SUPPORTING INFORMATION

Assembly of Multicyclic Isoquinoline Scaffolds from Pyridines: Formal Total Synthesis of Fredericamycin A

Fang-Xin Wang,^a Jia-Lei Yan,^a Zhixin Liu,^a Tingshun Zhu,^a Yingguo Liu,^a Shi-Chao Ren,^a Wen-Xin Lv,^a Zhichao Jin,^b and Yonggui Robin Chi*^{a,b}

^aDivision of Chemistry & Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore.

^bState Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China.

This version of the ESI published 14/07/2021 replaces the previous version published 28/06/2021. All spectra data now included.

TABLE OF CONTENTS

General	S1
1. Conditions Screening for Isoquinoline Synthesis from Pyridine	S1
1.1. General Scheme for Preparation of Compound 1	S1
1.2. General Scheme for Preparation of Compound 2	S4
1.3. Main Scheme for Conditions Screening	S5
1.4. Further Optimization	S6
1.5. Tentative Explanation for Reaction Pathways	S7
1.6. A General Procedure for Isoquinoline Synthesis	S8
1.7. Characterization of Isoquinoline Products	S9
2. Preparation of Compound 6a	S22
3. Preparation of Compound 8	S22
4. Preparation of Compound 9	S23
5. Main Scheme for the Preparation of Compound 10	S23
5.1. Preparation of Compound S24	S24
5.2. Preparation of Compound S25	S24
5.3. Preparation of Compound S26	S25
5.4. Preparation of Compound 10	S25
6. Conditions Screening for Hauser-Kraus-Type Annulation and Preparation of Kita's Intermediate 12	S25
6.1. Screening of Bases	S26
6.2. Screening of Solvents	S27
6.3. Screening of Thiourea Catalysts	S27
6.4. Screening of NHC Precursors	S28
6.5. Screening of Salts	S29
6.6. Preparation of Kita's Intermediate 12	S29
6.7. Comparison of NMR Spectral Data of Kita's Intermediate 12	\$30
7. Copies of NMR Spectra	S31

General

All moisture or oxygen-sensitive reactions were carried out under an argon atmosphere in heat-dried flasks. The solvents used were purified by distillation over the drying agents indicated and were transferred under argon: THF (Na), CH_2Cl_2 (CaH₂), acetone (CaSO₄). Other solvents were all bought from Sigma-Aldrich as anhydrous reagent. All reactions were monitored by thin-layer chromatography (TLC) on silica gel F_{254} plates using UV light as visualizing agent (if applicable), and a solution of ammonium molybdate tetrahydrate (50 g/L) in EtOH followed by heating as developing agents. The products were purified by flash column chromatography on silica gel (200-300 meshes).

¹H NMR and ¹³C NMR spectra were recorded in CDCl₃, acetonitrile- d_3 , DMSO- d_6 solution on a Bruker AVIII 400 MHz or AV 500 MHz instrument. Chemical shifts were denoted in ppm (δ), and calibrated by using residual undeuterated solvent (CDCl₃ (7.27 ppm), acetonitrile- d_3 (1.94 ppm), DMSO- d_6 (2.50 ppm) or tetramethylsilane (0.00 ppm)) as internal reference for ¹H NMR and the deuterated solvent (CDCl₃ (77.00 ppm), acetonitrile- d_3 (1.32 ppm), DMSO- d_6 (39.52 ppm) or tetramethylsilane (0.00 ppm)) as internal standard for ¹³C NMR. The following abbreviations were used to explain the multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, br = broad, m = multiplet, dd = double doublet, dt = double triplet, dq = double quartet. High-resolution mass spectral analysis (HRMS) data were measured on a Q-tof mass spectrometer by means of the ESI technique. The IR spectra were recorded on SHIMADZU IRAffinity-1 FTIR spectrometer. The X-ray single-crystal determination was performed on a Bruker APEX II X-ray single crystal diffractometer.

1. Conditions Screening for Isoquinoline Synthesis from Pyridine

Many attempts have been made to optimize the reaction conditions. Firstly, we have synthesized or bought the substrates needed and tested the Staunton–Weinreb-type annulation conditions with cycloenones bearing different α - or β -substitutes. Below are the details.

1.1. General Scheme for Preparation of Compound 1

Part 2: 1k, 1l, 1m, 1n, 1o, 1p, 1q, 1r, 1s, 1t, 1u, 1v, 1w, 1x

All the substrates pertaining to **1** could be synthesized via schemes demonstrated in part 1 to 3. Particularly, **1a** is commercially available and the details for synthesis of this model substrate in large scale are shown below. **1.1.1. Preparation of Compound S4**

NC
$$CO_2H \xrightarrow{H_2SO_4} NC CO_2Et$$

EtOH, reflux
Pre-S4 quant. S4

To a stirred solution of **Pre-S4** (50.0 g, 590.0 mmol, 1.0 equiv) in EtOH (200 mL) was dropwise added concentrated H_2SO_4 (3.2 mL, 59.0 mmol, 0.1 equiv) at room temperature. The resulting mixture was stirred at reflux overnight. After cooling to room temperature, the mixture was concentrated under reduced pressure. EtOAc (200 mL) and water (200 mL) were added to the residue. The organic phase was separated, and the aqueous layer was extracted with EtOAc (2 × 200 mL). The combined extracts were washed with brine (200 mL), dried over anhydrous Na_2SO_4 , and concentrated under reduced pressure. The crude **S4** (66.7 g, 590.0 mmol, quant.) was obtained as a colorless liquid and pure enough for the next step.

S4: ¹**H NMR** (400 MHz, CDCl₃): δ = 4.27 (q, *J* = 7.1 Hz, 2H), 3.54 (s, 2H), 1.32 ppm (t, *J* = 7.1 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃): δ = 167.6, 113.4, 62.5, 24.4, 13.6 ppm.

1.1.2. Preparation of Compound S3-1

To suspension of silica gel (50 g) in **S2** (50.0 g, 499.8 mmol, 1.0 equiv) was dropwise added ammonia (28% in water, 40.5 mL, 599.8 mmol, 1.2 equiv) at room temperature. The resulting mixture was stirred for 12 h. CH_2Cl_2 (200 mL) and water (200 mL) were added to the mixture. The organic phase was separated, and the aqueous layer was extracted with CH_2Cl_2 (2 × 200 mL). The combined extracts were washed with brine (200 mL), dried over anhydrous Na₂SO₄, and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel eluting with *n*-hexane/AcOEt (1:1) to afford **S3-1** (49.0 g, 494.8 mmol, 99% yield) as a colorless solid.

S3-1: ¹**H NMR** (400 MHz, CDCl₃): δ = 9.57 (br, 1H), 5.72 (br, 1H), 4.90 (s, 1H), 1.90 (s, 3H), 1.80 ppm (s, 3H).

1.1.3. Preparation of Compound S5-1

To a stirred solution of **S4** (50.0 g, 442.3 mmol, 1.0 equiv) and NEt₃ (61.6 mL, 442.3 mmol, 1.0 equiv) in THF (100 mL) was dropwise added **S3-1** (43.8 g, 442.3 mmol, 1.0 equiv) in THF (100 mL). The resulting mixture was brought to reflux and stirred overnight. After cooling to room temperature, additional NEt₃ (61.6 mL, 442.3 mmol, 1.0 equiv) was added and the mixture was brought to reflux and stirred for additional 12 h. After cooling to room temperature, CH₂Cl₂ (400 mL) and water (400 mL) were added. The organic phase was separated, and the aqueous layer was extracted with CH₂Cl₂ (2 × 200 mL). The combined extracts were washed with brine (400 mL), dried over anhydrous Na₂SO₄, and concentrated under reduced pressure. The pure **S5-1** (73.4 g, 376.0 mmol, 85% yield) was obtained as a white solid by recrystallization from ethanol.

S5-1: ¹**H NMR** (500 MHz, CDCl₃): δ = 13.25 (br, 1H), 5.93 (s, 1H), 4.37 (q, *J* = 7.0 Hz, 2H), 2.30 (s, 3H), 2.22 (s, 3H), 1.36 ppm (t, *J* = 7.0 Hz, 3H). ¹³**C NMR** (125 MHz, CDCl₃): δ = 166.7, 162.8, 152.2, 146.8, 120.0, 108.9, 61.0, 20.0, 18.9, 14.2 ppm.

To a stirred solution of **S5-1** (50.0 g, 256.3 mmol, 1.0 equiv) in CH_2Cl_2 (200 mL) was added Me₃OBF₄ (41.7 g, 281.9 mmol, 1.1 equiv). The resulting mixture was stirred vigorously for 2 d. A saturated aqueous solution of NaHCO₃ (200 mL) was dropwise added to the stirred solution (caution: a lot of gas emerged). After addition of water (200 mL), the organic phase was separated, and the aqueous layer was extracted with CH_2Cl_2 (2 × 200 mL). The combined extracts were washed with brine (400 mL), dried over anhydrous Na₂SO₄, and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel eluting with *n*-hexane/AcOEt (4:1) to afford the pyridine **1a** (39.1 g, 187.1 mmol, 73% yield; 95% yield brsm) as a colorless liquid.

1a: ¹**H NMR** (500 MHz, CDCl₃): $\delta = 6.48$ (s, 1H), 4.29 (q, J = 7.5 Hz, 2H), 3.85 (s, 3H), 2.30 (s, 3H), 2.17 (s, 3H), 1.28 ppm (t, J = 7.5 Hz, 3H). ¹³**C NMR** (125 MHz, CDCl₃): $\delta = 167.0$, 160.0, 156.6, 147.1, 117.3, 114.0, 60.8, 53.2, 23.6, 18.6, 13.9 ppm.

1.2. General Scheme for Preparation of Compound 2

Bhosale, R. S.; Bhosale, S. V.; Bhosale, S. V.; Wang, T. and Zubaidha, P. K. Tetrahedron Lett. **2004**, 45, 7187–7188.

Brenninger, C.; Pöthig, A. and Bach, T. Angew. Chem. Int. Ed. **2017**, 56, 4337–4341.

As we can see from the scheme above, all the substrates pertaining to 2 could be synthesized according to the known literature reported previously.

1.3. Main Scheme for Conditions Screening^a

Entry	Substrate	Conditions	Result
1	2a ($\mathbf{R}^1 = \mathbf{Br}, \mathbf{R}^2 = \mathbf{H}$)	LDA, LDA, THF, -78 °C to rt, THF,	no product
2	2b ($\mathbf{R}^1 = \mathbf{I}, \mathbf{R}^2 = \mathbf{H}$)	LDA, THF, -78 °C to rt	no product
3^b	$2c (R^1 = SPh, R^2 = H)$	LDA, THF, -78 °C to rt	4a: 55% yield; 5a, 3a: 0%
4^{b}	2d ($\mathbf{R}^1 = \mathbf{SOPh}, \mathbf{R}^2 = \mathbf{H}$)	LDA, THF, -78 °C to rt	4b : 66% yield; 5a , 3a : 0%
5	$2e (R^1 = H, R^2 = Cl)$	LDA, CuI, TMSCl, THF, -78 °C to rt	no product
6	$\mathbf{2f} (\mathbf{R}^1 = \mathbf{H}, \mathbf{R}^2 = \mathbf{Br})$	LDA, CuI, TMSCl, THF, -78 °C to rt	no product
7^{c}	$2g(R^1 = H, R^2 = OCH_3)$	LDA, THF, -78 °C to rt	4: 0%; 5a: 5% yield; 3a:
			10% yield
8 ^{c,d}	$2g (R^1 = H, R^2 = OCH_3)$	LDA, THF, –78 °C	4 : 0%; 5a : 25% yield; 3a :
			8% yield

^{*a*}Unless otherwise noted, reactions were conducted as follows: **1a** (0.1 mmol) and LDA (0.1 mmol) reacted in THF at -78 °C for 1 h; **2** (0.1 mmol) was added to the mixture before warming up to rt in 10 min. the reaction was quenched by addition of saturated NH₄Cl after completion monitored by TLC. ^{*b*}Compound **4a** or **4b** can't be transformed into **3a** under various conditions. ^{*c*}Compound **5a** can't be transformed into **3a** under various conditions. ^{*c*}Compound **5a** can't be transformed in 16% yield.

As demonstrated in the scheme, α -substituted enones (entries 1–4) are not suitable substrates for the Staundon–Weinreb-type annulation, as we just got the recovered starting material (entries 1–2) or just the Michael addition by-products **4a/4b** (entries 3–4) without any detection of products **3a**. It should be noted that the by-product **4a/4b** can't be transformed further into the desired product **3a** in the presence of various bases (such as NaH, LiHMDS, LDA, KOtBu, DBU, NaOCH₃) and different solvents. On the other hand, for the β -substitution pattern, we found that incorporation of halide (entries 5–6) is not a good choice. When the β -site was replaced by OCH₃ group (entries 7–8), the desired product **3a** could be isolated in 8%–10% yield together with the by-product **3a** under various conditions. The low yield of **3a** might be attributed to its relatively unstable characteristic to column chromatography. With this idea in mind, we decided to conduct the methylation of the new formed phenol directly without trying any isolation or purification, which turned out to be correct.

 CDCl₃): $\delta = 213.3$, 167.2, 160.4, 157.1, 148.1, 133.2, 132.8, 128.9, 127.8, 116.7, 114.7, 61.4, 58.9, 53.6, 43.1, 36.4, 36.2, 26.1, 24.0, 14.1 ppm. **IR**: $\bar{v} = 2980$, 1728, 1599, 1456, 1369, 1281, 1096, 737 cm⁻¹. **HRMS** (ESI): *m/z* calcd for C₂₂H₂₆NO₄S [*M* + H]⁺: 400.1577; found: 400.1583. The two diastereoisomers can't be separated through column chromatography and the ¹H and ¹³C NMR spectra only show the major diastereomer.

