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Synthesis

All the reagents were obtained from commercial sources (Sigma-Aldrich, Alfa Aesar,
Fisher Scientific and Fluorochem) and were used without further purification. Thin
layer chromatography was carried out using with silica gel 60F (Merck) on glass. 'H
and *C NMR spectra were recorded on either a Bruker 400 MHz AVIII400 or Bruker
500 MHz AVIII5S00 DCH cryoprobe spectrometer at 298 K unless specifically stated
otherwise. Residual solvent was used as an internal standard. All chemical shifts are
quoted in ppm on the & scale and the coupling constants expressed in Hz. Signal
splitting patterns are described as follows: s (singlet), d (doublet), t (triplet), sept
(septet), m (multiplet). ES+ mass spectra were obtained on a Waters LCT premier mass
spectrometer. FTIR spectra were recorded on a PerkinElmer Spectrum One FT-IR

spectrometer. Synthesis of compounds 1, 2 3, 4 and 5 has been previously reported.!

1) J. A. Swain, G. ladevaia and C. A. Hunter, J. Am. Chem. Soc., 2018, 140, 11526-
11536
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HPLC Separation of Oligomers

The samples were analyzed by reverse phase HPLC using an Agilent LC-MSD ionTrap
model XCT LCMS equipment in Electrospray mode. This system is composed of a
modular Agilent 1200 Series HPLC system connected to an Agilent/Bruker ionTrap
model XCT with MSMS capabilities. The modular Agilent 1200 Series HPLC system
is composed of a HPLC high pressure binary pump, autosampler with injector
programming capabilities, column oven with 6 pL heat exchanger and a Diode Array
Detector with a semimicro flow cell (6 mm path length, 1.7 pl volume) to reduce peak
dispersion when using short columns as in this case. The flow-path was connected using
0.12 mm ID stainless steel tubing to minimize peak dispersion. The outlet of the Diode
Array Detector flowcell is connected via a switching valve to the lonTrap, the switching
valve allowing directing the first segment of the chromatography corresponding to
solvent front to waste. After removing the contamination ions associated with the
solvent front, the switching valve directs the solvent to the electronspray ion source.
While the solvent rate of the method is ImL/min, the ion source has a dead volume
passive splitting union installed which splits the flow rate entering the ion source to
<100 pL/min, the rest of the flow rate is directed to waste. This reduction in flow rate
enhances the electrospray signal and reduces the contamination in the ion source. The
Electrospray was set to +ve mode. The capillary needle has an orthogonal-flow sprayer
design with respect to the ion transmission. The capillary needle voltage was set to
+3500 V and the end plate offset was set to -500 V. The solvent eluting from the HPLC
column entering the ESI capillary needle in the Ion Source Interface was nebulised with
the assistance of N2 at 15 psi. Drying N2 gas heated to 325 °C and flowing at 5 L/min
was used for the ESI desolvation stage. The ion transport and focusing region of the
LC/MSD Trap is enclosed in the vacuum manifold, formed by a rough pump and two
turbopumps. The ions formed on the lon Source Interface enter and are guided through
the glass capillary, where the capillary exit is set to -178 V. The bulk of the drying gas
is removed by the rough pump before the skimmer which is set to -178 V. The ions
then pass into an octopole ion guide (Octopole 1 set to -12 V DC followed by Octopole
2 set to -3 V DC set to a radio frequency of 200 Vpp) that focuses and transports the
ions from a relatively high pressure position directly behind the skimmer to the
focusing/exit lenses (Lens 1 set to +5 V followed by Lens 2 set to +60 V) coupling the

ion transport to the ion trap. The selected ions entered the ion trap which had been set
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to a value of 109.9. For efficient trapping and cooling of the ions generated by the
electrospray interface, helium gas is introduced into the ion trap. The fractions were
isolated using an Agilent HP-1100 preparative HPLC system. This is composed by a
high pressure mixing binary pump capable of flow rates up to 50 mL/min at 400 bar
back-pressure, with dual injector autosamplers lops (500 uL and a 5 mL loop), a
variable detector (190 nm to 600 nm) and a fraction collector. UV/vis absorption was
measured at 290 nm (8 nm bandwidth) with reference 550 nm (100 nm bandwidth).
The software for the fraction collector can be set to automatically collect on peak

recognition.
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DAD oligomerization

1 (47.3 mg, 0.400 mmol), 3 (57.3 mg, 0.200 mmol) and 2 (172 mg, 0.400 mmol) were
placed in a flask and degassed with N for 30 minutes. Pdx(dba)z (7.30 mg, 8.00 umol)
and Cul (1.50 mg, 8.00 umol) and PPh;3 (10.5 mg, 40.0 umol) were placed in a separate
flask and degassed with N>. Degassed EtsN (167 uL, 1.20 mmol) was added and the
contents of this flask transferred to the first using degassed toluene (8 mL). The reaction
was stirred overnight at room temperature, in the dark under N>. The solvent was
removed by rotary evaporation under reduced pressure yielding a brown solid (465 mg).
The sample was dissolved in EtOH and sonicated, before filtering. Preparative HPLC
separation of the oligomerisation mixture was completed using a HIRBP-6988 prep
column (250 x 25 mm, 5 um particle size) with a water/THF solvent system (THF: 60%

for 48 mins, 65% for 31 mins) at 15 mL min’'.

a) mAU | 9 6-mer 7-mer
-mer  3-mer 4-mer 5-mer 7380 8.37
450+ 1.2 8-mer
] 28 218 3.89 6.65 \' /876
300
150+
OA
1 2 3 4 5 6 7 8 9 min
2-mer 3-mer 4-mer 5-mer
b) mAU _ 11.1 20.6 371 56.7

16001
12001
8001
400-

6-mer 7-mer
67.0 75.2

10 20 30 40 50 60 70 min

Figure S1 (a) LCMS analysis of DA;D oligomerisation mixture using a Hichrom CsCis
column (50 x 4.6 mm, 5 pm particle size) with a water/THF (0.1% formic acid) solvent
system (THF: 60% for 5 mins, 60-70% over 2 mins 70% for 3 mins) at a flow rate of 1
mL min™'. (b) Preparative HPLC (bottom) separation of DA,D oligomerisation mixture
using a HIRBP-6988 prep column (250 x 25 mm, 5 pum particle size) with a water/THF
solvent system (THF: 60% for 48 mins, 65% for 31 mins) at 15 mL min"'. Both samples
were prepared in EtOH. UV/vis absorption was measured at 290 nm. Peaks identified

by MS are labelled with retention time in minutes.
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DAD 3-mer

TLC Ry 0.40 (MeOH:CHCl» 1:9);

