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1. STM-Break Junction experiment details 
 
Conductance measurements were made using a custom-built scanning tunneling microscope that 
has been described in detail before1. Conductance measurements were performed in dilute 
solutions (100μM) of the molecules in 1,2,4-trichlorobenzene (TCB). One-dimensional (1D) 
conductance histograms are constructed using logarithmic bins (100/decade), and two-dimensional 
(2D) histograms use logarithmic bins along the conductance axis (100/decade) and linear bins 
(1000/nm) along the displacement axis. The junction length is determined by displacement 
profiling of the molecular conductance feature in the two-dimensional histograms. 
 
2. Additional Figures 

 

Figure S1. (a) Logarithm-binned 1D conductance histograms C2-NH2, C4-NH2, C6-NH2 and C8-
NH2 measured in TCB compiled from thousands of traces without any data selection. Note that 
the increase in counts at low conductances for C2-NH2, C4-NH2, C6-NH2 is due to the noise floor 
as these measurements are done at 25 mV, 100 mV, 100 mV and 250 mV for C2-NH2, C4-NH2, 
C6-NH2, C8-NH2. (b) Logarithm-binned 2D conductance-displacement histograms of C2-NH2 
measured in TCB at 100 mV.  
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Figure S2. (a) Structure of N,N’-dimethyl-1,4-butanediamine (DMBDA) and N,N,N’,N’-
tetramethyl-1,4-butanediamine (TMBDA). (b) Logarithm-binned 1D conductance histogram of 
TMBDA and DMBDA along with the histogram of C4-NH2. 
 
 

 
Figure S3. Ballistic current density calculated at the Fermi energy of piperazine, dithiane, C222-
diaza, and C222-SMe calculated using wide-band approximated electrodes. The electrode 
positions are shown as dihydrogen molecules. Vectors are shown as arrows where the diameter is 
scaled by the vector length and colored by the relative magnitude of the z-component of the vector. 
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Figure S4.  Au-molecule-Au junction transmission of substituted piperazine, C222-diaza, and 
dithiane. Transmission is calculated using Au-electrodes as described in the manuscript and part 
4 below. 
 
The model transmission matches that obtained with DFT very well. The sharp antiresonance 
structure for piperazine near EF originates primarily from a destructive interference between the 
HOMO and LUMO which have the same phases (θHOMO – θHOMO-1 = 0). This can be further 
confirmed by looking at the calculated MOs shown in Figure S5c. The HOMO and LUMO have 
same parity at the lone-pair of nitrogen which couples to the leads. For dithiane, the antiresonance 
originates primarily from a destructive interference between the HOMO and LUMO+1 which have 
the same phases (θHOMO – θHOMO-1 = 0). The HOMO and LUMO+1 have same parity at the sulfur 
which couples to the leads. In the reconstructed transmission function, the LUMO is nearly 2 to 3 
orders of magnitude less coupled to the leads than the other MOs; therefore, resulting into the very 
sharp resonance structure. 
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Figure S5. (a) Transmission functions of piperazine, calculated as T(E) = |tLUMO + tHOMO + tHOMO-

1|2 (solid line) overlaid with Landauer transmission in the wide-band limit (dashed). (b) 
Transmission functions of dithiane, calculated as T(E) = |tLUMO+1 + tLUMO + tHOMO + tHOMO-1|2 (solid 
line) overlaid with Landauer transmission in the wide-band limit (dashed). MOs of (c) C222-diaza 
and (d) dithiane calculated using DFT with B3LYP functional. White, black, blue and yellow 
atoms represent H, C, N and S, respectively. 

 
3. Conformational Analysis 
 
The molecules we study have different degrees of conformational freedom. C222-diaza has no 
conformational freedom as the cage is rigid. C222-SMe has limited conformational freedom in its 
methylthiomethyl linkers which was discussed in previous work;2 here we include only the anti-
conformation. Piperazine and dithiane both have conformational freedom due to their six-
membered ring structures. We will discuss their conformations and their relevance when analyzing 
the conducting properties of the systems. 
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We compute the energies of optimized structures using DFT as implemented in Gaussian09 at the 
M06-2X(D3)/6-311G(d,p) level of theory.3, 4 All structures were optimized using to the verytight 
criteria with integrals evaluated on ultrafine grid, and a frequency analysis was carried out to 
confirm the structures are local energy minima. All optimized structures are available online as 
xyz files. Au-molecule-Au junctions were optimized as described in the computational details 
section. 

 
Figure S6. Overview of possible conformations of piperazine, and Au-molecule-Au junction 
transmission with Au-Au tip-to-tip length. 
 