4b (R¹ = SOPh, R² = H, $dr \sim 2:3$): colorless oil. **R**_f = 0.6 (silica, *n*-hexane/AcOEt = 2/1). ¹**H** NMR (500 MHz, CDCl₃): $\delta = 7.56-7.47$ (m, 3H), 7.45–7.39 (m, 2H), 6.68 (s, 0.4H), 6.22 (s, 0.6H), 4.44–4.35 (m, 0.85H), 4.35–4.25 (m, 1.15H), 3.94 (s, 1.3H), 3.89 (s, 1.7H), 3.47 (d, J = 7.0 Hz, 0.43H), 3.16 (d, J = 5.4 Hz, 0.57H), 3.08–2.90 (m, 1.5H), 2.79–2.71 (m, 0.4H), 2.44 (s, 1.3H), 2.43–2.34 (m, 1H), 2.31 (s, 1.7H), 2.29–2.08 (m, 2H), 1.92–1.80 (m, 1H), 1.71–1.62 (m, 0.6H), 1.58–1.44 (m, 0.4H), 1.38–1.29 ppm (m, 3H). ¹³C NMR (125 MHz, CDCl₃): $\delta = 211.7$, 209.0, 167.3, 167.0, 160.4, 160.1, 157.4, 157.2, 147.7, 147.4, 141.4, 140.4, 131.3, 131.0, 129.0, 128.9, 124.7, 123.9, 116.6, 116.1, 114.7, 114.4, 74.5, 72.2, 61.6, 61.5, 53.7, 53.6, 39.4, 37.8, 37.7, 36.9, 34.6, 27.4, 26.4, 24.12, 24.08, 14.1 ppm. The ¹³C NMR signals of two carbons missed. **IR**: $\bar{v} = 3466$, 2951, 1728, 1599, 1572, 1369, 1281, 849 cm⁻¹. **HRMS** (ESI): m/z calcd for C₂₂H₂₆NO₅S [M + H]⁺: 416.1526; found: 416.1532. The two diastereoisomers can't be separated through column chromatography.

5a: colorless liquid, $\mathbf{R}_{f} = 0.4$ (silica, *n*-hexane/AcOEt = 2/1). ¹**H** NMR (500 MHz, CDCl₃): $\delta = 6.54$ (s, 1H), 5.85–5.82 (m, 1H), 4.29 (q, J = 7.1 Hz, 2H), 3.92 (s, 3H), 3.67 (s, 2H), 2.51 (dd, J = 4.7, 3.1 Hz, 2H), 2.40 (s, 3H), 2.36 (dt, J = 4.7, 3.2 Hz, 2H), 1.29 ppm (t, J = 7.1 Hz, 3H). ¹³**C** NMR (125 MHz, CDCl₃): $\delta = 209.0, 178.0, 166.7, 160.6, 157.9, 146.2, 131.2, 116.9, 114.1, 61.3, 53.7, 36.7, 35.3, 31.0, 24.0, 14.0 ppm.$ **IR** $: <math>\bar{v} = 3489, 2982, 1709, 1456, 1369, 1200, 1096, 866 cm⁻¹.$ **HRMS**(ESI): <math>m/z calcd for C₁₆H₂₀NO₄ [M + H]⁺: 290.1387; found: 290.1392.

3a: off-white solid, mp = 164–166 °C. **R**_f = 0.4 (silica, *n*-hexane/AcOEt = 4/1). ¹**H** NMR (500 MHz, CDCl₃): δ = 10.68 (br, 1H), 7.01 (s, 1H), 6.90 (s, 1H), 4.16 (s, 3H), 3.18–3.11 (m, 2H), 2.78–2.71 (m, 2H), 2.49 ppm (s, 3H). ¹³C NMR (125 MHz, CDCl₃): δ = 207.0, 161.8, 157.4, 153.8, 152.9, 146.1, 118.4, 113.2, 113.0, 106.4, 54.0, 36.4, 25.3, 24.1 ppm. **IR**: \bar{v} = 3053, 2986, 2305, 1628, 1422, 1265, 895, 741 cm⁻¹. **HRMS** (ESI): *m/z* calcd for C₁₄H₁₄NO₃ [*M* + H]⁺: 244.0968; found: 244.0974.

1.4. Further Optimization

		1a $CEt + R$ $LDA, THF, -78 °C to rt;$ $CEt + R$ $LDA, THF, -78 °C to rt;$ $CEt + R$ $LDA, THF, -78 °C to rt;$ $CEt + R$ R R R R R R R R R	N 6a
Entry	R	Ratio of 1a and 2	Yield (%)
1	OCH ₃	1a : 0.10 mmol, 2 : 0.10 mmol	32
2	OCH ₃	1a : 0.15 mmol, 2 : 0.10 mmol	49
3	OCH_3	1a : 0.20 mmol, 2 : 0.10 mmol	65
4^{b}	OEt	1a : 0.20 mmol, 2 : 0.10 mmol	72

Unless otherwise noted, reactions were conducted as follows: **1a** and LDA (the same ratio as for **1a**) reacted in THF (1 mL) at -78 °C for 1 h; **2** (1.0 eq.) was added to the mixture before warming up to rt in 10 min. When the reaction was in completion monitored by TLC, saturated aqueous NH₄Cl was added to the mixture and extraction was conducted by ethyl acetate and the solvent was removed under reduced pressure. The residue was treated with TBAB (0.2 eq.), NaOH (2.0 eq.) in water (1 mL), Me₂SO₄ (4.0 eq.) in CH₂Cl₂ (1 mL) and the complex mixture was vigorously stirred overnight.

As shown in this table, entry 4 indicated that OEt in the β position of enone 2 is a better substitution compared with the corresponding OCH₃ (72% yield *vs* 65% yield). This is possibly because EtOH is a relatively weaker acid compared with CH₃OH (pKa: 15.5 for CH₃OH, 16.0 for EtOH). That is to say, CH₃O⁻ is a weaker conjugated base and a better leaving group, thus accelerating the undesired pathway from I to 5a. As 5a can't be transformed further into 6a, a lower yield was observed in this case.

Further optimization focused on pyridine **1a** and α , β -unsaturated cycloenone **2h** as the model substrates. Bases, solvents, substrates ratios and temperature were screened systematically. Details are listed in the table below.

1	O O O O O O O O O O O O O O O O O O O	O LDA, THF -78 °C to rt	N OH O	NaOH, Me ₂ SO ₄ TBAB, CH ₂ Cl ₂ /H ₂ O /	N N N N N N N N N N N N N N N N N N N
	1a 2h		3a		6a
Entry	Variation from sta	ndard cono	ditions ^a		Yield $(\%)^b$
1	none				72
2	no methylation				14
3	OCH ₃ instead of OE	t in 2h			65
4^{b}	DABCO, DBU, DM	IAP, LiHM	DS and KHMDS	instead of LDA	0–42
5	Other solvents in step 1			<41	
6	1a:2h = 1:1				39
7	1a:2h = 1.5:1				54
8	1a:2h = 1:1.5				42
9 ^c	-78 °C for step 1				23
10	H instead of OCH ₃ i	n 1a			0

^aStandard conditions: **1a** (0.2 mmol) and LDA (0.2 mmol) reacted in THF at -78 °C for 1 h; **2h** (0.1 mmol) was added dropwise to the mixture before warming up to rt in 10 min. The reaction was quenched by addition of saturated aqueous solution of NH₄Cl after completion monitored by TLC. After removal of solvents, the crude residue was treated directly with TBAB (0.2 eq.), NaOH (2.0 eq.) in water (1 mL), Me₂SO₄ (4.0 eq.) in CH₂Cl₂ (1 mL) and vigorously stirred overnight. ^bIsolated yield. ^cRecovered starting material **2h**: 16% yield.

1.5. Tentative Explanation for Reaction Pathways

Generally, we proposed three main synthetic routes (color: path 1 in black, path 2 in blue and path 3 in red) for the construction of isoquinoline **3a** (see the scheme below). Path 1 goes with pyridine **1a** and the α -substituted cycloenone **2d**. Deprotonation of **1a** gives a metal ate complex **SI-I**, in which Michael addition occurs with enone **2d** to deliver intermediate **SI-II**. Subsequent Dieckmann condensation of enolate **SI-II** is followed by thermally promoted sulfoxide elimination of **SI-III**, forming intermediate **SI-IV**. Finally, spontaneous aromatization of **SI-IV** delivers the tricyclic isoquinoline **3a**. On the other hand, if we start the sequence with pyridine **1a** and the β -substituted enone **2g**, the Michael product **I** might be transformed into **5a** via a competitive E1cB. The following γ deprotonation of **5a** and Dieckmann condensation of **SI-V** produced intermediate **SI-VI**. Late-stage aromatization ensured the formation of compound **3a** (path 3). If Dieckmann condensation dominates the following transformation of Michael product **I** over E1cB, the intermediate **II** would be formed. Subsequent β -elimination of **II** and aromatization of **SI-IV** could also yield the isoquinoline **3a** (path 2).

Systematic study demonstrated that the Dieckmann condensation from intermediates **SI-II** to **SI-III** can't go through, excluding the possibility of path 1. The elimination product **5a** couldn't be transformed further into the isoquinoline **3a** under various conditions, which ruled out the reasonability for path 3. Taken together, path 2 might be a possible approach towards the isoquinoline **3a**.

1.6. A General Procedure for Isoquinoline Synthesis

To a stirred solution of **1** (0.2 mmol, 2.0 equiv) in THF (1 mL) was dropwise added freshly prepared LDA (1.0 mol/L, 0.2 mL, 0.2 mmol, 2.0 equiv) at -78 °C. The resulting mixture was stirred at the same temperature for 1 h. After slow addition of **2** (0.1 mmol, 1.0 equiv) in THF solution (0.5 mL) at -78 °C, the mixture was warmed to ambient temperature in 10 min. Saturated aqueous solution of NH₄Cl (2 mL) was added to quench the reaction after completion of the reaction monitored by TLC. Water (2 mL) and EtOAc (2 mL) was added into the mixture. The organic phase was separated, and the aqueous layer was extracted with EtOAc (2 × 2 mL). The combined extracts were washed with brine (4 mL) and concentrated under reduced pressure (note: all substrates including the insoluble should be collected). The residue was directly subjected to the next step without further purification.

To the residue obtained above was added NaOH (8.0 mg, 0.2 mmol, 2.0 equiv) in water (1 mL), Me₂SO₄ (38 μ L, 0.4 mmol, 4.0 equiv), TBAB (6.4 mg, 0.02 mmol, 0.2 equiv), CH₂Cl₂(1 mL) and the reaction mixture were stirred vigorously. Saturated aqueous solution of NH₄Cl (2 mL) was added to quench the reaction after completion of the reaction monitored by TLC. The organic phase was separated, and the aqueous layer was extracted with CH₂Cl₂ (2 × 2 mL). The combined extracts were washed with brine (4 mL), dried over anhydrous Na₂SO₄, and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel eluting with *n*-hexane/AcOEt (10:1 to 1:2) to afford the isoquinoline **6**.

1.7. Characterization of Isoquinoline Products

6a: 72% yield, off-white solid, mp 145–146 °C. $\mathbf{R}_{\mathbf{f}} = 0.45$ (silica, *n*-hexane/AcOEt = 4/1). ¹**H** NMR (400 MHz, CDCl₃): $\delta = 7.30$ (s, 1H), 6.92 (s, 1H), 4.11 (s, 3H), 4.06 (s, 3H), 3.20–3.12 (m, 2H), 2.75–2.68 (m, 2H), 2.49 ppm (s, 3H). ¹³**C** NMR (100 MHz, CDCl₃): $\delta = 203.3$, 161.8, 158.7, 154.4, 152.1, 145.6, 125.7, 117.8, 112.3, 111.9, 63.0, 53.9, 37.2, 25.1, 24.0 ppm. **IR**: $\bar{v} = 3053$, 2305, 1717, 1616, 1421, 1265, 895, 739 cm⁻¹. **HRMS** (ESI): *m/z* calcd for C₁₅H₁₆NO₃ [*M* + H]⁺: 258.1125; found: 258.1130.

6b: 63% yield, light yellow solid, mp 92–94 °C. $\mathbf{R}_{\mathbf{f}} = 0.5$ (silica, *n*-hexane/AcOEt = 4/1). ¹**H** NMR (500 MHz, CDCl₃): $\delta = 7.37$ (s, 1H), 6.94 (s, 1H), 4.14 (s, 3H), 4.08 (s, 3H), 3.19 (t, J = 6.5 Hz, 2H), 3.06–2.94 (m, 1H), 2.74 (t, J = 6.5 Hz, 2H), 1.35 (s, 3H), 1.33 ppm (s, 3H). ¹³C NMR (125 MHz, CDCl₃): $\delta = 203.4$, 161.8, 161.1, 158.6, 154.2, 145.9, 125.7, 118.3, 112.3, 109.5, 63.1, 53.8, 37.3, 35.6, 25.1, 22.0 ppm. **IR**: $\bar{v} = 2964$, 2854, 1441, 1377, 1287, 1158, 949, 705 cm⁻¹. **HRMS** (ESI): *m/z* calcd for C₁₇H₂₀NO₃ [*M* + H]⁺: 286.1438; found: 286.1443.

6c: 66% yield, light yellow solid, mp 149–151 °C. $\mathbf{R}_{f} = 0.4$ (silica, *n*-hexane/AcOEt = 4/1). ¹**H** NMR (500 MHz, CDCl₃): $\delta = 8.18$ (d, J = 7.5 Hz, 2H), 7.60 (s, 1H), 7.55–7.47 (m, 3H), 7.43 (t, J = 7.2 Hz, 1H), 4.27 (s, 3H), 4.13 (s, 3H), 3.29–3.12 (m, 2H), 2.83–2.66 ppm (m, 2H). ¹³C NMR (125 MHz, CDCl₃): $\delta = 203.2$, 162.1, 158.7, 154.7, 150.2, 145.8, 138.4, 129.1, 128.7, 126.8, 126.4, 119.0, 112.9, 109.9, 63.2, 54.1, 37.3, 25.2 ppm. **IR**: $\bar{v} = 3054$, 2930, 1442, 1375, 1203, 1156, 955, 744 cm⁻¹. **HRMS** (ESI): m/z calcd for C₂₀H₁₈NO₃ [M + H]⁺: 320.1281; found: 320.1286.

