Design and Recognition of Cucurbituril-secured Platinum-bound Oligopeptides

Héctor Barbero and Eric Masson*

Department of Chemistry and Biochemistry, Ohio University, Athens, Ohio 45701, United States

e-mail: masson@ohio.edu

Supporting Information

1. Generalities	2
2. Preparation and characterization of CB[n]-bound Pt(tpy) chloride complexes	2
3. Preparation and characterization of Pt/peptide/CB[n] assemblies	3
4. ¹ H and ¹³ C NMR spectra of the Pt/peptide/CB[n] assemblies	6
5. DOSY analysis for assemblies $CB[8]^{Pt} \cdot 1_2$ and $CB[8]^{Pt} \cdot 1_2 \cdot CB[8]^{Phe}_{HT}$	16
6. Mass spectrometry analysis of Pt/peptide/CB[n] assemblies	19
7. UV-Vis absorption spectra of the Pt/peptide/CB[n] assemblies	22
8. Titration of peptide FGGGC with CB[8]	22
9. Isothermal Titration Calorimetry (ITC) experiments	23
10. Computational details	25
11. Coordinates of the most stable structure of pendant necklace $CB[8]^{Pt} \cdot 1_2 \cdot CB[8]^{Phe}_{HT}$	
12. References	

1. Generalities

All reagents were purchased from chemical suppliers and used without further purification. Peptide FGGGC (98% purity) was purchased from KareBay Biochem, Inc., Monmouth Junction, NJ. Cucurbit[7]uril (CB[7]) and Cucurbit[8]uril (CB[8]) were prepared using known procedures.¹ Solvents were of analytical grade and either used as purchased or dried according to procedures described elsewhere.² Characterization by Nuclear Magnetic Resonance spectroscopy (NMR) was carried out using a Bruker Ascend 500 MHz spectrometer and a Bruker Avance III HD Ascend 700 MHz located in the Campus Chemical Instrument Center (CCIC) NMR facility at The Ohio State University (OSU). ¹H and ¹³C NMR chemical shifts are reported in parts per million (ppm) and are referenced to TMS using the residual signal of the solvent as an internal reference. Coupling constants (J) are reported in hertz (Hz). Standard abbreviations used to indicate multiplicity are: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet. Ultrahigh resolution/accurate mass measurements were carried out on a Bruker SolariXR 15T Fourier transform ion cyclotron resonance (FT-ICR) instrument. Positively charged ions were generated by electrospray ionization (ESI) and matrix assisted laser desorption/ionization (MALDI; α -cyano hydroxycinnamic acid was used as matrix). ESI produced multiply charged ions that were used to confirm product identity. ESI solutions (approx. 5 µM) in acetonitrile/water 1:1 were sprayed by direct infusion. The resolution of the FT-ICR instrument was set to 300,000 (at m/z 400). For MALDI, a Yag-Nd laser was used (351 nm; 15% of total power). UV-Vis absorption spectra were recorded on an Agilent HP-8453 diodearray spectrophotometer. Wavelengths (λ) are reported in nanometers (nm) and molar absorption coefficients (ε) are reported in M⁻¹ cm⁻¹. Computational work was carried out on the Owens cluster of the Ohio Supercomputer Center in Columbus, OH (23,392-core Dell Intel Xeon E5-2680 v4 machines). 4'-(3,5-Difluorophenyl)-2,2':6',2"-terpyridine and chloro[4'-(3,5-difluorophenvl)-2,2':6',2"-terpyridine]platinum(II) chloride (Pt·Cl) were prepared according to published procedures.³

2. Preparation and characterization of CB[n]-bound Pt(tpy) chloride complexes

Chloro[4'-(3,5-difluorophenyl)-2,2':6',2"-terpyridine]platinum(II) chloride (3.1 mg, 5.1 μ mol) was mixed with D₂O (5.0 mL). CB[8] (3.3 mg, 2.5 μ mol) or CB[7] (5.9 mg, 5.1 μ mol) was added subsequently, and the resulting mixture was sonicated thoroughly. The stock solution was stored at 4 °C for further use.

CB[8]^{Pt} (Pt·Cl)₂. ¹H NMR (500 MHz, D₂O) δ 8.81 (dd, J = 5.7, 1.5 Hz, 4H, H⁶), 8.60 (d, J = 8.0 Hz, 4H, H³), 8.19 (td, J = 7.8, 1.5 Hz, 4H, H⁴), 8.16 (s, 4H, H³), 7.59 (ddd, J = 7.4, 5.6, 1.3 Hz, 4H, H⁵), 6.64 – 6.52 (m, 6H, H⁷+H⁸), 5.78 (d, J = 15.3 Hz, 8H, H^{CB[8]}), 5.66 (d, J = 15.3 Hz, 8H, H^{CB[8]}), 5.40 (s, 16H, H^{CB[8]}), 4.11 (d, J = 10.5 Hz, 8H, H^{CB[8]}), 4.08 (d, J = 10.5 Hz, 8H, H^{CB[8]}). ¹⁹F NMR (471 MHz, D₂O) δ -106.84.

 $CB[7]^{Pt} (Pt \cdot Cl). {}^{1}H NMR (500 MHz, D_{2}O) \delta 9.11 (d, J = 8.2 Hz, 4H, H^{6}), 8.90 (d, J = 5.8 Hz, 4H, H^{3}), 8.59 (s, 4H, H^{4}), 8.36 (t, J = 7.9 Hz, 4H, H^{3'}), 7.76 (t, J = 6.7 Hz, 4H, H^{5}), 6.76 (d, J = 7.3 Hz, 4H, H^{7}), 6.53 (t, J = 8.8 Hz, 2H, H^{8}), 5.73 (d, J = 15.4 Hz, 8H, H^{CB[7]}), 5.63 (d, J = 15.3 Hz, 8H, H^{CB[7]}), 5.39 (s, 16H, H^{CB[7]}), 4.10 (t, J = 15.8 Hz, 16H, H^{CB[7]}).$

3. Preparation and characterization of Pt/peptide/CB[n] assemblies

In an NMR tube, stock solutions of complexes $CB[8]^{Pt} \cdot (Pt \cdot Cl)_2$ or $CB[7]^{Pt} \cdot (Pt \cdot Cl)$ (1.0 mM, 0.60 µmol, 0.60 mL) were treated with an aqueous solution of peptide FGGGC (50 mM, 0.60 µmol, 12 µL) and the mixture was subsequently stirred and kept at 40 °C for 1 h. The color of the sample turned from yellow to red.

Assemblies $CB[8]^{Pt} \cdot (1 \cdot CB[7]^{Phe})_2$, $CB[8]^{Pt} \cdot 1_2 \cdot CB[8]^{Phe}_{HT}$ and $CB[7]^{Pt} \cdot 1 \cdot CB[7]^{Phe}$ were obtained by adding CB[7] or CB[8] in relevant amounts, and the mixtures were sonicated for 10 min.

CB[8]^{Pt}·1₂. ¹H NMR (500 MHz, D₂O) δ 9.15 (dd, J = 10.6, 5.8 Hz, 4H, H⁶), 8.58 (t, J = 8.0 Hz, 4H, H³), 8.24 – 8.10 (m, 8H, H⁴+H^{3'}), 7.58 (dt, J = 27.7, 6.6 Hz, 4H, H⁵), 7.42 – 7.27 (m, 6H, Hⁱ+H^j), 7.24 (d, J = 7.1 Hz, 4H, H^h), 6.67 – 6.47 (m, 6H, H⁷+H⁸), 5.77 (d, J = 15.3 Hz, 8H, H^{CB[8]}), 5.64 (d, J = 15.3 Hz, 8H, H^{CB[8]}), 5.38 (s, 16H, H^{CB[8]}), 4.40 (dd, J = 7.8, 4.3 Hz, 2H, H^b), 4.31 – 4.20 (m, 2H, H^f), 4.07 (t, J = 16.5 Hz, 16H, H^{CB[8]}), 3.97 – 3.83 (m, 8H, H^c+H^e), 3.76 (q, J = 16.8 Hz, 4H, H^d), 3.17 (ddt, J = 28.7, 13.2, 7.0 Hz, 4H, H^g), 3.01 – 2.67 (m, 4H, H^a). ¹³C NMR (126 MHz, D₂O) δ 32.24, 36.77, 42.09, 42.38, 42.49, 53.45, 54.43, 56.58, 71.93, 106.03, 106.15, 109.02, 109.18, 109.24, 121.52, 121.60, 126.24, 126.28, 128.01, 129.02, 129.16, 129.38, 133.72, 137.24, 137.32, 137.40, 142.35, 151.28, 152.44, 152.56, 152.84, 155.79, 155.85, 156.30, 156.66, 156.84, 157.90, 161.90, 162.01, 163.90, 164.00, 169.83, 170.78, 171.38, 171.67, 174.34, 176.65. ¹⁹F NMR (471 MHz, D₂O) δ -107.03. HRMS (ESI): m/z = 1644.42682 [M]²⁺ (calcd. 1644.4224 for C₁₂₆H₁₂₄F₄N₄₈O₂₈Pt₂S₂). UV-Vis (H₂O) λ 248 (ε = 18.4 × 10³), 279 (ε = 21.4 × 10³), 317 (ε = 12.2 × 10³), 374 (ε = 3.55 × 10³), 574 (ε = 7.10 × 10²).

