## **Electronic Supporting Information**

# One- and Two-Electron Reduction of Triarylborane-Based Helical Donor-Acceptor Compounds

Xiangqing Jia,<sup>a</sup> Jörn Nitsch,<sup>a</sup> Zhu Wu,<sup>a</sup> Alexandra Friedrich,<sup>a</sup> Johannes Krebs,<sup>a</sup> Ivo Krummenacher,<sup>a</sup> Felipe Fantuzzi,<sup>a,c</sup> Holger Braunschweig,<sup>a</sup> Michael Moos,<sup>b</sup> Christoph Lambert,<sup>b</sup> Bernd Engels<sup>c</sup> and Todd B. Marder<sup>\*a</sup>

<sup>a</sup> Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany

<sup>b</sup> Institut für Organische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany

<sup>c</sup> Institut für Physikalische and Theoretische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany

\*Email: todd.marder@uni-wuerzburg.de

| Table of contents                                         | S1  |
|-----------------------------------------------------------|-----|
| General information                                       | S2  |
| Synthesis of monoanions and dianions of compounds 1 and 2 | S2  |
| Single-crystal X-ray diffraction                          | S5  |
| EPR measurements                                          | S9  |
| Photophysical properties                                  | S11 |
| Spectroelectrochemical measurements                       | S11 |
| Theoretical studies                                       | S12 |
| References                                                | S25 |
| XYZ-coordinates                                           | S25 |

#### **General information**

Compounds  $1^1$ ,  $2^1$  and [K(18-crown-6)(THF)<sub>2</sub>] naphthalenide<sup>2</sup> were synthesized according to literature procedures. THF and Et<sub>2</sub>O were dried using an Innovative Technology Inc. solvent purification system (SPS), pentane was distilled from LiAlH<sub>4</sub>, and all were stored over Na/K alloy in an argon-filled glovebox. Electronic absorption measurements were performed on a Varian Cary 5E UV/vis-NIR spectrophotometer and an Agilent 8453 diode-array UV/vis spectrophotometer. <sup>1</sup>H NMR spectra were recorded on a Bruker Avance 500 MHz (<sup>1</sup>H, 500 MHz) spectrometer at room temperature. The residual peaks of the deuterated solvents were used as references for <sup>1</sup>H chemical shifts.

#### Synthesis of monoanions and dianions of compounds 1 and 2

#### Synthesis of $1 \cdot K_1$



In an argon-filled glovebox, **1** (10 mg, 0.0149 mmol, 1.0 equiv.),  $[K(18\text{-crown-6})(THF)_2]^+$  naphthenide (9.4 mg, 0.0164 mmol, 1.1 equiv.), and THF (1 mL) were added into a 5 mL vial, and the mixture was stirred for 5 min to form a dark purple solution. The lid of the vial was removed, and the vial was placed inside a 25 mL vial containing pentane. The large vial was sealed and placed in a freezer in the glovebox (-30 °C). After one week, dark purple crystals formed and the structure was confirmed by single-crystal X-ray diffraction.

#### Synthesis of 1-K2



In an argon-filled glovebox, **1** (10 mg, 0.0149 mmol, 1 equiv.),  $[K(18\text{-crown-6})(THF)_2]^+$  naphthenide (21.4 mg, 0.0372 mmol, 2.5 equiv.), and THF (1 mL) were added into a 5 mL vial, and the mixture was stirred for 10 min to form a dark blue solution. The lid of the vial was removed, and the vial was placed inside a 25 mL vial containing pentane. The large vial was sealed and placed in a freezer in the glovebox (-30 °C). After 3 days, dark blue powder precipitated. Because of biradicaloid character, the <sup>11</sup>B and <sup>13</sup>C NMR were not obtained. <sup>1</sup>H NMR (500 MHz, THF-d<sub>8</sub>):  $\delta = 6.88-6.81$  (m, 8H), 6.37 (s, 2H), 6.36 (s, 2H), 5.45 (d, J = 7.5 Hz, 1H), 5.21 (d, J = 7.5 Hz, 1H), 4.89 (d, J = 9.5 Hz, 1H), 4.84 (t, J = 7.5 Hz, 1H), 4.40 (d, J = 9.5 Hz, 1H), 3.71 (s, 2H), 3.55 (s, 1H), 3.47 (d, J = 7.0 Hz, 1H), 3.27 (d, J = 7.0 Hz, 1H), 2.18 (s, 6H), 2.10-1.98 (m, 18H) ppm.





3

253 K

Figure S2. Temperature-dependent <sup>1</sup>H NMR spectra of  $1 \cdot K_2$  in THF-d<sub>8</sub> at 500 MHz

Synthesis of 2.K1



In an argon-filled glovebox, **2** (10 mg, 0.0139 mmol, 1 equiv.),  $[K(18\text{-crown-6})(THF)_2]^+$  naphthenide (8.7 mg, 0.0152 mmol, 1.1 equiv.), and THF (1 mL) were added into a 5 mL vial, and the mixture was stirred for 5 min to form a dark purple solution. The lid of the vial was removed, and the vial was placed inside a 25 mL vial containing pentane. The large vial was sealed and placed in a freezer in the glovebox (-30 °C). After one week, dark purple crystals formed and the structure was confirmed by single-crystal X-ray diffraction.

Synthesis of  $2 \cdot K_2$ 



In an argon-filled glovebox, **2** (10 mg, 0.0139 mmol, 1 equiv.),  $[K(18\text{-crown-6})(THF)_2]^+$  naphthenide (20 mg, 0.0346 mmol, 2.5 equiv.), and THF (1 mL) were added into a 5 mL vial, and the mixture was stirred for 10 min to form a dark blue solution. The lid of the vial was removed, and the vial was placed inside a 25 mL vial containing pentane. The large vial was sealed and placed in a freezer in the glovebox (-30 °C). After one week, dark blue crystals formed. Single crystal X-ray diffraction analysis revealed a disordered 1:1 co-crystal of the monoanion **2·K**<sub>1</sub> and the dianion **2·K**<sub>2</sub>. Because of biradicaloid character and trace of **2·K**<sub>1</sub> in it, the <sup>11</sup>B and <sup>13</sup>C NMR were not obtained. <sup>1</sup>H NMR (500 MHz, THF-d<sub>8</sub>):  $\delta = 6.97$ , 6.62, 6.57, 6.33, 6.25, 5.47, 5.19, 4.82, 4.62, 4.48, 4.19, 4.13, 3.47, 3.38, 2.55, 2.35, 2.31, 2.15, 2.09, 1.83, 1.72 ppm.



Figure S3. <sup>1</sup>H NMR spectrum of 2·K<sub>2</sub> in THF-d<sub>8</sub> at 500 MHz

## Single-crystal X-ray diffraction

Crystals suitable for single-crystal X-ray diffraction were selected, coated in perfluoropolyether oil, and mounted on MiTeGen sample holders. Diffraction data for 1.K1 and 1:1 2·K<sub>1</sub>/2·K<sub>2</sub> were collected on a Rigaku Oxford Diffraction XtaLAB Synergy diffractometer with a semiconductor HPA-detector (HyPix-6000) and multi-layer mirror monochromated Cu- $K_{\alpha}$  radiation. Diffraction data for 2·K<sub>1</sub> were collected on a Bruker X8 Apex II 4-circle diffractometer with a CCD area detector using Mo-K<sub>a</sub> radiation generated by a Nonius FR591 rotating anode and monochromated by multi-layer focusing mirrors. As these crystals were extremely unstable in air, they were rapidly mounted under an argon stream and cooled at 100 K using an Oxford Cryostream low-temperature device attached to the diffractometer. Data were collected at 100 K. The images were processed and corrected for Lorentz-polarization effects and absorption as implemented in the CrysAlis<sup>Pro</sup> software from Rigaku Oxford Diffraction  $(1 \cdot K_1 \text{ and } 1:1 \cdot 2 \cdot K_1 / 2 \cdot K_2)$  or in the Bruker software packages  $(2 \cdot K_1)$ . The structures were solved using the intrinsic phasing method (SHELXT)<sup>3</sup> and Fourier expansion technique. All non-hydrogen atoms were refined in anisotropic approximation, with hydrogen atoms "riding" in idealized positions, by full-matrix least squares against  $F^2$  of all data, using SHELXL software<sup>4</sup> and the SHELXLE graphical user interface.<sup>5</sup> The crystal of 1·K<sub>1</sub> consisted of two domains and, hence, a twin data reduction was performed. Only the larger domain (ca. 80%) was used in the structure refinement. Mercury<sup>6</sup> and Diamond software<sup>7</sup> were used for graphical representation. Crystal data and experimental details are listed in Table S1. CCDC 2044266 (1·K<sub>1</sub>), 2044267 (2·K<sub>1</sub>), and 2044268 (2·K<sub>1</sub> / 2·K<sub>2</sub>) contain the supplementary crystallographic data for this paper. These data are provided free of charge by The Cambridge Crystallographic Data Centre.

|                                           | $1 \cdot K_1$                  | $2 \cdot K_1$                  | $2 \cdot K_1 / 2 \cdot K_2$                            |
|-------------------------------------------|--------------------------------|--------------------------------|--------------------------------------------------------|
| CCDC                                      | 2044266                        | 2044267                        | 2044268                                                |
| Empirical formula                         | $C_{50}H_{46}BN\cdot$          | $C_{54}H_{48}BN\cdot$          | $C_{54}H_{48}BN$                                       |
|                                           | $C_{12}H_{24}KO_6$             | $C_{12}H_{24}KO_6$             | 1.5(C <sub>12</sub> H <sub>24</sub> KO <sub>6</sub> )⋅ |
|                                           | $3(C_4H_8O)$                   |                                | C <sub>4</sub> H <sub>8</sub> O                        |
| Formula weight (g·mol <sup>-1</sup> )     | 1191.41                        | 1025.15                        | 1248.96                                                |
| Temperature (K)                           | 100(2)                         | 100(2)                         | 100(2)                                                 |
| Radiation, $\lambda$ (Å)                  | Cu <sub>Ka</sub> 1.54184       | Mo <sub>Kα</sub> 0.71073       | Cu <sub>Ka</sub> 1.54184                               |
| Crystal size (mm <sup>3)</sup>            | $0.25 \times 0.18 \times 0.06$ | $0.06 \times 0.09 \times 0.22$ | $0.02 \times 0.08 \times 0.19$                         |
| Crystal color, habit                      | black block                    | red needle                     | dark purple plate                                      |
| Crystal system                            | triclinic                      | triclinic                      | triclinic                                              |
| Space group                               | $P \overline{1}$               | $P \overline{1}$               | P 1                                                    |
| Unit cell dimensions                      |                                |                                |                                                        |
| <i>a</i> (Å)                              | 12.5786(3)                     | 8.842(3)                       | 13.5466(5)                                             |
| $b(\text{\AA})$                           | 16.3020(4)                     | 13.762(6)                      | 15.5380(6)                                             |
| <u>c (Å)</u>                              | 16.8804(3)                     | 24.038(12)                     | 18.5839(6)                                             |
| α(°)                                      | 98.375(2)                      | 73.438(9)                      | 87.406(3)                                              |
| β(°)                                      | 90.741(2)                      | 86.260(12)                     | 72.123(3)                                              |
| γ (°)                                     | 103.958(2)                     | 86.518(8)                      | 67.804(3)                                              |
| Volume (Å <sup>3</sup> )                  | 3319.24(13)                    | 2795(2)                        | 3435.8(2)                                              |
| Ζ                                         | 2                              | 2                              | 2                                                      |
| $ ho_{ m calc} ({ m Mg}\cdot{ m m}^{-3})$ | 1.192                          | 1.218                          | 1.207                                                  |
| $\mu (\mathrm{mm}^{-1})$                  | 1.149                          | 0.148                          | 1.411                                                  |
| <i>F</i> (000)                            | 1282.0                         | 1094                           | 1337                                                   |
| $\theta$ range / °                        | 5.298 - 70.058                 | 2.311 - 26.403                 | 2.512 - 72.761                                         |
| Reflections collected                     | 42082                          | 99934                          | 124255                                                 |
| Unique reflections                        | 12455                          | 11400                          | 12277                                                  |
| R <sub>int</sub>                          | 0.0583                         | 0.1598                         | 0.0901                                                 |
| $R_{\sigma}$                              | 0.0339                         | 0.1156                         | 0.0359                                                 |
| Parameters / restraints                   | 935 / 586                      | 684 / 0                        | 1119 / 793                                             |
| GooF on $F^2$                             | 1.056                          | 0.996                          | 1.056                                                  |
| $R_1$ [I $\geq 2\sigma(I)$ ]              | 0.060                          | 0.0580                         | 0.0917                                                 |
| $wR^2$ (all data)                         | 0.1818                         | 0.1311                         | 0.2932                                                 |
| Max. / min. residual                      | 0.741 / -0.460                 | 0.248 / -0.254                 | 0.759 / -0.356                                         |
| electron density $(e \cdot Å^{-3})$       |                                |                                |                                                        |

**Table S1.** Single-crystal X-ray diffraction data and structure refinements of  $1 \cdot K_1$ ,  $2 \cdot K_1$  and the1:1 co-crystal of  $2 \cdot K_1 / 2 \cdot K_2$ .



**Figure S4.** Alternate stacking arrangement of the  $[K(18 \text{-} \text{crown-6})]^+$  cation and the [5]-helicene anion in  $2 \cdot K_1$  in the solid state at 100 K. Weak interactions exist between the potassium ion and the helicene core. Atomic displacement ellipsoids are drawn at 50% probability, and hydrogen atoms are omitted for clarity.

**Table S2.** Selected bond lengths [Å] and angles [°] for 1,  $1 \cdot K_1$ , 2,  $2 \cdot K_1$ , and  $2 \cdot K_1 / 2 \cdot K_2$  in the solid state at 100 K. Values for 1 and 2 are taken from our previous work.<sup>[1]</sup> P1 and P4 designate benzene rings of the helicene bonded to boron and nitrogen, respectively, while P2, P3 and P5, P6 designate phenyl rings of the mesityl groups bonded to boron and nitrogen, respectively. P7 is the benzene ring of the helicene next to P1.

| Compound                             | 1          | $1 \cdot K_1$ | 2          | $2 \cdot K_1$ | $2 \cdot K_1 / 2 \cdot K_2^{a}$ |
|--------------------------------------|------------|---------------|------------|---------------|---------------------------------|
| KC19/C16 (P7)                        |            |               |            | 3.283(3)      | 3.083(4)                        |
| K…C20/C15 (P7)                       |            |               |            | 3.206(3)      | 3.461(4)                        |
| KC22 (P3)                            |            |               |            | 3.534(3)      | 3.249(5)                        |
| KC21 (P3)                            |            |               |            | 3.296(3)      | 3.326(4)                        |
| CC (P7) <sup>b</sup>                 | 1.354(2)   | 1.356(3)      | 1.351(3)   | 1.353(4)      | 1.362(6)                        |
| CC (P3) <sup>b</sup>                 | 1.366(2)   | 1.368(3)      | 1.367(3)   | 1.360(4)      | 1.356(6)                        |
| B-C <sub>Hel</sub>                   | 1.557(3)   | 1.533(3)      | 1.555(3)   | 1.520(4)      | 1.592(16) / 1.43(2)             |
| B-C <sub>Mes</sub>                   | 1.575(3)   | 1.598(3)      | 1.585(2)   | 1.597(4)      | 1.579(16) / 1.63(2)             |
| B–C <sub>Mes</sub>                   | 1.575(3)   | 1.601(3)      | 1.579(2)   | 1.605(4)      | 1.612(16) / 1.58(2)             |
| N-C <sub>Hel</sub>                   | 1.428(2)   | 1.398(3)      | 1.411(2)   | 1.420(4)      | 1.437(5)                        |
| N–C <sub>Mes</sub>                   | 1.405(2)   | 1.434(3)      | 1.432(2)   | 1.436(4)      | 1.443(6)                        |
| N–C <sub>Mes</sub>                   | 1.430(2)   | 1.447(2)      | 1.412(2)   | 1.419(4)      | 1.405(6)                        |
| $\angle P1_{Hel}$ -BC <sub>3</sub>   | 24.30(6)   | 4.95(9)       | 12.80(5)   | 12.53(12)     | 10.3(2) / 5.3(3)                |
| ∠P2 <sub>Mes</sub> -BC <sub>3</sub>  | 51.41(6)   | 60.86(8)      | 62.89(5)   | 57.19(11)     | 52.5(3) / 60.1(4)               |
| $\angle P3_{Mes}$ -BC <sub>3</sub>   | 54.99(6)   | 63.78(8)      | 64.58(5)   | 60.28(11)     | 55.5(4) / 58.9(4)               |
| $\angle P4_{Hel}$ -NC <sub>3</sub>   | 66.42(6)   | 77.18(8)      | 29.24(5)   | 32.19(13)     | 38.62(18)                       |
| $\angle P5_{Mes}$ -NC <sub>3</sub>   | 7.99(7)    | 14.90(9)      | 29.60(6)   | 27.38(13)     | 31.5(2)                         |
| ∠P6 <sub>Mes</sub> -NC <sub>3</sub>  | 58.04(6)   | 57.82(9)      | 53.35(7)   | 65.44(12)     | 55.9(2)                         |
| $\angle P1_{Hel}$ -P4 <sub>Hel</sub> | 29.88(5)   | 32.04(7)      | 45.09(4)   | 39.74(10)     | 48.04(13)                       |
|                                      | 121.36(16) | 120.48(16)    | 121.33(11) | 120.4(2)      | 120.3(11) / 118.3(5)            |
| $\angle C - B - C$                   | 119.65(16) | 119.51(18)    | 118.21(12) | 119.3(2)      | 122.8(10) / 115.5(13)           |
|                                      | 118.96(15) | 119.97(18)    | 120.44(12) | 120.2(2)      | 116.9(10) / 126.2(14)           |
|                                      | 122.69(14) | 121.91(16)    | 119.61(11) | 117.2(2)      | 120.7(3)                        |
| $\angle$ C–N–C                       | 121.76(14) | 119.28(16)    | 122.63(11) | 122.4(2)      | 119.9(3)                        |
|                                      | 114.95(14) | 114.32(16)    | 117.74(11) | 115.9(2)      | 116.0(4)                        |
| $Sum \angle C – B – C$               | 359.97(16) | 359.96(18)    | 359.98(12) | 359.9(2)      | 360.0(11) / 360.0(2)            |
| Sum ∠ C–N–C                          | 359.40(14) | 355.51(16)    | 359.98(11) | 355.5(2)      | 356.6(4)                        |

<sup>a</sup> The B(Mes)<sub>2</sub> group is disordered. Hence, values are given for both parts.

<sup>b</sup> These are the respective C–C distances between the carbon atoms that exhibit interactions with the potassium ion in  $2 \cdot K_1$  and  $2 \cdot K_1 / 2 \cdot K_2$ .

