# **Alkynyl Triazenes Enable Divergent Syntheses of 2-Pyrones**

Jin-Fay Tan,<sup>a</sup> Carl Thomas Bormann,<sup>b</sup> Kay Severin,<sup>b</sup> Nicolai Cramer<sup>\*a</sup>

b. Laboratory of Supramolecular Chemistry, EPFL SB ISIC LCS, BCH 3307, CH-1015 Lausanne (Switzerland).

# **Supporting Information**

# Table of Content:

| General methods                                                                     | S2         |
|-------------------------------------------------------------------------------------|------------|
| Preparation of Propiolic Acid Substrates                                            | S3         |
| Preparation of 1-Alkynyl Triazenes Substrates                                       | S4         |
| Formation of 3aa, 3aa', 4aa and 4aa'                                                | <b>S</b> 5 |
| General Procedure <b>A</b> for the One-pot Synthesis of 6-Fluoro- α-Pyrone <b>5</b> | S9         |
| Formation of 6ag and 6ah                                                            | S17        |
| Product Diversifications                                                            | S18        |
| <sup>18</sup> O Labeling Experiments                                                | S22        |
| Derivatization Attempts for <b>4aa'</b>                                             | S27        |
| X-ray Structures                                                                    | S28        |
| NMR Spectra                                                                         | S71        |
| References                                                                          | S117       |
|                                                                                     |            |

a. Laboratory of Asymmetric Catalysis and Synthesis, EPFL SB ISIC LCSA, BCH 430, CH-1015 Lausanne (Switzerland). E-mail: nicolai.cramer@epfl.ch

# 1. General Methods:

All reactions were were carried out under an atmosphere of dry nitrogen or nitrous oxide (purity: 99.999%, Messer Schweiz AG) using standard Schlenk or glovebox techniques in oven-dried glassware with magnetic stirring, unless otherwise indicated. Reagents and solvents were purchased from Aldrich, Acros, Alfa Aesar, Abcr, or TCI. Chemicals were used as obtained from the suppliers. Dry THF were obtained using a solvent purification system with an aluminum oxide column (Innovative Technologies). Falcon tubes used are 14 mL non-pyrogenic polypropylene round-bottomed tubes, (17 x 100 mm), purchased from Corning Science México S.A. De C.V.

Flash chromatography was performed with Silicycle silica gel 60 (0.040-0.063 µm grade) or basic alumina (Acros, Brockmann activity 1, 50-200 µm, 60A). Analytical thinlayer chromatography was performed with commercial glass plates coated with 0.25 mm silica gel (E. Merck, Kieselgel 60 F254). Compounds were either visualised under UV-light at 254 nm or by dipping the plates in an aqueous potassium permanganate solution followed by heating. For the purification of acid sensitive compounds, silicagel 230-400 mesh particle size (100 g) was deactivated prior to use by adding dichloromethane containing 5 vol% triethylamine (300 mL), removal of the solvent under reduced pressure, and drying of the silica at room temperature under oil pump vacuum overnight.

NMR spectra were recorded on a Bruker Avance 400 spectrometer with a BBFOz ATMA probe and Bruker DRX600 (600 MHz) spectrometer. Chemical shifts ( $\delta$ ) are reported in parts per million (ppm) relative to residual chloroform (s, 7.26 ppm). Splitting patterns are designated as s, singlet; d, doublet; t, triplet; q, quartet; sept, septet; m, multiplet; brs, broad singlet. Proton decoupled Carbon-13 nuclear magnetic resonance (<sup>13</sup>C NMR) data were acquired at 101 MHz on a Bruker AV400 spectrometer. Chemical shifts are reported in ppm relative to CDCl<sub>3</sub> (77.16 ppm).

Electrospray–ionisation HRMS data were acquired on a Q–Tof Ultima mass spectrometer (Waters) or an Agilent LC-MS TOF. High resolution mass are given in m/z. Data from the Lock–Spray were used to calculate a correction factor for the mass scale and provide accurate mass information of the analyte. Data were processed using the MassLynx 4.1 software. IR spectra were recorded on a Perkin-Elmer FT-IR spectrometer. Absorbance frequencies are reported in reciprocal centimeters (cm-1).

# 2. Preparation of Propiolic Acid Substrates



**1a**, **1b**, **1d**, **1k**, **1l-1n** are commercially available. **1c**, **1f-1j** were prepared based on reported procedure.<sup>1-4</sup> All spectra were in good agreement with the reported data.

# 3. Preparation of 1-Alkynyl Triazenes Substrates



Alkynyl triazenes **2a-2h** were previously reported and synthesized by reaction of lithium amides with N<sub>2</sub>O and alkynyl Grignard reagents as described in the literature.<sup>5,6</sup> The spectra were in good agreement with the reported data.

# 4. Formation of 3aa, 3aa', 4aa and 4aa'



# (E)-1-((E)-3,3-diisopropyltriaz-1-en-1-yl)-2-phenylvinyl 3-phenylpropiolate (3aa):



Alkynyl triazene **2a** (0.10 mmol, 22.9 mg) and phenyl propiolic acid **1a** (0.11 mmol, 16.1 mg, 1.1 equiv.) were weighed in test tube containing a magnetic stirring bar, followed by addition of  $CH_2Cl_2$  (0.5 mL) at RT. The mixture was stirred at RT for 2 h. Volatiles were evaporated, crude was then purified by silica

gel chromatography eluting with pentane/EtOAc to afford 3aa.

Obtained as yellow solid in 99 % yield (37.1 mg). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) = 7.80–7.73 (m, 2H), 7.65–7.59 (m, 2H), 7.50–7.44 (m, 1H), 7.39 (dd, J = 8.2, 6.6 Hz, 2H), 7.32 (t, J = 7.7 Hz, 2H), 7.22–7.16 (m, 1H), 5.93 (s, 1H), 5.20 (hept, J = 6.8 Hz, 1H), 4.01 (hept, J = 6.6 Hz, 1H), 1.35 (d, J = 6.5 Hz, 6H), 1.30 (d, J = 6.8 Hz, 6H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) = 152.1, 149.2, 135.1, 133.3, 130.9, 129.7, 128.7, 128.2, 126.5, 119.8, 108.7, 87.6, 80.6, 49.7, 48.2, 23.8, 19.2; IR (ATR):  $\tilde{\nu}$  2975, 2220, 1726, 1445, 1148, 1120 cm<sup>-1</sup>; HRMS (ESI/QTOF) m/z: [M + H]<sup>+</sup> Calcd for C<sub>23</sub>H<sub>26</sub>N<sub>3</sub>O<sub>2</sub><sup>+</sup> 376.2019; Found 376.2018; R<sub>f</sub>: 0.34 (1:9 EtOAc/pentane); m.p.: 109–112 °C.



(*E*)-2-((*E*)-3,3-diisopropyltriaz-1-en-1-yl)-1-phenylvinyl 3-phenylpropiolate (**3aa**'), (*E*)-1-((*E*)-3,3-diisopropyltriaz-1-en-1-yl)-2-phenylvinyl 3-phenylpropiolate (**3aa**):



Alkynyl triazene **2a** (0.10 mmol, 22.9 mg) and phenyl propiolic acid **1a** (0.15 mmol, 21.9 mg, 1.5 equiv.) were weighed in test tube containing a magnetic stirring bar, followed by addition of PhMe (0.5 mL) at

RT. After sealing the test tube with a septum, the mixture was stirred in a preheated oil bath at 100 °C for 12 h. Volatiles were then evaporated under reduced pressure. Crude was then purified by silica gel chromatography eluting with pentane/EtOAc to afford an inseparable mixture of **3aa'** and **3aa** at 1:1 ratio.



# (E)-6-(3,3-diisopropyltriaz-1-en-1-yl)-4,5-diphenyl-2H-pyran-2-one (4aa):



Alkynyl triazene **2a** (0.10 mmol, 22.9 mg) and phenyl propiolic acid **1a** (0.11 mmol, 16.1 mg, 1.1 equiv.) were weighed in test tube containing a magnetic stirring bar, followed by addition of  $CH_2Cl_2$  (0.5 mL) at RT. The test tube was sealed with a septum. The mixture was stirred at RT for 2 h. AgSbF<sub>6</sub> (10 mol%, 0.01 mmol, 3.4 mg) was then added at RT. After sealing the test tube with a septum, the mixture was stirred at RT for 1 h. After completion of the reaction, volatiles were evaporated. Crude was analyzed by <sup>1</sup>H NMR to determine regiomeric ratio to be >20:1. Crude was then purified by silica gel chromatography eluting with pentane/EtOAc to afford the 6-triazenyl-2-pyrone product **4aa** with inseparable regioisomer **4aa**' (>1:20).

Obtained as yellow wax in 98 % yield (36.8 mg). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) = 7.25–7.21 (m, 1H), 7.20–7.10 (m, 5H), 7.10–7.06 (m, 2H), 7.04–6.99 (m, 2H), 6.14 (s, 1H), 4.54 (hept, J = 6.8 Hz, 1H), 4.13 (hept, J = 6.7 Hz, 1H), 1.37 (d, J = 6.7 Hz, 6H), 1.08 (d, J = 6.8 Hz, 6H), minor regioisomer **4aa'** = 6.22 (s, 1H), 1.41 (d, J = 6.6 Hz, 7H), 1.30 (d, J = 6.8 Hz, 6H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) = 162.0, 160.4, 159.0, 137.9, 134.8, 131.9, 128.7, 128.6, 128.0, 127.3, 126.5, 110.6, 108.8, 52.9, 49.4, 23.1, 19.0; **IR (ATR):**  $\tilde{\nu}$  2975, 2926, 1721, 1487, 1471, 1443, 1412, 1352, 1254, 1211, 1159, 1129, 700 cm<sup>-1</sup>; **HRMS (ESI/QTOF)** m/z: [M + Na]<sup>+</sup> Calcd for C<sub>23</sub>H<sub>25</sub>N<sub>3</sub>NaO<sub>2</sub><sup>+</sup> 398.1839; Found 398.1839; **R**f: 0.24 (1:4 EtOAc/pentane).





# (E)-5-(3,3-diisopropyltriaz-1-en-1-yl)-4,6-diphenyl-2H-pyran-2-one (4aa'):

Alkynyl triazene **2a** (0.10 mmol, 22.9 mg) and phenyl propiolic acid **1a** (0.10 mmol, 21.9 mg, 1.5 equiv.) were weighed in test tube containing a magnetic stirring bar, followed by addition of PhMe (0.5 mL) at RT. The test tube was sealed with a septum. The mixture was stirred in a preheated oil bath at 100 °C for 12 h. The

mixture was allowed to cool to RT, followed by addition of AgSbF<sub>6</sub> (10 mol%, 0.01 mmol, 3.4 mg). After sealing the test tube with a septum, the mixture was stirred in a preheated oil bath at 100 °C for 12 h. After completion of the reaction, volatiles were

evaporated. Crude was analyzed by NMR to determine regiomeric ratio to be 5.8:1. Crude was then purified by silica gel chromatography eluting with pentane/EtOAc to afford the 5-triazenyl-2-pyrone product **4aa'**.

Obtained as yellow wax in 72 % yield (27.1 mg). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) = 7.25–7.12 (m, 10H), 6.22 (s, 1H), 5.27 (hept, J = 6.8 Hz, 1H), 4.13 (hept, J = 6.6 Hz, 1H), 1.41 (d, J = 6.6 Hz, 6H), 1.30 (d, J = 6.8 Hz, 6H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) = 162.9, 162.5, 155.3, 138.9, 134.82, 131.3, 128.9, 128.4, 128.3, 127.9, 127.2, 118.6, 95.2, 51.3, 48.5, 23.7, 19.3; **IR (ATR):**  $\tilde{\nu}$  2957, 2922, 1706, 1394, 1375, 1361, 1335, 1261, 1217, 1156, 1130, 1097, 792, 767, 698 cm<sup>-1</sup>; **HRMS (ESI/QTOF)** m/z: [M + H]<sup>+</sup> Calcd for C<sub>23</sub>H<sub>26</sub>N<sub>3</sub>O<sub>2</sub><sup>+</sup> 376.2020; Found 376.2021; **R**<sub>f</sub>: 0.20 (1:4 EtOAc/pentane).

### 5. General Procedure A for the One-Pot Synthesis of 6-Fluoro-α-Pyrones 5:



General Procedure A: Alkynyl triazene 2 (0.10 mmol, 1.0 equiv.) and propiolic acid 1 (0.11 mmol, 1.1 equiv.) were weighed in test tube containing a magnetic stirring bar, followed by addition of CH<sub>2</sub>Cl<sub>2</sub> (0.5 mL) at RT. The test tube was sealed with a septum, and the mixture was stirred at RT for 2 h. AgSbF<sub>6</sub> (10 mol%, 3.4 mg) was then added at RT. After sealing the test tube with a septum, the mixture was stirred at RT for 1 h (for **5ha**, **5ka**, **5la** and **5ma**, mixture was stirred at 60 °C for 12 h after adding AgSbF<sub>6</sub>) Using a glass pipette, the crude was then transferred to a Falcon tube (rinsing was done with additional 0.5 mL CH<sub>2</sub>Cl<sub>2</sub>). 1.0 mL HF.py was added via a syringe, and the mixture was allowed to stir under air at 60 °C for 3 h (for 5da, 5ea, 5fa, 5ja, 5ad, 5ae and 5af, mixture was stirred at RT for 48 h after adding HF.py). After completion of reaction, the mixture was allowed to cool to RT, and 2.0 mL EtOAc was added, followed by 6.0 mL H<sub>2</sub>O. Calcium gluconate (c.a. 200 mg) was added to the biphasic layer, followed by rigourous stirring. The organic phase was removed using a glass pipette, and the aqueous phase was washed using the same method with EtOAc (2.0 mL x 2). The organic phases were combined, dried over Na<sub>2</sub>SO<sub>4</sub>, filtered and concentrated under reduced pressure. If necessary, a known amount of internal standard (dimethyl sulfone) was added and crude was analyzed by NMR to determine regiomeric ratio. Crude was then purified by silica gel chromatography eluting with pentane/EtOAc to afford the 6fluoro-2-pyrone product 5.

### 6-Fluoro-3,4-diphenyl-2H-pyran-2-one (5aa):



Obtained as yellow solid in 88 % yield (23.3 mg), <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) = 7.28 (s, 1H), 7.26–7.20 (m, 5H), 7.15–7.07 (m, 4H), 5.88 (s, 1H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$ (ppm) = 159.8 (d,  $J_{C-F}$  = 6.0 Hz), 158.9 (d,  $J_{C-F}$  = 281.4 Hz),

156.0 (d,  $J_{C-F} = 8.7$  Hz), 137.1 (d,  $J_{C-F} = 4.2$  Hz), 133.2, 131.0, 129.4, 128.7, 128.6, 128.3, 128.0, 120.2 (d,  $J_{C-F} = 7.6$  Hz), 86.3 (d,  $J_{C-F} = 21.3$  Hz); <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) = -72.3; **IR (ATR):**  $\tilde{\nu}$  1742, 1659, 1537, 1357, 1205, 1064, 860, 804, 768, 751, 697, 573 cm<sup>-1</sup>; HRMS (ESI/QTOF) m/z: [M + H]<sup>+</sup> Calcd for C<sub>17</sub>H<sub>12</sub>FO<sub>2</sub><sup>+</sup> 267.0815; Found 267.0813; **R**<sub>f</sub>: 0.67 (1:9 EtOAc/pentane); **m.p.:** 135–137 °C.

### 6-Fluoro-4-(4-nitrophenyl)-3-phenyl-2*H*-pyran-2-one (5ba):



Obtained as yellow solid in 90 % yield (27.9 mg), <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) = 8.14–8.07 (m, 2H), 7.31–7.24 (m, 5H), 7.11–7.05 (m, 2H), 5.86 (s, 1H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) = 159.2 (d,  $J_{C-F}$  = 282.8 Hz), 159.0 (d,  $J_{C-F}$  = 5.8 Hz),

153.2 (d,  $J_{C-F} = 8.7$  Hz), 148.0, 143.5 (d,  $J_{C-F} = 3.6$  Hz), 132.2, 130.8, 129.8, 128.8, 128.7, 123.9, 121.6 (d,  $J_{C-F} = 8.0$  Hz), 85.5 (d,  $J_{C-F} = 22.2$  Hz); <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) δ (ppm) = -70.5; **IR (ATR):**  $\tilde{\nu}$  2956, 2923, 2853, 1750, 1661, 1542, 1521, 1460, 1347, 1259, 1064, 1015, 842, 798, 701 cm<sup>-1</sup>; **HRMS (ESI/QTOF)** m/z: [M + H]<sup>+</sup> Calcd for C<sub>17</sub>H<sub>11</sub>FNO<sub>4</sub><sup>+</sup> 312.0667; Found 312.0673; **R**<sub>f</sub>: 0.44 (1:4 EtOAc/pentane); **m.p.:** 138–140 °C.

# 6-Fluoro-4-(4-fluorophenyl)-3-phenyl-2H-pyran-2-one (5ca):



Obtained as pale yellow solid in 82 % yield (23.2 mg), <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) = 7.30–7.24 (m, 3H), 7.16–7.07 (m, 4H), 6.98–6.91 (m, 2H), 5.88 (s, 1H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$ (ppm) = 163.1 (d, *J* = 250.9 Hz), 159.6 (d, *J* = 5.6 Hz), 158.9 (d, *J* =

281.3 Hz), 154.8 (d, J = 8.7 Hz), 133.0, 133.0 (t, J = 3.5 Hz), 130.9, 130.8 (d, J = 8.6 Hz), 128.5, 128.2, 120.3 (d, J = 7.6 Hz), 115.8 (d, J = 21.9 Hz), 86.1 (d, J = 21.4 Hz); <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) δ (ppm) = -71.8, -113.2.; IR (ATR):  $\tilde{\nu}$  1746, 1660, 1602, 1537, 1509, 1361, 1234, 1160, 1065, 869, 699, 574 cm<sup>-1</sup>; HRMS (ESI/QTOF) m/z: [M + H]<sup>+</sup> Calcd for C<sub>17</sub>H<sub>11</sub>F<sub>2</sub>O<sub>2</sub><sup>+</sup> 285.0722; Found 285.0726; R<sub>f</sub>: 0.59 (1:9 EtOAc/pentane); m.p.: 145–148 °C.

### 4-(4-Chlorophenyl)-6-fluoro-3-phenyl-2H-pyran-2-one (5da):



Obtained as light yellow solid in 78 % yield (23.5 mg), <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) = 7.27 (d, J = 2.5 Hz, 1H), 7.26– 7.24 (m, 2H), 7.24–7.20 (m, 2H), 7.14–7.09 (m, 2H), 7.06–7.01 (m, 2H), 5.84 (s, 1H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) =

159.5 (d,  $J_{C-F} = 5.7$  Hz), 159.0 (d,  $J_{C-F} = 281.5$  Hz), 154.5 (d,  $J_{C-F} = 8.8$  Hz), 135.7, 135.5 (d,  $J_{C-F} = 3.7$  Hz), 132.9, 130.9, 130.1, 128.9, 128.5, 128.3, 120.5 (d,  $J_{C-F} = 7.9$  Hz), 85.9 (d, J = 21.6 Hz); <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) = -71.75; IR (ATR):  $\tilde{\nu}$  1734, 1664, 1536, 1354, 1095, 1065, 848, 806, 783, 703 cm<sup>-1</sup>; HRMS (ESI/QTOF) m/z: [M + H]<sup>+</sup> Calcd for C<sub>17</sub>H<sub>11</sub>ClFO<sub>2</sub><sup>+</sup> 301.0426; Found 301.0429; **R**<sub>f</sub>: 0.70 (1:4 EtOAc/pentane); **m.p.:** 129–132 °C.

### 4-(4-Bromophenyl)-6-fluoro-3-phenyl-2H-pyran-2-one (5ea):

Obtained as light yellow solid in 71 % yield (24.6 mg), <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) = 7.41–7.36 (m, 2H), 7.27 (dt, *J* = 4.4, 1.6 Hz, 3H), 7.15–7.10 (m, 2H), 7.00–6.95 (m, 2H), 5.85 (s, 1H);

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ (ppm) = 159.5 (d,  $J_{C-F} = 5.8$  Hz), 159.0 (d,  $J_{C-F} = 281.5$  Hz), 154.6 (d,  $J_{C-F} = 8.4$  Hz), 135.9 (d,  $J_{C-F} = 3.5$  Hz), 132.9, 131.9, 130.9, 130.3, 128.5, 128.3, 123.9, 120.5 (d,  $J_{C-F} = 7.5$  Hz), 85.8 (d,  $J_{C-F} = 21.5$ Hz); <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) δ (ppm) = -71.7; IR (ATR):  $\tilde{\nu}$  1733, 1661, 1586, 1536, 1353, 1260, 1203, 1064, 1012, 863, 847, 804, 783, 755, 704, 573, 498 cm<sup>-1</sup>; HRMS (ESI/QTOF) m/z: [M + H]<sup>+</sup> Calcd for C<sub>17</sub>H<sub>11</sub>BrFO<sub>2</sub><sup>+</sup> 344.9921; Found 344.9925; R<sub>f</sub>: 0.64 (1:9 EtOAc/pentane); m.p.: 141–144 °C.

### 6-Fluoro-4-(4-methoxyphenyl)-3-phenyl-2H-pyran-2-one (5fa):



Obtained as pale yellow solid in 61 % yield (18.2 mg), <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) = 7.29–7.23 (m, 3H), 7.17–7.12 (m, 2H), 7.07–7.01 (m, 2H), 5.88 (s, 1H), 3.77 (s, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) = 160.5, 160.0 (d, *J*<sub>C-F</sub> = 6.3 Hz), 158.9 (d,

MeO<sup>-</sup>  $V_{C-F} = 280.1 \text{ Hz}$ , 155.5 (d,  $J_{C-F} = 8.8 \text{ Hz}$ ), 133.7, 131.0, 130.5, 129.1 (d,  $J_{C-F} = 3.6 \text{ Hz}$ ), 128.4, 127.9, 119.2 (d,  $J_{C-F} = 7.4 \text{ Hz}$ ), 114.0, 86.1 (d,  $J_{C-F} = 21.1 \text{ Hz}$ ), 55.4; <sup>19</sup>**F NMR** (376 MHz, CDCl<sub>3</sub>) δ (ppm) = -72.8; **IR (ATR):**  $\tilde{\nu}$  1743, 1660, 1537, 1355, 1206, 1153, 1042, 779, 762, 699, 586 cm<sup>-1</sup>; **HRMS (ESI/QTOF)** m/z: [M + H]<sup>+</sup> Calcd for C<sub>18</sub>H<sub>14</sub>FO<sub>3</sub><sup>+</sup> 297.0921; Found 297.0923; **R**<sub>f</sub>: 0.25 (1:9 EtOAc/pentane); **m.p.:** 127–128 °C.

### 4-(3-Acetylphenyl)-6-fluoro-3-phenyl-2H-pyran-2-one (5ga):



Obtained as pale yellow solid in 83 % yield (25.7 mg), <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) = 7.89 (dt, *J* = 7.6, 1.5 Hz, 1H), 7.71 (td, *J* = 1.8, 0.6 Hz, 1H), 7.38 (td, *J* = 7.7, 0.6 Hz, 1H), 7.32 (dt, *J* = 7.8, 1.5 Hz, 1H), 7.29–7.25 (m, 3H), 7.18–7.12 (m, 2H), 5.95

(s, 1H), 2.42 (s, 3H); <sup>13</sup>**C** NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) = 197.3, 159.5 (d,  $J_{C-F} = 5.6$  Hz), 159.1 (d,  $J_{C-F} = 281.7$  Hz), 154.7 (d,  $J_{C-F} = 8.6$  Hz), 137.4 (d,  $J_{C-F} = 3.6$  Hz), 137.2, 133.1, 132.9, 130.9, 129.1, 129.0, 129.0, 128.5, 128.3, 120.8 (d,  $J_{C-F} = 7.6$  Hz), 85.9 (d,  $J_{C-F} = 21.6$  Hz), 26.6; <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) = -71.4; IR (ATR):  $\tilde{\nu}$  1742, 1686, 1661, 1539, 1360, 1265, 1199, 1067, 787, 701 cm<sup>-1</sup>; HRMS (ESI/QTOF) m/z: [M + H]<sup>+</sup> Calcd for C<sub>19</sub>H<sub>14</sub>FO<sub>3</sub><sup>+</sup> 309.0921; Found 309.0928; **R**<sub>f</sub>: 0.40 (1:4 EtOAc/pentane); **m.p.:** 122–125 °C.

# 6-Fluoro-3-phenyl-4-(2-(trifluoromethyl)phenyl)-2H-pyran-2-one (5ha):



Obtained as light brown film in 73 % yield (24.4 mg), <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) = 7.67 (dd, *J* = 7.5, 1.7 Hz, 1H), 7.42–7.32 (m, 2H), 7.17 (dd, *J* = 5.3, 1.9 Hz, 3H), 7.10 (dt, *J* = 6.7, 2.3 Hz, 2H), 7.00 (dd, *J* = 7.2, 1.6 Hz, 1H), 5.79 (s, 1H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) = 159.2 (d, *J*<sub>C-F</sub> =

5.3 Hz), 158.2 (d,  $J_{C-F} = 281.8$  Hz), 154.9 (d,  $J_{C-F} = 8.9$  Hz), 135.4, 132.5, 131.8, 130.6, 130.3, 129.2, 128.2, 128.2, 128.1–127.7 (q,  $J_{C-F} = 30.7$  Hz), 126.9 (q,  $J_{C-F} = 5.0$  Hz), 123.9 (q,  $J_{C-F} = 274.0$  Hz), 122.1 (d,  $J_{C-F} = 7.9$  Hz), 86.6 (d,  $J_{C-F} = 21.6$  Hz); <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) = -57.8, -72.9; IR (ATR):  $\tilde{\nu}$  1752, 1663, 1543, 1560, 1315, 1173, 1128, 1070, 1054, 1036, 769, 699, 574 cm<sup>-1</sup>; HRMS (ESI/QTOF) m/z: [M + H]<sup>+</sup> Calcd for C<sub>18</sub>H<sub>11</sub>F<sub>4</sub>O<sub>2</sub><sup>+</sup> 335.0690; Found 335.0689; **R**f: 0.56 (1:4 EtOAc/pentane).

## 6-Fluoro-4-(naphthalen-1-yl)-3-phenyl-2H-pyran-2-one (5ia):



Obtained as pale yellow solid in 55 % yield (17.4 mg), <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) = 7.87–7.82 (m, 1H), 7.81–7.75 (m, 2H), 7.55–7.48 (m, 2H), 7.29 (dd, J = 8.3, 7.1 Hz, 1H), 7.11–7.01 (m, 6H), 5.86 (s, 1H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) = 159.6 (d,  $J_{C-F} = 5.6$ Hz), 158.5 (d,  $J_{C-F} = 282.2$  Hz), 156.1 (d,  $J_{C-F} = 8.8$  Hz), 134.9 (d,  $J_{C-F}$  = 3.3 Hz), 133.6, 133.0, 130.1, 129.4, 128.9, 128.0, 127.1, 126.7, 126.5, 125.1, 124.9, 122.4 (d,  $J_{C-F} = 7.7$  Hz), 87.5 (d,  $J_{C-F} = 20.7$  Hz); <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) = -73.0; IR (ATR):  $\tilde{\nu}$  1742, 1658, 1539, 1385, 1356, 1177, 879, 802, 699, 543 cm<sup>-</sup> 1; HRMS (ESI/QTOF) m/z: [M + H]<sup>+</sup> Calcd for C<sub>21</sub>H<sub>14</sub>FO<sub>2</sub><sup>+</sup> 317.0972; Found 317.0970; R<sub>f</sub>: 0.25 (1:9 EtOAc/pentane); m.p.: 151–155 °C.

### 6-Fluoro-3-phenyl-4-(thiophen-2-yl)-2H-pyran-2-one (5ja):



Obtained as yellow wax in 39 % yield (10.6 mg), <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) = 7.46–7.42 (m, 3H), 7.39 (d, *J* = 5.1 Hz, 1H), 7.29–7.23 (m, 2H), 7.07 (d, *J* = 3.8 Hz, 1H), 6.95 (t, *J* = 4.4 Hz, 1H), 6.10 (s,

1H); <sup>13</sup>**C** NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) = 159.9 (d,  $J_{C-F} = 5.2$  Hz), 159.0 (d,  $J_{C-F} = 277.8$  Hz), 147.2 (d,  $J_{C-F} = 9.6$  Hz), 138.2 (d,  $J_{C-F} = 4.5$  Hz), 133.7, 131.5, 131.2, 130.8, 129.4, 129.1, 127.5, 118.0 (d,  $J_{C-F} = 7.0$  Hz), 84.1 (d,  $J_{C-F} = 23.0$ Hz); <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) = -73.7; IR (ATR):  $\tilde{\nu}$  1728, 1664, 1543, 1422, 1393, 1364, 777, 724, 701 cm<sup>-1</sup>; HRMS (ESI/QTOF) m/z: [M + H]<sup>+</sup> Calcd for C<sub>15</sub>H<sub>10</sub>FO<sub>2</sub>S<sup>+</sup> 273.0380; Found 273.0390; **R**f: 0.54 (1:4 EtOAc/pentane).

# 4-Cyclopropyl-6-fluoro-3-phenyl-2H-pyran-2-one (5ka):



Obtained as pale yellow oil in 73 % yield (16.7 mg), <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) = 7.48–7.41 (m, 2H), 7.37 (m, 3H), 5.12 (s, 1H), 1.84 (m, 1H), 1.07–0.99 (m, 2H), 0.88–0.84 (m, 2H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) = 161.3 (d,  $J_{C-F}$  = 8.7 Hz), 159.9 (d,  $J_{C-F}$  =

277.6 Hz), 159.0 (d,  $J_{C-F} = 6.5$  Hz), 133.5, 130.7, 128.7, 128.3, 119.7 (d,  $J_{C-F} = 6.6$  Hz), 78.9 (d,  $J_{C-F} = 22.4$  Hz), 14.4 (d,  $J_{C-F} = 3.7$  Hz), 10.4; <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$ (ppm) = -72.5; **IR (ATR):**  $\tilde{\nu}$  2949, 2869, 1743, 1664, 1538, 1446, 1355, 1203, 1141, 1046, 805, 702 cm<sup>-1</sup>; **HRMS (ESI/QTOF)** m/z: [M + H]<sup>+</sup> Calcd for C<sub>14</sub>H<sub>12</sub>FO<sub>2</sub><sup>+</sup> 231.0816; Found 231.0815; **R**<sub>f</sub>: 0.45 (1:9 EtOAc/pentane).

# 6-Fluoro-3-phenyl-4-propyl-2H-pyran-2-one (5la):

Obtained as pale yellow oil in 55 % yield (12.7 mg), <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) = 7.46–7.35 (m, 3H), 7.24–7.20 (m, 2H), F 5.70 (s, 1H), 2.40–2.24 (m, 2H), 1.59–1.45 (m, 2H), 0.85 (t, *J* = 7.3 Hz, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) = 159.7 (d, *J*<sub>C-F</sub> = 6.1 Hz), 159.3 (d, *J*<sub>C-F</sub> = 8.0 Hz), 159.1 (d, *J*<sub>C-F</sub> = 280.3 Hz), 133.4, 130.1, 128.7, 128.4, 121.1 (d, *J*<sub>C-F</sub> = 6.9 Hz), 84.7 (d, *J*<sub>C-F</sub> = 20.4 Hz), 35.6 (d, *J*<sub>C-F</sub> = 3.1 Hz), 22.3, 13.9; <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$ (ppm) = -73.3; IR (ATR):  $\tilde{\nu}$  2965, 2932, 2874, 1739, 1665, 1551, 1537, 1184, 701, 564 cm<sup>-1</sup>; **HRMS (ESI/QTOF)** m/z: [M + H]<sup>+</sup> Calcd for C<sub>14</sub>H<sub>14</sub>FO<sub>2</sub><sup>+</sup> 233.0972; Found 233.0972; **R**<sub>f</sub>: 0.30 (1:9 EtOAc/pentane).

