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Experimental Procedures

Chemicals. Hexaammonium heptamolybdate tetrahydrate ((NH4)6Mo7O24·4H2O), 
tungsten(VI) oxide (WO3), zinc(II) oxide (ZnO), and ruthenium(III) chloride hydrate 
(RuCl3·nH2O) were purchased from Wako Pure Chemical Industries, Ltd. Fumed silica 
(SiO2), molybdenum(IV) oxide (MoO2), cerium(IV) oxide (CeO2), and ammonium 
perrhenate(VII) (NH4ReO4) were purchased from Sigma-Aldrich Co. Potassium 
tetrachloroplatinate(II) (K2PtCl4), disodium tetrachloropalladate(II) (Na2PdCl4), 
copper(II) nitrate trihydrate (Cu(NO3)2·3H2O), vanadium(V) oxide (V2O5), urea, and 
other commercially available chemical reagents for catalytic tests were purchased from 
Nacalai Tesque, Inc. α-MoO3 was prepared by calcination of (NH4)6Mo7O24·4H2O for 
4 h at 500 °C in air. Nb2O5 (JRC-NBO-2), γ-Al2O3 (JRC-ALO-4), anatase TiO2 (JRC-
TIO-8), and ZrO2 (JRC-ZRO-2) as catalyst supports were supplied from the Catalysis 
Society of Japan. All chemicals were used as received without further purification.

CO pulse measurement. CO pulse measurement was carried out using a BEL-
METAL-1 system (MicrotracBEL Corp.) equipped with a TCD detector. A sample (ca. 
50 mg) mounted in a glass vessel were pretreated in a flow of H2 (50 mL/min) at a 
designated temperature (100-400 °C) for 30 min to reduce the sample, and then cooled 
to 50 °C. CO pulse (1% CO/He) was repeatedly injected to the vessel at 50 °C, and the 
adsorbed amount of CO was quantified.

Diffuse reflectance UV-vis-NIR measurement. Diffuse reflectance UV-vis-NIR 
spectra were measured at room temperature with a Shimadzu UV-2600 
spectrophotometer equipped with an integrating sphere at room temperature. The 
Kubelka-Munk transformation was used to convert the measured spectra into 
absorption spectra.

CO2 adsorption measurement. CO2 adsorption measurement was performed at 25 °C 
using a BELSORP-max system (MicrotracBEL Corp.). Samples were degassed at 150 
°C for at least 3 h under vacuum to remove physisorbed molecules prior to each 
measurement.
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Fig. S1 (a) Pt L3-edge X-ray absorption near edge structure (XANES) spectra and (b) 
the corresponding Fourier transforms of extended XAFS spectra of Pt/HxMoO3-y 
catalysts synthesized with varied Pt contents and several Pt references (Pt foil, K2PtCl4, 
and PtO2).
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Fig. S2 Pt 4f XPS spectra of unreduced Pt/MoO3 and Pt/HxMoO3-y catalysts reduced 
with H2 at different temperatures (100-300 °C).

The predominant peaks located at 74.8 and 71.5 eV are assigned to 4f5/2 and 4f7/2 orbital 
electrons of Pt0 species, respectively, while the peaks located at 75.8 and 72.5 eV are 
attributed to those of Pt2+ species. As-prepared unreduced Pt/MoO3 dominantly exhibits 
the peaks attributable to Pt2+ species, which accounts for 95% of all Pt atoms. After H2 
reduction, the Pt/HxMoO3-y catalysts display doublet peaks which correlate well with 
metallic Pd0 species. Based on the fitting analysis, the proportion of Pt0 species was 
determined as; Pt/HxMoO3-y(100) (81%) = Pt/HxMoO3-y(200) (81%) < Pt/HxMoO3-

y(300) (86%), demonstrating that the Pt species are mostly reduced to metallic Pd0 
nanoparticles after H2 reduction.

Table S1 Summary of the results of Pt 4f XPS measurement.

Atomic concentration [%]
Sample

Pt0 Pt2+ Pt4+

Unreduced Pt/MoO3 0 95 5

Pt/HxMoO3-y(100) 81 19 0

Pt/HxMoO3-y(200) 81 19 0
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Pt/HxMoO3-y(300) 86 14 0
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Fig. S3 Relationship between the catalytic activities in the CO2 hydrogenation and the 
mean surface areas of surface-exposed Pt atoms determined by CO pulse measurement 
for Pt/HxMoO3-y catalysts synthesized with varied Pt loadings (0.11-1.58 wt%). 
Reaction conditions: catalyst (50 mg), 1,4-dioxane (15 mL), PCO2 = 1.0 MPa, PH2 = 3.0 
MPa, 200 °C, 20 h.

Table S2 Summary of the results of CO pulse measurement for Pt/HxMoO3-y catalysts 
synthesized with varied Pt loadings (0.11-1.58 wt%).