#### **EPR** measurements

EPR measurements at X-band (9.85 GHz) were carried out at room temperature using a Bruker ELEXSYS E580 CW EPR spectrometer. The spectral simulations were performed using MATLAB 8.3 and the EasySpin 5.2.25 toolbox.<sup>8</sup> Temperature-dependent EPR measurements at X-band (9.4 GHz) were carried out using a Bruker ELEXSYS E580 CW EPR spectrometer equipped with an Oxford Instruments helium cryostat (ESR900) and a MercuryiTC temperature controller. Solid-state EPR measurements at X-band (9.38 GHz) were carried out using a Bruker ELEXSYS E580 CW EPR spectrometer.



Figure S5. Temperature dependence of the CW X-band EPR spectra of  $1 \cdot K_2$  in frozen tetrahydrofuran.



**Figure S6.** Three different representations of the temperature dependence of the double integral EPR intensity (A) of  $1 \cdot K_2$  in frozen solution. Circles ( $\bigcirc$ ) represent the experimental results and the red line corresponds to the fit with the Bleaney-Bowers equation. Analysis of the variable temperature EPR data gives a singlet-triplet gap of  $2J = -360 \text{ cm}^{-1}$  ( $\Delta E_{ST} = 4.3 \text{ kJ/mol}$ ).



Figure S7. Temperature dependence of the X-band EPR spectra of  $2 \cdot K_2$  in frozen tetrahydrofuran.



**Figure S8.** Three different representations of the temperature dependence of the double integral EPR intensity (A) of  $2 \cdot K_2$  in frozen solution. Circles ( $\bigcirc$ ) represent the experimental results and the red line corresponds to the best fit with the Bleaney-Bowers equation. Analysis of the variable temperature EPR data gives a singlet-triplet gap of  $2J = -390 \text{ cm}^{-1}$  ( $\Delta E_{ST} = 4.7 \text{ kJ/mol}$ ).



**Figure S9.** Solid-state CW X-band EPR spectrum of dianion  $1 \cdot K_2$  (*left*) at 145 K and the weak half-field signal at 167.5 mT observed for  $1 \cdot K_2$ , characteristic of the triplet state (*right*).



**Figure S10.** Solid-state CW X-band EPR spectrum of dianion  $2 \cdot K_2$  at 145 K. The corresponding half-field signal could not be observed at this temperature and also not in the temperature range of 120 to 300 K.

## **Photophysical properties**

UV/vis-NIR absorption spectra were measured on a Varian Cary 5E UV/vis-NIR spectrophotometer and on an Agilent 8453 diode array UV/vis spectrophotometer. All solutions used in photophysical measurements had concentrations of ca.  $10^{-5}$  M in Et<sub>2</sub>O. All absorption spectra were recorded in standard quartz cuvettes (1 cm × 1 cm) under argon.

#### Spectroelectrochemical measurements

Spectroelectrochemical experiments in reflection mode were performed using an Agilent Cary 5000 spectrometer in combination with a custom designed sample compartment consisting of a cylindrical PTFE cell with an Infrasil® wedge window (angled by 0.5°) and an adjustable two-in-one electrode (6 mm platinum disc working electrode, 1 mm platinum wire counter electrode). The potentials were adjusted with a Princeton Applied Research potentiostat (PAR 283) and referenced to a leak free Ag/AgCl reference electrode (Warner Instruments). All experiments were carried out at room temperature under an argon atmosphere.

Thin layer measurements were done by attaching the working electrode to the flat surface of a glass halfsphere and measuring 9 cycles with a scan speed of 2 mVs<sup>-1</sup>. The voltammograms were referenced to the ferrocene/ferrocenium redox couple.



Figure S11. Thin layer cyclic voltammetry of compound 1 in dichloromethane (0.1 M  $[nBu_4N][PF_6]$ ).



Figure S12. Thin layer cyclic voltammetry of compound 2 in dichloromethane (0.1 M  $[nBu_4N][PF_6]$ ).

#### **Theoretical studies**

DFT calculations were carried out with the program package Gaussian 16 (Rev. B.01).<sup>9</sup> The geometries were optimized without symmetry constraints using the (U)M062X functional<sup>10</sup> in combination with 6-31G+(d) and 6-31G++(d) basis set<sup>11</sup> supplemented by diffuse functions.<sup>12</sup> Calculations for dianions  $1 \cdot K_2$  and  $2 \cdot K_2$  were carried out using the (U)M062X functional and the 6-31G++(d) basis set in combination with Truhlar and co-workers' SMD variation of PCM.<sup>13</sup> The HOMOs and LUMOs in the unrestricted (UM062X) method were allowed to mix in order to destroy  $\alpha$ - $\beta$  and spatial symmetries. In a different approach, the stability of DFT

wavefunction was tested with stable=opt, which led to the same unrestricted wavefunctions. Gausview 6.0 was used to plot orbital surfaces. The lowest-energy vertical transitions were calculated by TD-DFT using the same level of theory and were further analyzed with the Multiwfn software.<sup>14</sup>

| - uou         | orec.             |      |                                              |          |                                                                                                                                      |                 |                     |
|---------------|-------------------|------|----------------------------------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------------------|
|               | State             |      | Vertical Transition<br>Energy <sup>[a]</sup> |          | MOs (%) <sup>[b]</sup>                                                                                                               | $\Lambda^{[c]}$ | State<br>Assignment |
|               |                   | [eV] | [nm]                                         | Suchgury |                                                                                                                                      |                 | rissignment         |
| $1 \cdot K_1$ | FC-D <sub>1</sub> | 1.11 | 1117 (1104)                                  | 0.1380   | SOMO $\rightarrow$ LUMO (33)<br>SOMO $\rightarrow$ LUMO+1 (25)<br>SOMO $\rightarrow$ LUMO+2 (24)                                     | 0.568           | LE                  |
|               | FC-D <sub>2</sub> | 1.38 | 917 (990)                                    | 0.3194   | $SOMO \rightarrow LUMO(54)$                                                                                                          | 0.494           | LE                  |
|               | FC-D <sub>1</sub> | 1.05 | 1184 (1176)                                  | 0.0071   | SOMO $\rightarrow$ LUMO (65)<br>SOMO $\rightarrow$ LUMO+4 (17)                                                                       | 0.538           | LE                  |
| 2·K1          | FC-D <sub>2</sub> | 1.27 | 977 (1030)                                   | 0.2932   | SOMO $\rightarrow$ LUMO+1 (40)<br>SOMO $\rightarrow$ LUMO+2 (18)<br>SOMO $\rightarrow$ LUMO+4 (16)<br>SOMO $\rightarrow$ LUMO+3 (16) | 0.599           | LE                  |

**Table S3.** Calculated lowest energy transitions for  $1 \cdot K_1$ , and  $2 \cdot K_1$ . LE = local excited state; D = doublet.

<sup>[a]</sup> Experimental values are given in brackets. <sup>[b]</sup> Major contributions are shown (>10%) <sup>[c]</sup> Tozer's Lambda index: *J. Chem. Phys.* **2008**, *128*, 044118



**Figure S13.** Frontier molecular orbitals (SOMO and LUMO) of  $1 \cdot K_1$ , and  $2 \cdot K_1$  (as  $1^{1-}$  and  $2^{1-}$ ). H-atoms are omitted for clarity. Isovalue:  $\pm 0.03 \ [e \ a_0^{-3}]^{\frac{1}{2}}$ .



**Figure S14.** Frontier molecular orbitals of  $1 \cdot K_2$  (as  $1^{2-}$ : singlet (open-shell), SMD=Et<sub>2</sub>O). Hatoms are omitted for clarity. Isovalue:  $\pm 0.02 \ [e \ a_0^{-3}]^{\frac{1}{2}}$ .



**Figure S15.** Frontier molecular orbitals of  $1 \cdot K_2$  (as  $1^2$ : singlet (open-shell), gas phase). Hatoms are omitted for clarity. Isovalue:  $\pm 0.02 \ [e \ a_0^{-3}]^{\frac{1}{2}}$ .  $\Delta E_{\alpha\beta} = 0.413 \ eV$  (39.85 kJ/mol).



**Figure S16.** Frontier molecular orbitals of  $1 \cdot K_2$  (as  $1^{2-}$ : triplet, SMD=Et<sub>2</sub>O). H-atoms are omitted for clarity. Isovalue:  $\pm 0.02 \ [e \ a_0^{-3}]^{\frac{1}{2}}$ .



**Figure S17.** Frontier molecular orbitals of  $1 \cdot K_2$  (as  $1^2$ : triplet, gas phase). H-atoms are omitted for clarity. Isovalue:  $\pm 0.02 \ [e \ a_0^{-3}]^{\frac{1}{2}}$ .



**Figure S18.** Frontier molecular orbitals of  $2 \cdot K_2$  (as  $2^2$ : singlet (open-shell), SMD=Et<sub>2</sub>O). Hatoms are omitted for clarity. Isovalue:  $\pm 0.02 \ [e \ a_0^{-3}]^{\frac{1}{2}}$ .



**Figure S19.** Frontier molecular orbitals of  $2 \cdot K_2$  (as  $2^2$ : singlet (open-shell), gas phase). Hatoms are omitted for clarity. Isovalue:  $\pm 0.02 \ [e \ a_0^{-3}]^{\frac{1}{2}}$ .  $\Delta E_{\alpha\beta} = 0.393 \ eV$  (37.92 kJ/mol).



**Figure S20.** Frontier molecular orbitals of  $2 \cdot K_2$  (as  $2^2$ : triplet, SMD=Et<sub>2</sub>O). H-atoms are omitted for clarity. Isovalue:  $\pm 0.02 \ [e \ a_0^{-3}]^{\frac{1}{2}}$ .



**Figure S21.** Frontier molecular orbitals of  $2 \cdot K_2$  (as  $2^{2-}$ : triplet, gas phase). H-atoms are omitted for clarity. Isovalue:  $\pm 0.02 \ [e \ a_0^{-3}]^{\frac{1}{2}}$ .

**Table S4.** Comparison between experimental and calculated geometric parameters of **1** and corresponding anion and dianion.



| Compound                             | 1 <sup>a</sup> | $1 \cdot K_1^a$ | $1^{2} \cdot (cs)^{b}$ | 1 <sup>2</sup> ·(os) <sup>c</sup> | 1 <sup>2-</sup> (triplet) <sup>d</sup> |
|--------------------------------------|----------------|-----------------|------------------------|-----------------------------------|----------------------------------------|
| C3-C15                               | 3.009(3)       | 3.037(3)        | 3.048                  | 3.052                             | 3.056                                  |
| C15-C16                              | 1.367(3)       | 1.377(3)        | 1.401                  | 1.409                             | 1.409                                  |
| C13-C14                              | 1.347(2)       | 1.359(3)        | 1.401                  | 1.398                             | 1.389                                  |
| C9–C10                               | 1.354(2)       | 1.356(3)        | 1.353                  | 1.355                             | 1.356                                  |
| C2–C3                                | 1.366(2)       | 1.368(3)        | 1.364                  | 1.377                             | 1.385                                  |
| $B-C_{Hel}$                          | 1.557(3)       | 1.533(3)        | 1.497                  | 1.544                             | 1.576                                  |
| B–C <sub>Mes</sub>                   | 1.575(3)       | 1.598(3)        | 1.605                  | 1.593                             | 1.583                                  |
| B-C <sub>Mes</sub>                   | 1.575(3)       | 1.601(3)        | 1.604                  | 1.592                             | 1.584                                  |
| $N-C_{Hel}$                          | 1.428(2)       | 1.447(2)        | 1.434                  | 1.438                             | 1.437                                  |
| N–C <sub>Mes</sub>                   | 1.405(2)       | 1.434(3)        | 1.405                  | 1.406                             | 1.406                                  |
| N–C <sub>Mes</sub>                   | 1.430(2)       | 1.398(3)        | 1.398                  | 1.398                             | 1.397                                  |
| $\angle P1_{Hel}$ -BC <sub>3</sub>   | 24.30(6)       | 4.95(9)         | 12.09                  | 19.32                             | 29.07                                  |
| ∠PMes1-BC <sub>3</sub>               | 51.41(6)       | 60.86(8)        | 52.97                  | 49.78                             | 46.15                                  |
| ∠PMes2-BC <sub>3</sub>               | 54.99(6)       | 63.78(8)        | 50.71                  | 48.26                             | 45.32                                  |
| $\angle P4_{Hel}$ -NC <sub>3</sub>   | 66.42(6)       | 77.18(8)        | 67.88                  | 67.10                             | 68.46                                  |
| $\angle PTol1-NC_3$                  | 7.99(7)        | 14.90(9)        | 19.49                  | 18.26                             | 18.86                                  |
| $\angle PTol2-NC_3$                  | 58.04(6)       | 57.82(9)        | 38.36                  | 39.62                             | 39.01                                  |
| $\angle P1_{Hel}$ -P4 <sub>Hel</sub> | 29.88(5)       | 32.04(7)        | 29.31                  | 28.53                             | 27.60                                  |
|                                      | 121.36(16)     | 120.48(16)      | 121.67                 | 120.83                            | 119.84                                 |
| $\angle$ C–B–C                       | 119.65(16)     | 119.51(18)      | 121.24                 | 120.50                            | 119.65                                 |
|                                      | 118.96(15)     | 119.97(18)      | 117.08                 | 118.67                            | 120.50                                 |
|                                      | 122.69(14)     | 121.91(16)      | 119.82                 | 120.16                            | 120.15                                 |
| $\angle$ C–N–C                       | 121.76(14)     | 119.28(16)      | 122.77                 | 122.59                            | 122.54                                 |
|                                      | 114.95(14)     | 114.32(16)      | 117.30                 | 117.17                            | 117.29                                 |
| Sum ∠ C–B–C                          | 359.97(16)     | 359.96(18)      | 359.99                 | 360.00                            | 359.99                                 |
| Sum ∠ C–N–C                          | 359.40(14)     | 355.51(16)      | 359.89                 | 359.92                            | 359.98                                 |

cs = closed-shell, os = open-shell. <sup>a</sup> Experimental values. <sup>b</sup>M062X/6-31G++(d)/gasphase; <S<sup>2</sup>> = 0.0000.<sup>c</sup> UM062X/6-31G++(d)/gasphase guess=mix; <S<sup>2</sup>> = 0.8097. <sup>d</sup> UM062X/6-31G++(d)/gasphase triplet;<S<sup>2</sup>> = 2.0203.

**Table S5.** Comparison between experimental and calculated geometric parameters of **2** and corresponding anion and dianion.



| Compound                                                  | 2ª         | $2 \cdot K_1 / 2 \cdot K_2^{a,b}$ | $2^2 \cdot (cs)^c$ | $2^2 \cdot (os)^d$ | 2 <sup>2-</sup> (triplet) <sup>e</sup> |
|-----------------------------------------------------------|------------|-----------------------------------|--------------------|--------------------|----------------------------------------|
| C3–C19                                                    | 2.8629(18) | 2.949(5)                          | 2.876              | 2.896              | 2.939                                  |
| C2–C3                                                     | 1.367(3)   | 1.360(4)                          | 1.362              | 1.370              | 1.373                                  |
| C9-C10                                                    | 1.351(3)   | 1.353(4)                          | 1.356              | 1.362              | 1.370                                  |
| C7-C11                                                    | 1.443(2)   | 1.474(4)                          | 1.471              | 1.470              | 1.433                                  |
| C13-C14                                                   | 1.356(3)   | 1.362(6)                          | 1.405              | 1.397              | 1.362                                  |
| C17-C18                                                   | 1.349(2)   | 1.336(6)                          | 1.361              | 1.359              | 1.400                                  |
| C19-C20                                                   | 1.367(2)   | 1.368(6)                          | 1.372              | 1.374              | 1.401                                  |
| B–C <sub>Hel</sub>                                        | 1.555(3)   | 1.520(4)                          | 1.496              | 1.537              | 1.553                                  |
| B-C <sub>Mes</sub>                                        | 1.585(2)   | 1.597(4)                          | 1.605              | 1.595              | 1.591                                  |
| B-C <sub>Mes</sub>                                        | 1.579(2)   | 1.605(4)                          | 1.606              | 1.597              | 1.595                                  |
| N–C <sub>Hel</sub>                                        | 1.411(2)   | 1.420(4)                          | 1.433              | 1.433              | 1.438                                  |
| N–C <sub>Mes</sub>                                        | 1.432(2)   | 1.436(4)                          | 1.399              | 1.398              | 1.398                                  |
| N–C <sub>Mes</sub>                                        | 1.412(2)   | 1.419(4)                          | 1.411              | 1.410              | 1.409                                  |
| ∠P1 <sub>Hel</sub> -BC <sub>3</sub>                       | 12.80(5)   | 12.53(12)                         | 12.27              | 16.87              | 19.42                                  |
| ∠PMes1-BC <sub>3</sub>                                    | 64.58(5)   | 60.28(11)                         | 53.86              | 51.79              | 51.40                                  |
| ∠PMes2-BC <sub>3</sub>                                    | 62.89(5)   | 57.19(11)                         | 50.34              | 47.76              | 46.67                                  |
| $\angle P5_{Hel}$ -NC <sub>3</sub>                        | 29.24(5)   | 32.19(13)                         | 49.84              | 49.92              | 51.64                                  |
| PTol1-NC <sub>3</sub>                                     | 29.60(6)   | 27.38(13)                         | 28.71              | 29.96              | 29.68                                  |
| PTol2-NC <sub>3</sub>                                     | 53.35(7)   | 65.44(12)                         | 32.63              | 30.72              | 31.11                                  |
| $\angle P1_{Hel}$ -P5 <sub>Hel</sub>                      | 45.09(4)   | 39.74(10)                         | 42.53              | 44.50              | 43.41                                  |
|                                                           | 121.33(11) | 120.4(2)                          | 122.51             | 121.89             | 122.32                                 |
| ∠C–B–C                                                    | 118.21(12) | 119.3(2)                          | 120.96             | 120.22             | 119.60                                 |
|                                                           | 120.44(12) | 120.2(2)                          | 116.51             | 117.87             | 118.05                                 |
|                                                           | 119.61(11) | 117.2(2)                          | 122.20             | 122.24             | 122.59                                 |
| ∠C–N–C                                                    | 122.63(11) | 122.4(2)                          | 119.55             | 119.69             | 119.35                                 |
|                                                           | 117.74(11) | 115.9(2)                          | 118.10             | 118.02             | 118.01                                 |
| $\overline{\text{Sum} \angle \text{C}-\text{B}-\text{C}}$ | 359.98(12) | 359.9(2)                          | 359.98             | 359.98             | 359.97                                 |
| Sum∠C–N–C                                                 | 359.98(11) | 355.5(2)                          | 359.85             | 359.95             | 359.95                                 |

cs = closed shell, os = open shell. <sup>a</sup> Experimental values. <sup>b</sup> The B(Mes)<sub>2</sub> group is disordered. Hence, values are given for both parts. <sup>c</sup> M062X/6-31G++(d)/gasphase; <S<sup>2</sup>> = 0.0000. <sup>d</sup> UM062X/6-31G++(d)/gasphase guess=mix; <S<sup>2</sup>> = 0.8048. <sup>e</sup> UM062X/6-31G++(d)/gasphase triplet; <S<sup>2</sup>> = 2.0340.

|                         |                                |               | <s<sup>2&gt;</s<sup> | E (eV)        | $\Delta E_{ST}$ (eV) |
|-------------------------|--------------------------------|---------------|----------------------|---------------|----------------------|
|                         | M062X/6-31G++(d)/<br>gasphase  | -             | 0.0000               | -54746.062393 |                      |
| 12-                     | UM062X/6-<br>31G++(d)/gasphase | guess=mix     | 0.8097               | -54746.169326 |                      |
| 12-                     | UM062X/6-<br>31G++(d)/gasphase | triplet (sp)  | 2.0183               | -54746.013837 | 0.16                 |
|                         | UM062X/6-<br>31G++(d)/gasphase | triplet (opt) | 2.0203               | -54746.044407 | 0.13                 |
|                         | M062X/6-31G++(d)/<br>gasphase  | -             | 0.0000               | -58925.377397 |                      |
| <b>2</b> <sup>2</sup> - | UM062X/6-<br>31G++(d)/gasphase | guess=mix     | 0.8048               | -58925.463827 |                      |
| <u> </u>                | UM062X/6-<br>31G++(d)/gasphase | triplet (sp)  | 2.0223               | -58925.296766 | 0.17                 |
|                         | UM062X/6-<br>31G++(d)/gasphase | triplet (opt) | 2.0340               | -58925.424384 | 0.04                 |

**Table S6.** Expectations values, energies and singlet-triplet gaps of the lowest states for the dianions  $1 \cdot K_2$  and  $2 \cdot K_2$  (as  $1^{2-}$  and  $2^{2-}$ ) in gas phase.