"H NMR (500 MHz, CDCl5): § 8.12 (t, J= 1.5 Hz, 2H, 12-H), 8.09 (t, J = 1.5 Hz, 2H,
14-H), 7.91 — 7.84 (m, 3H, 18, 20-H), 7.82 (t, J = 1.5 Hz, 2H, 10-H), 7.24 (t, J = 8.0
Hz, 2H, 3-H), 7.12 (dt, J= 7.5, 1.0 Hz, 2H, 4-H), 7.09 (dd, J = 2.5, 1.5 Hz, 2H, 6-H),
6.90 (ddd, J = 8.0, 2.5, 1.0 Hz, 2H, 2-H), 6.30 (bs, 2H, OH), 4.14 (d, J = 6.5 Hz, 4H,
‘Bu), 2.14 — 2.10 (m, 2H, ‘Bu), 2.07-1.81 (m, 4H, "Bu), 1.71-1.55 (m, 2H, "Bu), 1.49-
1.35 (m, 6H, "Bu), 1.06 (d, J = 6.5 Hz, 12H, 'Bu), 0.91 (t, /= 7.0 Hz, 6H, "Bu);

13C NMR (126 MHz, CDCl;): § 165.2 (C=0), 156.0 (1-C), 138.4 (10-C), 137.6 (20-
C), 133.7 (d, J = 88.0 Hz, 19-C), 133.0 (18-C) 132.6 (12-C), 132.0 (14-C), 131.3 (13-
C), 129.7 (3-C), 124.2 (4-C), 124.1 (17-C), 123.7 (11-C), 123.2 (9-C), 118.3 (6-C),
116.5 (2-C), 90.9 (-C=), 90.4 (-C=), 89.9 (-C=), 87.2 (-C=), 71.6 ('Bu), 29.2 (d, J =
68.5 Hz, "Bu), 27.9 ('Bu), 24.1 (d, J = 14.5 Hz, "Bu), 23.5 (d, /= 4.0 Hz, "Bu) 19.2 (
‘Bu), 13.6 ("Bu);

3P NMR (202 MHz, CDClz-d3): § 43.7 (phosphine oxide)

FT-IR (ATR): 3148 (br), 2923, 2224, 1722, 1591, 1232, 767 vmax/cm™;

HRMS (ES+): Cs6Hs607P calcd. 871.3758 found 871.3719, A = -4.50 ppm.
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Figure S2 'H NMR (500 MHz, CDCl3) of DAD
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Figure S3 °C NMR (126 MHz, CDCls) of DAD
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Figure S4 3'P NMR (202 MHz, CDCls-d3) of DAD
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DAAD 4-mer

TLC Ry 0.40 (MeOH:CHCl» 1:9);

'"H NMR (500 MHz, CDCl3):  8.14 (d, J = 1.5 Hz, 2H, 26-H), 8.09 (t,J= 1.5 Hz, 2H,
12-H), 8.06 (t, J = 1.5 Hz, 2H, 14-H), 8.04 (bs, 2H, OH), 7.92 — 7.82 (m, 7H, 18, 20,
22,28-H), 7.81 (t, J = 1.5 Hz, 2H, 10-H), 7.24 (t, J = 8.0 Hz, 2H, 3-H), 7.17 (dd, J =
2.5, 1.5 Hz, 2H, 6-H), 7.09 (dt, J = 7.5, 1.0 Hz, 2H, 4-H), 6.93 (ddd, J = 8.0, 2.5, 1.0
Hz, 2H, 2-H), 4.15 (d, J = 6.5 Hz, 2H, ‘Bu), 4.12 (d, J = 6.5 Hz, 4H, 'Bu), 2.14 — 2.10
(m, 3H, ‘Bu), 2.07-1.81 (m, 8H, "Bu), 1.71-1.55 (m, 4H, "Bu), 1.49-1.35 (m, 12H, "Bu),
1.06 (d, J = 6.5 Hz, 6H, 'Bu), 1.04 (d, J = 6.5 Hz, 12H, ‘Bu), 0.90 (t, J= 7.0 Hz, 12H,
"Bu);

13C NMR (126 MHz, CDCl3): § 165.2 (13-C=0), 165.0 (27-C=0), 156.8 (1-C), 138.7
(28-C), 138.5 (10-C), 137.6 (18-C), 133.7 (d, J = 88.0 Hz, 21-C), 133.1 (22-C), 133.0
(20-C), 132.5 (12-C), 131.8 (14-C), 131.4 (26-C), 131.2 (13-C), 129.6 (3-C), 124.4 (4-
(), 124.2 (d,J=13.0 Hz, 17-C), 124.0 (d, J=13.0 Hz, 19-C), 123.5 (11-C), 123.4 (25-
C), 123.4 (5-C) 123.1 (9-C), 118.7 (6-C), 116.8 (2-C), 91.3 (-C=), 90.0 (-C=), 89.7 (-
C=), 89.1 (-C=), 88.7 (-C=), 87.0 (-C=), 71.7 ('Bu), 71.6 ('Bu), 29.2 (d, J = 68.5 Hz,
"Bu), 27.9 ('Bu), 24.1 (d, J= 14.5 Hz, "Bu), 23.5 (d, J = 4.0 Hz, "Bu) 19.3 (‘Bu), 19.2
('Bu), 13.6 ("Bu);

3P NMR (202 MHz, CDClz-d3): § 42.7 (phosphine oxide)

FT-IR (ATR): 3142 (br), 2926, 2226, 1720, 1592, 1234, 1156, 767 vmax/cm™;

HRMS (ES+): CssHggO10P2 caled. 1330.5853 found 1330.5850, A = -0.20 ppm.
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Figure S5 'H NMR (500 MHz, CDCl3) of DAAD
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Figure S6 3C NMR (126 MHz, CDCLs) of DAAD
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Figure S7 3'P NMR (202 MHz, CDCls-d3) of DAAD
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DAAAD 5-mer

TLC Ry 0.40 (MeOH:CHCl; 1:9);

'"H NMR (500 MHz, CDCls): 5 8.18 (dt, J = 6.0, 1.5 Hz, 4H, 12, 14-H), 8.09 (d, J =
1.5 Hz, 4H, 28, 30-H), 7.97 — 7.81 (m, 11H, 18, 20, 22, 26, 34, 36-H), 7.79 (t, /= 1.5
Hz, 2H, 10-H), 7.20 (t, /= 8.0 Hz, 2H, 3-H), 7.11 (dd, J = 2.5, 1.5 Hz, 2H, 6-H), 7.06
(dt,J=7.5,1.0 Hz, 2H, 4-H), 6.92 (ddd, J = 8.0, 2.5, 1.0 Hz, 2H, 2-H), 4.16 (d, /= 6.5
Hz, 4H, '‘Bu), 4.12 (d, J = 6.5 Hz, 4H, '‘Bu), 2.14 — 2.10 (m, 4H, 'Bu), 2.07-1.81 (m,
12H, "Bu), 1.71-1.55 (m, 6H, "Bu), 1.49-1.35 (m, 18H, "Bu), 1.06 (d, /= 6.5 Hz, 12H),
1.03 (d, J = 6.5 Hz, 12H, Bu), 0.90 (t, /= 7.0 Hz, 18H, "Bu);

