Supporting Information

Control of Dominant Conduction Orbitals by Peripheral Substituents in Paddle-Wheel Diruthenium Alkynyl Molecular Junctions

Shiori Ogawa,^{a,b} Swarup Chattopadhyay,^c Yuya Tanaka,^{a,b*}, Tatsuhiko Ohto,^d Tomofumi Tada,^e Hirokazu Tada,^d Shintaro Fujii,^f Tomoaki Nishino,^f Munetaka Akita^{a,b*}

^aLaboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 226-8503, Japan.
^b Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 226-8503, Japan.
^cDepartment of Chemistry, University of Kalyani, Nadia 741235, West Bengal, India.
^d Graduate School of Engineering Science, Osaka University 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
^e Kyushu University Platform of Inter/Transdisciplinary Energy Research, Research Facilities for Co-Evolutional Social Systems, Kyushu University 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
^f Department of Chemistry, School of Science, Tokyo Institute of Technology, 152-8551, Japan.

*E-mails: ytanaka@res.titech.ac.jp, akitatit@icloud.com

Table of Contents

S4

I. General

II. Synthesis

Figure S1a. A ¹ H NMR spectrum of 1^{H} (500MHz, CD ₂ Cl ₂ , r.t.).	
Figure S1b. A ${}^{13}C{}^{1}H$ NMR spectrum of 1 ^H (126 MHz, CD ₂ Cl ₂ , r.t.).	S7
Figure S1c. A ¹ H-H COSY NMR spectrum of 1^{H} (500MHz, CD ₂ Cl ₂ , r.t.).	S7
Figure S1d. A HSQC $\{^{1}H\}$ NMR spectrum of 1^{H} (500MHz, CD ₂ Cl ₂ , r.t.).	S8
Figure S1e. HR-ESI-TOF-MS spectra of 1 ^H (MeOH:CH ₂ Cl ₂ =1:1).	S8

Figure S1f. An IR spectrum of 1 ^H (ATR, neat).	S9
Figure S2a. A ¹ H NMR spectrum of 1 ^{Cl} (500MHz, CDCl ₃ , r.t.).	S10
Figure S2b. A ${}^{13}C{}^{1}H$ NMR spectrum of 1^{Cl} (126 MHz, CDCl ₃ , r.t.).	S10
Figure S2c. A ¹ H-H COSY NMR spectrum of 1 ^{Cl} (500MHz, CDCl ₃ , r.t.).	S11
Figure S2d. A HSQC NMR spectrum of 1 ^{Cl} (500MHz, CDCl ₃ , r.t.).	S11
Figure S2e. A 1D NOESY NMR spectrum of 1 ^{Cl} (500MHz, CDCl ₃ , r.t.).	S12
Figure S2f. HR-ESI-TOF-MS spectra of 1^{Cl} (MeOH:CH ₂ Cl ₂ =1:1).	S12
Figure S2g. An IR spectrum of 1 ^{C1} (ATR, neat).	S13
Figure S3a. HR-ESI-TOF-MS spectra of 2^{CF3} (MeOH:CH ₂ Cl ₂ =1:1).	S14
Figure S3b. An IR spectrum of 2 ^{CF3} (ATR, neat).	S14
Figure S4a. A ¹ H NMR spectrum of 1 ^{CF3} (500MHz, CDCl ₃ , r.t.).	S15
Figure S4b. A ${}^{13}C{}^{1}H$ NMR spectrum of 1^{CF3} (126 MHz, CDCl ₃ , r.t.).	S16
Figure S4c. A ¹⁹ F NMR spectrum of 1 ^{CF3} (471 MHz, CDCl ₃ , r.t.)	S16
Figure S4d. A ¹ H-H COSY NMR spectrum of 1 ^{CF3} (500MHz, CDCl ₃ , r.t.).	S17
Figure S4e. A HSQC NMR spectrum of 1 ^{CF3} (500MHz, CDCl ₃ , r.t.).	S17
Figure S4f. A 1D NOESY NMR spectrum of 1 ^{CF3} (500MHz, CDCl ₃ , r.t.).	S18
Figure S4g. A 1D NOESY NMR spectrum of 1 ^{CF3} (500MHz, CDCl ₃ , r.t.).	S18
Figure S4h. HR-ESI-TOF-MS spectra of 1 ^{CF3} (MeOH).	S19
Figure S4i. An IR spectrum of 1 ^{CF3} (ATR, neat).	S19
Figure S5a. A ¹ H NMR spectrum of 1^{OMe} (400MHz, CD ₂ Cl ₂ , r.t.).	S20
Figure S5b. A ${}^{13}C{}^{1}H$ NMR spectrum of 1^{OMe} (100 MHz, CD_2Cl_2 , r.t.).	S21
Figure S5c. A ¹ H-H COSY NMR spectrum of 1 ^{OMe} (400MHz, CDCl ₃ , r.t.).	S21
Figure S5d. A HSQC NMR spectrum of 1 ^{OMe} (400MHz, CDCl ₃ , r.t.).	S22
Figure S5e. HR-ESI-TOF-MS spectra of 1 ^{OMe} (MeOH:CH ₂ Cl ₂ =1:1).	S23
Figure S5f. An IR spectrum of 1 ^{OMe} (ATR, neat).	S23

III. STM-BJ study

S24

Figure S6. Typical individual traces for blank experiments and 1^R (R =OMe, H, Cl, and CF₃). S24

Figure S7. 1D and 2D log histograms of a tetraglyme solution (a blank experiment) constructedfrom 2000 traces without any data selection.S24

IV. X-ray Structures

Table S1. Crystal data and structure refinement for 1 ^R (R=H, Cl, CF ₃).	S25
---	-----

V. Vis-NIR electronic spectral study	S26
Figure S8. Vis-NIR spectra of 1^{R} (R = OMe, H, Cl, and CF ₃) recorded in CH ₂ Cl ₂ (1 mM).	Inset
shows an expanded view of the NIR region.	S26
VI. DFT study	S27
Figure S9. A part of Kohn-Sham orbitals of $1^{H} - 1^{CF3}$.	S27
Figure S10. Hole–particle pairs of natural transition orbitals (NTOs) of 1^{H} related to the	
visible transition bands derived from the TD-DFT calculation.	S27
Figure S11. Hole–particle pairs of natural transition orbitals (NTOs) of 1^{H} related to the vi	sible
transition bands derived from the TD-DFT calculation.	S28
Table S2. TD-DFT data of 1 ^{OMe} .	S28
Table S3. TD-DFT data of 1 ^H .	S29
Table S4. TD-DFT data of 1 ^{Cl} .	S29
Table S5. TD-DFT data of 1 ^{CF3} .	S30
VII. DFT-NEGF study	S31
Figure S12. Model definition in a level-broadening approach.	S32
Figure S13. Plots of (a) experimentally (G _{exp}) and theoretically obtained conductance (G _c	alc)
and (b) HOMO ^{NEGF} and LUMO ^{NEGF} against Hammett substituent constants σ . (c) Transmit	i-
ssion spectra of of Au_{10} -1 ^R - Au_{10} (R = OMe, H, Cl, and CF ₃).	S33
Table S6. Cartesian coordinates of 1^{OMe} ($E = -4124.45439704$ hartree).	S34

Table S7. Cartesian coordinates of $1^{\mathbf{H}}$ ($E = -4124.45439704$ hartree).	S35
Table S8. Cartesian coordinates of 1^{Cl} ($E = -7801.19753803$ hartree).	S37

Fable S9. Cartesian coordinates of 1 ^{CF.}	$^{3}(E = -6820.73974559 \text{ hartree}).$	S39
--	---	------------

S39

VII. References

I. General

Materials

Reactions were performed under N₂ atmosphere using standard Schlenk tube technique unless stated otherwise. THF and CH₂Cl₂ were purified by the Grubbs solvent purification system.^[1] 4-Ethynylthioanisole,^[2] N,N-bis(4-trifluoromethylphenyl)formamidine,^[3] Ru₂(OAc)₄Cl,^[4] **2**^H, and **2**^{CI[5]} were synthesized according to the literature procedures. Other reagents, Silica (Kanto chemical Co Inc. Silica Gel 60N), alumina (Merck Aluminum oxide 90 standardized), and Sephadex LH-20 (GE healthcare) were used as received.

Instruments

NMR spectra were recorded on a Bruker biospin ASCEND-500 spectrometer (¹H 500 MHz, ¹³C{¹H} NMR 126 MHz, ¹⁹F 471 MHz). NMR chemical shifts were referenced to the residual non-deuterated solvent signals (¹H: CHCl₃ δ = 7.26 ppm, C₆D₅H δ = 7.16 ppm, CDHCl₂ δ = 5.32 ppm, ¹³C{¹H}; CDCl₃ δ = 77 ppm), and CF₃COOH (an external reference for ¹⁹F, δ = – 77.6 ppm). HR-ESI-TOF-MS measurements were performed on Bruker micrOTOF II. UV–Vis and IR spectra (KBr pellets and ATR) were obtained on JASCO V670DS and IRspirit spectrometers. Electrochemical measurements (CV and DPV) were made with Hokuto DenkoHZ-5000 (observed in CH₂Cl₂; [complex] = *ca*. 1 × 10⁻³ M; [NBu₄PF₆] = 0.1 M; working electrode: Pt, counter electrode: Pt, reference electrode: Ag/AgNO₃; scan rate: 100 mV/s (CV)). After a measurement, ferrocene (Fc) was added to the mixture, and the potentials were calibrated with respect to the Fc/Fc⁺ redox couple.

