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Additional DEVELOP model details

Atom types.

In line with both Liu et al. 1 and Imrie et al. 2 , 14 atom types are permitted: carbon, nitrogen

(N−, N, N+), oxygen (O−, O, O+), fluorine, chlorine, bromine, iodine, and sulphur (maximum

valence 2, 4, or 6).

Hyperparameters.

As discussed in Methods, we used the same hyperparameters to train DEVELOP as adopted

in Imrie et al. 2 . In particular, we trained the model with a learning rate of 0.001 for 10 epochs

using the Adam optimiser and a batch size of 16. The hidden state dimension was set at

32, the encoding dimension 4, and λKL 0.3. The same hyperparameters were used for all

experiments.

Comparison to SyntaLinker

SyntaLinker3 is a transformer-based model for linker design that utilises a SMILES-based

representation. The results in Table S4 are not directly comparable with the original pub-

lication since SyntaLinker was both trained and evaluated on different data sets in Yang

et al. 3 . As described in Methods, we ensured a fair comparison between all methods by

training and assessing all methods on the same data sets.

SyntaLinker produced substantially weaker results than were reported in its original

publication.3 In particular, SyntaLinker produced a very low proportion of valid molecules on

both the CASF (Table S4) and PDBbind (Table 2) test sets. The poor validity of generated

molecules can be explained by the sampling method used by SyntaLinker, which employs

beam search4 to generate SMILES strings. When sampling only the most likely sequences,

the validity of generated molecules is relatively high; when the number of sequences sampled
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is increased, the validity falls significantly as lower probability sequences are selected. In

addition, we note that this sampling procedure limits the number of molecules that can be

generated by SyntaLinker. However, as a result of using beam search, almost all of the

SMILES strings generated by SyntaLinker correspond to unique molecules.

In addition to the low proportion of valid molecules generated, SyntaLinker recovered

only 8% of the original molecules on the CASF set compared to 30% for DeLinker and

50% for DEVELOP, while on the PDBbind set SyntaLinker recovered 0.3% of the original

molecules compared to 1.9% and 22.4% for DeLinker and DEVELOP, respectively. The

3D shape similarity of the molecules generated by SyntaLinker was significantly lower than

DEVELOP for both the CASF (Table S4) and PDBbind (Table 2) test sets.

Differences in experimental setup. There are a number of differences between the ex-

perimental setup in this work and Yang et al. 3 which could be contributing to the differences

in reported results for SyntaLinker.

First, Yang et al. 3 used a different filtering pipeline to construct their training and test

sets. In particular, they applied Lipinski’s “Rules of Five”, filtered out pan assay interference

compounds (PAINS) substructures,5 and set an absolute cut-off for synthetic accessibility

score6 of 6.5. Then, they employed a fragmentation algorithm from matched-molecular

pair analysis proposed by Hussain and Rea 7 that performs double cuts of non-functional

group, acyclic single bonds. These candidate examples were then filtered for “Rule of three”

criteria,8 a maximum shortest linker bond distance of 15, a maximum synthetic accessibility

score of each of the two starting substructures of 5, and a restriction that the synthetic

accessibility score of the linker is lower than the sum of the two fragments. While many of

these criteria are closely related to our data construction process, we note that they lead to

different training and test sets for the same input data.

Second, Yang et al. 3 derived their training data from the ChEMBL9 database, while we

used the c. 250,000 compound subset of ZINC10 selected at random by Gómez-Bombarelli

et al. 11 . As a result, we note that the results reported in Yang et al. 3 comparing SyntaLinker
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and DeLinker are not directly comparable due to the different training and test sets employed.

Assessment

Metrics

In this section, we provide additional details for the performance metrics used to assess the

generative models

Validity. A molecule is deemed “valid” if it contains the starting substructure(s) and

its SMILES representation can be parsed by RDKit12 (i.e., satisfies atomic valency rules).

Valid =
# Chemically valid SMILES strings

# Generated molecules

Uniqueness. Uniqueness measures the proportion of distinct molecules generated.

Uniqueness was checked on a per-example basis to remove any dependency between ex-

amples in the test set. The total number of distinct molecules across all examples is divided

by the number of valid generated molecules to calculate the proportion of unique molecules.

Unique =
# Distinct valid molecules

# Valid molecules

Internal Diversity. Internal diversity measures the chemical diversity within a collec-

tion of molecules.13,14 For a set of molecules, G, the internal diversity is given by:

IntDivp = 1−

(
1

|G|2
∑

m1,m2∈G

Tanimoto Similarity(m1,m2)
p

)1/p

A higher value corresponds to greater diversity in the set of molecules. Following Polykovskiy

et al. 14 , we report IntDiv1 and IntDiv2. IntDiv ranges from 0 to 1. Note this metric is cal-

culated on a set of unique molecules (i.e. we filter duplicates before calculating internal

diversity) to isolate molecular diversity from uniqueness.
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Novelty. Novelty assesses the proportion of generated linkers or elaborations that were

not present in the training set. The total number of molecules with novel elaborations is

divided by the number of valid generated molecules to calculate the proportion of novel

molecules.