I3C NMR (126 MHz, CDCl3): § 165.2 (13-C=0), 165.1 (29-C=0), 156.8 (1-C), 138.6
(26-C), 138.4 (10-C), 137.6 (18-C), 137.4 (38-C), 133.7 (d, J = 88.0 Hz, 21, 35-C),
133.1 (Ar-C), 133.0 (Ar-C), 132.5 (Ar-C), 132.0 (Ar-C), 131.5 (Ar-C), 131.2 (13-C),
129.6 (3-C), 124.4 (4-C), 124.1 (Ar-C), 124.0 (Ar-C), 124.0 (Ar-C), 123.5 (Ar-C),
123.5 (Ar-C), 123.4 (Ar-C), 123.4 (Ar-C), 123.1 (Ar-C), 118.7 (6-C), 116.9 (2-C), 91.3
(-C=), 89.9 (-C=), 89.6 (-C=), 89.6 (-C=), 89.1 (-C=), 88.6 (-C=), 86.9 (-C=), 71.7 (
‘Bu), 71.6 (‘Bu), 29.2 (d, J = 68.5 Hz, "Bu), 27('Bu), 27.9 (‘Bu), 24.1 (d, J = 14.5 Hz,
"Bu), 23.5 (d, /= 4.0 Hz, "Bu) 19.3 (‘Bu), 19.2 (‘Bu), 13.6 ("Bu);

3P NMR (202 MHz, CDCl3-d3): 41.8, 41.5

FT-IR (ATR): 3129 (br), 2958, 2189, 1721, 1691 1594, 1235 vimax/cm’!;

HRMS (ES+): Ci14H121013P3 caled. 1790.8020 found 1790.7977, A = -2.40 ppm.
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Figure S8 'H NMR (500 MHz, CDCls) of DAAAD
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DAAAAD 6-mer

TLC Ry 0.40 (MeOH:CHCl; 1:9);

'"H NMR (500 MHz, CDCl3): § 8.50 (bs, 2H, OH), 8.19 (d, J = 1.5 Hz, 2H, 42-H),k
8.17 (dt,J=6.0, 1.5 Hz, 4H, 12, 14-H), 8.09 (d, J = 1.5 Hz, 4H, 28, 30-H), 7.94 — 7.81
(m, 15H, 18, 20, 22, 26, 34, 36, 38, 44-H), 7.80 (t, J = 1.5 Hz, 2H, 10-H), 7.21 (t, J =
8.0 Hz, 2H, 3-H), 7.15 (dd, J = 2.5, 1.5 Hz, 2H, 6-H), 7.07 (dt, J= 7.5, 1.0 Hz, 2H, 4-
H), 6.95 (ddd, /= 8.0, 2.5, 1.0 Hz, 2H, 2-H), 4.33 — 3.93 (m, 10H 'Bu), 2.14 — 2.10 (m,
5H, ‘Bu), 2.10-2.05-1.81 (m, 6H, "Bu), 1.98-1.81-2.05-1.81 (m, 10H, "Bu), 1.71-1.55
(m, 8H, "Bu), 1.49-1.35 (m, 24H, "Bu), 1.08 — 1.01 (m, 30H, '‘Bu), 0.97 — 0.79 (m, 24H,
"Bu);

13C NMR (126 MHz, CDCl3): § 165.2 (13-C=0), 165.1 (29, C=0), 165.1 (43-C=0),
157.00 (1-C), 138.6 (26, 44-C), 138.4 (10-C), 137.5 (18-C), 137.3 (34-C), 133.1 (bs),
132.5 (Ar-C), 132.1 (Ar-C), 132.0 (Ar-C), 131.5 (Ar-C), 131.2 (13-C), 129.5 (3-C),
128.5, 128.4, 124.5 (4-C), 124.0 (bs), 123.5 (Ar-C), 123.5 (Ar-C), 123.1 (Ar-C), 118.7
(6-C), 116.9 (2-C), 91.4 (-C=), 89.9 (-C=), 89.6 (-C=), 89.6 (-C=), 89.1 (-C=), 89.0 (-
C=), 88.7 (-C=), 86.9 (-C=), 71.7 (‘Bu), 71.5 ('Bu), 29.2 (d, J = 68.5 Hz, "Bu), 27.9 (
‘Bu), 24.1 (d, J = 14.5 Hz, "Bu), 23.5 (d, J = 4.0 Hz, "Bu) 19.3 (‘Bu), 19.2 (‘Bu), 13.6
("Bu);

3P NMR (202 MHz, CDClz-d3): § 41.4, 41.0 (phosphine oxide)

FT-IR (ATR): 3187 (br), 2958, 2172, 1722, 1594, 1236 vmax/cm’';

HRMS (ES+): Ci143H154016P4 calcd. 2251.0187 found 2251.0203, A =-0.70 ppm.
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ADA oligomerization

4 (105 mg, 0.400 mmol), 5 (28.4 mg, 0.200 mmol) and 2 (172 mg, 0.400 mmol) were
placed in a flask and degassed with N for 30 minutes. Pdx(dba)z (7.30 mg, 8.00 umol)
and Cul (1.50 mg, 8.00 umol) and PPh;3 (10.5 mg, 40.0 umol) were placed in a separate
flask and degassed with N>. Degassed EtsN (167 uL, 1.20 mmol) was added and the
contents of this flask transferred to the first using degassed toluene (8 mL). The reaction
was stirred overnight at room temperature, in the dark under N>. The solvent was
removed by rotary evaporation under reduced pressure yielding a brown solid (415 mg).
The sample was dissolved in EtOH and sonicated, before filtering. Preparative HPLC
separation of the oligomerisation mixture was completed using a HIRBP-6988 prep
column (250 x 25 mm, 5 um particle size) with a water/THF solvent system (THF: 57%

for 100 mins, 100% for 5 mins) at 15 mL min’.

a)mAU | o_pmer 3-Mer
300+ + dba 1.63
| 1.01 4-mer 7-mer
200+
100
0,
1 2 3 4 5 6 7 8 9 min
2-mer  3-mer 4-mer 5-mer 6-mer 7-mer
b) mAU _ 8.94 16.2 30.1 44.6 54.8 64.1
1600+
1200
800+
400+
07 T T T T T
10 20 30 40 50 60 min

