Electronic Supplementary Information (ESI)

A mesoporous ionic solid with 272 Au^I₆Ag^I₃Cu^{II}₃ complex cations in a

super huge crystal lattice

Hiroto Takeda, Tatsuhiro Kojima, Nobuto Yoshinari and Takumi Konno*

Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan konno@chem.sci.osaka-u.ac.jp

Fig. S1 Structure of $[Ag_3(D-H_3L^{Au3})_2]^{3+}$. ChemDraw structure (a). Top (b) and side (c) views of the X-ray structure of $[Ag_3(D-H_3L^{Au3})_2]^{3+}$ in $[Ag_3(D-H_3L^{Au3})_2](NO_3)_3$. One of the two crystallographically independent complex cations is presented. [Colour codes: red, Au; silver, Ag; orange, P; yellow, S; pink, O; pale blue, N; grey, C.]

Fig. S2 X-ray fluorescence spectra. $[Ag_3(D-H_3L^{Au3})_2](NO_3)_3$ (a), I' (b), I (c), II' (d), II (e) and I_{RhZn} (f).

Fig. S3 IR spectra (ATR). I' (a), I (b), II' (c) and II (d).

Fig. S4 Solid-state diffuse reflectance (Top) and CD spectra (bottom). I' (black), I (red) II' (blue) and II (green).

Fig. S5 Powder X-ray diffraction patterns. The observed patterns measured at room temperature ($\lambda = 1.000$ Å) for I' (a) and I (c). The simulated patterns for I' (b) and I (d).

Fig. S6 Structures of the crystallographically independent $[1^{D}]^{3+}$ complex cations in **I**. An entire $[1^{D}]^{3+}$ complex cation (a), half cations (b, c, d) and one-third of a $[1^{D}]^{3+}$ complex cation unit (e). Entire molecular structures are represented transparently in b-e. [Colour codes: red, Au; silver, Ag; blue, Cu; orange, P; yellow, S; pink, O; pale blue, N; grey, C.]

Fig. S7 Perspective view of $CH \cdots \pi$ interactions between $[1^D]^{3+}$ cations through the tdme phenyl groups in I.

Fig. S8 Framework structure in **I**. Au^I₆Ag^I₃Cu^{II}₃ complex cations connected by CH… π contacts are represented. Connection between two complex cations (a). Vertex-sharing two tetrahedra (b). Connection between cage A with a [3²⁸.5¹².6⁴] face arrangement and cage B with [3²⁰.5¹²] face arrangement (c).

wavenumber / cm⁻¹

Fig. S9 IR spectra (ATR). I (a), I_{PF6} (b), I_{OTf} (c), I_{BF4} (d) and $I_{PF6/BF4/OTf}$ (e).

Fig. S10 Powder X-ray diffraction patterns. The observed patterns measured at room temperature ($\lambda = 1.000$ Å) for I (a), IPF6 (b), IBF4 (c) and IOTf (d).

Fig. S11 Molecular structures of BTB³⁻ (a) and $[Rh_4Zn_4O(L-cys)_{12}]^{6-}$ (b), together with the hexagonal window of cage A in I (c). [Colour codes: red, Au; silver, Ag; blue, Cu; orange, P; yellow, S; pink, O; pale blue, N; grey, C.] Single-crystal X-ray crystallography of I_{BTB} and I_{RhZn} revealed the retention of the single crystallinity and framework structure in I.

Fig. S12 Powder X-ray diffraction patterns. The observed patterns measured at room temperature ($\lambda = 1.000 \text{ Å}$) for **I**_{PF6} (a), **I**_{BTB} (b), **I**_{RhZn} (c) and **I**_{PF6} with Methyl Orange (d).

Fig. S13 IR spectra (ATR). I_{PF6} (a), I_{BTB} (b), and Na₃BTB (c).

Fig. S14 IR spectra (ATR). I_{PF6} (a), I_{RhZn} (b), and $K_6[Rh_4Zn_4O(L-cys)_{12}]$ (c).

Fig. S15 Solid-state CD spectra. IRhzn (black), I (red) and K₆[Rh₄Zn₄O(L-cys)₁₂] (blue).

Fig. S16 Time-dependent absorption spectral changes of 1.0×10^{-4} M aqueous solutions (3 mL) of Resorufin Sodium (a), Methyl Orange (b), Basic Red 5 (c) and Methylene Blue (d) after soaking crystals of I_{PF6} (~ 5.0 mg) for 0 h (green), 1 h (blue), 2 h (yellow), 4 h (orange), 6 h (light blue), 8 h (purple) and 10 h (black).