# 6-Fluoro-3-phenyl-2H-pyran-2-one (5ma):

Obtained as brown film in 62 % yield (11.7 mg), <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) = 7.63–7.55 (m, 3H), 7.46–7.34 (m, 3H), 5.81 (dd, J =7.4, 1.7 Hz, 1H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) = 159.8 (d,  $J_{C-F} =$ 283.9 Hz), 158.4 (d,  $J_{C-F} = 6.6$  Hz), 143.4 (d,  $J_{C-F} = 8.6$  Hz), 134.0, 128.8, 128.7, 128.1, 123.2 (d,  $J_{C-F} = 7.6$  Hz), 83.4 (d,  $J_{C-F} = 21.4$  Hz); <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) = -70.3; IR (ATR):  $\tilde{\nu}$  1770, 1652, 1578, 1550, 1356, 1315, 1245, 1095, 1051, 772, 753, 734, 699, 562 cm<sup>-1</sup>; HRMS (ESI/QTOF) m/z: [M + H]<sup>+</sup> Calcd for C<sub>11</sub>H<sub>8</sub>FO<sub>2</sub><sup>+</sup> 191.0503; Found 191.0503; **R**<sub>f</sub>: 0.26 (1:9 EtOAc/pentane).

### (E)-6-(3,3-diisopropyltriaz-1-en-1-yl)-5-phenyl-4-(trimethylsilyl)-2H-pyran-2-one (4na):

Alkynyl triazene **1a** (0.10 mmol, 1.0 equiv.) and propiolic acid **2n** (0.11 mmol, 1.1 equiv.) were weighed in test tube containing a magnetic stirring bar, followed by addition of  $CH_2Cl_2$  (0.5 mL) at RT. The test tube was sealed with a septum, and the mixture was stirred at RT for 2 h. AgSbF<sub>6</sub> (10 mol%, 3.4 mg) was then added at RT. After sealing the test tube with a septum, the mixture was stirred at RT for 1 h. Volatiles were evaporated under reduced pressure, and crude was then purified by silica gel chromatography eluting with pentane/EtOAc to afford **4na**.



Obtained as bright yellow film in 89 % yield (32.9 mg), <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) = 7.73 (dd, *J* = 8.6, 1.2 Hz, 2H), 7.30 (dd, *J* = 8.4, 7.0 Hz, 2H), 7.2 –7.14 (m, 1H), 5.87 (s, 1H), 5.17 (p, *J* = 6.8 Hz, 1H), 4.01 (p, *J* = 6.6 Hz, 1H), 1.34 (d, *J* = 6.6 Hz, 6H), 1.29 (d, *J* = 6.8 Hz, 6H), 0.26 (s, 9H); <sup>13</sup>C

**NMR** (101 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) = 151.1, 149.1, 135.1, 129.7, 128.2, 126.5, 108.7, 95.6, 94.6, 49.7, 48.2, 23.7, 19.2, -0.73; **IR (ATR):**  $\tilde{\nu}$  2975, 2930, 1729, 1446, 1367, 1263, 1191, 1157, 1122, 1101, 848, 759, 693 cm<sup>-1</sup>; **HRMS (ESI/QTOF)** m/z: [M + Na]<sup>+</sup> Calcd for C<sub>20</sub>H<sub>29</sub>N<sub>3</sub>NaO<sub>2</sub>Si<sup>+</sup> 394.1921; Found 394.1927; **R**<sub>f</sub>: 0.23 (1:9 EtOAc/pentane).

## <u>6-Fluoro-3-(naphthalen-1-yl)-4-phenyl-2H-pyran-2-one (5ab):</u>



Obtained as yellow solid in 79 % yield (25.1 mg), <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) =  $\delta$  7.87–7.82 (m, 1H), 7.78 (d, *J* = 8.2 Hz, 1H), 7.73–7.70 (m, 1H), 7.49–7.44 (m, 2H), 7.32 (dd, *J* = 8.3, 7.1 Hz, 1H), 7.18–7.12 (m, 2H), 7.10–7.05 (m, 2H), 7.04 – 7.01 (m, 2H), 6.01 (s, 1H).;

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ (ppm) = 159.6 (d, *J*<sub>C-F</sub> = 281.2 Hz), 159.4 (d, *J*<sub>C-F</sub> = 5.9 Hz), 157.8 (d, *J*<sub>C-F</sub> = 8.8 Hz), 136.9 (d, *J*<sub>C-F</sub> = 3.6 Hz), 133.7, 132.4, 131.2, 129.5, 129.2, 129.1, 128.8, 128.4, 127.9, 126.7, 126.1, 125.5, 125.0, 119.0 (d, *J*<sub>C-F</sub> = 7.5 Hz), 86.0 (d, *J*<sub>C-F</sub> = 21.4 Hz); <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) δ (ppm) = -71.8; **IR** (ATR):  $\tilde{\nu}$  1742, 1658, 1539, 1383, 1356, 1229, 1177, 879, 802, 779, 752, 699, 543 cm<sup>-1</sup>; HRMS (ESI/QTOF) m/z: [M + Na]<sup>+</sup> Calcd for C<sub>21</sub>H<sub>13</sub>FNaO<sub>2</sub><sup>+</sup> 339.0792; Found 339.0792; **R**<sub>f</sub>: 0.38 (1:9 EtOAc/pentane); **m.p.:** 149–152 °C.

### 6-Fluoro-3-(4-fluorophenyl)-4-phenyl-2H-pyran-2-one (5ac):



Obtained as colourless solid in 75 % yield (21.3 mg), <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) = 7.33–7.22 (m, 3H), 7.14–7.05 (m, 4H), 6.96–6.88 (m, 2H), 5.88 (s, 1H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$ (ppm) = 162.4 (d, *J*<sub>C-F</sub> = 248.2 Hz), 159.7 (d, *J*<sub>C-F</sub> = 5.7 Hz), 158.9

(d,  $J_{C-F} = 281.5 \text{ Hz}$ ), 156.3 (d,  $J_{C-F} = 8.8 \text{ Hz}$ ), 136.9 (d,  $J_{C-F} = 3.4 \text{ Hz}$ ), 132.8 (d,  $J_{C-F} = 8.2 \text{ Hz}$ ), 129.5, 129.1 (d,  $J_{C-F} = 3.5 \text{ Hz}$ ), 128.7, 128.6, 119.2 (d,  $J_{C-F} = 7.6 \text{ Hz}$ ), 115.4 (d,  $J_{C-F} = 21.6 \text{ Hz}$ ), 86.3 (d,  $J_{C-F} = 21.3 \text{ Hz}$ ); <sup>19</sup>**F NMR** (376 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) = -72.0, -113.4; **IR (ATR):**  $\tilde{\nu}$  1742, 1660, 1540, 1395, 1358, 1225, 1206, 1159, 1063, 866, 834, 765, 700, 525 cm<sup>-1</sup>; **HRMS (ESI/QTOF)** m/z: [M + H]<sup>+</sup> Calcd for C<sub>17</sub>H<sub>11</sub>F<sub>2</sub>O<sub>2</sub><sup>+</sup> 285.0722; Found 285.0731; **R**<sub>f</sub>: 0.26 (1:9 EtOAc/pentane); **m.p.:** 147–150 °C.

# MeO O F

6-Fluoro-3-(4-methoxyphenyl)-4-phenyl-2*H*-pyran-2-one (**5ad**):

Obtained as bright yellow film in 55 % yield (16.0 mg), <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) = 7.31–7.22 (m, 3H), 7.14–7.09 (m, 2H), 7.07–7.02 (m, 2H), 6.76 (d, *J* = 8.7 Hz, 2H), 5.86 (s, 1H), 3.77 (s, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) = 160.1 (d, *J*<sub>C-F</sub>

= 5.7 Hz), 159.2, 158.7 (d,  $J_{C-F}$  = 280.7 Hz), 155.4 (d,  $J_{C-F}$  = 8.6 Hz), 137.3 (d,  $J_{C-F}$  = 3.5 Hz), 132.2, 129.3, 128.7, 128.6, 125.3, 119.9 (d,  $J_{C-F}$  = 7.5 Hz), 113.8, 86.3 (d,  $J_{C-F}$  = 21.3 Hz), 55.3; <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) = -73.0; IR (ATR):  $\tilde{\nu}$  1743, 1660, 1537, 1395, 1355, 1206, 1153, 1042, 921, 800, 779, 762, 699, 586 cm<sup>-1</sup>; HRMS (ESI/QTOF) m/z: [M + H]<sup>+</sup> Calcd for C<sub>18</sub>H<sub>14</sub>FO<sub>3</sub><sup>+</sup> 297.0921; Found 297.0932; R<sub>f</sub>: 0.33 (1:9 EtOAc/pentane).

# 3-Butyl-6-fluoro-4-phenyl-2H-pyran-2-one (5ae):



Obtained as pale yellow oil in 43 % yield (10.5 mg), <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) = 7.50–7.41 (m, 3H), 7.28–7.21 (m, 2H), 5.63 (s, 1H), 2.43–2.34 (m, 2H), 1.47 (tt, *J* = 8.0, 6.4 Hz, 2H), 1.23 (m, 2H), 0.80 (t, *J* = 7.3 Hz, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$ 

(ppm) = 160.4 (d,  $J_{C-F} = 6.2$  Hz), 157.9 (d,  $J_{C-F} = 279.3$  Hz), 155.2 (d,  $J_{C-F} = 8.2$  Hz), 137.6 (d,  $J_{C-F} = 3.6$  Hz), 129.2, 128.9, 127.5, 121.1 (d,  $J_{C-F} = 7.4$  Hz), 85.9 (d,  $J_{C-F} = 20.4$  Hz), 30.8, 27.5, 22.7, 13.8; <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) = -75.5; **IR (ATR):**  $\tilde{\nu}$  2959, 2930, 1745, 1664, 1546, 1394, 1149, 1042, 767, 702 cm<sup>-1</sup>; **HRMS** (**ESI/QTOF)** m/z: [M + H]<sup>+</sup> Calcd for C<sub>15</sub>H<sub>16</sub>FO<sub>2</sub><sup>+</sup> 247.1129; Found 247.1130; **R**<sub>f</sub>: 0.43 (1:9 EtOAc/pentane).

### <u>3-Cyclopentyl-6-fluoro-4-phenyl-2*H*-pyran-2-one (**5af**):</u>



Obtained as pale yellow solid in 57 % yield (14.7 mg), <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) = 7.50–7.42 (m, 3H), 7.25 (m, 2H), 5.60 (s, 1H), 2.90 (m, 1H), 2.05–1.94 (m, 2H), 1.84 (qt, J = 7.9, 4.7 Hz, 2H), 1.65–1.57 (m, 2H), 1.49 (dtt, J = 7.0, 4.7, 2.9 Hz, 2H); <sup>13</sup>C NMR (101

MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) = 158.3 (d,  $J_{C-F} = 6.6$  Hz), 158.0 (d,  $J_{C-F} = 279.9$  Hz), 155.6 (d,  $J_{C-F} = 8.0$  Hz), 138.3 (d,  $J_{C-F} = 3.6$  Hz), 129.1, 128.9, 127.5, 123.2 (d,  $J_{C-F} = 7.2$  Hz), 85.9 (d,  $J_{C-F} = 20.2$  Hz), 39.3, 30.5, 26.9; <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) = -75.4; IR (ATR):  $\tilde{\nu}$  2949, 2869, 1743, 1664, 1538, 1446, 1395, 1355, 1203, 1141, 1046, 857, 805, 766, 702 cm<sup>-1</sup>; HRMS (ESI/QTOF) m/z HRMS (ESI/QTOF) m/z: [M + H]<sup>+</sup> Calcd for C<sub>16</sub>H<sub>16</sub>FO<sub>2</sub><sup>+</sup> 259.1129; Found 259.1127; R<sub>f</sub>: 0.45 (1:9 EtOAc/pentane); m.p.: 115–118 °C.

**6ag** and **6ah** were synthesized according to General Procedure **A**, using alkynyl triazenes **2g** and **2h** respectively. Side product **7** was isolated along with **6ah**.



# <u>2-(Diisopropylamino)-3-ethyl-4-phenylpyrano[2,3-c]pyrazol-6(2*H*)one (**6ag**):</u>

Obtained as pale yellow solid in 76 % yield (25.8 mg), <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) = 7.49 (dd, *J* = 5.0, 2.0 Hz, 3H), 7.44–7.40 (m, 2H), 5.96 (s, 1H), 3.67 (hept, *J* = 6.4 Hz, 2H), 2.71 (q, *J* = 7.5 Hz, 2H), 1.03 (d, *J* = 6.5 Hz, 6H), 0.98 (d, *J* = 6.4 Hz, 6H), 0.48 (t, *J* = 7.6 Hz, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) = 161.7,

156.9, 153.6, 144.9, 136.7, 129.8, 128.9, 127.3, 109.5, 97.4, 51.9, 20.7, 18.7, 12.9; **IR** (ATR):  $\tilde{\nu}$  2973, 2930, 1732, 1589, 1573, 1469, 1177, 1144, 849, 775, 705 cm<sup>-1</sup>; **HRMS** (ESI/QTOF) m/z: [M + H]<sup>+</sup> Calcd for C<sub>20</sub>H<sub>26</sub>N<sub>3</sub>O<sub>2</sub><sup>+</sup> 340.2020; Found 340.2024; **R**<sub>f</sub>: 0.44 (1:4 EtOAc/pentane).

# 2-(Diisopropylamino)-4-phenylpyrano[2,3-c]pyrazol-6(2H)-one (6ah):



Obtained as red solid in 27 % yield (8.3 mg), <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) = 7.65–7.61 (m, 2H), 7.58 (s, 1H), 7.55–7.50 (m, 3H), 6.23 (s, 1H), 3.67 (hept, J = 6.4 Hz, 2H), 1.03 (d, J = 6.4 Hz, 12H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) = 161.8, 157.1, 150.7, 135.4, 131.0, 129.4, 127.5, 108.5, 98.9, 51.6, 19.7; IR (ATR):  $\tilde{\nu}$  2959, 2924, 2853, 1730, 1595, 1574, 1463, 1446, 1383, 1260,

1186, 1166, 1093, 1019, 984, 850, 799, 772, 745, 698, 551 cm<sup>-1</sup>; **HRMS** (ESI/QTOF) m/z:  $[M + H]^+$  Calcd for  $C_{18}H_{22}N_3O_2^+$  312.1707; Found 312.1706;  $R_f$ : 0.57 (1:4 EtOAc/pentane).

# N-(but-2-yn-1-yl)-4-methylbenzenesulfonamide (7):



Obtained as colourless solid in 88 % yield (19.7 mg), <sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) = 7.77 (d, *J* = 8.4 Hz, 2H), 7.36–7.26 (m, 2H), 4.64 (t, *J* = 6.0 Hz, 1H), 3.76 (dq, *J* = 6.0, 2.4

Hz, 2H), 2.42 (s, 3H), 1.59 (t, J = 2.4 Hz, 3H). The spectra obtained fit with reported literature.<sup>7</sup>

# 7. Product Diversifications:

General Procedure B: (0.10 mmol, 22.9 mg) and phenyl propiolic acid 1a (0.11 mmol, 16.1 mg, 1.1 equiv.) were weighed in a microwave tube containing a magnetic stirring bar, followed by addition of CH<sub>2</sub>Cl<sub>2</sub> (0.5 mL) at RT. The microwave tube was sealed, and the mixture was stirred at RT for 2 h. AgSbF<sub>6</sub> (10 mol%, 3.4 mg) was then added at RT. After sealing the microwave tube, the mixture was stirred at RT for 1 h.

# 6-Chloro-3,4-diphenyl-2*H*-pyran-2-one (8):

Following General Procedure B, without purification, 2 eq. TMSCI and 1.5 eq. TfOH were added to the crude at RT. After sealing the tube, mixture was stirred at 50 °C for 3 h. Volatiles were evaporated under reduced pressure, and crude was then purified by silica gel chromatography eluting with pentane/EtOAc to afford 8.



Obtained as pale yellow solid in 83 % yield (23.6 mg), <sup>1</sup>H NMR  $(400 \text{ MHz}, \text{ CDCl}_3) \delta (\text{ppm}) = 7.26-7.19 \text{ (m, 6H)}, 7.15-7.10 \text{ (m, 2H)},$ 7.09–7.05 (m, 2H), 6.42 (s, 1H);  $^{13}\textbf{C}$  NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$ (ppm) = 161.8, 153.5, 147.4, 136.7, 133.1, 130.8, 129.3, 128.7, 128.6, 128.3, 128.2, 122.5, 108.0; **IR (ATR):**  $\tilde{\nu}$  1725, 1616, 1576, 1527, 1445, 1310, 1100, 1037, 980, 877, 766, 749, 697 cm<sup>-1</sup>; HRMS (ESI/QTOF) m/z: [M + Na]<sup>+</sup> Calcd for

# 6-Bromo-3,4-diphenyl-2*H*-pyran-2-one (9):

Following General Procedure B, without purification, 2 eq. TMSBr and 1.5 eq. TfOH were added to the crude at RT. After sealing the tube, mixture was stirred at 50 °C for 3 h. Volatiles were evaporated under reduced pressure, and crude was then purified by silica gel chromatography eluting with pentane/EtOAc to afford 9.

C<sub>17</sub>H<sub>11</sub>ClNaO<sub>2</sub><sup>+</sup> 305.0340; Found 305.0343; **R**<sub>f</sub>: 0.41 (1:9 EtOAc/pentane).



Obtained as pale yellow oil in 80 % yield (26.2 mg), <sup>1</sup>H NMR  $(400 \text{ MHz}, \text{ CDCl}_3) \delta (\text{ppm}) = 7.32 - 7.27 \text{ (m, 2H)}, 7.27 - 7.24 \text{ (m, 4H)},$ 7.18–7.15 (m, 2H), 7.13–7.10 (m, 2H), 6.62 (s, 1H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) = 161.9, 153.3, 136.6, 136.5, 133.1, 130.8,

129.3, 128.8, 128.6, 128.3, 128.2, 122.6, 112.7; **IR (ATR):**  $\tilde{\nu}$  1726, 1619, 1601, 1529, 1445, 1320, 1108, 1040, 987, 889, 830, 767, 750, 697, 636, 564; **HRMS** (ESI/QTOF) m/z: [M + H]<sup>+</sup> Calcd for C<sub>17</sub>H<sub>12</sub>BrO<sub>2</sub><sup>+</sup> 327.0015; Found 327.0017; R<sub>f</sub>: 0.23 (1:9 EtOAc/pentane).

# 6-lodo-3,4-diphenyl-2H-pyran-2-one (10):

Following General Procedure **B**, without purification, 2 eq. TMSI and 1.5 eq. TfOH were added to the crude at RT. After sealing the tube, mixture was stirred at 50 °C for 3 h. Volatiles were evaporated under reduced pressure, and crude was then purified by silica gel chromatography eluting with pentane/EtOAc to afford **10**.



Obtained as yellow solid in 71 % yield (26.6 mg), <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) = 7.26–7.20 (m, 6H), 7.15–7.11 (m, 2H), 7.10–7.06 (m, 2H), 6.85 (s, 1H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) = 162.2, 152.6, 136.3, 133.1, 130.8, 129.2, 128.7, 128.6, 128.2, 128.2, 123.2, 121.4,

108.4; **IR (ATR):**  $\tilde{\nu}$  1719, 1608, 1598, 1574, 1522, 1445, 1309, 1095, 1034, 974, 766, 698; **HRMS** (nanochip-ESI/LTQ-Orbitrap) m/z: [M + Na]<sup>+</sup> Calcd for C<sub>17</sub>H<sub>11</sub>INaO<sub>2</sub><sup>+</sup> 396.9696; Found 396.9701; **R**<sub>f</sub>: 0.43 (1:9 EtOAc/pentane).

# 6,6-Dimethoxy-3,4-diphenyl-5,6-dihydro-2H-pyran-2-one (11):

Following General Procedure **B**, without purification, 5 eq. MeOH and 1.5 eq. TMSOTf were added to the crude at RT. After sealing the tube, mixture was stirred at 50 °C for 3 h. Volatiles were evaporated under reduced pressure, and crude was then purified by silica gel chromatography eluting with pentane/EtOAc to afford **11** and **11**'.

Obtained as yellow solid in 70 % yield (21.7 mg), <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) = 7.16–7.09 (m, 6H), 7.06–7.00 (m, 4H), 3.89 (s, 2H), 3.75 (s, 3H), 3.69 (s, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) = 171.0, 168.9, 143.9, 141.1, 137.1, 134.6, 130.3, 128.8, 128.1, 127.9, 127.5, 127.2, 52.3, 52.2, 41.8; **IR (ATR):**  $\tilde{\nu}$  2923, 2852, 1738, 1712, 1434, 1255, 1202, 1166, 699; **HRMS** (nanochip-ESI/LTQ-Orbitrap) m/z: [M + Na]<sup>+</sup> Calcd for C<sub>19</sub>H<sub>18</sub>NaO<sub>4</sub><sup>+</sup> 333.1097; Found 333.1101; **R**f: 0.65 (1:9 EtOAc/pentane).

# 6,6-Dimethoxy-3,4-diphenyl-5,6-dihydro-2H-pyran-2-one (11'):



Obtained as yellow solid in 16 % yield (5.1 mg), <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) = 7.26–7.14 (m, 10H), 6.42 (s, 1H), 6.19 (s, 1H), 3.77 (s, 3H), 3.69 (s, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) = 172.1, 166.6, 156.3, 140.0, 136.3, 129.6, 128.7, 128.3, 128.1,

128.1, 127.3, 121.0, 52.6, 52.4, 51.7. **IR (ATR):**  $\tilde{\nu}$  2950, 2924, 1736, 1713, 1626, 1433, 1349, 1267, 1239, 1195, 1169, 1011, 881, 767, 698; **HRMS** (nanochip-ESI/LTQ-Orbitrap) m/z: [M + Na]<sup>+</sup> Calcd for C<sub>19</sub>H<sub>18</sub>NaO<sub>4</sub><sup>+</sup> 333.1097; Found 333.1101; **R**<sub>f</sub>: 0.55 (1:9 EtOAc/pentane).

# Dimethyl [1,1':2',1"-terphenyl]-4',5'-dicarboxylate (12):

Following General Procedure **B**, solvent was concentrated under reduced pressure, followd by addition of 1.5 eq. methyl acetylene dicarboxylate and 0.5 mL *p*-xylene. After sealing the tube, mixture was stirred at 140 °C for 1 d. Volatiles were evaporated under reduced pressure, and crude was then purified by silica gel chromatography eluting with pentane/EtOAc to afford **12** and **13**.



Obtained as yellow oil in 79 % yield (27.4 mg), <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) = 7.80 (s, 2H), 7.25–7.22 (m, 6H), 7.15–7.12 (m, 4H), 3.94 (s, 6H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$ (ppm) = 168.0, 143.6, 139.7, 131.4, 130.9, 129.8, 128.3, 127.6,

52.9; **IR (ATR):** *ν* 2953, 1731, 1435, 1317, 1248, 1169, 1135, 1077, 1028, 702; **HRMS** (nanochip-ESI/LTQ-Orbitrap) m/z: [M + Na]<sup>+</sup> Calcd for C<sub>22</sub>H<sub>18</sub>NaO<sub>4</sub><sup>+</sup> 369.1097; Found 369.1101; **R**<sub>f</sub>:

# Dimethyl (*E*)-3'-(3,3-diisopropyltriaz-1-en-1-yl)-[1,1':2',1"-terphenyl]-4',5'-dicarboxylate (13):



Obtained as light yellow solid in 6 % yield (2.8 mg), <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) = 7.82 (s, 1H), 7.17–7.13 (m, 3H), 7.12–7.01 (m, 5H), 6.98–6.94 (m, 2H), 4.65 (m, 1H), 3.90 (s, 3H), 3.87 (s, 3H), 3.80 (m, 1H), 1.10 (d, *J* = 6.6 Hz, 6H), 0.99 (d, *J* = 6.8 Hz, 6H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) = 169.1, 166.4, 149.1, 143.4, 140.6, 139.1, 137.9, 131.4, 129.84, 128.0, 127.8,

127.7, 127.3, 127.0, 126.9, 126.2, 52.6, 52.5, 50.1, 46.8, 23.2, 19.0; **IR (ATR):**  $\tilde{\nu}$  2972, 2950, 1727, 1428, 1382, 1366, 1327, 1293, 1243, 1195, 1155, 1125, 1099, 1066, 1010, 766, 754, 700; **HRMS (nanochip-ESI/LTQ-Orbitrap)** m/z: [M + H]<sup>+</sup> Calcd for C<sub>28</sub>H<sub>32</sub>N<sub>3</sub>O<sub>4</sub><sup>+</sup> 474.2387; Found 474.2391; **R**<sub>f</sub>: 0.38 (1:4 EtOAc/pentane).

# 2,3,6,7-Tetraphenylanthraquinone (14):

Following General Procedure **B**, solvent was concentrated under reduced pressure, followd by addition of 2.5 eq. *p*-quinone and 0.5 mL *p*-xylene. After sealing the tube, mixture was stirred at 140 °C for 3 d. Volatiles were evaporated under reduced pressure, and crude was then purified by silica gel chromatography eluting with pentane/EtOAc to afford **14**.



Obtained as yellow solid in 69 % yield (35.6 mg), <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) = 8.41 (s, 4H), 7.31– 7.27 (m, 12H), 7.26–7.21 (m, 8H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) = 183.0, 146.6, 139.8, 132.6, 129.8,

128.5, 127.9. The spectra obtained fit with reported literature.<sup>8</sup>

# 6,7-Diphenylnaphthoquinone (15):

Following General Procedure **B**, solvent was concentrated under reduced pressure, followd by addition of 6 eq. *p*-quinone and 0.5 mL *p*-xylene. After sealing the tube, mixture was stirred at 140 °C for 3 d. Volatiles were evaporated under reduced pressure, and crude was then purified by silica gel chromatography eluting with pentane/EtOAc to afford **15**.

Obtained as yellow solid in 60 % yield (18.5 mg), <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ (ppm) = 8.15 (s, 2H), 7.28 (m, 6H), 7.18 (m, 4H), 7.02 (s, 2H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ (ppm) = 185.1, 146.4, 139.6, 139.0, 130.8, 129.7, 129.0, 128.4, 127.9. The spectra obtained fit

with reported literature.<sup>8</sup>

# 8. <sup>18</sup>O Labeling Experiments:



Original **5aa**: <sup>13</sup>**C NMR** (101 MHz, CDCl<sub>3</sub>) 159.80 (d, *J* = 5.9 Hz), 158.90 (d, *J* = 281.5 Hz), 156.01 (d, *J* = 8.7 Hz), 137.10 (d, *J* = 4.3 Hz), 133.24, 130.95, 129.40, 128.70, 128.58, 128.30, 128.03, 120.23 (d, *J* = 7.6 Hz), 86.26 (d, *J* = 21.2 Hz). **HRMS (ESI/QTOF)** m/z: [M + H]<sup>+</sup> Calcd for C<sub>17</sub>H<sub>12</sub>FO<sub>2</sub><sup>+</sup> 267.0815; Found 267.0813.



Isolated **5aa** from <sup>18</sup>O labelling experiment: <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) 159.79 (d, J = 6.1 Hz), 158.91 (d, J = 281.3 Hz), 156.01 (d, J = 8.7 Hz), 137.12 (d, J = 3.3 Hz), 133.25, 130.96, 129.40, 128.70, 128.58, 128.30, 128.04, 120.25 (d, J = 7.7 Hz), 86.25 (d, J = 21.1 Hz). HRMS (ESI/QTOF) m/z: [M + H]<sup>+</sup> Calcd for C<sub>17</sub>H<sub>12</sub>FO<sub>2</sub><sup>+</sup> 267.0815; Found 267.0859.