6d: 82% yield, white solid, mp 171–173 °C. **R**_f = 0.35 (silica, *n*-hexane/AcOEt = 4/1). ¹**H** NMR (500 MHz, CDCl₃): $\delta = 8.07$ (d, J = 8.1 Hz, 2H), 7.56 (s, 1H), 7.47 (s, 1H), 7.30 (d, J = 8.0 Hz, 2H), 4.26 (s, 3H), 4.12 (s, 3H), 3.25–3.15 (m, 2H), 2.82–2.70 (m, 2H), 2.44 ppm (s, 3H). ¹³C NMR (125 MHz, CDCl₃): $\delta = 203.2$, 162.0, 158.7, 154.6, 150.2, 145.9, 139.2, 135.7, 129.4, 126.7, 126.2, 118.9, 112.8, 109.3, 63.2, 54.0, 37.3, 25.1, 21.3 ppm. **IR**: $\bar{v} = 3423$, 2944, 1702, 1606, 1568, 1373, 1112, 738 cm⁻¹. **HRMS** (ESI): *m/z* calcd for C₂₁H₂₀NO₃ [*M* + H]⁺: 334.1438; found: 334.1443.

6e: 81% yield, off-white solid, mp 159–161 °C. $\mathbf{R}_{\mathbf{f}} = 0.25$ (silica, *n*-hexane/AcOEt = 4/1). ¹**H** NMR (500 MHz, CDCl₃): $\delta = 8.13$ (d, J = 8.7 Hz, 2H), 7.51 (s, 1H), 7.45 (s, 1H), 7.02 (d, J = 8.7 Hz, 2H), 4.25 (s, 3H), 4.11 (s, 3H), 3.89 (s, 3H), 3.30–3.15 (m, 2H), 2.80–2.70 ppm (m, 2H). ¹³C NMR (125 MHz, CDCl₃): $\delta = 203.2$, 162.0, 160.6, 158.7, 154.6, 150.0, 146.0, 131.1, 128.1, 126.0, 118.7, 114.1, 112.5, 108.6, 63.2, 55.4, 54.0, 37.3, 25.1 ppm. **IR**: $\bar{v} = 3542$, 3208, 1480, 1404, 1293, 1028, 802, 730 cm⁻¹. **HRMS** (ESI): m/z calcd for C₂₁H₂₀NO₄ [M + H]⁺: 350.1387; found: 350.1392.

6f: 65% yield, yellow solid, mp 118–121 °C. **R**_f = 0.25 (silica, *n*-hexane/AcOEt = 4/1). ¹**H NMR** (500 MHz, CDCl₃): δ = 7.79–7.76 (m, 1H), 7.74 (d, *J* = 7.8 Hz, 1H), 7.60 (s, 1H), 7.50 (s, 1H), 7.42 (t, *J* = 7.9 Hz, 1H), 6.99 (dd, *J* = 8.0, 2.3 Hz, 1H), 4.26 (s, 3H), 4.12 (s, 3H), 3.93 (d, *J* = 4.1 Hz, 3H), 3.28–3.16 (m, 2H), 2.82–2.73 ppm (m, 2H). ¹³**C NMR** (125 MHz, CDCl₃): δ = 203.3, 162.0, 160.0, 158.7, 154.7, 149.9, 145.8, 140.0, 129.7, 126.5, 119.2, 119.0, 114.5, 113.0, 112.6, 110.1, 63.2, 55.4, 54.1, 37.3, 25.2 ppm. **IR**: \bar{v} = 3463, 2933, 1466, 1421, 1351, 1291, 1098, 794 cm⁻¹. **HRMS** (ESI): *m/z* calcd for C₂₁H₂₀NO₄ [*M* + H]⁺: 350.1387; found: 350.1392.

6g: 86% yield, light yellow solid, mp 236–239 °C. **R**_f = 0.3 (silica, *n*-hexane/AcOEt = 4/1). ¹**H** NMR (500 MHz, CDCl₃): δ = 7.74–7.66 (m, 2H), 7.52 (s, 1H), 7.45 (s, 1H), 6.93 (d, *J* = 8.1 Hz, 1H), 6.02 (s, 2H), 4.24 (s, 3H), 4.11 (s, 3H), 3.26–3.15 (m, 2H), 2.81–2.70 ppm (m, 2H). ¹³**C** NMR (125 MHz, CDCl₃): δ = 203.3, 161.9, 158.7, 154.7, 149.7, 148.5, 148.2, 145.9, 133.0, 126.2, 120.9, 118.8, 112.7, 109.0, 108.4, 107.2, 101.3, 63.2, 54.0, 37.3, 25.2 ppm. **IR**: \bar{v} = 4199, 3011, 2988, 1510, 1447, 1287, 1183, 807 cm⁻¹. **HRMS** (ESI): *m/z* calcd for C₂₁H₁₈NO₅ [*M* + H]⁺: 364.1179; found: 364.1184.

6h: 44% yield, yellow solid, mp 185–187 °C. **R**_f = 0.35 (silica, *n*-hexane/AcOEt = 4/1). ¹**H NMR** (500 MHz, CDCl₃): δ = 8.19–8.13 (m, 2H), 7.54 (s, 1H), 7.49 (s, 1H), 7.22–7.15 (m, 2H), 4.25 (s, 3H), 4.12 (s, 3H), 3.27–3.19 (m, 2H), 2.82–2.72 ppm (m, 2H). ¹³**C NMR** (125 MHz, CDCl₃): δ = 203.2, 162.6, 162.2, 158.7, 154.8, 149.2, 145.8, 134.6, 128.62, 128.55, 126.4, 118.9, 115.7, 115.5, 112.8, 109.5, 63.2, 54.1, 37.3, 25.2 ppm. ¹⁹**F NMR** (376 MHz, CDCl₃): δ = -112.6 ppm. **IR**: \bar{v} = 3431, 2923, 1600, 1507, 1352, 1261, 1015, 805 cm⁻¹. **HRMS** (ESI): *m/z* calcd for C₂₀H₁₇FNO₃ [*M* + H]⁺: 338.1187; found: 338.1193.

6i: 57% yield, off-white solid, mp 148–150 °C. **R**_f = 0.32 (silica, *n*-hexane/AcOEt = 4/1). ¹**H** NMR (500 MHz, CDCl₃): δ = 8.10 (d, *J* = 8.5 Hz, 2H), 7.56 (s, 1H), 7.51–7.42 (m, 3H), 4.25 (s, 3H), 4.12 (s, 3H), 3.29–3.15 (m, 2H), 2.82–2.72 ppm (m, 2H). ¹³**C** NMR (125 MHz, CDCl₃): δ = 203.2, 162.2, 158.7, 154.9, 148.9, 145.7, 136.9, 135.1, 128.8, 128.0, 126.6, 119.0 113.0, 109.8, 63.2, 54.1, 37.3, 25.2 ppm. **IR**: \bar{v} = 2959, 2852, 1695, 1436, 1263, 1012, 810, 703 cm⁻¹. **HRMS** (ESI): *m/z* calcd for C₂₀H₁₇ClNO₃ [*M* + H]⁺: 354.0891; found: 354.0896.

6j: 60% yield, light yellow solid, mp 179–181 °C. **R**_f = 0.35 (silica, *n*-hexane/AcOEt = 4/1). ¹**H** NMR (500 MHz, CDCl₃): δ = 8.19–8.12 (m, 2H), 7.55 (s, 1H), 7.49 (s, 1H), 7.18 (t, *J* = 8.7 Hz, 2H), 4.26 (s, 3H), 4.14 (s, 3H), 3.26–3.20 (m, 2H), 2.81–2.74 ppm (m, 2H). ¹³**C** NMR (125 MHz, CDCl₃): δ = 203.2, 162.6, 162.2, 158.7, 154.9, 149.2, 145.8, 134.6, 128.62, 128.56, 126.5, 118.9, 115.7, 115.5, 112.9, 109.5, 63.3, 54.1, 37.3, 25.2 ppm. **IR**: \bar{v} = 3064, 2853, 1695, 1616, 1264, 1112, 821, 738 cm⁻¹. **HRMS** (ESI): *m/z* calcd for C₂₀H₁₇INO₃ [*M* + H]⁺: 446.0248; found: 446.0252.

6k: 76% yield, colorless liquid. **R**_f = 0.38 (silica, *n*-hexane/AcOEt = 4/1). ¹**H** NMR (500 MHz, CDCl₃): δ = 7.55 (s, 1H), 4.10 (s, 3H), 4.07 (s, 3H), 3.29–3.20 (m, 2H), 2.90–2.83 (m, 2H), 2.79–2.72 (m, 2H), 2.56 (s, 3H), 1.59–1.47 (m, 4H), 1.01 ppm (t, *J* = 7.1 Hz, 3H). ¹³**C** NMR (125 MHz, CDCl₃): δ = 203.4, 159.8, 159.0, 154.1, 149.2, 144.3, 125.0, 121.2, 115.0, 112.5, 63.1, 53.6, 37.4, 31.9, 28.0, 25.5, 23.1, 22.2, 14.0 ppm. **IR**: \bar{v} = 3342, 2956, 2859, 1731, 1624, 1325, 1182, 738 cm⁻¹. **HRMS** (ESI): *m/z* calcd for C₁₉H₂₄NO₃ [*M* + H]⁺: 314.1751; found: 314.1755.

6I: 83% yield, light yellow solid, mp 109–111 °C. **R**_f = 0.55 (silica, *n*-hexane/AcOEt = 4/1). ¹**H** NMR (500 MHz, CDCl₃): δ = 7.49 (s, 1H), 6.03–5.93 (m, 1H), 5.04 (dd, J = 10.2, 1.4 Hz, 1H), 4.89 (dd, J = 17.2, 1.5 Hz, 1H), 4.11 (s, 3H), 4.06 (s, 3H), 3.62 (d, J = 5.3 Hz, 2H), 3.20 (t, J = 6.5 Hz, 2H), 2.72 (t, J = 6.5 Hz, 2H), 2.52 ppm (s, 3H). ¹³C NMR (125 MHz, CDCl₃): δ = 203.3, 160.3, 158.8, 154.2, 150.2, 144.3, 135.1, 125.1, 117.8, 115.6, 115.1, 112.4, 63.0, 53.6, 37.3, 32.1, 25.4, 22.1 ppm. **IR**: \bar{v} = 3077, 2928, 2858, 1709, 1616, 1386, 1184, 734 cm⁻¹. **HRMS** (ESI): m/z calcd for C₁₈H₂₀NO₃ [M + H]⁺: 298.1438; found: 298.1443.

6m: 93% yield, white solid, mp 160–161 °C. **R**_f = 0.75 (silica, *n*-hexane/AcOEt = 4/1). ¹**H** NMR (500 MHz, CDCl₃): δ = 7.43 (s, 1H), 4.67 (s, 1H), 4.12 (s, 3H), 4.08 (s, 3H), 3.52, 3.44 (ABq, *J* = 17.5 Hz, 2H), 3.22–3.14 (m, 2H), 2.79–2.70 (m, 2H), 2.50 (s, 3H), 2.43 (dt, *J* = 8.3, 5.6 Hz, 1H), 2.21–2.04 (m, 4H), 1.32 (s, 3H), 1.22 (d, *J* = 8.5 Hz, 1H), 0.91 ppm (s, 3H). ¹³**C** NMR (125 MHz, CDCl₃): δ = 203.4, 160.2, 158.8, 153.9, 150.4, 145.5, 144.8, 125.0, 118.0, 117.0, 115.7, 112.3, 63.1, 53.7, 46.6, 41.0, 38.2, 37.3, 35.3, 31.7, 31.2, 26.3, 25.4, 22.2, 21.1 ppm. **IR**: $\bar{\nu}$ = 3052, 2942, 1722, 1608, 1589, 1264, 1081, 731 cm⁻¹. **HRMS** (ESI): *m/z* calcd for C₂₅H₃₀NO₃ [*M* + H]⁺: 392.2220; found: 392.2225.

The single crystal of **6m** (CCDC 2061702), which was used for determination of the absolute configuration via X-ray crystallographic analysis, was obtained from a recrystallization from a solution of **6m** in a mixed solvent of petroleum ether and ethyl acetate.

6n: 71% yield, white solid, mp 178–180 °C. **R**_f = 0.7 (silica, *n*-hexane/AcOEt = 4/1). ¹**H NMR** (500 MHz, CDCl₃): δ = 7.53 (s, 1H), 5.15 (t, *J* = 7.1 Hz, 1H), 4.10 (s, 3H), 4.07 (s, 3H), 3.24 (t, *J* = 6.5 Hz, 2H), 2.95–2.79 (m, 2H), 2.76 (t, *J* = 6.5 Hz, 2H), 2.55 (s, 3H), 2.15–1.95 (m, 2H), 1.72 (s, 3H), 1.63 (s, 3H), 1.62 (s, 3H), 1.62–1.28 (m, 4H), 1.07 ppm (d, *J* = 6.6 Hz, 3H). ¹³**C NMR** (125 MHz, CDCl₃): δ = 203.4, 159.9, 159.0, 154.1, 149.0, 144.2, 131.3, 125.0, 124.7, 121.4, 114.8, 112.5, 63.1, 53.6, 37.3, 36.8, 36.6, 33.1, 25.8, 25.7, 25.6, 25.5, 22.1, 19.6, 17.7 ppm. **IR**: \bar{v} = 3429, 2925, 1653, 1617, 1140, 795, 603, 551 cm⁻¹. **HRMS** (ESI): *m/z* calcd for C₂₅H₃₄NO₃ [*M* + H]⁺: 396.2533; found: 396.2538.