Figure S14: (a) LCMS analysis of ADyA oligomerisation mixture using a Hichrom
CsCis column (50 x 4.6 mm, 5 um particle size) with a water/THF (0.1% formic acid)
solvent system (THF: 60% for 5 mins, 60-70% over 1 min, 70% for 2 mins) at a flow
rate of 1 mL min’!. (b) Preparative HPLC (bottom) separation of AD»A oligomerisation
mixture using a HIRBP-6988 prep column (250 x 25 mm, 5 pm particle size) with a
water/THF solvent system (THF: 60% for 36 mins, 65% for 28 mins, 70% for 15 mins)
at 15 mL min'!. Both samples were prepared in EtOH. UV/vis absorption was measured
at 290 nm. Peaks identified by MS are labelled with retention time in minutes; dba =

dibenzylideneacetone.
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ADA 3-mer

TLC Ry 0.40 (MeOH:CHCl; 1:9);

"H NMR (500 MHz, THF-ds): § 10.10 (bs, 1H, OH), 8.13 (m, 4H, 12, 14-H), 8.05 (d,
J=10.5 Hz, 2H, 6-H), 7.92 (m, 2H, 10-H), 7.85 (dd, J = 10.0, 7.5 Hz, 2H, 2-H), 7.79
—17.73 (m, 2H, 4-H), 7.59 (td, J = 7.5, 2.5 Hz, 2H, 3-H), 7.31 (t,J = 1.5 Hz, 1H, 20-H),
7.17 (d, J= 1.5 Hz, 2H, 18-H), 4.17 (d, ] = 6.5 Hz, 4H, '‘Bu), 2.14 — 2.10 (m, 2H, ‘Bu),
2.07-1.81 (m, 8H, "Bu), 1.71-1.55 (m, 4H, "Bu), 1.49-1.35 (m, 12H, "Bu), 1.06 (d, J =
6.5 Hz, 12H,Bu), 0.91 (t, /= 7.0 Hz, 12H, "Bu);

13C NMR (126 MHz, THF-ds): & 164.1 (C=0), 158.5 (19-C), 138.0 (10-C), 134.9 (d,
J=288.5Hz, 1-C), 134.0 (4-C), 133.7 (d, /= 9.0 Hz, 6-C), 131.8 (Ar-C), 131.6 (12-C),
131.6 (14-C), 130.8 (d, J = 8.5 Hz, 2-C), 128.6 (d, J = 11.0 Hz, 3-C), 125.5 (20-C),
124.1 (Ar-C), 123.8 (Ar-C), 123.7 (Ar-C), 123.0 (d, J = 12.0 Hz, 5-C), 119.3 (18-C),
90.3 (-C=), 90.0 (-C=), 88.2 (-C=), 87.1 (-C=), 71.1 (‘Bu), 29.3 (d, J = 68.5 Hz, "Bu),
27.9 (‘Bu), 24.1 (d, J = 14.5 Hz, "Bu), 23.5 (d, J = 4.0 Hz, "Bu) 19.3 (‘Bu), 13.6 ("Bu);
3P NMR (202 MHz, CDClz-d3): § 41.3 (phosphine oxide);

FT-IR (ATR): 3060 (br), 2958, 2164, 1722, 1594, 1159, 768 vmax/cm™!;

HRMS (ES+): Cs4sH7307P> caled. 1015.4826 found 1015.4798, A =-2.82 ppm.
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ADDA 4-mer

TLC Ry 0.40 (MeOH:CHCl» 1:9);

"H NMR (500 MHz, THF-ds): § 9.85 (bs, 2H, OH), 8.15 (m, 6H, 12, 14, 26-H), 8.07
(d, J=11.0 Hz, 2H, 6-H), 7.94 (m, 3H, 10, 28-H), 7.84 (m, 2H, 2-H), 7.80 — 7.74 (m,
2H, 4-H), 7.59 (td, J = 7.5, 2.5 Hz, 2H, 3-H), 7.32 (t, J = 1.5 Hz, 2H, 18-H), 7.12 (d, J
= 1.5 Hz, 4H, 20, 22-H), 4.17 (m, 6H, ‘Bu), 2.14 — 2.10 (m, 3H, ‘Bu), 2.07-1.81 (m, 8H,
"Bu), 1.71-1.55 (m, 4H, "Bu), 1.49-1.35 (m, 12H, "Bu), 1.07 (d, J = 6.5 Hz, 6H, ‘Bu),
1.06 (d, J = 6.5 Hz, 12H,'Bu), 0.91 (t, J = 7.0 Hz, 12H, "Bu);

13C NMR (126 MHz, THF-ds): 5 166.1 (27-C=0), 166.0 (13-C=0), 160.2 (21-C),
140.0 (10-C), 136.6 (d, J=88.5 Hz, 1-C), 135.9 (4-C), 135.6 (d, /= 9.0 Hz, 6-C), 133.6
(Ar-C), 133.4 (12-C), 133.4 (14-C), 132.6 (d, J = 8.5 Hz, 2-C), 130.5 (d, J = 11.0 Hz,
3-C), 127.7 (Ar-C), 126.0 (Ar-C), 125.9 (Ar-C), 125.7 (Ar-C), 125.6 (Ar-C), 125.6 (Ar-
C), 125.0 (d, J=12.0 Hz, 5-C), 121.0 (18-C), 92.1 (-C=), 92.0 (-C=), 91.9 (-C=), 90.1
(-C=), 89.1 (-C=), 89.0 (-C=), 73.0 ('Bu), 29.3 (d, J = 68.5 Hz, "Bu), 26.8 (‘Bu), 25.8
(d, J= 14.5 Hz, "Bu), 25.3 (d, J= 4.0 Hz, "Bu) 20.3 (‘Bu), 14.9 ("Bu);

3P NMR (202 MHz, CDClz-d3): § 43.5 (phosphine oxide);

FT-IR (ATR): 3074 (br), 2961, 2222, 1722, 1594, 1256, 1236 vmax/cm’';

HRMS (ES+): CgsHgoO10P2 caled. 1331.5926 found 1331.5880, A = -3.39 ppm.
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ADDDA 5-mer

TLC Ry 0.40 (MeOH:CHCl» 1:9);

'"H NMR (500 MHz, THF-ds): 6 9.56 (bs, 3H, OH), 8.16 — 8.11 (m, 8H, 12, 14, 28,
30-H), 8.03 (dt,J=11.0, 1.5 Hz, 2H, 6-H), 7.92 (t,J= 1.5 Hz, 4H, 10, 26-H), 7.82 (ddt,
J=10.5,7.5,1.5 Hz, 2H, 2-H), 7.75 (d, J = 8.0 Hz, 2H, 4-H), 7.57 (td, J= 7.5, 2.5 Hz,
2H, 3-H), 7.28 (dt, J= 2.5, 1.5 Hz, 3H, 18, 36-H), 7.07 (m, 6H, 20, 22, 34-H), 4.15 (d,
J=6.5Hz, 4H, '‘Bu), 4.14 (d, ] = 6.5 Hz, 4H, '‘Bu), 2.14 — 2.10 (m, 4H, ‘Bu), 2.07-1.81
(m, 8H, "Bu), 1.71-1.55 (m, 4H, "Bu), 1.49-1.35 (m, 12H, "Bu), 1.06 (d, J = 6.5 Hz,
12H,Bu), 1.04 (d, J = 6.5 Hz, 12H,Bu), 0.91 (t, /= 7.0 Hz, 12H, "Bu);