# **Qualitative Analysis Report**



User Spectra



| Peak List |   |         |
|-----------|---|---------|
| m/z       | Z | Abund   |
| 191.0857  |   | 629242  |
| 211.092   |   | 565806  |
| 239.0869  |   | 535041  |
| 242.2851  | 1 | 1790877 |
| 243.2874  | 1 | 325701  |
| 267.0859  | 1 | 1994830 |
| 267.2259  |   | 271721  |
| 268.0857  | 1 | 811754  |
| 352.2165  |   | 389903  |
| 922.0095  |   | 365921  |



Original **11**: <sup>13</sup>**C NMR** (101 MHz, CDCl<sub>3</sub>)  $\delta$  171.04, 168.90, 143.86, 141.13, 137.07, 134.60, 130.32, 128.84, 128.06, 127.85, 127.48, 127.19, 52.31, 52.18, 41.79. **HRMS** (nanochip-ESI/LTQ-Orbitrap) m/z: [M + Na]<sup>+</sup> Calcd for C<sub>19</sub>H<sub>18</sub>NaO<sub>4</sub><sup>+</sup> 333.1097; Found 333.1101



Isolated **11** from <sup>18</sup>O labelling experiment: <sup>13</sup>C **NMR** (151 MHz, CDCl<sub>3</sub>) δ 171.05, 168.90, 143.91, 141.11, 137.05, 134.56, 130.32, 128.83, 128.05, 127.85, 127.48, 127.19, 52.33, 52.19, 41.79. **HRMS** (nanochip-ESI/LTQ-Orbitrap) m/z: [M + Na]<sup>+</sup> Calcd for C<sub>19</sub>H<sub>18</sub>NaO<sub>4</sub><sup>+</sup> 333.1097; Found 333.1100



# 9. Derivatization attempts for 4aa':





Crystal data and structure refinement for 4aa.

| Formula                                | $C_{23}H_{25}N_3O_2$ |
|----------------------------------------|----------------------|
| D <sub>calc</sub> / g cm <sup>-3</sup> | 1.214                |
| <i>m</i> /mm <sup>-1</sup>             | 0.625                |
| Formula Weight                         | 375.46               |
| Colour                                 | clear intense        |
|                                        | yellow               |
| Shape                                  | prism                |
| Size/mm <sup>3</sup>                   | 0.40×0.28×0.         |
|                                        | 25                   |
| T/K                                    | 140.00(10)           |
| Crystal System                         | monoclinic           |
| Space Group                            | P21/c                |
| a/Å                                    | 11.4016(3)           |
| b/Å                                    | 9.5092(2)            |
| c/Å                                    | 19.0932(4)           |
| a /°                                   | 90                   |
| b/°                                    | 96.950(2)            |
| g/°                                    | 90                   |
| V/Å <sup>3</sup>                       | 2054.86(9)           |
| Ζ                                      | 4                    |
| Ζ'                                     | 1                    |
| Wavelength/Å                           | 1.54184              |
| Radiation type                         | Cu K <sub>a</sub>    |
| Q <sub>min</sub> /°                    | 3.906                |
| Q <sub>max</sub> /°                    | 76.556               |
| Measured Refl's.                       | 11847                |
| Indep't Refl's                         | 4260                 |
| Refl's l≥2 <i>o</i> (I)                | 3775                 |
| R <sub>int</sub>                       | 0.0226               |
| Parameters                             | 348                  |
| Restraints                             | 67                   |
| Largest Peak                           | 0.272                |
| Deepest Hole                           | -0.339               |
| GooF                                   | 1.043                |
| wR <sub>2</sub> (all data)             | 0.1321               |
| wR <sub>2</sub>                        | 0.1244               |
| R₁ (all data)                          | 0.0498               |
| $R_1$                                  | 0.0452               |

#### **Reflection Statistics**

| Total reflections (after filtering) | 12230                            | Unique reflections             | 4260           |
|-------------------------------------|----------------------------------|--------------------------------|----------------|
| Completeness                        | 0.989                            | Mean I/ $\sigma$               | 25.25          |
| hkl <sub>max</sub> collected        | (14, 11, 24)                     | hkl <sub>min</sub> collected   | (-13, -6, -24) |
| hkl <sub>max</sub> used             | (14, 11, 24)                     | hkl <sub>min</sub> used        | (-14, 0, 0)    |
| Lim d <sub>max</sub> collected      | 100.0                            | Lim d <sub>min</sub> collected | 0.77           |
| d <sub>max</sub> used               | 11.32                            | d <sub>min</sub> used          | 0.79           |
| Friedel pairs                       | 666                              | Friedel pairs merged           | 1              |
| Inconsistent equivalents            | 9                                | Rint                           | 0.0226         |
| R <sub>sigma</sub>                  | 0.0193                           | Intensity transformed          | 0              |
| Omitted reflections                 | 0                                | Omitted by user (OMIT hkl)     | 0              |
| Multiplicity                        | (4826, 2307, 678, 126,<br>48, 2) | Maximum multiplicity           | 9              |
| Removed systematic<br>absences      | 383                              | Filtered off (Shel/OMIT)       | 0              |

**Table 1**: Fractional Atomic Coordinates (×10<sup>4</sup>) and Equivalent Isotropic Displacement Parameters (Å<sup>2</sup>×10<sup>3</sup>) for **4aa**.  $U_{eq}$  is defined as 1/3 of the trace of the orthogonalised  $U_{ij}$ .

| Atom | x          | y          | Z          | U <sub>eq</sub> |
|------|------------|------------|------------|-----------------|
| 01   | 3137.0(7)  | 1298.0(9)  | 5119.3(4)  | 32.1(2)         |
| 02   | 3040.9(8)  | 510.7(10)  | 4025.8(5)  | 41.9(2)         |
| N1   | 3103.5(8)  | 2089.5(10) | 6271.5(5)  | 30.7(2)         |
| N2   | 2042.2(8)  | 1606.4(10) | 6156.8(5)  | 30.5(2)         |
| N3   | 1442.1(9)  | 1676.5(11) | 6700.7(5)  | 32.7(2)         |
| C1   | 3706.0(10) | 1978.9(11) | 5688.2(5)  | 29.0(2)         |
| C2   | 3635.1(10) | 1134.6(12) | 4495.6(6)  | 32.9(2)         |
| C3   | 4766.6(11) | 1767.3(12) | 4477.3(6)  | 34.0(3)         |
| C4   | 5347.6(10) | 2458.3(11) | 5047.7(6)  | 29.9(2)         |
| C5   | 4810.1(10) | 2543.5(11) | 5691.9(6)  | 28.8(2)         |
| C6   | 6470.6(10) | 3189.5(12) | 4952.6(6)  | 31.1(2)         |
| C7   | 7256.2(11) | 2580.4(14) | 4532.1(7)  | 38.2(3)         |
| C8   | 8231.7(12) | 3328.3(16) | 4365.2(7)  | 44.1(3)         |
| C9   | 8451.4(11) | 4672.1(15) | 4624.0(7)  | 41.5(3)         |
| C10  | 7697.8(11) | 5269.5(13) | 5058.7(7)  | 38.2(3)         |
| C11  | 6712.1(10) | 4534.8(12) | 5221.9(6)  | 34.4(3)         |
| C12  | 5401.3(10) | 3147.2(12) | 6367.2(6)  | 29.9(2)         |
| C13  | 4936.8(11) | 4321.9(13) | 6675.5(7)  | 37.8(3)         |
| C14  | 5459.8(13) | 4810.0(15) | 7328.3(7)  | 44.7(3)         |
| C15  | 6435.4(13) | 4130.0(15) | 7672.0(7)  | 45.1(3)         |
| C16  | 6906.9(13) | 2972.7(15) | 7365.6(7)  | 44.6(3)         |
| C17  | 6391.2(11) | 2484.8(12) | 6711.0(6)  | 36.1(3)         |
| C18  | 1925.7(12) | 2358.7(13) | 7370.7(6)  | 36.3(3)         |
| C19  | 1701.6(16) | 3940.2(15) | 7330.2(8)  | 49.3(3)         |
| C20  | 1468.9(16) | 1667.0(17) | 8002.9(7)  | 48.8(3)         |
| C21  | 195.5(11)  | 1238.7(14) | 6533.1(7)  | 38.6(3)         |
| C22  | -612(14)   | 2519(16)   | 6437(16)   | 60(5)           |
| C23  | -482.6(15) | 2265(3)    | 6026.6(15) | 59.1(7)         |
| C24  | 10(17)     | 300(30)    | 5876(13)   | 67(6)           |
| C25  | 133.5(16)  | -251(2)    | 6247.4(12) | 50.5(5)         |

**Table 2**: Anisotropic Displacement Parameters (×10<sup>4</sup>) for **4aa**. The anisotropic displacement factor exponent takes the form:  $-2\pi^2[h^2a^{*2} \times U_{11} + ... + 2hka^* \times b^* \times U_{12}]$ 

| Atom | <b>U</b> 11 | <b>U</b> <sub>22</sub> | <b>U</b> 33 | <b>U</b> 23 | <b>U</b> 13 | <b>U</b> <sub>12</sub> |  |
|------|-------------|------------------------|-------------|-------------|-------------|------------------------|--|
| 01   | 34.6(4)     | 34.9(4)                | 26.7(4)     | -4.6(3)     | 2.9(3)      | -3.1(3)                |  |

| Atom | <b>U</b> 11 | <b>U</b> 22 | <b>U</b> 33 | <b>U</b> 23 | <b>U</b> 13 | <b>U</b> <sub>12</sub> |
|------|-------------|-------------|-------------|-------------|-------------|------------------------|
| 02   | 43.5(5)     | 48.4(5)     | 33.0(4)     | -12.9(4)    | 1.1(3)      | -4.2(4)                |
| N1   | 34.0(5)     | 32.1(5)     | 26.2(4)     | 0.5(3)      | 4.6(3)      | -0.7(4)                |
| N2   | 34.3(5)     | 30.9(5)     | 26.7(4)     | 2.4(3)      | 5.3(3)      | 0.5(4)                 |
| N3   | 36.0(5)     | 36.4(5)     | 26.5(5)     | 1.4(4)      | 7.0(4)      | 0.0(4)                 |
| C1   | 34.9(5)     | 28.4(5)     | 23.5(5)     | -0.9(4)     | 1.9(4)      | 0.8(4)                 |
| C2   | 38.6(6)     | 32.9(6)     | 26.8(5)     | -4.8(4)     | 1.8(4)      | 2.3(4)                 |
| C3   | 39.2(6)     | 36.7(6)     | 26.5(5)     | -3.5(4)     | 5.4(4)      | 0.3(5)                 |
| C4   | 35.0(5)     | 28.5(5)     | 26.3(5)     | 0.1(4)      | 3.6(4)      | 2.4(4)                 |
| C5   | 34.0(5)     | 27.6(5)     | 24.6(5)     | -0.5(4)     | 2.4(4)      | 1.3(4)                 |
| C6   | 35.3(5)     | 33.8(5)     | 24.3(5)     | 1.9(4)      | 3.2(4)      | 0.5(4)                 |
| C7   | 41.1(6)     | 41.0(7)     | 33.4(6)     | -4.0(5)     | 8.2(5)      | -1.6(5)                |
| C8   | 41.9(6)     | 54.8(8)     | 37.5(6)     | -0.2(6)     | 12.7(5)     | -1.0(6)                |
| C9   | 39.4(6)     | 48.6(7)     | 36.6(6)     | 10.6(5)     | 4.2(5)      | -6.6(5)                |
| C10  | 44.7(6)     | 33.4(6)     | 35.1(6)     | 6.2(5)      | 0.0(5)      | -3.8(5)                |
| C11  | 39.9(6)     | 32.7(6)     | 30.6(5)     | 3.6(4)      | 3.9(4)      | 1.5(4)                 |
| C12  | 35.5(5)     | 30.4(5)     | 24.2(5)     | -1.5(4)     | 5.0(4)      | -5.3(4)                |
| C13  | 41.4(6)     | 37.0(6)     | 35.4(6)     | -7.1(5)     | 6.4(5)      | -1.1(5)                |
| C14  | 54.5(7)     | 43.4(7)     | 37.8(6)     | -14.5(5)    | 11.8(5)     | -8.2(6)                |
| C15  | 60.3(8)     | 46.5(7)     | 27.6(6)     | -6.8(5)     | 1.0(5)      | -16.5(6)               |
| C16  | 52.7(7)     | 42.6(7)     | 35.1(6)     | 0.5(5)      | -9.2(5)     | -5.6(6)                |
| C17  | 42.2(6)     | 32.4(6)     | 32.2(6)     | -2.3(4)     | -1.2(5)     | -2.3(5)                |
| C18  | 46.2(7)     | 37.6(6)     | 25.7(5)     | 0.1(4)      | 6.3(4)      | 1.0(5)                 |
| C19  | 76.0(10)    | 38.4(7)     | 34.2(6)     | -2.2(5)     | 9.4(6)      | 2.2(6)                 |
| C20  | 69.5(9)     | 48.8(8)     | 29.8(6)     | 3.4(5)      | 12.9(6)     | -1.3(7)                |
| C21  | 35.7(6)     | 45.6(7)     | 35.8(6)     | 4.8(5)      | 9.3(4)      | -2.0(5)                |
| C22  | 31(7)       | 77(9)       | 73(14)      | -3(8)       | 3(8)        | 4(6)                   |
| C23  | 37.0(8)     | 74.6(13)    | 64.5(14)    | 25.6(11)    | 1.8(8)      | 3.2(8)                 |
| C24  | 47(9)       | 71(11)      | 81(11)      | -19(9)      | 6(9)        | -14(8)                 |
| C25  | 46.1(8)     | 54.3(10)    | 52.6(11)    | -7.2(8)     | 12.2(7)     | -13.8(7)               |

Table 3: Bond Lengths in Å for 4aa.

| Atom | Atom | Length/Å   |
|------|------|------------|
| 01   | C1   | 1.3599(13) |
| 01   | C2   | 1.3888(13) |
| O2   | C2   | 1.2118(15) |
| N1   | N2   | 1.2880(14) |
| N1   | C1   | 1.3814(14) |
| N2   | N3   | 1.3127(13) |
| N3   | C18  | 1.4801(15) |
| N3   | C21  | 1.4784(15) |
| C1   | C5   | 1.3678(16) |
| C2   | C3   | 1.4277(17) |
| C3   | C4   | 1.3719(16) |
| C4   | C5   | 1.4413(15) |
| C4   | C6   | 1.4873(16) |
| C5   | C12  | 1.4953(14) |
| C6   | C7   | 1.3987(16) |
| C6   | C11  | 1.3937(17) |
| C7   | C8   | 1.3894(18) |

| Atom | Atom | Length/Å   |
|------|------|------------|
| C8   | C9   | 1.382(2)   |
| C9   | C10  | 1.3865(19) |
| C10  | C11  | 1.3903(17) |
| C12  | C13  | 1.3965(16) |
| C12  | C17  | 1.3864(17) |
| C13  | C14  | 1.3945(18) |
| C14  | C15  | 1.382(2)   |
| C15  | C16  | 1.385(2)   |
| C16  | C17  | 1.3947(17) |
| C18  | C19  | 1.5258(18) |
| C18  | C20  | 1.5209(17) |
| C21  | C22  | 1.524(12)  |
| C21  | C23  | 1.518(2)   |
| C21  | C24  | 1.534(13)  |
| C21  | C25  | 1.517(2)   |

# Table 4: Bond Angles in ° for 4aa.

| Atom | Atom | Atom | Angle/°    |
|------|------|------|------------|
| C1   | O1   | C2   | 122.22(9)  |
| N2   | N1   | C1   | 112.60(9)  |
| N1   | N2   | N3   | 114.60(9)  |
| N2   | N3   | C18  | 122.06(10) |
| N2   | N3   | C21  | 113.20(9)  |

| Atom | Atom | Atom | Angle/°    |
|------|------|------|------------|
| C21  | N3   | C18  | 123.94(9)  |
| 01   | C1   | N1   | 116.39(9)  |
| 01   | C1   | C5   | 122.74(10) |
| C5   | C1   | N1   | 120.88(10) |
| 01   | C2   | C3   | 115.99(9)  |

| Atom           | Atom     | Atom | Angle/°    | Atom       | Atom | Atom      | Angle/°    |
|----------------|----------|------|------------|------------|------|-----------|------------|
| $\frac{1}{02}$ | <u> </u> | 01   | 116.09(10) | <u>C12</u> | C12  | <u>C5</u> | 121.07(10) |
| 02             | 02       | 01   |            | 013        | 012  | 05        | 121.07(10) |
| 02             | C2       | C3   | 127.89(11) | C17        | C12  | C5        | 119.35(10) |
| C4             | C3       | C2   | 122.23(10) | C17        | C12  | C13       | 119.49(11) |
| C3             | C4       | C5   | 119.34(10) | C14        | C13  | C12       | 120.00(12) |
| C3             | C4       | C6   | 117.85(10) | C15        | C14  | C13       | 120.09(12) |
| C5             | C4       | C6   | 122.62(10) | C14        | C15  | C16       | 120.16(12) |
| C1             | C5       | C4   | 117.36(10) | C15        | C16  | C17       | 119.98(13) |
| C1             | C5       | C12  | 118.27(10) | C12        | C17  | C16       | 120.27(12) |
| C4             | C5       | C12  | 124.30(10) | N3         | C18  | C19       | 110.22(10) |
| C7             | C6       | C4   | 119.80(10) | N3         | C18  | C20       | 111.65(11) |
| C11            | C6       | C4   | 121.24(10) | C20        | C18  | C19       | 113.28(11) |
| C11            | C6       | C7   | 118.70(11) | N3         | C21  | C22       | 110.6(7)   |
| C8             | C7       | C6   | 120.38(12) | N3         | C21  | C23       | 111.04(11) |
| C9             | C8       | C7   | 120.44(12) | N3         | C21  | C24       | 112.0(7)   |
| C8             | C9       | C10  | 119.62(12) | N3         | C21  | C25       | 110.04(11) |
| C9             | C10      | C11  | 120.30(12) | C22        | C21  | C24       | 110.3(11)  |
| C10            | C11      | C6   | 120.50(11) | C25        | C21  | C23       | 111.94(15) |

Table 5: Torsion Angles in ° for 4aa.

| Atom | Atom | Atom | Atom | Angle/°    |
|------|------|------|------|------------|
| 01   | C1   | C5   | C4   | 3.10(16)   |
| O1   | C1   | C5   | C12  | -174.21(9) |
| 01   | C2   | C3   | C4   | 1.99(17)   |
| O2   | C2   | C3   | C4   | 179.46(12) |
| N1   | N2   | N3   | C18  | 4.49(15)   |
| N1   | N2   | N3   | C21  | 174.59(9)  |
| N1   | C1   | C5   | C4   | -176.26(9) |
| N1   | C1   | C5   | C12  | 6.44(15)   |
| N2   | N1   | C1   | O1   | -4.89(14)  |
| N2   | N1   | C1   | C5   | 174.50(10) |
| N2   | N3   | C18  | C19  | 84.71(14)  |
| N2   | N3   | C18  | C20  | -          |
|      |      |      |      | 148.48(11) |
| N2   | N3   | C21  | C22  | -101.6(12) |
| N2   | N3   | C21  | C23  | -66.75(18) |
| N2   | N3   | C21  | C24  | 21.9(14)   |
| N2   | N3   | C21  | C25  | 57.75(15)  |
| C1   | O1   | C2   | O2   | -          |
|      |      |      |      | 179.87(10) |
| C1   | O1   | C2   | C3   | -2.09(15)  |
| C1   | N1   | N2   | N3   | 179.25(9)  |
| C1   | C5   | C12  | C13  | -64.56(14) |
| C1   | C5   | C12  | C17  | 112.03(12) |
| C2   | O1   | C1   | N1   | 178.90(9)  |
| C2   | O1   | C1   | C5   | -0.48(16)  |
| C2   | C3   | C4   | C5   | 0.58(17)   |
| C2   | C3   | C4   | C6   | -          |
|      |      |      |      | 174.61(11) |
| C3   | C4   | C5   | C1   | -3.09(16)  |
| C3   | C4   | C5   | C12  | 174.04(10) |
| C3   | C4   | C6   | C7   | -37.96(16) |
| C3   | C4   | C6   | C11  | 136.13(11) |
| C4   | C5   | C12  | C13  | 118.34(13) |
| C4   | C5   | C12  | C17  | -65.07(15) |
| C4   | C6   | C7   | C8   | 171.75(11) |
| C4   | C6   | C11  | C10  | - ` `      |
|      |      |      | -    | 172.40(10) |
| C5   | C4   | C6   | C7   | 147.03(11) |
| C5   | C4   | C6   | C11  | -38.88(16) |
| C5   | C12  | C13  | C14  | 175.81(11) |

| Atom | Atom | Atom | Atom | Angle/°    |
|------|------|------|------|------------|
| C5   | C12  | C17  | C16  | -          |
|      |      |      |      | 175.52(11) |
| C6   | C4   | C5   | C1   | 171.86(10) |
| C6   | C4   | C5   | C12  | -11.02(17) |
| C6   | C7   | C8   | C9   | 1.3(2)     |
| C7   | C6   | C11  | C10  | 1.75(17)   |
| C7   | C8   | C9   | C10  | 0.6(2)     |
| C8   | C9   | C10  | C11  | -1.38(19)  |
| C9   | C10  | C11  | C6   | 0.17(18)   |
| C11  | C6   | C7   | C8   | -2.49(19)  |
| C12  | C13  | C14  | C15  | -0.2(2)    |
| C13  | C12  | C17  | C16  | 1.12(18)   |
| C13  | C14  | C15  | C16  | 0.8(2)     |
| C14  | C15  | C16  | C17  | -0.5(2)    |
| C15  | C16  | C17  | C12  | -0.5(2)    |
| C17  | C12  | C13  | C14  | -0.77(18)  |
| C18  | N3   | C21  | C22  | 68.3(12)   |
| C18  | N3   | C21  | C23  | 103.14(18) |
| C18  | N3   | C21  | C24  | -168.2(14) |
| C18  | N3   | C21  | C25  | -          |
|      |      |      |      | 132.37(14) |
| C21  | N3   | C18  | C19  | -84.32(14) |
| C21  | N3   | C18  | C20  | 42.50(16)  |

| Table 6: Hydrogen Fractional                                   | Atomic Coordinates (x1          | 04) and Equivalent Isotropic  | : Displacement |
|----------------------------------------------------------------|---------------------------------|-------------------------------|----------------|
| Parameters (Å <sup>2</sup> ×10 <sup>3</sup> ) for <b>4aa</b> . | $U_{eq}$ is defined as 1/3 of t | the trace of the orthogonalis | ed $U_{ij}$ .  |

| Atom | x        | У        | z        | $U_{eq}$ |
|------|----------|----------|----------|----------|
| H3   | 5066(15) | 1735(18) | 4030(10) | 46(4)    |
| H7   | 7152(15) | 1595(19) | 4381(9)  | 45(4)    |
| H8   | 8765(16) | 2880(20) | 4083(10) | 54(5)    |
| H9   | 9114(15) | 5239(18) | 4517(9)  | 45(4)́   |
| H10  | 7847(14) | 6186(18) | 5246(9)  | 43(4)    |
| H11  | 6137(15) | 4990(20) | 5518(10) | 51(4)    |
| H13  | 4254(15) | 4791(19) | 6440(9)  | 49(4)    |
| H14  | 5123(16) | 5630(20) | 7537(11) | 57(5)    |
| H15  | 6800(16) | 4480(20) | 8147(10) | 55(5)    |
| H16  | 7612(18) | 2470(20) | 7623(11) | 59(5)    |
| H17  | 6706(13) | 1657(17) | 6505(8)  | 36(4)    |
| H18  | 2773(14) | 2194(15) | 7408(8)  | 33(3)    |
| H19A | 842(17)  | 4120(20) | 7295(10) | 56(5)    |
| H19B | 2074(17) | 4370(20) | 7762(11) | 62(5)    |
| H19C | 2032(16) | 4330(20) | 6923(11) | 56(5)    |
| H20A | 1593(17) | 650(20)  | 7987(10) | 61(5)    |
| H20B | 609(19)  | 1880(20) | 8034(11) | 62(5)    |
| H20C | 1885(17) | 2050(20) | 8432(11) | 58(5)    |
| H21A | -27.24   | 684.4    | 6942     | 46       |
| H21  | -174.51  | 1244.56  | 6981.92  | 46       |
| H22A | -642.08  | 2976.51  | 6894.92  | 91       |
| H22B | -1408.85 | 2221.54  | 6244.06  | 91       |
| H22C | -304.86  | 3183.08  | 6111.83  | 91       |
| H23A | -462.13  | 3202.26  | 6241.54  | 89       |
| H23B | -1304.39 | 1952.72  | 5923.81  | 89       |
| H23C | -118.84  | 2303.8   | 5587.46  | 89       |
| H24A | 108.5    | 858.05   | 5456.67  | 100      |
| H24B | -788.82  | -99.49   | 5830.22  | 100      |
| H24C | 591.25   | -465.7   | 5922.81  | 100      |
| H25A | 470.39   | -279.26  | 5799.12  | 76       |
| H25B | -692.75  | -557.61  | 6171.08  | 76       |
| H25C | 582.84   | -879.46  | 6587.46  | 76       |

| Atom | Occupancy |
|------|-----------|
| H21A | 0.092(6)  |
| H21  | 0.908(6)  |
| C22  | 0.092(6)  |
| H22A | 0.092(6)  |
| H22B | 0.092(6)  |
| H22C | 0.092(6)  |
| C23  | 0.908(6)  |
| H23A | 0.908(6)  |
| H23B | 0.908(6)  |
| H23C | 0.908(6)  |
| C24  | 0.092(6)  |
| H24A | 0.092(6)  |
| H24B | 0.092(6)  |
| H24C | 0.092(6)  |
| C25  | 0.908(6)  |
| H25A | 0.908(6)  |
| H25B | 0.908(6)  |
| H25C | 0.908(6)  |

 Table 7: Atomic Occupancies for all atoms that are not fully occupied in 4aa.



Crystal data and structure refinement for 5aa.

| Formula                          |                 |
|----------------------------------|-----------------|
| $D / \alpha \text{ cm}^{-3}$     |                 |
| $D_{calc.}$ g cm °               | 1.378           |
|                                  | 0.823           |
| Formula weight                   | 200.20          |
| Colour                           | clear pale      |
| 01                               | colouriess      |
| Snape<br>Size /mars <sup>3</sup> |                 |
| Size/mm°                         | 0.61×0.10×0.    |
| TIZ                              | 08              |
| 1/N<br>Cravetel System           | 140.00(10)      |
| Crystal System                   |                 |
| Space Group                      | $PZ_1/D$        |
| a/A                              | 6.12164(16)     |
| D/A                              | 18.5825(5)      |
| C/A                              | 11.3690(2)      |
| a/                               | 90              |
| D/                               | 97.117(2)       |
| <i>g</i> /                       | 90              |
| V/A <sup>3</sup>                 | 1283.32(6)      |
| Z                                | 4               |
| Ζ'                               | 1               |
| Wavelength/A                     | 1.54184         |
| Radiation type                   | $Cu K_{\alpha}$ |
| Q <sub>min</sub> /               | 4.585           |
| Q <sub>max</sub> / <sup>*</sup>  | 76.661          |
| Measured Refl's.                 | 14068           |
| Indep't Refl's                   | 2685            |
| Refl's l≥2 <i>o</i> (I)          | 2402            |
| R <sub>int</sub>                 | 0.0266          |
| Parameters                       | 226             |
| Restraints                       | 0               |
| Largest Peak                     | 0.221           |
| Deepest Hole                     | -0.173          |
| GooF                             | 1.035           |
| wR₂ (all data)                   | 0.0920          |
| wR <sub>2</sub>                  | 0.0881          |
| R₁ (all data)                    | 0.0369          |
| R <sub>1</sub>                   | 0.0328          |

### **Reflection Statistics**

| Total reflections (after filtering) | 14354                                                                | Unique reflections           | 2685           |
|-------------------------------------|----------------------------------------------------------------------|------------------------------|----------------|
| Completeness                        | 0.995                                                                | Mean I/ $\sigma$             | 30.74          |
| hkl <sub>max</sub> collected        | (7, 23, 10)                                                          | hkl <sub>min</sub> collected | (-7, -23, -14) |
| hkl <sub>max</sub> used             | (7, 23, 14)                                                          | hkl <sub>min</sub> used      | (-7, 0, 0)     |
| Lim d <sub>max</sub> collected      | 100.0                                                                | Lim dmin collected           | 0.77           |
| d <sub>max</sub> used               | 11.28                                                                | d <sub>min</sub> used        | 0.79           |
| Friedel pairs                       | 1097                                                                 | Friedel pairs merged         | 1              |
| Inconsistent equivalents            | 1                                                                    | Rint                         | 0.0266         |
| R <sub>sigma</sub>                  | 0.0172                                                               | Intensity transformed        | 0              |
| Omitted reflections                 | 0                                                                    | Omitted by user (OMIT hkl)   | 0              |
| Multiplicity                        | (2878, 1688, 851, 441,<br>214, 142, 61, 39, 34, 27,<br>20, 16, 6, 4) | Maximum multiplicity         | 25             |
| Removed systematic<br>absences      | 286                                                                  | Filtered off (Shel/OMIT)     | 0              |

**Table 8**: Fractional Atomic Coordinates (×10<sup>4</sup>) and Equivalent Isotropic Displacement Parameters (Å<sup>2</sup>×10<sup>3</sup>) for **5aa**.  $U_{eq}$  is defined as 1/3 of the trace of the orthogonalised  $U_{ij}$ .

| Atom | x           | У         | z          | $U_{eq}$ |
|------|-------------|-----------|------------|----------|
| F1   | 4824.4(15)  | 9275.7(4) | 5555.8(7)  | 49.1(2)  |
| 01   | 6295.5(14)  | 8385.6(4) | 6614.7(7)  | 38.2(2)  |
| 02   | 8029.7(14)  | 7524.0(5) | 7707.6(7)  | 43.1(2)  |
| C1   | 4630(2)     | 8583.9(6) | 5816.3(10) | 36.3(2)  |
| C2   | 6423.5(18)  | 7668.7(6) | 7028.5(9)  | 33.2(2)  |
| C3   | 4621.4(16)  | 7194.0(6) | 6587.4(8)  | 28.9(2)  |
| C4   | 3016.8(16)  | 7425.4(6) | 5718.8(8)  | 28.2(2)  |
| C5   | 3023.4(19)  | 8162.0(6) | 5324.2(9)  | 33.9(2)  |
| C6   | 4671.7(16)  | 6478.5(6) | 7171.3(8)  | 29.3(2)  |
| C7   | 6471.4(18)  | 6018.8(7) | 7169.4(9)  | 35.4(2)  |
| C8   | 6516(2)     | 5363.1(7) | 7758.9(10) | 41.3(3)  |
| C9   | 4777(2)     | 5162.3(7) | 8362.0(10) | 42.0(3)  |
| C10  | 2980(2)     | 5616.8(7) | 8364.1(10) | 39.9(3)  |
| C11  | 2919.3(18)  | 6272.5(6) | 7773.6(9)  | 32.8(2)  |
| C12  | 1270.9(16)  | 6950.2(6) | 5120.9(8)  | 27.8(2)  |
| C13  | -824.6(17)  | 7229.7(6) | 4763.7(9)  | 32.8(2)  |
| C14  | -2453.8(19) | 6806.1(8) | 4143.8(10) | 41.0(3)  |
| C15  | -2001(2)    | 6101.6(8) | 3872.1(10) | 43.3(3)  |
| C16  | 79(2)       | 5818.3(7) | 4207.4(10) | 38.5(3)  |
| C17  | 1709.8(18)  | 6239.7(6) | 4828.1(9)  | 31.7(2)  |
|      |             |           |            |          |

**Table 9**: Anisotropic Displacement Parameters (×10<sup>4</sup>) for **5aa**. The anisotropic displacement factor exponent takes the form:  $-2\pi^2[h^2a^{*2} \times U_{11} + ... + 2hka^* \times b^* \times U_{12}]$ 

| Atom | <b>U</b> 11 | <b>U</b> 22 | <b>U</b> 33 | <b>U</b> 23 | <b>U</b> 13 | <b>U</b> 12 |
|------|-------------|-------------|-------------|-------------|-------------|-------------|
| F1   | 68.5(5)     | 30.0(4)     | 50.3(4)     | -3.0(3)     | 13.8(4)     | -11.0(3)    |
| 01   | 40.8(4)     | 38.9(4)     | 35.3(4)     | -7.1(3)     | 5.8(3)      | -12.0(3)    |
| 02   | 32.5(4)     | 59.3(6)     | 35.5(4)     | -4.1(4)     | -3.8(3)     | -9.9(4)     |
| C1   | 47.4(6)     | 30.2(5)     | 32.9(5)     | -3.2(4)     | 11.2(4)     | -4.9(4)     |
| C2   | 31.7(5)     | 41.4(6)     | 26.7(5)     | -4.4(4)     | 4.8(4)      | -6.8(4)     |
| C3   | 27.0(5)     | 34.3(5)     | 25.6(4)     | -2.4(4)     | 3.4(4)      | -2.7(4)     |
| C4   | 29.0(5)     | 30.7(5)     | 25.2(4)     | -2.6(4)     | 4.5(4)      | 0.0(4)      |
| C5   | 40.5(6)     | 31.4(5)     | 29.7(5)     | -1.0(4)     | 3.9(4)      | 0.0(4)      |
| C6   | 27.5(5)     | 35.6(5)     | 23.5(4)     | -1.1(4)     | -2.1(3)     | -1.2(4)     |
| C7   | 30.4(5)     | 44.9(6)     | 30.1(5)     | 1.5(4)      | 0.6(4)      | 3.4(4)      |

| Atom | <b>U</b> 11 | <b>U</b> 22 | <b>U</b> 33 | <b>U</b> 23 | <b>U</b> 13 | <b>U</b> 12 |
|------|-------------|-------------|-------------|-------------|-------------|-------------|
| C8   | 42.7(6)     | 43.8(6)     | 35.1(5)     | 1.7(5)      | -4.1(5)     | 9.8(5)      |
| C9   | 55.8(7)     | 37.4(6)     | 30.8(5)     | 3.6(4)      | -2.4(5)     | -0.9(5)     |
| C10  | 45.6(6)     | 42.2(6)     | 32.6(5)     | 0.5(5)      | 7.1(4)      | -8.7(5)     |
| C11  | 30.9(5)     | 37.6(5)     | 29.8(5)     | -1.8(4)     | 3.0(4)      | -3.1(4)     |
| C12  | 27.3(5)     | 32.9(5)     | 23.0(4)     | 1.3(4)      | 1.7(3)      | -0.1(4)     |
| C13  | 29.4(5)     | 40.5(6)     | 28.2(5)     | 3.9(4)      | 2.9(4)      | 4.1(4)      |
| C14  | 27.1(5)     | 63.1(8)     | 31.5(5)     | 6.1(5)      | -1.3(4)     | -2.2(5)     |
| C15  | 38.0(6)     | 60.0(8)     | 30.5(5)     | -3.4(5)     | -1.7(4)     | -16.8(5)    |
| C16  | 46.2(6)     | 38.5(6)     | 30.6(5)     | -5.0(4)     | 3.7(4)      | -8.6(5)     |
| C17  | 32.3(5)     | 34.1(5)     | 28.0(5)     | -1.2(4)     | 0.9(4)      | -1.2(4)     |

Table 10: Bond Lengths in Å for 5aa.

| Atom | Atom | Length/Å   |
|------|------|------------|
| F1   | C1   | 1.3280(13) |
| 01   | C1   | 1.3305(15) |
| O1   | C2   | 1.4119(14) |
| 02   | C2   | 1.2030(14) |
| C1   | C5   | 1.3259(16) |
| C2   | C3   | 1.4523(14) |
| C3   | C4   | 1.3728(14) |
| C3   | C6   | 1.4847(14) |
| C4   | C5   | 1.4407(14) |
| C4   | C12  | 1.4846(14) |
| C6   | C7   | 1.3944(15) |

| Atom | Atom | Length/Å   |
|------|------|------------|
| C6   | C11  | 1.3959(15) |
| C7   | C8   | 1.3892(17) |
| C8   | C9   | 1.387(2)   |
| C9   | C10  | 1.3870(19) |
| C10  | C11  | 1.3894(16) |
| C12  | C13  | 1.3968(14) |
| C12  | C17  | 1.3959(15) |
| C13  | C14  | 1.3917(16) |
| C14  | C15  | 1.381(2)   |
| C15  | C16  | 1.3872(18) |
| C16  | C17  | 1.3901(15) |
|      |      |            |