Single-Crystal X-ray Crystallography

X-ray Diffraction data was collected at 93 K under a cold nitrogen gas stream on a Rigaku XtaLaB Synergy-DW X-ray diffractometer system, using graphite-monochromated CuK α radiation ($\lambda = 1.54184$ Å). Intensity data were collected by an ω -scan with 0.5° oscillations for each frame. Bragg spots were integrated using the CrysAlis^{Pro} program package.^[6] Using Olex2,^[7] structures were solved by SHELXT^[8] and refined by SHELXL.^[9] All non-hydrogen atoms were refined with anisotropic displacement parameters. Hydrogen atoms were placed at calculated positions and refined by applying riding models. CCDC numbers 2057135-2057137 contain the supplementary crystallographic data for 1^H, 1^{CI}, and 1^{CF3}.

STM-BJ study

The conductance measurements were performed using electrochemical STM (Pico-SPM, Molecular Imaging Co.) and PicoScan 3000 PicoSPM II CONTROLLER (Molecular Imaging Co.). Cells, beakers, ceramic tweezers, and Schlenk tubes used for STM-BJ measurements were cleaned by soaking with mixed acid (an equivolume mixture of sulfuric acid and nitric acid) prior to use. The STM-tips were made from a gold wire (0.30 mm diameter, ca. 1.3 cm long, and 99,99% purity, obtained from The Nilaco Corporation) coated with wax (Apiezon Wax W obtained from The Nilaco Corporation). The substrate of Au(111) was formed on the surface of gold beads, which were prepared as follows. Au wires (0.90 mm diameter, ca. 5.0 cm long, and 99.99% purity, obtained from The Nilaco Corporation) were boiled in a concentrated HCl solution for more than 10 min and then rinsed with ultrapure water. Then the Au wires were flame annealed until melted into a sphere to form Au beads. The Au beads were then gently remelted until they showed single-crystalline Au(111) surface. Solutions of molecular wires in tetraglyme (0.25 mM) were used for the measurements. Conductance was measured during the breaking process under an applied bias of 100 mV. The histograms were constructed from 2000 successive traces.

DFT study

DFT and TD-DFT calculations were performed by using the Gaussian 16 program package.^[10] The complexes $\mathbf{1}^{\mathbf{R}}$ (R = H, Cl, and CF₃) are optimized with the B3LYP/LanL2DZ (for Ru) and 6-31G(d) (for C, H, N, S, Cl, F) levels of theory combined with the CPCM continuum solvent method (CH₂Cl₂). Single point calculation and TD-DFT study were performed at the same level of theory.

II. Synthesis

Synthesis of 1^H. To a solution of 4-ethynylthioanisole (666 mg, 4.50 mmol, 110 equiv.) in THF (20 mL) was added dropwise *n*-BuLi (2.45 mL of a 1.6 M solution in *n*-hexane, 3.93 mmol, 100 equiv.) at -78 °C under nitrogen atmosphere, and the mixture was stirred at room temperature for 2 h. To the reaction mixture was added a THF solution of **2^H** (41.1 mg, 0.0403 mmol, 1 equiv.; 15 mL), and the mixture was stirred overnight. Then the reaction mixture was exposed to air and stirred for 2 h. The volatiles were evaporated under reduced pressure, and the obtained residue was subjected to short silica gel column chromatography (eluted with hexane→hexane:CH₂Cl₂=9:1→CH₂Cl₂). The purple fraction eluted with CH₂Cl₂ was collected and evaporated. Then, the residue was subjected to Sephadex-LH-20 column chromatography (CH₂Cl₂). The solvent was removed in *vacuo* to afford the product as a dark purple solid (25.0 mg, 0.0196 mmol, 49 % yield).

¹H NMR: $\delta = 2.45$ (s, 6H, SMe), 6.20 (d, J = 8.5 Hz, 4H, C₆H₄SMe), 6.89 (d, J = 7.0 Hz, 16H, C₆H₅), 6.99 (d, J = 8.5 Hz, 4H, C₆H₄SMe), 7.08-7.12 (m, 24H, C₆H₅), 8.27 (s, 4H, amidinate-H). ¹³C{¹H} NMR: $\delta = 169.2$ (s, amidinate-C), 156.0 (s, C_q), 137.0 (s, C_q), 134.1 (s, C_q), 132.0 (s, C₆H₄SMe), 128.1 (s, C₆H₅), 126.1 (s, C₆H₅), 125.9 (s, C₆H₄SMe), 125.6 (s, C₆H₅), 124.9 (s, C_q), 48.67 (s, C_q), 16.47 (s, SMe). HR-ESI-TOF-MS (MeOH:CH₂Cl₂=1:1) (*m*/*z*): Calcd. for. C₇₀H₅₈N₈Ru₂S₂ : 1277.2269. Found 1277.2258 [M–H]⁻. IR (ATR, neat / cm⁻¹): 1523 (s), 1591 (s), 1952 (s), 2099 (s) ν (C=C), 2919 (m), 3059 (m).

Figure S1a. A ¹H NMR spectrum of 1^H (500MHz, CD₂Cl₂, r.t.).

Figure S1b. A $^{13}C\{^{1}H\}$ NMR spectrum of 1^{H} (126 MHz, CD₂Cl₂, r.t.).

Figure S1c. A ¹H-H COSY NMR spectrum of 1^{H} (500MHz, CD₂Cl₂, r.t.).

Figure S1d. A HSQC NMR spectrum of 1^H (500MHz, CD₂Cl₂, r.t.).

Figure S1e. HR-ESI-TOF-MS spectra of 1^{H} (MeOH:CH₂Cl₂=1:1).

Figure S1f. An IR spectrum of 1^H (ATR, neat).

Synthesis of 1^{Cl} . The title complex was synthesized in a manner similar to that of 1^{H} using 4ethynylthioanisole (126 mg, 0.850 mmol, 22 equiv.), *n*-BuLi (0.483 mL of a 1.6 M solution in *n*-hexane, 0.773 mmol, 20 equiv.), and 2^{Cl} (50.4 mg, 0.0389 mmol, 1 equiv.), and was obtained as a dark purple solid in 22 % yield (13.0 mg, 0.00837 mmol).

¹H NMR: $\delta = 2.50$ (s, 6H, SMe), 6.14 (d, J = 8.2 Hz, 4H, C₆H₄SMe), 6.74 (d, J = 8.5 Hz, 16H, C₆H₄Cl), 7.08-7.12 (m, 20H, C₆H₄Cl, C₆H₄SMe), 8.18 (s, 4H, amidinate-H).¹³C{¹H} NMR: $\delta = 168.5$ (s, amidinate-C), 153.4 (s, C_q), 138.9 (s, C_q), 135.2 (s, C_q), 131.6 (s, C_q), 131.4 (s, C₆H₄SMe), 128.1 (s, C₆H₄Cl), 126.3 (s, C₆H₄Cl), 125.9 (s, C₆H₄SMe), 123.3 (s, C_q), 43.45 (s, C_q), 16.14 (s, SMe). HR-ESI-TOF-MS (MeOH:CH₂Cl₂=1:1) (*m/z*): Calcd. for. C₇₀H₅₀Cl₈N₈Ru₂S₂ : 1552.9096, Found 1552.9095 [M–H]⁻. IR (ATR, neat / cm⁻¹): 1522 (s), 1587 (s), 2094 (s) ν (C=C), 2917 (m), 3069 (m).

Figure S2c. A ¹H-H COSY NMR spectrum of 1^{C1} (500MHz, CDCl₃, r.t.).

Figure S2d. A HSQC NMR spectrum of 1^{Cl} (500MHz, CDCl₃, r.t.).

Figure S2e. A 1D NOESY NMR spectrum of 1^{Cl} (500MHz, CDCl₃, r.t.).

Figure S2f. HR-ESI-TOF-MS spectra of 1^{Cl} (MeOH:CH₂Cl₂=1:1).

Figure S2g. An IR spectrum of 1^{CI} (ATR, neat).

Synthesis of 2^{CF3}. To a mixture of N,N'-bis[4-trifluoromethylphenyl]methanimidamide (281 mg, 0.846 mmol, 8 equiv.) and Ru₂(OAc)₄Cl (49.6 mg, 0.105 mmol, 1 equiv.) was heated at 175°C for 4 h under nitrogen atmosphere. The reaction mixture was allowed to cool to room temperature, and ethanol (10 mL) was added to the mixture. The resulting suspension was filtered, and the residue was dried in *vacuo* to afford greenish black crystals (91.0 mg, 0.0582 mmol, 55% yield). HR-ESI-TOF-MS (MeOH:CH₂Cl₂=1:1) (*m/z*): Calcd. for. C₆₀H₃₆ClF₂₄N₈Ru₂ : 1563.0483, Found 1563.0475 [M]⁻. IR (ATR, neat / cm⁻¹): 1016 (s), 1066 (s), 1107 (m), 1165 (s), 1224 (s), 1319 (s), 1411 (s), 1509 (s), 1539 (s), 1612 (s).