Pt loading
[wt%]

Volume of CO 
adsorbed

[cm3/g-sample]

Metal 
dispersion

[%]

Surface area of 
metal

[m2/g-sample]

Average diameter 
of metal particle

[nm]

0.11 3.5×10-2 27.9 7.6×10-2 4.1

0.38 9.4×10-2 21.4 20.1×10-2 5.3

0.64 17.7×10-2 24.1 38.1×10-2 4.7

1.30 30.0×10-2 20.4 65.4×10-2 5.5

1.58 36.2×10-2 20.0 77.8×10-2 5.7
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Fig. S4 GC-MS spectra of methanol produced by the hydrogenation of 13CO2, 12CO2 
using Pt/HxMoO3-y(300) catalyst, and that of standard 12CH3OH. 
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Fig. S5 Comparison of catalytic performance of various oxide-supported Pt catalysts in 
(a) the liquid-phase CO2 hydrogenation reaction (Reaction conditions: catalyst (50 mg), 
1,4-dioxane (15 mL), PCO2 = 1.0 MPa, PH2 = 3.0 MPa, 200 °C, 20 h) and (b) the liquid-
phase CO2 deoxygenation reaction (Reaction conditions: catalyst (50 mg), 1,4-dioxane 
(15 mL), PCO2 = 1.0 MPa, 200 °C, 20 h). Catalysts were all reduced at 300 °C for 30 
min in a flow of H2 prior to the reaction.
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Fig. S6 Diffuse reflectance UV-vis-NIR spectra of MoO3, unreduced Pt/MoO3 and 
Pt/HxMoO3-y(T) catalysts reduced with H2 at different temperatures.
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Fig. S7 (a) Mo K-edge X-ray absorption near edge (XANES) spectra and (b) the 
corresponding Fourier transforms of extended XAFS spectra of unreduced Pt/MoO3 
and Pt/HxMoO3-y(T) catalysts reduced with H2 at different temperatures and some Mo 
references (Mo foil, MoO3 and MoO2).

In Mo K-edge XANES spectra, bulk MoO3 with an orthorhombic structure (space group 
Pbnm) exhibits a pronounced pre-edge absorption feature at 20005 eV because it is 
composed of distorted MoO6 octahedra, while MoO2 with a monoclinic structure (space 
group P21/c) exhibits a significantly diminished pre-edge absorption due to a fairly 
perfect octahedral symmetry. The shape of XANES spectra of unreduced sample is 
almost identical to that of MoO3. When the catalyst is reduced at elevated temperatures, 
the pre-edge absorption is significantly diminished and the absorption edge position 
clearly shifts toward lower energy region. This result indicates a gradual transformation 
of Mo local structure from distorted octahedral geometry to symmetric octahedral 
geometry, which corresponds to the phase transition from orthorhombic MoO3 to 
monoclinic H0.9MoO3 and further deep reduction to HxMoO3-y sub-oxide as confirmed 
by XRD. 

In radial distribution functions (RDFs) obtained from extended XAFS spectra, the 
contiguous peaks seen at around 1.1 and 1.8 Å (phase shift uncorrected) can be 
attributed to the molybdenum oxo (Mo=O) species and doubly/triply coordinated O 
(Mo2-O/Mo3-O) species, while the peak at around 3.2 Å corresponds to Mo–(O)–Mo 
bonds.1, 2 The shape of RDFs of unreduced sample is almost identical to those of MoO3. 
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When the reduction temperature is raised above 100 °C, the peak assignable to Mo–O 
bond shifts to longer interatomic distance and appears at around 1.65 Å, again 
confirming the phase transition from orthorhombic MoO3 to monoclinic H0.9MoO3. 
When the reduction temperature is raised above 300 °C, the peak assignable to Mo–
(O)–Mo bond is significantly diminished, suggesting the formation of HxMoO3-y sub-
oxide possessing considerable amount of oxygen vacancies.
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Fig. S8 Weight changes of the Pt/HxMoO3-y(T) catalysts reduced with H2 at (a) 100 °C, 
(b) 200 °C, (c) 300 °C, and (d) 400 °C in a flow of either air or N2 measured by 
thermogravimetric (TG) analysis. 

For the Pt/HxMoO3-y(T) samples measured in a N2 environment, initial weight losses 
seen at temperatures below 200 °C are due to the evaporation of surface adsorbed water 
molecules. Subsequently, they show further weight losses from 200 °C to 450 °C, which 
are associated with the thermal dehydration of –OH groups to form MoO3-x sub-oxides 
(HxMoO3-y  MoO3-y-x/2 + 1/2x H2O).3, 4 This weight loss is hardly seen for the sample 
possessing MoO2 crystalline phase with smaller amount of intercalated H+ (Pt/HxMoO3-

y(400)). In comparison, different TG profiles are observed in a flow of air due to the 
weight gain associated with the filling (oxidation) of oxygen vacancies with molecular 
O2 to form MoO3, in addition to the release of intercalated H+ as water (HxMoO3-y + O2 
 MoO3 + 1/2x H2O).5 For the Pt/HxMoO3-y(300) sample measured in an air 
environment, a considerable weight gains of 4.8 wt% was observed at temperatures 
from 200 to 450 °C due to the presence of substantial amount of oxygen vacancy in the 
sample.

Based on the weight changes associated with the release of intercalated H+ (in N2 
environment) and the filling of VO (in air environment), the stoichiometric composition 
was determined as H1.76MoO2.99 (100 °C reduction) → H1.15MoO2.72 (200 °C reduction) 
→ H0.35MoO2.26 (300 °C reduction) → H0.02MoO1.96 (400 °C reduction) from the results 
of TG analysis, respectively, ascertaining a gradual reduction of intercalated H atoms 
and a substantial increase of oxygen vacancies at elevated reduction temperatures.
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Fig. S16 (a) A representative TEM image of Pt/HxMoO3-y(300) catalyst after catalytic 
cycles. Comparison of (b) XRD patterns, (c) Pt 4f XPS spectra, and (d) Mo K-edge 
XANES spectra of Pt/HxMoO3-y(300) catalyst upon catalytic cycles in the CO2 
hydrogenation reaction (Reaction conditions: catalyst (50 mg), 1,4-dioxane (15 mL), 
PCO2 = 1.0 MPa, PH2 = 3.0 MPa, 200 °C, 20 h).
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