 Table 11: Bond Angles in ° for 5aa.

| Atom | Atom | Atom | Angle/°    | Atom | Atom | Atom | Angle/°    |
|------|------|------|------------|------|------|------|------------|
| C1   | O1   | C2   | 119.66(8)  | C7   | C6   | C11  | 119.21(10) |
| F1   | C1   | O1   | 109.74(10) | C11  | C6   | C3   | 119.37(10) |
| C5   | C1   | F1   | 124.10(11) | C8   | C7   | C6   | 120.33(11) |
| C5   | C1   | O1   | 126.14(11) | C9   | C8   | C7   | 120.27(11) |
| 01   | C2   | C3   | 116.72(9)  | C10  | C9   | C8   | 119.63(11) |
| 02   | C2   | O1   | 115.59(10) | C9   | C10  | C11  | 120.46(11) |
| 02   | C2   | C3   | 127.70(11) | C10  | C11  | C6   | 120.10(11) |
| C2   | C3   | C6   | 114.62(9)  | C13  | C12  | C4   | 119.68(9)  |
| C4   | C3   | C2   | 120.23(10) | C17  | C12  | C4   | 121.52(9)  |
| C4   | C3   | C6   | 125.13(9)  | C17  | C12  | C13  | 118.64(10) |
| C3   | C4   | C5   | 119.48(9)  | C14  | C13  | C12  | 120.77(11) |
| C3   | C4   | C12  | 123.61(9)  | C15  | C14  | C13  | 119.89(11) |
| C5   | C4   | C12  | 116.88(9)  | C14  | C15  | C16  | 120.07(10) |
| C1   | C5   | C4   | 117.45(10) | C15  | C16  | C17  | 120.18(11) |
| C7   | C6   | C3   | 121.38(10) | C16  | C17  | C12  | 120.43(10) |
|      |      |      |            |      |      |      |            |

# Table 12: Torsion Angles in $^\circ$ for 5aa.

| Atom | Atom | Atom | Atom | Angle/°    |
|------|------|------|------|------------|
| F1   | C1   | C5   | C4   | -          |
|      |      |      |      | 178.81(10) |
| 01   | C1   | C5   | C4   | 2.62(18)   |
| 01   | C2   | C3   | C4   | 6.55(14)   |
| 01   | C2   | C3   | C6   | -171.92(8) |
| 02   | C2   | C3   | C4   | -          |
|      |      |      |      | 173.27(11) |
| O2   | C2   | C3   | C6   | 8.27(16)   |
| C1   | O1   | C2   | O2   | 176.73(10) |
| Atom | Atom | Atom | Atom | Angle/°    |
|------|------|------|------|------------|
| C1   | 01   | C2   | C3   | -3.10(14)  |
| C2   | O1   | C1   | F1   | 179.78(9)  |
| C2   | O1   | C1   | C5   | -1.49(17)  |
| C2   | C3   | C4   | C5   | -5.57(15)  |
| C2   | C3   | C4   | C12  | 172.59(9)  |
| C2   | C3   | C6   | C7   | -58.04(13) |
| C2   | C3   | C6   | C11  | 119.48(10) |
| C3   | C4   | C5   | C1   | 1.06(15)   |
| C3   | C4   | C12  | C13  | 146.16(10) |
| C3   | C4   | C12  | C17  | -38.48(15) |
| C3   | C6   | C7   | C8   | 177.63(10) |
| C3   | C6   | C11  | C10  | -177.48(9) |
| C4   | C3   | C6   | C7   | 123.58(12) |
| C4   | C3   | C6   | C11  | -58.89(14) |
| C4   | C12  | C13  | C14  | 176.44(10) |
| C4   | C12  | C17  | C16  | -          |
|      |      |      |      | 176.26(10) |
| C5   | C4   | C12  | C13  | -35.64(14) |
| C5   | C4   | C12  | C17  | 139.72(10) |
| C6   | C3   | C4   | C5   | 172.72(9)  |
| C6   | C3   | C4   | C12  | -9.12(16)  |
| C6   | C7   | C8   | C9   | -0.47(17)  |
| C7   | C6   | C11  | C10  | 0.11(15)   |
| C7   | C8   | C9   | C10  | 0.63(18)   |
| C8   | C9   | C10  | C11  | -0.43(18)  |
| C9   | C10  | C11  | C6   | 0.06(17)   |
| C11  | C6   | C7   | C8   | 0.10(16)   |
| C12  | C4   | C5   | C1   | -          |
|      |      |      |      | 177.22(10) |
| C12  | C13  | C14  | C15  | -0.26(17)  |
| C13  | C12  | C17  | C16  | -0.86(15)  |
| C13  | C14  | C15  | C16  | -0.54(18)  |
| C14  | C15  | C16  | C17  | 0.64(18)   |
| C15  | C16  | C17  | C12  | 0.08(17)   |
| C17  | C12  | C13  | C14  | 0.95(15)   |

**Table 13**: Hydrogen Fractional Atomic Coordinates (×10<sup>4</sup>) and Equivalent Isotropic Displacement Parameters (Å<sup>2</sup>×10<sup>3</sup>) for **5aa**.  $U_{eq}$  is defined as 1/3 of the trace of the orthogonalised  $U_{ij}$ .

| Atom | x         | У        | z        | $U_{eq}$ |
|------|-----------|----------|----------|----------|
| H5   | 1970(20)  | 8349(8)  | 4713(13) | 39(4)    |
| H7   | 7700(30)  | 6162(8)  | 6756(14) | 46(4)    |
| H8   | 7780(30)  | 5043(9)  | 7770(15) | 58(5)    |
| H9   | 4850(30)  | 4706(9)  | 8800(15) | 51(4)    |
| H10  | 1730(30)  | 5475(9)  | 8771(15) | 52(4)    |
| H11  | 1620(30)  | 6600(8)  | 7757(13) | 41(4)    |
| H13  | -1160(20) | 7721(8)  | 4941(13) | 36(3)    |
| H14  | -3870(30) | 7013(10) | 3887(16) | 58(5)    |
| H15  | -3130(30) | 5796(9)  | 3437(15) | 54(4)    |
| H16  | 420(30)   | 5322(9)  | 4009(14) | 49(4)    |
| H17  | 3190(20)  | 6042(8)  | 5041(12) | 36(3)    |
|      |           |          |          |          |



Crystal data and structure refinement for **5ca**.

| Formula                                 | C <sub>17</sub> H <sub>10</sub> CIFO <sub>2</sub> |
|-----------------------------------------|---------------------------------------------------|
| D <sub>calc.</sub> / g cm <sup>-3</sup> | 1.518                                             |
| <i>m</i> /mm <sup>-1</sup>              | 2.700                                             |
| Formula Weight                          | 300.70                                            |
| Colour                                  | colourless                                        |
| Shape                                   | prism                                             |
| Size/mm <sup>3</sup>                    | 0.36×0.07×0<br>.05                                |
| T/K                                     | 140.00(10)                                        |
| Crystal System                          | monoclinic                                        |
| Space Group                             | P21/n                                             |
| a/Å                                     | 5.82517(17)                                       |
| b/Å                                     | 19.3273(5)                                        |
| c/Å                                     | 11.7017(3)                                        |
| a/°                                     | 90                                                |
| b/°                                     | 92.745(3)                                         |
| $g/^{\circ}$                            | 90                                                |
| V/Å <sup>3</sup>                        | 1315.92(7)                                        |
| Ζ                                       | 4                                                 |
| Ζ'                                      | 1                                                 |
| Wavelength/Å                            | 1.54184                                           |
| Radiation type                          | Cu <i>K</i> <sub>α</sub>                          |
| Q <sub>min</sub> /°                     | 4.421                                             |
| Q <sub>max</sub> /°                     | 72.602                                            |
| Measured Refl's.                        | 3810                                              |
| Indep't Refl's                          | 3810                                              |
| Refl's l≥2 <i>o</i> (I)                 | 3335                                              |
| Rint                                    | n/a                                               |
| Parameters                              | 191                                               |
| Restraints                              | 0                                                 |
| Largest Peak/e Å <sup>-3</sup>          | 0.214                                             |
| Deepest Hole/e Å <sup>-3</sup>          | -0.232                                            |
| GooF                                    | 1.043                                             |
| wR2 (all data)                          | 0.0903                                            |
| wR <sub>2</sub>                         | 0.0880                                            |
| R₁ (all data)                           | 0.0381                                            |
| R <sub>1</sub>                          | 0.0333                                            |

| Total reflections (after filtering) | 5167        | Unique reflections             | 2595           |
|-------------------------------------|-------------|--------------------------------|----------------|
| Completeness                        | 0.994       | Mean I/ $\sigma$               | 22.65          |
| hkl <sub>max</sub> collected        | (7, 23, 14) | hklmin collected               | (-7, -23, -14) |
| hkl <sub>max</sub> used             | (7, 23, 14) | hkl <sub>min</sub> used        | (-7, 0, 0)     |
| Lim d <sub>max</sub> collected      | 100.0       | Lim d <sub>min</sub> collected | 0.77           |
| d <sub>max</sub> used               | 10.0        | d <sub>min</sub> used          | 0.81           |
| Friedel pairs                       | 196         | Friedel pairs merged           | 1              |
| Inconsistent equivalents            | 0           | Rint                           | 0.0            |
| R <sub>sigma</sub>                  | 0.0209      | Intensity transformed          | 0              |
| Omitted reflections                 | 0           | Omitted by user (OMIT hkl)     | 0              |
| Multiplicity                        | (3547, 133) | Maximum multiplicity           | 0              |
| Removed systematic absences         | 0           | Filtered off (Shel/OMIT)       | 0              |

| • | Table 84 | 1: Fractic       | nal Atomic               | Coordinates    | (x104) an | d Equivalent  | Isotropic | Displacement      | Parameters |
|---|----------|------------------|--------------------------|----------------|-----------|---------------|-----------|-------------------|------------|
| ( | (Ų×10³)  | for <b>5ca</b> . | U <sub>eq</sub> is defin | ed as 1/3 of f | the trace | of the orthog | onalised  | U <sub>ij</sub> . |            |

| Atom | x          | У          | z          | $U_{eq}$  |
|------|------------|------------|------------|-----------|
| CI1  | 12775.4(7) | 5548.5(2)  | 6622.0(4)  | 32.38(14) |
| F1   | 4977(2)    | 9320.0(5)  | 4276.6(10) | 34.2(3)   |
| 01   | 3335(2)    | 8511.4(6)  | 3231.0(11) | 27.8(3)   |
| 02   | 1408(2)    | 7732.6(7)  | 2176.5(12) | 31.6(3)   |
| C1   | 3051(3)    | 7828.5(9)  | 2812.0(15) | 24.3(4)   |
| C2   | 5013(3)    | 8651.5(9)  | 4007.6(15) | 26.4(4)   |
| C3   | 6501(3)    | 8201.2(9)  | 4472.7(15) | 24.9(4)   |
| C4   | 6385(3)    | 7498.3(8)  | 4052.4(14) | 21.1(3)   |
| C5   | 4773(3)    | 7324.7(9)  | 3208.5(14) | 21.9(3)   |
| C6   | 8012(3)    | 6997.1(8)  | 4616.3(14) | 19.8(3)   |
| C7   | 7373(3)    | 6313.2(9)  | 4822.4(14) | 22.2(3)   |
| C8   | 8831(3)    | 5864.9(9)  | 5431.6(15) | 23.9(3)   |
| C9   | 10966(3)   | 6105.4(9)  | 5836.4(14) | 23.0(3)   |
| C10  | 11660(3)   | 6780.0(9)  | 5652.0(14) | 23.1(3)   |
| C11  | 10173(3)   | 7221.1(9)  | 5042.2(14) | 21.7(3)   |
| C12  | 4618(3)    | 6643.9(9)  | 2620.0(14) | 21.9(3)   |
| C13  | 2676(3)    | 6224.3(10) | 2687.4(15) | 25.2(4)   |
| C14  | 2553(3)    | 5591.3(9)  | 2135.9(16) | 27.8(4)   |
| C15  | 4350(3)    | 5370.9(9)  | 1492.8(15) | 28.3(4)   |
| C16  | 6286(3)    | 5785.8(9)  | 1411.3(15) | 26.7(4)   |
| C17  | 6425(3)    | 6417.6(9)  | 1971.4(15) | 23.4(3)   |

**Table 15**: Anisotropic Displacement Parameters (x10<sup>4</sup>) for **5ca**. The anisotropic displacement factor exponent takes the form:  $-2\pi^2[h^2a^{*2} \times U_{11} + ... + 2hka^* \times b^* \times U_{12}]$ 

| Atom | <b>U</b> 11 | <b>U</b> <sub>22</sub> | <b>U</b> 33 | <b>U</b> 23 | <b>U</b> <sub>13</sub> | <b>U</b> <sub>12</sub> |
|------|-------------|------------------------|-------------|-------------|------------------------|------------------------|
| CI1  | 25.3(2)     | 34.3(2)                | 36.7(3)     | 7.57(18)    | -6.92(16)              | 6.34(16)               |
| F1   | 40.2(6)     | 22.1(5)                | 40.4(6)     | -0.8(4)     | 2.9(5)                 | 7.6(4)                 |
| 01   | 26.0(6)     | 27.3(6)                | 30.0(7)     | 3.5(5)      | 0.6(5)                 | 8.2(5)                 |
| 02   | 22.4(6)     | 39.4(7)                | 32.2(7)     | 4.5(5)      | -5.5(5)                | 5.9(5)                 |
| C1   | 20.4(8)     | 28.2(9)                | 24.6(8)     | 2.4(7)      | 3.1(7)                 | 3.1(6)                 |
| C2   | 28.2(9)     | 23.8(8)                | 27.5(9)     | 0.0(7)      | 5.4(7)                 | 2.8(7)                 |
| C3   | 22.8(8)     | 25.0(8)                | 26.9(9)     | -1.1(7)     | 0.7(7)                 | 2.1(6)                 |
| C4   | 16.9(7)     | 23.3(8)                | 23.2(8)     | 1.3(6)      | 3.5(6)                 | 1.0(6)                 |
| C5   | 16.6(7)     | 25.2(8)                | 24.0(8)     | 2.2(6)      | 1.9(6)                 | 2.9(6)                 |

| Atom | <b>U</b> 11 | <b>U</b> 22 | <b>U</b> 33 | <b>U</b> 23 | <b>U</b> 13 | <b>U</b> <sub>12</sub> |
|------|-------------|-------------|-------------|-------------|-------------|------------------------|
| C6   | 16.9(7)     | 23.8(8)     | 18.8(8)     | -0.9(6)     | 1.2(6)      | 2.2(6)                 |
| C7   | 16.3(7)     | 25.9(8)     | 24.3(8)     | -0.8(6)     | -0.4(6)     | -0.3(6)                |
| C8   | 22.7(8)     | 23.0(8)     | 25.9(8)     | 1.9(6)      | 0.8(6)      | 0.3(6)                 |
| C9   | 19.2(8)     | 27.4(9)     | 22.2(8)     | 1.1(6)      | -0.7(6)     | 5.7(6)                 |
| C10  | 16.6(7)     | 29.1(8)     | 23.6(8)     | -2.1(7)     | -0.1(6)     | 0.6(6)                 |
| C11  | 18.4(7)     | 23.4(8)     | 23.5(8)     | -2.3(6)     | 1.9(6)      | -0.3(6)                |
| C12  | 16.9(7)     | 27.3(8)     | 20.9(8)     | 2.0(6)      | -3.2(6)     | 2.4(6)                 |
| C13  | 18.0(7)     | 33.4(9)     | 24.0(8)     | 0.0(7)      | -0.4(6)     | 0.2(7)                 |
| C14  | 21.8(8)     | 31.6(9)     | 29.6(9)     | 1.0(7)      | -3.2(7)     | -3.7(7)                |
| C15  | 31.3(9)     | 26.3(8)     | 26.5(9)     | -2.4(7)     | -6.5(7)     | 3.2(7)                 |
| C16  | 22.7(8)     | 31.2(9)     | 26.1(9)     | 0.3(7)      | 0.6(7)      | 6.7(7)                 |
| C17  | 16.3(7)     | 29.1(9)     | 24.9(8)     | 3.7(7)      | 0.6(6)      | 1.8(6)                 |

 Table 16: Bond Lengths in Å for 5ca.

| Atom | Atom | Length/Å   | Atom | Atom | Length/Å |
|------|------|------------|------|------|----------|
| CI1  | C9   | 1.7383(16) | C6   | C11  | 1.400(2) |
| F1   | C2   | 1.330(2)   | C7   | C8   | 1.386(2) |
| 01   | C1   | 1.415(2)   | C8   | C9   | 1.390(2) |
| 01   | C2   | 1.330(2)   | C9   | C10  | 1.385(3) |
| O2   | C1   | 1.198(2)   | C10  | C11  | 1.388(2) |
| C1   | C5   | 1.458(2)   | C12  | C13  | 1.397(2) |
| C2   | C3   | 1.327(3)   | C12  | C17  | 1.397(2) |
| C3   | C4   | 1.445(2)   | C13  | C14  | 1.383(3) |
| C4   | C5   | 1.371(2)   | C14  | C15  | 1.385(3) |
| C4   | C6   | 1.488(2)   | C15  | C16  | 1.391(3) |
| C5   | C12  | 1.486(2)   | C16  | C17  | 1.386(3) |
| C6   | C7   | 1.397(2)   |      |      |          |
| C6   | C7   | 1.397(2)   | 010  | 0.1  |          |

 Table 17: Bond Angles in ° for 5ca.

| Atom | Atom | Atom | Angle/°    | Atom | Atom | Atom | Angle/°    |
|------|------|------|------------|------|------|------|------------|
| C2   | O1   | C1   | 119.77(13) | C8   | C7   | C6   | 121.20(15) |
| 01   | C1   | C5   | 116.45(15) | C7   | C8   | C9   | 118.85(16) |
| O2   | C1   | O1   | 115.86(15) | C8   | C9   | CI1  | 118.89(13) |
| O2   | C1   | C5   | 127.68(17) | C10  | C9   | CI1  | 119.42(13) |
| F1   | C2   | O1   | 109.88(14) | C10  | C9   | C8   | 121.67(15) |
| C3   | C2   | F1   | 123.87(17) | C9   | C10  | C11  | 118.58(16) |
| C3   | C2   | O1   | 126.24(17) | C10  | C11  | C6   | 121.43(16) |
| C2   | C3   | C4   | 117.25(16) | C13  | C12  | C5   | 121.27(15) |
| C3   | C4   | C6   | 116.27(15) | C17  | C12  | C5   | 119.89(15) |
| C5   | C4   | C3   | 119.64(15) | C17  | C12  | C13  | 118.84(16) |
| C5   | C4   | C6   | 124.05(15) | C14  | C13  | C12  | 120.70(16) |
| C1   | C5   | C12  | 114.74(15) | C13  | C14  | C15  | 120.14(16) |
| C4   | C5   | C1   | 120.18(16) | C14  | C15  | C16  | 119.75(17) |
| C4   | C5   | C12  | 125.08(14) | C17  | C16  | C15  | 120.32(16) |
| C7   | C6   | C4   | 121.54(14) | C16  | C17  | C12  | 120.24(16) |
| C7   | C6   | C11  | 118.27(15) |      |      |      |            |
| C11  | C6   | C4   | 119.97(15) |      |      |      |            |
|      |      |      |            |      |      |      |            |

Table 18: Torsion Angles in ° for 5ca.

| Atom | Atom | Atom | Atom | Angle/°    |
|------|------|------|------|------------|
| CI1  | C9   | C10  | C11  | -          |
|      |      |      |      | 178.73(13) |
| F1   | C2   | C3   | C4   | -          |
|      |      |      |      | 177.27(15) |

| Atom | Atom | Atom | Atom | Angle/°    |
|------|------|------|------|------------|
| 01   | C1   | C5   | C4   | 8.0(2)     |
| 01   | C1   | C5   | C12  | -          |
|      |      |      |      | 171.28(13) |
| 01   | C2   | C3   | C4   | 3.8(3)     |
| 02   | C1   | C5   | C4   | -          |
|      |      |      |      | 171.53(17) |
| 02   | C1   | C5   | C12  | 9.2(3)     |
| C1   | O1   | C2   | F1   | 179.70(13) |
| C1   | O1   | C2   | C3   | -1.3(2)    |
| C1   | C5   | C12  | C13  | -62.5(2)   |
| C1   | C5   | C12  | C17  | 116.60(17) |
| C2   | O1   | C1   | O2   | 174.94(15) |
| C2   | O1   | C1   | C5   | -4.6(2)    |
| C2   | C3   | C4   | C5   | -0.2(2)    |
| C2   | C3   | C4   | C6   | -          |
|      |      |      |      | 177.82(15) |
| C3   | C4   | C5   | C1   | -5.7(2)    |
| C3   | C4   | C5   | C12  | 173.51(15) |
| C3   | C4   | C6   | C7   | 142.64(16) |
| C3   | C4   | C6   | C11  | -31.9(2)   |
| C4   | C5   | C12  | C13  | 118.28(19) |
| C4   | C5   | C12  | C17  | -62.6(2)   |
| C4   | C6   | C7   | C8   | -          |
|      |      |      |      | 174.63(15) |
| C4   | C6   | C11  | C10  | 174.86(15) |
| C5   | C4   | C6   | C7   | -34.9(2)   |
| C5   | C4   | C6   | C11  | 150.58(16) |
| C5   | C12  | C13  | C14  | -          |
|      |      |      |      | 179.97(16) |
| C5   | C12  | C17  | C16  | -          |
|      |      |      |      | 179.42(15) |
| C6   | C4   | C5   | C1   | 171.80(15) |
| C6   | C4   | C5   | C12  | -9.0(3)    |
| C6   | C7   | C8   | C9   | -0.3(2)    |
| C7   | C6   | C11  | C10  | 0.2(2)     |
| C7   | C8   | C9   | Cl1  | 178.87(13) |
| C7   | C8   | C9   | C10  | 0.4(3)     |
| C8   | C9   | C10  | C11  | -0.3(3)    |
| C9   | C10  | C11  | C6   | 0.0(2)     |
| C11  | C6   | C7   | C8   | 0.0(2)     |
| C12  | C13  | C14  | C15  | -1.0(3)    |
| C13  | C12  | C17  | C16  | -0.3(2)    |
| C13  | C14  | C15  | C16  | 0.5(3)     |
| C14  | C15  | C16  | C17  | 0.1(3)     |
| C15  | C16  | C17  | C12  | -0.2(3)    |
| C17  | C12  | C13  | C14  | 0.9(3)     |

| Atom | x        | У       | z       | $U_{eq}$ |
|------|----------|---------|---------|----------|
| H3   | 7598.35  | 8335.19 | 5057.89 | 30       |
| H7   | 5912.21  | 6152.47 | 4539.97 | 27       |
| H8   | 8377.82  | 5401.33 | 5569.85 | 29       |
| H10  | 13122.99 | 6937.56 | 5936.7  | 28       |
| H11  | 10631.19 | 7684.93 | 4911.12 | 26       |
| H13  | 1425.65  | 6375.31 | 3116.6  | 30       |
| H14  | 1234.33  | 5307.24 | 2198.31 | 33       |
| H15  | 4260.3   | 4937.98 | 1108.93 | 34       |
| H16  | 7518.37  | 5635.62 | 969.65  | 32       |
| H17  | 7755.05  | 6697.77 | 1913.95 | 28       |

**Table 19**: Hydrogen Fractional Atomic Coordinates (×10<sup>4</sup>) and Equivalent Isotropic Displacement Parameters ( $Å^2 \times 10^3$ ) for **5ca**.  $U_{eq}$  is defined as 1/3 of the trace of the orthogonalised  $U_{ij}$ .



Crystal data and structure refinement for **5ac**.

| Formula                                       | C17H10F2O2         |
|-----------------------------------------------|--------------------|
| <i>D<sub>calc.</sub></i> / g cm <sup>-3</sup> | 1.458              |
| <i>m</i> /mm <sup>-1</sup>                    | 0.970              |
| Formula Weight                                | 284.25             |
| Colour                                        | colourless         |
| Shape                                         | plate              |
| Size/mm <sup>3</sup>                          | 0.38×0.23×0.<br>04 |
| T/K                                           | 140.00(10)         |
| Crvstal Svstem                                | monoclinic         |
| Space Group                                   | P21/n              |
| a/Å                                           | 6.16235(12)        |
| b/Å                                           | 18.5749(4)         |
| c/Å                                           | 11.4059(2)         |
| a/°                                           | 90                 |
| b/°                                           | 97.2906(17)        |
| q/°                                           | 90                 |
| Ŭ/Å <sup>3</sup>                              | 1295.03(4)         |
| Ζ                                             | 4                  |
| Ζ'                                            | 1                  |
| Wavelength/Å                                  | 1.54184            |
| Radiation type                                | Cu $K_{\alpha}$    |
| $Q_{min}/^{\circ}$                            | 4.576              |
| Q <sub>max</sub> /°                           | 72.568             |
| Measured Refl's.                              | 11023              |
| Indep't Refl's                                | 2543               |
| Refl's l≥2 <i>o</i> (I)                       | 2298               |
| Rint                                          | 0.0220             |
| Parameters                                    | 191                |
| Restraints                                    | 0                  |
| Largest Peak/e Å <sup>-3</sup>                | 0.190              |
| Deepest Hole/e Å <sup>-3</sup>                | -0.191             |
| GooF                                          | 1.044              |
| $wR_2$ (all data)                             | 0.0822             |
| wR <sub>2</sub>                               | 0.0784             |
| R₁ (all data)                                 | 0.0352             |
| $R_1$                                         | 0.0313             |

| Total reflections (after filtering) | 11239                                           | Unique reflections             | 2543           |
|-------------------------------------|-------------------------------------------------|--------------------------------|----------------|
| Completeness                        | 0.989                                           | Mean I/ $\sigma$               | 23.68          |
| hkl <sub>max</sub> collected        | (7, 21, 12)                                     | hkl <sub>min</sub> collected   | (-7, -22, -14) |
| hkl <sub>max</sub> used             | (7, 22, 14)                                     | hkl <sub>min</sub> used        | (-7, 0, 0)     |
| Lim d <sub>max</sub> collected      | 100.0                                           | Lim d <sub>min</sub> collected | 0.77           |
| d <sub>max</sub> used               | 11.31                                           | d <sub>min</sub> used          | 0.81           |
| Friedel pairs                       | 1159                                            | Friedel pairs merged           | 1              |
| Inconsistent equivalents            | 8                                               | Rint                           | 0.022          |
| R <sub>sigma</sub>                  | 0.0208                                          | Intensity transformed          | 0              |
| Omitted reflections                 | 0                                               | Omitted by user (OMIT<br>hkl)  | 0              |
| Multiplicity                        | (3226, 1760, 696, 190,<br>148, 73, 39, 9, 8, 5) | Maximum multiplicity           | 18             |
| Removed systematic absences         | 216                                             | Filtered off (Shel/OMIT)       | 0              |

**Table 20**: Fractional Atomic Coordinates ( $\times 10^4$ ) and Equivalent Isotropic Displacement Parameters (Å<sup>2</sup> $\times 10^3$ ) for **5ac**.  $U_{eq}$  is defined as 1/3 of the trace of the orthogonalised  $U_{ij}$ .

| Atom | x          | У         | Z          | $U_{eq}$ |
|------|------------|-----------|------------|----------|
| F1   | 4986.8(14) | 9259.6(4) | 5566.5(7)  | 42.4(2)  |
| F2   | 4687.1(14) | 4517.7(4) | 8867.3(7)  | 43.1(2)  |
| O1   | 6359.2(14) | 8358.5(5) | 6626.6(8)  | 33.4(2)  |
| O2   | 8026.7(14) | 7481.7(5) | 7703.4(8)  | 38.8(2)  |
| C1   | 6447.3(19) | 7639.9(7) | 7022.4(10) | 29.8(3)  |
| C2   | 4740(2)    | 8569.3(7) | 5815.2(11) | 32.1(3)  |
| C3   | 3126(2)    | 8158.7(6) | 5311.5(10) | 30.0(3)  |
| C4   | 3058.6(18) | 7423.8(6) | 5700.8(9)  | 25.1(2)  |
| C5   | 4630.7(18) | 7177.0(6) | 6566.4(9)  | 25.8(2)  |
| C6   | 1273.3(18) | 6963.7(6) | 5101.2(9)  | 24.8(2)  |
| C7   | -786.5(19) | 7263.3(7) | 4758.7(10) | 29.8(3)  |
| C8   | -2448(2)   | 6857.6(8) | 4142.7(11) | 37.7(3)  |
| C9   | -2068(2)   | 6148.3(8) | 3861.2(11) | 39.3(3)  |
| C10  | -19(2)     | 5844.0(7) | 4186.9(11) | 35.5(3)  |
| C11  | 1645.1(19) | 6249.3(7) | 4799.1(10) | 28.9(3)  |
| C12  | 4631.8(18) | 6460.9(6) | 7139.1(9)  | 26.0(2)  |
| C13  | 6397.6(19) | 5989.8(7) | 7137.8(10) | 31.1(3)  |
| C14  | 6416(2)    | 5332.5(7) | 7713.8(11) | 34.0(3)  |
| C15  | 4659(2)    | 5157.7(7) | 8292.5(10) | 32.2(3)  |
| C16  | 2881(2)    | 5603.6(7) | 8309.7(11) | 31.9(3)  |
| C17  | 2875.9(18) | 6259.5(6) | 7729.5(10) | 27.7(3)  |

**Table 91**: Anisotropic Displacement Parameters (x10<sup>4</sup>) for **5ac**. The anisotropic displacement factor exponent takes the form:  $-2\pi^2[h^2a^{*2} \times U_{11} + ... + 2hka^* \times b^* \times U_{12}]$ 

| Atom | <b>U</b> 11 | <b>U</b> 22 | <b>U</b> 33 | <b>U</b> 23 | <b>U</b> 13 | <b>U</b> <sub>12</sub> |
|------|-------------|-------------|-------------|-------------|-------------|------------------------|
| F1   | 53.6(5)     | 26.6(4)     | 48.7(5)     | -1.4(3)     | 12.7(4)     | -8.5(3)                |
| F2   | 54.1(5)     | 33.3(4)     | 40.9(4)     | 9.6(3)      | 2.5(3)      | 1.9(3)                 |
| 01   | 33.7(4)     | 34.1(5)     | 32.4(4)     | -5.0(3)     | 4.2(3)      | -10.4(4)               |
| 02   | 29.2(4)     | 52.5(6)     | 32.3(5)     | -0.6(4)     | -5.8(4)     | -9.6(4)                |
| C1   | 27.9(6)     | 36.6(6)     | 24.9(5)     | -3.3(5)     | 3.6(4)      | -6.5(5)                |
| C2   | 38.8(6)     | 27.2(6)     | 31.8(6)     | -2.7(5)     | 10.1(5)     | -3.9(5)                |
| C3   | 34.7(6)     | 27.9(6)     | 27.0(6)     | -0.8(4)     | 2.2(5)      | 0.7(5)                 |
| C4   | 25.5(5)     | 27.1(6)     | 22.8(5)     | -2.7(4)     | 3.0(4)      | 0.1(4)                 |
| C5   | 23.0(5)     | 30.4(6)     | 23.9(5)     | -2.5(4)     | 2.2(4)      | -2.4(4)                |
| C6   | 24.3(5)     | 28.7(6)     | 20.8(5)     | 0.7(4)      | 0.1(4)      | -0.2(4)                |

| Atom | <b>U</b> 11 | <b>U</b> 22 | <b>U</b> 33 | <b>U</b> 23 | <b>U</b> 13 | <b>U</b> <sub>12</sub> |
|------|-------------|-------------|-------------|-------------|-------------|------------------------|
| C7   | 27.6(6)     | 35.6(6)     | 25.8(5)     | 3.4(5)      | 1.5(4)      | 4.3(5)                 |
| C8   | 24.5(6)     | 58.0(9)     | 28.9(6)     | 4.7(6)      | -3.2(5)     | 0.1(5)                 |
| C9   | 33.0(6)     | 53.9(8)     | 29.4(6)     | -5.1(6)     | -2.6(5)     | -13.8(6)               |
| C10  | 42.0(7)     | 34.5(6)     | 29.2(6)     | -5.7(5)     | 1.6(5)      | -7.6(5)                |
| C11  | 28.6(6)     | 30.7(6)     | 26.2(6)     | -1.1(4)     | -0.7(4)     | 1.0(5)                 |
| C12  | 22.6(5)     | 32.2(6)     | 21.4(5)     | -1.4(4)     | -4.0(4)     | -0.9(4)                |
| C13  | 24.1(5)     | 39.9(7)     | 28.5(6)     | 1.3(5)      | 0.3(4)      | 1.2(5)                 |
| C14  | 30.7(6)     | 37.1(7)     | 32.5(6)     | 1.3(5)      | -2.6(5)     | 7.5(5)                 |
| C15  | 40.1(7)     | 29.0(6)     | 25.4(6)     | 2.7(4)      | -3.4(5)     | -0.5(5)                |
| C16  | 32.2(6)     | 35.0(6)     | 28.7(6)     | -0.9(5)     | 4.5(5)      | -4.3(5)                |
| C17  | 24.9(5)     | 30.9(6)     | 26.6(5)     | -2.2(4)     | 0.5(4)      | -0.6(4)                |