60: 57% yield, light yellow solid, mp 166–168 °C. $\mathbf{R}_{\mathbf{f}} = 0.4$ (silica, *n*-hexane/AcOEt = 4/1). ¹**H** NMR (400 MHz, CDCl₃): $\delta = 7.66$ (s, 1H), 4.12 (s, 3H), 4.08 (s, 3H), 3.75 (s, 2H), 3.27 (t, J = 6.4 Hz, 2H), 2.76 (t, J = 6.4 Hz, 2H), 2.62 (s, 3H), 2.04 ppm (s, 1H). ¹³**C** NMR (100 MHz, CDCl₃): $\delta = 203.3$, 160.8, 159.0, 154.9, 149.9, 143.7, 125.4, 115.7, 114.9, 112.7, 81.5, 69.0, 63.2, 53.9, 37.3, 25.6, 22.4, 18.2 ppm. **IR**: $\bar{v} = 3447$, 2962, 1700, 1611, 1257, 1136, 856, 795 cm⁻¹. **HRMS** (ESI): *m/z* calcd for C₁₈H₁₈NO₃ [*M* + H]⁺: 296.1281; found: 296.1286.

6p: 75% yield, light yellow solid, mp 141–143 °C. **R**_f = 0.45 (silica, *n*-hexane/AcOEt = 4/1). ¹**H** NMR (500 MHz, CDCl₃): δ = 7.44 (s, 1H), 7.29–7.22 (m, 2H), 7.21–7.15 (m, 1H), 7.08 (d, *J* = 7.4 Hz, 2H), 4.29 (s, 2H), 4.14 (s, 3H), 4.08 (s, 3H), 3.13–3.07 (m, 2H), 2.74–2.65 (m, 2H), 2.54 ppm (s, 3H). ¹³C NMR (125 MHz, CDCl₃): δ = 203.3, 160.6, 158.9, 154.5, 150.9, 144.8, 139.6, 128.6, 127.8, 126.1, 125.3, 118.5, 115.4, 112.6, 63.1, 53.8, 37.2, 33.8, 25.4, 22.5 ppm. **IR**: \bar{v} = 2918, 2849, 1693, 1609, 1558, 1261, 1062, 850, 738 cm⁻¹. **HRMS** (ESI): *m/z* calcd for C₂₂H₂₂NO₃ [*M* + H]⁺: 348.1594; found: 348.1599.

6q: 71% yield, white solid, mp 140–141 °C. **R**_f = 0.42 (silica, *n*-hexane/AcOEt = 4/1). ¹**H** NMR (500 MHz, CDCl₃): δ = 7.46 (s, 1H), 7.07 (d, *J* = 7.9 Hz, 2H), 6.98 (d, *J* = 8.0 Hz, 2H), 4.26 (s, 2H), 4.15 (s, 3H), 4.09 (s, 3H), 3.15–3.09 (m, 2H), 2.73–2.66 (m, 2H), 2.56 (s, 3H), 2.30 ppm (s, 3H). ¹³**C** NMR (125 MHz, CDCl₃): δ = 203.4, 160.5, 158.9, 154.5, 150.8, 144.8, 136.4, 135.6, 129.2, 127.7, 125.2, 118.7, 115.5, 112.5, 63.1, 53.7, 37.2, 33.3, 25.4, 22.5, 20.9 ppm. **IR**: \bar{v} = 3054, 2925, 2860, 1716, 1616, 1361, 1258, 1115, 737 cm⁻¹. **HRMS** (ESI): *m/z* calcd for C₂₃H₂₄NO₃ [*M* + H]⁺: 362.1751; found: 362.1756.

6r: 85% yield, white solid, mp 165–167 °C. **R**_f = 0.5 (silica, *n*-hexane/AcOEt = 4/1). ¹**H** NMR (500 MHz, CDCl₃): $\delta = 7.26$ (d, J = 7.4 Hz, 2H), 7.12 (t, J = 7.2 Hz, 1H), 6.96 (t, J = 7.4 Hz, 1H), 6.50 (d, J = 7.5 Hz, 1H), 4.17 (s, 3H), 4.15 (s, 2H), 4.12 (s, 3H), 3.10 (t, J = 6.5Hz, 2H), 2.70 (t, J = 6.5Hz, 2H), 2.54 (s, 3H), 2.48 ppm (s, 3H). ¹³C NMR (125 MHz, CDCl₃): $\delta = 203.3$, 160.6, 158.9, 154.6, 151.1, 144.9, 137.2, 136.1, 129.9, 126.7, 126.2, 126.1, 125.3, 118.1, 115.3, 112.5, 63.1, 53.8, 37.2, 31.2, 25.4, 22.3, 19.8 ppm. **IR**: $\bar{v} = 3052$, 2936, 2858, 1699, 1608, 1261, 1064, 956, 733 cm⁻¹. **HRMS** (ESI): *m/z* calcd for C₂₃H₂₄NO₃ [*M* + H]⁺: 362.1751; found: 362.1756.

6s: 66% yield, white solid, mp 192–194 °C. **R**_f = 0.65 (silica, *n*-hexane/AcOEt = 4/1). ¹**H** NMR (500 MHz, CDCl₃): δ = 7.45 (s, 1H), 4.30 (s, 2H), 4.12 (s, 3H), 4.07 (s, 3H), 3.19 (t, *J* = 7 Hz, 2H), 2.73 (t, *J* = 7 Hz, 2H), 2.62 ppm (s, 3H). ¹³**C** NMR (125 MHz, CDCl₃): δ = 203.1, 160.7, 159.1, 154.9, 151.2, 146.3 (br), 144.4 (br), 144.0, 140.8 (br), 138.6 (br), 136.6 (br), 125.4, 115.6, 114.2, 113.5 (br), 112.5, 63.2, 53.8, 37.2, 25.5, 22.6, 22.4 ppm.¹⁹**F** NMR (376 MHz, CDCl₃): δ = -141.83 (dd, *J* = 22.1, 7.5 Hz, 2F), -156.62 (t, *J* = 18.8 Hz, 1F), -162.26 ppm (td, *J* = 21.8, 7.7 Hz, 2F). **IR**: \bar{v} = 3453, 2954, 1722, 1564, 1489, 1122, 995, 858 cm⁻¹. **HRMS** (ESI): *m/z* calcd for C₂₂H₁₇F₅NO₃ [*M* + H]⁺: 438.1123; found: 438.1128.

6t: 69% yield, light yellow solid, mp 171–173 °C. **R**_f = 0.5 (silica, *n*-hexane/AcOEt = 4/1). ¹**H** NMR (500 MHz, CDCl₃): δ = 7.39–7.33 (m, 3H), 6.95 (d, *J* = 8.3 Hz, 2H), 4.22 (s, 2H), 4.14 (s, 3H), 4.09 (s, 3H), 3.15–3.08 (m, 2H), 2.74–2.67 (m, 2H), 2.52 ppm (s, 3H). ¹³**C** NMR (125 MHz, CDCl₃): δ = 203.2, 160.6, 158.9, 154.7, 150.9, 144.6, 138.6, 131.6, 129.5, 125.3, 119.8, 117.9, 115.1, 112.5, 63.1, 53.8, 37.2, 33.2, 25.4, 22.5 ppm. **IR**: \bar{v} = 3054, 1700, 1608, 1486, 1264, 1138, 1010, 736 cm⁻¹. **HRMS** (ESI): *m/z* calcd for C₂₂H₂₁BrNO₃ [*M* + H]⁺: 426.0699; found: 426.0704.

6u: 82% yield, white solid, mp 158–160 °C. **R**_f = 0.5 (silica, *n*-hexane/AcOEt = 4/1). ¹**H** NMR (500 MHz, CDCl₃): $\delta = 7.48$ (s, 1H), 6.82 (d, J = 3.5 Hz, 1H), 6.44 (d, J = 3.5 Hz, 1H), 4.32 (s, 2H), 4.13 (s, 3H), 4.09 (s, 3H), 3.18 (t, J = 6.5 Hz, 2H), 2.72 (t, J = 6.5 Hz, 2H), 2.58 ppm (s, 3H). ¹³**C** NMR (125 MHz, CDCl₃): $\delta = 203.2$, 160.8, 159.0, 154.8, 150.7, 144.8, 144.2, 129.6, 125.4, 124.8, 117.8, 114.9, 112.5, 109.5, 63.2, 53.8, 37.2, 29.0, 25.5, 22.3 ppm. **IR**: $\bar{v} = 3054$, 2950, 2855, 1732, 1614, 1350, 1006, 704 cm⁻¹. **HRMS** (ESI): m/z calcd for C₂₀H₁₉BrNO₃S [M + H]⁺: 432.0264; found: 432.0269.

6v: 72% yield, white solid, mp 144–146 °C. **R**_f = 0.65 (silica, *n*-hexane/AcOEt = 4/1). ¹**H** NMR (500 MHz, CDCl₃): δ = 7.40 (q, *J* = 8.5 Hz, 4H), 7.33 (s, 1H), 4.09 (s, 3H), 4.06 (s, 3H), 3.20–3.13 (m, 4H), 3.09–3.01 (m, 2H), 2.80–2.70 (m, 2H), 2.49 (s, 3H), 1.34 ppm (s, 9H). ¹³**C** NMR (125 MHz, CDCl₃): δ = 203.2, 160.3, 159.1, 154.5, 150.1, 150.0, 144.0, 132.2, 130.6, 126.1, 125.2, 118.8, 114.4, 112.5, 63.1, 53.7, 37.3, 34.5, 33.8, 31.3, 28.7, 25.5, 22.2 ppm. **IR**: \bar{v} = 3054, 2986, 2305, 1710, 1612, 1265, 1137, 895 cm⁻¹. **HRMS** (ESI): *m/z* calcd for C₂₇H₃₂NO₃S [*M* + H]⁺: 450.2097; found: 450.2102.

6w: 74% yield, white solid, mp 152–154 °C. **R**_f = 0.2 (silica, *n*-hexane/AcOEt = 4/1). ¹**H** NMR (500 MHz, CDCl₃): δ = 7.67 (s, 1H), 5.12 (t, *J* = 4.8 Hz, 1H), 4.11 (s, 3H), 4.06 (s, 3H), 4.03–3.97 (m, 2H), 3.86–3.81 (m, 2H), 3.31 (d, *J* = 4.8 Hz, 2H), 3.27–3.21 (m, 2H), 2.78–2.72 (m, 2H), 2.63 ppm (s, 3H). ¹³**C** NMR (125 MHz, CDCl₃): δ = 203.4, 160.5, 158.9, 154.2, 151.6, 144.9, 125.2, 115.4, 115.2, 112.4, 104.2, 65.0, 63.1, 53.7, 37.3, 33.0, 25.5, 22.9 ppm. **IR**: \bar{v} = 2956, 2927, 2305, 1708, 1613, 1264, 1139, 734 cm⁻¹. **HRMS** (ESI): *m*/*z* calcd for C₁₉H₂₂NO₅ [*M* + H]⁺: 344.1492; found: 344.1497.

6x: 88% yield, white solid, mp 150–152 °C. **R**_f = 0.7 (silica, *n*-hexane/AcOEt = 4/1). ¹**H** NMR (500 MHz, CDCl₃): $\delta = 8.00$ (s, 1H), 5.86 (s, 1H), 5.78 (s, 1H), 4.10 (s, 3H), 4.06 (s, 3H), 3.19 (s, 2H), 2.73 (d, *J* = 5.8 Hz, 2H), 2.58 (d, *J* = 15.1 Hz, 3H), 2.24 (s, 2H), 2.09–1.79 ppm (m, 4H). ¹³C NMR (125 MHz, CDCl₃): $\delta = 203.4$, 160.0, 158.8, 153.0, 149.6, 144.1, 132.5, 126.5, 124.9, 123.7, 117.0, 113.1, 63.0, 53.6, 38.1, 37.3, 28.4, 25.5, 24.7, 23.4, 23.0 ppm. **IR**: $\bar{v} = 2923$, 2853, 1709, 1611, 1569, 1363, 958, 735 cm⁻¹. **HRMS** (ESI): *m/z* calcd for C₂₁H₂₄NO₃ [*M* + H]⁺: 338.1751; found: 338.1756.

6y: 89% yield, white solid, mp 92–94 °C. $\mathbf{R}_{\mathbf{f}} = 0.5$ (silica, *n*-hexane/AcOEt = 4/1). ¹H NMR (500 MHz, CDCl₃): δ = 7.08 (s, 1H), 4.14 (s, 3H), 4.03 (s, 3H), 3.18–3.06 (m, 2H), 2.82 (q, J = 7.5 Hz, 2H), 2.74 (dd, J = 7.8, 5.6 Hz, 2H), 2.46 (s, 3H), 1.37 ppm (t, J = 7.5 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃): δ = 204.0, 162.5, 157.3, 156.7,

151.8, 144.3, 125.1, 124.0, 112.1, 107.3, 62.9, 53.9, 37.1, 31.2, 24.6, 13.9, 13.4 ppm. **IR**: $\bar{v} = 3448$, 3067, 2126, 1731, 1644, 1381, 1292, 1197, 738 cm⁻¹. **HRMS** (ESI): m/z calcd for C₁₇H₂₀NO₃ $[M + H]^+$: 286.1438; found: 286.1443.

6z: 92% yield, light yellow solid, mp 172–174 °C. **R**_f = 0.35 (silica, *n*-hexane/AcOEt = 4/1). ¹**H NMR** (500 MHz, CDCl₃): δ = 4.09 (s, 3H), 4.01 (s, 3H), 3.04 (t, *J* = 6.5 Hz, 2H), 2.87–2.81 (m, 4H), 2.72 (t, *J* = 6.5 Hz, 2H), 2.48 (s, 3H), 2.06–1.93 ppm (m, 2H). ¹³**C NMR** (125 MHz, CDCl₃): δ = 204.0, 159.8, 156.2, 150.0, 147.3, 141.1, 126.1, 124.7, 118.0, 112.0, 62.8, 53.5, 37.2, 26.0, 25.8, 24.0, 21.63, 21.57 ppm. **IR**: \bar{v} = 2985, 2921, 2848, 1722, 1539, 1259, 1026, 740 cm⁻¹. **HRMS** (ESI): *m/z* calcd for C₁₈H₂₀NO₃ [*M* + H]⁺: 298.1438; found: 298.1443.