CB[8]^{Pt} (**1**·**CB**[7]^{Phe})₂. ¹H NMR (500 MHz, D₂O) δ 9.08 (dd, J = 20.8, 5.6 Hz, 4H, H⁶), 8.54 (t, J = 7.8 Hz, 4H, H³), 8.29 – 8.00 (m, 8H, H⁴+H^{3'}), 7.67 – 7.47 (m, 4H, H⁵), 6.60 (s, 2H, H^j), 6.56 – 6.43 (m, 10H, H⁷+H⁸+Hⁱ), 6.31 (s, 4H, H^h), 5.70 (d, J = 15.3 Hz, 8H, H^{CB[8]}), 5.65 – 5.52 (m, 36H, H^{CB[8]}+H^{CB[7]}), 5.35 (s, 28H, H^{CB[7]}), 5.34 (s, 16H, H^{CB[8]}), 4.39 (t, J = 5.9 Hz, 2H, H^b), 4.26 (d, J = 10.8 Hz, 2H, H^f), 4.19 – 3.96 (m, 48H, H^{CB[8]}+H^{CB[7]}+H^c), 3.94 – 3.76 (m, 4H, H^e), 3.75 – 3.55 (m, 4H, H^d), 3.05 (d, J = 14.4 Hz, 2H, H^g), 2.97 (d, J = 10.9 Hz, 2H, H^a), 2.84 – 2.73 (m, 2H, H^a), 2.49 (t, J = 13.6 Hz, 2H, H^g). ¹³C NMR (126 MHz, D₂O) δ 174.22, 172.47, 171.64, 170.57, 170.35, 163.94, 162.03, 157.91, 156.88, 156.70, 156.25, 152.82, 152.44, 151.31, 142.42, 137.32, 133.66, 129.10, 128.00, 127.30, 126.35, 121.65, 109.23, 109.04, 106.20, 105.97, 71.95, 71.14, 56.46, 54.90, 53.48, 52.50, 43.48, 42.49, 41.93, 36.08, 32.09. ¹⁹F NMR (471 MHz, D₂O) δ -106.91. HRMS (ESI): m/z = 1403.38324 [M+2H]⁴⁺ (calcd. 1403.38286 for C₂₁₀H₂₀₈F₄N₁₀₄O₅₆Pt₂S₂). UV-Vis (H₂O) λ 248 (ε = 20.1 × 10³), 279 (ε = 23.6 × 10³), 318 (ε = 12.1 × 10³), 375 (ε = 3.78 × 10³), 541 (ε = 8.30 × 10²).

CB[8]^{Pt}·**1**₂·**CB[8]**^{Phe}_{HT}. ¹H NMR (500 MHz, D₂O) δ 9.29 (d, J = 5.6 Hz, 2H, H⁶), 9.19 (d, J = 5.5 Hz, 2H, H⁶), 8.70 (d, J = 8.0 Hz, 2H, H³), 8.66 (d, J = 8.0 Hz, 2H, H³), 8.41 – 8.10 (m, 8H, H⁴+H^{3'}), 7.70 (q, J = 8.2, 7.7 Hz, 4H, H⁵), 6.83 – 6.61 (m, 8H, H⁷+H⁸+H^j), 6.56 – 6.36 (m, 4H, Hⁱ), 6.03 (d, J = 7.6 Hz, 4H, H^h), 5.86 (d, J = 15.3 Hz, 24H, H^{CB[8]}), 5.74 (d, J = 15.3 Hz, 8H, H^{CB[8]}), 5.64 (s, 16H, H^{CB[8]}), 5.48 (s, 16H, H^{CB[8]}), 4.53 (t, J = 6.2 Hz, H^b), 4.43 (d, J = 17.3 Hz, H^f), 4.30 (d, J = 15.2 Hz, 16H, H^{CB[8]}), 4.23 – 4.11 (m, 24H H^{CB[8]}+H^e+H^e), 4.01 – 3.85 (m, 4H, H^d), 3.10 – 3.00 (m, 2H, H^a), 2.97 – 2.87 (m, 2H, H^a), 2.39 (d, J = 13.0 Hz, 2H, H^g), 2.25 (t, J = 13.2 Hz, 2H, H^g). ¹³C NMR (176 MHz, D₂O) δ 174.22, 172.30, 171.77, 170.59, 170.24, 163.74, 163.67, 162.31, 162.24, 157.90, 157.87, 156.91, 156.89, 156.81, 156.78, 156.76, 156.69, 153.90, 152.95, 152.90, 152.86, 152.46, 151.26, 142.76, 142.40, 137.32, 132.78, 129.14, 129.06, 128.95, 127.77, 126.64, 126.33, 126.25, 121.60, 121.49, 109.21, 109.07, 106.33, 106.18, 106.03, 72.04, 71.95, 56.38, 54.97, 53.62, 53.47, 43.26, 42.63, 41.97, 37.16, 32.01. ¹⁹F NMR (471 MHz, D₂O) δ -107.06. HRMS (ESI): m/z = 1538.73924 [M+H]³⁺ (calcd. 1538.74316 for C₁₇₄H₁₇₁F₄N₈₀O₄₄Pt₂S₂). UV-Vis (H₂O) λ 249 (ε = 18.4 × 10³), 279 (ε = 22.5 × 10³), 317 (ε = 12.3 × 10³), 375 (ε = 3.66 × 10³), 544 (ε = 9.13 × 10²).

1·**CB**[7]^{Phe}. ¹H NMR (500 MHz, D₂O) δ 8.82 (s, 2H, H⁶), 8.27 (s, 2H, H³), 8.16 (s, 4H, H⁴+H^{3'}), 7.57 (s, 2H, H⁵), 7.25 (s, 2H, H⁷), 7.01 (s, 1H, H⁸), 6.72 (s, 1H, H^j), 6.64 (s, 2H, Hⁱ), 6.50 (s, 2H, H^h), 5.58 (d, J = 15.4 Hz, 14H, H^{CB[7]}), 5.34 (s, 14H, H^{CB[7]}), 4.34 (s, 1H, H^b), 4.20 (d, J = 10.8 Hz, 1H, H^f), 4.04 (d, J = 15.4 Hz, 14H, H^{CB[7]}), 3.98 – 3.88 (m, 2H, H^c), 3.77 (q, J = 17.5, 17.0 Hz, 2H, H^e), 3.66 – 3.47 (m, 2H, H^d), 2.90 (dd, J = 47.7, 14.5 Hz, 2H, H^g), 2.60 (dt, J = 56.2, 13.0 Hz, 2H, H^a). ¹³C NMR (176 MHz, D₂O) δ 174.45, 172.10, 171.42, 170.33, 170.31, 164.07, 164.00, 162.66, 162.58, 157.80, 156.23, 153.36, 152.42, 151.19, 142.51, 137.66, 133.64, 129.33, 128.28, 127.82, 127.66, 125.72, 110.57, 71.13, 56.84, 54.72, 52.48, 43.13, 42.48, 41.87, 36.28, 31.81. ¹⁹F NMR (471 MHz, D₂O) δ -107.86. HRMS (ESI): m/z = 1071.28488 [M+H]²⁺ (calcd. 1071.28463 for C₈₁H₈₀F₂N₃₆O₂₀Pt₁S₁). HRMS (MALDI): m/z = 2141.569 [M]⁺ (calcd. 2141.562 for C₈₁H₇₉F₂N₃₆O₂₀Pt₁S₁). UV-Vis (H₂O) λ 250 (ε = 23.5 × 10³), 289 (ε = 27.4 × 10³), 348 (ε = 8.54 × 10³), 500 (ε = 1.06 × 10³).