Novel =
# Valid elaborations not in training set

# Valid molecules
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Additional figures

(a)                                          (b)
Figure S1: Example pharmacophoric featurisation for PDB ID 2FLR. (a) Top: Input PDB
structure; Bottom: 2D depiction of ligand. (b) Top: Starting substructures and 3D phar-
macophoric representation (cyan: aromatic pharmacophore, red: acceptor, blue: donor);
Bottom: 2D depictions of starting substructures and target elaboration.
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(a)                                          (b)

Figure S2: Example pharmacophoric featurisation for PDB ID 5IWG. (a) Top: Input PDB
structure; Bottom: 2D depiction of ligand. (b) Top: Starting substructures and 3D phar-
macophoric representation (cyan: aromatic pharmacophore, red: acceptor, blue: donor);
Bottom: 2D depictions of starting substructures and target elaboration.
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(a)                                          (b)
Figure S3: Example pharmacophoric featurisation for PDB ID 3HB4. (a) Top: Input PDB
structure; Bottom: 2D depiction of ligand. (b) Top: Starting substructures and 3D phar-
macophoric representation (cyan: aromatic pharmacophore, red: acceptor, blue: donor);
Bottom: 2D depictions of starting substructures and target elaboration.
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Figure S4: R-group optimisation case study pharmacophoric featurisation. Crystal struc-
tures 5DB2 (a) and 5DB3 (c) were used to derive target pharmacophoric profiles, shown in
(b) and (d), respectively. Aromatic pharmacophores shown in cyan, hydrogen bond acceptors
in red, and hydrogen bond donors in blue.
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Figure S5: R-group optimisation case study. All 41 unique compounds generated by DE-
VELOP containing a hydrogen bond donor and aromatic ring for the Murcko scaffold shown
in Figure 6c (left).
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Figure S6: R-group optimisation case study. All 25 unique compounds generated by DE-
VELOP containing a hydrogen bond donor and aromatic ring for the Murcko scaffold shown
in Figure 6c (middle).
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Figure S7: R-group optimisation case study. All 10 unique compounds generated by DE-
VELOP containing a hydrogen bond donor and aromatic ring for the Murcko scaffold shown
in Figure 6c (right).
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Figure S8: R-group optimisation case study. Predicted binding affinities from docking using
the smina15 version of AutoDock Vina16 for molecules that satisfied the pharmacophoric
profile of the acetamide group (Figure 6b, left).
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Figure S9: R-group optimisation case study. Predicted binding affinities from docking using
the smina15 version of AutoDock Vina16 for molecules that satisfied the pharmacophoric
profile of the 4-methylpyrazole elaboration (Figure 6b, right).
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Additional results

Table S1: Linker design. Structural diversity metrics.

Metric SyntaLinker DeLinker DeLinker-Counts DEVELOP

CASF
Unique 8.1% 72.9% 58.6% 58.2%
IntDiv1 0.532 0.563 0.546 0.541
IntDiv2 0.524 0.560 0.542 0.536

PDBbind
Unique 93.6% 72.9% 58.6% 58.2%
IntDiv1 0.553 0.607 0.587 0.576
IntDiv2 0.546 0.604 0.583 0.572

Table S2: Scaffold elaboration. Structural diversity metrics.

Metric Scaffold-Decorator DeLinker DeLinker-Counts DEVELOP

CASF
Unique 25.2% 74.2% 52.0% 39.7%
IntDiv1 0.440 0.468 0.449 0.425
IntDiv2 0.436 0.465 0.445 0.420

PDBbind
Unique 23.4% 87.8% 81.6% 76.2%
IntDiv1 0.429 0.491 0.472 0.457
IntDiv2 0.426 0.488 0.468 0.453
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Table S3: Linker design. PDBbind set results comparing the two different sampling methods
for SyntaLinker (beam search and random sampling).

Metric SyntaLinker SyntaLinker DeLinker DeLinker-Counts DEVELOP
Beam Search Sampling

Valid 11.6% 65.4% 96.9% 90.2% 93.1%
Unique 93.6% 9.0% 86.1% 77.8% 77.3%
Novel 54.8% 9.9% 84.0% 87.6% 88.7%

Recovered 0.3% 0.0% 1.9% 8.7% 22.4%
Pass 2D filters 81.1% 95.1% 63.4% 59.5% 61.7%

SCRDKit Generated
>0.6 9.4% 13.4% 10.4% 19.8% 27.9%
>0.7 4.5% 7.7% 4.2% 10.1% 14.8%
>0.8 2.2% 4.8% 1.5% 4.4% 6.1%
>0.9 0.7% 1.3% 0.4% 1.2% 1.5%

Table S4: Linker design. CASF set results, including two different sampling methods for
SyntaLinker (beam search and random sampling).