Figure S3b. An IR spectrum of 2^{CF3} (ATR, neat).

Synthesis of 1^{CF3} . The title complex was synthesized in a manner similar to that of 1^{H} using 4ethynylthioanisole (303 mg, 2.05 mmol, 22 equiv.), *n*-BuLi (1.12 mL of a 1.6 M solution in *n*hexane, 1.80 mmol, 20 equiv.), and 2^{CF3} (141 mg, 0.0899 mmol, 1 equiv.), and was obtained as a dark purple solid in 17 % yield (27.7 mg, 0.0152 mmol).

¹H NMR: $\delta = 2.47$ (s, 6H, SMe), 5.93 (d, J = 8.5 Hz, 4H, C₆H₄SMe), 6.98 (d, J = 8.0 Hz, 16H, C₆H₄CF₃), 7.01 (d, J = 8.5 Hz, 4H, C₆H₄SMe), 7.41 (d, J = 8.0 Hz, 16H, C₆H₄CF₃), 8.37 (s, 4H, amidinate-H). ¹³C{¹H} NMR: $\delta = 169.2$ (s, amidinate-C), 157.2 (s, C_q), 140.7 (s, C_q), 136.7 (s, C_q), 131.4 (s, C₆H₄SMe), 128.4 (q, J = 32.90 Hz, C₆H₄CF₃), 123.8 (q, J = 272.8 Hz, CF₃), 125.6 (s, C₆H₄SMe), 125.6 (s, C₆H₄CF₃), 125.3 (s, C₆H₄CF₃), 122.2 (s, C_q), 40.85 (s, C_q), 15.97 (s, SMe), ¹⁹F NMR: $\delta = -62.8$ (s, CF₃). HR-ESI-TOF-MS (MeOH) (*m*/*z*): Calcd. for. C₇₈H₅₀F₂₄N₈Ru₂S₂ : 1821.1263, Found 1821.1230 [M–H]⁻. IR (ATR, neat / cm⁻¹): 1507 (m), 1611 (s), 2101 (m) ν (C=C).

S15

Figure S4c. A ¹⁹F NMR spectrum of 1^{CF3} (471 MHz, CDCl₃, r.t.)

Figure S4e. A HSQC NMR spectrum of 1^{CF3} (500MHz, CDCl₃, r.t.).

Figure S4f. A 1D NOESY NMR spectrum of 1^{CF3} (500MHz, CDCl₃, r.t.).

Figure S4g. A 1D NOESY NMR spectrum of 1^{CF3} (500MHz, CDCl₃, r.t.).

Figure S4h. HR-ESI-TOF-MS spectra of 1^{CF3} (MeOH).

Synthesis of 1^{OMe} . The title complex was synthesized in a manner similar to that of 1^{H} using 4-ethynylthioanisole (259 mg, 1.74 mmol, 110 equiv.), *n*-BuLi (0.993 mL of a 1.6 M solution in *n*-hexane, 1.59 mmol, 100 equiv.), and 2^{OMe} (20.0 mg, 0.0159 mmol, 1 equiv.), and was obtained as a dark purple solid in 49 % yield (11.9 mg, 0.00784 mmol).

¹H NMR: $\delta = 2.45$ (s, 6H, SMe), 3.69 (s, 24H, OMe), 6.29 (d, J = 8.4 Hz, 4H, C₆H₄SMe), 6.63 (d, J = 8.8 Hz, 16H, C₆H₄OMe), 6.80 (d, J = 8.8 Hz, 16H, C₆H₄OMe), 7.02 (d, J = 8.4 Hz, 4H, C₆H₄SMe), 8.17 (s, 4H, amidinate-H). ¹³C{¹H} NMR: $\delta = 168.9$ (s, amidinate-C), 157.7 (s, C_q), 149.9 (s, C_q), 136.4 (s, C_q), 134.0 (s, C_q), 132.1 (s, C₆H₄SMe), 126.8 (q, C₆H₄OMe), 126.4 (s, C₆H₄OMe), 125.6 (s, C_q), 113.2 (s, C₆H₄OMe), 55.9 (s, OMe), 51.8 (s, C_q), 16.8 (s, SMe). HR-ESI-TOF-MS (MeOH) (*m*/*z*): Calcd. for. C₇₈H₇₄N₈O₈Ru₂S₂ : 1517.3118, Found 1517.3119 [M–H]⁻. IR (ATR, neat / cm⁻¹): 1500 (s) 1585 (w), 1606 (m), 2085 (w) ν (C=C), 2836 (w), 2915 (w), 2933 (w), 2986 (m).

Figure S5a. A ¹H NMR spectrum of 1^{OMe} (400MHz, CD₂Cl₂, r.t.).

Figure S5c. A ¹H-H COSY NMR spectrum of 1^{OMe} (400MHz, CDCl₃, r.t.).

Figure S5d. A HSQC NMR spectrum of 1^{OMe} (400MHz, CDCl₃, r.t.).

III. STM-BJ

Figure S6. Typical individual traces for 1^{R} (R = OMe, H, Cl, and CF₃).

Figure S7. 1Dand 2D log histograms of a tetraglyme solution (a blank experiment) constructed from 2000 traces without any data selection.

IV. X-ray Structures

Table SI. Crystal data and su	deture refinement for 1 (K-I	$1, \mathbf{C}\mathbf{I}, \mathbf{C}\mathbf{I}3\mathbf{)}.$		
complex	1 ^H	1 ^{CI}	1 ^{CF3}	
Empirical formula	$C_{70}H_{58}N_8Ru_2S_2$	$C_{70}H_{50}Cl_8N_8Ru_2S_2$	$C_{78}H_{50}F_{24}N_8Ru_2S_2$	
Formula weight	1277.50	1553.04	1821.52	
Temperature/K	93(2)	93(2)	90(2)	
Crystal system	monoclinic	monoclinic	triclinic	
Space group	C2/c	$P2_1/n$	P-1	
a/Å	24.1130(4)	14.9221(3)	12.3318(7)	
b/Å	15.1675(3)	19.5861(4)	13.7567(8)	
c/Å	16.6699(3)	23.0841(3)	15.6187(9)	
α/°	90	90	68.497(5)	
β/°	104.800(2)	94.565(2)	86.771(4)	
$\gamma/^{o}$	90	90	67.279(5)	
Volume/Å ³	5894.48(19)	6725.3(2)	2262.7(2)	
Z	4	4	1	
$\rho_{calc}g/cm^3$	1.440	1.534	1.337	
μ/mm^{-1}	5.202	7.528	3.948	
F(000)	2616.0	3128.0	910.0	
Crystal size/mm ³	$0.20\times0.15\times0.15$	$0.30 \times 0.25 \times 0.25$	$0.20\times0.15\times0.10$	
Radiation	Cu Kα (λ = 1.54184 Å)	Cu K α (λ = 1.54184 Å)	Cu K α (λ = 1.54184 Å)	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	6.952 to 149.64	6.814 to 149.946	7.514 to 149.764	
Index ranges	$\begin{array}{l} -30 \leq h \leq 29, \text{-}17 \leq k \leq 18, \\ -20 \leq l \leq 20 \end{array}$	$-18 \le h \le 18, -24 \le k \le 18,$ $-28 \le l \le 27$	$-15 \le h \le 14, -16 \le k \le 14,$ $-19 \le l \le 19$	
Reflections collected	28645	66360	25560	
Independent reflections	$\begin{array}{ll} 5873 & [R_{int}= & 0.0354, \\ R_{sigma}=0.0209] \end{array}$	$\begin{array}{ll} 13475 & [R_{int}= & 0.0309, \\ R_{sigma}= 0.0231] \end{array}$	$\begin{array}{l} 8891 [R_{int} = 0.0427, R_{sigma} = \\ 0.0420] \end{array}$	
Data/restraints/parameters	5873/0/371	13475/1592/905	8891/863/526	
Goodness-of-fit on F ²	1.065	1.037	1.326	
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0307,$ $wR_2 = 0.0833$	$R_1 = 0.0462,$ $wR_2 = 0.1196$	$\begin{array}{l} R_1 = 0.1068, \\ wR_2 = 0.2854 \end{array}$	
Final R indexes [all data]	$R_1 = 0.0314,$ $wR_2 = 0.0839$	$\begin{aligned} R_1 &= 0.0505, \\ wR_2 &= 0.1228 \end{aligned}$	$R_1 = 0.1125, \\ wR_2 = 0.2940$	
Largest diff. peak/hole / e Å ⁻ $_3$	0.66 / -0.89	1.96 / -1.09	5.06 / -1.24	

Table S1. Crystal data and structure refinement for 1^R (R=H, Cl, CF₃).