CB[7]^{Pt}·1·**CB**[7]^{Phe.} ¹H NMR (500 MHz, D₂O) δ 9.19 (d, J = 4.6 Hz, 2H, H⁶), 9.15 (d, J = 8.0 Hz, 2H, H³), 8.67 (s, 2H, H³), 8.40 (t, J = 7.7 Hz, 2H, H⁴), 7.79 (t, J = 6.8 Hz, 2H, H⁵), 6.76 (d, J = 7.1 Hz, 2H, H⁷), 6.65 (t, J = 7.5 Hz, 1H, H⁸), 6.58 – 6.45 (m, 3H, Hⁱ+H^j), 6.34 (d, J = 7.5 Hz, 2H, H^h), 5.73 (d, J = 15.4 Hz, 7H, H^{CB[7]}), 5.67 (d, J = 15.5 Hz, 7H, H^{CB[7]}), 5.62 (dd, J = 15.2, 4.3 Hz, 14H, H^{CB[7]}), 5.40 (d, J = 4.8 Hz, 28H, H^{CB[7]}), 4.57 – 4.53 (m, 1H, H^b), 4.39 – 4.29 (m, 1H, H^f), 4.17 (s, 2H, H^c), 4.15 – 4.03 (m, 28H, H^{CB[7]}), 4.02 – 3.57 (m, 4H, H^d+H^e), 3.04 (d, J = 13.0 Hz, 2H, H^g), 2.98 – 2.89 (m, 1H, H^a), 2.58 – 2.43 (m, 1H, H^a). ¹³C NMR (176 MHz, D₂O) δ 174.26, 172.56, 171.63, 170.56, 163.72, 163.64, 162.30, 162.22, 159.85, 156.36, 156.29, 156.21, 156.14, 153.46, 151.77, 142.18, 139.45, 133.65, 128.54, 127.98, 127.94, 127.53, 127.23, 127.19, 126.63, 123.70, 109.31, 109.28, 109.18, 109.15, 103.93, 71.18, 71.13, 71.11, 55.85, 54.89, 52.53, 52.50, 52.47, 46.51, 43.55, 42.47, 42.00, 36.06. ¹⁹F NMR (471 MHz, D₂O) δ -109.96. HRMS (ESI): m/z = 1652.45424 [M+H]²⁺ (calcd. 1652.45652 for C₁₂₃H₁₂₂F₂N₆₄O₃₄Pt₁S₁). UV-Vis (H₂O) λ 260 ($\varepsilon = 24.0 \times 10^3$), 289 ($\varepsilon = 31.4 \times 10^3$), 345 ($\varepsilon = 10.6 \times 10^3$), 484 ($\varepsilon = 1.02 \times 10^3$).

4. ¹H and ¹³C NMR spectra of the Pt/peptide/CB[n] assemblies

-107 -108 f1 (ppm) -100 -101 -102 -103 -104 -105 -109 -111 -112 -113 -114 -115 -106 -110 Figure S2. ${}^{19}F{}^{1}H$ -NMR spectrum of assembly $CB[8]^{Pt} \cdot 1_2$ in D_2O .

10.0 9.5

Figure S8. ${}^{13}C{}^{1}H$ -NMR spectrum of assembly $CB[8]^{Pt.}(1 \cdot CB[7]^{Phe})_2$ in D₂O.

Figure S9. ¹H-¹H COSY NMR spectrum of assembly $CB[8]^{Pt} \cdot (1 \cdot CB[7]^{Phe})_2$ in D₂O.

Figure S10. ¹H-¹H NOESY NMR spectrum of assembly $CB[8]^{Pt} \cdot (1 \cdot CB[7]^{Phe})_2$ in D₂O.

Figure S14. ¹H-¹H COSY spectrum of assembly $CB[8]^{Pt} \cdot 1_2 \cdot CB[8]^{Phe}_{HT}$ in D₂O.

5. DOSY analysis for assemblies CB[8]^{Pt}·1₂ and CB[8]^{Pt}·1₂·CB[8]^{Phe}_{HT}

Diffusion constants obtained by DOSY experiments^{4–6} were calculated by means of ¹H-NMR signals intensity attenuation upon field gradient application, fitted according to the Stejskal–Tanner Equation (1):^{4,7}

$$I = I_0 e^{-D\gamma^2 g^2 \delta^2 (\Delta - \delta/3)} \tag{1}$$

Magnetic field gradient length (δ) was set to 1.5 ms and diffusion delay (Δ) to 0.1 s. The experimental setup consisted of 19 spectra with a gradient strength variation of 5% between two consecutive experiments.

Figure S22. Selected fitted plots of signal attenuation for assembly $CB[8]^{Pt} \cdot 1_2$. Black dots: experimental values; red line: fitted curve.

Figure S23. Selected fitted plots of signal attenuation for assembly $CB[8]^{Pt} \cdot \mathbf{1}_2 \cdot CB[8]^{Phe}_{HT}$. Black dots: experimental values; red line: fitted curve.

Entry	$CB[8]^{Pt} \cdot 1_2$	$CB[8]^{Pt} \cdot 1_2 \cdot CB[8]^{Phe}_{HT}$
1	1.612×10^{-10}	1.489×10^{-10}
2	1.619×10^{-10}	$1.507 imes 10^{-10}$
3	1.643×10^{-10}	1.524×10^{-10}
4	1.663×10^{-10}	1.520×10^{-10}
5	1.657×10^{-10}	$1.479 imes 10^{-10}$
6	1.704×10^{-10}	1.516×10^{-10}
7	1.660×10^{-10}	1.509×10^{-10}
8	1.663×10^{-10}	$1.515 imes 10^{-10}$
9	$1.674 imes 10^{-10}$	1.492×10^{-10}
10	1.650×10^{-10}	$1.474 imes 10^{-10}$
11	1.531×10^{-10}	$1.478 imes 10^{-10}$
12	1.522×10^{-10}	1.464×10^{-10}
13	1.516×10^{-10}	$1.481 imes 10^{-10}$
14	1.492×10^{-10}	1.544×10^{-10}
15	$1.505 imes 10^{-10}$	1.472×10^{-10}
16	1.435×10^{-10}	$1.500 imes 10^{-10}$
17	1.501×10^{-10}	1.492×10^{-10}
18	1.460×10^{-10}	$1.508 imes 10^{-10}$
19		1.594×10^{-10}
20		1.568×10^{-10}
Average	$1.584 (\pm 0.035) \times 10^{-10}$	$1.506 (\pm 0.013) \times 10^{-10}$

Table S1. List of diffusion constants for individual proton signals in assemblies $CB[8]^{Pt} \mathbf{1}_2$ and $CB[8]^{Pt} \mathbf{1}_2 \cdot CB[8]^{Phe}_{HT}$ obtained by fitting each signal attenuation upon gradient field application.

6. Mass spectrometry analysis of Pt/peptide/CB[n] assemblies

Figure S25. MS spectrum (ESI) of assembly CB[8]^{Pt}·(1·CB[7]^{Phe})₂ corresponding to [M+2H]⁴⁺.

Figure S26. MS spectrum (ESI) of assembly $CB[8]^{Pt} \cdot 1_2 \cdot CB[8]^{Phe}_{HT}$ corresponding to $[M+H]^{3+}$.

Figure S27. MS spectrum (ESI) of $1 \cdot CB[7]^{Phe}$ assembly corresponding to $[M+H]^{2+}$.

Figure S29. MS spectrum (ESI) of assembly $CB[7]^{Pt} \cdot 1 \cdot CB[7]^{Phe}$ corresponding to $[M+H]^{2+}$.

7. UV-Vis absorption spectra of the Pt/peptide/CB[n] assemblies

Figure S30. UV-Vis absorption spectra of (a) peptide FGGGC (in blue), and assemblies $CB[8]^{Pt} \cdot \mathbf{1}_2$ (in red), $CB[8]^{Pt} \cdot (\mathbf{1} \cdot CB[7]^{Phe})_2$ (in green), and $CB[8]^{Pt} \cdot \mathbf{1}_2 \cdot CB[8]^{Phe}_{HT}$ (in grey); (b) peptide FGGGC (in blue), (b) $\mathbf{1} \cdot CB[7]^{Phe}$ assemblies (in red), and (c) complex $CB[7]^{Pt} \cdot \mathbf{1} \cdot CB[7]^{Phe}$ (in green). All spectra recorded in H₂O; Pt concentration 50 μ M.

8. Titration of peptide FGGGC with CB[8]

Figure S31. ¹H-NMR spectra of peptide FGGGC (1.0 mM) (a) in the absence of CB[8], and in the presence of (b) 0.25, (c) 0.50, (d) 0.75, (e) 1.0 and (f) 1.5 equiv CB[8] in D₂O.