6ac: 81% yield, white solid, mp 117–119 °C. **R**_f = 0.6 (silica, *n*-hexane/AcOEt = 4/1). ¹**H** NMR (500 MHz, CDCl₃): δ = 7.31 (s, 1H), 6.95 (s, 1H), 4.12 (s, 3H), 4.08 (s, 3H), 3.44 (dd, J = 18.2, 9.6 Hz, 1H), 2.84–2.69 (m, 2H), 2.51 (s, 3H), 1.33 ppm (d, J = 6.9 Hz, 3H). ¹³**C** NMR (125 MHz, CDCl₃): δ = 205.6, 161.9, 158.8, 152.6, 152.1, 145.7, 125.0, 117.6, 112.3, 112.0, 63.1, 53.9, 43.0, 34.3, 24.1, 16.4 ppm. **IR**: \bar{v} = 3055, 2985, 2302, 1558, 1265, 1180, 1120, 737 cm⁻¹. **HRMS** (ESI): m/z calcd for C₁₆H₁₈NO₃ [M + H]⁺: 272.1281; found: 272.1286.

6ad: 86% yield, colorless liquid. $\mathbf{R}_{f} = 0.8$ (silica, *n*-hexane/AcOEt = 4/1). ¹**H** NMR (500 MHz, CDCl₃): $\delta = 7.31$ (s, 1H), 6.95 (s, 1H), 4.12 (s, 3H), 4.08 (s, 3H), 3.36 (dd, J = 17.5, 8.5 Hz, 1H), 2.86 (dd, J = 17.2, 4.3 Hz, 1H), 2.73–2.66 (m, 1H), 2.51 (s, 3H), 2.02–1.92 (m, 1H), 1.54–1.38 (m, 3H), 1.39–1.19 (m, 14H), 0.88 ppm (t, J = 6.9 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃): $\delta = 205.4$, 161.9, 158.7, 153.0, 152.1, 145.7, 125.6, 117.6, 112.3, 112.0, 63.1, 53.9, 48.3, 32.3, 31.9, 31.7, 29.7, 29.64, 29.61, 29.5, 29.3, 27.3, 24.1, 22.7, 14.1 ppm. IR: $\bar{v} = 3396$, 2919, 2850, 1695, 1616, 1606, 1262, 796 cm⁻¹. HRMS (ESI): m/z calcd for C₂₅H₃₆NO₃ [M + H]⁺: 398.2690; found: 398.2695.

6ae: 84% yield, off-white solid, mp 76–78 °C. $\mathbf{R}_{f} = 0.7$ (silica, *n*-hexane/AcOEt = 4/1). ¹**H** NMR (500 MHz, CDCl₃): $\delta = 7.31$ (s, 1H), 6.95 (s, 1H), 5.82 (ddt, J = 17.0, 10.1, 6.9 Hz, 1H), 5.18–5.00 (m, 2H), 4.12 (s, 3H), 4.08 (s, 3H), 3.33 (dd, J = 17.3, 8.6 Hz, 1H), 2.97–2.87 (m, 1H), 2.86–2.78 (m, 1H), 2.77–2.68 (m, 1H), 2.51 (s, 3H), 2.35–2.24 ppm (m, 1H). ¹³**C** NMR (125 MHz, CDCl₃): $\delta = 204.4, 161.9, 158.8, 152.4, 152.2, 145.8, 135.4, 125.4, 117.7, 117.0, 112.3, 112.0, 63.1, 53.9, 47.4, 35.8, 31.4, 24.1 ppm.$ **IR** $: <math>\bar{v} = 3053, 2917, 1693, 1614, 1350, 1265, 1115, 738 cm⁻¹.$ **HRMS**(ESI): <math>m/z calcd for C₁₈H₂₀NO₃ [M + H]⁺: 298.1438; found: 298.1443.

6af: 86% yield, light yellow solid, mp 102–104 °C. $\mathbf{R}_{\mathbf{f}} = 0.5$ (silica, *n*-hexane/AcOEt = 4/1). ¹**H** NMR (500 MHz, CDCl₃): $\delta = 7.32$ (s, 1H), 6.95 (s, 1H), 4.12 (s, 3H), 4.08 (s, 3H), 3.44 (ddd, J = 17.3, 8.7, 0.7 Hz, 1H), 3.13 (ddd, J = 17.3, 5.5, 1.1 Hz, 1H), 2.94–2.86 (m, 1H), 2.82–2.73 (m, 1H), 2.62–2.54 (m, 1H), 2.50 (s, 3H), 1.91 ppm (t, J = 2.6 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃): $\delta = 202.6, 161.9, 159.0, 152.5, 152.4, 145.8, 125.0, 117.6, 112.3, 112.0, 81.2, 69.7, 63.2, 53.9, 46.5, 31.3, 24.1, 20.2 ppm.$ **IR** $: <math>\bar{v} = 3304, 3054, 2986, 1709, 1617, 1564, 1350, 1265, 738$ cm⁻¹. **HRMS** (ESI): *m/z* calcd for C₁₈H₁₈NO₃ [*M* + H]⁺: 296.1281; found: 296.1286.

6ag: 78% yield, yellow solid, mp 98–99 °C. **R**_f = 0.65 (silica, *n*-hexane/AcOEt = 4/1). ¹**H** NMR (500 MHz, CDCl₃): δ = 7.35–7.18 (m, 6H), 6.93 (s, 1H), 4.13 (s, 3H), 4.11 (s, 3H), 3.41 (dd, *J* = 14.0, 4.0 Hz, 1H), 3.22 (dd, *J* = 17.1, 8.5 Hz, 1H), 3.10–3.01 (m, 1H), 2.91 (dd, *J* = 17.1, 4.8 Hz, 1H), 2.74 (dd, *J* = 13.8, 10.2 Hz, 1H), 2.50 ppm (s, 3H). ¹³C NMR (125 MHz, CDCl₃): δ = 204.0, 161.9, 158.9, 152.6, 152.3, 145.7, 139.5, 129.0, 128.5, 126.3, 125.3, 117.6, 112.3, 112.0, 63.2, 54.0, 49.8, 37.2, 31.5, 24.1 ppm. **IR**: \bar{v} = 3054, 2986, 2927, 2305, 1709, 1615, 1262, 744 cm⁻¹. **HRMS** (ESI): *m/z* calcd for C₂₂H₂₂NO₃ [*M* + H]⁺: 348.1594; found: 348.1599.

6ah: 86% yield, light yellow liquid. $\mathbf{R}_{f} = 0.6$ (silica, *n*-hexane/AcOEt = 4/1). ¹**H** NMR (500 MHz, CDCl₃): $\delta = 7.34$ (s, 1H), 6.95 (s, 1H), 4.71, 4.73 (ABq, J = 7.0 Hz, 2H), 4.12 (s, 3H), 4.10 (t, J = 3.5 Hz, 1H), 4.07 (s, 3H), 3.36 (s, 3H), 3.31–3.20 (m, 3H), 2.51 (s, 3H), 1.51–1.39 (m, 2H), 1.36–1.15 (m, 8H), 0.83 ppm (t, J = 6.9 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃): $\delta = 202.9$, 161.9, 158.7, 153.6, 152.3, 145.7, 126.2, 117.6, 112.3, 112.0, 96.2, 79.1, 63.1, 55.7, 53.9, 51.4, 31.7, 30.7, 29.2, 27.8, 26.1, 24.1, 22.5, 14.0 ppm. **IR**: $\bar{v} = 2958$, 2926, 1705, 1616, 1348, 1265, 1116, 738 cm⁻¹. **HRMS** (ESI): m/z calcd for C₂₄H₃₄NO₅ [M + H]⁺: 416.2431; found: 416.2436.

6ai: 61% yield, colorless solid, mp 123–125 °C. **R**_f = 0.75 (silica, *n*-hexane/AcOEt = 4/1). ¹**H** NMR (500 MHz, CDCl₃): δ = 7.19 (d, J = 8.0 Hz, 2H), 7.14 (s, 1H), 6.95 (d, J = 7.9 Hz, 2H), 6.84 (s, 1H), 5.47 (d, J = 4.4 Hz, 1H), 4.09 (s, 3H), 4.07 (s, 3H), 3.28–3.22 (m, 1H), 3.21–3.07 (m, 2H), 2.46 (s, 3H), 2.19 (s, 3H), 0.91 (s, 9H), 0.11 (s, 3H), -0.02 ppm (s, 3H). ¹³C NMR (125 MHz, CDCl₃): δ = 202.5, 161.8, 158.6, 153.6, 152.0, 145.5, 137.9, 136.6, 128.4, 126.5, 126.2, 117.4, 112.2, 111.7, 74.2, 63.0, 56.6, 53.9, 27.0, 25.6, 24.0, 21.0, 18.2, -4.8, -5.1 ppm. **IR**: \bar{v} = 3054, 2928, 2305, 1617, 1421, 1264, 895, 740 cm⁻¹. **HRMS** (ESI): *m/z* calcd for C₂₉H₃₈NO₄Si [*M* + H]⁺: 492.2565; found: 492.2570.

The single crystal of **6ai** (CCDC 2061701), which was used for determination of the relative configuration via X-ray crystallographic analysis, was obtained from a recrystallization from a solution of **6ai** in a mixed solvent of petroleum ether and ethyl acetate.

6aj: 52% yield, white solid, mp 151–154 °C. **R**_f = 0.7 (silica, *n*-hexane/AcOEt = 4/1). ¹**H** NMR (500 MHz, CDCl₃): δ = 7.30 (s, 1H), 7.25–7.18 (m, 4H), 6.96 (s, 1H), 4.14 (s, 3H), 4.13 (s, 3H), 3.53 (d, *J* = 15.5 Hz, 2H), 3.22 (s, 2H), 2.86 (d, *J* = 15.5 Hz, 2H), 2.52 ppm (s, 3H). ¹³**C** NMR (125 MHz, CDCl₃): δ = 205.1, 161.9, 159.2, 152.4, 151.5, 145.8, 141.4, 126.8, 124.9, 124.5, 117.8, 112.4, 112.2, 63.2, 58.5, 54.0, 44.7, 42.8, 24.1 ppm. **IR**: \bar{v} = 3054, 2986, 2301, 1710, 1615, 1351, 1264, 734 cm⁻¹. **HRMS** (ESI): *m*/*z* calcd for C₂₃H₂₂NO₃ [*M* + H]⁺: 360.1594; found: 360.1599.

6ak: 61% yield, white solid, mp 119–122 °C. $\mathbf{R}_{\mathbf{f}} = 0.45$ (silica, *n*-hexane/AcOEt = 4/1). ¹H NMR (500 MHz, CDCl₃): $\delta = 7.56$ (s, 1H), 7.01 (s, 1H), 5.08 (dd, J = 6.8, 3.4 Hz, 1H), 4.12 (s, 3H), 4.08 (s, 3H), 3.71 (qd, J = 7.0, 3.5 Hz, 2H), 3.03 (dd, J = 18.2, 7.0 Hz, 1H), 2.73 (dd, J = 18.2, 3.5 Hz, 1H), 2.51 (s, 3H), 1.31 ppm (t, J = 7.0 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃): $\delta = 199.4$, 161.8, 158.4, 152.9, 152.5, 145.8, 124.9, 118.2, 112.9, 112.8, 74.4, 65.2, 63.2, 54.0, 45.3, 24.0, 15.4 ppm. IR: $\bar{v} = 3054$, 2940, 2306, 1713, 1616, 1564, 1350, 1264, 1113, 740 cm⁻¹. HRMS (ESI): m/z calcd for C₁₇H₂₀NO₄ [M + H]⁺: 302.1387; found: 302.1392.

6al: 64% yield, white solid, mp 124–126 °C. **R**_f = 0.55 (silica, *n*-hexane/AcOEt = 4/1). ¹**H** NMR (500 MHz, CDCl₃): δ = 7.39 (s, 1H), 6.98 (s, 1H), 5.77 (ddt, *J* = 17.1, 10.2, 6.9 Hz, 1H), 5.12 (dd, *J* = 20.8, 5.3 Hz, 2H), 4.12 (s, 3H), 4.08 (s, 3H), 3.50 (tt, *J* = 8.3, 4.2 Hz, 1H), 2.86 (dd, *J* = 18.8, 8.3 Hz, 1H), 2.75–2.64 (m, 1H), 2.51 (s, 3H), 2.48 (dd, *J* = 18.8, 4.1 Hz, 1H), 2.42–2.33 ppm (m, 1H). ¹³**C** NMR (125 MHz, CDCl₃): δ = 202.3, 161.9, 158.5, 157.4, 152.2, 145.6, 135.1, 125.6, 117.7, 117.0, 112.5, 112.1, 63.1, 54.0, 43.5, 40.2, 36.7, 24.1 ppm. IR: \bar{v} = 3054, 2985, 2306, 1709, 1615, 1350, 1264, 1115, 740 cm⁻¹. HRMS (ESI): *m*/*z* calcd for C₁₈H₂₀NO₃ [*M* + H]⁺: 298.1438; found: 298.1443.

6am: 65% yield, light yellow solid, mp 155–157 °C. $\mathbf{R}_{\mathbf{f}} = 0.7$ (silica, *n*-hexane/AcOEt = 4/1). ¹**H** NMR (500 MHz, CDCl₃): $\delta = 7.27-7.25$ (m, 4H), 7.23 (s, 1H), 6.88 (s, 1H), 4.13 (s, 3H), 4.11 (s, 3H), 3.45, 3.23 (ABq, J = 15.5 Hz, 4H), 2.86 (s, 2H), 2.48 ppm (s, 3H). ¹³**C** NMR (125 MHz, CDCl₃): $\delta = 201.6$, 161.8, 161.2, 158.3, 152.3, 145.9, 141.8, 127.0, 125.0, 124.5, 114.8, 112.7, 112.2, 63.2, 54.0, 53.7, 49.1, 48.5, 24.0 ppm. **IR**: $\bar{v} = 3054$, 2936, 2305,

1717, 1615, 1580, 1351, 1116, 728 cm⁻¹. **HRMS** (ESI): m/z calcd for C₂₃H₂₂NO₃ $[M + H]^+$: 360.1594; found: 360.1599.

