Electronic Supplementary Information

Elucidation of ustilaginoidins biosynthesis reveals an unrecognised class of ene-reductase

Dan Xu,^a Ruya Yin,^a Zhiyao Zhou,^a Gan Gu,^a Siji Zhao,^a Jin-Rong Xu,^b Junfeng Liu,^a Youliang Peng,^a Daowan Lai^{*a} and Ligang Zhou^{*a}

^{a.} State Key Laboratory of Agrobiotechnology, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China. E-mail: dwlai@cau.edu.cn; lgzhou@cau.edu.cn

Department of Plant Pathology, College of Plant Protection, Northwest A&F University, Yangling
 712100, China

Table of contents

General information1
Experimental Procedures3
Strains, plasmids and culture conditions3
Bioinformatics
Amplification of the homologous knockout fragment3
Construction of the sgRNA vectors for the gene knockout3
Transformation of Ustilaginoidea virens P13
Selection of knockout transformants3
Sequences of cloned genes4
Construction of <i>A. oryzae</i> expression vectors7
Transformation of <i>A. oryzae</i> NSAR18
Fermentation and extraction protocols8
Feeding experiment8
Expression of UsgR in <i>Saccharomyces cerevisiae</i> BY4741, and <i>Pichia pastoris</i> GS115
Preparation of microsomes from <i>A. oryzae</i> -UsgR and <i>in vitro</i> enzymatic reaction.9
Preparation of UsgR-containing microsomes from recombinant yeasts and in
vitro enzymatic reaction
<i>In vitro</i> enzymatic reaction assay using cell-free extract of AO- <i>usgL</i>
Purification of compounds 1-4, and 910
Characterization of compounds10
Tables11
Table S1. Blastp search of UsgR11
Table S2. NCBI accession numbers of the protein sequences from publicly
available genomes14
Table S3. Fungal strains used in this study15
Table S4. Plasmids used in this study 16
Table S5. Overview of transformations in A. oryzae NSAR1 with different
combinations of genes17
Table S6. Strains, substrates, and media in feeding experiments
Table S7. Media used in this study19
Table S8. Primers used in this study
Table S9. Results of expressing UsgR ⁷⁶⁻²⁷³ and UsgR ¹⁶⁰⁻²⁶⁴ in different expression
vectors and strains23
Figures24

Fig. S1 Multiple sequence alignment of previously reported ACPs from nrPKS24
Fig. S2 Conserved domain analysis of UsgR
Fig. S3 TMHMM analysis of UsgR26
Fig. S4 Phylogenetic analysis of UsgR27
Fig. S5 Tblastx comparison of the <i>usg</i> BGC
Fig. S6 Schematic of gene knockout
Fig. S7 Selection of knockout transformants by PCR
Fig. S8 Overview of <i>A. oryzae</i> heterologous expression vectors constructed in this work
Fig. S9 LC-MS analysis of <i>in vitro</i> dimerization catalyzed by UsgL (24 h, λ =
280 nm).
Fig. S10 The atropselectivity varied with different concentration of Usel. 39
Fig. S11 LC-MS chromatograms of feeding experiments in AO-usaR (2 d, λ =
280 nm)
Fig. S12 LC-MS chromatograms of feeding experiments in AO-usaO (2 d, λ =
280 nm)
Fig. S13 LC-MS chromatograms of feeding experiments in AO-usaM (2 d, λ =
280 nm)
Fig. S14 HPLC-DAD analysis of $\Delta usgO$ and wild-type strain (WT) cultured on
different media42
Fig. S15 HPLC-DAD analysis of $\Delta usg M$ 42
Fig. S16 HPLC-DAD analysis of $\Delta usgD/\Delta usgL$ 43
Fig. S17 HPLC-DAD analysis of $\Delta usgM/\Delta usgD$ 43
Fig. S18 HPLC-DAD analysis of AO- <i>usgPDRMO</i> (EXP15), AO- <i>usgPDRM</i> (EXP12) and
AO- <i>usgPRM</i> (EXP10)43
Fig. S19 HPLC-DAD analysis of AO-usgPDRL (EXP13 in Fig. 3)44
Fig. S20 HPLC-DAD analysis of <i>in vitro</i> reactions of AO- <i>usgL</i> cell-free lysate (EXP L10, L5)44
Fig. S21 Two truncated sequences of UsgR45
Fig. S22 Induced expression of UsgR ¹⁶⁰⁻²⁶⁴ detected by SDS-PAGE electrophoresis.45
Fig. S23 LC-MS chromatograms of feeding experiments in <i>E. coli</i> expressing UsgR ¹⁶⁰⁻²⁶⁴
Fig. S24 HPLC analysis of the feeding experiments in <i>A. oryzae</i> -UsgR ¹⁶⁰⁻²⁶⁴ 46
Fig. S25 In vitro reaction of microsomes with 2. A) pPIZGM-usgR P. pastoris
GS115, B) pYES2-usgR S. cerevisiae BY4741, C) pTYGS-usgR A. oryzae47
Compound characterization data48
References

General information

Reagents

All reagents and solvents were purchased from Sigma and Fisher. The solvents used for LC-MS and HPLC were chromatographic grade. Molecular biology kits were used according to the manufacturer's protocols. All enzymes were purchased from NEB, Sigma and Takara.

Media

All media were prepared using deionised water and autoclaved at 121°C for 20 min except for YPAD (115°C for 20 min).

LC-MS

LC-MS was performed on a QTOF 6520 mass spectrometer (Agilent) coupled to a HPLC system with a Phenomenex C18 column (i.d., 150 mm × 2.0 mm, 3 μ m) eluting at 0.25 mL/min. Mass detector operated simultaneously in ESI⁺ and ESI⁻ modes between 50 and 1400 *m/z*. Solvents were **A**: H₂O containing 0.1% formic acid, and **B**: acetonitrile containing 0.1% formic acid. A gradient elution was performed as follows over 19.5 min:

Time (min)	% B
0	30
10.0	90
13.0	90
13.1	30
19.5	30

HPLC-DAD analysis

HPLC analysis was performed on a Shimadzu instrument equipping with a SPD-M20A photodiode array detector using a Phenomenex C18 column (i.d., 250 mm × 4.6 mm, 5 μ m). Solvents were **A**: H₂O (containing 0.02‰ oxalic acid), and **B**: methanol.

Time (min)	% B (condition 1)	% B (condition 2)
0	70	60
5.0	70	60
25.0	100	100
35.0	100	100
35.1	70	60
40	70	60

Conditions 1 and 2: A gradient elution was performed as follows over 40 min eluting at 1 mL/min.

Conditions 3, 4 and 5: A gradient elution was performed as follows over 65 min eluting at 0.5 mL/min.

Time (min)	% B (condition 3)	% B (condition 4)	% B (condition 5)
0	70	60	70
5.0	70	60	70
45.0	90	100	100
65.0	90	100	100

HRMS and NMR

HRESIMS was obtained using a QTOF 6520 mass spectrometer (Agilent) coupled to a HPLC system. ¹H, ¹³C, and 2D NMR spectra were recorded using the Bruker 500 NMR spectrometer. Chemical shifts were expressed in δ (ppm) referencing to the solvent residual peaks, and coupling constants (*J*) in Hertz.

Experimental Procedures

Strains, plasmids and culture conditions

Ustilaginoidea virens P1 and knockout vector pmCAS9:tRp-gRNA (see Tables S3 and S4) were used for gene knockout, which were generously provided by Prof. Jin-Rong Xu (Purdue University). The transformants and wild-type strain were grown on PSA plates at 28°C. For conidia production, the strain was cultured in 100 mL YTD medium at 28°C for 5 days with 175 rpm shaking. For conidia germination, the strain was cultured in 100 mL PSB medium for 16-20 h. *Aspergillus oryzae* NSAR1 and expression vectors pTYGSarg/met (see Tables S3 and S4) were used for heterologous expression, which were generously provided by Prof. Russell Cox (Leibniz University of Hannover). The transformants and wild-type strain were grown on DPY plates at 28°C. For shaking culture, the strain was cultured in 100 mL DPY medium at 28°C with 150 rpm shaking.

Saccharomyces cerevisiae CEN.PK (see Table S3) was used for yeast recombination. The strain was cultured on YPAD plates at 30°C.

Escherichia coli DH5 α which was used for heat shock transformation, was cultured in LB at 37°C. Ampicillin (100 µg/mL) was added to the LB agar plates for selection.

Bioinformatics

Gene cluster was predicted with antiSMASH^[1]. Domain prediction was conducted with the NCBI Conserved Domain Database^[2].

Amplification of the homologous knockout fragment

Genomic DNA was isolated from *Ustilaginoidea virens* P1 with CTAB method^[3]. ~1 kb upstream and downstream flanking sequences of the target genes were amplified using primer pairs 1F/2R and 3F/4R, respectively (Fig. S6). The selection marker G418 was amplified from vector pFL2 with primer pairs GENF/GENR. Hygromycin was amplified from vector pKOV21 with primer pairs HPHF/HPHR. Three fragments were fused via double joint PCR^[4]. Primers see Table S8.

Construction of the sgRNA vectors for the gene knockout

gRNA spacers were designed with the sgRNA designer website^[5]. The spacer sequences after denaturation and renaturation were cloned into the BsmBI-digested pmCas9:tRP-gRNA vector by Golden Gate Cloning^[6,7]. The resulting constructs were transformed into *E. coli* and verified by sequencing.

Transformation of Ustilaginoidea virens P1

Homologous knockout fragment and the sgRNA vector were transformed into *Ustilaginoidea* virens P1 using PEG-mediated protoplast transformation, which were performed as described by Zheng^[8]. Transformants were selected with 700 μ g/mL geneticin or 200 μ g /mL hygromycin.

Selection of knockout transformants

Transformants were screened by PCR with primers 5F/6R for target genes, and further verified by PCR with primer pairs 7F/G855R (7F/H855R) and G856F/8R (H856F/8R) for homologous

recombination sequences (Fig. S6, S7). Primers see Table S8.