Table S7. Expectations values, energies and singlet-triplet gaps of the lowest states for the dianions  $1 \cdot K_2$  and  $2 \cdot K_2$  (as  $1^{2-}$  and  $2^{2-}$ ) in Et<sub>2</sub>O.

|                         |                                             |               | <s<sup>2&gt;</s<sup> | E (eV)        | $\Delta E_{ST}$ (eV) |
|-------------------------|---------------------------------------------|---------------|----------------------|---------------|----------------------|
|                         | M062X/6-<br>31G++(d)/SMD=Et <sub>2</sub> O  | -             |                      | -54751.039923 | 0.02                 |
| 1 <sup>2-</sup>         | UM062X/6-<br>31G++(d)/SMD=Et <sub>2</sub> O | guess=mix     | 0.3188               | -54751.054994 |                      |
|                         | UM062X/6-<br>31G++(d)/SMD=Et <sub>2</sub> O | triplet (sp)  | 2.0193               | -54750.567101 | 0.49                 |
|                         | UM062X/6-<br>31G++(d)/SMD=Et <sub>2</sub> O | triplet (opt) | 2.0261               | -54750.885852 | 0.17                 |
|                         | M062X/6-<br>31G++(d)/SMD=Et <sub>2</sub> O  | -             |                      | -58930.416419 | 0.05                 |
| <b>2</b> <sup>2</sup> - | UM062X/6-<br>31G++(d)/SMD=Et <sub>2</sub> O | guess=mix     | 0.3950               | -58930.461623 |                      |
| 2-                      | UM062X/6-<br>31G++(d)/SMD=Et <sub>2</sub> O | triplet (sp)  | 2.0255               | -58930.063597 | 0.40                 |
|                         | UM062X/6-<br>31G++(d)/SMD=Et <sub>2</sub> O | triplet (opt) | 2.0355               | -58930.338979 | 0.12                 |

## References

- 1 X. Jia, J. Nitsch, L. Ji, Z. Wu, A. Friedrich, F. Kerner, M. Moos, C. Lambert, T. B. Marder, *Chem. Eur. J.* 2019, **25**, 10845-10857.
- 2 S. V. Rosokha, J. K. Kochi, J. Org. Chem. 2006, 71, 9357-9365.
- G. M. Sheldrick, Acta Crystallogr. 2015, A71, 3-8.
- 4 G. M. Sheldrick, *Acta Crystallogr.* 2008, **A64**, 112-122.
- 5 C. B. Hübschle, G. M. Sheldrick, B. Dittrich, J. Appl. Crystallogr. 2011, 44, 1281-1284.
- C. F. Macrae, I. J. Bruno, J. A. Chisholm, P. R. Edgington, P. McCabe, E. Pidcock, L. Rodriguez-Monge, R. Taylor, J. van de Streek, P. A. Wood, *J. Appl. Crystallogr.* 2008, 41, 466-470.
- K. Brandenburg, Diamond (version 4.4.0), Crystal and Molecular Structure Visualization, Crystal Impact H. Putz & K. Brandenburg GbR, Bonn (Germany), 2017.
   S. Stall, A. Schemister, L.M., Phys. 2006, 179, 4255.
- 8 S. Stoll, A. Schweiger, J. Magn. Reson. 2006, **178**, 42-55.
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, Williams, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, Wallingford, Gaussian, Inc., CT, 2016.
- 10 Y. Zhao, D. G. Truhlar, *Theor. Chem. Acc.* 2007, **120**, 215-241.
- (a) G. A. Petersson, A. Bennett, T. G. Tensfeldt, M. A. Al-Laham, W. A. Shirley, J. Mantzaris, J. Chem. Phys. 1988, 89, 2193; (b) G. A. Petersson, M. A. AlLaham, J. Chem. Phys. 1991, 94, 6081-6090.
- 12 T. Clark, J. Chandrasekhar, G. W. Spitznagel, P. V. R. Schleyer, J. Comput. Chem. 1983, 4, 294-301.
- 13 A. V. Marenich, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. B 2009, 113, 6378-6396.
- 14 T. Lu, F. Chen, J. Comput. Chem. 2012, **33**, 580-592.

## **XYZ-coordinates** (Å)

| 1-K1 (as 11- | , doublet, gasp | hase) E = -547 | 769.79 eV  | $1 \cdot K_2$ (as $1^{2} \cdot K_2$ | , closed-shell S | o, gasphase) E | = -54746.06 eV |
|--------------|-----------------|----------------|------------|-------------------------------------|------------------|----------------|----------------|
| С            | 10.75869857     | 5.44398662     | 4.87043424 | С                                   | 10.75749269      | 5.33510348     | 4.90500178     |
| Ν            | 10.84634652     | 6.12649012     | 3.64374277 | Ν                                   | 10.84300281      | 6.06599902     | 3.71133219     |
| В            | 2.63545678      | 12.76027543    | 3.73921543 | В                                   | 2.61265006       | 12.80243509    | 3.73374664     |
| С            | 9.50548223      | 5.10800167     | 5.40500743 | С                                   | 9.50409996       | 5.10409587     | 5.51021659     |
| Н            | 8.60571845      | 5.36487118     | 4.85446783 | Н                                   | 8.61458942       | 5.50874622     | 5.04160778     |
| С            | 8.74569329      | 10.53729558    | 5.18385862 | С                                   | 8.80650279       | 10.61264486    | 5.10258209     |
| С            | 9.41245985      | 4.47177886     | 6.63693391 | С                                   | 9.40553874       | 4.38158149     | 6.69427048     |
| н            | 8 42614024      | 4 23180856     | 7 02974610 | Н                                   | 8.41929555       | 4.23221434     | 7.13194859     |
| n<br>C       | 10 5 470 4 474  | 4.12504007     | 7.02974010 | С                                   | 10.53236502      | 3.84987487     | 7.33803402     |
| C            | 10.54/944/4     | 4.13504897     | 7.37994163 | С                                   | 11.77514668      | 4.10204119     | 6.74783465     |
| С            | 11.78982939     | 4.48040265     | 6.84359901 | Н                                   | 12.68008306      | 3.72940225     | 7.22792108     |
| Н            | 12.69541375     | 4.25297359     | 7.40291946 | С                                   | 11.89768058      | 4.83332628     | 5.56710595     |

| С       | 11.90283477 | 5.13088690   | 5.61807112 | Н | 12.88375365 | 5.03044705  | 5.16185974 |
|---------|-------------|--------------|------------|---|-------------|-------------|------------|
| Н       | 12.88288225 | 5.41020056   | 5.24290724 | С | 10.40599083 | 3.03457125  | 8.60431422 |
| С       | 10.42649004 | 3.42874041   | 8.70735546 | н | 11.35878261 | 2.98873833  | 9.14602276 |
| Н       | 11.39539729 | 3.37161743   | 9.21284864 | н | 10.09902182 | 1.99641488  | 8.40430941 |
| Н       | 10.05483796 | 2.40477058   | 8.58275882 | н | 9.65799005  | 3.45948980  | 9.28583488 |
| Н       | 9.73055369  | 3.95047863   | 9.37313399 | С | 11.98745852 | 6.03334254  | 2.88147772 |
| С       | 11.96535177 | 6.01316829   | 2.79410159 | С | 12.64890092 | 4.83044342  | 2.56105466 |
| С       | 12.66010609 | 4.80738913   | 2.64280292 | Н | 12.29004583 | 3.89554758  | 2.97968740 |
| н       | 12.33908775 | 3.93191439   | 3,19980498 | С | 8.23712570  | 8.82743747  | 3.47099680 |
| C       | 8 22868648  | 8 83087024   | 3 49534663 | С | 13.75103304 | 4.83454896  | 1.70181425 |
| C       | 13 75180955 | 4 72650082   | 1 78064897 | Н | 14.24021602 | 3.88891198  | 1.46772785 |
| н       | 14 27458915 | 3 7772050002 | 1.67961128 | С | 8.55438085  | 11.90931343 | 5.66684644 |
| II<br>C | 9 40270140  | 11 00062600  | 5 70260442 | Н | 9.33539789  | 12.35484030 | 6.28503311 |
| C<br>H  | 8.492/9149  | 11.80803088  | 5.79209445 | С | 14.22560459 | 6.01142598  | 1.11918658 |
| H       | 9.250/28/9  | 12.21949147  | 6.45739100 | С | 13.54700870 | 7.20729322  | 1.42970457 |
| С       | 14.17581975 | 5.82532170   | 1.03189202 | Н | 13.88699968 | 8.14515718  | 0.99274217 |
| С       | 13.46434205 | 7.02201202   | 1.17938172 | С | 12.45585066 | 7.22223454  | 2.29090852 |
| Н       | 13.76862506 | 7.89821958   | 0.60969880 | Н | 11.94793819 | 8.15221836  | 2.52572653 |
| С       | 12.38365442 | 7.12409094   | 2.04546085 | С | 15.41401625 | 6.01146217  | 0.18681464 |
| Н       | 11.84599510 | 8.06263077   | 2.15012243 | Н | 15.81076287 | 4.99870568  | 0.04775461 |
| С       | 15.35358379 | 5.73708896   | 0.09322734 | Н | 16.23545328 | 6.63702551  | 0.56624063 |
| Н       | 15.77645420 | 4.72792560   | 0.08564872 | С | 9.72660979  | 6.86176847  | 3.25272658 |
| Н       | 16.14945462 | 6.43130209   | 0.38640436 | С | 9.02179983  | 6.43545306  | 2.12747355 |
| С       | 9.73750243  | 6.91523050   | 3.19733365 | Н | 9.31258373  | 5.50252961  | 1.64790737 |
| С       | 9.07015181  | 6.54354365   | 2.04783412 | С | 7.98898104  | 7.21760101  | 1.61823203 |
| Н       | 9.38785269  | 5.64901375   | 1.51759917 | Н | 7.46349004  | 6.91743537  | 0.71431369 |
| С       | 8.03601855  | 7.35350071   | 1.55454174 | С | 7.61424682  | 8.39302364  | 2.28860975 |
| Н       | 7.55762284  | 7.10910057   | 0.61052750 | Н | 6.83108534  | 9.00329175  | 1.85711935 |
| С       | 7.62691109  | 8.46535095   | 2.26758054 | С | 9.41430631  | 8.09570720  | 3.91559178 |
| Н       | 6.85889133  | 9.10302832   | 1.84795659 | С | 9.96551887  | 9.90665632  | 5.43396908 |
| C       | 9 38054004  | 8 09279091   | 3 91308463 | Н | 10.66157952 | 10.36401268 | 6.13860092 |
| C       | 9.91623040  | 9 81171991   | 5 51963838 | С | 10.24339387 | 8.63845505  | 4.92187472 |
| с<br>u  | 10 59565159 | 10 24006674  | 6 26227016 | Н | 11.13545627 | 8.10223540  | 5.22922591 |
| II<br>C | 10.2017/5/1 | 0.50121070   | 4.00000241 | С | 6.30743307  | 11.96571293 | 4.70645667 |
| C<br>H  | 10.20176561 | 8.591210/9   | 4.90890241 | С | 7.38710913  | 12.56894240 | 5.45113438 |
| H       | 11.08051200 | 8.03229293   | 5.2/381493 | Н | 7.22096959  | 13.55777751 | 5.87911987 |
| С       | 6.30211368  | 11.91560/04  | 4.73737964 | С | 3.94324952  | 12.08491498 | 3.88849890 |
| С       | 7.34767458  | 12.49237892  | 5.53856293 | С | 5.09173974  | 12.62308332 | 4.55820601 |
| Н       | 7.17268079  | 13.47087718  | 5.98180756 | Н | 5.02104914  | 13.62999189 | 4.97136399 |
| С       | 3.97254491  | 12.03343778  | 3.89670511 | С | 4.16775585  | 10.73716672 | 3.42160856 |
| С       | 5.08315712  | 12.58141294  | 4.57800415 | Н | 3.31867055  | 10.19810222 | 3.00177721 |
| Н       | 4.99124763  | 13.57658081  | 5.01494648 | С | 5.36112995  | 10.06843078 | 3.51825983 |
| С       | 4.17743816  | 10.69347864  | 3.42363010 | Н | 5.39367065  | 9.03099931  | 3.20243067 |
| Н       | 3.32752222  | 10.17062390  | 2.98470488 | С | 7.81269480  | 10.03169180 | 4.21599745 |
| С       | 5.36687084  | 10.02341827  | 3.53820643 | С | 6.53825633  | 10.64980480 | 4.11901384 |
| Н       | 5.40760643  | 8.98487162   | 3.22792232 | С | 1.87447736  | 15.34072811 | 3.96824328 |
| С       | 7.80102501  | 9.99669297   | 4.26667611 | С | 2.29250066  | 14.12187908 | 4.58917277 |
| С       | 6.52040829  | 10.62317041  | 4.14483144 | С | 2.09243677  | 15.32249796 | 6.73524071 |
| -       |             |              |            | Н | 2.16885990  | 15.29965152 | 7.82396892 |

| C      | 1.000200610 | 15 06 4722000 | 4 001 1 5 2 0 2 |   |             |             |             |
|--------|-------------|---------------|-----------------|---|-------------|-------------|-------------|
| C      | 1.89238610  | 15.264/3228   | 4.00115283      | С | 1.69199708  | 16.50550905 | 6.11292953  |
| С      | 2.31142818  | 14.05572086   | 4.61482110      | С | 1.59110196  | 16.48625118 | 4.71716673  |
| С      | 2.03466229  | 15.18078545   | 6.77065288      | Н | 1.29636015  | 17.39870553 | 4.19462290  |
| Н      | 2.07652359  | 15.13218153   | 7.85953365      | С | 2.77297618  | 12.93202943 | 6.81825406  |
| С      | 1.63878867  | 16.36746538   | 6.16149572      | Н | 3.85267305  | 12.74222345 | 6.78494040  |
| С      | 1.57320297  | 16.38659964   | 4.76673732      | Н | 2.30759599  | 12.02801779 | 6.41072043  |
| Н      | 1.26336741  | 17.30302843   | 4.26240726      | Н | 2.47732104  | 13.04426226 | 7.87025796  |
| С      | 2.76433687  | 12.80333993   | 6.80687892      | С | 2.38685440  | 14.15605461 | 6.01554255  |
| Н      | 3.85018772  | 12.74644686   | 6.95091483      | С | -0.29963663 | 12.26473396 | 4.52913602  |
| Н      | 2.48083912  | 11.88598899   | 6.28363862      | Н | -0.25084547 | 13.31934966 | 4.82035408  |
| Н      | 2.29361916  | 12.80784174   | 7.79648456      | Н | 0.34706035  | 11.72428396 | 5.23076598  |
| С      | 2.37201404  | 14.04097904   | 6.02909759      | Н | -1.33149408 | 11.91746874 | 4.67525634  |
| С      | -0.24724238 | 12.25867736   | 4.51381398      | С | -1.54617306 | 10.76013365 | -0.09413667 |
| н      | -0 27144345 | 13 32480299   | 4 76734826      | Н | -2.52854569 | 11.22437074 | 0.07030409  |
| н      | 0.44050935  | 11 78402971   | 5 22155429      | Н | -1.69072993 | 9.67295910  | 0.01128855  |
| п      | 1 24838022  | 11.94472090   | 1 67662994      | Н | -1.26313335 | 10.94297095 | -1.13874699 |
| С      | -1.24838022 | 10.02715042   | 4.07003884      | С | 3.17652715  | 12.22525082 | 0.74240941  |
| C<br>H | -1.49842204 | 10.93715942   | -0.16024052     | Н | 3.63839638  | 13.12312894 | 1.16564221  |
| н      | -2.4299/505 | 11.50323308   | -0.04/56688     | Н | 3.11854554  | 12.33053196 | -0.34973814 |
| Н      | -1.74009415 | 9.87787659    | -0.00809653     | Н | 3.87188263  | 11.40689525 | 0.96507902  |
| Н      | -1.15460760 | 11.05315783   | -1.19319644     | С | 1.80170229  | 11.98518867 | 1.33210978  |
| С      | 3.24616463  | 12.25642000   | 0.77233854      | С | 0.81232325  | 11.52016416 | 0.45486408  |
| Н      | 3.76506233  | 13.06774831   | 1.29002351      | Н | 1.07996558  | 11.33902821 | -0.58793092 |
| Н      | 3.19506827  | 12.49308050   | -0.29643348     | С | -0.50434076 | 11.29741758 | 0.85984246  |
| Н      | 3.87857604  | 11.36820736   | 0.88944013      | С | -0.81148809 | 11.57306728 | 2.19674400  |
| С      | 1.85724489  | 12.02793370   | 1.32921910      | Н | -1.83079470 | 11.40653885 | 2.55098907  |
| С      | 0.86813291  | 11.62045224   | 0.42464777      | С | 0.14836091  | 12.04016605 | 3.09913104  |
| Н      | 1.13854889  | 11.47686645   | -0.62220929     | С | 1.50707551  | 12.25872086 | 2.70623194  |
| С      | -0.44880671 | 11.40489491   | 0.81802317      | С | 1.76829253  | 15.45122165 | 2.46081542  |
| С      | -0.76483601 | 11.62290424   | 2.16050999      | Н | 1.56890528  | 16.48761841 | 2.15607654  |
| н      | -1.79047156 | 11,46447587   | 2,49672967      | Н | 0.97302152  | 14.81742092 | 2.05383905  |
| C      | 0 19522163  | 12 03840453   | 3 08384632      | Н | 2.69676236  | 15.12298173 | 1.97809715  |
| C      | 1 54472598  | 12.03040433   | 2 60376580      | С | 1.35465760  | 17.74554100 | 6.90876644  |
| c      | 1.34472398  | 15 27 479014  | 2.09370380      | Н | 1.79255581  | 18.64964070 | 6.46232458  |
| C<br>H | 1.77961402  | 15.3/4/8914   | 2.49052848      | Н | 1.72774910  | 17.67179581 | 7.93794327  |
| н      | 1.65242383  | 16.41960368   | 2.19270040      | Н | 0.26890232  | 17.92250972 | 6.97172986  |
| Н      | 0.92789640  | 14.79980705   | 2.11500049      | Н | 15.15654734 | 6.40338571  | -0.80782592 |
| Н      | 2.67237394  | 14.97870203   | 2.00098169      |   |             |             |             |
| С      | 1.30598700  | 17.59731347   | 6.97036241      |   |             |             |             |
| Н      | 2.09908450  | 18.35128744   | 6.89257537      |   |             |             |             |
| Н      | 1.18546074  | 17.35139973   | 8.03037974      |   |             |             |             |
| Н      | 0.37727290  | 18.06423932   | 6.62330776      |   |             |             |             |

| $1 \cdot K_2$ | as 12-, | open-shell | S <sub>0</sub> , | gasphase) | E = | -54746.19 eV |  |
|---------------|---------|------------|------------------|-----------|-----|--------------|--|
|---------------|---------|------------|------------------|-----------|-----|--------------|--|