Piperazine has one chair and two possible twist-boat conformations, which are illustrated in 
Figure S6. Each of these have the possibility of having the nitrogen lone-pair in axial/flagpole or 
equatorial/bowsprit positions. The nitrogen lone-pair binds to the Au electrodes through dative 
bonding, and therefore we name the conformers after the orientation of the N lone-pair; the 
hydrogen atoms will be in the opposite position. For the chair conformation, there are two trans-
conformations where both lone-pairs are in axial (axax) or equatorial (eqeq) orientation, and one 
cis-conformation where one lone-pair is in axial and one is in equatorial position (axeq). In similar 
fashion, there are three 1,4-twist conformations: flagflag, flagbow, and bowbow. In the 3,6-twist 
all four positions are equivalent and there are no axial/equatorial positions; there is thus only a cis 
and a trans conformer.  All 8 combinations are found to be local energy minima and their zero-
point corrected energies are listed in Table S1. As one might have expected based on the parent 
cyclohexane conformations, the chair conformers are the most stable, while all twist conformations 
are around 0.3 eV higher in energy. We therefore expect twist conformations to be negligible in 
the junction experiments. The chair conformations are energetically near-degenerate. However, in 



 S7 

junction experiments the molecule is being pulled, and the full extension length differs for the 
chair conformers due to the difference of axial and equatorial positions. Listed in Figure S6, the 
computed junction length of the chair-axax and chair-axeq are shorter than chair-eqeq. Considering 
the snapback of the electrodes in break-junction experiments, chair-axax and chair-axeq are likely 
to be too short to be measure in STM-BJ experiments. We cannot rule out that twist conformers 
appear in experiments, especially because a chair flip will normally occur through twist 
conformers.2 Shown in Figure S6, the transmission of the twist conformers are similarly low with 
the chair-eqeq conformer, and these are unlikely to be distinguishable in experiment. We note that 
1,4-twist conformers with one or both nitrogen lone-air in flagpole positions cannot easily form 
junctions as the lone-pair is not pointing along the transport direction. In our simulations these 
junction break during optimization, and considering their very short length and high energy, they 
are unlikely to form junctions. 
 
Table S1. Energies of piperazine conformations optimized in vacuum (M06-2X(D3)/6-
311G(d,p)). 

Conformations (vacuum) eV 

14twist_flagflag 0.39 

14twist_bowbow 0.29 

14twist_flagbow 0.27 

36twist_cis 0.34 

36twist_trans 0.34 

chair_axax 0.00 

chair_axeq 0.02 

chair_eqeq 0.05 

 
Dithiane only has the three basic conformations in vacuum as there are no axial and equatorial 
substituents, as shown in Figure S6. The zero-point corrected energies are listed in Table S2. The 
chair conformation is the more stable than the 3,6-twist. We do not find the 1,4-twist to be a local 
energy minimum. In junctions the Au-electrodes will couple into one sulfur lone-pair on each end 
of the molecule, and there is thus similar junction conformations as in piperazine. Their 
transmission and simulated junction lengths are shown in Figure S6. Although, the axax and axeq 
chair conformations are short than the eqeq chair, all dithiane conformations are longer than those 
of piperazine because C-S and Au-S bond lengths are longer than the equivalent C-N and Au-N 
bond lengths. These shorter axial chair conformations have higher transmission, and may be 
responsible for the noisy higher conductance peaks observed in Figure 2c. These appear at short 
junction lengths during the pulling experiments as seen in Figure 2a, and we therefore attribute 
these to shorter chair conformations with one or both electrodes in an axial position. The 3,6-twist 
conformations are almost as long as the eqeq chair, and have similar low transmission. 
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Figure S7. Overview of possible conformations of dithiane, and Au-molecule-Au junction 
transmission with Au-Au tip-to-tip length. 
 
Table S2. Energies of dithiane conformations (M06-2X(D3)/6-311G(d,p)). 

Conformations (vacuum) eV 

Chair 0.00 

36Twist 0.19 

 
4. Computational Details 
 

All electronic structure computations presented were carried out using density functional theory 
(DFT) as implemented in the Atomic Simulation Environment (ASE) and GPAW.5, 6 The 
molecular structures were optimized to a force threshold of 0.01 eV/Å using DFT with the Perdew-
Burke-Ernzerhof (PBE) functional.7 We used a double-z plus polarization (DZP) basis set for all 
atoms.8 This level of theory was chosen in order to carry out the transport calculations. Molecular 
structures and current density plots were made using Jmol.9 All junction structures are available 
online in xyz format as supplementary files. 