V. Vis-NIR electronic spectral study

Vis-NIR absorption spectra of 1^{R} recorded in CH₂Cl₂ are shown in Figure S8. The characteristics of the absorption bands for 1^{R} (R = OMe, H, Cl, and CF₃) are similar with each other, i.e. with two bands located in the visible (400 - 700 nm) and NIR regions (800 - 1200 nm). The HOMO-LUMO gaps (Δ^{opt}) determined on the basis of the NIR absorption maxima (~950 nm) were ca. 1.3 eV, which are in good agreement with those obtained by the CV and DFT studies (see main text). We carried out TD-DFT calculations of 1^{H} to assess character of the transitions. The computed Vis-NIR transitions were contributed by multiple orbitals. Thus we performed natural transition orbitals (NTOs) analysis of 1^{H} ,^[11] and representative computed NIR transitions are shown in Figure S9. The three major computed NIR transitions are basically very similar to the transition character is a combination of the filled Ru₂ d π^* -to-vacant δ^* transition (*d*-*d* transition) and the charge transfer (CT) transition from the axial thioanisylethynyl ligands to the Ru₂ core. On the other hand, the visible transition bands are also derived from the *d*-*d* transition but involve more significant contribution from the CT-type DArF and thioanisylethynyl ligands-to-Ru₂ core transitions (Figure S10).

The narrow HOMO-LUMO gaps of the Ru₂(DPhF)₄ dialkynyl complexes are fundamentally due to the weak ruthenium-ruthenium interaction as evidenced by the experimental and theoretical studies reported previously, i.e. the long Ru-Ru bond length.^[12,13] On the other hand, Δ^{opt} of Ru₂(DPhF)₄(C=CPh)₂ was reported to be 1.78 eV, which is larger by 0.5 eV than those of $\mathbf{1}^{\mathbf{R}}$.^[12] The smaller Δ^{opt} values of $\mathbf{1}^{\mathbf{R}}$ are, therefore, caused by the methylthio substituents on the phenyl groups, which raise the HOMO energies and enhance the CT character of the NIR transitions.

Figure S8. Vis-NIR spectra of 1^{R} (R = OMe, H, Cl, and CF₃) recorded in CH₂Cl₂ (1 mM). Inset shows an expanded view of the NIR region.

V. DFT study

Figure S9. A part of Kohn-Sham orbitals of 1^{R} (R = OMe, H, Cl, and CF₃).

Figure S10. Hole–particle pairs of natural transition orbitals (NTOs) of 1^{H} related to the NIR bands derived from the TD-DFT calculation. Hole-particle eigenvalues are near unity (~1.0) for these transitions.

Figure S11. Hole–particle pairs of natural transition orbitals (NTOs) of 1^{H} related to the visible transition bands derived from the TD-DFT calculation.

λmax ^{DFT} nm	oscillator strength	main transition
1908.17	0.0000	HOMO \rightarrow LUMO (71 %)
1364.38	0.0344	HOMO-1 \rightarrow LUMO (89 %)
1318.18	0.0127	HOMO–2 \rightarrow LUMO (67 %)
967.29	0.0402	HOMO-4 \rightarrow LUMO (50 %)
898.19	0.0279	HOMO–3 \rightarrow LUMO (99 %)
875.49	0.1030	HOMO–5 \rightarrow LUMO (72 %)
778.33	0.1162	HOMO–4 \rightarrow LUMO (41 %)
764.46	0.0089	HOMO \rightarrow LUMO+1 (46 %)
682.93	0.0213	HOMO– $8 \rightarrow$ LUMO (62 %)
661.64	0.0419	HOMO–7 \rightarrow LUMO (95 %)
649.56	0.0221	HOMO–9 \rightarrow LUMO (43 %)
634.28	0.0151	HOMO-1 \rightarrow LUMO+1 (38 %)
631.16	0.0036	HOMO-1 \rightarrow LUMO+1 (48 %)
604.23	0.1968	HOMO-12 \rightarrow LUMO (37 %)
575.89	0.0261	HOMO-11 \rightarrow LUMO (75 %)
574.64	0.1212	HOMO-14 \rightarrow LUMO (36 %)
560.38	0.0056	HOMO-4 \rightarrow LUMO+1 (42 %)
548.67	0.0069	HOMO-3 \rightarrow LUMO+1 (45 %)
531.45	0.0015	HOMO-13 \rightarrow LUMO (33 %)
511.58	0.0310	HOMO–5 \rightarrow LUMO+1 (66 %)

 Table S2. TD-DFT data of 1^{OMe}.

λ_{max}^{DFT} nm	oscillator strength	main transition			
2021.49	0.0009	HOMO \rightarrow LUMO (51 %)			
1468.03	0.0221	HOMO-1 \rightarrow LUMO (40 %)			
1273.28	0.0117	HOMO-2 \rightarrow LUMO (68 %)			
984.23	0.0112	HOMO–4 \rightarrow LUMO (62 %)			
799.4	0.0385	HOMO-3 \rightarrow LUMO (80 %)			
779.64	0.085	HOMO-5 \rightarrow LUMO (82 %)			
769.09	0.0111	HOMO \rightarrow LUMO+1 (39 %)			
687.07	0.0755	HOMO-6 \rightarrow LUMO (68 %)			
654.31	0.0304	HOMO-7 \rightarrow LUMO (44 %)			
632.81	0.0212	HOMO-1 \rightarrow LUMO+1 (40 %)			
586.44	0.1572	HOMO–9 \rightarrow LUMO (35 %)			
559.02	0.0372	HOMO-4 \rightarrow LUMO+1 (35 %)			
546.3	0.0099	HOMO-10 \rightarrow LUMO (73 %)			
544.79	0.0287	HOMO-4 \rightarrow LUMO+1 (30 %)			
534.37	0.0278	HOMO–11 \rightarrow LUMO (52 %)			
532.43	0.0038	HOMO-3 \rightarrow LUMO+1 (46 %)			
520.95	0.1737	HOMO-8 \rightarrow LUMO (36 %)			
514.33	0.0238	HOMO-12 \rightarrow LUMO (83 %)			
487.58	0.0117	HOMO–13 \rightarrow LUMO (75 %)			
480.13	0.0002	HOMO-3 \rightarrow LUMO+1 (33 %)			

Table S3. TD-DFT data of **1**^H.

Table S4. TD-DFT data of 1^{Cl}.

$\lambda_{max}^{DFT} nm$	oscillator strength	main transition
2212.05	0.0001	HOMO \rightarrow LUMO (60 %)
1703.45	0.0454	HOMO–1 \rightarrow LUMO (92 %)
1549.61	0.0031	HOMO–2 \rightarrow LUMO (62 %)
1010.58	0.013	HOMO–5 \rightarrow LUMO (67 %)
830.17	0.0925	HOMO–4 \rightarrow LUMO (85 %)
821.61	0.046	HOMO–3 \rightarrow LUMO (84 %)
775.19	0.0059	HOMO \rightarrow LUMO+1 (45 %)
710.84	0.1089	HOMO-6 \rightarrow LUMO (62 %)
678.89	0.003	HOMO–7 \rightarrow LUMO (49 %)
671.3	0.0006	HOMO–1 \rightarrow LUMO+1 (86 %)
629.44	0.214	HOMO–8 \rightarrow LUMO (32 %)
602.76	0.0509	HOMO–9 \rightarrow LUMO (80 %)
572.68	0.0079	HOMO-10 \rightarrow LUMO (88 %)
564.99	0.0327	HOMO-11 \rightarrow LUMO (59 %)
549.4	0.0012	HOMO–5 \rightarrow LUMO+1 (55 %)
546.15	0.1793	HOMO-11 \rightarrow LUMO (27 %)
540.28	0.0337	HOMO-12 \rightarrow LUMO (63 %)
528.25	0.0056	HOMO-3 \rightarrow LUMO+1 (54 %)
508.19	0.0245	HOMO-13 \rightarrow LUMO (66 %)
492.29	0.0046	HOMO-14 \rightarrow LUMO (84 %)

λ_{max}^{DFT} nm	oscillator strength	main transition
2272.8	0.0041	HOMO \rightarrow LUMO (43 %)
1775.05	0.0264	HOMO \rightarrow LUMO (49 %)
1471.71	0.0118	HOMO-1 \rightarrow LUMO (53 %)
1031.23	0.0081	HOMO–3 \rightarrow LUMO (60 %)
795.05	0.0759	HOMO–5 \rightarrow LUMO (62 %)
789.68	0.05	HOMO–4 \rightarrow LUMO (41 %)
772.71	0.0107	HOMO-2 \rightarrow LUMO+1 (37 %)
689.26	0.033	HOMO–7 \rightarrow LUMO (36 %)
671.48	0.0644	HOMO–9 \rightarrow LUMO (25 %)
660.73	0.0387	HOMO-1 \rightarrow LUMO+1 (27 %)
623.34	0.0904	HOMO-6 \rightarrow LUMO (40 %)
618.2	0.0609	HOMO–8 \rightarrow LUMO (41 %)
561.62	0.1482	HOMO–9 \rightarrow LUMO (20 %)
548.04	0.0279	HOMO-4 \rightarrow LUMO+1 (34 %)
538.74	0.0095	HOMO-12 \rightarrow LUMO (75 %)
526.23	0.0015	HOMO-3 \rightarrow LUMO+1 (32 %)
515.48	0.0926	HOMO-13 \rightarrow LUMO (64 %)
501.75	0.0464	HOMO–14 \rightarrow LUMO (79 %)
486.77	0.0026	HOMO-10 \rightarrow LUMO (49 %)
482.13	0.0029	$HOMO-10 \rightarrow LUMO (31\%)$

Table S5. TD-DFT data of 1^{CF3}.