6an: 89% yield, yellow solid, mp 130–132 °C. **R**_f = 0.7 (silica, *n*-hexane/AcOEt = 4/1). ¹**H** NMR (500 MHz, CDCl₃): δ = 7.73 (d, J = 7.0 Hz, 1H), 7.67 (d, J = 7.5 Hz, 1H), 7.54 (t, J = 7.5 Hz, 1H), 7.41 (s, 1H), 7.38 (t, J = 7.5 Hz, 1H), 6.97 (s, 1H), 4.17 (s, 3H), 4.12 (s, 3H), 2.51 ppm (s, 3H). ¹³C NMR (125 MHz, CDCl₃): δ = 189.8, 162.0, 159.4, 153.7, 146.4, 143.9, 142.6, 136.7, 134.2, 129.9, 124.0, 121.6, 120.9, 113.9, 112.9, 63.1, 54.0, 24.0 ppm. The ¹³C NMR signal of one carbon missed. **IR**: \bar{v} = 3054, 2927, 1706, 1568, 1458, 1352, 1264, 1108, 746 cm⁻¹. **HRMS** (ESI): m/z calcd for C₁₉H₁₆NO₃ [M + H]⁺: 306.1125; found: 306.1130. Note: 3 days were needed for the methylation of the in-situ formed phenol derivative as the reaction rate is relatively low. Meanwhile, addition of additional reagents including NaOH, TBAB, Me₂SO₄ was needed to secure the accomplishment of this transformation.

6ao: 59% yield, light yellow solid, mp 112–114 °C. $\mathbf{R}_{\mathbf{f}} = 0.45$ (silica, *n*-hexane/AcOEt = 4/1). ¹**H** NMR (500 MHz, CDCl₃): $\delta = 7.18$ (s, 1H), 6.88 (s, 1H), 4.11 (s, 3H), 3.96 (s, 3H), 2.99 (t, J = 5.5 Hz, 2H), 2.68 (t, J = 6.5 Hz, 2H), 2.49 (s, 3H), 2.11–2.04 ppm (m, 2H). ¹³**C** NMR (125 MHz, CDCl₃): $\delta = 196.6$, 161.0, 152.0, 145.7, 143.5, 124.0, 120.13, 120.13, 112.3, 111.9, 63.2, 53.9, 41.0, 31.1, 24.0, 22.5 ppm. **IR**: $\bar{v} = 3055$, 2948, 1681, 1615, 1546, 1457, 1349, 1008, 734 cm⁻¹. **HRMS** (ESI): *m/z* calcd for C₁₆H₁₈NO₃ [*M* + H]⁺: 272.1281; found: 272.1286.

6ap: 54% yield, white solid, mp 94–96 °C. **R**_f = 0.8 (silica, *n*-hexane/AcOEt = 4/1). ¹**H** NMR (400 MHz, CDCl₃): δ = 7.17 (s, 1H), 6.90 (s, 1H), 4.12 (s, 3H), 3.97 (s, 3H), 3.12–2.94 (m, 2H), 2.50 (s, 3H), 2.49–2.42 (m, 1H), 2.26–2.17 (m, 1H), 2.01–1.89 (m, 1H), 1.88–1.77 (m, 1H), 1.64–1.51 (m, 1H), 1.00 ppm (t, *J* = 7.5 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ = 199.7, 160.9, 160.4, 151.7, 145.4, 143.3, 124.7, 120.0, 112.2, 111.9, 63.5, 53.9, 50.8, 29.3, 27.4, 24.0, 23.7, 11.5 ppm. **IR**: \bar{v} = 3054, 2929, 1727, 1681, 1615, 1548, 1456, 1350, 1263, 734 cm⁻¹. **HRMS** (ESI): *m/z* calcd for C₁₈H₂₂NO₃ [*M* + H]⁺: 300.1594; found: 300.1599.

6aq: 71% yield, light yellow solid, mp 98–100 °C. $\mathbf{R}_{\mathbf{f}} = 0.7$ (silica, *n*-hexane/AcOEt = 4/1). ¹**H** NMR (500 MHz, CDCl₃): $\delta = 7.33-7.28$ (m, 2H), 7.26–7.20 (m, 3H), 7.16 (s, 1H), 6.89 (s, 1H), 4.14 (s, 3H), 4.00 (s, 3H), 3.47 (dd, J = 13.8, 4.1 Hz, 1H), 3.03 (dt, J = 16.4, 4.3 Hz, 1H), 2.98–2.88 (m, 1H), 2.84–2.76 (m, 1H), 2.67 (dd, J = 13.7, 9.9 Hz, 1H), 2.50 (s, 3H), 2.10–2.03 (m, 1H), 1.81–1.71 ppm (m, 1H). ¹³**C** NMR (125 MHz, CDCl₃): $\delta = 198.4, 161.0, 160.8, 152.0, 145.3, 143.4, 140.0, 129.2, 128.4, 126.1, 124.3, 120.1, 112.3, 111.9, 63.5, 53.9, 51.2, 36.6, 29.6, 27.2, 128.4, 126.1, 124.3, 120.1, 112.3, 111.9, 63.5, 53.9, 51.2, 36.6, 29.6, 27.2, 128.4, 126.1, 124.3, 120.1, 112.3, 111.9, 63.5, 53.9, 51.2, 36.6, 29.6, 27.2, 128.4, 126.1, 124.3, 120.1, 112.3, 111.9, 63.5, 53.9, 51.2, 36.6, 29.6, 27.2, 128.4, 126.1, 124.3, 120.1, 112.3, 111.9, 63.5, 53.9, 51.2, 36.6, 29.6, 27.2, 128.4, 126.1, 124.3, 120.1, 112.3, 111.9, 63.5, 53.9, 51.2, 36.6, 29.6, 27.2, 128.4, 126.1, 124.3, 120.1, 124.3, 120.1, 112.3, 111.9, 63.5, 53.9, 51.2, 36.6, 29.6, 27.2, 128.4, 126.1, 124.3, 120.1, 112.3, 111.9, 63.5, 53.9, 51.2, 36.6, 29.6, 27.2, 128.4, 126.1, 124.3, 120.1, 112.3, 111.9, 63.5, 53.9, 51.2, 36.6, 29.6, 27.2, 128.4, 126.1, 124.3, 120.1, 112.3, 111.9, 63.5, 53.9, 51.2, 36.6, 29.6, 27.2, 128.4, 126.1, 124.3, 120.1, 112.3, 111.9, 63.5, 53.9, 51.2, 36.6, 29.6, 27.2, 128.4, 126.1, 124.3, 120.1, 112.3, 111.9, 63.5, 53.9, 51.2, 36.6, 29.6, 27.2, 128.4, 126.1, 124.3, 120.1, 124.3,$

24.0 ppm. **IR**: $\bar{v} = 3053$, 2985, 2304, 1614, 1421, 1350, 1265, 739 cm⁻¹. **HRMS** (ESI): m/z calcd for C₂₃H₂₄NO₃ [M + H]⁺: 362.1751; found: 362.1756.

6ar: 68% yield, light yellow solid, mp 103–105 °C. **R**_f = 0.8 (silica, *n*-hexane/AcOEt = 4/1). ¹**H** NMR (400 MHz, CDCl₃): δ = 7.20–7.13 (m, 5H), 6.90 (s, 1H), 4.14 (s, 3H), 4.02 (s, 3H), 3.57 (dd, *J* = 14.0, 3.7 Hz, 1H), 3.04 (dt, *J* = 16.6, 4.3 Hz, 1H), 2.98–2.87 (m, 1H), 2.81–2.72 (m, 1H), 2.59 (dd, *J* = 14.0, 10.5 Hz, 1H), 2.51 (s, 3H), 2.37 (s, 3H), 2.12–2.03 (m, 1H), 1.87–1.73 ppm (m, 1H). ¹³**C** NMR (100 MHz, CDCl₃): δ = 198.5, 161.0, 160.8, 151.9, 145.3, 143.4, 138.2, 136.5, 130.4, 130.0, 126.3, 125.8, 124.4, 120.2, 112.2, 111.9, 63.5, 53.9, 49.9, 33.8, 29.7, 27.4, 24.0, 19.5 ppm. **IR**: \bar{v} = 3054, 2950, 2305, 1681, 1615, 1350, 1264, 1116, 738 cm⁻¹. **HRMS** (ESI): *m/z* calcd for C₂₄H₂₆NO₃ [*M* + H]⁺: 376.1907; found: 376.1912.

6as: 53% yield, white solid, mp 100–102 °C. **R**_f = 0.3 (silica, *n*-hexane/AcOEt = 4/1). ¹**H** NMR (500 MHz, CDCl₃): $\delta = 7.16$ (s, 1H), 6.89 (s, 1H), 4.57 (t, J = 5.1 Hz, 1H), 4.12 (s, 3H), 4.12–4.05 (m, 2H), 3.96 (s, 3H), 3.76 (tdd, J = 12.1, 5.3, 2.5 Hz, 2H), 3.13–2.92 (m, 2H), 2.58–2.51 (m, 1H), 2.49 (s, 3H), 2.26–2.19 (m, 1H), 2.14–1.99 (m, 2H), 1.87–1.77 (m, 1H), 1.76–1.66 (m, 2H), 1.61–1.54 (m, 1H), 1.33 ppm (d, J = 13.5 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃): $\delta = 199.2$, 160.9, 160.5, 151.7, 145.3, 143.3, 124.5, 120.0, 112.2, 111.9, 102.4, 66.9, 63.5, 53.9, 49.1, 32.6, 29.4, 27.9, 25.8, 25.0, 24.0 ppm. **IR**: $\bar{v} = 3054$, 2305, 1615, 1421, 1350, 1264, 1144, 895, 730 cm⁻¹. **HRMS** (ESI): m/z calcd for C₂₂H₂₈NO₅ [M + H]⁺: 386.1962; found: 386.1967.

6at: 52% yield, white solid, mp 109–111 °C. $\mathbf{R}_{\mathbf{f}} = 0.5$ (silica, *n*-hexane/AcOEt = 4/1). ¹**H** NMR (500 MHz, CDCl₃): $\delta = 7.18$ (s, 1H), 6.89 (s, 1H), 4.12 (s, 3H), 3.96 (s, 3H), 3.04 (d, J = 15.4 Hz, 1H), 2.83–2.65 (m, 2H), 2.50 (s, 3H), 2.41–2.23 (m, 2H), 1.13 ppm (d, J = 6.2 Hz, 3H). ¹³**C** NMR (125 MHz, CDCl₃): $\delta = 196.7$, 161.1, 161.0, 152.1, 145.0, 143.6, 123.4, 120.4, 112.3, 111.9, 63.1, 53.9, 49.2, 39.3, 29.6, 24.0, 21.2 ppm. **IR**: $\bar{v} = 3054$, 2929, 2306, 1681, 1546, 1375, 1264, 1116, 739 cm⁻¹. **HRMS** (ESI): m/z calcd for C₁₇H₂₀NO₃ [M + H]⁺: 286.1438; found: 286.1443.

6au: 95% yield, white solid, mp 131–133 °C. $\mathbf{R}_{\mathbf{f}} = 0.7$ (silica, *n*-hexane/AcOEt = 4/1). ¹**H** NMR (500 MHz, CDCl₃): $\delta = 7.16$ (s, 1H), 6.88 (s, 1H), 4.11 (s, 3H), 3.95 (s, 3H), 2.88 (s, 2H), 2.52 (s, 2H), 2.49 (s, 3H), 1.06 ppm (s, 6H). ¹³**C** NMR (125 MHz, CDCl₃): $\delta = 196.5$, 161.1, 161.0, 152.1, 144.2, 143.7, 122.8, 121.0, 112.3, 111.8, 63.0, 54.6, 53.9, 44.8, 32.7, 28.1, 24.0 ppm. **IR**: $\bar{v} = 3054$, 2957, 2306, 1686, 1614, 1539, 1344, 731 cm⁻¹. **HRMS** (ESI): *m/z* calcd for C₁₈H₂₂NO₃ [*M* + H]⁺: 300.1594; found:300.1599.

6av: 50% yield, colorless liquid. **R**_f = 0.45 (silica, *n*-hexane/AcOEt = 4/1). ¹**H** NMR (500 MHz, CDCl₃): δ = 7.30– 7.25 (m, 2H), 7.22–7.18 (m, 1H), 7.17–7.14 (m, 2H), 6.55 (s, 1H), 5.82 (s, 1H), 3.95 (s, 3H), 3.84 (s, 3H), 3.48 (s, 2H), 3.36–3.29 (m, 1H), 2.53–2.45 (m, 2H), 2.43 (s, 3H), 2.26–2.13 (m, 2H), 1.96–1.88 (m, 1H), 1.64–1.53 ppm (m, 1H). ¹³C NMR (125 MHz, CDCl₃): δ = 200.4, 167.3, 161.2, 160.7, 158.0, 146.6, 139.8, 129.2, 128.3, 127.2, 126.1, 117.1, 114.0, 53.9, 52.3, 47.6, 40.8, 35.2, 28.6, 26.9, 24.1 ppm. **IR**: \bar{v} = 3055, 2951, 1728, 1668, 1598, 1456, 1207, 1097, 736 cm⁻¹. **HRMS** (ESI): *m/z* calcd for C₂₈H₃₀NO₅ [*M* + H]⁺: 460.2118; found:460.2123.

6aw

6aw: 45% yield, white solid, mp 87–89 °C. **R**_f = 0.75 (silica, *n*-hexane/AcOEt = 4/1). ¹**H** NMR (500 MHz, CDCl₃): $\delta = 7.14$ (s, 1H), 6.95 (s, 1H), 4.13 (s, 3H), 3.92 (s, 3H), 2.84 (t, J = 6.1 Hz, 2H), 2.73–2.63 (m, 2H), 2.51 (s, 3H), 1.90–1.77 ppm (m, 4H). ¹³**C** NMR (125 MHz, CDCl₃): $\delta = 207.2$, 159.7, 154.0, 150.3, 142.5, 140.4, 133.6, 120.9, 112.4, 111.2, 64.9, 53.8, 42.9, 33.1, 26.5, 23.8, 23.7 ppm. **IR**: $\bar{v} = 3054$, 2942, 1694, 1621, 1556, 1456, 1348, 1265, 735 cm⁻¹. **HRMS** (ESI): *m/z* calcd for C₁₇H₂₀NO₃ [*M* + H]⁺: 286.1438; found: 286.1443.