15.06412574 5.98713881 -0.93363623

| С | 10.7412713 | 5.3727102  | 4.92213804 |
|---|------------|------------|------------|
| Ν | 10.8033931 | 6.00308297 | 3.6763458  |

Н

## $1 \cdot K_2$ (as $1^{2}$ , triplet, gasphase) E = -54746.04 eV

| С | 10.7989043 | 5.39882224 | 5.01206731 |
|---|------------|------------|------------|
| Ν | 10.7862813 | 5.98050589 | 3.74159578 |

| В | 2.63540268 | 12.7684059 | 3.70355465 | В | 2.59524682 | 12.8008744 | 3.68779781  |
|---|------------|------------|------------|---|------------|------------|-------------|
| С | 9.4926202  | 5.17363625 | 5.54259637 | С | 9.58588605 | 5.18993335 | 5.69697473  |
| Н | 8.59751535 | 5.52226114 | 5.03748492 | Н | 8.65927452 | 5.48805772 | 5.21684869  |
| С | 8.82220962 | 10.5521007 | 5.01626078 | С | 8.79118036 | 10.542797  | 4.94724213  |
| С | 9.40948556 | 4.56589084 | 6.787466   | С | 9.57711812 | 4.63581798 | 6.96922955  |
| Н | 8.42735481 | 4.43633357 | 7.24007495 | Н | 8.62035808 | 4.49540601 | 7.47049169  |
| С | 10.546284  | 4.13198256 | 7.47919417 | С | 10.7564617 | 4.26678562 | 7.62674974  |
| С | 11.7820358 | 4.35798536 | 6.87298978 | С | 11.9563981 | 4.50096381 | 6.9549461   |
| Н | 12.6937489 | 4.06203657 | 7.39099265 | Н | 12.8988701 | 4.25406067 | 7.44272264  |
| С | 11.8892468 | 4.97255266 | 5.62687906 | С | 11.9890709 | 5.0624442  | 5.68025733  |
| Н | 12.8720753 | 5.16217654 | 5.20778533 | Н | 12.9458315 | 5.25979141 | 5.20758517  |
| С | 10.4311962 | 3.46557813 | 8.82822536 | С | 10.7222002 | 3.66136459 | 9.00861972  |
| Н | 11.4204916 | 3.29074269 | 9.26486883 | Н | 11.7358265 | 3.5028078  | 9.39238774  |
| Н | 9.92262509 | 2.4956042  | 8.75924229 | Н | 10.2096374 | 2.69116765 | 9.01336506  |
| Н | 9.86011026 | 4.08252627 | 9.53190685 | Н | 10.195016  | 4.31066038 | 9.7176333   |
| С | 11.9494293 | 5.96224499 | 2.86350274 | С | 11.8859592 | 5.91384871 | 2.86838331  |
| С | 12.6853549 | 4.78413854 | 2.66745517 | С | 12.6380631 | 4.7413357  | 2.69713083  |
| Н | 12.3801831 | 3.8753167  | 3.17844455 | Н | 12.3865936 | 3.85838235 | 3.27789287  |
| С | 8.24004035 | 8.77020203 | 3.39953537 | С | 8.15117641 | 8.6804596  | 3.45417997  |
| С | 13.7910941 | 4.77233817 | 1.8161391  | С | 13.6906377 | 4.70111082 | 1.78230133  |
| Н | 14.3424316 | 3.84274907 | 1.6788071  | Н | 14.2546842 | 3.77616908 | 1.66636712  |
| С | 8.5836425  | 11.863088  | 5.56088447 | С | 8.58634035 | 11.8846873 | 5.418866    |
| Н | 9.36629697 | 12.3047539 | 6.17838627 | Н | 9.3876761  | 12.3449261 | 5.99711337  |
| С | 14.1903738 | 5.91317914 | 1.12185104 | С | 14.0212766 | 5.80611182 | 0.99929843  |
| С | 13.4353793 | 7.08188821 | 1.30713666 | С | 13.2504479 | 6.96787258 | 1.16137241  |
| Н | 13.7182429 | 7.98990197 | 0.77650586 | Н | 13.479004  | 7.84806273 | 0.56210763  |
| С | 12.3391524 | 7.11405356 | 2.15735193 | С | 12.2053577 | 7.02795198 | 2.07220905  |
| Н | 11.7589365 | 8.02328755 | 2.29005223 | Н | 11.609064  | 7.92969086 | 2.18165534  |
| С | 15.3776552 | 5.9007602  | 0.19089466 | С | 15.1488848 | 5.76097549 | -0.00201886 |
| Н | 15.8595796 | 4.91729742 | 0.18110745 | Н | 15.6682248 | 4.79733593 | 0.03349548  |
| Н | 16.1313793 | 6.63925711 | 0.49097685 | Н | 15.8893165 | 6.54713036 | 0.19090103  |
| С | 9.69472998 | 6.78974162 | 3.20896457 | С | 9.63322096 | 6.71147615 | 3.29417099  |
| С | 8.99690225 | 6.3605231  | 2.07967771 | С | 8.86754397 | 6.18728348 | 2.23847324  |
| Н | 9.28624039 | 5.42104901 | 1.61075647 | Н | 9.14398723 | 5.22466732 | 1.81196609  |
| С | 7.98084732 | 7.14864297 | 1.55770207 | С | 7.80214687 | 6.92213203 | 1.74962964  |
| Н | 7.45713579 | 6.84757154 | 0.65402961 | Н | 7.22225115 | 6.55062177 | 0.90743116  |
| С | 7.61499233 | 8.33833534 | 2.21858355 | С | 7.44822942 | 8.1491731  | 2.34489827  |
| Н | 6.8475472  | 8.95959483 | 1.77356127 | Н | 6.64890327 | 8.72562493 | 1.89849289  |
| С | 9.39690913 | 8.02931948 | 3.85952607 | С | 9.33974159 | 7.97735465 | 3.88265572  |
| С | 9.97712087 | 9.84580241 | 5.36539052 | С | 9.97174602 | 9.86402262 | 5.28536379  |
| Н | 10.6760434 | 10.304071  | 6.0644271  | Н | 10.6959836 | 10.3622592 | 5.92852856  |
| С | 10.2291918 | 8.56468578 | 4.86469631 | С | 10.2150451 | 8.57655094 | 4.82404232  |
| Н | 11.1092023 | 8.01172815 | 5.18278881 | Н | 11.1193655 | 8.04952707 | 5.11768874  |
| С | 6.35550152 | 11.9280501 | 4.57767662 | С | 6.35056853 | 11.929629  | 4.46634979  |
| С | 7.43265467 | 12.5363288 | 5.32032345 | С | 7.44869912 | 12.5697714 | 5.14706009  |
| Н | 7.27299248 | 13.5342509 | 5.7279145  | Н | 7.3128753  | 13.5940595 | 5.49124411  |

| С | 3.98969215  | 12.0372879 | 3.82156279  | C | 3.96022254  | 12.0231088 | 3.81830016  |
|---|-------------|------------|-------------|---|-------------|------------|-------------|
| С | 5.13155543  | 12.591727  | 4.44148735  | С | 5.12272915  | 12.6062443 | 4.33384383  |
| Н | 5.06328791  | 13.6017208 | 4.85265059  | Н | 5.07992136  | 13.6406194 | 4.68333349  |
| С | 4.18893595  | 10.6962817 | 3.36458864  | С | 4.10678997  | 10.6571928 | 3.46053111  |
| Н | 3.3309259   | 10.1641433 | 2.95013167  | Н | 3.22543363  | 10.1177012 | 3.1103493   |
| С | 5.38796379  | 10.0251432 | 3.44854359  | С | 5.30789096  | 9.97227885 | 3.54193233  |
| Н | 5.41933744  | 8.98774997 | 3.13416714  | Н | 5.31404773  | 8.91617393 | 3.29891807  |
| С | 7.84093519  | 9.97650523 | 4.13500027  | С | 7.79586008  | 9.91860694 | 4.12591556  |
| С | 6.56152695  | 10.6163643 | 4.02051999  | С | 6.50300984  | 10.5857495 | 4.00462029  |
| С | 1.78510333  | 15.2286803 | 4.10001522  | С | 1.73111435  | 15.2228639 | 4.23915041  |
| С | 2.30664619  | 14.017362  | 4.63657393  | С | 2.26661383  | 13.9814831 | 4.69214019  |
| С | 2.11755789  | 15.0732589 | 6.84876505  | С | 2.13217896  | 14.9104653 | 6.96747527  |
| Н | 2.22862257  | 14.992448  | 7.93204575  | Н | 2.2660022   | 14.7667743 | 8.04187638  |
| С | 1.62864728  | 16.2619138 | 6.30709265  | С | 1.63232251  | 16.1312337 | 6.50593947  |
| С | 1.46403821  | 16.3116562 | 4.92213504  | С | 1.43254576  | 16.2566251 | 5.13157242  |
| Н | 1.07872871  | 17.2261747 | 4.46639049  | Н | 1.0377554   | 17.1955123 | 4.7376849   |
| С | 2.91287035  | 12.7196662 | 6.7615151   | С | 2.90986424  | 12.5630579 | 6.72846221  |
| Н | 4.00041023  | 12.5928092 | 6.70924794  | Н | 3.98937489  | 12.4125886 | 6.61669474  |
| Н | 2.48937355  | 11.8250034 | 6.29156411  | Н | 2.43605809  | 11.7028267 | 6.24074499  |
| Н | 2.6197034   | 12.7453772 | 7.81810526  | Н | 2.66880801  | 12.5439793 | 7.7981873   |
| С | 2.45289716  | 13.9730527 | 6.05322474  | С | 2.4457038   | 13.8594286 | 6.10449968  |
| С | -0.28927579 | 12.3694172 | 4.42666718  | С | -0.38798029 | 12.5003948 | 4.20334121  |
| Н | -0.30590377 | 13.4356006 | 4.68475673  | Н | -0.39628867 | 13.5622745 | 4.48164016  |
| Н | 0.38994875  | 11.8914347 | 5.14140649  | Н | 0.22672184  | 11.994368  | 4.95709426  |
| Н | -1.29858803 | 11.9654024 | 4.57378859  | Н | -1.41573952 | 12.1221353 | 4.27054073  |
| С | -1.5056288  | 11.0693117 | -0.26347385 | С | -1.30688274 | 11.3033961 | -0.58282692 |
| Н | -2.48955745 | 11.494003  | -0.03085697 | Н | -2.33807725 | 11.5127177 | -0.27526928 |
| Н | -1.61545003 | 9.97612554 | -0.26792479 | Н | -1.24352199 | 10.2306985 | -0.81215066 |
| Н | -1.23940487 | 11.3731225 | -1.28271128 | Н | -1.11953106 | 11.8439748 | -1.51938252 |
| С | 3.25287397  | 12.2893988 | 0.73338938  | С | 3.40037708  | 12.3739005 | 0.76332616  |
| Н | 3.71990395  | 13.1663055 | 1.19492     | Н | 3.83003323  | 13.271854  | 1.22320962  |
| Н | 3.22598772  | 12.425968  | -0.35465101 | Н | 3.46120968  | 12.4687048 | -0.32753358 |
| Н | 3.91892131  | 11.4479657 | 0.95533916  | Н | 4.0432996   | 11.5424357 | 1.07183535  |
| С | 1.85770019  | 12.0699853 | 1.27330461  | С | 1.96581663  | 12.1798585 | 1.19883023  |
| С | 0.86965292  | 11.6933549 | 0.35776406  | С | 1.03532125  | 11.8454588 | 0.21445784  |
| Н | 1.1499007   | 11.5443325 | -0.68696598 | Н | 1.38255352  | 11.7042214 | -0.81132043 |
| С | -0.46311241 | 11.5214248 | 0.72981431  | С | -0.32762589 | 11.7062139 | 0.49206508  |
| С | -0.78775028 | 11.7598334 | 2.0663148   | С | -0.73483244 | 11.9391424 | 1.80493594  |
| Н | -1.82356277 | 11.6380921 | 2.39006483  | Н | -1.79338859 | 11.843317  | 2.05552202  |
| С | 0.17404816  | 12.1406262 | 3.00486784  | С | 0.16934718  | 12.2805638 | 2.81516038  |
| С | 1.54349553  | 12.2975395 | 2.64461775  | С | 1.56580822  | 12.4009919 | 2.55298582  |
| С | 1.56678197  | 15.3896621 | 2.61178934  | С | 1.4792726   | 15.4753616 | 2.76989075  |
| Н | 1.40546516  | 16.4442859 | 2.35611369  | Н | 1.31131303  | 16.5437802 | 2.58508848  |
| Н | 0.69949657  | 14.8156371 | 2.26244122  | Н | 0.60528168  | 14.9231891 | 2.40069844  |
| Н | 2.42867368  | 15.0171236 | 2.04693191  | Н | 2.32832931  | 15.1388351 | 2.16338229  |
| С | 1.31834065  | 17.4540259 | 7.17925264  | С | 1.34184113  | 17.2669753 | 7.45591932  |