13C NMR (126 MHz, THF-ds): 8 166.1 (29-C=0), 166.0 (13-C=0), 160.1 (21-C),
160.0 (35-C), 140.0 (10-C), 139.9 (26-C), 136.3 (d, J = 88.5 Hz, 1-C), 135.9 (4-C),
135.6 (d, J = 9.0 Hz, 6-C), 133.7 (Ar-C), 133.6 (Ar-C), 133.6 (Ar-C), 133.4 (Ar-C),
133.4 (Ar-C), 132.6 (d, J = 8.5 Hz, 2-C), 130.5 (d, J = 11.0 Hz, 3-C), 127.7 (20-C),
127.6 (Ar-C), 126.0 (Ar-C), 125.9 (Ar-C), 125.7 (Ar-C), 125.7 (Ar-C), 125.7 (Ar-C),
125.7 (Ar-C), 121.1 (36-C), 121.0 (18-C), 92.1 (-C=), 92.1 (-C=), 92.0 (-C=), 91.9 (-
C=), 90.1 (-C=), 89.1 (-C=), 89.0 (-C=), 89.0 (-C=), 73.0 (‘Bu), 73.0 ('Bu), 29.3 (d, J
= 68.5 Hz, "Bu), 27.9 (‘Bu), 24.1 (d, J = 14.5 Hz, "Bu), 25.3 (d, J = 4.0 Hz, "Bu) 20.3 (
‘Bu), 14.9 ("Bu);

3P NMR (162 MHz, CDCl3): § 44.3

FT-IR (ATR): 3013 (br), 2961, 2203, 1723, 1593, 1236, 768 vmax/cm™!;

HRMS (ES+): Cio6H106013P> calcd. 1648.7103 found 1648.7030, A = -4.47 ppm.
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ADDDDA 6-mer

TLC Ry 0.40 (MeOH:CHCl» 1:9);

TH NMR (500 MHz, THF-ds): 4 9.51 (bs, 4H, OH), 8.16 — 8.12 (m, 10H, 12, 14, 28,
30, 42-H), 8.02 (dt, /= 11.0, 1.5 Hz, 2H, 6-H), 7.95 — 7.91 (m, 5H, 10, 26, 44-H), 7.81
(ddt, J=10.5, 7.5, 1.5 Hz, 2H, 2-H), 7.74 (d, J = 8.0 Hz, 2H, 4-H), 7.56 (td, J = 7.5,
2.5Hz, 2H, 3-H), 7.30 - 7.27 (m, 4H, 18, 34-H), 7.07 — 7.02 (m, 8H, 20, 22, 36, 38-H),
4.15 (d, J = 6.5 Hz, 4H, Bu), 4.14 (d, J = 6.5 Hz, 6H, Bu), 2.14 — 2.10 (m, 5H, ‘Bu),
2.07—1.81 (m, 8H, "Bu), 1.71-1.55 (m, 4H, "Bu), 1.49-1.35 (m, 12H, "Bu), 1.06 — 1.03
(m, 30H, ‘Bu), 0.91 (t, J = 7.0 Hz, 12H, "Bu);

13C NMR (126 MHz, THF-ds): 6 166.1 (29, 43-C=0), 166.0 (13-C=0), 160.1 (21-C),
160.0 (37-C), 140.0 (10-C), 139.9 (26, 44-C), 136.3 (d, J = 88.5 Hz, 1-C), 135.9 (4-C),
135.6 (d, J = 9.0 Hz, 6-C), 133.7 (Ar-C), 133.6 (Ar-C), 133.6 (Ar-C), 133.6 (Ar-C),
133.4 (Ar-C), 133.4 (Ar-C), 132.0 (d, J = 8.5 Hz, 2-C), 130.5 (d, J = 11.0 Hz, 3-C),
127.7 (20-C), 127.6 (Ar-C), 126.0 (Ar-C), 126.1 (Ar-C), 125.9 (Ar-C), 125.7 (Ar-C),
125.7 (Ar-C), 125.7 (Ar-C), 125.7 (Ar-C), 121.1 (34-C), 121.0 (18-C), 92.1 (-C=), 92.0
(-C=), 91.9 (-C=), 90.1 (-C=), 89.1 (-C=), 89.1 (-C=), 89.1 (-C=), 89.0 (-C=), 73.0 (
Bu), 73.0 (‘Bu), 29.3 (d, J = 68.5 Hz, "Bu), 27.9 (Bu), 25.3 (d, J = 4.0 Hz, "Bu) 24.1
("Bu), 20.3 (Bu), 20.4 (‘Bu), 14.9 ("Bu);

3P NMR (162 MHz, THF-ds): 8 39.4 (phosphine oxide);

FT-IR (ATR): 3030 (br), 2960, 2199, 1722, 1583, 1236, 768 vmax/cm™;

MS (ES+): m/z (%) = 825.1 (100) [M+2H"], 1648.8 (10) [M+H"].
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ADDDDDA 7-mer

TLC Ry 0.40 (MeOH:CHCl» 1:9);

TH NMR (500 MHz, THF-ds): & 9.36 (bs, 5H, OH), 8.15 — 8.12 (m, 12H, 12, 14, 28,
30, 44, 46-H), 8.03 (dt, /= 11.0, 1.5 Hz, 2H, 6-H), 7.94 — 7.91 (m, 6H, 10, 26, 42-H),i
7.82 (ddt, J=10.5, 7.5, 1.5 Hz, 2H, 2-H), 7.75 (d, J = 8.0 Hz, 2H, 4-H), 7.57 (td, J =
7.5,2.5 Hz, 2H, 3-H), 7.31 — 7.27 (m, 5H, 18, 34, 52-H), 7.08 — 7.02 (m, 10H, 20, 22,
36, 38, 50-H), 4.15 (d, J = 6.5 Hz, 4H, Bu), 4.14 (d, ] = 6.5 Hz, 8H, ‘Bu), 2.14 — 2.10
(m, 10H, Bu), 2.07 — 1.81 (m, 4H, "Bu), 1.71-1.55 (m, 4H, "Bu), 1.49-1.35 (m, 12H,
"Bu), 1.06 — 1.03 (m, 36H, ‘Bu), 0.91 (t, J= 7.0 Hz, 12H, "Bu);