9. Isothermal Titration Calorimetry (ITC) experiments

All ITC experiments were carried out in MilliQ water at 25 °C on a Malvern MicroCal ITC200 instrument. The host (CB[7] or CB[8]) was located in the sample cell at concentrations ranging $30 - 100 \mu$ M and the titrant (Pt complex or peptide) was in the injection syringe at concentrations ranging from 0.3 to 1.5 mM (approximately 10 times higher). The titrations consisted of 20 injections with an injection spacing of 150 s. Raw data was analyzed (baseline correction, integration and fitting) with the Affinimeter software.

System	K_1^{a}	ΔG_1^{b}	ΔH_1^{b}	$T\Delta S_1 b$	K_2^{a}	$\Delta G_2 b$	$\Delta H_2 b$	$T\Delta S_2^{\ b}$	β ^c	ΔG β ^b	$\boldsymbol{\alpha}^{d}$
FGGGC	1.2 (±0.2)	-9.66	-13.80	-4.15							
vs CB[7]	$\times 10^{7}$	(±0.09)	(±0.02)	(±0.09)							
CB[8] ^{Pt} ·12	6.3 (±0.2)	-9.28	-13.89	-4.61							
vs CB[7]	$\times 10^{6}$	(±0.02)	(±0.02)	(±0.03)							
2	1.8 (±0.1)	-7.18	-8.47	-1.28							
vs CB[7]	$\times 10^{5}$	(±0.01)	(±0.02)	(±0.03)							
FGGGC	1.9 (±0.6)	-9.9	-11.4	-1.5	1.2 (±0.6)	-8.3	-10.4	-2.0	2.4×10^{13}	10.2	0.26
vs CB[8]	$\times 10^{7}$	(±0.2)	(±0.1)	(±0.2)	$\times 10^{6}$	(±0.3)	(±0.1)	(±0.3)	2.4 ^ 10	-10.2	0.20
CB[8] ^{Pt} ·1 ₂	2.4 (±0.3)	-8.7	-12.1	-3.4	1.7 (±0.4)	-8.5	-8.6	-0.1	1.0×10^{12}	17.2	2 70
vs CB[8]	$\times 10^{6}$	(±0.1)	(±0.1)	(±0.1)	$\times 10^{6}$	(±0.1)	(±1.9)	(±1.9)	4.0 ^ 10	-17.2	2.79
					$K_{\text{Pt-Pt}}f$	$\Delta G_{\text{Pt-Pt}}^{b}$	$\Delta H_{\text{Pt-Pt}}^{b}$	$T\Delta S_{Pt-Pt}^{b}$			
2					2.0 (±1.1)	-5.9	-6.7	-0.9	1.3 (±0.6)	-17.9	
vs CB[8] ^e					$\times 10^4$	(±0.3)	(±0.9)	(±1.0)	$\times 10^{13}$	(±0.3)	

Table S2. Thermodynamic data obtained by ITC titrations of the species involved in this study.

^{*a*} in M⁻¹. ^{*b*} in kcal/mol. ^{*c*} $\beta = K_1 K_2$ [M⁻²]. ^{*d*} Interaction parameter $\alpha = 4K_2/K_1$. ^{*e*} Binding constant corresponding to the equilibrium $\mathbf{2} + \mathbf{2} + \mathbf{CB}[\mathbf{8}] \rightleftharpoons \mathbf{CB}[\mathbf{8}] \cdot \mathbf{2}_2$, in M⁻². ^{*f*} Dimerization constant of complex 2 [M⁻¹].

Figure S32. Representative enthalpograms for the titration of CB[7] (50 μ M) with (a) FGGGC, (b) CB[8]^{Pt}·1₂, and (c) **2** (0.50 mM) in MilliQ water at 25 °C. Representative enthalpograms for the titration of CB[8] (30 μ M) with (d) FGGGC, (e) CB[8]^{Pt}·1₂, and (f) **2** (0.30 mM) in MilliQ water at 25 °C.

Figure S33. Goodness-of-fit value χ^2 as a function of binding constant K_1 as fixed variable while binding affinity K_2 is fitted, for the enthalpograms obtained upon titration of CB[8] with (a) FGGGC, and (b) CB[8]^{Pt}·1₂ (see Figure S32, enthalpograms d and e).

10. Computational details

Conformational screening for assembly $CB[8]^{Pt} \cdot \mathbf{1}_2 \cdot CB[8]^{Phe}_{HT}$ was carried out in Grimme's Conformer-Rotamer Ensemble Sampling Tool (CREST)^{8,9} with the iMTD-GC algorithm and the generic GFN Force Field (GFN-FF)¹⁰ with a surrogate structure that binds both peptides through a naphtho[1,2-b:8,7b']dithiophene fragment (Figure S34). The distance between sulfur atoms was therefore controlled. The surrogate facilitated the computational load by removing Pt atoms and one CB[8] macrocycle. 11746 structures were generated, and the 37 best candidates were isolated for further evaluation (lowest energy within 25 kcal/mol of the most stable geometry). The surrogate fragment was then replaced by the CB[8]secured platinum dimer in the 37 candidates, which were reoptimized with the semiempirical tight-binding method GFN2-xTB.^{11,12} All GFN-FF and GFN2-xTB calculations were performed in conjunction with the GBSA solvation model.^{13,14} The four structures with the lowest energy (within 10 kcal/mol of the most stable geometry) were finally reoptimized by density functional theory with the TURBOMOLE¹⁵⁻¹⁸ suite of programs (version 7.2.1) at the B97-3c/def2-mTZVP level of theory with COSMO^{19,20} solvation parameters. The m4 grid size was used and convergence criteria were 10⁻⁵ hartree. Enthalpic and entropic contributions at 25 °C ($\Delta G_{T,xTB}$) were obtained by vibrational analysis using GFN2-xTB-optimized structures. Free energies of solvation ($\Delta G_{\text{solv,xTB}}$) were also calculated using the GBSA solvation model on GFN2-xTB-optimized structures. The relative stability (ΔG) of the four assemblies was calculated using equation (2), where ΔE_{B97-3c} is the electronic contribution at 0 K calculated by DFT in the gas phase.

$$\Delta G = \Delta E_{B97-3c} + \Delta G_{T,xTB} + \Delta G_{solv,xTB}$$
(2)

Figure S34. Surrogate used for initial conformational screening with the GFN-FF force field.