Sequences of cloned genes

>uvpks1_cDNA_Ustilaginoidea_virens_P1

GGGCCCAGTTCCCATTTCGTCCAACATTGAGGAGCTGTTGAACGCTGACAAGGAATCGACCACGTCCAACTATGCGCTGGA CAGCTTCTTTTTCTGCCTCTGTCAGATATCGTCCTTTGTCTCCCACCTTAATCGATCCGGGACGTCGTATCCCCGTGCATCTTCT TCTTGCCTGGCGAGCCGATGCATCGGCCTGCTCGCTGCCGTGGCCATCAGCTGCAGCGAGAACGTGTATGACTTGGTCTCGA TAGCCCCCGAGGTTGTCGCTTTGGCCTTTAGGGTCGGGCTCCTGGTGCAGGGCAAAACCAAATCCGTCACCCTCAGCTCCGG AAGGGCGCACCCGCCCTCAGCCGAGTCTACGTCAGCGCCGTGGGCAGCGGCACAATCACGCTCTCCGGCCCTCCTGCCCAGT TGAAGGAGTTCTTGTCCCACCACAGCGACCTCAAGGCCGGAAAGATCCAGGTTGGCGGCCTGTTCCACTCGCCGAGCCTTTA CACCGACGCCGATGTGTCGGGTCTGGTCGCCTCGGCGACTGCGCACCTGCGGGGCAGAGTCGCCCGCATCCCCGTCATCTTG CGCCACCAGATGAGGTGGGATCTTGCGGCCGAAAGAGTCATCCGCGCCATCAGACGCTCGGGCTGCTCGGCTGTCGAGCTC CTCCCCTTCGTGGCGGGAAGCGTCGAGGGCCTGTCGTCGTCGTCCTTCGCGCCACCATGGGCATCGACCGCGTGGACGTGCCCA ACACGGCTGGCGTGGACTCTTCCTCGCGCGGCAGCGGCCATGCCGACGCCGAGAAGCAGCCCGCCAGGTCCAAGATTGCCA TCATTGGCTTCTCCGGCCGGTATCCCGAGGCCGACGACGACGAGGAGTTCTGGGAGCTCCTGGCCGCAGGACTCGACGTCC ACAGGGAGATTCCCAAGGAACGATTCGACCCCTACCTGTACTTTGACCCGACCTGCAAAAAGAAGAACACCAGCGGCGTCAC AAAGGGCTGTTTCGTCCGCAACCCCGACCTCTTCGACTCGAGGTTCTTCAGCATGTCGCCCAGAGAGGCGGACCAGGCGGAT CCCGCCCAGAGGTTTGCCTTGATGACGGCATACGAGGCCATGGAGATGGCGGGATTCGTGCCGGACTCGACGCCGTCCTCG CAGAGGAGTCGCGTGGGCGTCTTTTACGGCACCGCCAGCGACGACTACCGCGAGATCAACGCCGCGCAAAACGTCGACACG TACTTCGTCCCCGGCGGGGGGCCGCCCTTCCTGCCGGCCCGCATCAACTACCACTTCCGATTCAGCGGGCCGTCGTTCGACGT CGACACGGCGTGCTCGGCCTCGCCGCCGCCGCCGCCGCCGCAGGGCCGAGGACTGCGACGCCGCCATC GCGGGAGGCACAAACATCCTCACCAACCCCGACAACTGGGCCGGGCCTGGACCGGGCGCACTTCCTGTCGCGCACCGGCAAC TGCAACACCTTTGACGACGCCGCCGACGGCTACTGCAGGTCCGACACTGTCGCCACAGTCATCTTGAAGAGGCTCGAGGATG CTCTGCTGGATGGGGATCCGGTGTTCGGAACCATCTTGGGAGCCTACACCATCCGCCGAAGCCGTGTCCATGACCCG GCCGCACTCGGGTGCCCAGAGGGCCATTTGCACGCGCATCCTCCGATCCTCCAACGTCGACTGCTCCGAGGTCAGCTACGTG GAGATGCACGGAACGGGAACCCAGCACGGAGACGCTACCGAAATGGACTCTGTCCTGAGCGTCTTTGCGCCCCGACACCACG TCGCGCAAGAGCCCTCTGTTCATCGGTTCGGTCAAGGCCAACGTCGGGCATGCCGAGTCGGCCGCTGGCATCTCGTCGCTGG TCAAGGTCCTTCTCATGATGCAGAAGAACGCCATCCCGCGCCACGTCGGCATCAAGACGAAGCTCAACAGGAACTTCCCCAA GGATCTTGTCCAGCGAAACGTCCACATCTCCCTGGAGAACAGGTCGTGGCCACGGCCCGACCCCAGGGTCGTCCCCGCACGG CAGGAGGGTCTTTATCAACAACTTTGGCGCCGCCGGCGGCAACTCGTCCGGCCGAGGACGCCCCCGTCAGGCCGGC GCCGGAGCGAGACGATGCCTCGTGGCCCGTCCACGCCGTGGCCGTCTCGGCAAAGACGCAGAACTCCTTCAAGGAAAACAT ACTACAGCTACCGCACGGCGGTGGTCGGCTCGTCGGTTGATGAGATCCGGAATGCGCTGCATGACGTGGCAGCCAGAGAG AAGCACCTGTCCACGGCGGGTGGTGGACCTCCCATCGGCTTCAGCTTCACCGGCCAGGGCTCTCAGTACCTGGGCATGGGC AAGAAGCTGCTCTCCTTGCCGCAGTTCGAGTCGCTCCTCGCGGGCCTCGACGGCATCGTTCGCTTGCAGGGCTTCCCGTCCAT CCTGGACGTGGTGAGCGGCAAGGCCGAGACGCCGATTGAGGACATGAGCCCCGTCAAGGTGCAGTTGGCGATAGCCTGCC TGGAGATGGCCCTGGGGAAGTTCTGGATCGCTCTCGGCGTCGTCCGCAGATTGTCGTCGGCCACAGCCTCGGCGAGTACG CGGCGCTGAACATTGCCGGCGTGCTCTCCGACGCGGACACGATCCACCTCGTGGGGACCAGAGCTCGCCTCTTGGAGAAGG CGACCTGGACATTGCCTGCATCAACGGACCCGAGGACACCGTGGTCGCTGGCTCCAACAGCCAGATCGAGGCCTTCAAGGA

CCTCCTCAACGGCAGGTCCGTCAAGTCCACCCAGGTCAAGGTCCAGTTCGCCTTCCACTCGGCCCAGGTCGAGCCCATGCTC GAGGCTTTCCGACAAGCCTGCGGCGCGCAGTCGTCGTCAACGAGCCCAGCATCCCCGTCATCTCGCCGCTGCTGGGCCGCGTCA TGAAGAGCGCCTCGGACATTGGGCCGGTCGGCGACTACCTGGCCCGTCACTGCCGCGAAACCGTAAACTTTTGCGAAGGGG GCTTAGGTCGACCCTGGGGTCCTCGACACAGACGATCCCCAGTCTGCGGCGCGGAGAGGATGACTGCAAGATCTTTACTCCC GCGCTGGCGAAGCTCTACGACAGCGGACTGGCCATCAACTGGGGCGAGTACCACGCCGGCGCGCAGCAGACCAAGCAGGT TGTTCTCGCGAATGCTGGAAAAGTCGTCGGTGCCCTTTGACAAGTCGGACCTGGGGATCGAAGTGGCCGACATGGCCGCAG GGTCCTTCTCCATGTCGAGCATCTCGTCAGCCGACGGGAAGCCGACGGCCAAACACGCAAAGTGCTCGGGCTTCTTCACCGA CAAGAGCCGGTGGAAGTCGGAATGGAAGCGACGCGATTTCCTCGTCAAGTCGAGAATCCAGGAACTCCGCAGCTCGGTCCA TGACGACTCGGGGCTCCGTGCACATGATCAAGACGGGCATGTTTTACAAGCTCTTCACCGCGCTCGTGGATTACCGCGATTCCT TCAAGGGGTGCCGCGAGCTCGTCATGCGCTCGGCCGACCTGGAGTCGACCGCCAAGGTCAGGTTCAACACGCCGGCGGGG ACGGCGGACAAGTGGAAGCTGCCGCCGCCGCACTGGCTCGACAGCTTGGGCCAAATCACGGGCTTCACGATGAACGGCAACGA CGAAGTCGACTCCAAGAACCAGGTCTACATCAACCACGGGTGGGACAACATGAAGATTTGCGGCGTCTTGTCCGACCAGAC GACGTACAACACCTACCTCAAGATGCAGCCCAAGGACAAGGGCTCGTACTGCGGCGACGTGTACATTTTCAACCAGGACATG GACGAGGTGGTTGCCGTGTACGAGGGCGTGACGTTTGCTGCCGTGCAGAGAAAGGTGCTTGATCTGGTGCTTCCCAAGCCC GCAGCAGCAGCAACCAGCACAGCCCGTTGCTGCCAGTCAGGAATCCGGAATGGACGACATGCCGCCGACCCTGGTTCCGTC GGAAAAGAAGGACGTGCCATCAGAGAAGCTCAAGGTCATCATCGCGGAGGAAGTCGGGGCGTCCATTTCCGACGTGCAGG ACGACGCGGAGCTCGCTCCCTTGGGGGGTGGATTCGCTGCTTGCGCTCACAATCTCGGATCGCATGCTCGAGGAGCTGGGCCT GCGGGTCGACTCGAGCGCCTTCATCTCGTGCATCACGGTTGCCGAGCTGGTGCGGCACATACTGGGGTCGTCGACGCCGTC GTCCGACTCTGGCCCGGCAACGCCGTCCATCACGCCGCTGCAGGAGCCTGACTTTGGGACGTCTGCCCTGTCCGAGAGGATC GAGAGCGCATTCGCGTCGGTGCAAGTCGAGTCGGACCGATGTTCGGACACGACGCAGTATGGAGACGAAAAGGCGGACGC GGTGACCAAGTTCGCCAGTATCAAACCCCTGGAAGCAGTTGAGATCCCGCCTGCGACCTCGGTCCTGCTGCAAGGCAACCCG CGGACTTGCACCAGGAAGGTATGGCTGTTCCCCGACGGATCCGGCTCGGCTGCGTACATGCCGCTGCCAGACGTGGAT CCCGCCAAGGTGGCCATCTACGGGCTCAGCAGCCCCTTCATCAAGCACGGCCACGGCCAAGCCGTGCCAGTTTGGCGAG GCTCTGCGCCTACGACGCCGCGCGAGAGGCTGGTGGCCGACGGGGAGACGGTCGACGCGCTGATCCTGATCGACAGCCCCA ACCCCATCGGGCTCAAGGAGCTGCCGCCGCGGCTGTACAACGAGCTGTCGAGACTCAACGTGTTCGGGGCCGAGCCGGGG GCCAAGGTGCCGGAATGGCTGGTGCCGCACTTCAAGCTGTTTGCCGACATCCTGGTGACGTGCAAGCTGCGTCCGTGGCAG GCGGCCAAGCCTCTGCCCGCGTGGGCGCCTCTGGGCGAGGAACGGCGTGGACGAGAACCAGACGATTGAGCGCTGGCCGAG AGCGATTTCCTGCGCACCATAATGGAGTCTACCGGCGCGGGTATCTAA