 Table 22: Bond Lengths in Å for 5ac.

| Atom | Atom | Length/Å   |
|------|------|------------|
| F1   | C2   | 1.3260(15) |
| F2   | C15  | 1.3566(14) |
| 01   | C1   | 1.4080(15) |
| O1   | C2   | 1.3306(16) |
| 02   | C1   | 1.2021(15) |
| C1   | C5   | 1.4544(15) |
| C2   | C3   | 1.3252(18) |
| C3   | C4   | 1.4378(16) |
| C4   | C5   | 1.3714(16) |
| C4   | C6   | 1.4891(15) |
| C5   | C12  | 1.4819(16) |
| C6   | C7   | 1.3956(15) |

| Atom | Atom | Length/Å   |
|------|------|------------|
| C6   | C11  | 1.3971(16) |
| C7   | C8   | 1.3884(18) |
| C8   | C9   | 1.383(2)   |
| C9   | C10  | 1.390(2)   |
| C10  | C11  | 1.3871(17) |
| C12  | C13  | 1.3965(17) |
| C12  | C17  | 1.3962(16) |
| C13  | C14  | 1.3858(18) |
| C14  | C15  | 1.3768(19) |
| C15  | C16  | 1.3757(18) |
| C16  | C17  | 1.3862(17) |
|      |      |            |

Table 23: Bond Angles in  $\degree$  for 5ac.

| Atom | Atom | Atom | Angle/°    | Atom | Atom | Atom | Angle/   |
|------|------|------|------------|------|------|------|----------|
| C2   | O1   | C1   | 119.80(9)  | C8   | C7   | C6   | 120.76(1 |
| 01   | C1   | C5   | 116.69(10) | C9   | C8   | C7   | 119.90(1 |
| 02   | C1   | O1   | 115.72(10) | C8   | C9   | C10  | 120.02(1 |
| 02   | C1   | C5   | 127.59(12) | C11  | C10  | C9   | 120.15(1 |
| F1   | C2   | O1   | 109.70(10) | C10  | C11  | C6   | 120.38(1 |
| C3   | C2   | F1   | 124.31(12) | C13  | C12  | C5   | 121.25(1 |
| C3   | C2   | O1   | 125.98(12) | C17  | C12  | C5   | 119.74(1 |
| C2   | C3   | C4   | 117.51(11) | C17  | C12  | C13  | 118.97(1 |
| C3   | C4   | C6   | 116.85(10) | C14  | C13  | C12  | 120.74(1 |
| C5   | C4   | C3   | 119.62(10) | C15  | C14  | C13  | 118.39(1 |
| C5   | C4   | C6   | 123.51(10) | F2   | C15  | C14  | 118.41(1 |
| C1   | C5   | C12  | 114.57(10) | F2   | C15  | C16  | 118.83(1 |
| C4   | C5   | C1   | 120.08(11) | C16  | C15  | C14  | 122.76(1 |
| C4   | C5   | C12  | 125.32(10) | C15  | C16  | C17  | 118.42(1 |
| C7   | C6   | C4   | 119.50(10) | C16  | C17  | C12  | 120.72(1 |
| C7   | C6   | C11  | 118.78(10) |      |      |      |          |
| C11  | C6   | C4   | 121.58(10) |      |      |      |          |
|      |      |      | · · ·      |      |      |      |          |

# Table 24: Torsion Angles in ° for 5ac.

| Atom | Atom | Atom | Atom | Angle/°    |
|------|------|------|------|------------|
| F1   | C2   | C3   | C4   | -          |
|      |      |      |      | 178.46(11) |
| F2   | C15  | C16  | C17  | 179.39(10) |
| 01   | C1   | C5   | C4   | 6.67(16)   |
| 01   | C1   | C5   | C12  | -171.42(9) |

| Atom | Atom | Atom | Atom       | Angle/°               |
|------|------|------|------------|-----------------------|
| 01   | C2   | C3   | C4         | 2.34(19)              |
| 02   | C1   | C5   | C4         | -                     |
|      |      |      |            | 173.43(12)            |
| 02   | C1   | C5   | C12        | 8.48(18)              |
| C1   | 01   | C2   | F1         | -1/9.46(9)            |
| C1   | 01   | 02   | C3         | -0.16(18)             |
|      | C5   | C12  | C13        | -58.23(14)            |
|      | 01   | C12  |            | 175 70(11)            |
| C2   | 01   | C1   | 02<br>C5   | -4 30(15)             |
| C2   | C3   | C4   | C5         | -4.30(13)<br>0.24(17) |
| C2   | C3   | C4   | C6         | -                     |
| 02   | 00   | 0.   | 00         | 178.23(11)            |
| C3   | C4   | C5   | C1         | -4.70(16)             |
| C3   | C4   | C5   | C12        | 173.16(11)            |
| C3   | C4   | C6   | C7         | -36.21(15)            |
| C3   | C4   | C6   | C11        | 139.39(11)            |
| C4   | C5   | C12  | C13        | 123.80(13)            |
| C4   | C5   | C12  | C17        | -58.53(16)            |
| C4   | C6   | C7   | C8         | 176.56(11)            |
| C4   | C6   | C11  | C10        | -                     |
| 05   | 0.1  | 00   | 07         | 176.68(11)            |
| 05   | C4   | C6   | 014        | 145.38(11)            |
| C5   | C4   |      |            | -39.02(16)            |
| C5   | C12  | C13  | C14<br>C16 | 177.59(10)            |
| 05   | 012  | 017  | 010        | -<br>177 53(10)       |
| C6   | C4   | C5   | C1         | 173 67(10)            |
| C6   | C4   | C5   | C12        | -8 47(18)             |
| C6   | C7   | C8   | C9         | -0.08(19)             |
| C7   | C6   | C11  | C10        | -1.05(17)             |
| C7   | C8   | C9   | C10        | -0.5(2)               |
| C8   | C9   | C10  | C11        | 0.3(2)                |
| C9   | C10  | C11  | C6         | 0.50(19)              |
| C11  | C6   | C7   | C8         | 0.84(17)              |
| C12  | C13  | C14  | C15        | -0.39(18)             |
| C13  | C12  | C17  | C16        | 0.19(17)              |
| C13  | C14  | C15  | F2         | -                     |
| 040  | 04.4 | 045  | 040        | 179.29(10)            |
| C13  | C14  | C15  | C16        | 0.81(19)              |
| C14  | 015  |      |            | -0.72(18)             |
| 015  | C10  | C12  | C12        | 0.20(17)              |
|      | 012  | 013  | 014        | -0.09(17)             |

| Atom | x        | У       | Z       | $U_{eq}$ |
|------|----------|---------|---------|----------|
| H3   | 2053.23  | 8343.16 | 4715.39 | 36       |
| H7   | -1054.75 | 7750.41 | 4949.3  | 36       |
| H8   | -3844.86 | 7066.85 | 3914.83 | 45       |
| H9   | -3206.49 | 5868.96 | 3445.13 | 47       |
| H10  | 241.92   | 5357.42 | 3989.91 | 43       |
| H11  | 3045.56  | 6039.96 | 5014.12 | 35       |
| H13  | 7599.55  | 6121.36 | 6737.59 | 37       |
| H14  | 7612.43  | 5010.36 | 7709.36 | 41       |
| H16  | 1684.81  | 5465.44 | 8709.68 | 38       |
| H17  | 1664.53  | 6575.42 | 7733.75 | 33       |

**Table 25**: Hydrogen Fractional Atomic Coordinates (×10<sup>4</sup>) and Equivalent Isotropic Displacement Parameters ( $Å^2 \times 10^3$ ) for **5ac**.  $U_{eq}$  is defined as 1/3 of the trace of the orthogonalised  $U_{ij}$ .



Crystal data and structure refinement for 6ag.

| Formula                         | C20H25N3O2        |
|---------------------------------|-------------------|
| $D_{calc}$ / g cm <sup>-3</sup> | 1.245             |
| $m/mm^{-1}$                     | 0.650             |
| Formula Weight                  | 339.43            |
| Colour                          | clear light       |
|                                 | vellow            |
| Shape                           | irregular         |
| Size/mm <sup>3</sup>            | 0.24×0.17×0.12    |
| T/K                             | 140.00(10)        |
| Crystal System                  | triclinic         |
| Space Group                     | <i>P</i> -1       |
| a/Å                             | 10.4488(6)        |
| b/Å                             | 13.1778(8)        |
| <i>c</i> /Å                     | 15.6415(10)       |
| a/°                             | 109.270(6)        |
| b/°                             | 97.031(5)         |
| <i>g</i> /°                     | 111.857(6)        |
| V/Å <sup>3</sup>                | 1811.5(2)         |
| Ζ                               | 4                 |
| Ζ'                              | 2                 |
| Wavelength/Å                    | 1.54184           |
| Radiation type                  | Cu K <sub>a</sub> |
| Q <sub>min</sub> /°             | 3.118             |
| Q <sub>max</sub> /°             | 72.679            |
| Measured Refl's.                | 15128             |
| Indep't Refl's                  | 7000              |
| Refl's l≥2 <i>σ</i> (I)         | 5303              |
| Rint                            | 0.0446            |
| Parameters                      | 648               |
| Restraints                      | 0                 |
| Largest Peak                    | 0.441             |
| Deepest Hole                    | -0.248            |
| GooF                            | 1.092             |
| wR₂ (all data)                  | 0.1839            |
| wR <sub>2</sub>                 | 0.1676            |
| R₁ (all data)                   | 0.0859            |
| R <sub>1</sub>                  | 0.0654            |

| Total reflections (after filtering) | 15130                                      | Unique reflections             | 7000            |
|-------------------------------------|--------------------------------------------|--------------------------------|-----------------|
| Completeness                        | 0.971                                      | Mean I/ $\sigma$               | 9.33            |
| hkl <sub>max</sub> collected        | (11, 16, 19)                               | hkl <sub>min</sub> collected   | (-12, -15, -17) |
| hkl <sub>max</sub> used             | (12, 15, 19)                               | hkl <sub>min</sub> used        | (-12, -16, 0)   |
| Lim d <sub>max</sub> collected      | 100.0                                      | Lim d <sub>min</sub> collected | 0.77            |
| d <sub>max</sub> used               | 14.17                                      | d <sub>min</sub> used          | 0.81            |
| Friedel pairs                       | 1795                                       | Friedel pairs merged           | 1               |
| Inconsistent equivalents            | 7                                          | Rint                           | 0.0446          |
| R <sub>sigma</sub>                  | 0.0548                                     | Intensity transformed          | 0               |
| Omitted reflections                 | 0                                          | Omitted by user (OMIT hkl)     | 2               |
| Multiplicity                        | (4701, 2806, 750, 272, 170, 63, 22, 11, 1) | Maximum multiplicity           | 10              |
| Removed systematic<br>absences      | 0                                          | Filtered off (Shel/OMIT)       | 0               |

**Table 26**: Fractional Atomic Coordinates ( $\times 10^4$ ) and Equivalent Isotropic Displacement Parameters (Å<sup>2</sup> $\times 10^3$ ) for **6ag**.  $U_{eq}$  is defined as 1/3 of the trace of the orthogonalised  $U_{ij}$ .

| Atom | x           | У          | Z           | U <sub>eq</sub> |
|------|-------------|------------|-------------|-----------------|
| 01   | 11812(2)    | 8447.1(18) | 2840.6(15)  | 37.8(5)         |
| 02   | 10547.7(17) | 7248.3(15) | 3447.5(12)  | 28.2(4)         |
| N1   | 9192(2) ´   | 6089.0(19) | 4144.4(15)́ | 28.2(4)         |
| N2   | 8031(2)     | 6080.4(19) | 4484.3(15)  | 27.1(4)         |
| N3   | 7418(2)     | 5298.5(18) | 4906.0(15)  | 26.5(4)         |
| C1   | 10805(3)    | 8186(2)    | 3162.2(18)  | 29.5(5)         |
| C2   | 9829(3)     | 8741(2)    | 3261.2(18)  | 29.6(5)         |
| C3   | 8698(2)     | 8408(2)    | 3618.2(17)  | 25.8(5)         |
| C4   | 8490(2)     | 7467(2)    | 3936.6(17)  | 25.4(5)         |
| C5   | 9439(2)     | 6932(2)    | 3830.3(17)  | 25.1(5)         |
| C6   | 7713(3)     | 8986(2)    | 3675.1(17)  | 27.1(5)         |
| C7   | 8255(3)     | 10229(2)   | 4151(2)     | 33.8(5)         |
| C8   | 7324(4)     | 10754(3)   | 4253(2)     | 43.7(7)         |
| C9   | 5859(4)     | 10060(3)   | 3875(2)     | 45.8(7)         |
| C10  | 5306(3)     | 8830(3)    | 3382(2)     | 39.4(6)         |
| C11  | 6234(3)     | 8293(2)    | 3281.9(19)  | 31.4(5)         |
| C12  | 7595(2)     | 6895(2)    | 4395.1(17)  | 26.1(5)         |
| C13  | 6431(3)     | 7085(2)    | 4794(2)     | 31.0(5)         |
| C14  | 6980(3)     | 8302(3)    | 5617(2)     | 40.8(7)         |
| C15  | 8534(3)     | 5459(2)    | 5690.6(19)  | 31.8(5)         |
| C16  | 9183(3)     | 6737(3)    | 6422(2)     | 40.8(6)         |
| C17  | 7887(3)     | 4593(3)    | 6132(2)     | 39.5(6)         |
| C18  | 6530(3)     | 4054(2)    | 4188.7(18)  | 29.6(5)         |
| C19  | 5361(3)     | 4019(3)    | 3488(2)     | 39.3(6)         |
| C20  | 7354(3)     | 3416(3)    | 3691(2)     | 39.8(7)         |
| O3   | 13526.9(18) | 5673.9(17) | 1968.7(15)  | 37.1(4)         |
| O4   | 11793.5(17) | 3843.0(15) | 1472.4(13)  | 28.2(4)         |
| N4   | 9891(2)     | 1944.6(18) | 833.0(15)   | 26.9(4)         |
| N5   | 8432(2)     | 1541.3(18) | 489.1(15)   | 25.4(4)         |
| N6   | 7483(2)     | 323.9(17)  | 127.7(14)   | 25.2(4)         |
| C21  | 12250(3)    | 5059(2)    | 1681.5(18)  | 28.3(5)         |
| C22  | 11156(3)    | 5480(2)    | 1583.5(18)  | 28.3(5)         |
| C23  | 9723(3)     | 4752(2)    | 1261.5(17)  | 25.8(5)         |
| C24  | 9291(2)     | 3489(2)    | 980.1(17)   | 25.7(5)         |
| C25  | 10364(2)    | 3105(2)    | 1108.9(17)  | 25.5(5)         |
| C26  | 8662(3)     | 5241(2)    | 1212.9(17)  | 26.9(5)         |

| Atom | x       | У        | Z          | U <sub>eq</sub> |
|------|---------|----------|------------|-----------------|
| C27  | 8823(3) | 6069(2)  | 810.7(19)  | 32.5(5)         |
| C28  | 7804(4) | 6496(3)  | 734(2)     | 41.3(7)         |
| C29  | 6620(3) | 6117(3)  | 1071(2)    | 42.5(7)         |
| C30  | 6471(3) | 5326(3)  | 1496(2)    | 38.7(6)         |
| C31  | 7483(3) | 4890(2)  | 1565.6(19) | 31.6(5)         |
| C32  | 8022(2) | 2420(2)  | 539.2(17)  | 25.4(5)         |
| C33  | 6512(3) | 2133(2)  | 94.7(19)   | 29.0(5)         |
| C34  | 6386(3) | 2492(3)  | -738(2)    | 36.3(6)         |
| C35  | 7307(3) | -104(2)  | 898.5(18)  | 27.8(5)         |
| C36  | 6809(3) | 655(3)   | 1619(2)    | 36.1(6)         |
| C37  | 8592(3) | -199(3)  | 1380(2)    | 36.2(6)         |
| C38  | 7892(3) | -375(2)  | -661.1(18) | 29.6(5)         |
| C39  | 7854(3) | 91(3)    | -1429(2)   | 39.3(6)         |
| C40  | 6856(3) | -1695(3) | -1055(2)   | 38.0(6)         |
|      |         |          |            |                 |

**Table 107**: Anisotropic Displacement Parameters (×10<sup>4</sup>) for **6ag**. The anisotropic displacement factor exponent takes the form:  $-2\pi^2[h^2a^{*2} \times U_{11} + ... + 2hka^* \times b^* \times U_{12}]$ 

| Atom | <b>U</b> 11 | <b>U</b> 22 | <b>U</b> 33 | <b>U</b> 23 | <b>U</b> 13 | <b>U</b> 12 |
|------|-------------|-------------|-------------|-------------|-------------|-------------|
| 01   | 30.9(9)     | 42.5(11)    | 52.3(12)    | 28.9(9)     | 24.0(9)     | 16.6(8)     |
| O2   | 25.1(8)     | 29.0(9)     | 37.2(9)     | 17.4(8)     | 17.8(7)     | 12.4(7)     |
| N1   | 23.3(9)     | 30.9(11)    | 35.0(11)    | 15.7(9)     | 15.5(8)     | 12.4(8)     |
| N2   | 24.7(10)    | 26.8(10)    | 34.8(11)    | 15.2(9)     | 17.2(8)     | 11.3(8)     |
| N3   | 26.9(10)    | 25.4(10)    | 31.2(10)    | 14.9(9)     | 15.5(8)     | 10.3(8)     |
| C1   | 25.8(11)    | 32.2(13)    | 34.0(13)    | 17.8(11)    | 12.8(10)    | 11.2(10)    |
| C2   | 27.3(12)    | 26.3(12)    | 34.1(13)    | 15.1(10)    | 9.1(10)     | 8.1(10)     |
| C3   | 22.0(11)    | 23.7(11)    | 27.6(11)    | 8.8(9)      | 6.1(9)      | 7.6(9)      |
| C4   | 22.5(11)    | 22.9(11)    | 28.2(11)    | 8.2(9)      | 8.4(9)      | 8.9(9)      |
| C5   | 19.5(10)    | 26.1(12)    | 29.7(11)    | 11.9(10)    | 11.5(9)     | 8.3(9)      |
| C6   | 26.9(11)    | 25.3(12)    | 30.6(12)    | 12.9(10)    | 9.4(9)      | 11.3(10)    |
| C7   | 33.5(13)    | 25.9(13)    | 39.0(14)    | 12.3(11)    | 7.9(11)     | 11.4(11)    |
| C8   | 59.2(18)    | 35.2(15)    | 44.3(16)    | 16.1(13)    | 14.6(14)    | 28.7(14)    |
| C9   | 50.7(17)    | 55.3(19)    | 52.2(18)    | 25.5(15)    | 21.4(14)    | 39.2(16)    |
| C10  | 30.0(14)    | 50.4(17)    | 46.6(16)    | 22.9(14)    | 14.7(12)    | 22.8(13)    |
| C11  | 26.2(12)    | 30.9(13)    | 36.3(13)    | 13.0(11)    | 10.4(10)    | 11.9(10)    |
| C12  | 22.2(11)    | 23.4(11)    | 29.8(12)    | 9.7(10)     | 9.8(9)      | 7.2(9)      |
| C13  | 26.6(12)    | 30.0(13)    | 44.2(15)    | 18.2(12)    | 20.0(12)    | 14.4(10)    |
| C14  | 45.7(16)    | 31.6(14)    | 51.3(17)    | 16.4(13)    | 29.3(14)    | 19.1(13)    |
| C15  | 29.6(12)    | 37.6(14)    | 35.6(13)    | 18.5(11)    | 15.8(11)    | 17.0(11)    |
| C16  | 34.3(14)    | 43.9(17)    | 34.2(14)    | 9.4(13)     | 8.2(12)     | 13.0(13)    |
| C17  | 39.7(15)    | 51.1(18)    | 44.6(16)    | 28.8(15)    | 20.8(13)    | 26.2(14)    |
| C18  | 28.8(12)    | 24.3(12)    | 35.5(13)    | 13.3(11)    | 15.0(10)    | 8.8(10)     |
| C19  | 34.0(14)    | 39.2(16)    | 38.8(15)    | 15.3(13)    | 10.0(12)    | 10.6(13)    |
| C20  | 45.3(16)    | 28.2(14)    | 47.7(16)    | 13.6(13)    | 26.9(14)    | 15.6(12)    |
| O3   | 23.3(9)     | 31.2(10)    | 51.4(12)    | 15.1(9)     | 12.8(8)     | 7.5(8)      |
| O4   | 20.7(8)     | 25.5(9)     | 36.8(9)     | 12.0(7)     | 9.8(7)      | 8.4(7)      |
| N4   | 21.6(9)     | 24.9(10)    | 33.6(11)    | 12.1(8)     | 10.0(8)     | 8.9(8)      |
| N5   | 20.8(9)     | 22.1(10)    | 34.3(11)    | 12.5(8)     | 10.1(8)     | 8.6(8)      |
| N6   | 23.6(9)     | 19.0(9)     | 30.7(10)    | 9.4(8)      | 9.6(8)      | 7.1(8)      |
| C21  | 24.6(11)    | 25.0(12)    | 32.3(12)    | 10.1(10)    | 11.3(10)    | 8.3(10)     |
| C22  | 27.7(12)    | 24.0(12)    | 33.6(13)    | 12.9(10)    | 14.1(10)    | 9.2(10)     |
| C23  | 27.3(11)    | 27.2(12)    | 28.4(11)    | 13.7(10)    | 14.4(9)     | 13.5(10)    |
| C24  | 22.7(11)    | 25.5(12)    | 30.2(12)    | 12.7(10)    | 11.5(9)     | 9.6(9)      |
| C25  | 20.6(10)    | 26.6(12)    | 31.2(12)    | 13.4(10)    | 11.5(9)     | 9.5(9)      |
| C26  | 27.9(11)    | 23.5(11)    | 28.3(11)    | 8.6(9)      | 9.7(9)      | 11.7(10)    |
| C27  | 40.5(14)    | 25.6(12)    | 34.0(13)    | 13.1(11)    | 14.9(11)    | 14.7(11)    |
| C28  | 61.8(18)    | 36.0(15)    | 36.9(14)    | 17.1(12)    | 16.3(13)    | 29.8(14)    |
| C29  | 46.8(16)    | 44.8(17)    | 43.4(16)    | 13.2(13)    | 12.2(13)    | 32.2(14)    |
| C30  | 33.9(14)    | 45.3(16)    | 40.8(15)    | 14.1(13)    | 15.0(12)    | 22.9(13)    |
| C31  | 32.7(13)    | 32.2(13)    | 35.0(13)    | 15.6(11)    | 16.1(Ì11)́  | 15.6(11)    |
| C32  | 24.5(11)    | 26.4(12)    | 30.9(12)    | 15.5(10)    | 14.1(9)     | 11.5(9)     |

| Atom | <b>U</b> 11 | <b>U</b> 22 | <b>U</b> 33 | <b>U</b> 23 | <b>U</b> 13 | <b>U</b> 12 |
|------|-------------|-------------|-------------|-------------|-------------|-------------|
| C33  | 22.1(11)    | 28.4(12)    | 40.0(14)    | 17.4(11)    | 11.4(10)    | 10.7(10)    |
| C34  | 30.1(13)    | 34.1(14)    | 44.3(15)    | 22.2(12)    | 7.1(12)     | 9.4(11)     |
| C35  | 25.2(11)    | 24.7(12)    | 34.2(13)    | 14.9(10)    | 11.9(10)    | 8.0(10)     |
| C36  | 38.3(14)    | 34.2(14)    | 35.8(14)    | 14.9(12)    | 18.5(12)    | 13.1(12)    |
| C37  | 29.5(13)    | 36.0(15)    | 44.0(15)    | 22.2(13)    | 8.5(12)     | 10.8(12)    |
| C38  | 25.5(12)    | 31.7(13)    | 34.2(13)    | 12.3(11)    | 11.8(10)    | 15.0(10)    |
| C39  | 39.4(15)    | 51.9(18)    | 34.5(14)    | 21.0(13)    | 16.8(12)    | 23.2(14)    |
| C40  | 31.3(14)    | 32.2(14)    | 40.6(15)    | 6.1(12)     | 9.1(11)     | 11.9(11)    |

Table 28: Bond Lengths in Å for 6ag.

| Atom | Atom | Length/Å |
|------|------|----------|
| 01   | C1   | 1.206(3) |
| O2   | C1   | 1.394(3) |
| O2   | C5   | 1.360(3) |
| N1   | N2   | 1.381(3) |
| N1   | C5   | 1.311(3) |
| N2   | N3   | 1.403(3) |
| N2   | C12  | 1.352(3) |
| N3   | C15  | 1.485(3) |
| N3   | C18  | 1.485(3) |
| C1   | C2   | 1.455(4) |
| C2   | C3   | 1.356(3) |
| C3   | C4   | 1.438(3) |
| C3   | C6   | 1.486(3) |
| C4   | C5   | 1.412(3) |
| C4   | C12  | 1.397(3) |
| C6   | C7   | 1.400(4) |
| C6   | C11  | 1.395(4) |
| C7   | C8   | 1.385(4) |
| C8   | C9   | 1.381(5) |
| C9   | C10  | 1.387(5) |
| C10  | C11  | 1.394(4) |
| C12  | C13  | 1.496(3) |
| C13  | C14  | 1.527(4) |
| C15  | C16  | 1.514(4) |
| C15  | C17  | 1.516(4) |
| C18  | C19  | 1.514(4) |
| C18  | C20  | 1.525(4) |
| O3   | C21  | 1.203(3) |
|      |      |          |

| Atom | Atom | Length/Å |
|------|------|----------|
| 04   | C21  | 1.396(3) |
| 04   | C25  | 1.359(3) |
| N4   | N5   | 1.379(3) |
| N4   | C25  | 1.311(3) |
| N5   | N6   | 1.399(3) |
| N5   | C32  | 1.359(3) |
| N6   | C35  | 1.493(3) |
| N6   | C38  | 1.491(3) |
| C21  | C22  | 1.457(4) |
| C22  | C23  | 1.358(3) |
| C23  | C24  | 1.441(3) |
| C23  | C26  | 1.482(3) |
| C24  | C25  | 1.409(3) |
| C24  | C32  | 1.401(3) |
| C26  | C27  | 1.398(4) |
| C26  | C31  | 1.395(3) |
| C27  | C28  | 1.387(4) |
| C28  | C29  | 1.390(5) |
| C29  | C30  | 1.385(5) |
| C30  | C31  | 1.387(4) |
| C32  | C33  | 1.494(3) |
| C33  | C34  | 1.531(4) |
| C35  | C36  | 1.525(4) |
| C35  | C37  | 1.526(4) |
| C38  | C39  | 1.521(4) |
| C38  | C40  | 1.518(4) |

Table 29: Bond Angles in ° for 6ag.

| Atom | Atom | Atom | Angle/°    | Atom | Atom |     |
|------|------|------|------------|------|------|-----|
| C5   | O2   | C1   | 118.61(19) | C5   | C4   |     |
| C5   | N1   | N2   | 101.81(19) | C12  | C4   |     |
| N1   | N2   | N3   | 120.87(19) | C12  | C4   |     |
| C12  | N2   | N1   | 114.34(19) | O2   | C5   |     |
| C12  | N2   | N3   | 124.76(18) | N1   | C5   |     |
| N2   | N3   | C15  | 110.09(19) | N1   | C5   |     |
| N2   | N3   | C18  | 111.37(19) | C7   | C6   |     |
| C15  | N3   | C18  | 116.4(2)   | C11  | C6   |     |
| 01   | C1   | O2   | 116.3(2)   | C11  | C6   |     |
| 01   | C1   | C2   | 126.1(2)   | C8   | C7   | С   |
| 02   | C1   | C2   | 117.6(2)   | C9   | C8   | C7  |
| C3   | C2   | C1   | 124.1(2)   | C8   | C9   | C10 |
| C2   | C3   | C4   | 117.0(2)   | C9   | C10  | C11 |
| C2   | C3   | C6   | 121.6(2)   | C10  | C11  | C6  |
| C4   | C3   | C6   | 121.4(2)   | N2   | C12  | C4  |
|      |      |      |            |      |      |     |

| Atom | Atom | Atom | Angle/°    | Atom | Atom | Atom | Angle/°   |
|------|------|------|------------|------|------|------|-----------|
| N2   | C12  | C13  | 121.9(2)   | C25  | C24  | C23  | 118.4(2)  |
| C4   | C12  | C13  | 132.6(2)   | C32  | C24  | C23  | 137.8(2)  |
| C12  | C13  | C14  | 112.9(2)   | C32  | C24  | C25  | 103.7(2)  |
| N3   | C15  | C16  | 109.2(2)   | O4   | C25  | C24  | 124.6(2)  |
| N3   | C15  | C17  | 110.3(2)   | N4   | C25  | O4   | 120.4(2)  |
| C16  | C15  | C17  | 110.3(2)   | N4   | C25  | C24  | 114.9(2)  |
| N3   | C18  | C19  | 110.2(2)   | C27  | C26  | C23  | 120.5(2)  |
| N3   | C18  | C20  | 115.8(2)   | C31  | C26  | C23  | 121.0(2)  |
| C19  | C18  | C20  | 111.5(2)   | C31  | C26  | C27  | 118.5(2)  |
| C25  | O4   | C21  | 118.13(19) | C28  | C27  | C26  | 120.6(2)  |
| C25  | N4   | N5   | 101.89(19) | C27  | C28  | C29  | 120.1(3)  |
| N4   | N5   | N6   | 121.46(19) | C30  | C29  | C28  | 119.8(3)  |
| C32  | N5   | N4   | 114.37(19) | C29  | C30  | C31  | 120.1(3)  |
| C32  | N5   | N6   | 124.17(19) | C30  | C31  | C26  | 120.8(3)  |
| N5   | N6   | C35  | 111.15(19) | N5   | C32  | C24  | 105.0(2)  |
| N5   | N6   | C38  | 110.25(17) | N5   | C32  | C33  | 121.4(2)  |
| C38  | N6   | C35  | 115.94(19) | C24  | C32  | C33  | 133.3(2)  |
| O3   | C21  | O4   | 116.1(2)   | C32  | C33  | C34  | 112.5(2)  |
| O3   | C21  | C22  | 125.9(2)   | N6   | C35  | C36  | 109.6(2)  |
| O4   | C21  | C22  | 117.9(2)   | N6   | C35  | C37  | 116.44(19 |
| C23  | C22  | C21  | 123.9(2)   | C36  | C35  | C37  | 111.1(2)  |
| C22  | C23  | C24  | 116.8(2)   | N6   | C38  | C39  | 108.7(2)  |
| C22  | C23  | C26  | 121.3(2)   | N6   | C38  | C40  | 110.1(2)  |
| C24  | C23  | C26  | 122.0(2)   | C40  | C38  | C39  | 110.0(2)  |