11. Coordinates of the most stable structure of pendant necklace CB[8]^{Pt}·1₂·CB[8]^{Phe}_{HT}

S	-0.4346860	8.1843884	2,9254170	C	-1.9935104	15.8872744	0.1428082	C	-2.5262868	23.0791649	-0.9670471
-		0.1010001	2.9201110	0	1.9990101	10.00/2/11	1.00002	0	2.0202000	20.0792019	0.0070172
Ç	1.0095628	8.6362825	3.9/8213/	C	-1.8491329	16.0/43/86	-1.2282388	N	-3.0369445	22.519/213	0.2/46842
C	-5 5448212	8 2227380	1 9958932	C	-2 9600635	16 4595444	-1 9718114	C	-4 2421739	21 8860146	0 0814449
č	1.00000040	0.2227900	2.3560365		4.1777000	16.7010505	1.0/10111		2.0522007	22.0000210	0.0011119
Ç	1.8923349	9.7095928	3.3569365	C	-4.1///292	16./013535	-1.3558/91	н	-3.8533287	23.2094886	-2./390293
C	-6 4368726	8 7557780	0 8563795	н	-3 3300790	15 8641374	1 8021171	н	-2 5336567	24 1667575	-0 9312322
NT.	2 6770204	0 0507040	0 0010505		1 1452014	15 5704007	0 7363670	1	0 0015700	21 5071040	2 7002004
N	2.6//0384	9.250/243	2.2313585	н	-1.1453614	15.5/2409/	0./3636/9	N	-2.6215/02	21.50/1849	-2.7003984
H	1 2501362	10 4898751	2 9708638	н	-2 8789860	16 5374853	-3 0450777	N	-1 2302448	22 5861425	-1 3448358
	6 0506005	7 6100205	0.0474000		5 0040450	17 0100000	1 0405004		1 2004117	01 0000000	0 01 00 000
C	-6.9506935	7.6180395	-0.04/4223	н	-5.0243453	17.0100898	-1.9496094	C	-1.3084117	21.6266252	-2.3160789
N	-7 5617092	9 5166373	1 3731556	S	-3 7384708	8 4008188	1 7200888	0	-4 9556321	21 4023168	0 9615197
	1.001/052	3.0100010	1.0/01000	U	5.7501700	0.1000100	1.7200000	0	1.5000021	22.1020200	0.5010151
H	-5.8299250	9.4233326	0.2502369	H	1.8522499	18.3354051	2.4826389	0	-0.3601870	20.9837667	-2.7708858
C	-7 4069305	10 7257682	1 9160157	ц	-0.0051071	17 7017163	3 9581662	C	-2 7091251	23 1360593	1 5406941
C	-7.4009303	10.7257002	1.9100137	н	-0.0031071	17.7017103	3.9381002	C	-2.7091231	23.1300393	1.3400941
H	-8.4723388	9.1074242	1.2118074	N	-4.2491711	19.9742121	3.3234439	H	-2.7831052	24.2199659	1.4275913
~	0 5030600	0 7704060	1 0051574		1 100010	10 1004500	0.0000471		0 4401400	00 0100104	0 0710010
C	2.30/3602	9.//34009	1.0051574	н	-4.1968010	10.1904052	2.22234/1	н	-3.4431409	22.0100124	2.2/19913
H	3.5783640	8.8666812	2.4760698	Н	-2.5411606	17.0625518	3.8083736	С	-0.0035795	23.2205739	-0.9308522
~	0 6607100	11 4400700	0 0550700		0 4070150	10 5651053	4 6400700		0 1000500	04 0005311	1 0000005
C	-0.000/129	11.4499/23	2.3550/62	H	=2.40/9108	10.3031237	4.6490729	H	-0.1380339	24.2963/11	-1.0329933
0	-6.2960548	11.2480659	2.0728335	H	-4.5525875	20.3982510	2.4335398	Н	0.7866740	22.8977141	-1.5988904
	1 5260750	10 45 60010	0 0005000		2 4150301	00 5050300	2 6020055		2 1000050	00 0076461	0 0000000
0	1.5368/52	10.4569212	0.6805699	н	-3.4150/91	20.5052792	3.6238255	C	3.1889826	22.39/6461	2.63/5/01
C	3.6016882	9.4423091	-0.0111519	н	-5.0016000	20.1305751	4.0053922	н	3.9122526	22.2949613	1.8360374
~	0 1000050	7 2020202	0 0000000	27	C 00720C0	14 2000670	2 0 0 0 1 2 0		2 4275722	00 0751070	2 2225007
U	-0.1099030	1.3029202	0.0602920	IN	-0.02/3900	14.3090679	-2.0690120	H	3.43/3/33	23.2/312/0	3.232308/
0	-6.0944682	7.0932637	-0.7972429	C	-6.5301038	13.9880518	-3.4496369	С	-5.8258296	21.6054384	-1.8062541
à	0.0075740	10 2120040	4 4406073		C 73500C1	15 3450101	4 1 CE 40 30		C 1003777	22 4240246	0 4550171
C	2.00/3/40	10.3130849	4.44969/3	L	-0./220001	10.3430121	-4.1654950	H	-0.1093////	22.4349340	=2.45521/1
0	3.9576137	9.8204763	4.5746650	N	-7.3562435	16.1625260	-3.1590703	Н	-6.5339615	21.5373492	-0.9883000
	0.0005001	11 0007700	5 1250075		7 2050766	15 5550144	1 0040054		0 0010004	00 0047705	1 0006110
0	2.2935321	11.236//28	5.13582/5	C	-/.3852/66	15.5552144	-1.9242954	C	-2.9819904	20.994//25	-4.0026119
N	3.6057390	10.3970987	-1.0904047	Н	-7.1906542	13.1998785	-3.8088808	Н	-2.0870757	20.5945579	-4.4653625
	4 5350135	0 4120620	0 4720000		7 2670600	15 00005 60	5 0500054		2 2504020	01 0000007	4 6100517
н	4.5/501/5	9.4138639	0.4/30296	н	-/.36/0602	15.2829563	-5.0502054	н	-3.3504830	21.8220837	-4.612051/
H	3.4183442	8.4542084	-0.4280174	N	-5.1587937	13.6621029	-3.7371124	C	2.2986628	18.0749388	6.8373167
	0 01 01 450	11 0001500	2 0000000		5 2000061	15 3102063	4 5201500		2 0005077	10 0105050	2 00 10 25 1
н	-9.0161452	11.0061503	3.2909833	N	-2.3808961	15./18306/	-4.5381502	н	3.2835077	18.0125050	/.2948351
H	-9.4694206	11.3218864	1.6296423	C	-4.4975557	14.6725724	-4.3873494	Н	1.5519436	18.1791634	7.6170017
21	0.2004202	10 0500000	0 5050000	0	7 0500154	10 0051040	0 0077450		4 2020500	17 0402011	4 0100744
IN	-0.3084363	⊥∠.8339303	2.5252020	0	-/.8509154	10.0251340	-0.89//453	C	4.3226528	11.8423911	4.0188/44
C	-9.3075795	13.8063040	2.5280734	0	-3.3441845	14.6401300	-4.7881247	н	4.8371680	17.7637709	3.0669478
	7 20077120	10 1000000	0 5100415		0 2012062	10 7505406	4 1010520		5 0414004	17 7000070	1 0000000
H	-/.386/136	13.1038361	2.5100415	N	-0.7013063	13.7535496	4.1218532	н	5.0414304	17.7030379	4.8266033
C	-8 8294773	15 2573890	2 5723157	C	-0 0291021	12 7975738	3 2753031	C	0 5745570	22 2346307	4 9837714
-				-							
0	-10.5189498	13.5684718	2.4432393	C	-1.1585801	12.2091111	2.4062811	H	1.0868864	23.1348317	5.3252299
C	3 8643843	11 7028111	-0 8576403	N	-2 3163625	12 9696947	2 8200077	н	-0 2773865	22 0452401	5 6274484
~	5.0015015	11.7020111	0.0070100		2.5105025	12.9090917	2.0200077		0.2770000	22.0102101	0.0271101
H	3.0754704	10.1612654	-1.9116632	C	-2.0387696	13.8488490	3.8301211	N	-3.9766850	19.9606745	-3.9771322
0	/ 3351628	12 1120908	0 2007494	ц	0 5048073	12 0770950	3 89/3//5	C	-5 3915853	20 2467752	-3 8862491
~	1.5551020	12.1120900	0.2007101		0.0010075	12.0110900	5.0515115	0	0.0020000	20.2107702	5.0002.192
C	3.5/0288/	12.6238/10	-2.038/59/	н	-1.3221365	11.1391/14	2.5532249	C	-6.0581918	18.9495865	-4.4014/36
H	-8 7591462	15 6043595	1 5425754	N	0 8604228	13 3909719	2 3038162	N	-4 9304501	18 0896644	-4 6897519
	0.7091102	10.0010000	1.0120701		0.0001220	10.0000710	2.5050102		1.5501001	10.0000011	1.000,010
н	-9.6121573	15.8269460	3.0630244	N	-0.7375670	12.4783658	1.0556587	C	-3.7310140	18.7041935	-4.4681043
N	-7.5636679	15.5180791	3.2155275	C	0.4523206	13.1667632	1.0142373	н	-5.6380463	21.1276531	-4.4778463
	6 3340003	15 5000411	0 6414046		0 0510600	14 5000500	4 2041556		6 65 0 7 0 0 0	10 0005660	5 0070000
н	-6./34822/	15.5062411	2.6414346	0	-2.8510699	14.5828500	4.3941556	н	-6.659/003	19.0902003	-5.29/9830
C	-7.4332999	15.5904433	4.5476260	0	1.0302890	13.5230954	-0.0046119	N	-5.8944560	20.3737230	-2.5409128
-											