>usgD_cDNA_Ustilaginoidea_virens_P1

GCTGCGGAGTAG

>usgR_cDNA_Ustilaginoidea_virens_P1

>usgM_cDNA_Ustilaginoidea_virens_P1

ATGCGGGCTACGAACCAGCCTCGACAGCTCGTTGTGGAGAAAAGAAGACGAGAAGGCATCTCGAGCTTTTCAGTGATGACA CCCTTGTATGGAAATGACATGACAGAGCCATTGAAGATGGATATGCTCCAATTTTTCAGAGACGCACTCGTCCAAGAGACGG GGCGCCATGTTGACAATGACGACTTTGACGCTCTCTTCTCCGAGCTTGGCGCCGATCCCCTTGTTGGTGTTGCTGTCATTGAA CGTGTAACCAACAGTACGGGGATCGAATTTCCCCGCATCTCCCTTAGGGATTGCAAGAGTTTATCCGATATCGCATCCGGATT ACGCAAGATGAGTGGTAGTGGTAGTCATGAGACGGTTGAAAAAGCGCCGCGCGCTCGTCCGCCTCGTGAGGCCCCATT GCCAAGAGGAAATGTGAGGAATGCCTTTCGGGACGCATGCAGCCATGTACAGGAATTCCTGCGAAAGGCCGGGAGTGCCA ACTTCTGGAGCAGAGTGTACCCTGCGCAGCGTCAGTTGGTACTGGCCTTTGTCAACGATGCATTTGATCGATTAGGATGCTCC CTGGCCGATATGCCGGTAGGGACCATAGTAACGTATCCTCGGGGCGTTTTGGACAAGCACCGTCGTGTGTTTGACGGTGCCA TATTCGAGATCCTGGCAGACGGGGGGGCCTTGTCAACGTGGATCCGGAGCTTGGCGCCATTCGGACATCTACCGTCGTCGACAA GACACCGCCTCAGCAGATTCTAGCCACGATCATCCTTGAGCATCCCCAGTTTGCCAATCTGCACCGCCTTTTGAATGTTACCG GATCGCAGTTTGCGGAATGTCTCACCGGGCGTCTCGACCCTATCAAGCTGCTGTTTGGGAGGAGCAAAGACTTGCTTCAAGA CTTTTACACCAACGCGCCCATGTCCCTGGCGGCCTCACTGCACCTTGTTGCCGTGATCAAGCGTCTCCTCGCTGATGGAGAGT ACAGGCCAGGCAAAAGCATCGACATCTTGGAAGTTGGCGCGGGATTGGGTGGCACGACCAGGTTCGTGGTGGAAGCGCTC ATCGAAGCGCAAGTTCCGTTCAGATATGTGTACACGGACATCTCAGCATCCTTTTTCGCGGCGTCGAAGAATCGGTACAAGA GCCTACCGCCCGGCAGTAGTATGGAGTTTCTCGTCCTTGACGTTGAAAAACCACCGCCCGAGACACTGCTCGGCGGCGTTTGA CGTGGTTGTCGACGAATTGCATACATGCTACAAGAAACCTGGGCGTGTCTTGCTCCAACGTCCGCAAGCTGTTGCGAGGC GTTCGAGGATGGGAGAAAGCATTGCACCGTCGACGAGACGGTCTGGGAGGAGAAATTGCAGCTGTCGGGGTTCAGTGACG TCTTGTGGGCTGATGTGGAGGGCGATGACAAATCCAGCCTGCAGCTTTTGGTAGCCTGCACAGACTAA

>usgL_cDNA_Ustilaginoidea_virens_P1

>usgO_cDNA_Ustilaginoidea_virens_P1

TGTTGTCCTCGATAAGCAGGGTTTCTTTGGAGGCAACTCCACAAAGGCCACATCCGGTATCAACGGCGCCTTGACCAGAACC CAAGTCGAGCACAACATTGGAGACAGCGTCAAGCAGTTCTACGATGATACCCTCAAATCGGCCCGTGACAAGGCTCGCCCCG ACCTCATCAAAGTTCTCACATACAAATCCGCCGCTGCCGTTGAGTGGCTGCAGGATGTCTTTGACCTTGATCTGACCCTGGTG TCCCGTCTCGGTGGCCACTCCCAACCCCGAACCCACCGTGGTCACGATGCCAAGTTCCCCGGCATGGCCATCACCTACGCTCT CATGCAGCGCATCGAGGAGCTTGCCGAGAAGGAGCCCCACCGAGTCCGGATCATCAAGAAGGCCCGCGTTACCTCGCTGAA CAAGCAAGCTAACAAGGTCACCGGTGTCACCTACGAACTGGACGGCAAGTCCGCCTCCGTCGATGGCCCCGTTGTTCTCGCC ACCGGCGGTTACGCCGCCGACTTTGGCGAGACGTCCCTGCTGCAGAAGCATCGCCCAGACACCATGGGCCTCGCCACAAA ACGGCACCCACGGCCACCGGTGACGGTCAGAAGATGGTCATGGCCATTGGTGGCAACGGCATCGACATGGACAAGGTCCAG GTCCATCCCACTGGTCTGGTCGACCCCAAGGATCCCGGATCCAAGTGGAAGTTCCTGGCTGCCGAGGCTCTCCGAGGCGAA GGCGGCATCCTCCTCAATGGCGACGGCGACCGATTCTGCGACGAGCTCGGCCACCGCGACTACGTCTCGGGCATGATGTGG AAGGAGAAGGACAAGAACAAGTTCCCCATCCGTCTTGTTCTCAACTCCAAGGCGTCCAAGACGCTCGACTTCCACACCCGCC ACTATTCCGGCCGCGGCCTCATGCGCAAGATGACGGGTAAGGAGCTGGCCAAGGAGATTGGCTGCAGCCCCGACCACCTGC AAAAGACTTTCCAGACCTACAACGCCATTGCCGAGGGCAAGCAGGAGGACCCGTGGGGCAAGAAGTTCTTCCACAACATGC CCCTCGACGTCAACGACGACGTCCACGTCGCCCTCATGGAGCCCGTCCTCCACTTCACCATGGGCGGAATCGAGATCAACGA CAAGGCCCAGGTCCTCAACCAGGACAAGAAGCCCTTTGACGGGCTCTTTGCCTGCGGTGAGCTGGCCGGAGGTGTTCACGG CGCCAACCGTCTCGGCGGCTCCTCCTTGCTTGGCTGTCGTCTACGGCCGGGTTGCCGGTGACTCGGCCAGCAACTACCTG TTCCAGCAGGCTCTGTCGGGAAGCGCCGCCGGTGCCGCTCAGCGTCTCGGCCAGATCTCTCTTCACCTCGATCCCTCCGCGCC CGGCAAGCTGACGGTCGAGTGGGCCCAACAGCAGCGGCTCAGGCTCCAGGCTCCGGAGCCGCTGCCGTCCAGCAGTCCAGCG CCGCTCCCGCCGCCGCCGCCACCGGTGAGTCCGCCGCCAAAGCCTCCGAGGCCTTCAAGATTCCCGAGACGGAGTACAC GGCTCGACGAGCACCCAGGCGGGCCTCAGGCCATCAAAAACTTCATGGGGCGCGATGCCACGGAGGAGTTTGAGATGTTG CACGACGATGAGGTCATCCCCAAGTACGCTCCCAACCAGGTCATTGGCCGTGTCAAGGGCGTTGAACCCAGCCTCGAGATTT AA

Construction of A. oryzae expression vectors

U. virens total RNA was extracted using Trizol reagent (Ambion) and subsequently converted to cDNA using HiScript 1st Strand cDNA Synthesis Kit (Vazyme) according to the manufacturer's instruction. The cDNA was used for amplification of ustilaginoidin biosynthetic genes by PCR (See

Table S8 for primers used in this study).

The genes *usgO*, *uvpks1*, *usgD*, *usgR*, *usgM* and *usgL* were cloned into the expression vectors pTYGSarg/met *via* yeast homologous recombination under control of the constitutive promoters PamyB, Peno, Padh or PgdpA (Fig. S8). The protocol of yeast homologous recombination was performed as described by Kahlert *et al.* 2019^[9]. Constructed plasmids were extracted from yeast cells using Yeast Plasmid Miniprep kit (Coolaber, Beijing, China) and transformed into *E. coli* DH5α competent cells by heat shock transformation.

Transformation of A. oryzae NSAR1

Spore suspension of *A. oryzae* NSAR1 was inoculated into 100 mL DPY liquid medium and incubated overnight. Cultures were collected by filtration over sterile miracloth and suspended in 10 mL enzyme lysis buffer (10 mg/mL lysing enzyme from *Trichoderma harzianum*). The suspension was incubated for 4 h at 28°C with 90 rpm shaking. Protoplasts were collected by filtration and centrifugation (3000 × g, 5 min). The protoplast transformation and transformant selection were performed as described by Kahlert *et al*^[9]. Transformants were selected on respective agar plates (CZD/S w/o arginine; CZD/S w/o arginine and w/o methionine; or CZD/S w/o methionine). For strains constructed in this study see Table S5.