Metric SyntaLinker SyntaLinker DeLinker DeLinker-Counts DEVELOP
Beam Search Sampling

Valid 9.8% 58.3% 94.7% 86.0% 89.6%
Unique 95.1% 8.1% 72.9% 58.6% 58.2%
Novel 54.4% 13.1% 68.7% 68.4% 71.1%

Recovered 7.5% 5.9% 29.8% 41.5% 50.0%
Pass 2D filters 80.5% 92.8% 71.7% 71.7% 68.6%

SCRDKit Generated
>0.6 14.0% 27.4% 23.0% 40.6% 45.5%
>0.7 7.0% 18.1% 12.2% 27.9% 31.0%
>0.8 3.8% 12.2% 6.4% 18.4% 20.7%
>0.9 1.5% 6.6% 2.7% 10.3% 12.2%
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Table S5: Linker design. Alternative 3D similarity metrics for CASF test set.

Metric SyntaLinker DeLinker DeLinker-Counts DEVELOP

SCRDKit Molecule
>0.7 22.5% 16.3% 22.5% 25.5%
>0.8 4.7% 3.6% 7.0% 7.2%
>0.9 0.5% 0.8% 2.9% 3.0%

SCRDKit Fragments
>0.7 42.6% 38.7% 40.8% 43.0%
>0.8 14.2% 12.3% 14.7% 15.4%
>0.9 1.3% 1.6% 3.2% 3.8%

RMSD
<1.00Å 30.5% 26.6% 28.1% 30.7%
<0.75Å 11.8% 9.3% 10.6% 12.9%
<0.50Å 3.0% 2.4% 4.3% 4.7%

Table S6: Linker Design. Alternative 3D similarity metrics for PDBbind test set.

Metric SyntaLinker DeLinker DeLinker-Counts DEVELOP

SCRDKit Molecule
>0.7 12.6% 12.8% 15.8% 17.3%
>0.8 2.4% 1.9% 3.3% 3.7%
>0.9 0.1% 0.0% 0.2% 0.2%

SCRDKit Fragments
>0.7 35.0% 34.5% 35.7% 34.0%
>0.8 11.8% 9.9% 10.2% 10.3%
>0.9 2.0% 1.1% 0.8% 1.0%

RMSD
<1.00Å 26.7% 24.8% 26.1% 25.0%
<0.75Å 10.3% 8.5% 8.9% 8.7%
<0.50Å 3.0% 1.4% 1.4% 1.6%
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Table S7: Scaffold elaboration. CASF set results.

Metric Scaffold-Decorator DeLinker DeLinker-Counts DEVELOP

Valid 99.9% 100.0% 100.0% 99.8%
Unique 25.2% 74.2% 52.0% 39.7%
Novel 2.4% 55.1% 50.7% 43.4%

Recovered 18.9% 33.6% 45.5% 58.7%
Pass 2D filters 98.4% 64.2% 67.5% 71.7%

SCRDKit Generated
>0.6 18.6% 14.1% 32.3% 51.2%
>0.7 10.6% 7.0% 23.2% 37.7%
>0.8 5.6% 2.7% 15.1% 24.8%
>0.9 1.3% 1.3% 6.2% 10.4%

Table S8: Scaffold elaboration. PDBbind set results, SCRDKit Generated calculated with
RDKit generated reference conformers.

Metric Scaffold-Decorator DeLinker DeLinker-Counts DEVELOP

Valid 99.9% 100.0% 100.0% 99.5%
Unique 23.4% 87.8% 81.6% 76.2%
Novel 2.0% 71.1% 79.2% 78.2%

Recovered 0.0% 1.0% 4.5% 15.3%
Pass 2D filters 98.9% 55.3% 47.8% 51.3%

SCRDKit Generated
>0.6 10.3% 7.6% 13.0% 31.5%
>0.7 4.3% 2.7% 5.7% 16.9%
>0.8 0.6% 0.7% 1.8% 6.8%
>0.9 0.0% 0.1% 0.3% 1.5%

17



Table S9: Scaffold elaboration. CASF set results, SCRDKit Generated calculated with RDKit
generated reference conformers.

Metric Scaffold-Decorator DeLinker DeLinker-Counts DEVELOP

Valid 99.9% 100.0% 100.0% 99.8%
Unique 25.2% 74.2% 52.0% 39.7%
Novel 2.4% 55.1% 50.7% 43.4%

Recovered 18.9% 33.6% 45.5% 58.7%
Pass 2D filters 98.4% 64.2% 67.5% 71.7%

SCRDKit Generated
>0.6 30.3% 22.4% 42.8% 67.6%
>0.7 22.0% 13.9% 35.8% 58.6%
>0.8 12.0% 5.3% 24.8% 44.0%
>0.9 5.1% 3.1% 18.1% 33.7%
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