| Н          | 2.19191123                   | 18.1100214                  | 7.29653023     | Н             | 0.68054371                               | 18.009042                  | 6.9934555                            |
|------------|------------------------------|-----------------------------|----------------|---------------|------------------------------------------|----------------------------|--------------------------------------|
| Н          | 1.01045529                   | 17.1409372                  | 8.18393153     | Н             | 2.25914034                               | 17.7896009                 | 7.76081415                           |
| Н          | 0.51066057                   | 18.0606912                  | 6.75263804     | Н             | 0.85591628                               | 16.9086638                 | 8.37225095                           |
| Н          | 15.0833041                   | 6.13861648                  | -0.83876873    | Н             | 14.7831275                               | 5.90513808                 | -1.02627812                          |
|            |                              |                             |                |               |                                          |                            |                                      |
| 1∙K₂<br>eV | (as 1 <sup>2-</sup> , closed | l-shell S <sub>0</sub> , SM | $D=Et_2O) E =$ | -54751.03 1·K | <sup>2</sup> (as 1 <sup>2-</sup> , open- | shell S <sub>0</sub> , SMD | =Et <sub>2</sub> O) E = -54751.05 eV |
| C C        | 10 6865109                   | 5 31356105                  | 1 82223622     | C             | 10.7412713                               | 5.3727102                  | 4.92213804                           |
| N          | 10.0005109                   | 6.01626615                  | 4.02223022     | N             | 10.8033931                               | 6.00308297                 | 3.6763458                            |
| N<br>D     | 2 (2011752                   | 0.01020013                  | 2.729(2075     | В             | 2.63540268                               | 12.7684059                 | 3.70355465                           |
| в          | 2.08041758                   | 12.7445885                  | 5./58029/5     | C             | 9.4926202                                | 5.17363625                 | 5.54259637                           |
| С<br>      | 9.41207255                   | 5.06158311                  | 5.36456/12     | Н             | 8.59751535                               | 5.52226114                 | 5.03748492                           |
| н          | 8.53678422                   | 5.42847083                  | 4.83812048     | C             | 8.82220962                               | 10.5521007                 | 5.01626078                           |
| С          | 8.84049201                   | 10.543308                   | 5.0892948      | C             | 9.40948556                               | 4.56589084                 | 6.787466                             |
| С          | 9.27626037                   | 4.38056598                  | 6.5661445      | Н             | 8.42735481                               | 4.43633357                 | 7.24007495                           |
| Н          | 8.27501669                   | 4.212353                    | 6.960056       | C             | 10.546284                                | 4.13198256                 | 7.47919417                           |
| С          | 10.3839333                   | 3.92070845                  | 7.28737483     | C             | 11.7820358                               | 4.35798536                 | 6.87298978                           |
| С          | 11.6447397                   | 4.19770023                  | 6.75897669     | Н             | 12.6937489                               | 4.06203657                 | 7.39099265                           |
| Н          | 12.5339783                   | 3.88477737                  | 7.30509454     | С             | 11.8892468                               | 4.97255266                 | 5.62687906                           |
| С          | 11.804096                    | 4.88610943                  | 5.55813968     | Н             | 12.8720753                               | 5.16217654                 | 5.20778533                           |
| Н          | 12.8033218                   | 5.11395365                  | 5.20143238     | С             | 10.4311962                               | 3.46557813                 | 8.82822536                           |
| С          | 10.2125158                   | 3.16922538                  | 8.58463068     | Н             | 11.4204916                               | 3.29074269                 | 9.26486883                           |
| Н          | 11.175711                    | 3.02827607                  | 9.08678375     | Н             | 9.92262509                               | 2.4956042                  | 8.75924229                           |
| Н          | 9.7743574                    | 2.1761193                   | 8.42278171     | Н             | 9.86011026                               | 4.08252627                 | 9.53190685                           |
| Н          | 9.55188213                   | 3.70782058                  | 9.27369418     | С             | 11.9494293                               | 5.96224499                 | 2.86350274                           |
| С          | 11.9795397                   | 6.02421662                  | 2.85290699     | С             | 12.6853549                               | 4.78413854                 | 2.66745517                           |
| С          | 12.737471                    | 4.86462549                  | 2.63757623     | н             | 12.3801831                               | 3.8753167                  | 3.17844455                           |
| Н          | 12.4203886                   | 3.93002017                  | 3.09146006     | С             | 8.24004035                               | 8.77020203                 | 3.39953537                           |
| С          | 8.26971317                   | 8.81096429                  | 3.41496635     | C             | 13,7910941                               | 4.77233817                 | 1 8161391                            |
| С          | 13.8807814                   | 4.90273313                  | 1.83901325     | н             | 14 3424316                               | 3 84274907                 | 1 6788071                            |
| н          | 14.4492478                   | 3.98620383                  | 1.68586796     | C C           | 8 5836425                                | 11 863088                  | 5 56088447                           |
| С          | 8.59199842                   | 11.8367506                  | 5.67414988     | н             | 9 36629697                               | 12 3047539                 | 6 17838627                           |
| н          | 9.37275097                   | 12.2693981                  | 6.30147697     | II<br>C       | 1/ 1003738                               | 5 01317014                 | 1 12185104                           |
| С          | 14.2971682                   | 6.07868123                  | 1.21634677     | C             | 13 /353703                               | 7 08188821                 | 1 30713666                           |
| С          | 13.52164                     | 7.22915999                  | 1.42076474     | C II          | 12 7192420                               | 7.00100021                 | 0.77650596                           |
| н          | 13 8178358                   | 8.16378543                  | 0.94674792     | Н             | 13./182429                               | 7.98990197                 | 0.77050580                           |
| C          | 12 3880106                   | 7 21230744                  | 2 22129387     | C             | 12.3391524                               | /.11405356                 | 2.15735193                           |
| н          | 11 796763                    | 8 11113828                  | 2 37/65130     | Н             | 11.7589365                               | 8.02328755                 | 2.29005223                           |
| C          | 15 5269248                   | 6 12107537                  | 0.34287847     | C             | 15.3776552                               | 5.9007602                  | 0.19089466                           |
| с<br>u     | 16.01724                     | 5 1/25601                   | 0.34207047     | Н             | 15.8595796                               | 4.91729742                 | 0.18110745                           |
| п          | 16 2599947                   | 5.1425001                   | 0.30028474     | Н             | 16.1313793                               | 6.63925711                 | 0.49097685                           |
| н          | 0.7100/7/                    | 0.84810320                  | 0.71532544     | C             | 9.69472998                               | 6.78974162                 | 3.20896457                           |
| C          | 9./1226/66                   | 0.84014295                  | 3.163560/4     | C             | 8.99690225                               | 6.3605231                  | 2.07967771                           |
| C<br>      | 9.04882274                   | 0.4/603815                  | 2.00139621     | Н             | 9.28624039                               | 5.42104901                 | 1.61075647                           |
| H          | 9.3470119                    | 5.55958492                  | 1.49408206     | C             | 7.98084732                               | 7.14864297                 | 1.55770207                           |
| С          | 8.05346632                   | 7.30407862                  | 1.48193789     | Н             | 7.45713579                               | 6.84757154                 | 0.65402961                           |
| Н          | 7.56388439                   | 7.06011987                  | 0.54319718     | C             | 7.61499233                               | 8.33833534                 | 2.21858355                           |
| С          | 7.68430444                   | 8.45308431                  | 2.19332293     | Н             | 6.8475472                                | 8.95959483                 | 1.77356127                           |

| Η | 6.93187334  | 9.10820177 | 1.76871288  | С | 9.39690913  | 8.02931948 | 3.85952607  |
|---|-------------|------------|-------------|---|-------------|------------|-------------|
| С | 9.4084334   | 8.04277228 | 3.87158331  | С | 9.97712087  | 9.84580241 | 5.36539052  |
| С | 9.96360193  | 9.80283306 | 5.43590127  | Н | 10.6760434  | 10.304071  | 6.0644271   |
| Н | 10.6547062  | 10.2325524 | 6.16258821  | С | 10.2291918  | 8.56468578 | 4.86469631  |
| С | 10.2212323  | 8.52642769 | 4.91852386  | Н | 11.1092023  | 8.01172815 | 5.18278881  |
| Н | 11.086261   | 7.9565174  | 5.24515733  | С | 6.35550152  | 11.9280501 | 4.57767662  |
| С | 6.34358578  | 11.9097066 | 4.70777266  | С | 7.43265467  | 12.5363288 | 5.32032345  |
| С | 7.42933684  | 12.4987195 | 5.46899808  | Н | 7.27299248  | 13.5342509 | 5.7279145   |
| Н | 7.26255774  | 13.4805803 | 5.91238707  | С | 3.98969215  | 12.0372879 | 3.82156279  |
| С | 3.99178889  | 12.0343966 | 3.87480214  | С | 5.13155543  | 12.591727  | 4.44148735  |
| С | 5.13972359  | 12.5644261 | 4.56708076  | Н | 5.06328791  | 13.6017208 | 4.85265059  |
| Н | 5.061134    | 13.5644668 | 4.99946202  | С | 4.18893595  | 10.6962817 | 3.36458864  |
| С | 4.21956697  | 10.6920012 | 3.3803289   | Н | 3.3309259   | 10.1641433 | 2.95013167  |
| Н | 3.36791844  | 10.1614351 | 2.95047267  | С | 5.38796379  | 10.0251432 | 3.44854359  |
| С | 5.40627232  | 10.0251096 | 3.47159563  | Н | 5.41933744  | 8.98774997 | 3.13416714  |
| Н | 5.44577185  | 8.99143432 | 3.14069074  | С | 7.84093519  | 9.97650523 | 4.13500027  |
| С | 7.84064964  | 9.99376609 | 4.18910063  | С | 6.56152695  | 10.6163643 | 4.02051999  |
| С | 6.58186932  | 10.6031533 | 4.09634875  | С | 1.78510333  | 15.2286803 | 4.10001522  |
| С | 1.88958127  | 15.2535481 | 3.93868644  | С | 2.30664619  | 14.017362  | 4.63657393  |
| С | 2.36342165  | 14.0748391 | 4.57765099  | С | 2.11755789  | 15.0732589 | 6.84876505  |
| С | 2.12579524  | 15.2887575 | 6.69932608  | Н | 2.22862257  | 14.992448  | 7.93204575  |
| Н | 2.2038233   | 15.2847981 | 7.78849774  | С | 1.62864728  | 16.2619138 | 6.30709265  |
| С | 1.67703091  | 16.4413139 | 6.05929567  | С | 1.46403821  | 16.3116562 | 4.92213504  |
| С | 1.56369004  | 16.3987981 | 4.66799971  | Н | 1.07872871  | 17.2261747 | 4.46639049  |
| Н | 1.21511649  | 17.2865414 | 4.1358834   | С | 2.91287035  | 12.7196662 | 6.7615151   |
| С | 2.90058513  | 12.9287757 | 6.80680547  | Н | 4.00041023  | 12.5928092 | 6.70924794  |
| Н | 3.99234419  | 12.8703236 | 6.89390762  | Н | 2.48937355  | 11.8250034 | 6.29156411  |
| Н | 2.59636596  | 11.9946051 | 6.32478315  | Н | 2.6197034   | 12.7453772 | 7.81810526  |
| Н | 2.47879632  | 12.9765636 | 7.81863     | С | 2.45289716  | 13.9730527 | 6.05322474  |
| С | 2.46751103  | 14.1275094 | 5.9938194   | С | -0.28927579 | 12.3694172 | 4.42666718  |
| С | -0.19639582 | 12.3460214 | 4.61961038  | Н | -0.30590377 | 13.4356006 | 4.68475673  |
| Н | -0.20974897 | 13.4208939 | 4.83649556  | Н | 0.38994875  | 11.8914347 | 5.14140649  |
| Н | 0.52693227  | 11.8995197 | 5.31026808  | Н | -1.29858803 | 11.9654024 | 4.57378859  |
| Н | -1.1911088  | 11.9385806 | 4.838963    | С | -1.5056288  | 11.0693117 | -0.26347385 |
| С | -1.65987922 | 10.8961284 | 0.04703488  | Н | -2.48955745 | 11.494003  | -0.03085697 |
| Н | -2.57658486 | 11.4848384 | 0.17629596  | Н | -1.61545003 | 9.97612554 | -0.26792479 |
| Н | -1.9197703  | 9.8457858  | 0.23582209  | Н | -1.23940487 | 11.3731225 | -1.28271128 |
| Н | -1.3540731  | 10.9751237 | -1.00235156 | С | 3.25287397  | 12.2893988 | 0.73338938  |
| С | 3.15022673  | 12.1134983 | 0.7539653   | Н | 3.71990395  | 13.1663055 | 1.19492     |
| Н | 3.6990949   | 12.9295764 | 1.23343542  | Н | 3.22598772  | 12.425968  | -0.35465101 |
| Н | 3.06080889  | 12.3104185 | -0.32183629 | Н | 3.91892131  | 11.4479657 | 0.95533916  |
| Н | 3.77618105  | 11.2224531 | 0.88450795  | С | 1.85770019  | 12.0699853 | 1.27330461  |
| С | 1.7828105   | 11.9368076 | 1.37489961  | С | 0.86965292  | 11.6933549 | 0.35776406  |
| С | 0.74739019  | 11.5263311 | 0.52376206  | Н | 1.1499007   | 11.5443325 | -0.68696598 |
| Н | 0.97548255  | 11.3331788 | -0.52637854 | С | -0.46311241 | 11.5214248 | 0.72981431  |
| С | -0.5623206  | 11.3712062 | 0.96819196  | С | -0.78775028 | 11.7598334 | 2.0663148   |

| С | -0.81958688 | 11.6537806 | 2.31204261  |
|---|-------------|------------|-------------|
| Н | -1.83671711 | 11.5397786 | 2.69321382  |
| С | 0.18875933  | 12.069529  | 3.18269165  |
| С | 1.53628454  | 12.2168637 | 2.74669199  |
| С | 1.73139972  | 15.3054178 | 2.43498471  |
| Н | 1.61019257  | 16.3405302 | 2.09218704  |
| Н | 0.86166295  | 14.727591  | 2.09949365  |
| Н | 2.60400048  | 14.8688801 | 1.93704234  |
| С | 1.3525942   | 17.697153  | 6.83186037  |
| Н | 2.18809307  | 18.4101026 | 6.81440192  |
| Н | 1.13880506  | 17.4697727 | 7.88253582  |
| Н | 0.47873262  | 18.2107089 | 6.41287651  |
| Н | 15.2784453  | 6.40895589 | -0.68587822 |

| Н | -1.82356277 | 11.6380921 | 2.39006483  |
|---|-------------|------------|-------------|
| С | 0.17404816  | 12.1406262 | 3.00486784  |
| С | 1.54349553  | 12.2975395 | 2.64461775  |
| С | 1.56678197  | 15.3896621 | 2.61178934  |
| Н | 1.40546516  | 16.4442859 | 2.35611369  |
| Н | 0.69949657  | 14.8156371 | 2.26244122  |
| Н | 2.42867368  | 15.0171236 | 2.04693191  |
| С | 1.31834065  | 17.4540259 | 7.17925264  |
| Н | 2.19191123  | 18.1100214 | 7.29653023  |
| Н | 1.01045529  | 17.1409372 | 8.18393153  |
| Н | 0.51066057  | 18.0606912 | 6.75263804  |
| Н | 15.0833041  | 6.13861648 | -0.83876873 |
|   |             |            |             |

## 1·K<sub>2</sub> (as 1<sup>2</sup>, triplet, SMD=Et<sub>2</sub>O) E = -54750.89 eV

| ~ | 10 77 4 4070 | 5 00757005 | 1 000 0000 |
|---|--------------|------------|------------|
| С | 10.7744278   | 5.32757985 | 4.89260295 |
| Ν | 10.8452001   | 6.04578948 | 3.68496685 |
| В | 2.61725904   | 12.8112593 | 3.72304406 |
| С | 9.53625812   | 4.85819597 | 5.36280395 |
| Н | 8.64231576   | 5.03784173 | 4.77290077 |
| С | 8.74556412   | 10.4776051 | 5.14338694 |
| С | 9.44918332   | 4.17834184 | 6.57279546 |
| Н | 8.47464426   | 3.82740485 | 6.90847444 |
| С | 10.5776182   | 3.93302387 | 7.36411849 |
| С | 11.8029055   | 4.41635345 | 6.89771029 |
| Н | 12.7000846   | 4.26524742 | 7.49559353 |
| С | 11.9063792   | 5.10997949 | 5.69351126 |
| Н | 12.8718567   | 5.49464651 | 5.37727473 |
| С | 10.4600622   | 3.20172886 | 8.67794892 |
| Н | 11.4467984   | 2.98131927 | 9.09718695 |
| Н | 9.92398158   | 2.25305262 | 8.56032658 |
| Н | 9.90907354   | 3.79690264 | 9.41597433 |
| С | 11.9774692   | 6.01808398 | 2.85197191 |
| С | 12.8193294   | 4.89865227 | 2.76210295 |
| Н | 12.6099596   | 4.01643044 | 3.36010889 |
| С | 8.16356635   | 8.70835962 | 3.51779073 |
| С | 13.9145974   | 4.90089681 | 1.89959846 |
| Н | 14.5455195   | 4.01499117 | 1.85053351 |
| С | 8.52788896   | 11.7860938 | 5.67030128 |
| Н | 9.30060263   | 12.2114169 | 6.3107888  |
| С | 14.2091384   | 5.99846886 | 1.08703437 |
| С | 13.3534233   | 7.10435422 | 1.16919154 |
| Н | 13.5459961   | 7.97714462 | 0.5472107  |
| С | 12.2628486   | 7.12314864 | 2.03017962 |
| Н | 11.6128538   | 7.99259421 | 2.07174622 |
| С | 15.3958268   | 6.00307397 | 0.15597432 |
| Н | 15.8981259   | 5.03058765 | 0.15228314 |

| Η | 16.1331186  | 6.75883328 | 0.45258364  |
|---|-------------|------------|-------------|
| С | 9.69411127  | 6.78776848 | 3.25062824  |
| С | 8.95450298  | 6.3026454  | 2.14991985  |
| Н | 9.25536094  | 5.37545981 | 1.66739478  |
| С | 7.87615865  | 7.05118693 | 1.69856583  |
| Н | 7.31986779  | 6.72492201 | 0.82136622  |
| С | 7.48170194  | 8.22195672 | 2.3550939   |
| Н | 6.67564476  | 8.80336737 | 1.92724056  |
| С | 9.35770096  | 7.98931861 | 3.90771495  |
| С | 9.92674087  | 9.77896018 | 5.46522203  |
| Н | 10.6291472  | 10.2408425 | 6.15899901  |
| С | 10.2076219  | 8.54502833 | 4.92227005  |
| Н | 11.1203766  | 8.02034294 | 5.19094143  |
| С | 6.33407138  | 11.899038  | 4.6180352   |
| С | 7.40645601  | 12.5029797 | 5.37388164  |
| Н | 7.26367113  | 13.5101752 | 5.76153372  |
| С | 3.95971934  | 12.0272335 | 3.88452405  |
| С | 5.11657198  | 12.5860255 | 4.46087475  |
| Н | 5.07575368  | 13.611831  | 4.83353716  |
| С | 4.11088765  | 10.6655961 | 3.49673292  |
| Н | 3.24149758  | 10.1311762 | 3.11137183  |
| С | 5.30927265  | 9.97510201 | 3.60201305  |
| Н | 5.31733461  | 8.92513841 | 3.32990738  |
| С | 7.78344114  | 9.8861109  | 4.2451902   |
| С | 6.49047337  | 10.5688729 | 4.11244992  |
| С | 1.82985766  | 15.3028578 | 4.03195364  |
| С | 2.31707849  | 14.0954325 | 4.61218008  |
| С | 2.16533895  | 15.2361117 | 6.78828046  |
| Н | 2.27273699  | 15.1903983 | 7.87343149  |
| С | 1.71958707  | 16.4231603 | 6.20362511  |
| С | 1.54996919  | 16.4260763 | 4.81749712  |
| Н | 1.19319258  | 17.3355869 | 4.33185389  |
| С | 2.87557679  | 12.8559531 | 6.78851748  |
| Н | 3.96521391  | 12.7312111 | 6.80810497  |
| Н | 2.47313077  | 11.9496614 | 6.32138652  |
| Н | 2.52760273  | 12.9022413 | 7.82684976  |
| С | 2.45942955  | 14.0968982 | 6.03146788  |
| С | -0.30966261 | 12.4306128 | 4.43921448  |
| Н | -0.32814708 | 13.5011533 | 4.68042107  |
| Н | 0.35773552  | 11.9593532 | 5.17111995  |
| Н | -1.32128509 | 12.0358119 | 4.58784211  |
| С | -1.50362348 | 11.0756131 | -0.24605621 |
| Н | -2.50506489 | 11.4175218 | 0.03711911  |
| Н | -1.53950789 | 9.98065805 | -0.31784609 |
| Н | -1.28620446 | 11.4591429 | -1.24928552 |
| С | 3.26209057  | 12.2490976 | 0.77452841  |

| Н | 3.74075633  | 13.1342761 | 1.21077128  |
|---|-------------|------------|-------------|
| Н | 3.25498558  | 12.3549135 | -0.31606922 |
| Н | 3.91090804  | 11.4012762 | 1.02426242  |
| С | 1.85784156  | 12.0632775 | 1.30294985  |
| С | 0.87361367  | 11.6797684 | 0.38568241  |
| Н | 1.16016115  | 11.5069322 | -0.65306716 |
| С | -0.46587383 | 11.5285414 | 0.75130128  |
| С | -0.79746217 | 11.7914037 | 2.08192775  |
| Н | -1.83587103 | 11.6831656 | 2.3989005   |
| С | 0.16210767  | 12.1786865 | 3.02366902  |
| С | 1.53319001  | 12.3247147 | 2.66644393  |
| С | 1.59449264  | 15.421986  | 2.54174474  |
| Н | 1.48471272  | 16.4725833 | 2.24913151  |
| Н | 0.68581822  | 14.8912852 | 2.22896112  |
| Н | 2.41908676  | 14.9866096 | 1.96621453  |
| С | 1.45332532  | 17.65486   | 7.03317559  |
| Н | 0.74395103  | 18.3245819 | 6.53508809  |
| Н | 2.37423465  | 18.2259586 | 7.20957678  |
| Н | 1.04073342  | 17.3941403 | 8.01433684  |
| Н | 15.0945327  | 6.23026326 | -0.87298855 |
|   |             |            |             |