Fermentation and extraction protocols

A. oryzae: Ten respective transformants were inoculated into 100 mL DPY medium and incubated for five days at 28°C with 175 rpm shaking. The cultures were homogenized using ultrasonication and separated by filtration under vacuum condition. The supernatant was extracted twice with ethyl acetate (2 × 100 mL) and the mycelia were extracted once. The combined EtOAc layers were dried over MgSO₄ and concentrated under vacuum at 45°C. The organic residue was dissolved in 1.5 mL methanol and analysed by LC-MS and HPLC.

U. virens: Transformants grown on PSA plates were inoculated into 100 mL PSB medium and incubated for five days at 28°C with 175 rpm shaking. 1 mL liquid culture was added to the rice solid medium, and incubated at 28°C for 1 month. The culture was extracted with EtOAc for three times and the combined EtOAc layers were concentrated under vacuum at 45°C. The organic residue was dissolved in methanol and analysed by LC-MS and HPLC.

Feeding experiment

A. oryzae transformants were inoculated into 100 mL DPY medium in 250 mL Erlenmeyer flask and grown for three days at 28°C with 150 rpm shaking. 0.1-0.2 g mycelia were harvested by filtration and resuspended with 1 mL DPY or sodium citrate buffer (100 mM, pH 6.0) in 2 mL microcentrifuge tube. The cultures were incubated with compounds (3 μL) for 48 h at 28°C with 150 rpm shaking (reaction combination see Table S6). The cultures were extracted with ethyl acetate and the solvent was evaporated under vacuum.

Expression of UsgR in Saccharomyces cerevisiae BY4741, and Pichia pastoris GS115

Yeast expression vectors PYES2-*usgR* and pPIZGM-*usgR* were transformed into *S. cerevisiae* BY4741, and *P. pastoris* GS115, respectively. The transformants were selected by PCR.

1) pYES2-usgR + S. cerevisiae BY4741: usgR was amplified from cDNA of U. virens P1 using stickyend PCR. The product was cloned into expression vector pYES2 digested with EcoRI and XhoI. The resulting plasmid pYES2-*usgR* was confirmed by sequencing and transformed into *S. cerevisiae* BY4741. A single colony was Inoculated into 50 mL SC-ura medium containing 2% glucose overnight at 30 °C with 200 rpm. The cells were centrifuged at 3500×g for 5 min. The pellet was resuspended with SC-ura medium containing 6% galactose to obtain an OD₆₀₀ of 0.4. 10 μ L compound **2** was added into 1 mL culture at 24 hours after galactose induction. The reaction was incubated at 28 °C for 2d and extracted with EtOAc.

2) pPIZGM-*usgR* + *P. pastoris* **GS115:** The plasmid pPIZGM-*usgR* was transformed into *P. pastoris* GS115 by electrotransformation. Induction expression of protein was performed according to the user manual of invitrogen (Catalog no. V190-20). The final concentration of methanol was 1% and the induction time was 3 d. The feeding experiment was the same as above.

Preparation of microsomes from A. oryzae-UsgR and in vitro enzymatic reaction.

For microsome preparation, the cell-free extract of AO-*usgR* was centrifuged at 100,000 x g for 90 min. The pellet was resuspended in 100 mM citrate buffer. To characterize the function of UsgR, the reaction was performed in 253 μ L volume containing 225 μ L microsomal fractions, 3 μ L compound **2** (10mg/mL), and 0.5 mM NADPH or NADH. The reaction was incubated at 28 °C for 24 h. The reaction was quenched by adding EtOAc, and EtOAc extracts were evaporated and dissolved in methanol for HPLC analysis.

Preparation of UsgR-containing microsomes from recombinant yeasts and *in vitro* enzymatic reaction.

The preparation of microsomes from recombinant *S. cerevisiae* BY4741 was performed as described by Ralston *et al.*^[10] The microsomal fractions were resuspended in 100 mM citrate buffer (pH 6.0).

The cell-free extract of recombinant *P. pastoris* GS115 was performed according to the user manual of invitrogen (Catalog no. V190-20). This fraction was centrifuged at 100,000 x g for 90 min. The pellet was resuspended in the 100 mM citrate buffer.

In vitro enzymatic reaction was performed as described for the microsomal fraction of *A. oryzae* (see above).

In vitro enzymatic reaction assay using cell-free extract of AO-usgL

Laccase-producing strain AO-*usgL* was incubated for 3 days in 100 mL DPY medium. Mycelia were harvested by filtration and washed once with sterile water. 0.1-0.2 g mycelia per 2 mL microcentrifuge tube was resuspended in 1 mL sodium citrate buffer (100 mM citrate buffer, pH 6.0) and disrupted by 0.4 g glass bead (0.5 mm diameter) with tissue homogenizer at 60 Hz (30 s with 1 min intermittent cooling on ice for seven times). Cellular debris was removed by centrifugation at maximum speed, 4°C for 1 hour. The supernatant was combined and used for *in vitro* assays.

The reaction mixture contains 250 μ L cell-free lysate and 3 μ L substrate (10 mg/mL in DMSO; except for **4**, 5 mg/mL). The reaction was carried out at 28°C, 150 rpm and incubated for 24 h. The assays were extracted with ethyl acetate for three times. The organic layer was evaporated under vacuum and dissolved in 100 μ L methanol.

For atropselectivity test:

The strain AO-usgL was cultured in DPY medium for 3d at 28°C and 200 rpm. Mycelia were

harvested by filtration and washed once with water. Then mycelia were re-suspended in 100 mM citrate buffer (pH 6.0) and disrupted by blender (30 s with cooling on ice for 30 s, repeat 7 times). The cell debris were collected by centrifugation (21, 000 g). The cell-free extract (supernatant) was concentrated by centrifugal filter (10kDa protein cutoff, Millipore), then fractionated using acetone precipitation as described by Obermaier *et al.*^[11] Fraction II was used for *in vitro* reaction. The precipitate was re-suspended in citrate buffer, and different volumes of the lysate were added to the reaction.

Purification of compounds 1-4, and 9

The double knockout strains $\Delta usgD/\Delta usgL$, $\Delta usgR/\Delta usgL$ and $\Delta usgM/\Delta usgD$ were grown on PSA medium at 28°C for 14 days. Then, several agar plugs containing mycelia were added into 100 mL PSB medium and incubated at 28°C for 7 days with 150 rpm shaking. The liquid culture was subsequently inoculated to the solid rice medium and incubated at 28°C for 1 month. The moldy rice was extracted with EtOAc for three times. The EtOAc extract was concentrated under vacuum at 45°C.

The crude extract of $\Delta usgD/\Delta usgL$ was chromatographed over silica gel eluting with CH₂Cl₂, CH₂Cl₂:EtOAc (1:1, v/v) and EtOAc to give six fractions (Fr. A-F). **1** (63.4 mg) was purified from Fr. C by semi-preparative HPLC eluting with MeOH-H₂O (50:50, v/v). **3** (23.4 mg) was purified from Fr. C by semi-preparative HPLC eluting with MeOH-H₂O (65:35, v/v).

The crude extract of $\Delta usgR/\Delta usgL$ was chromatographed over silica gel eluting with CH₂Cl₂, CH₂Cl₂:EtOAc (1:1, v/v) and EtOAc to give six fractions (Fr. A-F). **2** (43 mg) was purified from Fr. B by semi-preparative HPLC eluting with MeOH-H₂O (50:50, v/v). **4** (13.5 mg) was purified from Fr. B by semi-preparative HPLC eluting with MeOH-H₂O (65:35, v/v).

The crude extract of $\Delta usgM/\Delta usgD$ was chromatographed over Sephadex LH-20 eluting with MeOH/CH₂Cl₂ (1:1, v/v) to obtain seven fractions (Fr. A-G). **9** (10.5 mg) was purified from Fr. D by semi-preparative HPLC eluting with MeOH-H₂O (65:35, v/v).

Characterization of compounds

The molecular formula for each compound was obtained by HR-ESIMS. Structure elucidation was performed by analysis of the UV, MS, and NMR data, and comparison with the authentic standards isolated previously by our group^[12, 13] where applicable, or with the literature data.

Tables

Table S1. Blastp search of UsgR

The BLASTP search identified 97 putative enzymes (amino acid sequence identity \geq 30%, coverage \geq 80%, e-value \leq 1e-10) from over 73 microbial species

Gene tag	Microbial species	Habitat	Genome
MGU_10267	Metarhizium guizhouense ARSEF 977	Insect	v
MAJ_07352	Metarhizium majus ARSEF 297	Insect	v
UCDDA912_g04898	Diaporthe ampelina	Plant	v
MYCTH_113600	Thermothelomyces thermophilus ATCC 42464	Terrestrial	v
MAA_08367	Metarhizium robertsii ARSEF 23	Insect	v
H634G_10273	Metarhizium anisopliae BRIP 53293	Insect	v
MAN_09376	Metarhizium anisopliae ARSEF 549	Insect	v
MBR_06612	Metarhizium brunneum ARSEF 3297	Insect	v
X797_008469	Metarhizium robertsii ARSEF 2575	Insect	-
MANI_018949	Metarhizium anisopliae E6	Insect	v
MAC_01520	Metarhizium acridum CQMa 102	Insect	v
NA57DRAFT_49043	Rhizodiscina lignyota	Plant	v
BDR25DRAFT_301033	Lindgomyces ingoldianus	Plant	v
V490_05392	Pseudogymnoascus sp. VKM F-3557	Aquatic	v
O988_01060	Pseudogymnoascus sp. VKM F-3808	Aquatic	v
V502_09231	Pseudogymnoascus sp. VKM F-4520 (FW-2644)	Aquatic	-
V497_06862	Pseudogymnoascus sp. VKM F-4516 (FW-969)	Aquatic	-
V495_02567	Pseudogymnoascus sp. VKM F-4514 (FW-929)	Aquatic	-
V496_09341	Pseudogymnoascus sp. VKM F-4515 (FW-2607)	Aquatic	-
V498_04060	Pseudogymnoascus sp. VKM F-4517 (FW-2822)	Aquatic	-
ASPZODRAFT_140511	Penicilliopsis zonata CBS 506.65	Terrestrial	v
W97_08614	Coniosporium apollinis CBS 100218	Terrestrial	v
AOQ84DRAFT_190463	Glonium stellatum	Terrestrial	v
PtrV1_09647	Pyrenophora tritici-repentis V0001	Plant	v
PTRG_10960	Pyrenophora tritici-repentis Pt-1C-BFP	Plant	v
SNOG_11160	Parastagonospora nodorum SN15	Plant	v
BDV96DRAFT_601282	Lophiotrema nucula	Plant	v
CC77DRAFT_1006940	Alternaria alternata SRC1lrK2f	Plant	v
CUC08_Gglean001050	Alternaria sp. MG1	Plant	v
AA0117_g2514	Alternaria alternata FERA 1177	Plant	v
PTTW11_06978	Pyrenophora teres f. teres W1-1	Plant	v
BDZ99DRAFT_458110	Mytilinidion resinicola CBS 304.34	Terrestrial	v
	Lophium mytilinum CBS 269.34	Plant	v
GT037_002153	Alternaria burnsii CBS107.38	Plant	v
K441DRAFT 548639	Cenococcum aeophilum 1.58	Plant	V