# Table 30: Torsion Angles in ° for 6ag.

| Atom | Atom | Atom | Atom | Angle/°   |
|------|------|------|------|-----------|
| 01   | C1   | C2   | C3   | 179.2(3)  |
| 02   | C1   | C2   | C3   | 0.5(4)    |
| N1   | N2   | N3   | C15  | 54.8(3)   |
| N1   | N2   | N3   | C18  | -75.8(3)  |
| N1   | N2   | C12  | C4   | 2.0(3)    |
| N1   | N2   | C12  | C13  | -175.0(2) |
| N2   | N1   | C5   | O2   | 178.5(2)  |
| N2   | N1   | C5   | C4   | -0.7(3)   |
| N2   | N3   | C15  | C16  | 60.2(2)   |
| N2   | N3   | C15  | C17  | -178.5(2) |
| N2   | N3   | C18  | C19  | -57.8(2)  |
| N2   | N3   | C18  | C20  | 69.8(3)   |
| N2   | C12  | C13  | C14  | 111.8(3)  |
| N3   | N2   | C12  | C4   | -179.8(2) |
| N3   | N2   | C12  | C13  | 3.2(4)    |
| C1   | O2   | C5   | N1   | -177.2(2) |
| C1   | O2   | C5   | C4   | 2.0(4)    |
| C1   | C2   | C3   | C4   | 1.6(4)    |
| C1   | C2   | C3   | C6   | -178.1(2) |
| C2   | C3   | C4   | C5   | -2.0(3)   |
| C2   | C3   | C4   | C12  | 174.4(3)  |
| C2   | C3   | C6   | C7   | -55.7(3)  |
| C2   | C3   | C6   | C11  | 126.4(3)  |
| C3   | C4   | C5   | O2   | 0.2(4)    |
| C3   | C4   | C5   | N1   | 179.4(2)  |
| C3   | C4   | C12  | N2   | -178.9(3) |
| C3   | C4   | C12  | C13  | -2.4(5)   |
| C3   | C6   | C7   | C8   | -175.9(2) |
| C3   | C6   | C11  | C10  | 176.4(2)  |
| C4   | C3   | C6   | C7   | 124.5(3)  |
| C4   | C3   | C6   | C11  | -53.4(3)  |
| C4   | C12  | C13  | C14  | -64.3(4)  |
| C5   | 02   | C1   | O1   | 178.9(2)  |

| Atom       | Atom     | Atom      | Atom       | Angle/°              |
|------------|----------|-----------|------------|----------------------|
| C5         | 02       | C1        | C2         | -2.2(3)              |
| C5         | N1       | N2        | N3         | -179.1(2)            |
| C5         | N1       | N2        | C12        | -0.9(3)              |
| C5         | C4<br>C4 | C12       | 013        | -2.2(3)<br>174 3(3)  |
| C6         | C3       | C4        | C5         | 177.8(2)             |
| C6         | C3       | C4        | C12        | -5.8(5)              |
| C6         | C7       | C8        | C9         | -1.0(4)              |
| C7         | C6       | C11       | C10        | -1.5(4)              |
| C7<br>C8   |          | C9<br>C10 | C10<br>C11 | -0.5(5)              |
| C9         | C10      | C10       | C6         | 0.0(4)               |
| C11        | C6       | C7        | C8         | 2.1(4)               |
| C12        | N2       | N3        | C15        | -123.2(2)            |
| C12        | N2       | N3        | C18        | 106.2(3)             |
| C12<br>C12 | C4       | C5<br>C5  | 02<br>N1   | -177.3(2)            |
| C12        | N3       | C18       | C19        | 174.9(2)             |
| C15        | N3       | C18       | C20        | -57.5(3)             |
| C18        | N3       | C15       | C16        | -                    |
| _          |          | _         | _          | 171.90(19)           |
| C18        | N3       | C15       | C17        | -50.5(3)             |
| 03         | C21      | C22       | C23        | -179.5(3)            |
| N4         | N5       | N6        | C35        | 72.7(2)              |
| N4         | N5       | N6        | C38        | -57.3(3)             |
| N4         | N5       | C32       | C24        | -2.3(3)              |
| N4         | N5       | C32       | C33        | 172.5(2)             |
| N5         | N4       | C25       | 04         | -177.9(2)            |
| N5<br>N5   | N6       | C25       | C24<br>C36 | 56 3(3)              |
| N5         | N6       | C35       | C37        | -70.9(3)             |
| N5         | N6       | C38       | C39        | -59.1(3)             |
| N5         | N6       | C38       | C40        | -179.7(2)            |
| N5         | C32      | C33       | C34        | -112.8(3)            |
| N6         | N5<br>N5 | C32       | C24<br>C33 | -7 7(3)              |
| C21        | 04       | C25       | N4         | 174.7(2)             |
| C21        | O4       | C25       | C24        | -4.1(3)              |
| C21        | C22      | C23       | C24        | -1.8(4)              |
| C21        | C22      | C23       | C26        | 177.6(2)             |
| C22        | C23      | C24       | C25        | 3.7(3)<br>-172 4(3)  |
| C22        | C23      | C26       | C27        | 47.9(3)              |
| C22        | C23      | C26       | C31        | -132.1(3)            |
| C23        | C24      | C25       | 04         | -0.8(3)              |
| C23        | C24      | C25       | N4         | -179.7(2)            |
| C23        | C24      | C32       |            | 5 2(5)               |
| C23        | C26      | C27       | C28        | 177.7(2)             |
| C23        | C26      | C31       | C30        | -178.3(2)            |
| C24        | C23      | C26       | C27        | -132.7(3)            |
| C24        | C23      | C26       | C31        | 47.4(3)              |
| C25        | 04       | C33       | C34<br>O3  | 60.4(4)<br>-177 3(2) |
| C25        | 04       | C21       | C22        | 5.8(3)               |
| C25        | N4       | N5        | N6         | -178.9(2)            |
| C25        | N4       | N5        | C32        | 0.8(3)               |
| C25        | C24      | C32       | N5         | 2.6(2)               |
| C25        | C24      | C32       | C33<br>C25 | -1/1.3(2)            |
| C26        | C23      | C24       | C25        | - 173.7(Z)<br>8 2(4) |
| C26        | C27      | C28       | C29        | 1.0(4)               |

| Atom | Atom | Atom | Atom | Angle/°   |
|------|------|------|------|-----------|
| C27  | C26  | C31  | C30  | 1.7(4)    |
| C27  | C28  | C29  | C30  | 0.9(5)    |
| C28  | C29  | C30  | C31  | -1.6(5)   |
| C29  | C30  | C31  | C26  | 0.2(4)    |
| C31  | C26  | C27  | C28  | -2.3(4)   |
| C32  | N5   | N6   | C35  | -107.0(2) |
| C32  | N5   | N6   | C38  | 123.0(2)  |
| C32  | C24  | C25  | O4   | 176.5(2)  |
| C32  | C24  | C25  | N4   | -2.4(3)   |
| C35  | N6   | C38  | C39  | 173.5(2)  |
| C35  | N6   | C38  | C40  | 52.9(3)   |
| C38  | N6   | C35  | C36  | -176.8(2) |
| C38  | N6   | C35  | C37  | 56.0(3)   |

| Atom         | x                    | У         | z          | $U_{eq}$       |
|--------------|----------------------|-----------|------------|----------------|
| H2           | 10060(30)            | 9380(30)  | 3040(20)   | 22(6)          |
| H7           | 9210(40)             | 10700(30) | 4420(20)   | 41             |
| H8           | 7740(40)             | 11640(40) | 4580(30)   | 60(11)         |
| H9           | 5210(40)             | 10420(40) | 3950(30)   | 61(11)         |
| H10          | 4350(40)             | 8400(30)  | 3120(20)   | 35(8)          |
| H11          | 5840(30)             | 7410(30)  | 2920(20)   | 32(7)          |
| H13A         | 6110(30)             | 6480(30)  | 5020(20)   | 32(7)          |
| H13B         | 5750(30)             | 7030(30)  | 4340(20)   | 24(7)          |
| H14A         | 7420(40)             | 8920(30)  | 5450(20)   | 41(9)          |
| H14B         | 6200(40)             | 8470(40)  | 5860(30)   | 61(11)         |
| H14C         | 7780(50)             | 8370(40)  | 6150(30)   | 67(12)         |
| H15          | 9330(30)             | 5300(30)  | 5430(20)   | 30(7)          |
| H16A         | 9860(40)             | 6830(30)  | 6890(30)   | 37(8)          |
| H16B         | 8430(30)             | 6930(30)  | 6680(20)   | 35(8)          |
| H16C         | 9670(40)             | 7340(30)  | 6170(30)   | 45(9)          |
| H17A         | 7550(40)             | 3760(40)  | 5770(30)   | 50(10)         |
| H17B         | 8650(40)             | 4800(30)  | 6670(30)   | 41(8)          |
| H17C         | 7060(40)             | 4750(40)  | 6330(30)   | 61(11)         |
| H18          | 6050(30)             | 3590(30)  | 4550(20)   | 32(8)          |
| H19A         | 4740(40)             | 3200(40)  | 3070(30)   | 47(9)          |
| H19B         | 4800(40)             | 4360(40)  | 3760(30)   | 54(10)         |
| H19C         | 5730(40)             | 4440(40)  | 3100(30)   | 53(10)         |
| H20A         | 7770(40)             | 3770(30)  | 3260(30)   | 48(9)          |
| H20B         | 8180(40)             | 3420(30)  | 4150(30)   | 50(10)         |
| H20C         | 6620(50)             | 2520(40)  | 3290(30)   | 70(12)         |
| H22          | 11500(30)            | 6370(30)  | 1790(20)   | 34             |
| H27          | 9630(30)             | 6320(30)  | 570(20)    | 32(7)          |
| H28          | 7890(40)             | 7020(40)  | 390(30)    | 56(10)         |
| H29          | 5820(40)             | 6400(40)  | 960(30)    | 58(11)         |
| H30          | 5660(50)             | 5070(40)  | 1720(30)   | 68(12)         |
| H31          | 7390(30)             | 4370(30)  | 1840(20)   | 35(8)          |
| H33A         | 5930(30)             | 1250(30)  | -100(20)   | 25(7)          |
| H33B         | 6130(30)             | 2540(30)  | 570(20)    | 37(8)          |
| H34A         | 5380(40)             | 2190(30)  | -1060(20)  | 40(8)          |
| H34B         | 6890(40)             | 3330(30)  | -560(20)   | 42(9)          |
| H34C         | 6870(40)             | 2130(40)  | -1170(30)  | 57(11)         |
| H35          | 6500(30)             | -920(30)  | 580(20)    | 35(8)          |
| H36A         | 6590(30)             | 280(30)   | 2040(20)   | 32(7)          |
| H36B         | 5990(40)             | 710(30)   | 1340(30)   | 45(9)          |
| H36C         | 7630(40)             | 1460(30)  | 1980(20)   | 40(8)          |
| H37A         | 9360(40)             | 560(30)   | 1830(30)   | 46(9)          |
| H37B         | 8890(30)             | -710(30)  | 840(20)    | 38(8)          |
| H37C         | 8190(40)             | -650(40)  | 1820(30)   | 55(10)         |
| H38          | 8870(30)             | -230(30)  | -400(20)   | 23(7)          |
| пзуА<br>цэрр | 0010(40)<br>8050(40) | 20(30)    | - 108U(3U) | 47<br>46(0)    |
| H39B         | 0000(40)             | -380(30)  | -1900(30)  | 40(9)<br>40(0) |
| H39C         | 8090(40)             | 960(40)   | -1170(30)  | 48(9)<br>20(0) |
|              | 5920(40)             | -1790(30) | -1260(20)  | 39(8)<br>47(0) |
|              | 0070(40)             | -2000(30) | -090(30)   | 47(9)          |
| H40C         | 7170(40)             | -2100(30) | -1580(30)  | 50(10)         |

**Table 31**: Hydrogen Fractional Atomic Coordinates (×10<sup>4</sup>) and Equivalent Isotropic Displacement Parameters ( $Å^2 \times 10^3$ ) for **6ag**.  $U_{eq}$  is defined as 1/3 of the trace of the orthogonalised  $U_{ij}$ .



Crystal data and structure refinement for 6ah.

| Formula                                 | C18H21N3O2      |
|-----------------------------------------|-----------------|
| D <sub>calc.</sub> / g cm <sup>-3</sup> | 1.273           |
| $m/\text{mm}^{-1}$                      | 0.679           |
| Formula Weight                          | 311.38          |
| Colour                                  | clear pale      |
|                                         | colourless      |
| Shape                                   | prism           |
| Size/mm <sup>3</sup>                    | 0.43×0.14×0.    |
|                                         | 09              |
| <i>T</i> /K                             | 140.00(10)      |
| Crystal System                          | monoclinic      |
| Space Group                             | P21/n           |
| a/Å                                     | 10.40586(17)    |
| b/Å                                     | 28.8016(4)      |
| c/Å                                     | 11.4833(2)      |
| a/°                                     | 90              |
| b/°                                     | 109.1940(18)    |
| <i>g</i> /°                             | 90              |
| V/Å <sup>3</sup>                        | 3250.29(10)     |
| Ζ                                       | 8               |
| Ζ'                                      | 2               |
| Wavelength/Å                            | 1.54184         |
| Radiation type                          | $Cu K_{\alpha}$ |
| Q <sub>min</sub> /°                     | 3.069           |
| Q <sub>max</sub> /°                     | 72.781          |
| Measured Refl's.                        | 8186            |
| Indep't Refl's                          | 8186            |
| Refl's l≥2 <i>o</i> (I)                 | 7212            |
| Rint                                    | •               |
| Parameters                              | 586             |
| Restraints                              | 0               |
| Largest Peak                            | 0.300           |
| Deepest Hole                            | -0.217          |
| GooF                                    | 1.068           |
| $wR_2$ (all data)                       | 0.1136          |
| wR <sub>2</sub>                         | 0.1105          |
| $R_1$ (all data)                        | 0.0417          |
| $R_1$                                   | 0.0371          |

| Total reflections (after filtering) | 12183           | Unique reflections             | 6373            |
|-------------------------------------|-----------------|--------------------------------|-----------------|
| Completeness                        | 0.986           | Mean I/ $\sigma$               | 32.52           |
| hklmax collected                    | (12, 35, 14)    | hkl <sub>min</sub> collected   | (-12, -35, -14) |
| hkl <sub>max</sub> used             | (11, 35, 14)    | hkl <sub>min</sub> used        | (-12, 0, 0)     |
| Lim d <sub>max</sub> collected      | 100.0           | Lim d <sub>min</sub> collected | 0.77            |
| d <sub>max</sub> used               | 14.4            | d <sub>min</sub> used          | 0.81            |
| Friedel pairs                       | 81              | Friedel pairs merged           | 1               |
| Inconsistent equivalents            | 0               | Rint                           | 0.0             |
| R <sub>sigma</sub>                  | 0.015           | Intensity transformed          | 0               |
| Omitted reflections                 | 0               | Omitted by user (OMIT hkl)     | 0               |
| Multiplicity                        | (7112, 525, 10) | Maximum multiplicity           | 0               |
| Removed systematic absences         | 0               | Filtered off (Shel/OMIT)       | 0               |

**Table 32**: Fractional Atomic Coordinates ( $\times 10^4$ ) and Equivalent Isotropic Displacement Parameters (Å<sup>2</sup> $\times 10^3$ ) for **6ah**.  $U_{eq}$  is defined as 1/3 of the trace of the orthogonalised  $U_{ij}$ .

| Atom | x            | У           | z          | Ueq     |
|------|--------------|-------------|------------|---------|
| 01   | 10467.8(11)  | 3884.2(4)   | 112.6(10)  | 35.6(3) |
| O2   | 10616.0(̈́9) | 3624.5(3)   | 1965.1(9)  | 25.0(2) |
| N1   | 10621.1(11)  | 3354.0(́4)́ | 3864.8(10) | 23.2(2) |
| N2   | 9620.0(11)   | 3331.3(4)   | 4404.5(10) | 22.2(2) |
| N3   | 9872.6(11)   | 3153.5(4)   | 5592.5(10) | 22.2(2) |
| C1   | 9869.5(14)   | 3818.3(4)   | 836.0(13)  | 25.4(3) |
| C2   | 8442.8(14)   | 3920.9(5)   | 615.8(12)  | 25.1(3) |
| C3   | 7783.3(13)   | 3845.1(4)   | 1441.6(12) | 21.2(3) |
| C4   | 8580.9(13)   | 3636.8(4)   | 2594.7(12) | 20.7(3) |
| C5   | 9956.9(13)   | 3537.6(4)   | 2784.5(12) | 21.1(3) |
| C6   | 8413.8(13)   | 3501.0(4)   | 3697.1(12) | 21.5(3) |
| C7   | 6323.0(13)   | 3966.4(4)   | 1133.8(11) | 21.9(3) |
| C8   | 5778.8(15)   | 4327.8(5)   | 308.3(13)  | 27.5(3) |
| C9   | 4391.5(15)   | 4421.1(5)   | -75.7(14)  | 31.9(3) |
| C10  | 3537.7(15)   | 4163.8(5)   | 378.1(14)  | 31.4(3) |
| C11  | 4068.4(15)   | 3810.9(5)   | 1217.9(14) | 30.8(3) |
| C12  | 5454.4(14)   | 3710.3(5)   | 1595.8(12) | 25.5(3) |
| C13  | 10141.1(14)  | 2643.5(4)   | 5629.1(13) | 25.5(3) |
| C14  | 8992.4(17)   | 2405.9(5)   | 4637.4(17) | 36.1(3) |
| C15  | 11525.8(16)  | 2496.8(5)   | 5561.2(17) | 34.5(3) |
| C16  | 10490(2)     | 3944.4(5)   | 6390.0(17) | 40.9(4) |
| C17  | 10932.6(14)  | 3439.3(5)   | 6497.2(13) | 27.2(3) |
| C18  | 11132.5(17)  | 3263.5(6)   | 7794.8(14) | 35.2(3) |
| O3   | 6604.4(11)   | 5161.0(4)   | 3153.0(10) | 33.9(2) |
| O4   | 6404.0(9)    | 4513.4(3)   | 4120.3(9)  | 25.6(2) |
| N4   | 6040.7(11)   | 3836.9(4)   | 5063.6(11) | 23.9(2) |
| N5   | 4881.2(11)   | 3650.1(4)   | 5209.6(10) | 21.9(2) |
| N6   | 4896.0(11)   | 3216.1(4)   | 5771.0(10) | 22.5(2) |
| C19  | 5833.2(14)   | 4907.2(5)   | 3442.9(13) | 25.0(3) |
| C20  | 4382.5(14)   | 4982.7(4)   | 3148.8(12) | 24.2(3) |
| C21  | 3531.8(13)   | 4691.7(4)   | 3478.8(11) | 21.1(3) |
| C22  | 4155.3(12)   | 4292.9(4)   | 4191.1(11) | 20.3(3) |
| C23  | 5560.9(13)   | 4222.0(4)   | 4460.2(12) | 21.7(3) |
| C24  | 3751.9(12)   | 3903.1(4)   | 4693.7(12) | 21.1(3) |
| C25  | 2049.9(13)   | 4781.9(4)   | 3095.7(12) | 22.2(3) |
| C26  | 1394.0(14)   | 4985.5(5)   | 1950.1(13) | 26.9(3) |
| C27  | 4.5(15)      | 5075.8(5)   | 1573.2(14) | 31.5(3) |
| C28  | -740.0(14)   | 4958.2(5)   | 2335.7(14) | 28.4(3) |
| C29  | -97.4(14)    | 4758.4(5)   | 3479.0(14) | 26.3(3) |
|      |              |             | 57         |         |

| Atom | X          | У         | Z          | Ueq     |
|------|------------|-----------|------------|---------|
| C30  | 1294.9(14) | 4670.0(4) | 3860.3(13) | 23.8(3) |
| C31  | 5300.1(15) | 2853.0(5) | 5039.7(14) | 28.3(3) |
| C32  | 4282.0(19) | 2854.2(5) | 3742.6(15) | 37.0(4) |
| C33  | 5328.7(18) | 2377.1(5) | 5636.8(17) | 36.1(3) |
| C34  | 5671.4(15) | 3228.8(5) | 7115.5(13) | 28.1(3) |
| C35  | 5075.6(17) | 3598.1(6) | 7729.2(14) | 34.8(3) |
| C36  | 7212.7(16) | 3283.3(7) | 7463.2(17) | 40.5(4) |

**Table 33**: Anisotropic Displacement Parameters (×10<sup>4</sup>) for **6ah**. The anisotropic displacement factor exponent takes the form:  $-2\pi^2[h^2a^{*2} \times U_{11} + ... + 2hka^* \times b^* \times U_{12}]$ 

| Atom | <b>U</b> 11 | <b>U</b> 22 | <b>U</b> 33        | <b>U</b> 23          | <b>U</b> 13        | <b>U</b> 12           |
|------|-------------|-------------|--------------------|----------------------|--------------------|-----------------------|
| 01   | 36.2(5)     | 43.8(6)     | 33.7(6)            | 4.7(4)               | 21.0(5)            | -1.1(4)               |
| O2   | 22.0(4)     | 29.7(4)     | 26.1(5)            | 1.5(4)               | 11.6(4)            | -0.5(4)               |
| N1   | 18.9(5)     | 28.0(5)     | 24.0(5)            | 1.0(4)               | 8.5(4)             | 0.2(4)                |
| N2   | 19.6(5)     | 27.5(5)     | 20.3(5)            | 2.8(4)               | 7.6(4)             | 1.6(4)                |
| N3   | 22.7(5)     | 24.1(5)     | 18.9(5)            | 2.8(4)               | 5.5(4)             | 1.3(4)                |
| C1   | 29.6(7)     | 24.4(6)     | 24.3(7)            | 0.0(5)               | 11.8(5)            | -2.5(5)               |
| C2   | 27.2(T)     | 26.2(6)     | 22.4(6)            | 0.7(5)               | 8.8(́5)́           | -0.6(5)               |
| C3   | 23.3(6)     | 18.9(5)     | 20.7(6)            | -1.9(4)              | 6.1(5)             | -1.6(5)               |
| C4   | 19.3(6)     | 20.7(5)     | 22.2(6)            | -1.3(4)              | 7.1(5)             | -0.6(4)               |
| C5   | 21.4(6)     | 21.2(5)     | 22.0(6)            | -1.2(5)              | 8.8(5)             | -2.1(4)               |
| C6   | 19.3(6)     | 22.5(6)     | 22.8(6)            | 0.6(5)               | 7.0(5)             | 1.6(4)                |
| C7   | 24.3(6)     | 21.4(6)     | 19.0(6)            | -3.4(5)              | 5.6(5)             | 0.5(5)                |
| C8   | 28.4(7)     | 24.7(6)     | 28.5(7)            | 2.6(5)               | 8.0(5)             | 1.8(5)                |
| C9   | 30.1(7)     | 29.1(6)     | 32.3(8)            | 2.8(6)               | 4.7(6)             | 6.7(6)                |
| C10  | 23 2(6)     | 34 5(7)     | 327(7)             | -3 8(6)              | 4 3(5)             | 4 8(5)                |
| C11  | 23 2(6)     | 37 6(7)     | 30.3(7)            | 0.0(6)               | 7 2(5)             | -1.3(6)               |
| C12  | 23.3(6)     | 28.5(6)     | 23 7(6)            | 1 9(5)               | 6 6(5)             | 0.3(5)                |
| C13  | 26.8(6)     | 22 9(6)     | 26 9(7)            | 2 9(5)               | 9.0(5)             | 0.9(5)                |
| C14  | 33 1(8)     | 29 9(7)     | 43 1(9)            | -5.9(6)              | 9 4(7)             | -4 2(6)               |
| C15  | 30.9(7)     | 30 2(7)     | 43 2(9)            | 5 4(6)               | 13 5(7)            | 7 7(6)                |
| C16  | 54 5(10)    | 27.8(7)     | 38 6(9)            | -3 4(6)              | 12 9(8)            | -6.0(7)               |
| C17  | 26 1(6)     | 30.6(7)     | 23 1(7)            | -1.8(5)              | 5 7(5)             | -5 1(5)               |
| C18  | 35 3(8)     | 42 8(8)     | 23.1(7)            | -0.5(6)              | 3 5(6)             | -2 4(6)               |
| 010  | 30.2(5)     | 36 5(5)     | 28.6(6)            | 7.6(4)               | 161(4)             | $-6 \Lambda(\Lambda)$ |
| 04   | 10.2(0)     | 27 0(5)     | 32 2(5)            | 7.0(4)               | 10.1(+)<br>11.3(A) | -1 5(3)               |
| N/   | 18.8(5)     | 25 1(5)     | 20 1(6)            | $2 \Lambda(\Lambda)$ | 9.6(4)             | -1.0(3)               |
| N5   | 10.0(5)     | 20.1(5)     | 26.6(6)            | 2.+(+)<br>3.1(1)     | 8 2(4)             | 0.3(4)                |
| NG   | 24.8(5)     | 20.4(5)     | 20.0(0)            | 3.+(+)<br>3.7(4)     | 0.2(4)<br>8 7(4)   | 0.4(4)                |
| C10  | 26.1(6)     | 25 2(6)     | 24.9(6)            | -0.3(5)              | 10 1 (5)           | -3 4(5)               |
| C20  | 23.6(6)     | 23.4(6)     | 24.3(0)            | 2 8(5)               | 7 8(5)             | -0.8(5)               |
| C21  | 23.0(0)     | 21 5(6)     | 18 9(6)            | -0.2(5)              | 7.0(5)             | -0.0(3)               |
| C22  | 23.0(0)     | 27.5(0)     | 20 5(6)            | -0.2(5)              | 6.8(5)             | -0.2(3)               |
| C23  | 20.6(6)     | 22.3(0)     | 20.3(0)            | -0.7(5)              | 8 0(5)             | -0.2(4)               |
| C24  | 20.0(0)     | 23.4(0)     | 22.4(0)            | -0.3(5)              | 6.6(5)             | -1.7(3)               |
| C24  | 21 6(6)     | 22.7(0)     | 22.0(0)<br>24.4(6) | -0.3(5)              | 6.2(5)             | 0.4(4)                |
| C25  | 21.0(0)     | 19.5(5)     | 24.4(0)            | -1.0(5)              | 0.2(5)             | 0.0(4)                |
| C20  | 20.0(0)     | 29.2(0)     | 25.9(7)            | 4.0(5)               | 0.2(3)             | 3.4(3)<br>9.4(6)      |
| C27  | 29.0(7)     | 33.0(7)     | 20.3(7)            | 4.3(0)               | 2.7(0)             | 0.4(0)                |
| C20  | 21.4(0)     | 27.5(6)     | 33.4(7)            | -3.4(5)              | 4.9(3)             | 3.9(5)<br>1.1(5)      |
| C29  | 23.7(0)     | 23.0(0)     | 32.0(7)            | -2.4(3)              | 10.7(6)            | 1.1(5)                |
| C30  | 22.9(6)     | 22.5(6)     | 25.2(7)            | 1.7(5)               | 7.0(5)             | 0.7(5)                |
| 031  | 34.4(7)     | 23.1(6)     | 32.2(7)            | 0.9(5)               | 17.3(6)            | 2.8(5)                |
| 032  | 54.6(10)    | 31.5(7)     | 28.0(7)            | -1.8(6)              | 17.8(7)            | 1.0(7)                |
| U33  | 48.7(9)     | 23.1(7)     | 40.5(9)            | 2.7(6)               | 19.8(8)            | 5.3(6)                |
| C34  | 29.6(7)     | 27.8(6)     | 24.7(7)            | 3.7(5)               | 6.1(5)             | 1.3(5)                |
| 035  | 39.0(8)     | 36.6(8)     | 26.8(7)            | -4.3(6)              | 7.9(6)             | 0.3(6)                |
| C36  | 26.8(7)     | 52.7(10)    | 35.7(9)            | 5.9(7)               | 1.6(6)             | 4.8(7)                |

| Atom | Atom | Length/Å   |
|------|------|------------|
| 01   | C1   | 1.2057(18) |
| O2   | C1   | 1.3906(17) |
| O2   | C5   | 1.3574(16) |
| N1   | N2   | 1.3776(15) |
| N1   | C5   | 1.3163(17) |
| N2   | N3   | 1.3989(15) |
| N2   | C6   | 1.3430(16) |
| N3   | C13  | 1.4932(16) |
| N3   | C17  | 1.4900(17) |
| C1   | C2   | 1.4520(19) |
| C2   | C3   | 1.3586(19) |
| C3   | C4   | 1.4421(18) |
| C3   | C7   | 1.4842(18) |
| C4   | C5   | 1.4050(17) |
| C4   | C6   | 1.3895(18) |
| C7   | C8   | 1.3963(18) |
| C7   | C12  | 1.3993(19) |
| C8   | C9   | 1.390(2)   |
| C9   | C10  | 1.384(2)   |
| C10  | C11  | 1.385(2)   |
| C11  | C12  | 1.393(2)   |
| C13  | C14  | 1.516(2)   |
| C13  | C15  | 1.528(2)   |
| C16  | C17  | 1.519(2)   |
| C17  | C18  | 1.522(2)   |

| Atom | Atom | Length/Å   |
|------|------|------------|
| O3   | C19  | 1.2102(17) |
| O4   | C19  | 1.3930(16) |
| O4   | C23  | 1.3608(15) |
| N4   | N5   | 1.3808(15) |
| N4   | C23  | 1.3161(17) |
| N5   | N6   | 1.4041(14) |
| N5   | C24  | 1.3436(16) |
| N6   | C31  | 1.4859(17) |
| N6   | C34  | 1.4890(17) |
| C19  | C20  | 1.4509(19) |
| C20  | C21  | 1.3602(18) |
| C21  | C22  | 1.4355(17) |
| C21  | C25  | 1.4808(17) |
| C22  | C23  | 1.4068(17) |
| C22  | C24  | 1.3889(17) |
| C25  | C26  | 1.3965(19) |
| C25  | C30  | 1.3947(19) |
| C26  | C27  | 1.3908(19) |
| C27  | C28  | 1.388(2)   |
| C28  | C29  | 1.387(2)   |
| C29  | C30  | 1.3923(19) |
| C31  | C32  | 1.518(2)   |
| C31  | C33  | 1.5286(19) |
| C34  | C35  | 1.516(2)   |
| C34  | C36  | 1.528(2)   |

 Table 114: Bond Lengths in Å for 6ah.