Electron transport calculations were carried out using the non-equilibrium Green’s functions 
(NEGF) approach in combination with DFT as implemented in ASE and GPAW.5, 6 The retarded 
and advanced Green’s functions, Gr/a(E), are calculated from the Hamiltonian and overlap matrix 

of the molecular region, HM and SM, and the self-energies of the left and right electrodes, Σ! "⁄
$/& (#), 

%' (⁄ (#) = '# · )) − +) − Σ!
$/&(#) − Σ"

$/&(#),
*+
.  (S1) 

The Landauer transmission, T(E), is then calculated using the coupling matrices of the left and 
right electrodes, GL/R,  

.(#) = tr[Γ,(#)%'(#)Γ"(#)%((#)].   (S2) 
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As described in the manuscript, Au-molecule-Au junctions are constructed by placing the 
molecule between two four- atom Au pyramids on 4 x 4 Au(111) surfaces with periodic boundary 
conditions in the plane of the surfaces. The junction structure is relaxed to a force threshold of 0.05 
eV/Å with all Au atoms kept fixed during the optimization. The Landauer transmission T(E) is 
computed using equation (2) with a k-point sampling over a 4 x 4 x 1 Monkhorst–Pack mesh in 
the first Brillouin zone. 

The current density calculations presented in the manuscript and in Figure S3 are modelled using 
single-molecule junctions with wide-band limit approximated s-band electrodes. These junctions 
were formed using two dihydrogen molecules placed with an S-H distance of 1.75 Å or N-H 
distance of 1.50 Å, thus coupling into the S or N lone-pair (see Figure S4) and forming the extended 
molecular region used in equation 1. The s-band electrode regions are formed by nonzero matrix 
elements of ΓL/R set to γ = 1.0 eV.  This approach gives a qualitatively similar transmission to using 
periodic Au-electrodes, and allows us to calculate the ballistic current density.10, 11 The 
transmission and current density calculations using this setup, were carried out using DFT with 
the PBE functional and DZP basis set for all atoms except hydrogen where a SZ basis was used. 
We carried out these calculations using our homemade transport and current density code which 
is compatible with GPAW and ASE,5, 6 and freely available online. 

At zero-temperature and absent of an external magnetic field, the low-bias current density j(r) 
can be calculated by equation 3 and 4 using the NEGF formalism. Here, y are basis functions, and 
C are the functions within the extended molecular region which we sum over.12, 13 

4(5) = -.!ℏ
012∑ ∫ 8#	%-34 	':-(;)∇:3(;) − :3(;)∇:-(;),

5
*5-,3∈8   (S3) 

%4 = =%'Γ!%(>?        (S4) 

In equation 4, Gn is the non-equilibrium part of the lesser Green’s function and dV is a small 
symmetric bias difference between the electrodes, which we set to dV=1 mV. We plot the current 
density vector field (j(r)) as three dimensional arrows (Figure S4), or as a slice of the vector field 
along the z-axis, which is the transport direction. The magnitude of the current density is scaled 
relative to the largest vector (highest current density) in the same figure. Vectors smaller than 2% 
of the largest z-component (forward current) are not included. We note that ballistic current density 
calculations can have serious issues with current conservation over the molecule due to using a 
finite local basis set and approximated core-potentials. 10, 14-20 In the manuscript, we therefore focus 
our interpretation on z-slices where the current density converges to the total current. The error 
associated with the current density can be assessed by integrating j(r) over a plane, A, 
perpendicular to the transport direction, z.  
@ = ∫ 4(5)8A , 8A = 8C8D  (S5) 

The current through the plane J is directly comparable with the total current, which we denote I, 
that can be calculated using the general Landauer formula. 

E = .ℏ
92 ∫8#FG!(#) − G"(#)H · .(#),   (S6) 
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where T(E) is the transmission function and fL/R are the fermi functions of the left and right 
electrodes. Ideally, J should equal I at any chosen surface of integration (A) across the transport 
direction. However, this is rarely the case. In Figure S9, we include the current as a function of the 
z-coordinate (the transport direction) for the junctions shown in Figure S5. It is important to note, 
that there are parts of the molecule where the current is not perfectly conserved. Thus, the current 
density vector fields shown in Figure 3 and Figure S5 should only be interpreted qualitatively. Still 
we note that the current density is almost fully converged in the central part of C222-diaza, where 
strong through-space current appears. This is also in general the case for other molecules, and 
convergence issues seem to be happening mainly at the N and S atoms where injection occurs. 

 

Figure S8. Current calculated with 1.0 meV bias around the Fermi energy (except where otherwise 
noted) using equation S5 (blue) and S6(red) for piperazine, C222-diaza, dithiane, and C222-
SMe at the during torsion.  
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