## $2 \cdot K_1$ (as $2^{1-}$ , doublet, gasphase) E = -58927.18 eV

| Ν | 4.54645856 | 13.53190042 | 10.34854170 |
|---|------------|-------------|-------------|
| В | 6.10771740 | 8.19277313  | 4.34826317  |
| С | 5.10738677 | 13.93590169 | 9.10582227  |
| С | 6.03729147 | 13.08512321 | 8.46045633  |
| Н | 6.35555248 | 12.17355788 | 8.95936607  |
| С | 6.51159865 | 13.39028550 | 7.21000128  |
| Н | 7.21579498 | 12.71656121 | 6.73545756  |
| С | 6.11967776 | 14.57726685 | 6.53078556  |
| С | 5.32843585 | 15.50481952 | 7.26135434  |
| С | 4.78509072 | 15.14096360 | 8.51675237  |
| Н | 4.12340072 | 15.83799264 | 9.02671488  |
| С | 6.58997726 | 14.91437456 | 5.20343427  |
| С | 6.55946083 | 16.27917629 | 4.82888576  |
| С | 5.77464784 | 17.20264139 | 5.59642338  |
| Н | 5.69993521 | 18.22788976 | 5.23883558  |
| С | 5.12830894 | 16.81952108 | 6.73020839  |
| Н | 4.50955872 | 17.52056499 | 7.28616439  |
| С | 7.17575917 | 13.95475469 | 4.28404528  |
| С | 8.09136134 | 14.46270923 | 3.31623066  |
| С | 8.15154271 | 15.85199901 | 3.06007575  |
| Н | 8.82169293 | 16.20524800 | 2.27828445  |
| С | 7.33409213 | 16.73285058 | 3.72692884  |

|    | $2 \cdot K_2$ (as $2^2 \cdot$ , | closed-shell S | 50, gasphase) E | = -58925.38 eV |
|----|---------------------------------|----------------|-----------------|----------------|
| 70 | Ν                               | 4.48299573     | 13.56917080     | 10.33786862    |
| 7  | В                               | 6.14531835     | 8.21124612      | 4.37953811     |
| 27 | С                               | 5.05432897     | 13.99262701     | 9.09337058     |
| 33 | С                               | 6.00311795     | 13.16556990     | 8.44603985     |
| 07 | Н                               | 6.35091366     | 12.26487371     | 8.94804205     |
| 28 | С                               | 6.44146028     | 13.46014266     | 7.17986279     |
| 56 | Н                               | 7.14873335     | 12.79686920     | 6.69430715     |
| 56 | С                               | 6.00483476     | 14.63324115     | 6.48098046     |
| 34 | С                               | 5.17965203     | 15.54457582     | 7.22498700     |
| 37 | С                               | 4.67309809     | 15.17738613     | 8.48620027     |
| 38 | Н                               | 3.98404250     | 15.85092748     | 8.99592206     |
| 27 | С                               | 6.41552075     | 14.94579588     | 5.15079156     |
| 76 | С                               | 6.30700867     | 16.30559477     | 4.71394288     |
| 38 | С                               | 5.46160870     | 17.19485729     | 5.47040521     |
| 58 | Н                               | 5.29382078     | 18.19560725     | 5.07162895     |
| 39 | С                               | 4.88742433     | 16.82217099     | 6.64639999     |
| 39 | Н                               | 4.23490705     | 17.50516419     | 7.18983132     |
| 28 | С                               | 7.04170244     | 13.97603137     | 4.23982478     |
| 56 | С                               | 7.98172407     | 14.53015012     | 3.28392741     |
| 75 | С                               | 7.95954074     | 15.88856754     | 2.99093649     |
| 45 | Н                               | 8.63218165     | 16.26459348     | 2.21882139     |

7.05401454 16.76238862 3.61672882

С

| Н | 7.31817009  | 17.78949800 | 3.47066822 | Н | 6.98658947  | 17.80744611 | 3.32013409 |
|---|-------------|-------------|------------|---|-------------|-------------|------------|
| С | 6.85325152  | 12.56064368 | 4.25338368 | С | 6.75791547  | 12.60557591 | 4.21293316 |
| С | 7.68476207  | 11.65032123 | 3.52155376 | С | 7.61175678  | 11.68292553 | 3.47607518 |
| С | 8.73986451  | 12.19611438 | 2.70752642 | С | 8.68552123  | 12.26401708 | 2.69310226 |
| Н | 9.37089134  | 11.50345046 | 2.15359159 | Н | 9.34685367  | 11.58381423 | 2.15548623 |
| С | 8.89248902  | 13.53851207 | 2.56461857 | С | 8.83760249  | 13.60591327 | 2.57563682 |
| Н | 9.63213636  | 13.94305410 | 1.87571317 | Н | 9.60632235  | 14.01959467 | 1.92110781 |
| С | 5.67501969  | 12.00009564 | 4.84423091 | С | 5.60992428  | 11.99400968 | 4.84995312 |
| Н | 4.93644778  | 12.66615247 | 5.28074129 | Н | 4.85661458  | 12.64244401 | 5.29088607 |
| С | 5.44474165  | 10.65228664 | 4.84293281 | С | 5.42464816  | 10.64501363 | 4.86615221 |
| Н | 4.52127749  | 10.27867988 | 5.28577928 | Н | 4.51534994  | 10.25376860 | 5.32604566 |
| С | 6.34847294  | 9.69851614  | 4.25947125 | С | 6.33806027  | 9.69074025  | 4.26748190 |
| С | 7.44187490  | 10.27366423 | 3.56928571 | С | 7.41055401  | 10.32029300 | 3.53738482 |
| Н | 8.13752327  | 9.61710968  | 3.04550480 | Н | 8.12923662  | 9.67990958  | 3.02119122 |
| С | 5.07068764  | 7.56563924  | 5.38982173 | С | 5.12079151  | 7.55153704  | 5.42361187 |
| С | 4.12332542  | 6.59504731  | 4.96864826 | С | 4.22736509  | 6.52014989  | 5.01595761 |
| С | 3.28781515  | 5.95699581  | 5.88635890 | С | 3.41620188  | 5.85065241  | 5.93282194 |
| Н | 2.57316650  | 5.21579088  | 5.52620304 | Н | 2.74533804  | 5.06674725  | 5.57476870 |
| С | 3.35235485  | 6.22850745  | 7.25355357 | С | 3.44537655  | 6.14800255  | 7.29730717 |
| С | 4.27305453  | 7.18430295  | 7.67529927 | С | 4.30488353  | 7.16320894  | 7.70994048 |
| Н | 4.36278734  | 7.40524012  | 8.73984837 | Н | 4.36787637  | 7.40933029  | 8.77162393 |
| С | 5.11384671  | 7.85644061  | 6.77772062 | С | 5.12277863  | 7.86485257  | 6.81164400 |
| С | 3.98809997  | 6.20871723  | 3.51183362 | С | 4.12136622  | 6.10978008  | 3.56300692 |
| Н | 3.99320863  | 7.09020206  | 2.86261548 | Н | 4.11999883  | 6.98727232  | 2.90798518 |
| Н | 3.05272116  | 5.66370207  | 3.34376807 | Н | 3.19964835  | 5.54066117  | 3.38940698 |
| Н | 4.81859311  | 5.57220558  | 3.18531458 | Н | 4.97071656  | 5.48964843  | 3.25213032 |
| С | 2.44852484  | 5.51423236  | 8.22881767 | С | 2.57245211  | 5.39665452  | 8.27380657 |
| Н | 2.25312287  | 4.48626165  | 7.90486885 | Н | 2.50586003  | 4.33449920  | 8.00877624 |
| Н | 1.47657244  | 6.01675178  | 8.31989876 | Н | 1.54630176  | 5.78989698  | 8.29377592 |
| Н | 2.89400776  | 5.47583447  | 9.22847323 | Н | 2.96794831  | 5.46623466  | 9.29330004 |
| С | 6.08450229  | 8.85392470  | 7.37352425 | С | 6.03674166  | 8.91246207  | 7.40649331 |
| Н | 7.02267836  | 8.89780339  | 6.81294520 | Н | 6.97874442  | 8.97973590  | 6.85345028 |
| Н | 6.30086768  | 8.59992523  | 8.41740003 | Н | 6.23931558  | 8.69054567  | 8.46145695 |
| Н | 5.67131095  | 9.87121372  | 7.36304537 | Н | 5.59174445  | 9.91546833  | 7.36105958 |
| С | 6.93189811  | 7.19259691  | 3.41337124 | С | 6.99885951  | 7.19615060  | 3.47417469 |
| С | 6.92010491  | 7.29958067  | 2.00240765 | С | 7.01518817  | 7.26811563  | 2.05659966 |
| С | 7.61569629  | 6.37719562  | 1.21020803 | С | 7.72486704  | 6.32949214  | 1.29555679 |
| Н | 7.57307064  | 6.47676551  | 0.12475732 | Н | 7.70054235  | 6.40748769  | 0.20672135 |
| С | 8.35058532  | 5.33417329  | 1.76573719 | С | 8.44920062  | 5.29518341  | 1.88209113 |
| С | 8.36580075  | 5.22413089  | 3.15755263 | С | 8.43915980  | 5.21467348  | 3.27642029 |
| Н | 8.93336648  | 4.41537060  | 3.62000259 | Н | 9.00121261  | 4.41703263  | 3.76687260 |
| С | 7.67353833  | 6.12065351  | 3.97271586 | С | 7.73420797  | 6.13018039  | 4.06021244 |
| С | 6.14266252  | 8.38039308  | 1.28245940 | С | 6.24067451  | 8.32550057  | 1.30302563 |
| Н | 5.81610480  | 8.02667894  | 0.29789502 | Н | 5.98232504  | 7.97110009  | 0.29721372 |
| Н | 6.75303461  | 9.27921022  | 1.13107786 | Н | 6.81733361  | 9.25301515  | 1.20138498 |
| Н | 5.26678778  | 8.70223239  | 1.85196442 | Н | 5.32909891  | 8.60641691  | 1.83900197 |
| С | 9.12238526  | 4.36621864  | 0.90245548 | С | 9.23859380  | 4.31324295  | 1.05008873 |
| Н | 8.99259930  | 3.33386084  | 1.24609232 | Н | 9.12449472  | 3.28807216  | 1.42307127 |
| Н | 10.19735465 | 4.58452160  | 0.92371354 | Н | 10.31199709 | 4.54547365  | 1.06178468 |

| Η           | 8.79456075 4.41977212 -0                                                              | .14079765 H                   | 8.910544                                                                                    | 23 4.33014823 0.00458066                                                               |
|-------------|---------------------------------------------------------------------------------------|-------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| С           | 7.73822929 5.91669764 5                                                               | .47063482 C                   | 7.783480                                                                                    | 93 5.96041287 5.56299372                                                               |
| Н           | 8.53011156 5.20577239 5                                                               | .73070491 Н                   | 8.596282                                                                                    | 16 5.28214164 5.85055287                                                               |
| Н           | 6.78982989 5.53285548 5                                                               | .86452092 Н                   | 6.842640                                                                                    | 51 5.55522428 5.95492625                                                               |
| Н           | 7.93644766 6.85910427 5                                                               | .99238528 Н                   | 7.936837                                                                                    | 08 6.92468669 6.05944082                                                               |
| С           | 4.05370900 12.21208352 1                                                              | 0.47912106 C                  | 3.914684                                                                                    | 09 12.27956441 10.40348813                                                             |
| С           | 4.08897640 11.55757217 1                                                              | 1.71925408 C                  | 3.880162                                                                                    | 97 11.55478516 11.60717608                                                             |
| Н           | 4.49185000 12.07583789 1                                                              | 2.58491323 H                  | 4.284841                                                                                    | 00 11.99998637 12.51155948                                                             |
| С           | 3.61058333 10.25906794 1                                                              | 1.84196224 C                  | 3.345638                                                                                    | 85 10.27260143 11.64543274                                                             |
| Н           | 3.64258909 9.77413610 12                                                              | 2.81624968 H                  | 3.329884                                                                                    | 83 9.73591262 12.59363725                                                              |
| С           | 3.10894730 9.55521319 10                                                              | 0.74105681 C                  | 2.854933                                                                                    | 08 9.64609383 10.49431416                                                              |
| С           | 3.10001789 10.20650593 9                                                              | 9.50617534 C                  | 2.927823                                                                                    | 95 10.35759693 9.29508924                                                              |
| Н           | 2.73502504 9.68132582 8                                                               | .62546713 Н                   | 2.595852                                                                                    | 14 9.88576043 8.37201409                                                               |
| С           | 3.55003592 11.51816778 9                                                              | 9.37234869 C                  | 3.433879                                                                                    | 79 11.65380533 9.24305513                                                              |
| Н           | 3.52608788 12.00024857 8                                                              | 8.39934705 Н                  | 3.491331                                                                                    | 74 12.17364424 8.29166757                                                              |
| С           | 2.60681015 8.14126238 10                                                              | ).88868890 C                  | 2.273410                                                                                    | 90 8.25604458 10.55079849                                                              |
| Н           | 3.43060240 7.44227485 11                                                              | 1.07937480 Н                  | 1.997916                                                                                    | 27 7.90959572 9.55070191                                                               |
| н           | 2.09911102 7.81023635 9                                                               | .97851943 H                   | 1.376899                                                                                    | 95 8.22314044 11.18300226                                                              |
| н           | 1.90287271 8.05479545 11                                                              | 1.72405245 H                  | 2.991789                                                                                    | 29 7.53604659 10.96199853                                                              |
| С           | 4 34078774 14 48556101 1                                                              | 1.36738666 C                  | 4 419846                                                                                    | 85 14 46717607 11 40926009                                                             |
| C           | 5 32575313 15 44778570 1                                                              | 1.63896699 C                  | 5 438602                                                                                    | 72 15 42271005 11 59067364                                                             |
| н           | 6 24124004 15 44436721 1                                                              | 1.05429164 H                  | 6 265892                                                                                    | 18 15 44207889 10 88774411                                                             |
| C           | 5 12841321 16 39644879 1                                                              | 2 63315070 C                  | 5 379902                                                                                    | 94 16 33151033 12 63717938                                                             |
| н           | 5 90765982 17 13227378 1                                                              | 2.82387158 H                  | 6 186358                                                                                    | 85 17.05500130 12.74988281                                                             |
| C           | 3 95867727 16 41905900 1                                                              | 3 40301819 C                  | 4 317369                                                                                    | 22 16 33990361 13 55061435                                                             |
| C<br>C      | 2 98739030 15 45576548 1                                                              | 3.12849564 C                  | 3 305341                                                                                    | 60 15 39854650 13 35958983                                                             |
| н           | 2.06282571 15.45036777 1                                                              | 3.12049504 С<br>3.70235497 Н  | 2 453494                                                                                    | 09 15 38500400 14 03822028                                                             |
| C           | 3 16330405 14 50716123 1                                                              | 2 12252641 C                  | 3 342180                                                                                    | 03       15.50500400       14.05022020         21       14.48363353       12.30958316  |
| ч           | 2 38687338 13 77523004 1                                                              | 1 01077304 H                  | 2 527840                                                                                    | 21       14.403033535       12.30950310         38       13.77787661       12.17762060 |
| n<br>C      | 2.5666904 17.45304510 1                                                               | 1.91977394 II<br>4.48439809 C | 4 276091                                                                                    | 10 17 33382575 14 68504450                                                             |
| с<br>u      | 2 70500904 17.45304510 1                                                              | 4.48439809 C                  | 4.270091                                                                                    | 10 17.33382373 14.08304439                                                             |
| и<br>и      | 4 55162102 17 28520664 1                                                              | 5.24522861 H                  | 5 125204                                                                                    | 52 17 20245755 15 26707622                                                             |
| п           | 4.55102192 17.58520004 1                                                              | A 08618872                    | 2 259459                                                                                    | 22 17.20245755 15.50707022                                                             |
| п           | 2.80222174 17.52274755 1                                                              | 4.98018872 П                  | 5.536430                                                                                    | 25 17.22140955 15.27192950                                                             |
| 2∙K         | $_2$ (as 2 <sup>2-</sup> , open-shell S <sub>0</sub> , gasphase) E = -                | 58925.46 eV 2·K               | $L_2$ (as $2^{2-}$ , triplet, ga                                                            | sphase) E = -58925.42 eV                                                               |
| Ν           | 4.40211277 13.6397409 10.35844                                                        | 86 N                          | 4.38090232 13                                                                               | .614365 10.3001468                                                                     |
| В           | 6.18525494 8.13889696 4.391445                                                        | 99 B                          | 6.17282843 8.1                                                                              | 5080657 4.46608732                                                                     |
| С           | 5.01684784 14.037056 9.126848                                                         | 07 C                          | 5.05492136 14                                                                               | .023671 9.09738968                                                                     |
| С           | 5.98913227 13.207736 8.529625                                                         | 09 C                          | 6.09201343 1                                                                                | 3.23816 8.59361362                                                                     |
| Н           | 6.32878273 12.3220213 9.064000                                                        | 34 Н                          | 6.41702944 12.3                                                                             | 9.13414765                                                                             |
| С           | 6.47208065 13.4729964 7.27077                                                         | 66 C                          | 6.63221349 13                                                                               | .553755 7.34057455                                                                     |
| н           | 7.20885969 12.8075864 6.834846                                                        | 52 Н                          | 7.39281752 12.9                                                                             | 0029599 6.92053651                                                                     |
| C           | 6 04338717 14 6247618 6 521794                                                        | 42 C                          | 6 18490145 14                                                                               | 5484881 6 58812848                                                                     |
| C           | 5 177/370/ 15 5/21800 7 210022                                                        | . <u> </u>                    | 5 27108/29 15                                                                               | 712171 7 21152752                                                                      |
|             | 4 64004005 15 2105425 9 460102                                                        | 70 C                          | J.27100430 15.                                                                              | 7/121/1 1.21132/33                                                                     |
| C           | 4.04094095 15.2105455 8.468103                                                        | 79 C                          | 4.04948833 15.                                                                              | 0.000001 0.00010000                                                                    |
|             | 0.0045500 15.0004014 0.010111                                                         |                               |                                                                                             |                                                                                        |
| Н           | 3.9345503 15.8934914 8.940111                                                         | 27 Н                          | 3.86832128 15.3                                                                             | 8003091 8.86042966                                                                     |
| H<br>C      | 3.934550315.89349148.94011126.4838276414.91247775.202912                              | 27 H<br>91 C                  | 3.86832128         15.3           6.66121447         14.9                                   | 3003091 8.86042966<br>3369641 5.23235138                                               |
| H<br>C<br>C | 3.934550315.89349148.94011136.4838276414.91247775.2029196.3662268416.26261864.7196144 | 27 H<br>91 C<br>84 C          | 3.86832128         15.3           6.66121447         14.3           6.61705648         16.3 | 3003091 8.86042966<br>9369641 5.23235138<br>3188632 4.82223535                         |