Fig. S17 Time-dependent absorption spectral changes of a 0.2 M aqueous solution of PF_6 after soaking crystals of I_{PF6} with Methyl Orange (ca. 10.0 mg): 0 h (green), 1 h (blue), 2 h (yellow), 4 h (orange), 6 h (light blue), and 24 h (black).

Fig. S18 Powder X-ray diffraction patterns. The observed patterns measured at room temperature ($\lambda = 1.000$ Å) for II (a) and II' contaminated with II (c). The simulated patterns for II (b) and II' (d).

Fig. S19 Crystal structures of **II'**. Top (a) and side (b) views of an enantiomeric pair of $[1^{\mathbf{D}}]^{3+}$ (left) and $[1^{\mathbf{L}}]^{3+}$ (right) complex cations. Perspective view of hydrogen-bonding interactions of a TFA⁻ anion with $[1^{\mathbf{D}}]^{3+}$ complexes (c). [Colour codes: red, Au; silver, Ag; blue, Cu; orange, P; yellow, S; pink, O; pale blue, N; grey, C. light yellow; F.]

Fig. S20 Perspective view of $CH \cdots \pi$ interactions through the tdme phenyl groups in II.

	[Ag3(D-H3L ^{Au3})2](NO3)3	I	ľ	П	П,
CCDC No.	2024986	2024987	2024988	2024989	2024990
Formula	$C_{112}H_{172}Ag_3Au_6N_9O_{38}P_6S_6$	C118H172Ag3Au6	C118H154Ag3Au6	$C_{112}H_{138}Ag_3Au_6$	$C_{118}H_{168}Ag_3Au_6\\$
		$Cu_3F_9N_6O_{38}P_6S_6$	$Cu_3F_9N_6O_{29}P_6S_6$	Cu ₃ F ₉ N ₆ O _{33.5} P ₆ S ₆	$Cu_{3}F_{9}N_{6}O_{36}P_{6}S_{6}$
Colour, form	Colourless, Stick	Blue, octahedral	Blue, hexagonal plate	Blue, truncated octahedron	Blue, hexagonal plate
Wavelength/ Å	0.600	0.4281	0.71073	0.62997	0.4281
Crystal system	Orthorhombic	Cubic	Trigonal	Trigonal	Trigonal
Space group	P212121	F4132	P321	<i>R</i> 3-c	R3c
<i>a</i> / Å	30.1406(4)	129.492(4)	19.2375(4)	33.804(5)	19.2549(7)
b∕ Å	32.9119(5)	129.492(4)	19.2375(4)	33.804(5)	19.2549(7)
<i>c</i> / Å	33.4887(7)	129.492(4)	27.0608(6)	81.734(16)	74.3872(14)
a/ °	90	90	90	90	90
<i>β</i> / °	90	90	90	90	90
γ/ °	90	90	120	120	120
<i>V</i> / Å ³	33220.3(10)	2171340(181)	8673.0(4)	80885(28)	23884.2(18)
Ζ	8	272	2	18	6
<i>T</i> / K	100(2)	100(2)	100(2)	103(2)	100(2)
F(000)	16096	597040	4210	38700	13050
ρ calcd/ g· cm^{-3}	1.654	0.942	1.672	1.643	1.874
$\mu(\lambda)/ \mathrm{mm}^{-1}$	3.585	1.037	5.937	4.016	2.126
Flack parameter	0.012(3)	0.101(7)	0.007(2)	-	0.001(5)
Crystal size/ mm ³	0.07×0.02×0.01	0.23×0.23×0.23	0.20×0.20×0.03	0.05×0.05×0.05	0.12×0.10×0.08
Limiting indices	$-33 \leq h \leq 33$	$-89 \leq h \leq 92$	$-23 \leq h \leq 24$	$-45 \leq h \leq 49$	$-24 \leq h \leq 24$
	$-36 \leq k \leq 36$	$-92\ k \leq 92$	$-24 \leq k \leq 24$	$-51 \leq k \leq 45$	$-24 \leq k \leq 24$
	$-37 \le l \le 37$	$-92 \leq l \leq 92$	$-36 \leq l \leq 36$	$-123 \leq l \leq 110$	$-85 \leq l \leq 96$
$R_1 \; (I{\geq} 2\sigma(I))^{a)}$	0.0421	0.1383	0.0240	0.0566	0.0267
Rw2 (all data) ^{b)}	0.0977	0.4196	0.0644	0.1950	0.0695
GOF	0.929	1.518	1.048	1.036	1.032

Table S1. Crystallographic data for [Ag₃(D-H₃L^{Au3})₂](NO₃)₃, I, I', II and II'.