HRS9139_07302	Pyrenophora teres f. teres HRS9139	Plant	٧
AG0111_0g631	Alternaria gaisen FERA 650	Plant	٧
PTT_15456	Pyrenophora teres f. teres 0-1	Plant	٧
AA0111_g5680	Alternaria arborescens FERA 675	Plant	٧
EJ04DRAFT_246949	Polyplosphaeria fusca CBS 125425	Terrestrial	٧
EV356DRAFT_448451	Viridothelium virens	Plant	٧
EJ05DRAFT_479127	Pseudovirgaria hyperparasitica	Terrestrial	٧
EV356DRAFT_526851	Viridothelium virens	Plant	٧
K432DRAFT_324702	Lepidopterella palustris CBS 459.81	Aquatic	٧
CC80DRAFT_526846	Byssothecium circinans	Terrestrial	٧
EKO05_009025	Ascochyta rabiei Me14	Plant	٧
P280DRAFT_503145	Massarina eburnea CBS 473.64	Aquatic	v
IQ06DRAFT_290454	Stagonospora sp. SRC1IsM3a	Plant	٧
E8E11_011998	Didymella keratinophila 9M1	Human	v
B0A49_01576	Cryomyces minteri CCFEE 5187	Terrestrial	٧
E8E13_003200	Curvularia kusanoi 30M1	Plant	٧
K402DRAFT_425461	Aulographum hederae CBS 113979	Terrestrial	٧
BDU57DRAFT_511507	Ampelomyces quisqualis	Plant	٧
BDY21DRAFT_365434	Lineolata rhizophorae ATCC 16933	Aquatic	٧
K491DRAFT_76618	Lophiostoma macrostomum CBS 122681	Plant	٧
BDV97DRAFT_300995	Delphinella strobiligena CBS 735.71	Plant	٧
GMOD_00004333	Pyrenophora seminiperda CCB06	Plant	٧
EJ02DRAFT_452855	Clathrospora elynae CBS 161.51	Plant	v
B9Z65_1923	Elsinoe australis NL1	Plant	٧
TW65_07162	Stemphylium lycopersici CIDEFI 216	Plant	٧
EJ07DRAFT_173363	Lizonia empirigonia	Plant	٧
EK21DRAFT_80330	Setomelanomma holmii CBS 110217	Plant	٧
K505DRAFT_263962	Melanomma pulvis-pyrius CBS 109.77	Plant	٧
K460DRAFT_307839	Cucurbitaria berberidis CBS 394.84	Plant	٧
D9617_3g021860	Elsinoe fawcettii 53147a	Plant	٧
M436DRAFT_43143	Aureobasidium namibiae CBS 147.97	Terrestrial	٧
K458DRAFT_365768	Lentithecium fluviatile CBS 122367	Aquatic	٧
CAC42_251	Sphaceloma murrayae CQ-2017a	Plant	٧
T440DRAFT_447602	Plenodomus tracheiphilus IPT5	Plant	v
P153DRAFT_370060	Dothidotthia symphoricarpi CBS 119687	Plant	٧
C1H76_0945	Elsinoe australis Hillstone_2	Plant	٧
D0862_04345	Hortaea werneckii EXF-171	Human	٧
CC86DRAFT_22383	Ophiobolus disseminans CBS 113818	Plant	٧
M011DRAFT_469003	Sporormia fimetaria CBS 119925	Digestive tract	٧
BTJ68_14050	Hortaea werneckii EXF-2000	Human	v
PV09_02259	Verruconis gallopava CBS 43764	Human	٧
B0A54_07706	Friedmanniomyces endolithicus CCFEE 5311	Terrestrial	٧
EKO04_010827	Ascochyta lentis Al4	Plant	٧
K490DRAFT_65894	Saccharata proteae CBS 121410	Plant	v

E8E12_008824	Didymella heteroderae 28M1 Plant		V	
BDW02DRAFT_20370	Decorospora gaudefroyi P77 Aquatic		٧	
BU26DRAFT_521611	Trematosphaeria pertusa CBS 122368	Terrestrial	V	
CPB83DRAFT_860062	Crepidotus variabilis CBS 506.95	Terrestrial	V	
D0861_05467	Hortaea werneckii EXF-2788	Human	٧	
EI97DRAFT_38179	Westerdykella ornata CBS 379.55	Aquatic	V	
Vi05172_g5625	Venturia inaequalis 05/172	Plant	٧	
D6D05_00937	Aureobasidium pullulans EXF-8828	Terrestrial	V	
D6D29_02830	Aureobasidium pullulans EXF-11991	Terrestrial	V	
BDR25DRAFT_61103	Lindgomyces ingoldianus ATCC 200398	Aquatic	V	
CPB83DRAFT_860077	Crepidotus variabilis CBS 506.95	Terrestrial	V	
D6D28_05712	Aureobasidium pullulans EXF-11900	Terrestrial	V	
AUEXF2481DRAFT_30567	Aureobasidium subglaciale EXF-2481	Aquatic	V	
D6D21_07030	Aureobasidium pullulans EXF-10796	Terrestrial	V	
D0865_02701	Hortaea werneckii EXF-151	Human	V	
M501DRAFT_929268	Patellaria atrata CBS 101060	Terrestrial	V	
BS50DRAFT_596352	Corynespora cassiicola Philippines	Plant	V	
D0869_14757	Hortaea werneckii EXF-6656	Human	V	

Genome	PKS	Dehydratase	Reductase	Methyltransferase	larcase	Production of
(accession No.)		Denyaratase	heudelase	Wethyltunsteruse	Luccuse	reduced naphtho-γ- pyrones (ref.)
Ustilaginoidea virens P1	UVPKS1	UsgD	UsgR	UsgM	UsgL	This study
Metarhizium robertsii ARSEF 2575	EXU98524.1	EXU98523.1	EXU98521.1	EXU98520.1	EXU98519.1	-
(JELW00000000.1)	KEC70726 1	KEC70725 1	KEC70722 1	KEG70722 1	KEC70721 1	Pof [14]
(JNNZ01000000)	KFG75750.1	KFG75755.1	KFG75755.1	KFG75752.1	KFG75751.1	Net ?
M. brunneum ARSEF 3297 (AZNG00000000.1)	XP_014543084.1	XP_014543083.1	XP_014543081.1	XP_014543080.1	XP_014543079.1	-
Thermothelomyces thermophilus ATCC 42464 (GCA_000226095.1)	XP_003666434.1	XP_003666433.1	XP_003666431.1	XP_003666429.1	XP_003666430.1	-
Chaetomium olivicolor	The biosynthetic g	gene cluster (BGC) sp	ans nucleotides 195	1–40596 of scaffold 02	20 as predicted by	This species was
CBS 102434 (Genozymes project) ^a		AntiSMSH (vers	ion 6.0) ^[1] . All these _i	genes were found.		closely related to C. arcuatum (producing chaetochromin) ^[11]
Rhizodiscina lignyota (JAADKO000000000.1)	KAF2093015.1	KAF2093014.1	KAF2093012.1		KAF2093011.1	-
Lindgomyces ingoldianus (JAAEJD000000000.1)	XP_033552105.1	XP_033552106.1	XP_033552108.1		XP_033552109.1	-
Pseudogymnoascus sp. VKM F-3557	KFX92420.1	KFX92421.1	KFX92423.1		KFX88072.1	-
(JPJS0000000.1)						
Melanomma pulvis-pyrius CBS 109.77	KAF2790288.1	KAF2790289.1	KAF2800417.1			-
(JAAEJI00000000.1)						
Corynespora cassiicola Philippines	PSN72911.1	PSN72910.1	PSN75367.1			-
(GCA_003016335.1)						
Glonium stellatum (LKAO00000000.1)	OCL14472.1	OCL14473.1	OCL02234.1			-
Cenococcum geophilum 1.58 (LKKR00000000.1)	OCK97414.1	OCK97413.1	ОСК97342.1			-

Table S2. NCBI accession numbers of the protein sequences from publicly available genomes

^a The genome can be found at <u>https://gb.fungalgenomics.ca/fgb2/gbrowse/Chaol_public/</u>