IV. DFT-NEGF study

(1) TranSIESTA

Electronic transport properties were simulated by using the TranSIESTA code.^[14] We employed the Perdew-Burke-Ernzerhof exchange-correlation functional,^[15] the single- ζ plus polarization basis set for Au atoms, the double- ζ plus polarization basis set for molecular atoms, and a cutoff energy of 300 Ry for the real-space integrations. An Au(111)-p(6x6) slab was employed as the electrodes and the bottom three layers were treated as the self-energies. Molecular geometries were optimized with Gaussian 16(C1) program package as described above. Because the surface area of the cell is large, only gamma point was sampled for calculating the electronic structure and the transmission function by the post processing TBTrans tool. The transmission eigenchannels^[16] at the Fermi level were visualized using the Inelastica package.

(2) Level-broadening approach based on the NEGF and hybrid DFT method.^[17]

DFT calculations for electron transport were performed by using the Gaussian 09 (D01) program package^[18] and the non-equilibrium Green's function (NEGF) method in a level-broadening approach.^{[17][19]} B3LYP/LanL2DZ (for Ru and Au) and 6-31G(d) (for C, H, N, S, Cl, F) levels of theory were adopted for the transport calculations.

The computational procedure in the level-broadening approach is as follows.

- I. Structural optimization of cluster models for Au-molecule-Au junctions.
- II. Determination of the cluster sizes and scattering regions.
- III. Calculations of transmission functions with the NEGF method.

In Step I (structural optimization), a molecular junction model, in which a molecule is sandwiched between Au_x clusters were constructed. Because we sometimes meet computational difficulities in structural relaxations, geometry optimization of the molecular junction models were performed in a stepwise manmer. First, we carried out geometry optimization of molecules with the edge single Au atoms (e.g., Au₁-molcule-Au₁). Then, we expanded the edge Au atoms to trigonal pyramid Au₁₀ clusters (Au₁₀-molcule-Au₁₀). During the second optimization process, the third Au layers (Au₆) were frozen, while the Au₄ clusters were relaxed. Finally, the molecular junction model was expanded to Au₃₅-molecule-Au₃₅, and the models were used for the next steps.

Step II is related to the computational procedure in transmission calculations in Step III, and thus we firstly introduce the essence of the NEGF method with the broadening approach.

1) The cluster model for a molecular junction is composed of a left metal cluster, a sandwiched molecule and

a right metal cluster (Figure. S1).

2) The sandwiched molecule and 4 gold atoms in both clusters are defined as an extended molecule (Figure. S1).

3) Metal cluster atoms except for the metal atoms in the EM region are recognized as electrode clusters, and the density of states of the metal clusters are broadened (i.e., level-broadening) to obtain Green's functions of the metal clusters.

4) Broadening parameters for the metal clusters are chosen so as to show a reasonable conductance in a reference system (e.g., $2e^2/h$ in a one-dimensional gold chain).

5) The size of the metal cluster and EM region are determined to hold the condition that the calculated conductance is almost insensitive to those sizes.

6) When the Fermi energy was set to -5.18 eV, the experimental results were well reproduced.

Figure S12. Model definition in a level-broadening approach.

Figure S13. Plots of (a) experimentally (G_{exp}) and theoretically obtained conductance (G_{calc}) and (b) HOMO^{NEGF} and LUMO^{NEGF} against Hammett substituent constants σ . (c) Transmission spectra of of Au_{10} -1^R- Au_{10} (R = OMe, H, Cl, and CF₃).

С	8.71845	-0.46889	-0.48102	С	-6.60897	1.21222	-0.80156
С	8.06877	-0.18248	0.72762	С	-5.89686	0.32566	0.03245
С	6.67921	-0.07481	0.77245	С	-6.64809	-0.44474	0.95071
С	5.88639	-0.24637	-0.38183	С	-8.03056	-0.33124	1.02752
С	6.55848	-0.53241	-1.59267	С	-8.72532	0.55971	0.19019
С	7.94267	-0.64231	-1.64079	С	-7.99644	1.33041	-0.72585
S	10.48724	-0.63124	-0.66416	S	-10.50014	0.62175	0.37715
С	11.13102	-0.34442	1.01795	С	-11.02668	1.87172	-0.84211
С	4.20151	-0.61253	-4.9548	Н	0.21047	-3.22072	1.8213
С	3.56459	0.58056	-4.58713	Н	-0.27536	3.29865	-1.96639
С	2.55829	0.56164	-3.61823	Н	-3.51933	-2.74175	0.22732
С	2.16934	-0.63141	-3.00412	Н	-5.22999	-3.92339	1.58396
С	2.81357	-1.82186	-3.37786	Н	-2.72187	-3.5463	5.0614
С	3.81807	-1.81444	-4.33901	Н	-1.04283	-2.3697	3.71757
Ν	1.09949	-0.63478	-2.04582	Н	-3.04928	-0.14937	3.07481
С	0.06709	-1.3745	-2.42078	Н	-4.9476	0.91426	4.21999
Ν	-1.10013	-1.47064	-1.77041	Н	-3.72774	4.74452	2.68203
С	-1.96705	-2.51109	-2.21084	Н	-1.79937	3.65632	1.54446
С	-1.47366	-3.7982	-2.47154	Н	-2.22401	0.27616	-3.55327
C	-2 31221	-4 82172	-2 92049	Н	-4 05578	1 05904	-4 99324
C	-3 67559	-4 56824	-3 11301	н	-4 46265	4 5798	-2 54973
C	-4.17977	-3.2843	-2.84341	Н	-2.61591	3.7732	-1.09707
C	-3 34118	-2 2724	-2 39694	н	-0.42366	-4 01783	-2 30277
Ru	-1 3089	-0.2182	-0 16673	н	-1 89268	-5 80408	-3 1028
Ru	1 29782	0.25063	-0.09957	н	-5 23925	-3 09952	-2 99376
N	1.03878	2 12667	-0.87135	н	-3.74135	-1 2905	-2 17802
C	1 89824	3 25825	-0.77574	н	3 65701	2 20448	-1 4361
C	1.40928	4 49813	-0.33844	н	5 13875	4 19682	-1.4501
C	2 23035	5 61896	0.25415	н	1 82411	6 55654	0.09643
C	2.23935	5 5108	-0.23413	п п	0.2704	4 5013	0.03636
C	3.38903	4 26051	-0.00793	п u	0.3704	4.3913	-0.03030
C	2 2504	4.20951	-1.03/80	п	0.13749	-1.95792	-3.55165
N	1 14459	3.13993	-1.11017	п	2.33719	-2.75542	-2.8907
N C	-1.14438	-1.6301/	1.09248	п	4.32121	-2.75269	-4.02378
C	-2.1447	-2.46384	1.80727	п	3.83441	1.32337	-3.04830
C	-3.34803	-2.9175	1.28159	п	2.06493	1.4805/	-3.34222
C	-4.50/1	-3.37632	2.03927	п	1.79808	-3.96361	-0.53448
C	-4.09899	-3.82008	3.40807	Н	3./5866	-5.45592	-0.1/033
C	-2.910/1	-3.380/9	4.00625	п	3.11283	-2.838/4	2.9855
N	-1.94908	-2.72423	3.23390	п	0.10200	-1.38333	2.39803
N C	-1.10237	1.00387	1.38073	п	-0.10809	0.20188	3.17029
U N	-0.0307	1.33093	2.21758	п	2.0708	0.20188	4.3435
N	1.20147	1.03878	1.79726	п	2.9708	0.57974	6.01904
C	2.24062	1.23432	2.74829	Н	5.32449	2.66439	3.0795
C	5.42094	1.91641	2.40138	н	5.54222	2.28864	1.39232
C	4.41919	2.1256	3.34304	Н	-6.12899	-1.13901	1.60461
C	4.2/514	1.65551	4.66003	Н	-0.06223	1.8188	-1.51/35
C	3.11046	0.96698	5.01651	H	-8.57785	-0.93934	1.74391
С	2.10921	0.76057	4.06212	Н	-8.49721	2.02801	-1.3883

Table S6. Cartesian coordinates of 1^{OMe} (E = -5040.65491733 hartree).