Table 35: Bond Angles in ° for 6ah.

| Atom | Atom | Atom | Angle/°    | Atom | Atom | Atom | Æ   |
|------|------|------|------------|------|------|------|-----|
| C5   | O2   | C1   | 117.75(10) | C10  | C11  | C12  | 12  |
| C5   | N1   | N2   | 101.69(10) | C11  | C12  | C7   | 12  |
| N1   | N2   | N3   | 121.91(10) | N3   | C13  | C14  | 10  |
| C6   | N2   | N1   | 113.91(10) | N3   | C13  | C15  | 11  |
| C6   | N2   | N3   | 124.17(11) | C14  | C13  | C15  | 11  |
| N2   | N3   | C13  | 111.17(10) | N3   | C17  | C16  | 10  |
| N2   | N3   | C17  | 109.65(10) | N3   | C17  | C18  | 109 |
| C17  | N3   | C13  | 115.79(10) | C16  | C17  | C18  | 109 |
| 01   | C1   | O2   | 116.67(12) | C23  | O4   | C19  | 117 |
| 01   | C1   | C2   | 125.31(13) | C23  | N4   | N5   | 101 |
| O2   | C1   | C2   | 118.02(11) | N4   | N5   | N6   | 121 |
| C3   | C2   | C1   | 124.60(12) | C24  | N5   | N4   | 114 |
| C2   | C3   | C4   | 115.94(12) | C24  | N5   | N6   | 124 |
| C2   | C3   | C7   | 120.57(12) | N5   | N6   | C31  | 109 |
| C4   | C3   | C7   | 123.49(11) | N5   | N6   | C34  | 112 |
| C5   | C4   | C3   | 118.46(11) | C31  | N6   | C34  | 116 |
| C6   | C4   | C3   | 138.34(12) | O3   | C19  | O4   | 116 |
| C6   | C4   | C5   | 103.17(11) | O3   | C19  | C20  | 125 |
| 02   | C5   | C4   | 125.20(12) | O4   | C19  | C20  | 118 |
| N1   | C5   | 02   | 119.93(11) | C21  | C20  | C19  | 124 |
| N1   | C5   | C4   | 114.86(11) | C20  | C21  | C22  | 115 |
| N2   | C6   | C4   | 106.35(11) | C20  | C21  | C25  | 121 |
| C8   | C7   | C3   | 119.48(12) | C22  | C21  | C25  | 122 |
| C8   | C7   | C12  | 118.82(12) | C23  | C22  | C21  | 118 |
| C12  | C7   | C3   | 121.60(11) | C24  | C22  | C21  | 137 |
| C9   | C8   | C7   | 120.43(13) | C24  | C22  | C23  | 103 |
| C10  | C9   | C8   | 120.37(13) | O4   | C23  | C22  | 124 |
| C9   | C10  | C11  | 119.80(13) | N4   | C23  | O4   | 120 |
|      |      |      |            |      |      |      |     |

| Atom | Atom | Atom | Angle/°    | Atom | Atom | Atom | Angle/°    |
|------|------|------|------------|------|------|------|------------|
| N4   | C23  | C22  | 115.15(11) | C28  | C29  | C30  | 120.09(13) |
| N5   | C24  | C22  | 106.35(11) | C29  | C30  | C25  | 120.21(12) |
| C26  | C25  | C21  | 119.48(12) | N6   | C31  | C32  | 108.49(12) |
| C30  | C25  | C21  | 121.31(12) | N6   | C31  | C33  | 110.19(12) |
| C30  | C25  | C26  | 119.21(12) | C32  | C31  | C33  | 110.28(13) |
| C27  | C26  | C25  | 120.52(13) | N6   | C34  | C35  | 109.52(11) |
| C28  | C27  | C26  | 119.79(13) | N6   | C34  | C36  | 115.96(13) |
| C29  | C28  | C27  | 120.18(13) | C35  | C34  | C36  | 111.15(13) |
|      |      |      |            |      |      |      |            |

 Table 36: Torsion Angles in ° for 6ah.

| Atom | Atom | Atom | Atom | Angle/°    |
|------|------|------|------|------------|
| 01   | C1   | C2   | C3   | -          |
|      |      |      |      | 179.91(13) |
| 02   | C1   | C2   | C3   | 0.7(2)     |
| N1   | N2   | N3   | C13  | -68.22(14) |
| N1   | N2   | N3   | C17  | 61.11(15)  |
| N1   | N2   | C6   | C4   | 1.66(15)   |
| N2   | N1   | C5   | 02   | 178.98(10) |
| N2   | N1   | C5   | C4   | 0.19(14)   |
| N2   | N3   | C13  | C14  | -52.59(15) |
| N2   | N3   | C13  | C15  | 74.05(15)  |
| N2   | N3   | C17  | C16  | 55.82(15)  |
| N2   | N3   | C17  | C18  | 176.22(11) |
| N3   | N2   | C6   | C4   | -          |
|      |      |      |      | 179.43(11) |
| C1   | 02   | C5   | N1   | 179.94(11) |
| C1   | 02   | C5   | C4   | -1.41(18)  |
| C1   | C2   | C3   | C4   | -1.66(19)  |
| C1   | C2   | C3   | C7   | 179.37(12) |
| C2   | C3   | C4   | C5   | 1.14(17)   |
| C2   | C3   | C4   | C6   | 178.71(14) |
| C2   | C3   | C7   | C8   | -28.51(18) |
| C2   | C3   | C7   | C12  | 147.77(13) |
| C3   | C4   | C5   | O2   | 0.37(18)   |
| C3   | C4   | C5   | N1   | 179.09(11) |
| C3   | C4   | C6   | N2   | -          |
|      |      |      |      | 179.18(14) |
| C3   | C7   | C8   | C9   | 174.39(13) |
| C3   | C7   | C12  | C11  | -          |
|      |      |      |      | 175.21(13) |
| C4   | C3   | C7   | C8   | 152.60(12) |
| C4   | C3   | C7   | C12  | -31.13(18) |
| C5   | O2   | C1   | O1   | -          |
|      |      |      |      | 178.59(11) |
| C5   | O2   | C1   | C2   | 0.89(17)   |
| C5   | N1   | N2   | N3   | 179.91(11) |
| C5   | N1   | N2   | C6   | -1.16(14)  |
| C5   | C4   | C6   | N2   | -1.37(13)  |
| C6   | N2   | N3   | C13  | 112.97(13) |
| C6   | N2   | N3   | C17  | -          |
|      |      |      |      | 117.71(13) |
| C6   | C4   | C5   | O2   | -          |
|      |      |      |      | 177.97(11) |
| C6   | C4   | C5   | N1   | 0.75(15)   |
| C7   | C3   | C4   | C5   | -          |
|      |      | •    |      | 179.92(11) |
| C7   | C3   | C4   | C6   | -2.3(2)    |
| C7   | C8   | C9   | C10  | 1.5(2)     |
| C8   | C7   | C12  | C11  | 1.1(2)     |
| C8   | C9   | C10  | C11  | -0.1(2)    |
| 50   | 00   | 0.0  | 0    | 0.1(2)     |

| Atom | Atom     | Atom | Atom | Angle/°    |
|------|----------|------|------|------------|
| C9   | C10      | C11  | C12  | -0.8(2)    |
| C10  | C11      | C12  | C7   | 0.3(2)     |
| C12  | C7       | C8   | C9   | -2.0(2)    |
| C13  | N3       | C17  | C16  | -          |
|      |          |      |      | 177.41(12) |
| C13  | N3       | C17  | C18  | -57.01(15) |
| C17  | N3       | C13  | C14  | -          |
|      |          |      |      | 178.59(12) |
| C17  | N3       | C13  | C15  | -51.95(17) |
| O3   | C19      | C20  | C21  | 179.68(13) |
| O4   | C19      | C20  | C21  | -0.7(2)    |
| N4   | N5       | N6   | C31  | -61.13(15) |
| N4   | N5       | N6   | C34  | 69.43(15)  |
| N4   | N5       | C24  | C22  | -1.64(15)  |
| N5   | N4       | C23  | O4   | -          |
|      |          |      |      | 179.50(11) |
| N5   | N4       | C23  | C22  | -0.85(15)  |
| N5   | N6       | C31  | C32  | -59.40(14) |
| N5   | N6       | C31  | C33  | 179.78(12) |
| N5   | N6       | C34  | C35  | 56.63(15)  |
| N5   | N6       | C34  | C36  | -70.12(15) |
| N6   | N5       | C24  | C22  | -          |
|      |          |      |      | 177.01(11) |
| C19  | O4       | C23  | N4   | 177.62(12) |
| C19  | 04       | C23  | C22  | -0.90(18)  |
| C19  | C20      | C21  | C22  | 1 6(2)     |
| C19  | C20      | C21  | C25  | -          |
| •••• | 010      | •=•  | 010  | 177 22(12) |
| C20  | C21      | C22  | C23  | -2.04(18)  |
| C20  | C21      | C22  | C24  | -          |
| 020  | 021      | 022  | 021  | 177 26(15) |
| C20  | C21      | C25  | C26  | 34 24(19)  |
| C20  | C21      | C25  | C30  | -          |
| 020  | 021      | 020  | 000  | 145 36(13) |
| C21  | C22      | C23  | O4   | 1 82(19)   |
| C21  | C22      | C23  | N4   | -          |
| 021  | OLL      | 020  | 117  | 176 76(11) |
| C21  | C22      | C24  | N5   | 176 68(15) |
| C21  | C25      | C26  | C27  | -          |
| 021  | 025      | 020  | 021  | 170 65(13) |
| C21  | C25      | C30  | C29  | 179.03(13) |
| C22  | C21      | C25  | C26  | -          |
| 022  | 021      | 020  | 020  | 144 49(13) |
| C22  | C21      | C25  | C30  | 35 01(18)  |
| C23  | 04       | C19  | 03   | 179 92(12) |
| C23  | 04       | C19  | C20  | 0.30(17)   |
| C23  | N4       | N5   | N6   | 177 04(11) |
| C23  | N4<br>N4 | N5   | C24  | 1 54(14)   |
| C23  | C22      | C24  | N5   | 0.98(14)   |
| C24  | N5       | N6   | C31  | 113 90(14) |
| C24  | N5       | NG   | C34  | -          |
| 024  | NO       | NO   | 004  | 115 54(14) |
| C24  | C22      | C23  | O4   | 178 53(12) |
| C24  | C22      | C23  | N4   | -0.06(15)  |
| C25  | C21      | C22  | C23  | 176 75(12) |
| C25  | C21      | C22  | C24  | 1 5(2)     |
| C25  | C26      | C27  | C28  | -0.7(2)    |
| C26  | C25      | C30  | C29  | 0 38/10)   |
| C26  | C27      | C28  | C29  | 1 1(2)     |
| C27  | C28      | C.29 | C30  | -0 7(2)    |
| C28  | C29      | C30  | C25  | 0.0(2)     |
| C30  | C25      | C26  | C27  | 0.0(2)     |
| C31  | N6       | C34  | C35  | -          |

| Atom | Atom | Atom | Atom | Angle/°    |
|------|------|------|------|------------|
|      |      |      |      | 176.63(12) |
| C31  | N6   | C34  | C36  | 56.62(16)  |
| C34  | N6   | C31  | C32  | 172.50(12) |
| C34  | N6   | C31  | C33  | 51.68(16)  |

| Atom | x         | У       | z        | $U_{eq}$ |
|------|-----------|---------|----------|----------|
| H2   | 7974(18)  | 4040(6) | -214(17) | 30(4)    |
| H6   | 7693(17)  | 3524(5) | 4011(15) | 21(4)    |
| H8   | 6350(20)  | 4530(7) | -30(20)  | 45(5)    |
| H9   | 4050(20)  | 4678(7) | -650(20) | 41(5)    |
| H10  | 2600(20)  | 4215(7) | 120(20)  | 43(5)    |
| H11  | 3460(20)  | 3625(7) | 1539(19) | 40(5)    |
| H12  | 5826(19)  | 3455(6) | 2177(17) | 30(4)    |
| H13  | 10111(18) | 2538(6) | 6444(18) | 30(4)    |
| H14A | 8120(30)  | 2510(8) | 4710(20) | 53(6)    |
| H14B | 9080(20)  | 2065(8) | 4740(20) | 47(5)    |
| H14C | 9020(20)  | 2489(7) | 3800(20) | 50(6)    |
| H15A | 11610(20) | 2566(8) | 4780(20) | 52(6)    |
| H15B | 11660(20) | 2162(8) | 5680(20) | 46(6)    |
| H15C | 12270(30) | 2651(9) | 6210(30) | 65(7)    |
| H16A | 9650(20)  | 3974(8) | 6590(20) | 50(6)    |
| H16B | 10320(20) | 4058(7) | 5540(20) | 41(5)    |
| H16C | 11200(20) | 4132(8) | 6950(20) | 47(5)    |
| H17  | 11810(20) | 3415(7) | 6298(19) | 41(5)    |
| H18A | 11770(20) | 3472(8) | 8400(20) | 52(6)    |
| H18B | 10290(30) | 3265(7) | 7960(20) | 53(6)    |
| H18C | 11540(20) | 2940(7) | 7956(19) | 42(5)    |
| H20  | 4079(17)  | 5268(6) | 2727(16) | 25(4)    |
| H24  | 2908(18)  | 3798(6) | 4720(15) | 23(4)    |
| H26  | 1920(20)  | 5056(6) | 1361(18) | 34(4)    |
| H27  | -430(20)  | 5218(7) | 791(19)  | 38(5)    |
| H28  | -1690(20) | 5010(7) | 2080(20) | 49(6)    |
| H29  | -600(20)  | 4694(6) | 4022(18) | 32(4)    |
| H30  | 1732(18)  | 4546(6) | 4694(16) | 25(4)    |
| H31  | 6208(18)  | 2926(6) | 4990(16) | 25(4)    |
| H32A | 4320(20)  | 3148(7) | 3333(18) | 36(5)    |
| H32B | 3340(20)  | 2818(7) | 3770(20) | 49(6)    |
| H32C | 4480(20)  | 2611(7) | 3250(20) | 43(5)    |
| H33A | 5440(20)  | 2146(7) | 5090(20) | 45(5)    |
| H33B | 6040(20)  | 2343(7) | 6390(20) | 40(5)    |
| H33C | 4440(20)  | 2301(7) | 5780(20) | 47(5)    |
| H34  | 5456(19)  | 2919(6) | 7431(17) | 32(4)    |
| H35A | 5470(20)  | 3572(7) | 8630(20) | 49(6)    |
| H35B | 4090(20)  | 3564(7) | 7510(20) | 45(5)    |
| H35C | 5270(20)  | 3912(8) | 7460(20) | 49(6)    |
| H36A | 7460(20)  | 3607(7) | 7240(20) | 45(5)    |
| H36B | 7600(30)  | 3243(8) | 8340(20) | 56(6)    |
| H36C | 7580(20)  | 3050(8) | 7010(20) | 52(6)    |

**Table 37**: Hydrogen Fractional Atomic Coordinates (×10<sup>4</sup>) and Equivalent Isotropic Displacement Parameters ( $Å^2 \times 10^3$ ) for **6ah**.  $U_{eq}$  is defined as 1/3 of the trace of the orthogonalised  $U_{ij}$ .



# Crystal data and structure refinement for 8.

| Formula                                 | $C_{17}H_{11}CIO_2$      |
|-----------------------------------------|--------------------------|
| D <sub>calc.</sub> / g cm <sup>-3</sup> | 1.395                    |
| <i>m</i> /mm <sup>-1</sup>              | 2.492                    |
| Formula Weight                          | 282.71                   |
| Colour                                  | colourless               |
| Shape                                   | plate                    |
| Size/mm <sup>3</sup>                    | 0.21×0.20×0.0<br>3       |
| T/K                                     | 140.00(10)               |
| Crystal System                          | triclinic                |
| Space Group                             | $P\overline{1}$          |
| a/Å                                     | 7.9105(3)                |
| b/Å                                     | 9.8857(3)                |
| c/Å                                     | 17.5630(4)               |
| a/°                                     | 83.587(2)                |
| b/°                                     | 81.245(3)                |
| g/°                                     | 85.103(3)                |
| V/Å <sup>3</sup>                        | 1345.68(8)               |
| Ζ                                       | 4                        |
| Ζ'                                      | 2                        |
| Wavelength/Å                            | 1.54184                  |
| Radiation type                          | Cu <i>K</i> <sub>α</sub> |
| Q <sub>min</sub> ∕°                     | 4.512                    |
| Q <sub>max</sub> /°                     | 72.527                   |
| Measured Refl's.                        | 10445                    |
| Indep't Refl's                          | 5170                     |
| Refl's l≥2 σ(l)                         | 4471                     |
| R <sub>int</sub>                        | 0.0232                   |
| Parameters                              | 361                      |
| Restraints                              | 0                        |
| Largest Peak/e Å <sup>-3</sup>          | 0.249                    |
| Deepest Hole/e Å <sup>-3</sup>          | -0.262                   |
| GooF                                    | 1.027                    |
| wR <sub>2</sub> (all data)              | 0.0938                   |
| wR <sub>2</sub>                         | 0.0888                   |
| $R_1$ (all data)                        | 0.0412                   |

| Total reflections (after filtering) | 10445                                    | Unique reflections             | 5170           |
|-------------------------------------|------------------------------------------|--------------------------------|----------------|
| Completeness                        | 0.97                                     | Mean I/ $\sigma$               | 17.3           |
| hklmax collected                    | (9, 12, 21)                              | hklmin collected               | (-9, -12, -14) |
| hkl <sub>max</sub> used             | (9, 12, 21)                              | hkl <sub>min</sub> used        | (-9, -12, 0)   |
| Lim d <sub>max</sub> collected      | 100.0                                    | Lim d <sub>min</sub> collected | 0.77           |
| d <sub>max</sub> used               | 9.8                                      | d <sub>min</sub> used          | 0.81           |
| Friedel pairs                       | 1118                                     | Friedel pairs merged           | 1              |
| Inconsistent equivalents            | 1                                        | Rint                           | 0.0232         |
| Rsigma                              | 0.032                                    | Intensity transformed          | 0              |
| Omitted reflections                 | 0                                        | Omitted by user (OMIT hkl)     | 0              |
| Multiplicity                        | (3527, 1880, 552, 189,<br>105, 26, 7, 2) | Maximum multiplicity           | 9              |
| Removed systematic<br>absences      | 0                                        | Filtered off (Shel/OMIT)       | 0              |

| T  | able 38 | 3: Fra | ctional            | Atomic  | Coordinates   | (×10 <sup>4</sup> ) | and Equivalent  | Isotropic                | Displacement | Parameters |
|----|---------|--------|--------------------|---------|---------------|---------------------|-----------------|--------------------------|--------------|------------|
| () | Ų×10³)  | for 8. | U <sub>eq</sub> is | defined | as 1/3 of the | e trace             | of the orthogon | alised U <sub>ii</sub> . | -            |            |

| Atom | x           | У          | Z          | $U_{eq}$  |
|------|-------------|------------|------------|-----------|
| Cl1  | 14493.7(5)  | 8390.9(4)  | 5437.6(2)  | 37.37(11) |
| 01   | 12907.3(14) | 8210.1(11) | 6810.2(6)  | 30.5(2)   |
| O2   | 11850.6(15) | 8230.2(12) | 8043.8(6)  | 33.2(2)   |
| C1   | 11649.0(19) | 7854.4(15) | 7436.2(8)  | 26.7(3)   |
| C2   | 12826(2)    | 7844.9(16) | 6099.7(9)  | 28.6(3)   |
| C3   | 11587(2)    | 7127.9(16) | 5943.5(9)  | 28.8(3)   |
| C4   | 10250.4(19) | 6718.8(14) | 6555.0(8)  | 24.8(3)   |
| C5   | 10249.6(19) | 7100.4(14) | 7285.7(8)  | 24.9(3)   |
| C6   | 8957.1(19)  | 5861.8(15) | 6352.8(8)  | 25.4(3)   |
| C7   | 8394(2)     | 4727.7(15) | 6847.6(8)  | 26.9(3)   |
| C8   | 7228(2)     | 3913.7(15) | 6638.5(9)  | 30.6(3)   |
| C9   | 6599(2)     | 4221.6(17) | 5941.5(10) | 33.8(3)   |
| C10  | 7155(2)     | 5343.0(17) | 5446.2(9)  | 33.9(3)   |
| C11  | 8337(2)     | 6149.6(16) | 5646.3(9)  | 30.2(3)   |
| C12  | 8851.5(19)  | 6899.7(14) | 7945.6(8)  | 26.0(3)   |
| C13  | 7163(2)     | 7346.8(15) | 7852.3(9)  | 28.0(3)   |
| C14  | 5868(2)     | 7292.0(17) | 8480.5(9)  | 33.3(3)   |
| C15  | 6231(2)     | 6776.4(17) | 9210.3(10) | 35.9(4)   |
| C16  | 7894(2)     | 6309.6(16) | 9306.8(9)  | 33.9(3)   |
| C17  | 9203(2)     | 6367.0(16) | 8682.0(9)  | 29.9(3)   |
| Cl2  | 11865.1(6)  | 10052.8(4) | 4106.0(2)  | 40.26(12) |
| O3   | 9290.6(15)  | 8847.4(12) | 3896.8(6)  | 33.3(3)   |
| O4   | 6977.6(18)  | 7734.6(15) | 3910.7(7)  | 45.5(3)   |
| C18  | 8195(2)     | 8206.5(16) | 3508.4(9)  | 31.1(3)   |
| C19  | 10709(2)    | 9395.7(15) | 3506.6(9)  | 29.1(3)   |
| C20  | 11171(2)    | 9401.2(14) | 2743.5(8)  | 27.0(3)   |
| C21  | 10118.0(19) | 8768.4(14) | 2302.6(8)  | 24.3(3)   |
| C22  | 8659(2)     | 8198.6(14) | 2674.0(8)  | 25.6(3)   |
| C23  | 10742.4(18) | 8744.6(15) | 1462.5(8)  | 24.8(3)   |
| C24  | 11399.3(19) | 9911.4(15) | 1036.7(8)  | 27.2(3)   |
| C25  | 12047(2)    | 9904.1(16) | 258.4(9)   | 31.3(3)   |
| C26  | 12073(2)    | 8725.0(17) | -103.8(9)  | 32.5(3)   |
| C27  | 11453(2)    | 7551.8(17) | 316.5(9)   | 32.1(3)   |
| C28  | 10781(2)    | 7558.3(15) | 1091.8(9)  | 28.6(3)   |
| C29  | 7443.1(19)  | 7561.9(15) | 2275.5(8)  | 26.1(3)   |
| C30  | 7209(2) ´   | 6171.3(16) | 2423.6(9)  | 31.7(3)   |
| C31  | 6149(2)     | 5566.1(17) | 2018.9(10) | 35.7(4)   |

| Atom | x       | У          | Z          | Ueq     |
|------|---------|------------|------------|---------|
| C32  | 5274(2) | 6350.5(18) | 1480.2(10) | 35.5(4) |
| C33  | 5452(2) | 7744.7(18) | 1350.3(9)  | 35.2(3) |
| C34  | 6542(2) | 8349.9(16) | 1744.1(9)  | 30.6(3) |

**Table 39**: Anisotropic Displacement Parameters (x10<sup>4</sup>) for **8**. The anisotropic displacement factor exponent takes the form:  $-2\pi^2[h^2a^{*2} \times U_{11} + ... + 2hka^* \times b^* \times U_{12}]$ 

| Atom | <b>U</b> 11 | <b>U</b> 22 | <b>U</b> 33 | <b>U</b> 23 | <b>U</b> 13 | <b>U</b> 12 |
|------|-------------|-------------|-------------|-------------|-------------|-------------|
| CI1  | 30.56(19)   | 48.6(2)     | 32,7(2)     | -0.09(16)   | -0.27(15)   | -14.32(16)  |
| 01   | 27.7(5)     | 37.0(6)     | 28.6(5)     | -5.8(4)     | -4.2(4)     | -9.0(4)     |
| O2   | 31.5(6)     | 41.7(6)     | 29.8(6)     | -11.9(4)    | -8.0(4)     | -6.2(5)     |
| C1   | 24.8(7)     | 29.6(7)     | 26.1(7)     | -4.2(5)     | -4.6(6)     | -1.5(6)     |
| C2   | 28.3(7)     | 31.2(7)     | 26.1(7)     | -2.4(6)     | -2.0(6)     | -4.7(6)     |
| C3   | 29.7(7)     | 32.6(7)     | 24.7(7)     | -4.0(6)     | -3.2(6)     | -5.7(6)     |
| C4   | 25.1(7)     | 25.3(6)     | 24.3(7)     | -1.8(5)     | -4.6(6)     | -2.4(5)     |
| C5   | 25.5(7)     | 24.5(6)     | 25.3(7)     | -3.2(5)     | -5.6(6)     | -2.0(5)     |
| C6   | 26.0(7)     | 26.9(7)     | 24.0(7)     | -5.8(5)     | -2.9(6)     | -2.4(6)     |
| C7   | 28.9(7)     | 28.7(7)     | 23.6(7)     | -4.2(5)     | -3.2(6)     | -3.2(6)     |
| C8   | 31.3(8)     | 27.4(7)     | 33.0(8)     | -5.2(6)     | -0.5(6)     | -5.2(6)     |
| C9   | 32.0(8)     | 35.0(8)     | 37.6(9)     | -11.4(6)    | -6.5(7)     | -8.6(6)     |
| C10  | 37.7(8)     | 39.0(8)     | 28.1(8)     | -6.1(6)     | -10.2(7)    | -7.0(7)     |
| C11  | 34.5(8)     | 31.4(7)     | 25.7(7)     | -3.4(6)     | -5.2(6)     | -6.5(6)     |
| C12  | 29.2(7)     | 25.3(7)     | 25.2(7)     | -7.1(5)     | -3.7(6)     | -5.4(6)     |
| C13  | 29.4(7)     | 29.4(7)     | 27.8(7)     | -7.7(6)     | -6.1(6)     | -5.8(6)     |
| C14  | 28.2(8)     | 36.2(8)     | 37.6(9)     | -13.5(6)    | -2.0(6)     | -6.7(6)     |
| C15  | 36.6(9)     | 39.7(8)     | 31.5(8)     | -11.0(7)    | 5.4(7)      | -12.3(7)    |
| C16  | 43.7(9)     | 33.3(8)     | 25.2(7)     | -3.7(6)     | -2.8(7)     | -9.1(7)     |
| C17  | 33.6(8)     | 30.3(7)     | 26.8(7)     | -4.6(6)     | -5.5(6)     | -3.4(6)     |
| Cl2  | 48.8(2)     | 47.0(2)     | 30.5(2)     | -6.45(16)   | -16.54(17)  | -11.97(18)  |
| O3   | 40.0(6)     | 40.0(6)     | 21.1(5)     | -2.8(4)     | -4.0(4)     | -10.4(5)    |
| O4   | 47.5(7)     | 62.5(8)     | 26.6(6)     | -1.5(5)     | 4.5(5)      | -25.4(6)    |
| C18  | 34.1(8)     | 34.7(8)     | 24.8(7)     | -0.6(6)     | -3.6(6)     | -9.1(6)     |
| C19  | 33.3(8)     | 29.2(7)     | 26.8(7)     | -2.2(6)     | -9.6(6)     | -5.0(6)     |
| C20  | 29.4(7)     | 26.2(7)     | 26.3(7)     | -1.0(5)     | -5.7(6)     | -6.0(6)     |
| C21  | 27.8(7)     | 22.5(6)     | 22.8(7)     | -1.4(5)     | -4.4(6)     | -2.3(5)     |
| C22  | 29.0(7)     | 25.5(7)     | 22.4(7)     | -0.5(5)     | -3.8(6)     | -4.7(6)     |
| C23  | 23.8(7)     | 28.5(7)     | 22.7(7)     | -2.3(5)     | -4.4(5)     | -3.6(5)     |
| C24  | 28.9(7)     | 26.9(7)     | 25.7(7)     | -3.1(5)     | -1.9(6)     | -4.0(6)     |
| C25  | 33.1(8)     | 33.1(8)     | 25.6(7)     | 1.0(6)      | -0.3(6)     | -3.0(6)     |
| C26  | 32.0(8)     | 41.9(8)     | 22.5(7)     | -5.0(6)     | -2.0(6)     | 2.1(7)      |
| C27  | 34.7(8)     | 34.6(8)     | 29.2(8)     | -10.4(6)    | -6.8(6)     | -1.6(6)     |
| C28  | 29.0(7)     | 29.0(7)     | 28.3(7)     | -3.0(6)     | -3.9(6)     | -5.2(6)     |
| C29  | 24.2(7)     | 30.9(7)     | 22.9(7)     | -2.5(5)     | -0.2(5)     | -5.9(6)     |
| C30  | 27.8(7)     | 31.5(8)     | 36.4(8)     | 0.0(6)      | -7.1(6)     | -5.2(6)     |
| C31  | 31.1(8)     | 31.0(8)     | 46.4(9)     | -7.5(7)     | -4.7(7)     | -7.0(6)     |
| C32  | 30.1(8)     | 45.0(9)     | 34.4(8)     | -10.1(7)    | -5.0(7)     | -10.9(7)    |
| C33  | 32.3(8)     | 44.9(9)     | 28.8(8)     | 0.6(6)      | -7.3(6)     | -5.7(7)     |
| C34  | 31.4(8)     | 32.5(7)     | 27.6(7)     | 1.7(6)      | -4.3(6)     | -6.7(6)     |

Table 40: Bond Lengths in Å for 8.

| Atom | Atom | Length/Å   | Atom | Atom | Length/Å |
|------|------|------------|------|------|----------|
| CI1  | C2   | 1.7026(16) | C4   | C5   | 1.377(2) |
| 01   | C1   | 1.4013(19) | C4   | C6   | 1.489(2) |
| 01   | C2   | 1.3492(19) | C5   | C12  | 1.484(2) |
| 02   | C1   | 1.2053(18) | C6   | C7   | 1.400(2) |
| C1   | C5   | 1.458(2)   | C6   | C11  | 1.394(2) |
| C2   | C3   | 1.335(2)   | C7   | C8   | 1.389(2) |
| C3   | C4   | 1.437(2)   | C8   | C9   | 1.384(2) |
|      |      |            |      |      |          |

| Atom | Atom | Length/Å   |
|------|------|------------|
| C9   | C10  | 1.389(2)   |
| C10  | C11  | 1.387(2)   |
| C12  | C13  | 1.398(2)   |
| C12  | C17  | 1.400(2)   |
| C13  | C14  | 1.387(2)   |
| C14  | C15  | 1.388(2)   |
| C15  | C16  | 1.385(3)   |
| C16  | C17  | 1.389(2)   |
| Cl2  | C19  | 1.7073(15) |
| O3   | C18  | 1.4100(19) |
| O3   | C19  | 1.345(2)   |
| O4   | C18  | 1.200(2)   |
| C18  | C22  | 1.456(2)   |
| C19  | C20  | 1.334(2)   |
| C20  | C21  | 1.442(2)   |
|      |      |            |

| Atom | Atom | Length/Å |
|------|------|----------|
| C21  | C22  | 1.369(2) |
| C21  | C23  | 1.485(2) |
| C22  | C29  | 1.489(2) |
| C23  | C24  | 1.397(2) |
| C23  | C28  | 1.399(2) |
| C24  | C25  | 1.385(2) |
| C25  | C26  | 1.386(2) |
| C26  | C27  | 1.388(2) |
| C27  | C28  | 1.385(2) |
| C29  | C30  | 1.393(2) |
| C29  | C34  | 1.390(2) |
| C30  | C31  | 1.389(2) |
| C31  | C32  | 1.386(2) |
| C32  | C33  | 1.387(2) |
| C33  | C34  | 1.393(2) |

Table 121: Bond Angles in ° for 8.