Table S3. Fungal strains used in this study

Strain	Genotype
Ustilaginoidea virens P1	wild type
Δuvpks1	uvpks1 deletion mutant of P1
ΔusgD	usgD deletion mutant of P1
ΔusgR	usgR deletion mutant of P1
ΔusgM	usgM deletion mutant of P1
ΔusgL	usgL deletion mutant of P1
ΔusgO	usgO deletion mutant of P1
∆usgD/∆usgL	usgD and usgL deletion mutant of P1
$\Delta usgR/\Delta usgL$	usgR and usgL deletion mutant of P1
∆usgM/∆usgL	usgM and usgL deletion mutant of P1
ΔusgM/ΔusgD	usgM and usgD deletion mutant of P1
ΔusgM/ΔusgR	usgM and usgR deletion mutant of P1
∆usgD/∆usgR	usgD and usgR deletion mutant of P1
Aspergillus oryzae NSAR1	argB-, adeA-, sC⁻, niaD
Saccharomyces cerevisiae CEN.PK	MATa/α ura3-52/ura3-52 trp1-289/trp1-289 leu2-3_112/leu2-3_112
	his3Δ1/his3 Δ1 MAL2-8C/MAL2-8C SUC2/SUC2
AO- <i>usgP</i>	+ <i>uvpks1</i> , sC⁻, niaD
AO- <i>usgR</i>	+ <i>usgR</i> , sC ⁻ , niaD
AO- <i>usgM</i>	+ <i>usgM</i> , sC ⁻ , niaD
AO-usgL	+ <i>usgL</i> , argB⁻, niaD
AO- <i>usgO</i>	+ <i>usgO,</i> sC ⁻ , niaD
AO-usgPL	+ <i>uvpks1</i> , + <i>usgL</i> , niaD
AO- <i>usgPO</i>	+ <i>uvpks1, +usgO</i> , sC ⁻ , niaD
AO-usgPR	+ <i>uvpks1, +usgR</i> , sC ⁻ , niaD
AO-usgPD	+ <i>uvpks1, +usgD</i> , sC ⁻ , niaD
AO- <i>usgPM</i>	+ <i>uvpks1, +usgM</i> , sC ⁻ , niaD
AO-usgPDL	+ <i>uvpks1</i> , + <i>usgD</i> , + <i>usgL</i> , niaD
AO-usgPOL	+uvpks1, +usgO, +usgL, niaD
AO-usgPDM	+ <i>uvpks1, +usgD, +usgM,</i> sC ⁻ , niaD
AO-usgPDR	+uvpks1, +usgD, +usgR, sC ⁻ , niaD
AO-usgPRM	+ <i>uvpks1, +usgR, +usgM</i> , sC ⁻ , niaD
AO-usgPDRL	+ <i>uvpks1, +usgD, +usgR, +usgL</i> , niaD
AO-usgPDML	+uvpks1, +usgD, +usgM, +usgL, niaD
AO-usgPDRM	+ <i>uvpks1, +usgD, +usgR, +usgM,</i> sC ⁻ , niaD
AO-usgPDRMO	+uvpks1, +usgD,+usgR, +usgM, +usgO,sC ⁻ , niaD
AO-usgPDRML	+uvpks1, +usgD, +usgR, +usgM, +usgL, niaD

Table S4. Plasmids used in this study

Plasmid	Feature
pmCAS9:tRp-gRNA	Cas9-gRNA vector with the tRNA promoter
pmCAS9:tRp-gRNA-uvpks1	pmCAS9:tRp-gRNA with the <i>uvpks1</i> spacer
pmCAS9:tRp-gRNA-usgD	pmCAS9:tRp-gRNA with the usgD spacer
pmCAS9:tRp-gRNA-usgR	pmCAS9:tRp-gRNA with the usgR spacer
pmCAS9:tRp-gRNA- <i>usgM</i>	pmCAS9:tRp-gRNA with the <i>usgM</i> spacer
pmCAS9:tRp-gRNA- <i>usgL</i>	pmCAS9:tRp-gRNA with the usgL spacer
pmCAS9:tRp-gRNA- <i>usgO</i>	pmCAS9:tRp-gRNA with the usgO spacer
pTYGSarg/met	PamyB, Padh, Peno, PgdpA, Amp ^R , ColE1, 2µ ori, URA3, ccdB, <i>argB/sC</i>
pTYGSarg-usgO	usgO under control of PamyB
pTYGSarg-uvpks1+usgO	uvpks1 under control of PamyB, usgO under control of Padh
pTYGSarg-uvpks1	uvpks1 under control of PamyB
pTYGSarg-uvpks1+usgD	uvpks1 under control of PamyB, usgD under control of Padh
pTYGSarg-usgM	usgM under control of PamyB
pTYGSarg-uvpks1+usgD+usgM	uvpks1 under control of PamyB, usgD under control of Padh, usgM
	under control of Peno
pTYGSarg-usgR	usgR under control of PamyB
pTYGSarg-uvpks1+usgD+usgR+usgM	uvpks1 under control of PamyB, usgD under control of Padh, usgR
	under control of PgpdA, usgM under control of Peno
pTYGSmet-usgL	usgL under control of PamyB
pFL2	G418, Amp ^R
pKOV21	Hyg ^R , Neo ^R , Kan ^R , Amp ^R
pET28a	T7 promoter, <i>lacI</i> (lac repressor), <i>N/C</i> -His tag, Kan ^R
pETM10	T7 promoter, <i>lacl, N</i> -His tag, Kan ^R , EFH
pMBP_1a	T7 promoter, <i>lacl, N</i> -His tag, Kan ^R , MBP, EYFP, TEV
pGEX-6P-1	lac promoter, N-GST tag, Amp ^R , <i>lacl</i>

Transformation	The former design of the state	Genes as					
ID	Transformed vector constructs –		usgD	usgR	usgM	usgL	usgO
AO-usgP	pTYGSarg-uvpks1	٧					
AO-usgR	pTYGSarg-usgR			٧			
AO-usgM	pTYGSarg-usgM				٧		
AO-usgL	pTYGSarg-usgL					٧	
AO-usgO	pTYGSarg-usgO						v
AO-usgPD	pTYGSarg-uvpks1+usgD	٧	v				
AO-usgPR	pTYGSarg-uvpks1+usgR	٧		٧			
AO-usgPM	pTYGSarg-uvpks1+usgM	٧			٧		
AO-usgPL	pTYGSarg-uvpks1, pTYGSmet-usgL	٧				٧	
AO-usgPO	pTYGSarg-uvpks1+usgO	٧					٧
AO-usgPDL	pTYGSarg-uvpks1+usgD, pTYGSmet-	٧	v			٧	
	usgL						
AO-usgPOL	pTYGSarg-uvpks1+usgO, pTYGSmet-	٧				٧	٧
	usgL						
AO-usgPDM	pTYGSarg-uvpks1+usgD+usgM	٧	٧		٧		
AO-usgPDR	pTYGSarg-uvpks1+usgD+usgR	٧	v	٧			
AO-usgPRM	pTYGSarg-uvpks1+usgR+usgM	٧		٧	٧		
AO-usgPDRM	pTYGSarg-uvpks1+usgD+usgR+usgM	٧	v	٧	٧		
AO-usgPDML	pTYGSarg-uvpks1+usgD+usgM,	٧	٧		٧	٧	
	pTYGSmet- <i>usgL</i>						
AO-usgPDRL	pTYGSarg-uvpks1+usgD+usgR,	٧	v	٧		٧	
	pTYGSmet- <i>usgL</i>						
AO-usgPDRMO ^a	pTYGSarg-uvpks1+usgD+usgR+usgM,	٧	٧	٧	٧		٧
	pTYGSarg-usgO						
AO-usgPDRML	pTYGSarg-uvpks1+usgD+usgR+usgM,	٧	٧	٧	v	٧	
	pTYGSmet- <i>usqL</i>						

Table S5. Overview of transformations in A. oryzae NSAR1 with different combinations of genes

^a AO-usgPDRMO: co-culture of transformants AO-usgPDRM and AO-usgO

Substrate	Medium/ Buffer
2 (10 mg/mL in DMSO)	DPY and citrate buffer
4 (5 mg/mL in DMSO)	DPY and citrate buffer
10+15+21 (10 mg/mL in DMSO)	DPY
23 (10 mg/mL in DMSO)	DPY
24 (10 mg/mL in DMSO)	DPY
25 (10 mg/mL in DMSO)	DPY
26 (10 mg/mL in DMSO)	DPY
27 (10 mg/mL in DMSO)	DPY
28 (10 mg/mL in DMSO)	DPY
29 (10 mg/mL in DMSO)	DPY
1 (10 mg/mL in DMSO)	DPY
2 (10 mg/mL in DMSO)	DPY
4 (5 mg/mL in DMSO)	DPY
14 (10 mg/mL in DMSO)	DPY
17 (10 mg/mL in DMSO)	DPY
	Substrate 2 (10 mg/mL in DMSO) 4 (5 mg/mL in DMSO) 10+15+21 (10 mg/mL in DMSO) 23 (10 mg/mL in DMSO) 24 (10 mg/mL in DMSO) 25 (10 mg/mL in DMSO) 26 (10 mg/mL in DMSO) 26 (10 mg/mL in DMSO) 27 (10 mg/mL in DMSO) 28 (10 mg/mL in DMSO) 29 (10 mg/mL in DMSO) 29 (10 mg/mL in DMSO) 2 (10 mg/mL in DMSO) 3 (10 mg/mL in DMSO)

 Table S6. Strains, substrates, and media in feeding experiments.

Table S7. Media used in this study

Medium	Component
DPY	2% Dextrin, 1% Polypeptone, 0.5% Yeast extract, 0.5% KH_2PO_4 , 0.5%
	MgSO₄·6H₂O, 1.5% Agar
LB	0.5% Yeast extract, 1% Trptone, 1% NaCl
LB Agar	0.5% Yeast extract, 1% Trptone, 1% NaCl, 1.5% Agar
YPAD	1% Yeast extract, 2% Trptone, 2% Glucose, 0.03% Adenine
YPAD Agar	1% Yeast extract, 2% Trptone, 2% Glucose, 0.03% Adenine, 1.5% Agar
PSB	200 g/L Potato, 20 g/L Sucrose
PSA	200 g/L Potato, 20 g/L Sucrose, 15 g Agar
Rice solid medium	100 g rice, 100 mL ddH ₂ O
YTD	0.1% Yeast extract, 0.1% Trptone, 1% Glucose
YTD Agar	0.1% Yeast extract, 0.1% Trptone, 1% Glucose, 1.5% Agar
Bottom Agar	0.3% Yeast extract, 20% Sucrose, 0.3% Casein acid hydrolysate, 1% Agar
Top Agar	0.3% Yeast extract, 20% Sucrose, 0.3% Casein acid hydrolysate, 1.5% Agar
TB ₃	0.3% Yeast extract, 20% Sucrose, 0.3% Casein acid hydrolysate
SM-ura	0.67% YNB (contain ammonium sulfate), 2% Glucose, 0.077% complete
	supplement mixture minus uracil, 1.5% Agar
CZD/S Agar	3.5% Czapek Dox broth, 1 M Sorbitol, 0.05% Adenine, 0.15% Methionine,
(w/o Arginine)	0.1% Ammonium sulfate, 1.5% Agar
CZD/S soft Agar	3.5% Czapek Dox broth, 1 M Sorbitol, 0.05% Adenine, 0.15% Methionine,
(w/o Arginine)	0.1% Ammonium sulfate, 0.8% Agar
CZD/S Agar	3.5% Czapek Dox broth, 1 M Sorbitol, 0.05% Adenine, 0.1% Arginine, 0.1%
(w/o L-Methionine)	Ammonium sulfate, 1.5% Agar
CZD/S soft Agar	3.5% Czapek Dox broth, 1 M Sorbitol, 0.05% Adenine, 0.1% Arginine, 0.1%
(w/o L-Methionine)	Ammonium sulfate, 0.8% Agar
CZD/S Agar	3.5% Czapek Dox broth, 1 M Sorbitol, 0.05% Adenine, 0.1% Ammonium
(w/o Arginine and w/o	sulfate, 1.5% Agar
Methionine)	
CZD/S soft Agar	3.5% Czapek Dox broth, 1 M Sorbitol, 0.05% Adenine, 0.1% Ammonium
(w/o Arginine and w/o	sulfate, 0.8% Agar
Methionine)	