0	-8.3/45889	15.4489208	5.3333923	N	2.0244164	16.8439268	6.146108/	N	-0.8845406	18.5348082	-3.29/0481
C	-6 0282438	15 8210946	5 0938230	C	2 9852503	16 1402336	5 3389746	C	-6 8305657	19 4080165	-2 2360358
	0.0202150	10.0210010	0.0000200	0	2.9002000	10.1102000			0.0000007	19.1000100	2.2500550
N	3.36/3959	13.98/0106	-1.633/33/	C	2.2133430	14.8/8//16	4.8806/55	0	-2.6162044	18.2291/84	-4.68/9052
H	2.6921233	12.2717244	-2.5781585	N	0.8603001	15.1393691	5.3322873	0	-7.5056013	19.3596735	-1.2216969
	4 41 205 40	10 5001160	0 2050250		0 7000000	1.6.0400040	6 1 5 0 0 5 0 0		7 0000041	17 4041000	2 2015701
н	4.4132540	12.5891169	-2./253/58	C	0./898860	16.2433949	6.1508592	C	-/.8682641	1/.4841836	-3.3915/91
H	2.5675341	14.1569459	-1.0377031	н	3.8804312	15,9195748	5.9188505	н	-8.6295830	17.6832729	-2.6453922
~	4 0751000	14 0535631	1 0204070		2 5000650	12 0405247	E 2075CE1		0 2012062	17 5124076	4 2006752
C	4.2/01200	14.9555621	-1.0204070	H	2.3009030	13.9495247	5.30/3631	H	-0.3212002	17.3134270	-4.3808/33
0	5.3606753	14.7898187	-2.3874497	N	3.3452082	16.7798311	4.0886972	С	-5.0721844	16.8353280	-5.3879643
à	2 0244061	16 2227004	1 0750700	27	2 2022740	14 0000100	2 4407050		4 1205410	16 6100475	E 00E0010
C	3.9244961	10.333/004	-1.2/30/22	IN	2.3032/49	14.0002100	3.448/036	H	=4.1323412	10.01994/5	-2.8820018
H	-5.5987231	14.8493359	5.3266951	C	3.0487879	15.9912182	3.0007062	Н	-5.8533860	16.9504141	-6.1392038
NT.	E 0040000	1.6 E100EE1	4 0006700	0	0 1000316	16 6024672	C 70C202E	0	2 61 60 60 6	10 0000507	1 0211026
IN	-3.0942338	10.3108331	4.2230/39	0	-0.1900316	10.00240/3	0./003223	L	-2.0109000	12.2389387	-1.9311020
H	-6.1424070	16.3617864	6.0289854	0	3.3467892	16.2286413	1.8361624	N	-3.9760975	12.2435537	-2.1644934
~	E 1100C0C	17 0460761	4 1125066	N	1 4503400	21 1000144	E 0001E00	0	4 7454100	11 0544010	0 0010000
C	-3.1192696	1/.0402/01	4.1123066	IN	1.4080408	21.1090144	5.0921528	L	-4./454109	11.9544010	-0.9819828
H	-4.2795856	15.9787566	3.9450148	C	2.8870154	21.1935557	4.8545983	C	-3.6711510	11.7689080	0.1113844
0	-5 0022052	10 5402524	4 6250747	C	2 2020071	10 0115065	5 2240272	N	-2 4257447	11 0042252	-0 5021960
0	-3.9932032	10.3492334	4.0230747	C	3.3930071	19.0113903	3.3340275	14	-2.455/44/	11.9942232	-0.3921809
С	-4.0225970	18.4997551	3.2509720	N	2.2549771	19.2541358	6.0124984	H	-5.3662490	11.0715620	-1.1469077
н	4 3818229	17 0603448	-1 9396003	C	1 1228069	20 0178940	5 8614944	u	-3 6835015	10 7771303	0 5720696
11	4.5010225	17.0003440	1.000000	0	1.1220000	20.01/0540	5.0014544		5.0055015	10.7771505	0.3720050
Н	4.3819046	16.4347202	-0.2960471	H	3.3⊥58161	22.0315976	5.4029753	N	-4.0006225	12.7679361	1.1022466
N	2 5120052	16 6254497	-1 1270728	ц	1 2175023	19 8671065	6 0080399	N	-5 5546549	13 0287775	-0 4683134
14	2.0120002	10.020110/	1.12/0/20	н	1.27/3023	10.00/1000	0.0000333	11	5.5540549	10.0201110	0.4000104
Н	2.1388339	16.6357486	-0.1893313	N	3.2889684	21.2357952	3.4751506	C	-5.1597779	13.4258558	0.7815193
C	1 7605202	16 0660104	-2 1002240	N	2 7654405	10 1620015	4 0020205	0	-5 7525262	14 2104605	1 5024921
-	1.7003252	10.0000004	2.1003240	14	5./034403	10.1020910		0	5.7323303	11.2104000	1.0024021
С	0.2780055	17.2284985	-1.9090690	C	3.7750810	20.0307352	3.0279261	0	-1.7365665	12.3633531	-2.7672698
0	2 1906323	17 0359413	-3 3350753	0	0 0277233	19 7918192	6 3511303	c	-4 5550787	12 3847869	-3 4740409
č	2.1000020	10 10000710	0.0000000	-		10 7010192	0.0011000	C		11 00 0000	0.1/10109
С	-2.6075228	18.1396990	3.6641298	0	4.1694730	19.7845440	1.8982551	H	-5.3126430	11.6148696	-3.6139829
H	0 1417879	17 7611392	-0 9724836	C	-0 1468331	14 1148639	5 4005898	н	-3 7577890	12 2374496	-4 1952662
	0.111/0/5	15 0105653	1.075571.5		0.07000001	10.01.00000	5.10000000	n	6.0507050	12.22/11/0	1.0000102
C	-0.5078942	10.9105674	-1.8/55/16	Н	0.∠/61401	13.∠169698	5.8551470	C	-0.8507360	13.3429504	-1.0099125
N	-0.1954811	18.1153793	-3.0169352	н	-0.9471372	14.4913684	6.0277044	н	-7.4583330	13.7559623	-0.2119220
	0.0774700	16 1010005	1 201 (1 21		0.000007770	10 7000707	0 000000		7 2000004	10 4000505	1 2/000
н	U.U/74700	10.1812986	-1.3216131	C	2.2266779	13./032/07	2.6374206	Н	-/.3089844	12.4200585	-1.3680045
Н	-0.6010794	15.5266410	-2.8907615	н	2.7725773	13.8460524	1.7121393	С	-1.1607667	11.6445230	-0.0355929
	0 4000450	17 0200200	2 01 00 200		0.0500070	10 0500400	3 1705050		1 1000075	10 0170500	0.0000000
н	0.4∠20453	11.9380328	-3.8168339	Н	2.6532679	1∠.8593488	3.1/85853	Н	-1.19863/1	10.0172528	∪.3314684
H	-0.1402989	19.1245293	-2.8072386	N	-1.4025204	22.8109067	2.0363787	Н	-0.4224334	11.7191816	-0.8248087
	1 1570007	17 0410070	2 2007440		0.01070201	22.4000122	1 5041100	-	2	10 6500540	0 40435057
н	-1.15/308/	1/.94100/3	-3.329/440	C	-0.219/862	∠3.4998132	1.3641108	С	-3.6504/65	⊥∠.5598540	2.4841307
С	-1.5207552	18.5582274	2.7099196	С	0.8106099	23.2714334	2.6926835	Н	-3.7645830	11.4996803	2.7153677
	E 0700001	10 0400000	0 4745000		0.0005017	00 470000	2.0001744		4 2406102	10 10/5400	2 0005000
н	-0.2/96964	10.043∠893	0.4/45886	N	0.0805817	22.4/00391	3.6521/44	Н	-4.3406103	13.1∠03430	3.0965689
С	-0.2048941	18.2355676	3.0394592	С	-1.2115677	22.2518607	3.2761408	Н	1.5954008	7.7507254	4.2115584
ċ	0 8427260	18 507/500	2 21/7221	ц ц	-0 4445504	24 5512400	1 3070000		0 6046200	9 0264272	1 0000110
L	0.043/262	10.09/4002	2.214/221	н	-0.4445584	24.0013422	1.30/0832	Н	0.0046208	9.02643/2	4.9098416
С	0.6054713	19.3104985	1.0477373	Н	1.1609359	24.1913660	3.1594348	Н	-5.7489124	8.8018168	2.8913546
ć	-0 6004222	10 6267700	0 7050000	37	0 4000045	22 0104200	0 40001/00		-5 770000	7 1000401	2 2100100
L	-0.0984322	19.020//23	0./039266	IN	0.4082246	22.9104300	0.4088168	Н	-3.1/62388	1.1039481	<'<18A100
С	-1.7521685	19.2425099	1.5227642	N	1.8976588	22.6000773	2.0272435	Н	-2.2323162	5.7412721	-4.2601502
U	1 /330070	10 6200070	0 1300001	~	1 6816724	22 4550020	0 6800044	~	-2 5150720	6 5006000	-3 55006/1
п	1.40000/0	17.02000/2	0.4002004	C.	1.0010/34	22.4000909	0.0000944	C	-2.3130/20	0.0090028	-5.5562641
H	-0.9030499	20.1950340	-0.1872278	0	-2.0700414	21.6867457	3.9540838	C	-3.2276079	8.4054200	-1.7218863
ы	-2 7544022	10 /010750	1 2058313		2 4763055	22 0278651	-0 1431427	·	-2 6247092	6 1000001	-2 2133360
п	2.1344023	10.4515/30	1.2000010	0	2.4/05033	22.02/0001	0.143142/	U	-2.024/092	0.1555521	2.210009
С	-4.3140944	16.5102638	0.0095898	N	-4.5288817	21.9041245	-1.2539406	C	-2.7642590	7.8037634	-3.9836694
C	-3 22184/9	16 0811229	0 7501265	C	-3 4665623	22 4814264	-2 0289852	c	-3 1223054	8 7632243	-3 0515068