Ν	-1.17872	1.51159	-1.43424	Н	6.19262	0.15041	1.71677
С	-2.28396	1.96651	-2.23046	Н	5.97826	-0.67046	-2.49998
С	-2.71347	1.21678	-3.32842	Н	8.63338	-0.03973	1.64257
С	-3.75504	1.66332	-4.14528	Н	8.42804	-0.86457	-2.58813
С	-4.38754	2.8823	-3.86558	Н	12.21678	-0.43652	0.93689
С	-3.96334	3.63927	-2.76205	Н	10.88469	0.65882	1.37465
С	-2.92377	3.18641	-1.95745	Н	10.76175	-1.09557	1.72068
С	0.10032	-2.29068	1.25885	Н	-12.11348	1.9344	-0.7483
Ν	1.20839	-1.72715	0.79452	Н	-10.59347	2.85082	-0.62287
С	2.36223	-2.56292	1.00091	Н	-10.7746	1.56752	-1.86108
С	3.30584	-2.27359	1.98907	С	-3.25726	0.06899	-0.07622
С	4.40214	-3.11192	2.20507	С	-4.47638	0.20857	-0.03773
С	4.57233	-4.25856	1.41763	С	3.24574	-0.01834	-0.24061
С	3.62449	-4.56051	0.42916	С	4.46476	-0.13711	-0.32474
С	2.53088	-3.72306	0.22993	0	4.48992	6.53291	-0.56382
С	-2.29886	1.67256	2.22188	0	5.31585	1.91602	5.50321
С	-3.19552	0.92103	2.98461	0	5.19229	-0.71006	-5.88842
С	-4.27351	1.52776	3.63349	0	5.61149	-5.13757	1.53864
С	-4.47268	2.90994	3.51675	0	-4.58448	-5.48717	-3.54493
С	-3.57175	3.67268	2.7596	0	-5.10458	-4.47541	4.05677
С	-2.49569	3.05841	2.12565	0	-5.41099	3.41353	-4.59582
С	-0.15425	2.35099	-1.43742	0	-5.49759	3.59959	4.10077
С	6.628	-4.84739	2.49189	Н	3.2506	8.20194	-0.78853
Н	7.36216	-5.64955	2.4004	С	-6.46663	2.86305	4.83899
Н	7.1111	-3.88519	2.28092	Н	-7.19748	3.59475	5.18721
Н	6.22971	-4.83564	3.51417	Н	-6.9682	2.11826	4.20861
С	5.62541	0.48113	-6.53776	Η	-6.01661	2.36036	5.70423
Н	6.41359	0.17567	-7.22761	С	5.21559	1.47113	6.85214
Н	4.8096	0.94947	-7.10214	Η	5.13173	0.37875	6.90857
Н	6.0307	1.20434	-5.81938	Η	6.13757	1.78891	7.34144
С	-4.12647	-6.80502	-3.83349	Η	4.35733	1.92674	7.3613
Н	-3.70459	-7.28593	-2.94251	С	-4.93914	-4.75735	5.44272
Н	-5.00527	-7.36103	-4.16324	Н	-4.83897	-3.83612	6.02995
Н	-3.37619	-6.80116	-4.63361	Н	-5.84263	-5.28596	5.75044
С	-5.88505	2.68201	-5.72197	Н	-4.06517	-5.3963	5.61981
Н	-6.69352	3.27875	-6.1471	С	4.0372	7.81242	-0.1308
Н	-5.09753	2.54865	-6.47391	Н	3.6638	7.77659	0.89994
Н	-6.27405	1.69972	-5.42675	Н	4.9073	8.46882	-0.17824

Table S8. Cartesian coordinates of 1^{H} ($E = -4124.45439704$ hartree
--

С	-8.73627	0.24822	-0.22263	С	2.38917	-2.14302	1.67725
С	-8.05637	-0.32858	0.85908	С	3.27707	-1.60134	2.61475
С	-6.66313	-0.379	0.86978	С	4.36994	-2.3491	3.05433
С	-5.8972	0.14044	-0.19456	С	4.59456	-3.63781	2.56003
С	-6.59823	0.71617	-1.27918	С	3.70905	-4.18046	1.6271
С	-7.98638	0.76949	-1.29205	С	2.60752	-3.43886	1.19141
S	-10.51203	0.37411	-0.34878	Н	5.44861	-4.21451	2.90403
С	-11.11786	-0.40924	1.18252	С	0.1917	-1.83316	-1.99451

Н	-5.09963	2.06173	-5.19724	С	6.62559	-0.61352	-1.1705
С	-4.30477	1.87778	-4.48005	С	5.90617	-0.05628	-0.08838
С	-3.6217	0.65771	-4.48302	С	6.64517	0.44907	1.00436
С	-2.59844	0.41827	-3.56503	С	8.0367	0.39109	1.01851
С	-2.24635	1.4016	-2.63194	С	8.73829	-0.16552	-0.06042
С	-2.93028	2.6252	-2.62989	С	8.01627	-0.65835	-1.15852
С	-3.95485	2.85931	-3.54937	S	10.53311	-0.18586	-0.05048
Ν	-1.15765	1.16509	-1.72341	С	10.87855	-1.97376	0.18938
С	-0.15069	2.00938	-1.8885	Н	-0.26461	2.58256	2.70199
Ν	1.02782	1.94811	-1.25578	Н	0.33163	-2.59351	-2.76554
С	1.86426	3.09379	-1.40052	Н	3.4126	2.72784	0.96242
С	1.33273	4.38477	-1.23387	Н	5.12405	3.55504	2.54822
С	2.14654	5.50839	-1.38641	Н	2.76725	2.11076	5.84689
С	3.49886	5.36118	-1.70179	Н	1.06748	1.27247	4.25775
С	4.03156	4.0781	-1.86028	Н	3.10195	-0.60255	2.99784
С	3.22597	2.94932	-1.70931	Н	5.04868	-1.92199	3.7878
Н	4.13255	6.2357	-1.81773	Н	3.86699	-5.18379	1.24065
Ru	1.30042	0.3097	-0.06262	Н	1.91072	-3.86131	0.4731
Ru	-1.29234	-0.2371	-0.10607	Н	2.11452	0.77966	-3.51704
Ν	-0.99966	-1.80724	-1.38319	Н	3.96351	0.4547	-5.13827
С	-1.83033	-2.94499	-1.60375	Н	4.56674	-3.53388	-3.63668
С	-1.29705	-4.24234	-1.5067	Н	2.72675	-3.1941	-2.01066
С	-2.10546	-5.35698	-1.73516	Н	0.28839	4.50573	-0.96196
С	-3.45429	-5.19457	-2.05782	Н	1.72095	6.49849	-1.24851
С	-3.98903	-3.90561	-2.14657	Н	5.08261	3.95214	-2.10575
С	-3.18886	-2.78578	-1.91962	Н	3.64061	1.95556	-1.81951
Н	-4.08389	-6.06224	-2.23271	Н	-3.6054	-1.78819	-1.97431
Ν	1.11514	1.50754	1.5948	Н	-5.03755	-3.76794	-2.39656
С	2.11565	1.9617	2.49961	Н	-1.67856	-6.3525	-1.65061
С	3.27659	2.59388	2.02778	Н	-0.25562	-4.37686	-1.23011
С	4.23661	3.05581	2.92795	Н	-0.27453	2.81089	-2.61944
С	4.06233	2.89096	4.30614	Н	-2.66995	3.38287	-1.89696
С	2.91345	2.25512	4.77993	Н	-4.47968	3.81065	-3.53479
С	1.94699	1.79008	3.88555	Н	-3.88023	-0.10972	-5.20758
Н	4.8149	3.25293	5.00077	Н	-2.06249	-0.52379	-3.57161
Ν	1.2242	-1.41272	1.2488	Н	-1.96092	3.86558	0.62033
С	0.1127	-1.8971	1.78832	Н	-3.9345	5.13327	1.436
Ν	-1.13492	-1.53059	1.48288	Н	-5.06122	1.77179	3.87608
С	-2.15119	-2.03354	2.34335	Н	-3.09774	0.50764	3.03698
С	-3.31135	-2.62226	1.81673	Н	0.22295	-2.6776	2.54401
С	-4.28865	-3.12985	2.67249	Н	-1.12182	-1.4685	4.15646
С	-4.13225	-3.0553	4.0606	Н	-2.85127	-2.38911	5.66535
С	-2.9838	-2.46364	4.58947	Н	-5.1758	-3.59369	2.24963
С	-2.00043	-1.95261	3.73973	Н	-3.43364	-2.68546	0.74332
Н	-4.89819	-3.45248	4.72054	Н	6.11295	0.8848	1.84438
Ν	1.19386	-0.99945	-1.76279	Н	6.07944	-1.00036	-2.02552
С	2.29963	-1.18517	-2.66238	Н	8.58488	0.77796	1.87267
С	2.65842	-0.15761	-3.54392	Н	8.54785	-1.07614	-2.00914
С	3.69923	-0.34693	-4.45393	Н	-6.15302	-0.83161	1.71485