Table S8. Primers used in this study

Primer name	Sequence (5' to 3')	Description
AO-usgO-5F	TCACCGGTGTCACCTACGAAC	For screening heterologous
AO- <i>usgO</i> -6R	TTGGACGCCTTGGAGTTG	expression transformants of
AO-uvpks1-5F	TCCAAGAACCAGGTCTACATCA	A. oryzae
AO- <i>uvpks1</i> -6R	CCGTCATCTCGCCAAACT	
AO-usgD-5F	ATGGCCTCGCACCAGCT	
AO-usgD-6R	CTACTCCGCAGCGGACAAGCT	
AO-usgR-5F	AAGACTTCGTGCCCAGAG	
AO- <i>usgR</i> -6R	TGAATGCCGTGTAGTTGG	
AO- <i>usgM</i> -5F	AGTTTGCGGAATGTCTCACC	
AO- <i>usgM</i> -6R	AACAGCCACCAACCATCCA	
AO- <i>usgL</i> -5F	TACGTTTGCCAGATTCTGGAGC	
AO- <i>usgL</i> -6R	GAAGTGGCAGTGGAAAAGCC	
AO- <i>uvpks1</i> -F+PamyB	cttctctgaacaataaaccccacagcaagctccgaATGGCGAACGTGTTCCAA ATTG	For cloning <i>uvpks1</i> into pTYGSarg under control of
AO- <i>uvpks1</i> -R+TamyB	catatactctccacccttcacgagctactacagatTTAGATACCCGCGCCGGTA GA	PamyB
AO-usgD-F+Padh	tctttcaacacaagatcccaaagtcaaaggATGGCCTCGCACCACCAGC	For cloning usgD into
AO- <i>usgD</i> -R+Tagh	ttcattctatgcgttatgaacatgttccctCTACTCCGCAGCGGACAAGCTG	pTYGSarg under control of Padh
AO- <i>usgR</i> -F+PgpdA	cagctaccccgcttgagcagacatcaccggATGGCCGATGCAAAGGCC	For cloning usgR into
AO- <i>usgR</i> -R+TgpdA	acgacaatgtccatatcatcaatcatgaccTCAAAGTACGTATCGGATCATG GTAAATG	pTYGSarg under control of PgpdA
AO- <i>usgR</i> -F+PamyB	cttctctgaacaataaaccccacagcaagctccgaATGGCCGATGCAAAGGCC	For cloning <i>usgR</i> into
AO- <i>usgR</i> -R+TamyB	catatactctccacccttcacgagctactacagatTCAAAGTACGTATCGGATC ATGGTAAATG	pTYGSarg under control of PamyB
AO- <i>usgM</i> -F+Peno	cgactgaccaattccgcagctcgtcaaaggATGCGGGCTACGAACCAGCC	For cloning usgM into
AO- <i>usgM</i> -R+Teno	ggttggctggtagacgtcatataatcatacTTAGTCTGTGCAGGCTACCAAAA GCTGC	pTYGSarg under control of Peno
AO- <i>usgM</i> -F+PamyB	cttctctgaacaataaaccccacagcaagctccgaATGCGGGCTACGAACCAG CC	For cloning <i>usgM</i> into pTYGSarg under control of
AO- <i>usgM</i> -R+TamyB	catatactctccacccttcacgagctactacagatTTAGTCTGTGCAGGCTACC AAAAGCTGC	РатуВ
AO- <i>usgL</i> -F+PamyB	cttctctgaacaataaaccccacagcaagctccgaATGACTTCTTTAACTGGTC TTGCCCTC	For cloning <i>usgL</i> into pTYGSmet under control of
AO- <i>usgL</i> -R+TamyB	catatactctccacccttcacgagctactacagatcTCAGCGTCGCAGCTCCTCG	PamyB
AO-usgO-F+Padh	tctttcaacacaagatcccaaagtcaaaggATGGCTCCCAGTGTCATTGTT	For cloning <i>usgO</i> into
AO-usgO-R+Tadh	tt cattct at gcgtt at gaac at gtt ccct TTAAATCTCGAGGCTGGGTTCAAC	pTYGSarg under control of Padh
AO- <i>usgO</i> -F+PamyB	cttctctgaacaataaaccccacagcaagctccgaATGGCTCCCAGTGTCATTG TT	For cloning <i>usgO</i> into pTYGSarg under control of
AO- <i>usgO</i> -R+TamyB	catatactctccacccttcacgagctactacagatcTTAAATCTCGAGGCTGGG	РатуВ

TTCAAC KO-usqO-1F GGAGCAACCAGACCATTC KO-usgO-2R+G418 cagatacggcagagaaatcgcaacctcAACAACAATGACACTGGGAG KO-usgO-3F+G418 gtttagattccaagtgtctactgctggcTGCCACGGAGGAGTTTGA KO-usgO-4R GGGTCATCATTCGCTCCAT KO-uvpks1-1F TTCTTACGGCGATGCTGGTG KO-uvpks1-2R+G418 cagatacggcagagaaatcgcaacctcAAAGCCCGATGGCACAACC KO-uvpks1-3F+G418 gtttagattccaagtgtctactgctggcCTGTTTGCCGACATCCTGG KO-uvpks1-4R GCATCTGGACCATTACAGCAAC KO-usgD-1F ATGGCCATCATGAGTCAATCAC cagatacggcagagaaatcgcaacctcGGATGTTGAGGCAGAGCAG KO-usaD-2R+G418 KO-usqD-2R+HPH ttgacctccactagctccagccaagccGGATGTTGAGGCAGAGCAG KO-usgD-3F+G418 gtttagattccaagtgtctactgctggcTGCGGAGTAGTAGAATGCTCG KO-usgD-3F+HPH gcaaaggaatagagtagatgccgaccgTGCGGAGTAGTAGAATGCTCG KO-usgD-4R CAACTGGATCGGCTATCAGATC TTGCCAGCATCGTCCTTC KO-usaR-1F KO-usgR-2R cagatacggcagagaaatcgcaacctcACTTGTTCCTGGGCGAGA KO-usqR-3F gtttagattccaagtgtctactgctggcCATGATCCGATACGTACTTTGA GCTTGCTTACGACTGGAGG KO-usqR-4R KO-usgM-1F TGGAGCGTTACACTGAATAGC KO-usgM-2R cagatacggcagagaaatcgcaacctcCCGACATACCCGAACTGAT KO-usgM-3F gtttagattccaagtgtctactgctggcGTCTTGTGGGCTGATGTGG KO-usqM-4R CTCCCAATCGTGTGTGTGTGTGA GCTCAGGCACGAGATAAT KO-usgL-1F KO-usgL-2R+G418 cagatacggcagagaaatcgcaacctcGAGGCAAGGACAATAGGA KO-usgL-2R+HPH ttgacctccactagctccagccaagccGAGGCAAGGACAATAGGA KO-usgL-3F+G418 gtttagattccaagtgtctactgctggcGGGCGGCGAGAGAGAGTAATGT KO-usqL-3F+HPH gcaaaggaatagagtagatgccgaccgGGGGGGGGGAGAGAGTAATGT KO-usgL-4R GCGAAGGAAGGAGAAGGCAC KO-GEN-F GAGGTTGCGATTTCTCTGCCGTATCTG KO-GEN-R GCCAGCAGTAGACACTTGGAATCTAAAC GGCTTGGCTGGAGCTAGTGGAGGTCAA KO-HPH-F KO-HPH-R CGGTCGGCATCTACTCTATTCCTTTGC KO-usqO-spacerF acctAAGTCGAGTCAAATACCCCG KO-usgO-spacerR aaacCGGGGTATTTGACTCGACTT KO-uvpks1-spacerF acctCACGGCAGGAGGGTCTTTAT KO-uvpks1-spacerR aaacATAAAGACCCTCCTGCCGTG KO-usgD-spacerF acctATCCCTACTTCAAGCAGACG KO-usgD-spacerR aaacCGTCTGCTTGAAGTAGGGAT KO-usgR-spacerF acctTGGACTGCTACATTCAATAT KO-usgR-spacerR aaacATATTGAATGTAGCAGTCCA KO-usgM-spacerF acctACCATAGTAACGTATCCTCG KO-usgM-spacerR aaacCGAGGATACGTTACTATGGT KO-usqL-spacerF acctTGACTGGTCACGCTTCACTT