N	-2 9752223	7 1627304	-1 3028623	N	-2 981/532	-4 4374747	1 0291828	0	-0 1016104	1 1319170	-5 2726481
11	2.0732220	0.0504001	E 000007C		2.0014002	4.7001104	0.0251020	0	1 4764622	9.45454760	0.2515102
н	-2.0//0091	8.0594651	-5.0289876	C	-3.38/0316	-4.7251104	-0.2551651	0	1.4/04033	-0.5554550	-8.3313103
н	-3.3181269	9.7802972	-3.3501342	Н	-5.9022439	-3.3211246	0.8439686	C	3.5129066	1.48/4891	-8.153/182
Н	-3.5167080	9.0924639	-0.9443757	H	-4.3061745	-3.9292687	2.5641010	H	3.6973804	0.5004431	-8.5634892
С	-2.3988909	4.8645570	-1.6625762	N	-4.6777796	-1.6835268	0.4165839	Н	3.9024528	2.2393293	-8.8411854
C	-2 1767069	2 4920827	-0 2718628	N	-3 2336585	-2 2240849	2 0136231	C	2 5395809	4 3167489	-6 2025426
č	-2 0539124	3 7172380	-2 3466445		-3 7460788	-1 1798975	1 2896552	U U	2 1675574	5 0129039	-5.4588464
	2.0333124	4.0000701	2.3400443		0.0001001	1.1750575	1.2000002		2.1073374	4.0700470	3.4300404
N	-2.5940998	4.8029781	-0.3352601	0	-2.9061291	-5.5/40554	-0.9893985	н	3.0014658	4.8/804/0	-/.01060/8
C	-2.5021813	3.66//182	0.3780892	0	-3.4480089	0.0023433	1.4170213	C	5.35/6025	1.8501203	-0.6695581
С	-1.9442136	2.5086710	-1.6523930	C	2.7664207	-4.6958404	2.0335877	N	5.7865837	1.8668542	-1.9808212
Н	-1.9217763	3.7503476	-3.4137460	Н	3.1854068	-5.0665372	2.9707250	C	6.7817684	0.8439921	-2.2371152
Н	-2.1130802	1.5725220	0.2853315	н	2.8172498	-5.4809133	1.2869483	С	6.7034746	-0.0379212	-0.9724857
C	-2 7564182	3 8727825	1 8055223	C	2 3443422	-1 7177411	3 9332320	N	5 8849585	0 7288193	-0 0764428
č	-2 2007512	1 1050155	1 1157021	U U	2 1205520	-0 7202625	1 2212072	U	7 7600210	1 2002711	-2 2020067
~	-3.2007312	4.4039133	4.443/334	п	2.1203325	-0.7283823	4.3212573	п.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	7.7000310	1.2993711	-2.3930007
C	-2.6501115	2.8803812	2./623342	н	2./3/1/80	-2.3386433	4./386596	н	/.6/49651	-0.2416037	-0.5213511
Ν	-3.0828605	5.1571391	2.1711221	N	-4.7926251	-1.9304471	-4.5821686	N	6.1092259	-1.2665917	-1.4657031
С	-3.2881659	5.4500878	3.4580787	C	-5.8470514	-1.1510950	-3.9617071	N	6.4777538	-0.0681457	-3.3042381
С	-2.8802729	3.1863923	4.0949538	С	-5.9810933	-1.7964645	-2.5657959	С	6.1105898	-1.3106078	-2.8460492
Н	-2.4029586	1.8725653	2.4674841	N	-5.1955068	-2.9942898	-2.6713848	0	5.8631330	-2.2898914	-3.5343411
н	-3 5042860	6 4855730	3 6701647	C	-4 5170669	-3 0755081	-3 8630086	0	4 6607333	2 6945133	-0 1275773
	-2 0010127	2 4172117	1 0106000	U U	-6 7500000	-1 2059070	-4 5570500	° C	5 7105500	2.0510200	-2 7670077
п 	-2.0010127	2.41/311/	4.0400050	п	-0.7389082	-1.2030079	-4.3370309		0.7190090	3.0092020	-2.7079077
н	-3.3800036	4./6445/5	5.4/20/05	н	-7.0082755	-2.0365736	-2.2919598	н	0./313303	3.412/085	-2.9913036
C	-1.5915121	1.2813450	-2.3721219	N	-5.5176456	0.2168111	-3.6/31886	Н	5.2109433	3.819/458	-2.1719533
С	-0.8972123	-1.0637834	-3.7459805	N	-5.4538586	-0.7725417	-1.6849354	С	6.7198973	0.2277953	-4.6921382
С	-0.8200884	1.3498832	-3.5338885	C	-5.3078128	0.4374180	-2.3324926	H	6.7920661	-0.7146803	-5.2237995
С	-2.0089242	0.0387248	-1.8947041	0	-3.8230473	-4.0100530	-4.2359035	Н	7.6713507	0.7547818	-4.7677861
Ċ	-1.6510269	-1.0965343	-2.5884963	0	-5.0644838	1.5128007	-1.8067505	С	5,8228513	0.4873433	1.3377331
ĉ	-0 4974149	0 1000475	_1 1022750	N	-2 2451069	0 2020505	-7 6920600		6 0250712	0 2460257	1 6012210
U U	-0.4514270	0.1005475	-2 0100001	IN	-2.2401000	1 2700064	-7.5269054	п и	5 4042027	1 2000101	1 0170276
п	-0.4514575	2.20/02//	-3.9109001	C	-3.2840417	1.2/00904	-7.5208054	n	J.4042027	1.3909101	1.01/92/0
н	-2.6167651	-0.0499142	-1.0097983	C	-4.3586740	0.5474868	-6.68/5432	C	6.12/9659	-2.4/699/9	-0.6826319
F	-2.0390674	-2.2967028	-2.1114458	N	-3.7594616	-0.7392999	-6.4193119	Н	7.1014342	-2.5741021	-0.1956247
F	0.2974549	0.2504899	-5.2767824	C	-2.5586399	-0.9007442	-7.0779973	H	5.9894480	-3.3083068	-1.3652430
Н	-0.6304898	-1.9640619	-4.2758304	Н	-3.6432640	1.6081322	-8.5020711	Н	1.0887300	5.2673188	-2.9262981
Pt	-3.1118674	6.4565349	0.6050240	Н	-5.3069297	0.4205036	-7.2105026	С	0.8131378	6.0576194	-2.2468968
N	5 7025343	1 0124193	-5 3433493	N	-2 9432759	2 4170286	-6 7082417	ć	0 1339595	8 0408975	-0 4872071
	5.7020010 E_C1CCC01	2 4461120	E 0000ECC	N	4 5005401	1 4024646	E E401700	0	0.2000000	5.7027/07	0.0077150
č	4 5077674	2.4401135	-3.2203300	11	-4.JJZJ421	2 5201102	-J.J401782	C	0.0004040	7 2470270	-0.8577130
C	4.39//0/4	2.0420023	-0.3100337	C .	-3.1411331	2.5261165	-3.6003634	C .	0.0201910	1.34/93/0	-2./1/2200
N	4.2312102	1.5803967	-6.9088399	0	-1.9065360	-1.9325243	-/.139236/	C	0.2/919/4	8.3508986	-1.82622/4
С	4.9271050	0.5231104	-6.3684387	0	-3.7804896	3.4769913	-4.8278854	N	0.3217386	6.8012535	-0.0285131
Н	6.5990491	2.8998560	-5.3505532	C	-4.5480034	-1.8682657	-6.0002969	Н	0.7371405	7.5627542	-3.7687543
Н	5.0071280	3.5137772	-7.0730397	Н	-5.5042518	-1.8426194	-6.5288870	Н	0.1211173	9.3657162	-2.1573561
Ν	5.0017854	2,9270906	-4.0052388	н	-4.0137213	-2.7701151	-6.2786341	н	-0.1104135	8.7726502	0.2628332
N	3 5468546	3 5025167	-5 5794675	C	-5 6431233	1 2782448	-4 6339824	C	0 8581102	4 4782948	-0 2857013
ĉ	3 8109405	3 5671452	=4 2364043	U U	-6 5550169	1 1169256	-5 2100992	c c	1 1/13500	2 1947636	1 2442472
0	4 0042260	0. 0240700	-4.2304043	п	-0.3330103	2.2127400	-3.2100392	C	1.1415555	2.194/030	1.2442472
0	4.8943260	-0.6348709	-6./5855/8	н	-5.7243039	2.212/480	-4.0895/86	C	1.1965562	3.2899984	-0.9044837
0	3.1192558	4.1234412	-3.3909972	С	-5.6277684	-0.8391141	-0.2580252	N	0.6684401	4.4885316	1.0460223
N	3.5806880	-3.5966021	1.5775869	H	-5.5133083	0.1678157	0.1298066	C	0.8171536	3.4040859	1.8271262
С	4.1897723	-2.6609935	2.4892160	Н	-6.6335078	-1.1989625	-0.0316165	C	1.3331484	2.1262924	-0.1396171
С	5.2687287	-1.9610688	1.6305742	C	-1.2164053	0.4121632	-8.6860307	Н	1.3539925	3.2685394	-1.9693292
N	5.1002954	-2.5549872	0.3239071	H	-1.6556834	0.8668489	-9.5755927	н	1,2820808	1.3235394	1.8607768
C	4 1676511	-3 5709807	0 3329532		-0.8717043	-0.5866051	-8 9308756		0 592/361	3 6838069	3 2450426
U U	4 5042080	-2 1061204	2 2540657		-2 1444566	2 5000507	-7 1020202	č	0 1060922	4 4015156	5 9500067
п 	4.3942080	-3.1001294	1.0000040		-2.1444500	1.2012001	-7.1939393	C	0.1000823	4.4010100	3.8300007
н	6.284/66/	-2.1244996	1.9908842	н	-2.33//595	4.3613291	-6.5533222	C	0./0/1/84	2./35580/	4.2458631
N	3.3464577	-1.5708284	2.9150487	Н	-2.4477384	3.7520717	-8.2125052	N	0.2440682	4.9/88400	3.5468303
N	4.9234942	-0.5647451	1.7268844	C	-2.0753063	-5.2866479	1.7608421	C	-0.0071124	5.3135299	4.8174726
С	3.8320521	-0.3455964	2.5298643	Н	-2.5682994	-5.6219360	2.6742286	C	0.4669654	3.0965812	5.5618920
0	3.9282661	-4.3336880	-0.5919384	Н	-1.8588440	-6.1467812	1.1367702	Н	0.9668632	1.7206634	3.9902785
0	3 3893680	0 7436388	2 8708454	C	-2 4352584	-2 0278912	3 1912748	н	-0 3136363	6 3342656	4 9800313
N	-0.8224128	-4 6775540	2 1165994	U U	-2 /35/195	-0.9671985	3 /178970		0.5534805	2 3636890	6 3501860
11	-0.0224120	-4.0773340	2.1103334	п	-2.4334193	-0.9071985	4.0105471	п 	0.0077000	2.3030890	0.3301800
C	-0.0505515	-3.0210091	3.2391303	н	-2.8949943	-2.5/159/9	4.01654/1	н	-0.0977280	4.7210148	0.0003139
C	0.8789517	-3./180811	3.4169298	С	-5.2654971	-4.0//0498	-1./263951	С	1.6503012	0.8462391	-0.7795572
Ν	1.3757970	-4.3825342	2.2312683	Н	-6.3064129	-4.2026811	-1.4273422	C	2.1777428	-1.5991283	-2.0461399
С	0.3745156	-5.0122150	1.5283132	H	-4.9281057	-4.9776410	-2.2275231	C	2.3880655	0.8142823	-1.9629835
Н	-1.1580911	-4.2436389	4.1298089	N	-0.7287941	3.2567256	-7.1939398	C	1.1755067	-0.3453343	-0.2288025
Н	1.2619721	-4.2022568	4.3149659	С	-0.0408427	2.6211074	-8.2892430	С	1.4431882	-1.5311821	-0.8780336
N	-1.0630837	-2.4441584	3.0634475	ĉ	1.4466707	2.9461161	-8.0176019	c.	2.6254665	-0.4005042	-2.5674151
N	1 1122002	-2 2002//1	3 4767856	NT NT	1 /125100	3 5870600	-6 7195395		2 7831942	1 71/1711	-2 4043792
	-0.0246452	-1 5642201	2 2570005	IN C	1 1 2 0 2 5 0 2	2 0171105	-6 2020017	H II	2.70J100Z	-0 2561275	0 6615710
0	-0.0240453	-1.3043201	J.ZJ/9905		0.1302383	2.01/1102	-0.202901/	н	0.0004419	-0.33012/5	0.0013/10
0	0.5225833	-3./685962	0.5/93950	Н	-0.4083531	3.00/9/12	-9.2394113	F	0.9338849	-2.6/23415	-0.3/32917
0	-0.1055211	-0.3412386	3.2622563	H	1.8910385	3.6131126	-8.7563338	F	3.3057371	-0.4219906	-3.7308701
N	-4.4598412	-3.9142159	-0.5451025	N	-0.0656652	1.1760395	-8.2866630	Н	2.3759087	-2.5395700	-2.5345253
С	-4.8675632	-3.1076135	0.5761822	N	2.0884217	1.6594681	-8.0490601	Pt	0.1695611	6.1896293	1.9067695
С	-3.8487003	-3.4857183	1.6798682	С	1.1945802	0.6292942	-8.2259006				