13C NMR (126 MHz, THF-ds): 6 166.1 (29, 45-C=0), 166.0 (13-C=0), 160.1 (21-C),
160.0 (37, 51-C), 140.0 (10-C), 139.9 (26, 42-C), 136.3 (d, J=88.5 Hz, 1-C), 135.9 (4-
(), 135.6 (d,J=9.0 Hz, 6-C), 133.7 (Ar-C), 133.6 (Ar-C), 133.6 (Ar-C), 133.6 (Ar-C),
133.4 (Ar-C), 133.4 (Ar-C), 133.4 (Ar-C), 132.0 (d, J = 8.5 Hz, 2-C), 130.5 (d, /= 11.0
Hz, 3-C), 127.7 (20-C), 127.6 (Ar-C), 127.6 (Ar-C), 126.0 (Ar-C), 126.1 (Ar-C), 125.9
(Ar-C), 125.9 (Ar-C), 125.7 (Ar-C), 125.7 (Ar-C), 125.7 (Ar-C), 121.1 (34, 52-C),
121.0 (18-C), 92.1 (-C=), 92.0 (-C=), 91.9 (-C=), 90.1 (-C=), 89.1 (-C=), 89.0 (-C=),
73.0 (‘Bu), 73.0 (‘Bu), 29.3 (d, J = 68.5 Hz, "Bu), 27.9 (Bu), 25.4 (d, J = 14.5 Hz,
"Bu), 24.5 (d, J = 4.0 Hz, "Bu) 20.3 ('Bu), 14.9 ("Bu);

3P NMR (162 MHz, CDCl3): & 39.4 (phosphine oxide);

FT-IR (ATR): 3144 (br), 2963, 2199, 1722, 1583, 1237, 770 vmax/cm™;

MS (ES+): m/z (%) = 983.4 (100) [M+2H"], 1965.2 (5) [M+H"]
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Binding studies

NMR dilution experiments

Self association constants were measured by >'P NMR dilution experiments in a Bruker
500 MHz AVII HD Smart Probe spectrometer. The oligomer was dissolved in CDCl3
at a known concentration. A known volume of CDCls was added to an NMR tube,
aliquots of the oligomer were added, and the spectrum was recorded after each addition.
The chemical shifts of the each signals in the spectrum was monitored as a function of
oligomer concentration and analysed using purpose written software in Microsoft
Excel. Errors were calculated as two times the standard deviation from the average
value (95% confidence limit). The data for self-association of DAD, DAAD, DAAAD,
ADA, ADDA and ADDDA are reported below.
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Figure S30: a) 3'P NMR (202 MHz, CDCl3-d5) data for dilution of DAD at 298 K (b)
Plot of the change in chemical shift as a function of concentration (the line represents

the best fit to a dimerisation isotherm).
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Figure S31: a) 3'P NMR (202 MHz, CDCls-d5) data for dilution of DAAD at 298 K -
(b) Plot of the change in chemical shift as a function of concentration (the line

represents the best fit to an isodesmic polymerisation isotherm).
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Figure S32 : a) 3'P NMR (202 MHz, CDCl3-d5) data for dilution of DAAAD at 298 K
- (b) Plot of the change in chemical shift as a function of concentration (the line

represents the best fit to an isodesmic polymerisation isotherm).
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Figure S33 : a) *'P NMR (202 MHz, CDCl3-d5) data for dilution of ADA at 298 K -
(b) Plot of the change in chemical shift as a function of concentration (the line

represents the best fit to a dimerisation isotherm).
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Figure S34: a) 3'P NMR (202 MHz, CDCls-d5) data for dilution of ADDA at 298 K -
(b) Plot of the change in chemical shift as a function of concentration (the line

represents the best fit to a dimerisation isotherm).
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Figure S35: a) 3'P NMR (202 MHz, CDCls-d3) data for dilution of ADDDA at 298 K
- (b) Plot of the change in chemical shift as a function of concentration (the line

represents the best fit to a dimerisation isotherm).
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NMR titration experiments

A 5 mM solution of D was prepared in CDCl;. A known volume of the solution was
added to an NMR tube and the *'P spectrum was recorded. Known volumes of DMSO-
dsin CDCI3 (or neat DMSO-ds) were added, and the spectrum was recorded after each
addition. The 3!'P chemical shifts were monitored as a function of DMSO-ds

concentration, and the data were analysed using purpose written software in Microsoft

Excel.
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Figure S36 a) *'P NMR (202 MHz, CDCls-d3) data for titration of DMSO-ds into D
(5 mM) at 298 K in CDCls- (b) Plot of the change in chemical shift as a function of

Sl
o
N
3

conc / mM

concentration (the line represents the best fit to 1:1 binding isotherm).

NMR duplex denaturation experiments

Association constants for duplex formation were measured by *'P NMR denaturation
experiments in a Bruker 500 MHz AVIII HD Smart Probe spectrometer. An equimolar
solution of complementary oligomers (AAA<DDD, ADA*DAD, ADDA*DAAD and
ADDDA*DAAAD) was produced at known concentrations (0.3 mM-1.0 mM) in
CDCls. A known volume of the solution was added to an NMR tube and the *'P
spectrum was recorded. Known volumes of DMSO-ds in CDCI3 (or neat DMSO-ds)
were added, and the spectrum was recorded after each addition. The *'P chemical shifts
were monitored as a function of DMSO-ds concentration. 3'P NMR shifts were
monitored for a 4.9 mM solution of A in CDCI3 with the same concentrations of
DMSO-ds, and these values were subtracted from the values recorded in the
denaturation experiment to account for solvent effects. The corrected data were

analysed using purpose written software in Microsoft Excel.
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Figure S37 Free *'P NMR (202 MHz) shifts of a 5.6 mM solution of A 4.9 mM in
CDClI; in the presence of different concentrations of DMSO-ds (0-200 mM).