| Н | 5.31893061 | 18.1483921 | 4.99704669 | Н | 5.75437141 | 18.2583493 | 5.14819337 |
|---|------------|------------|------------|---|------------|------------|------------|
| С | 4.8812633  | 16.8039921 | 6.58704313 | С | 5.05272936 | 16.8384562 | 6.62265449 |
| Н | 4.20672867 | 17.4922302 | 7.09575583 | Н | 4.38598832 | 17.5411223 | 7.1191805  |
| С | 7.15507729 | 13.9437229 | 4.32376596 | С | 7.24713254 | 13.969252  | 4.35351231 |
| С | 8.08123399 | 14.4661313 | 3.36882129 | С | 8.13140757 | 14.425684  | 3.32799824 |
| С | 8.08568813 | 15.8425218 | 3.05714534 | С | 8.2069346  | 15.8284861 | 3.04420222 |
| Н | 8.7640631  | 16.203638  | 2.28546212 | Н | 8.86561766 | 16.1555102 | 2.23918616 |
| С | 7.15889133 | 16.7025207 | 3.6508359  | С | 7.43081155 | 16.7263692 | 3.71147227 |
| Н | 7.08036249 | 17.7409048 | 3.32959206 | Н | 7.43911556 | 17.7814853 | 3.43759425 |
| С | 6.87909262 | 12.5458501 | 4.31421284 | С | 6.95951952 | 12.5418309 | 4.37327932 |
| С | 7.73900941 | 11.636326  | 3.60678208 | С | 7.78286158 | 11.6276129 | 3.65100226 |
| С | 8.80527203 | 12.1946199 | 2.82463508 | С | 8.80658662 | 12.1429649 | 2.7899052  |
| Н | 9.47464067 | 11.5102348 | 2.30348434 | Н | 9.43171566 | 11.4412098 | 2.24084416 |
| С | 8.93824137 | 13.541867  | 2.67602847 | С | 8.91342062 | 13.494419  | 2.59317118 |
| Н | 9.70029926 | 13.9514887 | 2.01247108 | Н | 9.62193271 | 13.889099  | 1.86389214 |
| С | 5.72054232 | 11.9557342 | 4.92128754 | С | 5.80329342 | 11.9901139 | 4.99453436 |
| Н | 4.97521811 | 12.6090389 | 5.3655271  | Н | 5.08452236 | 12.6638039 | 5.45140939 |
| С | 5.51116678 | 10.6021588 | 4.91229728 | С | 5.55974139 | 10.6385617 | 5.00746936 |
| Н | 4.59307567 | 10.216249  | 5.35796272 | Н | 4.64283033 | 10.2752288 | 5.47346941 |
| С | 6.42258405 | 9.65650608 | 4.32571195 | С | 6.44357646 | 9.67876169 | 4.41215332 |
| С | 7.51694541 | 10.2524936 | 3.66071281 | С | 7.53341754 | 10.2394387 | 3.73039727 |
| Н | 8.23794555 | 9.60753305 | 3.15338221 | Н | 8.22484857 | 9.57607368 | 3.20675523 |
| С | 5.19841956 | 7.4858064  | 5.46086177 | С | 5.24276837 | 7.49022455 | 5.57517839 |
| С | 4.27573647 | 6.4672292  | 5.07976699 | С | 4.30361831 | 6.47265645 | 5.22893237 |
| С | 3.4821931  | 5.8121119  | 6.02209419 | С | 3.58066326 | 5.7863434  | 6.20473342 |
| Н | 2.79044354 | 5.0373     | 5.68454795 | Н | 2.8785922  | 5.00947636 | 5.89407743 |
| С | 3.5502198  | 6.11249391 | 7.3842194  | C | 3.73409427 | 6.05496446 | 7.56668553 |
| С | 4.43920604 | 7.11404853 | 7.77115613 | С | 4.62663733 | 7.0667085  | 7.91856057 |
| Н | 4.53402036 | 7.36122882 | 8.83032678 | Н | 4.77864535 | 7.29726753 | 8.97482365 |
| С | 5.24590462 | 7.79623051 | 6.85051816 | C | 5.36523441 | 7.77929556 | 6.96483452 |
| С | 4.11721592 | 6.0538869  | 3.63250344 | C | 4.05308629 | 6.09096545 | 3.78596227 |
| Н | 4.09488417 | 6.92930747 | 2.97443249 | Н | 4.00256129 | 6.97943849 | 3.14719323 |
| Н | 3.18832156 | 5.48669853 | 3.4945706  | Н | 3.11021122 | 5.53778038 | 3.69403926 |
| Н | 4.95237708 | 5.43062135 | 3.29024184 | Н | 4.85726335 | 5.46413441 | 3.38143524 |
| С | 2.69280069 | 5.37570635 | 8.38499306 | C | 2.96991121 | 5.26558838 | 8.60242659 |
| Н | 2.62845514 | 4.30820053 | 8.14110151 | Н | 3.01330622 | 4.1897753  | 8.39150162 |
| Н | 1.6647525  | 5.7636146  | 8.41086221 | Н | 1.90771414 | 5.54574942 | 8.63471165 |
| Н | 3.10058466 | 5.46626197 | 9.39795849 | Н | 3.38124824 | 5.42860238 | 9.60452468 |
| С | 6.2102365  | 8.81514616 | 7.41553865 | C | 6.34687948 | 8.80396962 | 7.48750252 |
| Н | 7.15863865 | 8.81083348 | 6.86811108 | Н | 7.2772015  | 8.79391065 | 6.90919148 |
| Н | 6.40059372 | 8.6142899  | 8.47650257 | Н | 6.57463948 | 8.61250261 | 8.5424906  |
| Н | 5.821359   | 9.83833361 | 7.33746939 | Н | 5.95504145 | 9.82577771 | 7.41405954 |
| С | 6.9652567  | 7.15999916 | 3.40045528 | C | 6.87879051 | 7.18798751 | 3.40873024 |
| С | 6.94630633 | 7.329611   | 1.98801685 | C | 6.78895849 | 7.39966052 | 2.00446215 |
| С | 7.60146687 | 6.42625152 | 1.14393424 | C | 7.38010256 | 6.51007848 | 1.10156508 |
| Н | 7.5482898  | 6.58051542 | 0.06429107 | Н | 7.27297655 | 6.69688446 | 0.031165   |

| С | 8.30479027 | 5.32741184 | 1.63530553  | С | 8.08702256 | 5.38457637 | 1.52376111  |
|---|------------|------------|-------------|---|------------|------------|-------------|
| С | 8.32258904 | 5.14580497 | 3.01914174  | С | 8.1751256  | 5.16278837 | 2.89860621  |
| Н | 8.86418851 | 4.29397573 | 3.43559457  | Н | 8.72169865 | 4.28985531 | 3.26111623  |
| С | 7.67316748 | 6.02640217 | 3.88772595  | С | 7.59061556 | 6.02929042 | 3.82598728  |
| С | 6.17403617 | 8.45433528 | 1.33754296  | С | 6.00712943 | 8.55831761 | 1.4293251   |
| Н | 5.96374409 | 8.22046889 | 0.28673881  | Н | 5.7384264  | 8.3612746  | 0.38448403  |
| Н | 6.72276223 | 9.40269341 | 1.37616925  | Н | 6.5770265  | 9.4940947  | 1.46760111  |
| Н | 5.23013486 | 8.63945471 | 1.86169809  | Н | 5.09391337 | 8.74361161 | 2.00569014  |
| С | 9.04341016 | 4.38918236 | 0.71182356  | С | 8.75720761 | 4.46149332 | 0.53515104  |
| Н | 9.03651085 | 3.36247258 | 1.09678625  | Н | 8.78930861 | 3.43168924 | 0.90998707  |
| Н | 10.0945507 | 4.684473   | 0.59015319  | Н | 9.79263068 | 4.76761734 | 0.33278202  |
| Н | 8.59050709 | 4.37847285 | -0.28644271 | Н | 8.22650458 | 4.45533032 | -0.42410003 |
| С | 7.75300202 | 5.73903374 | 5.37098276  | С | 7.74669655 | 5.69788438 | 5.29393339  |
| Н | 8.53594076 | 4.99981275 | 5.58051171  | Н | 8.52687559 | 4.94046036 | 5.43838438  |
| Н | 6.80312393 | 5.35324828 | 5.76122685  | Н | 6.8133905  | 5.31625339 | 5.72627342  |
| Н | 7.96959411 | 6.65241039 | 5.93599562  | Н | 8.01033657 | 6.59082649 | 5.87167043  |
| С | 3.86303772 | 12.3392219 | 10.4404849  | С | 3.85278228 | 12.3092459 | 10.3512098  |
| С | 3.83780929 | 11.6269423 | 11.6522998  | С | 3.75860427 | 11.6004318 | 11.5594278  |
| Н | 4.22003508 | 12.0941517 | 12.555322   | Н | 4.0906683  | 12.0682859 | 12.4816829  |
| С | 3.34629197 | 10.3274245 | 11.6991075  | С | 3.26179523 | 10.3003698 | 11.5795408  |
| Н | 3.34071107 | 9.80000805 | 12.6527371  | Н | 3.20160423 | 9.77316569 | 12.5313209  |
| С | 2.88952443 | 9.672094   | 10.5506422  | С | 2.86830521 | 9.64745667 | 10.4082298  |
| С | 2.94767959 | 10.3745419 | 9.34430415  | С | 2.99821621 | 10.3473428 | 9.20504767  |
| Н | 2.63854978 | 9.88206301 | 8.42411889  | Н | 2.7404832  | 9.85330271 | 8.27002057  |
| С | 3.41238952 | 11.6848968 | 9.28303918  | С | 3.46722625 | 11.6567929 | 9.16959967  |
| Н | 3.46575855 | 12.1979568 | 8.32777662  | Н | 3.57046826 | 12.1728079 | 8.21985362  |
| С | 2.36172553 | 8.26102604 | 10.6129175  | С | 2.31637717 | 8.24473262 | 10.4391478  |
| Н | 2.12133468 | 7.89316636 | 9.61137859  | Н | 2.25354416 | 7.83294758 | 9.42798369  |
| Н | 1.453822   | 8.19845676 | 11.226544   | Н | 1.31186609 | 8.21899259 | 10.8814348  |
| Н | 3.09907331 | 7.57436083 | 11.0469803  | Н | 2.95284121 | 7.57557153 | 11.0307318  |
| С | 4.30987116 | 14.5531011 | 11.4125088  | С | 4.22441131 | 14.5312591 | 11.3437378  |
| С | 5.29575757 | 15.5473932 | 11.5752451  | С | 5.20118337 | 15.5237741 | 11.5571968  |
| Н | 6.12241016 | 15.5800694 | 10.8722938  | Н | 6.06432746 | 15.5554231 | 10.8994658  |
| С | 5.20577453 | 16.4732162 | 12.6048052  | С | 5.05462836 | 16.4525652 | 12.5781619  |
| Н | 5.98859817 | 17.2244419 | 12.7038063  | Н | 5.82747539 | 17.2078472 | 12.7155569  |
| С | 4.14277716 | 16.4663098 | 13.5170599  | С | 3.94577028 | 16.4416572 | 13.433904   |
| С | 3.16211536 | 15.4876797 | 13.3436744  | С | 2.97790422 | 15.4613861 | 13.212698   |
| Н | 2.31085257 | 15.4584568 | 14.0227707  | Н | 2.09238915 | 15.4317771 | 13.8463     |
| С | 3.23029912 | 14.5540117 | 12.3127406  | С | 3.10146822 | 14.52697   | 12.1855619  |
| Н | 2.43927613 | 13.8196458 | 12.1957096  | Н | 2.31873317 | 13.791884  | 12.0253989  |
| С | 4.05856958 | 17.4902897 | 14.6220127  | С | 3.81080527 | 17.4548933 | 14.5441041  |
| Н | 3.92219517 | 18.5036642 | 14.2241395  | Н | 3.85487528 | 18.4806663 | 14.159102   |
| Н | 4.97038823 | 17.5012924 | 15.2315772  | Н | 4.61329133 | 17.3510742 | 15.2850901  |
| Н | 3.21526297 | 17.2800095 | 15.288378   | Н | 2.85708321 | 17.3366183 | 15.0692721  |
|   |            |            |             |   |            |            |             |

 $2 \cdot K_2 (as \ 2^2 \cdot, closed-shell \ S_0, \ SMD=Et_2O) \ E=-58930.42 \ eV \\ 2 \cdot K_2 (as \ 2^2 \cdot, open-shell \ S_0, \ SMD=Et_2O) \ E=-58930.46 \ eV \\ 2 \cdot K_2 (as \ 2^2 \cdot, open-shell \ S_0, \ SMD=Et_2O) \ E=-58930.46 \ eV \\ 2 \cdot K_2 (as \ 2^2 \cdot, open-shell \ S_0, \ SMD=Et_2O) \ E=-58930.46 \ eV \\ 2 \cdot K_2 (as \ 2^2 \cdot, open-shell \ S_0, \ SMD=Et_2O) \ E=-58930.46 \ eV \\ 2 \cdot K_2 (as \ 2^2 \cdot, open-shell \ S_0, \ SMD=Et_2O) \ E=-58930.46 \ eV \\ 2 \cdot K_2 (as \ 2^2 \cdot, open-shell \ S_0, \ SMD=Et_2O) \ E=-58930.46 \ eV \\ 2 \cdot K_2 (as \ 2^2 \cdot, open-shell \ S_0, \ SMD=Et_2O) \ E=-58930.46 \ eV \\ 2 \cdot K_2 (as \ 2^2 \cdot, open-shell \ S_0, \ SMD=Et_2O) \ E=-58930.46 \ eV \\ 2 \cdot K_2 (as \ 2^2 \cdot, open-shell \ S_0, \ SMD=Et_2O) \ E=-58930.46 \ eV \\ 2 \cdot K_2 (as \ 2^2 \cdot, open-shell \ S_0, \ SMD=Et_2O) \ E=-58930.46 \ eV \\ 2 \cdot K_2 (as \ 2^2 \cdot, open-shell \ S_0, \ SMD=Et_2O) \ E=-58930.46 \ eV \\ 2 \cdot K_2 (as \ 2^2 \cdot, open-shell \ S_0, \ SMD=Et_2O) \ E=-58930.46 \ eV \\ 2 \cdot K_2 (as \ 2^2 \cdot, open-shell \ S_0, \ SMD=Et_2O) \ E=-58930.46 \ eV \\ 2 \cdot K_2 (as \ 2^2 \cdot, open-shell \ S_0, \ SMD=Et_2O) \ E=-58930.46 \ eV \\ 2 \cdot K_2 (as \ 2^2 \cdot, open-shell \ S_0, \ SMD=Et_2O) \ E=-58930.46 \ eV \\ 2 \cdot K_2 (as \ 2^2 \cdot, open-shell \ S_0, \ SMD=Et_2O) \ E=-58930.46 \ eV \\ 2 \cdot K_2 (as \ 2^2 \cdot, open-shell \ S_0, \ SMD=Et_2O) \ E=-58930.46 \ eV \\ 2 \cdot K_2 (as \ 2^2 \cdot, open-shell \ S_0, \ SMD=Et_2O) \ E=-58930.46 \ eV \\ 2 \cdot K_2 (as \ 2^2 \cdot, open-shell \ S_0, \ SMD=Et_2O) \ E=-58930.46 \ eV \\ 2 \cdot K_2 (as \ 2^2 \cdot, open-shell \ S_0, \ SMD=Et_2O) \ E=-58930.46 \ eV \ SMD=Et_2O) \ E=-589300.46 \ e$ 