| Atom | Atom                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | om                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Atom                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Atom                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | /مامA                                                  |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|
|      |                                                                                                                                                                                                                                                                         | 120 70(12)                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 116 8/(13                                              |
|      | C5                                                                                                                                                                                                                                                                      | 117 51(12)                                                                                                                                                                                                                                                                                                                                                                    | 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 115 45(14                                              |
|      | 01                                                                                                                                                                                                                                                                      | 115.00(13)                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | +<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 107 71(15                                              |
|      | CF                                                                                                                                                                                                                                                                      | 127 20(14)                                                                                                                                                                                                                                                                                                                                                                    | 04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | †<br>>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 111 00(11                                              |
|      | C11                                                                                                                                                                                                                                                                     | 127.39(14)                                                                                                                                                                                                                                                                                                                                                                    | 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | )<br>)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 124 09(12                                              |
| C2   |                                                                                                                                                                                                                                                                         | 124 50(12)                                                                                                                                                                                                                                                                                                                                                                    | C2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 124.00(13                                              |
| C2   | 01                                                                                                                                                                                                                                                                      | 124.50(12)                                                                                                                                                                                                                                                                                                                                                                    | C1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 110 90/14                                              |
| C2   |                                                                                                                                                                                                                                                                         | 123.31(14)                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 116.09(14                                              |
| C3   | C4<br>C6                                                                                                                                                                                                                                                                | 119.24(14)                                                                                                                                                                                                                                                                                                                                                                    | C2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 110.49(13                                              |
| C4   |                                                                                                                                                                                                                                                                         | 110.04(13)                                                                                                                                                                                                                                                                                                                                                                    | C2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 119.00(10                                              |
| C4   |                                                                                                                                                                                                                                                                         | 119.44(13)                                                                                                                                                                                                                                                                                                                                                                    | 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 124.15(13                                              |
| C4   |                                                                                                                                                                                                                                                                         | 123.90(13)                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 029                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 115.63(13                                              |
| C5   | C12                                                                                                                                                                                                                                                                     | 114.98(12)                                                                                                                                                                                                                                                                                                                                                                    | C2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 120.30(14                                              |
| C5   |                                                                                                                                                                                                                                                                         | 119.53(14)                                                                                                                                                                                                                                                                                                                                                                    | 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 029                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 124.06(13                                              |
| C5   | C12                                                                                                                                                                                                                                                                     | 125.33(13)                                                                                                                                                                                                                                                                                                                                                                    | 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 119.44(13                                              |
| 06   | C4                                                                                                                                                                                                                                                                      | 121.15(13)                                                                                                                                                                                                                                                                                                                                                                    | 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 028                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 118.74(13                                              |
| C6   | C4                                                                                                                                                                                                                                                                      | 120.01(13)                                                                                                                                                                                                                                                                                                                                                                    | C2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 121.73(13                                              |
| C6   | C7                                                                                                                                                                                                                                                                      | 118.79(14)                                                                                                                                                                                                                                                                                                                                                                    | C2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 120.71(14                                              |
| C7   | C6                                                                                                                                                                                                                                                                      | 120.39(14)                                                                                                                                                                                                                                                                                                                                                                    | C2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 120.06(14                                              |
| C8   | C7                                                                                                                                                                                                                                                                      | 120.36(14)                                                                                                                                                                                                                                                                                                                                                                    | C2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 119.76(14                                              |
| C9   | C10                                                                                                                                                                                                                                                                     | 119.60(14)                                                                                                                                                                                                                                                                                                                                                                    | C2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 120.44(15                                              |
| C10  | C9                                                                                                                                                                                                                                                                      | 120.37(14)                                                                                                                                                                                                                                                                                                                                                                    | C2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 120.27(14                                              |
| C11  | C6                                                                                                                                                                                                                                                                      | 120.48(14)                                                                                                                                                                                                                                                                                                                                                                    | C3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 120.55(13                                              |
| C12  | C5                                                                                                                                                                                                                                                                      | 119.87(13)                                                                                                                                                                                                                                                                                                                                                                    | C3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 120.18(13                                              |
| C12  | C17                                                                                                                                                                                                                                                                     | 118.74(14)                                                                                                                                                                                                                                                                                                                                                                    | C3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 119.27(14                                              |
| C12  | C5                                                                                                                                                                                                                                                                      | 121.19(14)                                                                                                                                                                                                                                                                                                                                                                    | C3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 120.40(15                                              |
| C13  | C12                                                                                                                                                                                                                                                                     | 120.66(14)                                                                                                                                                                                                                                                                                                                                                                    | C3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 120.15(15                                              |
| C14  | C15                                                                                                                                                                                                                                                                     | 120.19(16)                                                                                                                                                                                                                                                                                                                                                                    | C3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 119.72(15                                              |
| C15  | C14                                                                                                                                                                                                                                                                     | 119.63(15)                                                                                                                                                                                                                                                                                                                                                                    | C3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 120.24(15                                              |
| C16  | C17                                                                                                                                                                                                                                                                     | 120.61(15)                                                                                                                                                                                                                                                                                                                                                                    | C2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 120.16(15                                              |
| C17  | C12                                                                                                                                                                                                                                                                     | 120.15(15)                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                        |
| O3   | C18                                                                                                                                                                                                                                                                     | 120.68(12)                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                        |
|      | Atom<br>O1<br>C1<br>C1<br>C2<br>C2<br>C2<br>C2<br>C3<br>C4<br>C4<br>C4<br>C4<br>C5<br>C5<br>C5<br>C5<br>C6<br>C6<br>C6<br>C6<br>C6<br>C7<br>C8<br>C9<br>C10<br>C11<br>C12<br>C12<br>C12<br>C13<br>C14<br>C15<br>C5<br>C5<br>C5<br>C5<br>C5<br>C5<br>C5<br>C5<br>C5<br>C | AtomAtom $O1$ $C1$ $C1$ $C5$ $C1$ $O1$ $C1$ $C5$ $C2$ $C11$ $C2$ $C11$ $C2$ $C11$ $C2$ $C11$ $C2$ $C11$ $C2$ $O1$ $C3$ $C4$ $C4$ $C6$ $C4$ $C6$ $C5$ $C12$ $C5$ $C12$ $C6$ $C4$ $C6$ $C7$ $C7$ $C6$ $C8$ $C7$ $C9$ $C10$ $C10$ $C9$ $C11$ $C6$ $C12$ $C5$ $C12$ $C5$ $C12$ $C5$ $C12$ $C17$ $C12$ $C5$ $C13$ $C12$ $C14$ $C15$ $C15$ $C14$ $C16$ $C17$ $C17$ $C12$ $O3$ $C18$ | AtomAtomAngle/ $O1$ $C1$ $120.70(12)$ $C1$ $C5$ $117.51(12)$ $C1$ $O1$ $115.09(13)$ $C1$ $C5$ $127.39(14)$ $C2$ $C11$ $111.99(11)$ $C2$ $C11$ $124.50(12)$ $C2$ $O11$ $123.51(14)$ $C3$ $C4$ $119.24(14)$ $C4$ $C6$ $116.64(13)$ $C4$ $C6$ $119.44(13)$ $C4$ $C6$ $123.90(13)$ $C5$ $C12$ $114.98(12)$ $C5$ $C12$ $125.33(13)$ $C6$ $C4$ $120.01(13)$ $C6$ $C4$ $120.01(13)$ $C6$ $C7$ $118.79(14)$ $C7$ $C6$ $120.39(14)$ $C8$ $C7$ $120.36(14)$ $C9$ $C10$ $119.60(14)$ $C10$ $C9$ $120.37(14)$ $C12$ $C5$ $121.19(14)$ $C12$ $C5$ $121.19(14)$ $C12$ $C5$ $120.39(14)$ $C13$ $C12$ $120.36(14)$ $C14$ $120.48(14)$ $C12$ $C5$ $120.37(14)$ $C11$ $C6$ $120.48(14)$ $C12$ $C5$ $121.19(14)$ $C13$ $C12$ $120.66(14)$ $C14$ $C15$ $120.19(16)$ $C15$ $C14$ $119.63(15)$ $C16$ $C17$ $120.66(14)$ $C17$ $C12$ $120.15(15)$ $O3$ $C18$ $120.68(12)$ | AtomAtomAngle/At $O1$ $C1$ $C1$ $120.70(12)$ $O3$ $C1$ $C5$ $117.51(12)$ $O4$ $C1$ $O1$ $115.09(13)$ $O4$ $C1$ $C5$ $127.39(14)$ $O3$ $C2$ $C11$ $111.99(11)$ $C2$ $C2$ $C11$ $124.50(12)$ $C2$ $C2$ $C11$ $123.51(14)$ $C1$ $C3$ $C4$ $119.24(14)$ $C2$ $C4$ $C6$ $116.64(13)$ $C2$ $C4$ $C6$ $119.44(13)$ $C2$ $C4$ $C6$ $123.90(13)$ $C1$ $C5$ $C12$ $114.98(12)$ $C2$ $C5$ $C12$ $125.33(13)$ $C2$ $C5$ $C12$ $125.33(13)$ $C2$ $C6$ $C4$ $120.01(13)$ $C2$ $C6$ $C7$ $118.79(14)$ $C2$ $C7$ $C6$ $120.39(14)$ $C2$ $C7$ $C6$ $120.39(14)$ $C2$ $C7$ $C6$ $120.39(14)$ $C2$ $C7$ $C6$ $120.37(14)$ $C2$ $C7$ $C6$ $120.48(14)$ $C3$ $C12$ $C5$ $119.87(13)$ $C3$ $C12$ $C5$ $121.19(14)$ $C3$ $C12$ $C5$ $120.19(16)$ $C3$ $C12$ $C5$ $121.19(14)$ $C3$ $C12$ $C5$ $120.19(16)$ $C3$ $C13$ $C12$ $120.66(14)$ $C3$ $C14$ $C15$ $120.19(16)$ $C3$ $C16$ <td>AtomAtomAngle/Atom<math>O1</math><math>C1</math><math>C1</math><math>120.70(12)</math><math>O3</math><math>C1</math><math>C5</math><math>117.51(12)</math><math>O4</math><math>C1</math><math>O1</math><math>115.09(13)</math><math>O4</math><math>C1</math><math>C5</math><math>127.39(14)</math><math>O3</math><math>C2</math><math>C11</math><math>111.99(11)</math><math>C20</math><math>C2</math><math>C11</math><math>124.50(12)</math><math>C20</math><math>C2</math><math>C11</math><math>123.51(14)</math><math>C19</math><math>C3</math><math>C4</math><math>119.24(14)</math><math>C20</math><math>C4</math><math>C6</math><math>116.64(13)</math><math>C22</math><math>C4</math><math>C6</math><math>119.44(13)</math><math>C22</math><math>C4</math><math>C6</math><math>123.90(13)</math><math>C18</math><math>C5</math><math>C12</math><math>114.98(12)</math><math>C21</math><math>C5</math><math>C12</math><math>114.98(12)</math><math>C21</math><math>C5</math><math>C12</math><math>125.33(13)</math><math>C24</math><math>C6</math><math>C4</math><math>120.01(13)</math><math>C28</math><math>C6</math><math>C7</math><math>118.79(14)</math><math>C25</math><math>C7</math><math>C6</math><math>120.39(14)</math><math>C24</math><math>C8</math><math>C7</math><math>120.36(14)</math><math>C25</math><math>C9</math><math>C10</math><math>119.60(14)</math><math>C28</math><math>C10</math><math>C9</math><math>120.37(14)</math><math>C27</math><math>C11</math><math>C6</math><math>120.48(14)</math><math>C30</math><math>C12</math><math>C5</math><math>119.87(13)</math><math>C34</math><math>C12</math><math>C17</math><math>118.74(14)</math><math>C31</math><math>C13</math><math>C12</math><math>120.19(16)</math><math>C31</math><math>C14</math><math>C15</math><math>120.19(16)</math><math>C31</math><math>C15</math><math>C14</math><math>119.63(15)</math><math>C32</math><math>C14</math><math>C15</math><math>120.19(16)</math><math>C31</math><math>C12</math><math>C12</math><math>120.15(15)</math><t< td=""><td>AtomAtomAngle/AtomAtom<math>O1</math><math>C1</math><math>C1</math><math>120.70(12)</math><math>O3</math><math>C18</math><math>C1</math><math>C5</math><math>117.51(12)</math><math>O4</math><math>C18</math><math>C1</math><math>O1</math><math>115.09(13)</math><math>O4</math><math>C18</math><math>C1</math><math>C5</math><math>127.39(14)</math><math>O3</math><math>C19</math><math>C2</math><math>C11</math><math>111.99(11)</math><math>C20</math><math>C19</math><math>C2</math><math>C11</math><math>124.50(12)</math><math>C20</math><math>C19</math><math>C2</math><math>C11</math><math>124.50(12)</math><math>C20</math><math>C19</math><math>C2</math><math>O1</math><math>123.51(14)</math><math>C19</math><math>C20</math><math>C3</math><math>C4</math><math>119.24(14)</math><math>C20</math><math>C21</math><math>C4</math><math>C6</math><math>116.64(13)</math><math>C22</math><math>C21</math><math>C4</math><math>C6</math><math>123.90(13)</math><math>C18</math><math>C22</math><math>C5</math><math>C12</math><math>114.98(12)</math><math>C21</math><math>C22</math><math>C5</math><math>C12</math><math>125.33(13)</math><math>C24</math><math>C23</math><math>C6</math><math>C4</math><math>120.01(13)</math><math>C28</math><math>C23</math><math>C6</math><math>C7</math><math>118.79(14)</math><math>C25</math><math>C24</math><math>C7</math><math>C6</math><math>120.39(14)</math><math>C24</math><math>C25</math><math>C8</math><math>C7</math><math>120.36(14)</math><math>C24</math><math>C25</math><math>C8</math><math>C7</math><math>120.37(14)</math><math>C27</math><math>C28</math><math>C11</math><math>C6</math><math>120.48(14)</math><math>C30</math><math>C29</math><math>C12</math><math>C5</math><math>119.87(13)</math><math>C34</math><math>C29</math><math>C12</math><math>C5</math><math>121.9(16)</math><math>C31</math><math>C32</math><math>C11</math><math>C15</math><math>120.48(14)</math><math>C30</math><math>C29</math><math>C12</math><math>C5</math><math>129.19(16)</math><math>C31</math><math>C32</math><math>C</math></td><td><math display="block">\begin{array}{ c c c c c c c c c c c c c c c c c c c</math></td></t<></td> | AtomAtomAngle/Atom $O1$ $C1$ $C1$ $120.70(12)$ $O3$ $C1$ $C5$ $117.51(12)$ $O4$ $C1$ $O1$ $115.09(13)$ $O4$ $C1$ $C5$ $127.39(14)$ $O3$ $C2$ $C11$ $111.99(11)$ $C20$ $C2$ $C11$ $124.50(12)$ $C20$ $C2$ $C11$ $123.51(14)$ $C19$ $C3$ $C4$ $119.24(14)$ $C20$ $C4$ $C6$ $116.64(13)$ $C22$ $C4$ $C6$ $119.44(13)$ $C22$ $C4$ $C6$ $123.90(13)$ $C18$ $C5$ $C12$ $114.98(12)$ $C21$ $C5$ $C12$ $114.98(12)$ $C21$ $C5$ $C12$ $125.33(13)$ $C24$ $C6$ $C4$ $120.01(13)$ $C28$ $C6$ $C7$ $118.79(14)$ $C25$ $C7$ $C6$ $120.39(14)$ $C24$ $C8$ $C7$ $120.36(14)$ $C25$ $C9$ $C10$ $119.60(14)$ $C28$ $C10$ $C9$ $120.37(14)$ $C27$ $C11$ $C6$ $120.48(14)$ $C30$ $C12$ $C5$ $119.87(13)$ $C34$ $C12$ $C17$ $118.74(14)$ $C31$ $C13$ $C12$ $120.19(16)$ $C31$ $C14$ $C15$ $120.19(16)$ $C31$ $C15$ $C14$ $119.63(15)$ $C32$ $C14$ $C15$ $120.19(16)$ $C31$ $C12$ $C12$ $120.15(15)$ <t< td=""><td>AtomAtomAngle/AtomAtom<math>O1</math><math>C1</math><math>C1</math><math>120.70(12)</math><math>O3</math><math>C18</math><math>C1</math><math>C5</math><math>117.51(12)</math><math>O4</math><math>C18</math><math>C1</math><math>O1</math><math>115.09(13)</math><math>O4</math><math>C18</math><math>C1</math><math>C5</math><math>127.39(14)</math><math>O3</math><math>C19</math><math>C2</math><math>C11</math><math>111.99(11)</math><math>C20</math><math>C19</math><math>C2</math><math>C11</math><math>124.50(12)</math><math>C20</math><math>C19</math><math>C2</math><math>C11</math><math>124.50(12)</math><math>C20</math><math>C19</math><math>C2</math><math>O1</math><math>123.51(14)</math><math>C19</math><math>C20</math><math>C3</math><math>C4</math><math>119.24(14)</math><math>C20</math><math>C21</math><math>C4</math><math>C6</math><math>116.64(13)</math><math>C22</math><math>C21</math><math>C4</math><math>C6</math><math>123.90(13)</math><math>C18</math><math>C22</math><math>C5</math><math>C12</math><math>114.98(12)</math><math>C21</math><math>C22</math><math>C5</math><math>C12</math><math>125.33(13)</math><math>C24</math><math>C23</math><math>C6</math><math>C4</math><math>120.01(13)</math><math>C28</math><math>C23</math><math>C6</math><math>C7</math><math>118.79(14)</math><math>C25</math><math>C24</math><math>C7</math><math>C6</math><math>120.39(14)</math><math>C24</math><math>C25</math><math>C8</math><math>C7</math><math>120.36(14)</math><math>C24</math><math>C25</math><math>C8</math><math>C7</math><math>120.37(14)</math><math>C27</math><math>C28</math><math>C11</math><math>C6</math><math>120.48(14)</math><math>C30</math><math>C29</math><math>C12</math><math>C5</math><math>119.87(13)</math><math>C34</math><math>C29</math><math>C12</math><math>C5</math><math>121.9(16)</math><math>C31</math><math>C32</math><math>C11</math><math>C15</math><math>120.48(14)</math><math>C30</math><math>C29</math><math>C12</math><math>C5</math><math>129.19(16)</math><math>C31</math><math>C32</math><math>C</math></td><td><math display="block">\begin{array}{ c c c c c c c c c c c c c c c c c c c</math></td></t<> | AtomAtomAngle/AtomAtom $O1$ $C1$ $C1$ $120.70(12)$ $O3$ $C18$ $C1$ $C5$ $117.51(12)$ $O4$ $C18$ $C1$ $O1$ $115.09(13)$ $O4$ $C18$ $C1$ $C5$ $127.39(14)$ $O3$ $C19$ $C2$ $C11$ $111.99(11)$ $C20$ $C19$ $C2$ $C11$ $124.50(12)$ $C20$ $C19$ $C2$ $C11$ $124.50(12)$ $C20$ $C19$ $C2$ $O1$ $123.51(14)$ $C19$ $C20$ $C3$ $C4$ $119.24(14)$ $C20$ $C21$ $C4$ $C6$ $116.64(13)$ $C22$ $C21$ $C4$ $C6$ $123.90(13)$ $C18$ $C22$ $C5$ $C12$ $114.98(12)$ $C21$ $C22$ $C5$ $C12$ $125.33(13)$ $C24$ $C23$ $C6$ $C4$ $120.01(13)$ $C28$ $C23$ $C6$ $C7$ $118.79(14)$ $C25$ $C24$ $C7$ $C6$ $120.39(14)$ $C24$ $C25$ $C8$ $C7$ $120.36(14)$ $C24$ $C25$ $C8$ $C7$ $120.37(14)$ $C27$ $C28$ $C11$ $C6$ $120.48(14)$ $C30$ $C29$ $C12$ $C5$ $119.87(13)$ $C34$ $C29$ $C12$ $C5$ $121.9(16)$ $C31$ $C32$ $C11$ $C15$ $120.48(14)$ $C30$ $C29$ $C12$ $C5$ $129.19(16)$ $C31$ $C32$ $C$ | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$ |

Table 42: Torsion Angles in  $^\circ$  for 8.

| Atom | Atom | Atom | Atom | Angle/°              |
|------|------|------|------|----------------------|
| CI1  | C2   | C3   | C4   | 179.64(11)           |
| 01   | C1   | C5   | C4   | 2.8(2)               |
| 01   | C1   | C5   | C12  | -                    |
| 01   | C2   | C3   | C4   | 172.91(12)<br>0.4(2) |

| Atom                                                                                                | Atom                                                                                                          | Atom                                                                                                                  | Atom                                                                                                            | Angle/°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| O2                                                                                                  | C1                                                                                                            | C5                                                                                                                    | C4                                                                                                              | -<br>178 15(15)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| O2<br>C1                                                                                            | C1<br>O1                                                                                                      | C5<br>C2                                                                                                              | C12<br>Cl1                                                                                                      | 6.2(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| C1<br>C1<br>C2<br>C2<br>C2<br>C2<br>C2<br>C2                                                        | 01<br>C5<br>C5<br>01<br>C3<br>C3                                                                              | C2<br>C12<br>C12<br>C1<br>C1<br>C1<br>C4<br>C4                                                                        | C3<br>C13<br>C17<br>O2<br>C5<br>C5<br>C5<br>C6                                                                  | 179.95(10)<br>-0.6(2)<br>123.68(15)<br>-51.15(19)<br>179.85(13)<br>-1.0(2)<br>1.5(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| C3<br>C3<br>C3<br>C3<br>C4<br>C4<br>C4<br>C4                                                        | C4<br>C4<br>C4<br>C5<br>C5<br>C6                                                                              | C5<br>C5<br>C6<br>C6<br>C12<br>C12<br>C7                                                                              | C1<br>C12<br>C7<br>C11<br>C13<br>C17<br>C8                                                                      | 176.99(14)<br>-3.0(2)<br>172.17(13)<br>136.74(15)<br>-40.6(2)<br>-51.7(2)<br>133.47(15)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| C4<br>C5<br>C5<br>C5                                                                                | C6<br>C4<br>C4<br>C12                                                                                         | C11<br>C6<br>C6<br>C13                                                                                                | C10<br>C7<br>C11<br>C14                                                                                         | 177.92(14)<br>178.84(15)<br>-41.7(2)<br>140.96(15)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| C5<br>C6<br>C6<br>C7<br>C7<br>C8<br>C9<br>C11<br>C12<br>C13<br>C14<br>C15<br>C17<br>C12<br>O3<br>O3 | C12<br>C4<br>C7<br>C6<br>C8<br>C9<br>C10<br>C6<br>C13<br>C12<br>C14<br>C15<br>C16<br>C12<br>C19<br>C18<br>C18 | C17<br>C5<br>C5<br>C8<br>C11<br>C9<br>C10<br>C11<br>C7<br>C14<br>C17<br>C15<br>C16<br>C17<br>C13<br>C20<br>C22<br>C22 | C16<br>C1<br>C9<br>C10<br>C10<br>C11<br>C6<br>C8<br>C15<br>C16<br>C16<br>C17<br>C12<br>C14<br>C21<br>C21<br>C29 | $\begin{array}{c} 173.55(14)\\ 173.84(14)\\ 175.35(13)\\ -9.5(2)\\ -0.6(2)\\ 1.4(2)\\ 0.8(2)\\ 0.1(3)\\ -1.2(3)\\ -0.5(2)\\ -0.7(2)\\ -1.1(2)\\ -0.4(2)\\ 0.7(2)\\ 0.7(2)\\ 0.0(2)\\ 1.4(2)\\ 177.70(11)\\ 1.4(2)\\ -\\ 177.75(12)\\ -\\ 177.75(12)\\ -\\ 177.75(12)\\ -\\ 177.75(12)\\ -\\ 177.75(12)\\ -\\ 177.75(12)\\ -\\ 177.75(12)\\ -\\ 177.75(12)\\ -\\ 177.75(12)\\ -\\ 177.75(12)\\ -\\ 177.75(12)\\ -\\ 177.75(12)\\ -\\ 177.75(12)\\ -\\ 177.75(12)\\ -\\ 177.75(12)\\ -\\ 177.75(12)\\ -\\ 177.75(12)\\ -\\ 177.75(12)\\ -\\ 177.75(12)\\ -\\ 177.75(12)\\ -\\ 177.75(12)\\ -\\ 177.75(12)\\ -\\ 177.75(12)\\ -\\ 177.75(12)\\ -\\ 177.75(12)\\ -\\ 177.75(12)\\ -\\ 177.75(12)\\ -\\ 177.75(12)\\ -\\ 177.75(12)\\ -\\ 177.75(12)\\ -\\ 177.75(12)\\ -\\ 177.75(12)\\ -\\ 177.75(12)\\ -\\ 177.75(12)\\ -\\ 177.75(12)\\ -\\ 177.75(12)\\ -\\ 177.75(12)\\ -\\ 177.75(12)\\ -\\ 177.75(12)\\ -\\ 177.75(12)\\ -\\ 177.75(12)\\ -\\ 177.75(12)\\ -\\ 177.75(12)\\ -\\ 177.75(12)\\ -\\ 177.75(12)\\ -\\ 177.75(12)\\ -\\ 177.75(12)\\ -\\ 177.75(12)\\ -\\ 177.75(12)\\ -\\ 177.75(12)\\ -\\ 177.75(12)\\ -\\ 177.75(12)\\ -\\ 177.75(12)\\ -\\ 177.75(12)\\ -\\ 177.75(12)\\ -\\ 177.75(12)\\ -\\ 177.75(12)\\ -\\ 177.75(12)\\ -\\ 177.75(12)\\ -\\ 177.75(12)\\ -\\ 177.75(12)\\ -\\ 177.75(12)\\ -\\ 177.75(12)\\ -\\ 177.75(12)\\ -\\ 177.75(12)\\ -\\ 177.75(12)\\ -\\ 177.75(12)\\ -\\ 177.75(12)\\ -\\ 177.75(12)\\ -\\ 177.75(12)\\ -\\ 177.75(12)\\ -\\ 177.75(12)\\ -\\ 177.75(12)\\ -\\ 177.75(12)\\ -\\ 177.75(12)\\ -\\ 177.75(12)\\ -\\ 177.75(12)\\ -\\ 177.75(12)\\ -\\ 177.75(12)\\ -\\ 177.75(12)\\ -\\ 177.75(12)\\ -\\ 177.75(12)\\ -\\ 177.75(12)\\ -\\ 177.75(12)\\ -\\ 177.75(12)\\ -\\ 177.75(12)\\ -\\ 177.75(12)\\ -\\ 177.75(12)\\ -\\ 177.75(12)\\ -\\ 177.75(12)\\ -\\ 177.75(12)\\ -\\ 177.75(12)\\ -\\ 177.75(12)\\ -\\ 177.75(12)\\ -\\ 177.75(12)\\ -\\ 177.75(12)\\ -\\ 177.75(12)\\ -\\ 177.75(12)\\ -\\ 177.75(12)\\ -\\ 177.75(12)\\ -\\ 177.75(12)\\ -\\ 177.75(12)\\ -\\ 177.75(12)\\ -\\ 177.75(12)\\ -\\ 177.75(12)\\ -\\ 177.75(12)\\ -\\ 177.75(12)\\ -\\ 177.75(12)\\ -\\ 177.75(12)\\ -\\ 177.75(12)\\ -\\ 177.75(12)\\ -\\ 177.75(12)\\ -\\ 177.75(12)\\ -\\ 177.75(12)\\ -\\ 177.75(12)\\ -\\ 177.75(12)\\ -\\ 177.75(12)\\ -\\ 177.75(12)\\ -\\ 177.75(12)\\ -\\ 177.75(12)\\ -\\ 177.75(12)\\ -\\ 177.75(12)\\ -\\ 177.75(12)\\ -\\ 177.75(12)\\ -\\ 1$ |
| O3<br>O4                                                                                            | C19<br>C18                                                                                                    | C20<br>C22                                                                                                            | C21<br>C21                                                                                                      | -1.0(2)<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| O4<br>C18                                                                                           | C18<br>O3                                                                                                     | C22<br>C19                                                                                                            | C29<br>Cl2                                                                                                      | 178.97(17)<br>1.9(3)<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| C18<br>C18<br>C18<br>C19<br>C19<br>C19<br>C19<br>C19                                                | O3<br>C22<br>C22<br>O3<br>O3<br>C20<br>C20                                                                    | C19<br>C29<br>C18<br>C18<br>C18<br>C21<br>C21                                                                         | C20<br>C30<br>C34<br>O4<br>C22<br>C22<br>C22<br>C23                                                             | 177.68(11)<br>1.1(2)<br>-65.76(19)<br>114.94(16)<br>179.05(15)<br>-1.3(2)<br>1.0(2)<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| C20<br>C20<br>C20<br>C20<br>C20                                                                     | C21<br>C21<br>C21<br>C21<br>C21                                                                               | C22<br>C22<br>C23<br>C23                                                                                              | C18<br>C29<br>C24<br>C28                                                                                        | 177.04(13)<br>-1.3(2)<br>177.78(13)<br>-43.40(19)<br>132.94(15)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

| Atom | Atom | Atom | Atom | Angle/°    |
|------|------|------|------|------------|
| C21  | C22  | C29  | C30  | 115.14(17) |
| C21  | C22  | C29  | C34  | -64.2(2)   |
| C21  | C23  | C24  | C25  | 177.69(14) |
| C21  | C23  | C28  | C27  | -          |
|      |      |      |      | 176.66(14) |
| C22  | C21  | C23  | C24  | 138.61(15) |
| C22  | C21  | C23  | C28  | -45.0(2)   |
| C22  | C29  | C30  | C31  | -          |
|      |      |      |      | 176.33(15) |
| C22  | C29  | C34  | C33  | 177.64(15) |
| C23  | C21  | C22  | C18  | 176.65(14) |
| C23  | C21  | C22  | C29  | -4.3(2)    |
| C23  | C24  | C25  | C26  | -1.0(2)    |
| C24  | C23  | C28  | C27  | -0.3(2)    |
| C24  | C25  | C26  | C27  | -0.2(2)    |
| C25  | C26  | C27  | C28  | 1.2(2)     |
| C26  | C27  | C28  | C23  | -0.9(2)    |
| C28  | C23  | C24  | C25  | 1.2(2)     |
| C29  | C30  | C31  | C32  | -1.9(3)    |
| C30  | C29  | C34  | C33  | -1.7(2)    |
| C30  | C31  | C32  | C33  | -0.4(3)    |
| C31  | C32  | C33  | C34  | 1.7(3)     |
| C32  | C33  | C34  | C29  | -0.7(3)    |
| C34  | C29  | C30  | C31  | 3.0(2)     |

| Atom | x        | У        | Z       | $U_{eq}$ |
|------|----------|----------|---------|----------|
| H3   | 11589.71 | 6890.49  | 5433.85 | 35       |
| H7   | 8812.03  | 4513.84  | 7329.13 | 32       |
| H8   | 6861.35  | 3141.29  | 6975.67 | 37       |
| H9   | 5790.66  | 3669.54  | 5802.54 | 41       |
| H10  | 6723.37  | 5558.39  | 4967.94 | 41       |
| H11  | 8726.44  | 6903.65  | 5299.41 | 36       |
| H13  | 6901.71  | 7691.57  | 7353.7  | 34       |
| H14  | 4727.77  | 7608.2   | 8411.15 | 40       |
| H15  | 5344.66  | 6743.93  | 9641.16 | 43       |
| H16  | 8141.42  | 5946.71  | 9804.97 | 41       |
| H17  | 10338.65 | 6044.09  | 8754.62 | 36       |
| H20  | 12178.3  | 9815.12  | 2494.77 | 32       |
| H24  | 11401.92 | 10718.65 | 1283.49 | 33       |
| H25  | 12473.91 | 10708.03 | -27.31  | 38       |
| H26  | 12513.31 | 8719.97  | -637.91 | 39       |
| H27  | 11490.23 | 6738.95  | 70.77   | 39       |
| H28  | 10344.94 | 6754.16  | 1373.17 | 34       |
| H30  | 7778.86  | 5633.74  | 2803.79 | 38       |
| H31  | 6024.16  | 4612.11  | 2111.63 | 43       |
| H32  | 4554.48  | 5935.38  | 1201.02 | 43       |
| H33  | 4829.41  | 8288.6   | 991.57  | 42       |
| H34  | 6668.44  | 9303.49  | 1649.15 | 37       |

**Table 43**: Hydrogen Fractional Atomic Coordinates (×10<sup>4</sup>) and Equivalent Isotropic Displacement Parameters ( $Å^2 \times 10^3$ ) for **8**.  $U_{eq}$  is defined as 1/3 of the trace of the orthogonalised  $U_{ij}$ .







0.5

9.5
## Comparison of <sup>1</sup>H NMR spectra of 3aa with 3aa+3aa' mixture









10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)



























































S100







## S103


























## 12. References:

(1) L. Jia, Y. Wang, Y. Wang, Y Qin, C. Hu, J. Sheng and S. Ma, *Bioorg. Med. Chem. Lett.*, 2018, **28**, 2471–2476.

(2) M. Ohashi, K. Gamo, Y. Tanaka, M. Waki, Y. Beniyama, K. Matsuno, J. Wada, M. Tenta, J. Eguchi, M. Makishima, N. Matsuura, T. Oyama and H. Miyachi, *Eur. J. Med. Chem.*, 2015, **90**, 53–67.

(3) J.-L. Pan, T.-Q. Liu, C. Chen, Q.-Z. Li, W. Jiang, T.-M. Ding, Z.-Q. Yan and G.-D. Zhu, *Org. Biomol. Chem.*, 2019, **17**, 8589–8600.

(4) Y. Yun, J. Yang, Y. Miao, X. Wang and J. Sun, Bioorg. Med. Chem. Lett., 2020, 30, 126900

(5) G. Kiefer, T. Riedel, P. J. Dyson, R. Scopelliti and K. Severin, *Angew. Chem. Int. Ed.*, 2015, **54**, 302–305; *Angew. Chem.*, 2015, **127**, 306–310.

(6) J.-F. Tan, C. T. Bormann, F. G. Perrin, F. M. Chadwick, K. Severin and N. Cramer, *J. Am. Chem. Soc.*, 2019, **141**, 10372–10383.

(7) S. Fu, N.-Y. Chen, X. Liu, Z. Shao, S.-P. Luo and Q. Liu, J. Am. Chem. Soc., 2016, 138, 8588–8594.

(8) D. Bailey and V. E. Williams, *Tetrahedron Lett.*, 2004, **45**, 2511–2513.