The denaturation data did not fit to a simple two-state isotherm for any of the duplexes.
Therefore all of the denaturation data were analysed taking into account partially
denatured species. In order to fit the denaturation data using the minimum number of
variables, the association constants for certain species were fixed at values that were
determined in independent experiments (e.g. Kq is the D*DMSO association constant,
and Kn is the association constant for duplex formation between complementary
oligomers of length N in CDCI3-d3). For some of the complexes, isomeric arrangements
are possible, and a statistical factor is included below to account for degenerate
arrangements of free and bound base-pairing interactions. In addition, the chemical
shifts of the partially denatured species were fixed using population-weighted average
of the chemical shifts of the fully bound duplex and fully denatured species based on
the number of phenol-phosphine oxide H-bonding interactions present. Thus although
the binding isotherms are complicated and involve a large number of different species,
the fitting process is robust, because the only variables that are fit in each experiment
are the association constant for duplex formation, the chemical shift of the fully
assembled duplex, and the chemical shifts of the two fully denatured oligomers. In all
cases, good fits were obtained, and the optimised chemical shifts of the two fully
denatured oligomers were very close to values observed for AAA at high concentrations

of DMSO.
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AAA<DDD

The association constant for duplex formation and the free and the bound 3'P NMR
chemical shifts were optimised. The association constants were fixed for the
following species:

K (DDD-DMSO) =3 K4

K (DDD+2DMSO) = 3 K4

K (DDD+3DMSO0) = K

K (AAA-DDD-DMSO) = 3 K Ky

K (AAA*DDD+2DMSO0) =3 K K4

The chemical shifts were fixed for the following species:

_ (zabound + 6free)
6AAA-DDD-DMSO - 3

5 _ (6bound + 2é‘free)
AAA«DDD+(DMS0), — 3

r 1.3

1.1

r 0.9

r 0.7
L 0.5 S - 8ref

r 0.3

r 0.1

420 415 41[-)0pm 405 400 395 1.E-04 1.E-03 1.E-02 1.%1 1.E+00 1.E4+0D.1

-0.3
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Figure S38 Free’'P NMR (202 MHz, CDCl3-d3) data for DMSO-ds denaturation of
AAA-DDD (1.2 mM, 0.64 mM) at 298 K in CDCl; (b) Plot of the change in 3'P
chemical shift as a function of DMSO-ds concentration The dots represent the

experimental values, and the lines calculated denaturation isotherms considering all

possible species.
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Figure S39: Calculated speciation for DMSO denaturation of AAA« DDD (1.2 mM,
0.64 mM) at 298 K in CDCls.

ADADAD

The association constant for duplex formation and the free and the bound 3'P NMR
chemical shifts were optimised. The association constants were fixed for the
following species:

K (ADA-DMSO) = Ky

K (DAD+DMSO) =2 K4

K (DAD+2DMSO) = K

K (ADA*DAD+DMSO) = 3 K> K4

K (ADA*DAD+2DMSO) =3 K K¢’

DMSO can also bind to the unbound phenols on the chain ends of the DAD*DAD
complex:

K (DAD*DAD-DMSO) = 2 K(DAD*DAD) K4

K (DAD*DAD-2DMSO) = K(DAD*DAD) K>

And the following values are known from the dilution experiments:

K (DAD*DAD) = 490 M

K (ADA*ADA) = 1,360 M

The chemical shifts were fixed for the following species:

_ (zabound + 6free)
6ADA-DAD-DMSO - 3
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~ (Obound + 20free)
SADA«DAD+(DMSO), = 3

6ADA-DMSO = Sapa

6DAD-DMSO = 5DAD-2DMSO = 8pap

And the following values are known from the dilution experiments:

8apa.apa = 2.0 ppm

8papepAD = OpAD.DADDMSO = OpAD.DADs2DMsO = 4.3 ppm
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Figure S40 3'P NMR (202 MHz, CDCls3-d5) data for DMSO-ds denaturation of
ADA<DAD (0.4 mM, 0.4 mM) at 298 K (b) Plot of the change in *'P chemical shift as
a function of DMSO-ds concentration The dots represent the experimental values, and

the lines calculated denaturation isotherms considering all possible species.
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Figure S41: Speciation from DMSO denaturation experiments on complementary

oligomer duplex ADA*DAD (0.4 mM, 0.4 mM).

ADDA*DAAD

The association constant for duplex formation and the free and the bound 3'P NMR
chemical shifts were optimised. The association constants were fixed for the
following species:

K (ADDA+DMSO) =2 K4

K (ADDA+2DMSO) = K’

K (DAAD-DMSO) =2 K4

K (DAAD+2DMSO) = K

K (ADDA*DAAD*DMSO) = 4 K; K4

K (ADDA*DAAD+2DMSO0) = 6 K> K4

And the following values are known from the dilution experiments:
K(ADDA*ADDA) = 22,200 M

K(DAAD*DAAD) = 575 M"!

The following species can be shown not to be populated to any significant extent:
K (ADDA*DAAD+*3DMSO) =4 K; K¢’

K (DAAD-DAAD*DMSO) = 2 K(DAAD-DAAD) K4

K (DAAD-DAAD+2DMSO) = K(DAAD*DAAD) K.

The chemical shifts were fixed for the following species:

_ (36bound + 5free)
6ADDA-DAAD-DMSO - 4
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(6bound + 5free)

6ADDA-DAAD-(DMSO)2 = 2

6DAAD-DMSO = 5DAAD-2DMSO = SpaaD

6ADDA-DMSO = 5ADDA-2DMSO = SappA

And the following values are known from the dilution experiments:

8appA.aDDA = 1.7 ppm

SpaaD.DAAD = OpAD.DAD.2DMSO = 1.7ppm
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Figure S42 *'P NMR (202 MHz, CDCls-ds) data for DMSO-ds denaturation of
ADDA<DAAD (0.5 mM, 0.5 mM) at 298 K in CDCl; (b) Plot of the change in 3'P

chemical shift as a function of DMSO-ds concentration The dots represent the

experimental values, and the lines calculated denaturation isotherms considering all

possible species.
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Figure S43: Speciation from DMSO denaturation experiments on complementary

oligomer duplex ADDA*DAAD (0.5 mM, 0.5 mM).

ADDDADAAAD

The association constant for duplex formation and the free and bound *'P NMR
chemical shifts were optimised. The association constants were fixed for the
following species:

K (ADDDA*DMSO) = 3 Kq

K (ADDDA<2DMSO) = 3 K4

K (ADDDA+3DMSO) = K’

K (DAAAD-DMSO) =2 Kq

K (DAAAD+2DMSO) = K4’

K (ADDDA*DAAADDMSO) = 5 K4 K4

K (ADDDA*DAAAD+2DMSO) = 10 K3 K4

And the following values are known from the dilution experiments:

K (ADDDA*ADDDA) = 14,350 M

K (DAAAD*DAAAD) =210 M

The following species can be shown not to be populated to any significant extent:
K (ADDDA*DAAAD+3DMSO0) = 10 K> K4’

K (ADDDA*DAAAD+*4DMSO) =5 K K4’

K (DAAAD*DAAAD-DMSO) = 2 K(DAAAD*DAAAD) K,

K (DAAAD-DAAAD*2DMSO) = K(DAAAD-DAAAD) K>

The chemical shifts were fixed for the following species:
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5 _ (46bound + 6free)
ADDDADAAADDMSO — 5

_ (36bound + 26free)
6ADDDA-DAAAD-2DMSO - 5

6DAAAD-DMSO = 6DAAAD-2DMSO = 8paaaD

6ADDDA-DMSO = 6ADDDA-2DMSO = 6ADDDA-3DMSO = SApDDA

And the following values are known from the dilution experiments:

SappDA-ADDDA = 1.8 ppm

8paaape.paaap = 1.5 ppm
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Figure S44 'P NMR (202 MHz, CDCls-d3) data for DMSO-ds denaturation of
ADDDA*DAAAD (0.3 mM, 0.3 mM) at 298 K in CDCIs (b) Plot of the change in 3'P
chemical shift as a function of DMSO-ds concentration The dots represent the
experimental values, and the lines calculated denaturation isotherms considering all

possible species.
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Figure S45: Speciation from DMSO denaturation experiments on complementary

oligomer duplex ADDDA*DAAAD (0.3 mM, 0.3 mM).
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X-ray crystal structure of DAD

DAD (5 mg) was dissolved in 10% CH>Cl> in MeCN (0.5 mL), and the mixture was
filtered to a vial and sealed with a plastic cap with a small hole, resulting in
crystallization after 10 days at room temperature. Crystals suitable for X-ray analysis
were selected using an optical microscope and examined at 180 K on a Bruker DS§-
QUEST instrument, fitted with a PHOTON-100 detector and Incoatec IuS Cu
microsource (Aave = 1.5418 A).

The structure analysis proved to be difficult, and the result is the best obtained from
several crystals. The diffraction pattern looks normal (albeit with relatively rapid drop
off of intensity higher angle), and the established monoclinic C unit cell fits 100% of
the measured reflections. There is no sign of any additional crystal component in the
diffraction frames, nor of any streaking or split reflections. However, several
observations indicate a potential for twinning:

(1) The lattice approximates orthorhombic F (11.6, 24.5, 71.9, 90, 90, 90). The
additional 2-fold axes of point group mmm yield two (equivalent) potential twin
laws: (-100/0-10/101)or(100/010/-10-1). However, neither twin
law improves the agreement to the data.

(2) Some reflections are observed that should be absent for space group C2/c.

(3) For the poorest fitting data, F(obs) is consistently larger than F(calc).

Analysis with TWINROTMAT and ROTAX failed to identify any feasible twin laws.

Attempts to refine the structure in lower symmetry space groups (e.g. P21/n, P—1, with

consideration of potential twinning) also did not yield any improvement. Hence, the

presented C2/c structure is the best that could be obtained.
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The analysis shows the
molecular structure clearly.
The molecules lie in (centred)
layers parallel to the ab planes
with disorder of the butyl
chains on P occurring at the
interlayer region. Selecting
one of the butyl chain
components in any given site

leaves voids where the other

chain component lies. These
voids may be occupied by
solvent molecules (most likely

MeCN) in the crystal.

Figure S46: X-ray structure of DAD in ORTEP view (ellipsoids are drawn at 50%
probability level).
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Summary of crystallographic data

CCDC number 2079477
Cambridge data number CH_B2 0023
Chemical formula Cs6Hs507P
Formula weight 870.97
Temperature / K 180(2)

Crystal system monoclinic
Space group C2/c

alA 24.5550(7)
b/ A 11.5883(3)
c/A 37.9435(10)
al/° 90

B/° 108.3188(14)
y/° 90

Unit-cell volume / A3 10249.7(5)

Z 8

Calc. density / g cm™ 1.129

F(000) 3696
Radiation type CuKa
Absorption coefficient / mm'! 0.865

Crystal size / mm’ 0.22x0.12x0.08
20 range / ° 7.58-133.63
Completeness to max 20 0.997

No. of reflections measured 58401

No. of independent reflections 9082

R(int) 0.0827

No. parameters / restraints 605/101
Final R1 values (I > 2c(1)) 0.1418

Final wR(F?) values (all data) 0.1842
Goodness-of-fit on F2 1.039

Largest difference peak & hole /e A~ | 1,158, —0.495
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Molecular Mechanics Calculations

General details

Molecular mechanics calculations were performed using MacroModel version 9.8
(MacroModel, version 9.8, Schrodinger, LLC, New York, NY, 2014). Calculations
were performed on simplified oligomers in which the solubilising groups were changed
to methyl groups in order to reduce the computational cost. All structures were
minimized first and the minimized structures were then used as the starting molecular
structures for all MacroModel conformational searches. The force field used was
MMFFs as implemented in this software (CHCl3 solvation). The charges were defined
by the force field library and no cut off was used for non-covalent interactions. A Polak-
Ribiere Conjugate Gradient (PRCG) was used and each minimisation was subjected to
10000 iterations. The minima converged on a gradient with a threshold of 0.1. The
sampling method was selected to be large scale low mode sampling. Conformational
searches were performed from previously minimized structures using 10000 steps.
Calculations were repeated three times from different starting conformations. The
conformations shown are the lowest energy structures and the images were created
using PyMol (The PyMOL Molecular Graphics System, Version 1.6 Schrodinger,
LLC).

Single strands

For the DAD and ADA 3-mers, the 50 lowest energy structures were all within 0.5 kJ
mol! with none forming intramolecular H-bonds. For the DAAD 4-mer, the 50 lowest
energy structures were all within 3.0 kJ mol"! with the same backbone conformation
forming two intramolecular H-bonds in each structure. For the ADDA 4-mer, the 50
lowest energy structures were all within 32 kJ mol! with the same backbone
conformation forming two intramolecular H-bonds in each structure within 26 kJ mol
! from the global minimum. For the DAAAD 5-mer, the 50 lowest energy structures
were all within 6.0 kJ mol! with the same backbone conformation forming two
intramolecular H-bonds in each structure. For the ADDDA 5-mer, the 50 lowest energy
structures were all within 24 kJ mol™! with the same backbone conformation forming
two intramolecular H-bonds in each structure within 18 kJ mol! from the global

minimum.
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Duplexes

For each duplex, multiple conformational searches were performed using distance
constraints to fix H-bonding interactions between all possible pairwise combinations of
donor and acceptor. For each H-bond, the distance between the phenol hydrogen and
phosphine oxide oxygen was constrained to 2 = 1 A. In addition for each H-bond
arrangement, three different starting conformations were used. For each duplex, the
results from all of the conformational searches were compared, and the lowest energy
structure was selected. For the DAAD*DAAD and ADDA+*ADDA duplexes, the lowest
energy conformation corresponds to a structure with 4 intermolecular H-bonds in a
criss-cross conformation. For the DAAAD*DAAAD and ADDDA*ADDDA duplexes,
the lowest energy conformation corresponds to a structure with 4 intermolecular H-
bonds between terminal groups in a criss-cross conformation, and the recognition unit
in the middle remaining unpaired. For the ADA*DAD, ADDA*DAAD and
ADDDA-*DAAAD duplexes, the lowest energy conformation corresponds with
a fully H-bonded duplex with all the phenols and phosphine oxides paired and the

oligomers adopting a zig-zag conformation.
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