С	4.39222	-1.56069	-4.49488	Н	-6.03843	1.12317	-2.11591
С	4.03479	-2.5866	-3.61629	Н	-8.60031	-0.74224	1.70124
С	2.99329	-2.40239	-2.70441	Н	-8.49556	1.21912	-2.14115
Н	5.20041	-1.70555	-5.2061	Н	-12.20773	-0.35078	1.1313
С	-0.13882	1.85201	1.90018	Н	-10.82011	-1.45928	1.23878
Ν	-1.23821	1.40264	1.30895	Н	-10.77437	0.12832	2.06993
С	-2.41319	2.10097	1.76529	Н	11.96647	-2.08334	0.19208
С	-3.289	1.51595	2.68761	Н	10.47729	-2.32082	1.14458
С	-4.39138	2.23259	3.1549	Н	10.46108	-2.56538	-0.62885
С	-4.63621	3.53337	2.70402	С	3.257	0.08336	-0.08006
С	-3.76125	4.11969	1.78757	С	4.4811	-0.00005	-0.09704
С	-2.6506	3.40911	1.32444	С	-3.2481	-0.0048	-0.14028
Н	-5.49747	4.08589	3.06908	С	-4.47138	0.08326	-0.17497

С	8.71526	0.54266	0.36489	С	-6.61923	-0.8201	1.09589
С	8.06266	0.09178	-0.79116	С	-5.89381	-0.30443	0.00274
С	6.67303	-0.01382	-0.81942	С	-6.62939	0.10136	-1.1346
С	5.88524	0.32326	0.30047	С	-8.01355	-0.00556	-1.17226
С	6.55814	0.7745	1.45866	С	-8.72358	-0.52409	-0.07432
С	7.94249	0.88272	1.48983	С	-8.00851	-0.92991	1.06119
S	10.48332	0.71945	0.52149	S	-10.49774	-0.61419	-0.23574
С	11.12326	0.19626	-1.10426	С	-11.04802	-1.33549	1.34643
С	4.17685	1.63739	4.65797	Н	0.21622	2.78367	-2.47725
С	3.52772	0.40404	4.59212	Н	-0.27691	-2.82543	2.56593
С	2.52377	0.21315	3.64371	Н	-3.51605	2.6015	-0.79447
С	2.16747	1.24404	2.76589	Н	-5.24651	3.47606	-2.33383
С	2.83245	2.47434	2.84801	Н	-2.75235	2.48725	-5.70062
С	3.83948	2.67681	3.79226	Н	-1.03487	1.59615	-4.16129
Ν	1.09683	1.04616	1.82982	Н	-3.069	-0.46425	-3.04141
С	0.06124	1.84082	2.04958	Н	-4.97138	-1.77096	-3.95278
Ν	-1.10741	1.78954	1.39668	Н	-3.66198	-5.21989	-1.73374
С	-1.98646	2.88748	1.61907	Н	-1.75217	-3.90728	-0.84032
С	-1.50228	4.20671	1.58886	Н	-2.1786	0.40491	3.55426
С	-2.35362	5.28624	1.82232	Н	-4.04584	-0.10671	5.10649
С	-3.70102	5.0442	2.08271	Н	-4.52086	-3.96307	3.25099
С	-4.20647	3.74356	2.10773	Н	-2.66162	-3.43816	1.6958
С	-3.3497	2.66992	1.87378	Н	-0.45839	4.39683	1.36082
Ru	-1.30445	0.24197	0.07405	Н	-1.97199	6.30096	1.7913
Ru	1.29947	-0.22429	0.11116	Н	-5.25749	3.56843	2.31101
Ν	1.04466	-1.89407	1.2651	Н	-3.73626	1.65888	1.87747
С	1.91474	-3.01046	1.41938	Н	3.64844	-1.81682	1.87389
С	1.4347	-4.31923	1.23944	Н	5.15241	-3.76352	2.18866
С	2.2766	-5.41847	1.40516	Н	1.8987	-6.42444	1.25865
С	3.61045	-5.20616	1.7483	Н	0.40236	-4.48303	0.94728
С	4.11197	-3.91541	1.92214	Н	0.14955	2.58426	2.84422
С	3.26466	-2.82194	1.755	Н	2.57408	3.27357	2.16061
Ν	-1.13863	1.57397	-1.48204	Н	4.35404	3.62987	3.84997

	С	-2.14338	2.05752	-2.36267	Н	3.79444	-0.39373	5.27689
	С	-3.3485	2.57522	-1.86282	Н	2.00567	-0.73718	3.59198
	С	-4.32306	3.06623	-2.72865	Н	1.77686	3.99822	-0.38142
	С	-4.09763	3.03622	-4.10602	Н	3.72211	5.38619	-1.05752
	С	-2.91474	2.5186	-4.62871	Н	5.14815	2.15595	-3.52061
	С	-1.94445	2.0274	-3.75463	Н	3.20968	0.77241	-2.82584
	N	-1.15384	-1.36792	-1.37369	Н	-0.09524	-2.49961	-2.74562
	С	-0.02101	-1.7771	-1.93041	Н	1.23449	-1.14885	-4.24339
	N	1.20926	-1.39701	-1.57438	Н	3.02278	-1.89151	-5.78147
	С	2.25487	-1.79546	-2.45001	Н	5.35016	-3.23077	-2.41638
	С	3.43368	-2.36857	-1.94789	Н	3.54956	-2.50391	-0.8809
	С	4.44776	-2.77667	-2.81144	Н	-6.09858	0.5053	-1.99105
	С	4.28895	-2.60665	-4.18794	Н	-6.0821	-1.13974	1.98353
	С	3.13344	-2.03148	-4.71165	Н	-8.55054	0.31508	-2.06156
	С	2.12303	-1.6245	-3.83971	Н	-8.52162	-1.33337	1.92708
	N	-1.17909	-1.19203	1.66579	Н	6.1836	-0.36633	-1.72218
	С	-2.29301	-1.48179	2.52391	Н	5.97915	1.04178	2.33713
	С	-2.69519	-0.54512	3.48355	Н	8.62526	-0.18029	-1.67735
	С	-3.74329	-0.83068	4.35762	Н	8.43041	1.2338	2.39575
	С	-4.39025	-2.06353	4.26572	Н	12.20938	0.29442	-1.03716
	С	-4.00764	-3.00974	3.31603	Н	10.87267	-0.84621	-1.31575
	С	-2.95659	-2.71322	2.44778	Н	10.75636	0.84313	-1.90501
1	С	0.10592	1.98464	-1.74145	Н	-12.13611	-1.40397	1.27439
	N	1.21294	1.52003	-1.17619	Н	-10.63731	-2.33759	1.49292
1	С	2.36895	2.28873	-1.55027	Η	-10.78733	-0.69282	2.19097
1	С	3.32452	1.77661	-2.43615	С	-3.25202	-0.05708	0.04432
1	С	4.41366	2.55282	-2.82817	С	-4.47147	-0.19261	0.03733
1	С	4.54897	3.84605	-2.32174	С	3.24517	0.0741	0.20137
1	С	3.61086	4.37736	-1.4401	С	4.46313	0.20991	0.26184
1	С	2.5189	3.59289	-1.06239	Cl	5.92874	4.82815	-2.81471
1	С	-2.28957	-2.09493	-1.8726	Cl	-5.33082	3.65831	-5.20002
1	С	-3.20198	-1.49969	-2.75197	Cl	4.68218	-6.58766	1.9567
1	С	-4.27054	-2.23251	-3.26556	Cl	-5.71306	-2.43128	5.37131
1	С	-4.42887	-3.56648	-2.88781	Cl	5.57252	-3.12353	-5.27895
1	С	-3.5335	-4.18033	-2.01534	Cl	5.44357	1.88582	5.85813
1	С	-2.46156	-3.43802	-1.51506	Cl	-5.78269	-4.49394	-3.53437
	С	-0.15317	-2.00707	1.85402	Cl	-4.78457	6.40091	2.37564