6ax

6ax: 61% yield, white solid, mp 159–162 °C. **R**_f = 0.2 (silica, *n*-hexane/AcOEt = 4/1). ¹**H** NMR (500 MHz, CDCl₃): $\delta = 7.32$ (s, 1H), 7.01 (s, 1H), 5.32 (s, 2H), 4.18 (s, 3H), 4.14 (s, 3H), 2.53 ppm (s, 3H). ¹³**C** NMR (125 MHz, CDCl₃): $\delta = 168.0, 161.3, 160.4, 152.9, 146.4, 145.4, 113.9, 113.6, 112.8, 112.5, 68.2, 63.8, 54.1, 24.0 ppm.$ **IR** $: <math>\bar{v} = 3054, 2986, 2305, 1763, 1630, 1353, 1264, 745 cm⁻¹.$ **HRMS**(ESI):*m*/*z*calcd for C₁₄H₁₄NO₄ [*M*+ H]⁺: 260.0917; found: 260.0922.

6ay: 70% yield, colorless solid, 119–121 °C. $\mathbf{R}_{f} = 0.15$ (silica, *n*-hexane/AcOEt = 4/1). ¹H NMR (500 MHz, CDCl₃): $\delta = 7.28$ (d, J = 8.6 Hz, 2H), 7.10 (s, 1H), 6.89 (s, 1H), 6.86 (d, J = 8.6 Hz, 2H), 4.77 (s, 2H), 4.13 (s, 3H), 4.08 (s, 3H), 3.80 (s, 3H), 3.40 (t, J = 6.0 Hz, 2H), 2.92 (t, J = 6.0 Hz, 2H), 2.50 ppm (s, 3H). ¹³C NMR (125 MHz, CDCl₃): $\delta = 162.5$, 160.6, 160.3, 159.0, 151.3, 142.8, 141.4, 129.8, 129.4, 120.5, 118.8, 114.0, 112.8, 112.0, 63.7, 55.2, 53.8, 49.5, 44.7, 30.3, 23.9 ppm. **IR**: $\bar{v} = 3053$, 2929, 1730, 1647, 1512, 1348, 1265, 739 cm⁻¹. **HRMS** (ESI): m/z calcd for C₂₃H₂₅N₂O₄ [M + H]⁺: 393.1809; found: 393.1814.

Note: Preliminary experiments showcased that acyclic vinylogous systems do not deliver any positive result in this annulation under the optimized conditions. No reaction, decomposition of the starting material or complex mixture

always occurred when the linear β -ethoxy α,β -unsaturated carbonyl compounds were exposed to the alkaline conditions. Below are the failed substrates.

To a stirred solution of **1a** (8.33 g, 39.84 mmol, 2.0 equiv) in THF (150 mL) was dropwise added freshly prepared LDA (1.0 mol/L, 39.84 mL, 39.84 mmol, 2.0 equiv) at -78 °C. The resulting mixture was stirred at the same temperature for 1 h. After slow addition of **2h** (2.51 g, 19.92 mmol, 1.0 equiv) in THF solution (50 mL) at -78 °C, the mixture was warmed to ambient temperature in 10 min. Saturated aqueous NH₄Cl (20 mL) was added to quench the reaction after completion of the reaction monitored by TLC. Water (200 mL) and EtOAc (200 mL) was added into the mixture. The organic phase was separated, and the aqueous layer was extracted with EtOAc (2 × 100 mL). The combined extractswere washed with brine (200 mL) and concentrated under reduced pressure. (note: all substrates including the insoluble should be collected) The residue was directly subjected to the next step without further purification.

71% vield

To the residue obtained above was added NaOH (1.59 g, 39.84 mmol, 2.0 equiv) in water (20 mL), Me₂SO₄ (4.73 mL, 49.80 mmol, 2.5 equiv), TBAB (0.64 g, 1.99 mmol, 0.1 equiv) and CH₂Cl₂ (20 mL) and the reaction mixture were stirred vigorously. Saturated aqueous NH₄Cl (10 mL) was added to quench the reaction after completion of the reaction monitored by TLC. The organic phase was separated, and the aqueous layer was extracted with CH₂Cl₂ (2 × 50 mL). The combined extracts were washed with brine (50 mL), dried over anhydrous Na₂SO₄, and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel eluting with *n*-hexane/AcOEt (4:1) to afford the isoquinoline **6a** (3.64 g, 14.14 mmol, 71% yield, mp 145–146 °C) as a white solid.

6a: 72% yield, off-white solid, mp 145–146 °C. \mathbf{R}_{f} = 0.45 (silica, *n*-hexane/AcOEt = 4/1). ¹H NMR (400 MHz, CDCl₃): δ = 7.30 (s, 1H), 6.92 (s, 1H), 4.11 (s, 3H), 4.06 (s, 3H), 3.20–3.12 (m, 2H), 2.75–2.68 (m, 2H), 2.49 ppm (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ = 203.3, 161.8, 158.7, 154.4, 152.1, 145.6, 125.7, 117.8, 112.3, 111.9, 63.0, 53.9, 37.2, 25.1, 24.0 ppm. IR: \bar{v} = 3053, 2305, 1717, 1616, 1421, 1265, 895, 739 cm⁻¹. HRMS (ESI): *m/z* calcd for C₁₅H₁₆NO₃ [*M* + H]⁺: 258.1125; found: 258.1130.

3. Preparation of Compound 8

To a stirred solution of **6a** (3.00 g, 11.67 mmol, 1.0 equiv) in CH_2Cl_2 (25 mL) was added freshly distilled BF₃ Et₂O (2.16 mL, 17.50 mmol, 1.5 equiv) at -78 °C. 5 min later, compound **7** (6.00 mL, 23.34 mmol, 2.0 equiv) was added to the reaction mixture and the resulting mixture was stirred at the same temperature for 1 h. The mixture was warmed to ambient temperature in 10 min and stirred overnight. A saturated aqueous solution of NaHCO₃ (20 mL) was added to quench the reaction. The organic phase was separated, and the aqueous layer was extracted with CH_2Cl_2 (2 × 25 mL). The combined extracts were washed with brine (50 mL), dried over anhydrous

 Na_2SO_4 , and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel eluting with *n*-hexane/AcOEt (4:1) to afford the diketone **8** (1.59 g, 4.90 mmol, 42% yield, mp 121–122 °C) as a yellow solid.

8: $\mathbf{R}_{\mathbf{f}} = 0.5$ (silica, *n*-hexane/AcOEt = 2/1). ¹H NMR (400 MHz, CDCl₃): $\delta = 7.25$ (s, 1H), 6.94 (s, 1H), 4.09 (s, 3H), 3.72 (s, 3H), 3.27 (t, J = 7.4 Hz, 2H), 3.19–3.05 (m, 2H), 2.96–2.82 (m, 2H), 2.47 (s, 3H), 2.37 ppm (t, J = 7.4 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 215.3$, 158.6, 151.6, 149.1, 149.0, 143.2, 134.5, 117.3, 112.9, 110.6, 65.3, 62.3, 53.6, 36.2, 35.9, 32.2, 23.6 ppm. IR: $\bar{v} = 3454$, 2945, 1720, 1628, 1570, 1342, 1182, 1095 cm⁻¹. HRMS (ESI): m/z calcd for C₁₉H₂₀NO₄ [M + H]⁺: 326.1387; found: 326.1392.

4. Preparation of Compound 9

	N = 0 8	
Entry	Conditions	Result
1	DDQ (1. 2 eq.), <i>p</i> -TsOH (0.25 eq.),	mixture (no main point)
	toluene, reflux	
2	DDQ (1. 2 eq.), p-TsOH (0.25 eq.),	47% yield (64% yield brsm)
	toluene, 80 °C, 24 h	
3	DDQ (2. 2 eq.), p-TsOH (0.50 eq.),	62% yield
	toluene, 90 °C, 5 h	
4	CuBr ₂ (2.2 eq.), CH ₃ OH, 50 °C	rsm
5	CuBr ₂ (2.2 eq.), CH ₃ OH, reflux	trace

As we can see from this table, DDQ could oxidize **8** in the presence of *p*-TsOH to deliver tetracyclic enone **9** in an acceptable yield of 62%. Temperature and the equivalent of acid should be carefully balanced. Meanwhile, $CuBr_2$ is not a good oxidant. It should be noted that for this reaction, a scale of 100 mg is good and it's not suitable for large scale synthesis as the product might not be stable enough in the acidic conditions. However, we could conduct more than 10 parallel reactions at the same time to get enough material for further transformations. A general procedure for entry 3 is as follows:

To a stirred solution of **8** (100 mg, 0.308 mmol, 1.0 equiv) in toluene (3 mL) was sequentially added DDQ (167.8 mg, 0.739 mmol, 2.4 equiv) and *p*-TsOH (29.3 mg, 0.154 mmol, 0.5 equiv). The resulting mixture was stirred at 90 °C for 5 h. After cooled to rt, saturated aq. NaHCO₃ (2 mL) was added to the mixture. The organic phase was separated, and the aqueous layer was extracted with EtOAc (3×2 mL). The combined extracts were washed with brine (5 mL), dried over anhydrous Na₂SO₄, and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel eluting with *n*-hexane/AcOEt (4:1) to afford the diketone **9** (61.7 mg, 0.191 mmol, 62% yield, mp 104–106 °C) as a light yellow solid.

9: $\mathbf{R}_{\mathbf{f}} = 0.45$ (silica, *n*-hexane/AcOEt = 4/1). ¹**H** NMR (500 MHz, CDCl₃): $\delta = 7.42$ (s, 2H), 7.29 (s, 1H), 6.96 (s, 1H), 4.07 (s, 3H), 3.60 (s, 3H), 3.31 (t, J = 7.2 Hz, 2H), 2.48 (s, 3H), 2.38 ppm (t, J = 7.5 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 205.3$, 158.8, 152.6, 149.5, 149.2, 148.4, 143.3, 131.8, 117.3, 112.9, 110.9, 62.8, 60.6, 53.6, 34.3, 32.0, 23.7 ppm. **IR**: $\bar{v} = 3053$, 2985, 1707, 1421, 1346, 1285, 1103, 736 cm⁻¹. **HRMS** (ESI): *m/z* calcd for C₁₉H₁₈NO₄ [*M* + H]⁺: 324.1230; found: 324.1236.

5. Main Scheme for Preparation of Compound 10

For the synthesis of **10**, we selected the commercially available benzoic acid **S22** as the starting material. Following the known procedure (Evans, J. C.; Klix, R. C. and Bach, R. D. *J. Org. Chem.* **1988**, *53*, 5519–5527), we can obtain phthalidyl chloride **10** in 4 known steps.

5.1. Preparation of Compound S24

To a stirred solution of **S22** (10.0 g, 47.2 mmol, 1.0 equiv) in CH_2Cl_2 (50 mL) was added NEt₃ (19.7 mL, 141.6 mmol, 3.0 equiv). The resulting mixture was cooled to 0 °C and ClCO₂Et (6.74 mL, 70.8 mmol, 1.5 equiv) was added dropwise to the mixture. After 0.5 h, HNEt₂ (14.6 mL, 141.6 mmol, 3.0 equiv) was added dropwise to the mixture at 0 °C and the reaction mixture was warmed to room temperature and stirred for 2 h. H₂O (50 mL) was added to the mixture. The organic phase was separated, and the aqueous layer was extracted with CH_2Cl_2 (3 × 20 mL). The combined extracts were washed with brine (50 mL), dried over anhydrous Na₂SO₄, and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel eluting with *n*-hexane/AcOEt (1:1) to afford the amide **S24** (12.0 g, 44.8 mmol, 95% yield) as a light yellow liquid.

S22: ¹**H NMR** (400 MHz, CDCl₃): *δ* = 7.60 (s, 1H), 6.56 (s, 1H), 4.06 (s, 3H), 3.96 (s, 3H), 3.88 ppm (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃): *δ* = 165.5, 154.6, 153.8, 144.3, 114.7, 109.1, 96.5, 57.5, 56.5, 56.4 ppm.

S24: $\mathbf{R}_{f} = 0.4$ (silica, *n*-hexane/AcOEt = 1/1). ¹**H** NMR (400 MHz, CDCl₃): $\delta = 6.52$ (s, 1H), 6.32 (s, 1H), 3.65 (s, 3H), 3.59 (d, 3H), 3.55 (s, 3H), 3.30 (br, 2H), 2.95 (q, J = 7.1 Hz, 2H), 0.99 (t, J = 7.1 Hz, 3H), 0.81ppm (t, J = 7.1 Hz, 3H). ¹³**C** NMR (100 MHz, CDCl₃): $\delta = 167.8$, 149.5, 149.0, 142.5, 117.4, 110.7, 97.0, 55.83, 55.77, 55.4, 42.2, 38.2, 13.4, 12.2 ppm.

5.2. Preparation of Compound S25

To a stirred solution of **S24** (11.0 g, 41.2 mmol, 1.0 equiv) in THF (50 mL) was added TMEDA (7.4 mL, 49.4 mmol, 1.2 equiv). The resulting mixture was cooled to -78 °C and *n*-BuLi (2.0 M in cyclohexane, 61.8 mL, 123.6 mmol, 3.0 equiv) was added dropwise to the mixture. After 0.5 h, dry DMF (15.9 mL, 206.0 mmol, 5.0 equiv) was added dropwise at the same temperature and the reaction mixture was warmed to room temperature after 30 min and stirred overnight. A saturated aqueous solution of NH₄Cl (50 mL) was added carefully to the mixture. AcOEt (50 mL) was added to the mixture and the organic phase was separated, and the aqueous layer was extracted with AcOEt (3 × 50 mL). The combined extracts were washed with brine (100 mL), dried over anhydrous Na₂SO₄, and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel

eluting with *n*-hexane/AcOEt (1:2) to afford the aldehyde **S25** (7.5 g, 25.5 mmol, 62% yield, 94% yield based on the recovered starting material) as a light yellow liquid.