| Ν | 4.48299573 | 13.5691708 | 10.3378686 | Ν | 4.4546703  | 13.6094811 | 10.3586775 |
|---|------------|------------|------------|---|------------|------------|------------|
| В | 6.14531835 | 8.21124612 | 4.37953811 | В | 6.13857632 | 8.15746277 | 4.35162831 |
| С | 5.05432897 | 13.992627  | 9.09337058 | C | 5.0198118  | 14.0101626 | 9.10953096 |
| С | 6.00311795 | 13.1655699 | 8.44603985 | C | 5.97743401 | 13.1783711 | 8.4824846  |
| Н | 6.35091366 | 12.2648737 | 8.94804205 | Н | 6.33070036 | 12.2917706 | 9.00489918 |
| С | 6.44146028 | 13.4601427 | 7.17986279 | С | 6.43836751 | 13.4586733 | 7.21978053 |
| Н | 7.14873335 | 12.7968692 | 6.69430715 | Н | 7.16628404 | 12.7938739 | 6.76710427 |
| С | 6.00483476 | 14.6332412 | 6.48098046 | С | 6.01019257 | 14.6211531 | 6.49834287 |
| С | 5.17965203 | 15.5445758 | 7.224987   | С | 5.17048536 | 15.5374783 | 7.21939698 |
| С | 4.67309809 | 15.1773861 | 8.48620027 | С | 4.64984329 | 15.1891298 | 8.48180461 |
| Н | 3.9840425  | 15.8509275 | 8.99592206 | Н | 3.96004446 | 15.8742271 | 8.97389638 |
| С | 6.41552075 | 14.9457959 | 5.15079156 | С | 6.43656613 | 14.9217562 | 5.16861848 |
| С | 6.30700867 | 16.3055948 | 4.71394288 | С | 6.32800405 | 16.2763023 | 4.7140172  |
| С | 5.4616087  | 17.1948573 | 5.47040521 | C | 5.46720094 | 17.1721163 | 5.44811103 |
| Н | 5.29382078 | 18.1956073 | 5.07162895 | Н | 5.29805393 | 18.1673519 | 5.03798031 |
| С | 4.88742433 | 16.822171  | 6.64639999 | C | 4.87949547 | 16.8079917 | 6.62001315 |
| Н | 4.23490705 | 17.5051642 | 7.18983132 | Н | 4.21742305 | 17.4945116 | 7.14580885 |
| С | 7.04170244 | 13.9760314 | 4.23982478 | C | 7.07629206 | 13.9468005 | 4.26686841 |
| С | 7.98172407 | 14.5301501 | 3.28392741 | C | 8.01833615 | 14.4908903 | 3.31324543 |
| С | 7.95954074 | 15.8885675 | 2.99093649 | C | 8.00935506 | 15.8540905 | 3.01371732 |
| Н | 8.63218165 | 16.2645935 | 2.21882139 | Н | 8.69092609 | 16.2253787 | 2.24854677 |
| С | 7.05401454 | 16.7623886 | 3.61672882 | С | 7.09173472 | 16.7268828 | 3.62390335 |
| Н | 6.98658947 | 17.8074461 | 3.32013409 | Н | 7.02265671 | 17.7687747 | 3.31798979 |
| С | 6.75791547 | 12.6055759 | 4.21293316 | C | 6.78796793 | 12.5685581 | 4.23848079 |
| С | 7.61175678 | 11.6829255 | 3.47607518 | C | 7.63688449 | 11.648141  | 3.5022799  |
| С | 8.68552123 | 12.2640171 | 2.69310226 | C | 8.71717027 | 12.2196834 | 2.7270489  |
| Н | 9.34685367 | 11.5838142 | 2.15548623 | Н | 9.38093004 | 11.5391872 | 2.19349696 |
| С | 8.83760249 | 13.6059133 | 2.57563682 | C | 8.87539723 | 13.5634708 | 2.61140955 |
| Н | 9.60632235 | 14.0195947 | 1.92110781 | Н | 9.65120436 | 13.9717218 | 1.96324353 |
| С | 5.60992428 | 11.9940097 | 4.84995312 | C | 5.64104138 | 11.9585417 | 4.87441357 |
| Н | 4.85661458 | 12.642444  | 5.29088607 | Н | 4.89475193 | 12.6015458 | 5.33335079 |
| С | 5.42464816 | 10.6450136 | 4.86615221 | C | 5.44558188 | 10.6063324 | 4.87805825 |
| Н | 4.51534994 | 10.2537686 | 5.32604566 | Н | 4.53773207 | 10.2239231 | 5.34836657 |
| С | 6.33806027 | 9.69074025 | 4.2674819  | C | 6.34346989 | 9.6533243  | 4.26474668 |
| С | 7.41055401 | 10.320293  | 3.53738482 | C | 7.41984874 | 10.278332  | 3.54888675 |
| Н | 8.12923662 | 9.67990958 | 3.02119122 | Н | 8.12997683 | 9.64089408 | 3.01761421 |
| С | 5.12079151 | 7.55153704 | 5.42361187 | C | 5.12229515 | 7.49097556 | 5.39905545 |
| С | 4.22736509 | 6.52014989 | 5.01595761 | C | 4.20173576 | 6.48519456 | 4.98770102 |
| С | 3.41620188 | 5.85065241 | 5.93282194 | C | 3.37387299 | 5.83290311 | 5.90523921 |
| Н | 2.74533804 | 5.06674725 | 5.5747687  | Н | 2.67873404 | 5.07276339 | 5.54512943 |
| С | 3.44537655 | 6.14800255 | 7.29730717 | C | 3.41240476 | 6.12209112 | 7.27135367 |
| С | 4.30488353 | 7.16320894 | 7.70994048 | C | 4.3100624  | 7.10334534 | 7.68825543 |
| Н | 4.36787637 | 7.40933029 | 8.77162393 | Н | 4.38039346 | 7.34155866 | 8.75060855 |
| С | 5.12277863 | 7.86485257 | 6.811644   | C | 5.14589707 | 7.78577185 | 6.79163777 |
| С | 4.12136622 | 6.10978008 | 3.56300692 | C | 4.08042494 | 6.07307899 | 3.53671194 |
| Н | 4.11999883 | 6.98727232 | 2.90798518 | Н | 4.12190262 | 6.93997467 | 2.8697198  |

| Н | 3.19964835 | 5.54066117 | 3.38940698 | Н | 3.1340674  | 5.54879737 | 3.36227365  |
|---|------------|------------|------------|---|------------|------------|-------------|
| Н | 4.97071656 | 5.48964843 | 3.25213032 | Н | 4.89457527 | 5.40167567 | 3.23670482  |
| С | 2.57245211 | 5.39665452 | 8.27380657 | C | 2.50625831 | 5.40802289 | 8.24438331  |
| Н | 2.50586003 | 4.3344992  | 8.00877624 | Н | 2.3768605  | 4.35582375 | 7.9668798   |
| Н | 1.54630176 | 5.78989698 | 8.29377592 | Н | 1.50662313 | 5.86132898 | 8.26931719  |
| Н | 2.96794831 | 5.46623466 | 9.29330004 | Н | 2.90897957 | 5.44171603 | 9.26226697  |
| С | 6.03674166 | 8.91246207 | 7.40649331 | C | 6.09043854 | 8.79984892 | 7.39752439  |
| Н | 6.97874442 | 8.9797359  | 6.85345028 | Н | 7.05792871 | 8.8178201  | 6.88561605  |
| Н | 6.23931558 | 8.69054567 | 8.46145695 | Н | 6.25218342 | 8.58541619 | 8.46038955  |
| Н | 5.59174445 | 9.91546833 | 7.36105958 | Н | 5.69141514 | 9.81981346 | 7.32939251  |
| С | 6.99885951 | 7.1961506  | 3.47417469 | С | 6.98778044 | 7.17084365 | 3.4130983   |
| С | 7.01518817 | 7.26811563 | 2.05659966 | С | 6.98908597 | 7.27954353 | 1.99688302  |
| С | 7.72486704 | 6.32949214 | 1.29555679 | С | 7.72097102 | 6.38294005 | 1.20501151  |
| Н | 7.70054235 | 6.40748769 | 0.20672135 | Н | 7.68789485 | 6.48964764 | 0.1197851   |
| С | 8.44920062 | 5.29518341 | 1.88209113 | С | 8.48027772 | 5.35390499 | 1.75829427  |
| С | 8.4391598  | 5.21467348 | 3.27642029 | С | 8.47786928 | 5.2332195  | 3.15040981  |
| Н | 9.00121261 | 4.41703263 | 3.7668726  | Н | 9.0645528  | 4.43818139 | 3.61353189  |
| С | 7.73420797 | 6.13018039 | 4.06021244 | С | 7.75297984 | 6.10705206 | 3.9654128   |
| С | 6.24067451 | 8.32550057 | 1.30302563 | С | 6.18262826 | 8.3335628  | 1.27099236  |
| Н | 5.98232504 | 7.97110009 | 0.29721372 | Н | 5.95373587 | 8.00977697 | 0.24908715  |
| Н | 6.81733361 | 9.25301515 | 1.20138498 | Н | 6.72498827 | 9.28548721 | 1.2071906   |
| Н | 5.32909891 | 8.60641691 | 1.83900197 | Н | 5.24532485 | 8.55743288 | 1.79075255  |
| С | 9.2385938  | 4.31324295 | 1.05008873 | С | 9.29423546 | 4.41953763 | 0.89716686  |
| Н | 9.12449472 | 3.28807216 | 1.42307127 | Н | 9.17888895 | 3.3770964  | 1.21539415  |
| Н | 10.3119971 | 4.54547365 | 1.06178468 | Н | 10.3638097 | 4.65896993 | 0.95172741  |
| Н | 8.91054423 | 4.33014823 | 0.00458066 | Н | 8.99483973 | 4.48752967 | -0.15391119 |
| С | 7.78348093 | 5.96041287 | 5.56299372 | C | 7.81520326 | 5.882327   | 5.46076863  |
| Н | 8.59628216 | 5.28214164 | 5.85055287 | Н | 8.65021347 | 5.22170082 | 5.71990737  |
| Н | 6.84264051 | 5.55522428 | 5.95492625 | Н | 6.89427064 | 5.42131439 | 5.8392552   |
| Н | 7.93683708 | 6.92468669 | 6.05944082 | Н | 7.94090582 | 6.82546389 | 6.00316166  |
| С | 3.91468409 | 12.2795644 | 10.4034881 | C | 3.91778145 | 12.3097527 | 10.4675036  |
| С | 3.88016297 | 11.5547852 | 11.6071761 | C | 3.93229544 | 11.6160917 | 11.6901015  |
| Н | 4.284841   | 11.9999864 | 12.5115595 | Н | 4.34912612 | 12.0923374 | 12.5732526  |
| С | 3.34563885 | 10.2726014 | 11.6454327 | C | 3.42648473 | 10.3241475 | 11.7761222  |
| Н | 3.32988483 | 9.73591262 | 12.5936373 | Н | 3.45062839 | 9.81233179 | 12.737162   |
| С | 2.85493308 | 9.64609383 | 10.4943142 | C | 2.90943086 | 9.65990716 | 10.6561401  |
| С | 2.92782395 | 10.3575969 | 9.29508924 | C | 2.918534   | 10.3483336 | 9.4405689   |
| Н | 2.59585214 | 9.88576043 | 8.37201409 | Н | 2.54025269 | 9.86015666 | 8.54410084  |
| С | 3.43387979 | 11.6538053 | 9.24305513 | C | 3.40185219 | 11.6518806 | 9.34122439  |
| Н | 3.49133174 | 12.1736442 | 8.29166757 | Н | 3.39736082 | 12.1541781 | 8.37809566  |
| С | 2.2734109  | 8.25604458 | 10.5507985 | C | 2.37392835 | 8.25450689 | 10.7642969  |
| Н | 1.99791627 | 7.90959572 | 9.55070191 | Н | 1.98489704 | 7.91099212 | 9.80123362  |
| Н | 1.37689995 | 8.22314044 | 11.1830023 | Н | 1.56212447 | 8.19205123 | 11.4988989  |
| Н | 2.99178929 | 7.53604659 | 10.9619985 | Н | 3.15440923 | 7.55221598 | 11.0817971  |
| С | 4.41984685 | 14.4671761 | 11.4092601 | C | 4.37658773 | 14.5347975 | 11.4190913  |
| С | 5.43860272 | 15.4227101 | 11.5906736 | С | 5.42402542 | 15.4442717 | 11.641293   |

| Η | 6.26589218 | 15.4420789 | 10.8877441 |  |
|---|------------|------------|------------|--|
| С | 5.37990294 | 16.3315103 | 12.6371794 |  |
| Н | 6.18635885 | 17.0550013 | 12.7498828 |  |
| С | 4.31736922 | 16.3399036 | 13.5506144 |  |
| С | 3.3053416  | 15.3985465 | 13.3595898 |  |
| Н | 2.45349409 | 15.385004  | 14.0382203 |  |
| С | 3.34218021 | 14.4836335 | 12.3095832 |  |
| Н | 2.52784938 | 13.7778766 | 12.1776297 |  |
| С | 4.2760911  | 17.3338258 | 14.6850446 |  |
| Н | 4.31219415 | 18.3660613 | 14.3166222 |  |
| Н | 5.12530452 | 17.2024576 | 15.3670762 |  |
| Н | 3.35845823 | 17.2214694 | 15.2719293 |  |

| Н | 6.29577472 | 15.4187378 | 10.9933361 |
|---|------------|------------|------------|
| С | 5.34827825 | 16.370186  | 12.6746744 |
| Н | 6.17576965 | 17.0618783 | 12.8241142 |
| С | 4.24106043 | 16.4268204 | 13.5317442 |
| С | 3.2027025  | 15.5213877 | 13.3009621 |
| Н | 2.3204592  | 15.5456114 | 13.937928  |
| С | 3.25696656 | 14.5960294 | 12.2595233 |
| Н | 2.42365158 | 13.9182739 | 12.0950109 |
| С | 4.18334738 | 17.4308741 | 14.6554064 |
| Н | 4.29249466 | 18.4549365 | 14.2804114 |
| Н | 4.9883568  | 17.2627751 | 15.3806418 |
| Н | 3.23136389 | 17.3688188 | 15.1915239 |

## $2 \cdot K_2$ (as $2^{2-}$ , triplet, SMD= $Et_2O$ ) E = -58930.34 eV

| N | 4.38090232 | 13.614365  | 10.3001468 |
|---|------------|------------|------------|
| В | 6.17282843 | 8.15080657 | 4.46608732 |
| С | 5.05492136 | 14.023671  | 9.09738968 |
| С | 6.09201343 | 13.23816   | 8.59361362 |
| Н | 6.41702944 | 12.3532779 | 9.13414765 |
| С | 6.63221349 | 13.553755  | 7.34057455 |
| Н | 7.39281752 | 12.9029599 | 6.92053651 |
| С | 6.18490145 | 14.6484881 | 6.58812848 |
| С | 5.27108438 | 15.5712171 | 7.21152753 |
| С | 4.64948833 | 15.1747381 | 8.43175862 |
| Н | 3.86832128 | 15.8003091 | 8.86042966 |
| С | 6.66121447 | 14.9369641 | 5.23235138 |
| С | 6.61705648 | 16.3188632 | 4.82223535 |
| С | 5.80143141 | 17.2301082 | 5.50647139 |
| Н | 5.75437141 | 18.2583493 | 5.14819337 |
| С | 5.05272936 | 16.8384562 | 6.62265449 |
| Н | 4.38598832 | 17.5411223 | 7.1191805  |
| С | 7.24713254 | 13.969252  | 4.35351231 |
| С | 8.13140757 | 14.425684  | 3.32799824 |
| С | 8.2069346  | 15.8284861 | 3.04420222 |
| Н | 8.86561766 | 16.1555102 | 2.23918616 |
| С | 7.43081155 | 16.7263692 | 3.71147227 |
| Н | 7.43911556 | 17.7814853 | 3.43759425 |
| С | 6.95951952 | 12.5418309 | 4.37327932 |
| С | 7.78286158 | 11.6276129 | 3.65100226 |
| С | 8.80658662 | 12.1429649 | 2.7899052  |
| Н | 9.43171566 | 11.4412098 | 2.24084416 |
| С | 8.91342062 | 13.494419  | 2.59317118 |
| Н | 9.62193271 | 13.889099  | 1.86389214 |
| С | 5.80329342 | 11.9901139 | 4.99453436 |
| Н | 5.08452236 | 12.6638039 | 5.45140939 |
| С | 5.55974139 | 10.6385617 | 5.00746936 |

| Η | 4.64283033 | 10.2752288 | 5.47346941  |
|---|------------|------------|-------------|
| С | 6.44357646 | 9.67876169 | 4.41215332  |
| С | 7.53341754 | 10.2394387 | 3.73039727  |
| Н | 8.22484857 | 9.57607368 | 3.20675523  |
| С | 5.24276837 | 7.49022455 | 5.57517839  |
| С | 4.30361831 | 6.47265645 | 5.22893237  |
| С | 3.58066326 | 5.7863434  | 6.20473342  |
| Н | 2.8785922  | 5.00947636 | 5.89407743  |
| С | 3.73409427 | 6.05496446 | 7.56668553  |
| С | 4.62663733 | 7.0667085  | 7.91856057  |
| Н | 4.77864535 | 7.29726753 | 8.97482365  |
| С | 5.36523441 | 7.77929556 | 6.96483452  |
| С | 4.05308629 | 6.09096545 | 3.78596227  |
| Н | 4.00256129 | 6.97943849 | 3.14719323  |
| Н | 3.11021122 | 5.53778038 | 3.69403926  |
| Н | 4.85726335 | 5.46413441 | 3.38143524  |
| С | 2.96991121 | 5.26558838 | 8.60242659  |
| Н | 3.01330622 | 4.1897753  | 8.39150162  |
| Н | 1.90771414 | 5.54574942 | 8.63471165  |
| Н | 3.38124824 | 5.42860238 | 9.60452468  |
| С | 6.34687948 | 8.80396962 | 7.48750252  |
| Н | 7.2772015  | 8.79391065 | 6.90919148  |
| Н | 6.57463948 | 8.61250261 | 8.5424906   |
| Н | 5.95504145 | 9.82577771 | 7.41405954  |
| С | 6.87879051 | 7.18798751 | 3.40873024  |
| С | 6.78895849 | 7.39966052 | 2.00446215  |
| С | 7.38010256 | 6.51007848 | 1.10156508  |
| Н | 7.27297655 | 6.69688446 | 0.031165    |
| С | 8.08702256 | 5.38457637 | 1.52376111  |
| С | 8.1751256  | 5.16278837 | 2.89860621  |
| Н | 8.72169865 | 4.28985531 | 3.26111623  |
| С | 7.59061556 | 6.02929042 | 3.82598728  |
| С | 6.00712943 | 8.55831761 | 1.4293251   |
| Н | 5.7384264  | 8.3612746  | 0.38448403  |
| Н | 6.5770265  | 9.4940947  | 1.46760111  |
| Н | 5.09391337 | 8.74361161 | 2.00569014  |
| С | 8.75720761 | 4.46149332 | 0.53515104  |
| Н | 8.78930861 | 3.43168924 | 0.90998707  |
| Н | 9.79263068 | 4.76761734 | 0.33278202  |
| Н | 8.22650458 | 4.45533032 | -0.42410003 |
| С | 7.74669655 | 5.69788438 | 5.29393339  |
| Н | 8.52687559 | 4.94046036 | 5.43838438  |
| Н | 6.8133905  | 5.31625339 | 5.72627342  |
| Н | 8.01033657 | 6.59082649 | 5.87167043  |
| С | 3.85278228 | 12.3092459 | 10.3512098  |
| С | 3.75860427 | 11.6004318 | 11.5594278  |

| Н | 4.0906683  | 12.0682859 | 12.4816829 |
|---|------------|------------|------------|
| С | 3.26179523 | 10.3003698 | 11.5795408 |
| Н | 3.20160423 | 9.77316569 | 12.5313209 |
| С | 2.86830521 | 9.64745667 | 10.4082298 |
| С | 2.99821621 | 10.3473428 | 9.20504767 |
| Н | 2.7404832  | 9.85330271 | 8.27002057 |
| С | 3.46722625 | 11.6567929 | 9.16959967 |
| Н | 3.57046826 | 12.1728079 | 8.21985362 |
| С | 2.31637717 | 8.24473262 | 10.4391478 |
| Н | 2.25354416 | 7.83294758 | 9.42798369 |
| Н | 1.31186609 | 8.21899259 | 10.8814348 |
| Н | 2.95284121 | 7.57557153 | 11.0307318 |
| С | 4.22441131 | 14.5312591 | 11.3437378 |
| С | 5.20118337 | 15.5237741 | 11.5571968 |
| Н | 6.06432746 | 15.5554231 | 10.8994658 |
| С | 5.05462836 | 16.4525652 | 12.5781619 |
| Н | 5.82747539 | 17.2078472 | 12.7155569 |
| С | 3.94577028 | 16.4416572 | 13.433904  |
| С | 2.97790422 | 15.4613861 | 13.212698  |
| Н | 2.09238915 | 15.4317771 | 13.8463    |
| С | 3.10146822 | 14.52697   | 12.1855619 |
| Н | 2.31873317 | 13.791884  | 12.0253989 |
| С | 3.81080527 | 17.4548933 | 14.5441041 |
| Н | 3.85487528 | 18.4806663 | 14.159102  |
| Н | 4.61329133 | 17.3510742 | 15.2850901 |
| Н | 2.85708321 | 17.3366183 | 15.0692721 |