1), e1327; (b) F. Neese, The ORCA Program System. Wiley Interdisciplinary Reviews: Computational Molecular Science 2012, 2 (1), 73–78.
- (11) A. V. Marenich, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. B, 2009, 113, 6378-6396.
- (12) C. Kollmar, K. Sivalingam, B. Helmich-Paris, C. Angeli, F. Neese, J. Comput. Chem. 2019, 40, 1463–1470.
- (13) F. Weigend, J. Comput. Chem. 2007, 29, 167–175.
- (14) (a) C. Angeli, R. Cimiraglia, S. Evangelisti, T. Leininger, J.-P. Malrieu, J. Chem. Phys. 2001, 114 (23), 10252-10264; (b) C. Angeli, R. Cimiraglia, J.-P. Malrieu, Chem. Phys. Lett. 2001, 350, 297-305; (c) C. Angeli, R. Cimiraglia, J.-P. Malrieu, J. Chem. Phys. 2002, 117 (20), 9138-9153.
- (15) F. Neese, J. Chem. Phys. 2005, 122 (3), 034107.
- (16) S. Khan, R. Pollet, R. Vuilleumier, J. Kowalewski, M. Odelius, J. Chem. Phys. 2017, 147, 244306.
- (17) H. M. Irving, M. G. Miles, L. Pettit, Anal. Chim. Acta 1967, 38, 475-488

- (18) L. Zékány, I. Nagypál in "Computational Method for Determination of Formation Constants" Ed. Legett D J, Plenum, New York, 1985, p. 291.
- (19) R. L. Gustafson, A. E. Martell, J. Phys. Chem. 1963, 67, 576–582
- (20) J. Felcman, J. da Silva, Talanta, 1983, 30, 565
- (21) R. Delgado, et al, Talanta, 1997, 45, 451
- (22) A. Brausam, J. Maigut, R. Meier, P. A. Szilágyi, H.-J. Buschmann, W. Massa, Z. Homonnay, R. van Eldik, *Inorg. Chem.* 2009, 48, 7864–7884.
- (23) A. E. Martell, S. M. Smith, Critical stability constants Vol 1-5. New York: Plenum Press; 1974-1982
- (24) J. Carr et al. Anal. Chem. 1971, 43, 1520
- (25) J.Watters et al, J. Inorg. Nucl. Chem. 1968, 30, 3359
- (26) M. Taqui-Khan and A. E. Martell, J. Am. Chem. Soc. 1968, 90, 3386
- (27) (a) C. Lagercrantz, Acta Chem. Scand., 1964, 18, 562; (b) H. Dahn, L, Loewe, C. A. Bunton, Helv. Chim. Acta, 1960, 43, 320; (c) Y. Kirino, P. L. Southwick, and R. H. Schuler, J. Am. Chem. Soc., 1974, 96, 673
- (28) T. J. Swift, R. E. Connick, J. Chem. Phys. 1962, 37, 307.
- (29) J. R. Zimmermann, W. E. Brittin, J. Phys. Chem. 1957, 61, 1328.
- (30) A. D. McLachlan, Proc. R. Soc. London, A, 1964, 280, 271-288.
- (31) Z. Luz, S. Meiboom, J. Chem. Phys. 1964, 40, 2686.
- (32) The Chemistry of Contrast Agents in Medical Magnetic Resonance Imaging (Eds: A. E. Merbach, E. Tóth), Wiley, New York, **2001**.
- (33) J. H. Freed, J. Chem. Phys. 1978, 68, 4034.
- (34) S. H. Koenig, R. D. Brown III, Prog. Nucl. Magn. Reson. Spectrosc. 1991, 22, 487.
- (35) R. Meier, F. W. Heinemann, Inorg. Chim. Acta 2002, 337, 317-327.