S25: $\mathbf{R}_{f} = 0.2$ (silica, *n*-hexane/AcOEt = 1/1). ¹**H** NMR (400 MHz, CDCl₃): $\delta = 10.34$ (s, 1H), 6.74 (s, 1H), 3.92 (s, 3H), 3.89 (s, 3H), 3.80 (s, 3H), 3.70 (dt, J = 17.2, 7.1 Hz, 1H), 3.44 (dq, J = 14.1, 7.1 Hz, 1H), 3.05 (q, J = 7.2 Hz, 2H), 1.28 (t, J = 7.1 Hz, 3H), 0.97 ppm (t, J = 7.2 Hz, 3H). ¹³**C** NMR (100 MHz, CDCl₃): $\delta = 189.6, 166.4, 153.6, 152.0, 146.4, 126.9, 118.0, 102.7, 62.4, 56.4, 56.2, 42.5, 38.5, 13.3, 12.1 ppm.$

5.3. Preparation of Compound S26

S25 (7.0 g, 23.7 mmol) was dissolved in 10% HCl (10 mL)/AcOH (10 mL) and the mixture was brought to 110 °C. After vigorously stirred overnight, the resulting mixture was cooled to room temperature and the solvents were concentrated under reduced pressure. A saturated aqueous solution of NaHCO₃ (50 mL) and AcOEt (50 mL) were added to the residue. The organic phase was separated, and the aqueous layer was extracted with AcOEt ($3 \times 50 \text{ mL}$). The combined extracts were washed with brine (100 mL), dried over anhydrous Na₂SO₄, and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel eluting with *n*-hexane/AcOEt (1:2) to afford the hemiacetal **S26** (5.6 g, 23.2 mmol, 98% yield) as an off-white solid.

Caution: The hemiacetal is not easy to dissolve in most of solvents. For large scale, filtration is advised.

S26: $\mathbf{R}_{\mathbf{f}} = 0.75$ (silica, AcOEt). ¹**H NMR** (500 MHz, DMSO- d_6): $\delta = 7.90$ (br, 1H), 6.78 (s, 1H), 6.52 (s, 1H), 3.94 (s, 3H), 3.90 (s, 3H), 3.76 ppm (s, 3H). ¹³**C NMR** (125 MHz, DMSO- d_6): $\delta = 165.6$, 158.9, 154.7, 140.4, 137.2, 105.1, 99.0, 94.8, 60.6, 56.7, 56.3 ppm.

5.4. Preparation of Compound 10

To a stirred solution of hemiacetal **S26** (5.0 g, 20.8 mmol) in SOCl₂ (5 mL) was added FeCl₃ (16.9 mg, 0.104 mmol, 0.005 equiv). The mixture was brought to reflux (86 °C) and stirred for 2 h. After cooling to room temperature, the solvents were concentrated under reduced pressure. The residue was dissolved in CH₂Cl₂ and filtrated to deliver phthalidyl chloride **10** (5.4 g, 20.8 mmol, quant., mp 245–246 °C) as an off-white solid.

Caution: phthalidyl chloride 10 is easy to hydrolyze in DMSO- d_6 possibly because of the presence of H₂O.

10: $\mathbf{R}_{\mathbf{f}} = 0.5$ (silica, *n*-hexane/AcOEt = 1/1). ¹**H** NMR (500 MHz, CD₃CN): $\delta = 7.13$ (s, 1H), 6.76 (s, 1H), 3.99 (s, 3H), 3.97 (s, 3H), 3.86 ppm (s, 3H). ¹³**C** NMR (125 MHz, CD₃CN): $\delta = 165.3$, 161.2, 156.8, 141.6, 137.6, 103.2, 100.5, 84.5, 61.4, 57.7, 57.4 ppm. **IR**: $\bar{v} = 3460$, 3055, 1784, 1512, 1364, 1265, 989, 739 cm⁻¹. **HRMS** (ESI): *m/z* calcd for C₁₁H₁₂ClO₅ [*M* + H]⁺: 259.0368; found: 259.0373.

6. Conditions Screening for Hauser-Kraus-Type Annulation and Preparation of Kita Intermediate 12

With phthalidyl chloride **10** and diketone **9** in hand, as shown in the scheme above, we hope to obtain the Hauser-Kraus annulation product **11** following the designed reaction pathway. Mechanistically, after benzylic deprotonation of the phthalidyl chloride **10**, the resonance structures **VIII-1** and **VIII-2** were formed. Intermolecular Michael addition of **VIII** and **9** was followed by successive transformations involving Dieckmann condensation of enolate **V**, extrusion of chloride anion from the diketone **VI** and last aromatization of the advanced intermediate **VII** to afford the hexacyclic diphenol **11** with the full skeleton embedded in fredericamycin A.

6.1. Screening of Bases

As the Hauser-Kraus-type annulation product is not that stable, dimethylation was conducted *in-situ* to deliver Kita's intermediate **12** directly. As shown in the table below, we have screened a series of bases. Among them, most bases didn't give the desired products. LiO^{*t*}Bu gave the desired product in 51% yield for 2 steps.

Kita's intermediate (12)

Entry	Base	Result
1	K ₂ CO ₃	no reaction
2	K ₃ PO ₄	no reaction
3	KOAc	no reaction
4	KO ^t Bu	no product
5	КОН	no product
6	NaO'Bu	no product
7	NaOEt	no reaction
8	NaOCH ₃	no product
9	NaOAc	no reaction
10	LiO'Bu	51% yield
11	Li ₂ CO ₃	no reaction
12	LiOH H ₂ O	no product
13	LiOCH ₃	no product
14	DBU	no product

15	DABCO	no reaction
16	Cs ₂ CO ₃	no product
17	CsOAc	no reaction
18	DIPEA	no reaction
19	NEt ₃	no reaction
20	DMAP	no reaction
21	KHMDS	trace
22	LiHMDS	32% yield

6.2. Screening of Solvents

As shown in the table below, a series of solvents have been tested. Among them, most solvents didn't give the desired products. THF is the only solvent that gave the desired product.

6.3. Screening of Thiourea Catalysts

As shown in the table below, a series of combination of thiourea catalysts and bases have been examined with the hope of achieving the asymmetric version of this transformation. In most cases, no good ee has been yielded, indicating that thiourea catalysts are not good choices for this transformation.

Entry	Conditions	Result
1	LiHMDS (in THF), thiourea 1	39% yield, 6% ee
2	LiHMDS (in THF), thiourea 2	trace
3	LiHMDS (in THF), thiourea 3	31% yield, 4% ee
4	LiHMDS (in THF), thiourea 4	trace
5	KHMDS (in toluene), thiourea 1	no reaction
6	KHMDS (in toluene), thiourea 2	no reaction
7	KHMDS (in toluene), thiourea 3	no reaction
8	KHMDS (in toluene), thiourea 4	no reaction
9	KHMDS (in toluene), thiourea 5	no reaction
10	LiO'Bu, thiourea 2	trace
11	LiO ^t Bu, thiourea 3	trace
12	LiO'Bu, thiourea 4	trace

6.4. Screening of NHC Precursors

As shown in the scheme above, LiHMDS was chosen as the base for this reaction. Most of the NHC precursors tested are not good. Low yield and nearly no ee value showcased that NHC can't involve in this transformation to induce the newly formed chiral center.

6.5. Screening of Salts

We wanted to improve the ee value by introduction of additives. As shown in the table below, In the presence of NaI, Kita's intermediate could be obtained in 31% yield but only with 5% ee. Other additives such as $AgPF_6$, $AgNO_3$, Ag_2CO_3 and $AgCIO_4$ didn't even give the annulation product.

6.6. Preparation of Kita's Intermediate 12

5

AgClO₄

no product

To a stirred solution of phthalidyl chloride **10** (95.7 mg, 0.371 mmol, 1.2 equiv), diketone **9** (100.0 mg, 0.309 mmol, 1.0 equiv) in THF (10 mL) was added LiO'Bu (34.6 mg, 0.433 mmol, 1.4 equiv) and stirred overnight at room temperature. Saturated aqueous solution of NH₄Cl (10 mL) and AcOEt (20 mL) were added to the mixture after completion of the reaction monitored by TLC. The organic phase was separated, and the aqueous layer was extracted with AcOEt (2×10 mL). The combined extracts were washed with brine (20 mL), dried over anhydrous Na₂SO₄, and concentrated under reduced pressure. The residue was directly exposed to the next reaction without further purification.

To the residue mentioned above in acetone (5 mL) was added K_2CO_3 (127.9 mg, 0.927 mmol, 3.0 equiv) and Me_2SO_4 (0.15 mL, 1.545 mmol, 5.0 equiv). The resulting mixture was brought to reflux and stirred overnight. After cooling to room temperature, a saturated aqueous solution of NH₄Cl (10 mL) and AcOEt (10 mL) were added to the mixture. The organic phase was separated, and the aqueous layer was extracted with AcOEt (2 × 10 mL). The combined extracts were washed with brine (20 mL), dried over anhydrous Na₂SO₄, and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel eluting with *n*-hexane/AcOEt (2:1) to afford Kita's intermediate **12** (90.3 mg, 0.158 mmol, 51% yield, mp 99–100 °C) as a light yellow solid.

12: $\mathbf{R_f} = 0.4$ (silica, *n*-hexane/AcOEt = 1/1). ¹H NMR (400 MHz, CDCl₃): $\delta = 7.32$ (s, 1H), 6.96 (s, 1H), 6.93 (s, 1H), 4.07 (s, 6H), 4.06 (s, 3H), 4.05 (s, 3H), 4.00 (s, 3H), 3.91 (s, 3H), 3.49 (s, 3H), 3.44–3.36 (m, 2H), 2.55 (t, J = 7.3 Hz, 2H), 2.47 ppm (s, 3H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 200.5$, 199.3, 159.0, 156.9, 153.9, 153.6, 152.4, 150.9, 150.0, 148.7, 143.2, 139.3, 134.5, 131.1, 127.7, 124.5, 121.2, 117.2, 113.0, 111.1, 99.8, 66.2, 63.3, 63.1, 62.5, 62.3, 57.4, 56.6, 53.4, 36.2, 32.4, 23.7 ppm. **IR**: $\bar{v} = 3053$, 2928, 2304, 1732, 1265, 1045, 894, 737 cm⁻¹. **HRMS** (ESI): *m/z* calcd for C₃₂H₃₂NO₉ [*M* + H]⁺: 574.2072; found: 574.2077.

6.7. Comparison of NMR Spectral Data of Kita's Intermediate 12

Yasuyuki Kita reported his intermediate **12** in 2001 (Kita, Y., Higuchi, K., Yoshida, Y., Iio, K., Kitagaki, S., Ueda, K., Akai, S. and Fujioka, H. *J. Am. Chem. Soc.* **2001**, *123*, 3214–3222) and its absolute configuration was determined by CD analysis.

¹H and ¹³C NMR spectral data of our synthetic Kita's intermediate **12** are in good accord with those from Kita's lab. Below is the comparison of ¹H and ¹³C NMR spectral data from these two labs.

Kita's lab ¹ H NMR (300 MHz, CDCl ₃) δ (ppm) ^{<i>a</i>}	Our lab ¹ H NMR (400 MHz, CDCl ₃) δ(ppm)	$\Delta\delta(extsf{ppm})$
7.24 (s, 1H)	7.32 (s, 1H),	-0.08
6.87 (s, 1H)	6.96 (s, 1H)	-0.09
6.84 (s, 1H)	6.93 (s, 1H)	-0.09
3.99 (s, 6H)	4.07 (s, 6H)	-0.08
3.99 (s, 3H)	4.06 (s, 3H)	-0.07
3.96 (s, 3H)	4.05 (s, 3H)	-0.09
3.92 (s, 3H)	4.00 (s, 3H)	-0.08
3.82 (s, 3H)	3.91 (s, 3H)	-0.09
3.41 (s, 3H)	3.49 (s, 3H)	-0.08
3.33 (t, J = 7.5 Hz, 2H)	3.44–3.36 (m, 2H)	-0.07
2.47 (t, $J = 7.5$ Hz, 2H)	2.55 (t, <i>J</i> = 7.3 Hz, 2H)	-0.08
2.38 (s, 3H)	2.47 ppm (s, 3H)	-0.09

Comparison of ¹³H NMR Spectral Data of Kita's Intermediate

^{*a*} For the reference, see: Kita, Y., Higuchi, K., Yoshida, Y., Iio, K., Kitagaki, S., Ueda, K., Akai, S. and Fujioka, H., *J. Am. Chem. Soc.* **2001**, *123*, 3214-3222.

Kita's lab ¹³ C NMR (75 MHz, CDCl ₃) δ (ppm) ^{<i>a</i>}	Our lab ¹³ C NMR (100 MHz, CDCl ₃) δ(ppm)	$\Delta \delta$ (ppm)
200.4	200.5	-0.1
199.2	199.3	-0.1
158.9	159.0	-0.1
156.8	156.9	-0.1
153.9	153.9	0.0
153.6	153.6	0.0
152.4	152.4	0.0
150.8	150.9	-0.1
150.0	150.0	0.0
148.6	148.7	-0.1
143.2	143.2	0.0

Comparison of ¹³C NMR Spectral Data of Kita's Intermediate

139.2	139.3	-0.1
134.5	134.5	0.0
131.0	131.1	-0.1
127.6	127.7	-0.1
124.4	124.5	-0.1
121.1	121.2	-0.1
117.1	117.2	-0.1
112.9	113.0	-0.1
111.1	111.1	0.0
99.7	99.8	-0.1
66.2	66.2	0.0
63.2	63.3	-0.1
63.0	63.1	-0.1
62.5	62.5	0.0
62.2	62.3	-0.1
57.3	57.4	-0.1
56.5	56.6	-0.1
53.4	53.4	0.0
36.2	36.2	0.0
32.3	32.4	-0.1
23.7	23.7	0.0

^{*a*} For the reference, see: Kita, Y., Higuchi, K., Yoshida, Y., Iio, K., Kitagaki, S., Ueda, K., Akai, S. and Fujioka, H., *J. Am. Chem. Soc.* **2001**, *123*, 3214-3222.

7. Copies of NMR Spectra

See the next page.

0.085

202.48