I	Ru	-0.56424	-1.40356	6.15583	С	-5.21242	-4.30191	6.49193
	Ν	-0.89179	-3.05934	7.32936	С	-6.40882	-4.80823	6.99086
	Ν	-0.27828	-2.74157	4.46279	С	-6.86714	-4.41742	8.25414
	Ν	-0.50063	0.27374	4.82109	С	-6.1145	-3.52757	9.02333
	Ν	-1.16255	-0.20993	7.70313	С	-4.9107	-3.02872	8.52673
	С	-2.17021	-3.43006	7.44475	Н	-4.32124	-2.33902	9.12274
	С	-1.34778	0.45907	3.82054	Н	-6.46295	-3.22219	10.00424
	С	2.62612	-1.2952	6.3342	Н	-6.98972	-5.50324	6.39355
	С	1.4023	-1.33021	6.2615	Н	-4.85875	-4.60277	5.51357
	С	0.05574	-3.90513	7.96442	Н	-0.96924	-4.08234	3.0457
	С	1.08406	-3.36512	8.75359	с	-3.43465	-3.96811	3.2432
	C	2.00363	-4.2022	9.37558	C	-4.51647	-3.48245	2.49052
	С	1.91779	-5.59082	9.21744	с	-5.36456	-4.36575	1.83164
	C	0.9005	-6.13769	8.43322	C	-5.15326	-5.74738	1.91584
	C	-0.02325	-5 30096	7 80948	C	-4 08428	-6 24037	2 66648
	C	1 02393	-3 12782	3 98776	C	-3 23439	-5 3579	3 33052
	C	1 78991	-4 07326	4 68059	н	-2 42826	-5 74949	3 94291
	C	3.0416	-4 44697	4 20115	н	-3 92227	-7 30951	2 75018
	C C	3 54407	3 87630	3 02632	и	6 19504	3 07776	1 25074
	C	2 77548	-2 94929	2 3192	н	-4 68321	-2.4162	2 42243
	C	1 51609	2 58451	2.3132	n C	6.04935	6 68376	1 15800
	C	0.60343	1 18810	2.79505	C C	8 13386	5 00682	8 80454
	C C	0.78767	2.06857	5 88457	C C	7 83880	3 48821	6.607
	C	1 85293	2.00857	5 88122	C C	-5.05251	0.49877	-1 42933
	C C	2 74105	2.90325	4 80125	C C	3 94806	3 8847	4 83513
	C	2.55109	2.99323	3 71862	C C	1 30375	0.67012	4.85515
	C C	1 4850	1 2331	3 72300	C C	1.30375	4 21682	2 5607
	C	0.54464	0.01363	8 96956	C C	2 96085	6 4743	0.83702
	C C	1 28927	0.14958	10 1547	F	5 55068	0.68422	1 86818
	C	-1.28927	0.05767	11 30425	r F	4 20765	-0.08422	2 38763
	C	0.66456	0.39435	11.39423	F	-6.09379	1 36022	-1 37859
	C C	1 41461	0.51895	10 29354	F	-7 64122	4 68835	6.01809
	C	0.81830	0.3136	9 05306	r F	8 83760	4.08855	5.01000
	н	-2 38855	-4 22679	8 15818	F	-8 32241	3 71949	7 84722
	н	-1 10698	1 22771	3 08388	F	-8 72797	-4 19087	9 70473
	н	1 14994	-2 29396	8 88538	F	-9.03962	-5 26213	7 83239
	н	2 78429	-3 77375	9 99581	F	-7 9096	-6 18522	9 43968
	н	0.8287	-7 21194	8 30195	F	-6.04382	-7 93167	1 67824
	н	-0 79466	-5 73073	7 17813	F	-5 67545	-6 80182	-0 1408
	н	1 40214	-4 51123	5 5925	F	-7 33386	-6 25654	1 14855
	н	3 62744	-5 18336	4 74122	F	5 2589	-5 50127	2 84225
	н	3.15108	-2.51816	1.39735	F	5.09739	-4.03232	1.24048
	н	0.91228	-1.87219	2.24213	- F	5.8683	-3.44545	3.18567
	н	0.09281	2.05061	6.71549	- F	4.28935	4.32862	3.60453
	н	1.98822	3 64625	6.71467	F	3.76617	4 96821	5.62083
	н	3.23428	2.15162	2.876	F	5.03744	3.23049	5.32257
	н	1.35123	0.54903	2.89207	F	1.24189	1.98553	13,12473
	Н	-2.33291	-0.44326	10.10922	- F	2.61296	0.33127	12.81273
,						· · · · · ·		

Table S10. Cartesian coordinates of 1^{CF3} (E = -6820.73974559 hartree).

Н	-1.27282	-0.06049	12.30086	F	0.70091	-0.00556	13.80345
Н	2.46836	0.77222	10.34604	F	3.35703	-6.01676	11.04825
Н	1.40387	0.39188	8.14626	F	4.07857	-6.54752	9.07114
Ru	-3.0092	-1.49691	5.15045	F	2.52401	-7.74205	10.00897
Ν	-2.55879	-3.0743	3.9129	С	4.05083	-1.33548	6.40083
С	-1.25283	-3.33143	3.78558	С	4.71632	-2.51143	6.81164
Ν	-3.19392	-2.90655	6.78262	С	4.83787	-0.22493	6.02381
Ν	-3.19436	0.13126	6.54259	С	6.10619	-2.58914	6.79568
С	-2.36583	0.35959	7.54815	Н	4.13032	-3.37044	7.12254
Ν	-2.5008	-0.20032	3.65212	С	6.2273	-0.30254	6.0202
С	-4.97517	-1.52337	5.0322	Н	4.35365	0.69985	5.73002
С	-6.1948	-1.5293	4.8999	С	6.87597	-1.49264	6.38233
С	-3.13599	-0.01792	2.39075	Н	6.59961	-3.51027	7.09136
С	-2.3922	-0.11572	1.20234	Н	6.8114	0.56439	5.72448
С	-3.00687	0.07251	-0.03329	С	-7.60703	-1.55463	4.69526
С	-4.3726	0.35812	-0.09718	С	-8.2585	-2.72138	4.24525
С	-5.12	0.4518	1.08214	С	-8.40453	-0.41192	4.93046
С	-4.50941	0.26346	2.31837	С	-9.6372	-2.75242	4.04191
Н	-5.08913	0.32597	3.2298	Н	-7.67125	-3.61353	4.05057
Н	-6.17944	0.68163	1.03698	С	-9.77811	-0.43954	4.73057
Н	-2.42187	-0.00631	-0.94334	Н	-7.93751	0.50472	5.27199
Н	-1.33555	-0.35918	1.24388	С	-10.41538	-1.61109	4.28378
Н	-2.66708	1.0898	8.30145	Н	-10.09306	-3.67299	3.69468
С	-4.35718	0.97258	6.56818	Н	-10.36029	0.45804	4.92385
С	-4.54441	1.93055	5.56435	S	8.66525	-1.62423	6.32493
С	-5.65781	2.7661	5.59307	S	-12.18258	-1.5291	4.06192
С	-6.59162	2.65311	6.62864	С	-12.63265	-3.19977	3.48516
С	-6.40151	1.70765	7.64042	Н	-13.71543	-3.17792	3.34062
С	-5.28698	0.87281	7.61133	Н	-12.15135	-3.43685	2.53312
Н	-5.1465	0.12735	8.38705	Н	-12.38866	-3.95939	4.23191
Н	-7.12102	1.62012	8.44757	С	8.93078	-1.78012	4.5122
Н	-5.79437	3.51085	4.81608	Н	9.99706	-1.97213	4.36528
Н	-3.81375	2.02277	4.7695	Н	8.3497	-2.61464	4.11248
С	-4.45437	-3.40695	7.25725	Н	8.65681	-0.85611	3.99731

IIV. References

- A. B. Pangborn, M. A. Giardello, R. H. Grubbs, R. K. Rosen, F. J. Timmers, Organometallics 1996, 15, 1518–1520.
- [2] L.-Y. Zhang, P. Duan, J.-Y. Wang, Q.-C. Zhang, Z.-N. Chen, J. Phys. Chem. C 2019, 123, 5282–5288.
- [3] C. Lin, J. D. Protasiewicz, E. T. Smith, T. Ren, *Inorg. Chem.* 1996, 35, 6422–6428.
- [4] T. A. Stephenson, G. Wilkinson, J. Inorg. Nucl. Chem. 1966, 28, 2285–2291.
- [5] C. Lin, T. Ren, E. J. Valente, J. D. Zubkowski, E. T. Smith, *Chem. Lett.* 1997, 26, 753–754.
- [6] Rigaku Oxford Diffraction, CrysAlisPro, Rigaku Corporation, Tokyo, Japan. 2015.
- [7] O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. a. K. Howard, H. Puschmann, J Appl Cryst 2009, 42, 339–341.
- [8] G. M. Sheldrick, *Acta Cryst A* **2015**, *71*, 3–8.
- [9] G. M. Sheldrick, *Acta Cryst C* **2015**, *71*, 3–8.
- [10] Gaussian 16, Revision C.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016., n.d.
- [11] R. L. Martin, J. Chem. Phys. 2003, 118, 4775–4777.
- [12] C. Lin, T. Ren, E. J. Valente, J. D. Zubkowski, J. Chem. Soc., Dalton Trans. 1998, 571–576.
- [13] I. P.-C. Liu, T. Ren, *Inorg. Chem.* **2009**, *48*, 5608–5610.
- [14] M. Brandbyge, J.-L. Mozos, P. Ordejón, J. Taylor, K. Stokbro, *Phys. Rev. B* 2002, 65, 165401.
- [15] J. P. Perdew, K. Burke, M. Ernzerhof, *Phys. Rev. Lett.* **1996**, *77*, 3865–3868.

- [16] M. Paulsson, M. Brandbyge, Phys. Rev. B 2007, 76, 115117.
- [17] T. Tada, M. Kondo, K. Yoshizawa, J. Chem. Phys. 2004, 121, 8050-8057.
- [18] Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, can be found under https://gaussian.com/g09citation/, 2016.
- [19] K. Sugimoto, Y. Tanaka, S. Fujii, T. Tada, M. Kiguchi, M. Akita, Chem. Commun. 2016, 52, 5796-5799.