12. References

- 1 F. Diederich, P. J. Stang and R. R. Tykwinski, in *Modern supramolecular chemistry*, Wiley-VCH Verlag GmbH & Co. KGaA, 2008.
- 2 W. L. F. Armarego and C. L. L. Chai, *Purification of Laboratory Chemicals*, Butterworth-Heinemann, 2012.
- 3 K. Kotturi and E. Masson, *Chem. Eur. J.*, 2018, **24**, 8670–8678.
- 4 E. O. Stejskal and J. E. Tanner, J. Chem. Phys., 1965, 42, 288–292.
- 5 D. H. Wu, A. Chen and C. S. Johnson, J. Magn. Reson. Ser. A, 1995, 115, 123–126.
- 6 C. S. Johnson, Prog. Nucl. Magn. Reson. Spectrosc., 1999, 34, 203–256.
- 7 P. W. Kuchel, G. Pagès, K. Nagashima, S. Velan, V. Vijayaragavan, V. Nagarajan and K. H. Chuang, *Concepts Magn. Reson. Part A*, 2012, 205–214.
- 8 S. Grimme, J. Chem. Theory Comput., 2019, **15**, 2847–2862.
- 9 P. Pracht, F. Bohle and S. Grimme, *Phys. Chem. Chem. Phys.*, 2020, 22, 7169–7192.
- 10 S. Spicher and S. Grimme, Angew. Chem., Int. Ed., 2020, 59, 15665–15673.
- 11 S. Grimme, C. Bannwarth and P. Shushkov, J. Chem. Theory Comput., 2017, 13, 1989–2009.
- 12 C. Bannwarth, S. Ehlert and S. Grimme, J. Chem. Theory Comput., 2019, 15, 1652–1671.
- 13 M. Brieg, J. Setzler, S. Albert and W. Wenzel, *Phys. Chem. Chem. Phys.*, 2017, **19**, 1677–1685.
- 14 A. V. Onufriev and D. A. Case, *Annu. Rev. Biophys.*, 2019, **48**, 275–296.
- 15 TURBOMOLE V7.2.1 2015, a development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989-2007, TURBOMOLE GmbH, since 2007; available from http://www.turbomole.com
- 16 R. Ahlrichs, M. Bär, M. Häser, H. Horn and C. Kölmel, *Chem. Phys. Lett.*, 1989, **162**, 165–169.
- 17 M. Sierka, A. Hogekamp and R. Ahlrichs, J. Chem. Phys., 2003, 118, 9136–9148.
- 18 P. Deglmann, K. May, F. Furche and R. Ahlrichs, Chem. Phys. Lett., 2004, 384, 103–107.
- 19 A. Klamt and G. Schüürmann, J. Chem. Soc. Perkin Trans. 2, 1993, 799–805.
- 20 A. Klamt, J. Phys. Chem., 1995, 99, 2224–2235.