For amplifying homologous knockout fragments

For construction of sgRNA vector

KO- <i>usgL</i> -spacerR	aaacAAGTGAAGCGTGACCAGTCA
KO- <i>usgO</i> -5F	GACCTGCTCTTACCGCTCAA
KO- <i>usgO</i> -6R	TTGGACGCCTTGGAGTTG
KO- <i>uvpks1</i> -5F	TCCAAGAACCAGGTCTACATCA
KO- <i>uvpks1-</i> 6R	CCGTCATCTCGCCAAACT
KO-usgD-5F	ACCGAAGACTACCGCAACT
KO- <i>usgD</i> -6R	CGTCTGCTTGAAGTAGGGAT
KO- <i>usgR</i> -5F	AAGACTTCGTGCCCAGAG
KO- <i>usgR</i> -6R	TGAATGCCGTGTAGTTGG
KO- <i>usgM</i> -5F	AGTTTGCGGAATGTCTCACC
KO- <i>usgM</i> -6R	AACAGCCACCAACCATCCA
KO- <i>usgL</i> -5F	GCTTCAGATCACGGTCCACA
KO- <i>usgL</i> -6R	GAAGTGGCAGTGGAAAAGCC
KO- <i>usgO</i> -7F	TCTCCTCGTCTATCGTGGGC
KO- <i>usgO</i> -8R	TTCTGCCAGTGATGGTGAT
KO- <i>uvpks1</i> -7F	GGATGTTGAGGCAGAGCAG
KO- <i>uvpks1</i> -8R	TATGGCGTCTGACTGTAATGG
KO- <i>usgD</i> -7F	TGCCACGTACGGTAGCCAAT
KO- <i>usgD</i> -8R-1 (G418)	GCCATTGTCGGACCTCTTATCG
KO- <i>usgD</i> -8R-2 (HPH)	GCGGCTCAAGCTGGTATCAG
KO- <i>usgR</i> -7F	TGGCTCAGCAGACATCAGG
KO- <i>usgR</i> -8R	TAGCCTGCACAGACTAAGTAG
KO- <i>usgM</i> -7F	CATCTTGAGGCAGGCTTTG
KO- <i>usgM</i> -8R	AATGTCTCGTGGACGGAT
KO- <i>usgL</i> -7F	TACAACCGCCTCTTCCTAC
KO- <i>usgL</i> -8R	GGCTTGTAGATTGCGTTCC
G856F	GAATGGTCAAATCAAACTGCTAGATAT
G855R	TGTTGGGTTTGAGCTAGGTGGG
H856F	CCGATGGCTGTGTAGAAGTACT
H855R	ACAAGTGGGGCTGATCTGA

For screening knockout transformants

Table S9. Results of expressing $\mathsf{UsgR}^{76\text{-}273}$ and $\mathsf{UsgR}^{160\text{-}264}$ in different expression vectors and strains

		Fund metals	Decult	Expected size
Expression vector	Expression strain	Fused protein	Result	(kDa)
pET28a-UsgR ⁷⁶⁻²⁷³	E.coli BL21 (DE3)	His-UsgR ⁷⁶⁻²⁷³	×	23.5
pET28a-UsgR ¹⁶⁰⁻²⁶⁴		His-UsgR ¹⁶⁰⁻²⁶⁴	×	13.3
pETM10-UsgR ⁷⁶⁻²⁷³		His-UsgR ⁷⁶⁻²⁷³	×	23.5
pETM10-UsgR ¹⁶⁰⁻²⁶⁴		His-UsgR ¹⁶⁰⁻²⁶⁴	V	13.3
pGEX-6P-1-UsgR ⁷⁶⁻²⁷³		GST-UsgR ⁷⁶⁻²⁷³	×	49.0
pGEX-6P-1-UsgR ¹⁶⁰⁻²⁶⁴		GST-UsgR ¹⁶⁰⁻²⁶⁴	V	38.8
pMBP_1a-UsgR ⁷⁶⁻²⁷³		MBP+His-UsgR ⁷⁶⁻²⁷³	×	65.2
pMBP_1a-UsgR ¹⁶⁰⁻²⁶⁴		MBP+His-UsgR ¹⁶⁰⁻²⁶⁴	\checkmark	55
pET28a-UsgR ⁷⁶⁻²⁷³	E. coli Rosetta (DE3)	His-UsgR ⁷⁶⁻²⁷³	×	23.5
pET28a-UsgR ¹⁶⁰⁻²⁶⁴		His-UsgR ¹⁶⁰⁻²⁶⁴	×	13.3
pETM10-UsgR ⁷⁶⁻²⁷³		His-UsgR ⁷⁶⁻²⁷³	×	23.5
pETM10-UsgR ¹⁶⁰⁻²⁶⁴		His-UsgR ¹⁶⁰⁻²⁶⁴	V	13.3
pGEX-6P-1-UsgR ⁷⁶⁻²⁷³		GST-UsgR ⁷⁶⁻²⁷³	×	49.0
pGEX-6P-1-UsgR ¹⁶⁰⁻²⁶⁴		GST-UsgR ¹⁶⁰⁻²⁶⁴	×	38.8
pMBP_1a-UsgR ⁷⁶⁻²⁷³		MBP+His-UsgR ⁷⁶⁻²⁷³	×	65.2
pMBP_1a-UsgR ¹⁶⁰⁻²⁶⁴		MBP+His-UsgR ¹⁶⁰⁻²⁶⁴	V	55
pET28a-UsgR ⁷⁶⁻²⁷³	E.coli C43	His-UsgR ⁷⁶⁻²⁷³	×	23.5
pET28a-UsgR ¹⁶⁰⁻²⁶⁴	(DE3)	His-UsgR ¹⁶⁰⁻²⁶⁴	×	13.3
pETM10-UsgR ⁷⁶⁻²⁷³		His-UsgR ⁷⁶⁻²⁷³	×	23.5
pETM10-UsgR ¹⁶⁰⁻²⁶⁴		His-UsgR ¹⁶⁰⁻²⁶⁴	×	13.3
pGEX-6P-1-UsgR ⁷⁶⁻²⁷³		GST-UsgR ⁷⁶⁻²⁷³	×	49.0
pGEX-6P-1-UsgR ¹⁶⁰⁻²⁶⁴		GST-UsgR ¹⁶⁰⁻²⁶⁴	×	38.8
pMBP_1a-UsgR ⁷⁶⁻²⁷³		MBP+His-UsgR ⁷⁶⁻²⁷³	×	65.2
pMBP_1a-UsgR ¹⁶⁰⁻²⁶⁴		MBP+His-UsgR ¹⁶⁰⁻²⁶⁴	×	55
pET28a-UsgR ⁷⁶⁻²⁷³	<i>E.coli</i> SHuffle T7	His-UsgR ⁷⁶⁻²⁷³	×	23.5
pET28a-UsgR ¹⁶⁰⁻²⁶⁴		His-UsgR ¹⁶⁰⁻²⁶⁴	×	13.3
pETM10-UsgR ⁷⁶⁻²⁷³		His-UsgR ⁷⁶⁻²⁷³	×	23.5
pETM10-UsgR ¹⁶⁰⁻²⁶⁴		His-UsgR ¹⁶⁰⁻²⁶⁴	×	13.3
pGEX-6P-1-UsgR ⁷⁶⁻²⁷³		GST-UsgR ⁷⁶⁻²⁷³	×	49.0
pGEX-6P-1-UsgR ¹⁶⁰⁻²⁶⁴		GST-UsgR ¹⁶⁰⁻²⁶⁴	\checkmark	38.8
pMBP_1a-UsgR ⁷⁶⁻²⁷³		MBP+His-UsgR ⁷⁶⁻²⁷³	×	65.2
pMBP_1a-UsgR ¹⁶⁰⁻²⁶⁴		MBP+His-UsgR ¹⁶⁰⁻²⁶⁴	V	55
pET28a-UsgR ⁷⁶⁻²⁷³	<i>E.coli</i> BL21 pLys	His-UsgR ⁷⁶⁻²⁷³	×	23.5
pET28a-UsgR ¹⁶⁰⁻²⁶⁴	(DE3)	His-UsgR ¹⁶⁰⁻²⁶⁴	×	13.3
pETM10-UsgR ⁷⁶⁻²⁷³		His-UsgR ⁷⁶⁻²⁷³	×	23.5
pETM10-UsgR ¹⁶⁰⁻²⁶⁴		His-UsgR ¹⁶⁰⁻²⁶⁴	×	13.3
pGEX-6P-1-UsgR ⁷⁶⁻²⁷³		GST-UsgR ⁷⁶⁻²⁷³	×	49.0
pGEX-6P-1-UsgR ¹⁶⁰⁻²⁶⁴		GST-UsgR ¹⁶⁰⁻²⁶⁴	V	38.8
pMBP_1a-UsgR ⁷⁶⁻²⁷³		MBP+His-UsgR ⁷⁶⁻²⁷³	×	65.2

(A)

		*				*
Cg_CazM	WRDITEEVRNLVAHV	SGIEAS	SEIGLI	DSEM	ADF	ìG
Cb_CTB1	AVATAVEIVKEEALTSLEELTDPSPNEIGTVWRDALKILSEE	ESGLTDI	EELTDI	DTSF	ADV	'G
Af_PksA	GVGVSNEKLDAVMRVVSEE	SGIAL	EELTDI	DSNF	ADN	ſG
Ff_pks4	GSASGLIQKALEIIADE	EIGVDIS	SQLTD	ITLL	ADL	.G
Th_T1nC	MSLEKVREIFCDV	TGLDAI	DEVEEI	DSEL	DEL	.G
Uv_UsgM	YGNDMTEPLKMDMLQFFRDALVQE	ETGRHVI	ONDDFI	DALF	SEL	G

. . * .: :::.*

	*:.:
Cg_CazM	IDSLMGMELGREVELTFKCKLDQAEQMEATSLRKFVAVVAKAL-FGTDQPAEVEDEAS
Cb_CTB1	$\label{eq:vdslmslvitsrlrdeldidfpd-ralfeecqtifdlrkrfsgstesfdstttkpsager} \\$
Af_PksA	${\tt IDSLSSMVIGSRFRedlgldlgPefslfidCttVralkdfmlgSgdagSgsnvedPPP}$
Ff_pks4	VDSLMSLTILGNFREELDLDIPAAQFYEFSTVQDLKSFLGANDQDFSSSNSEAESS
Th_T1nC	VDTILAKELARKLSVFSGRAVESSRILESENFIGLAHYIQSILDIGNDK
Uv_UsgM	ADPLVGVAVIERVTNSTGIEFPASLLRDCKSLSD

(B)

Uv_UsgM 0.36083
— Th_TInC 0.33491
 Cg_CazM 0.28413
Ff_pks4 0.31718
Af_PksA 0.30085
Cb_CTB1 0.29884

Fig. S1 Multiple sequence alignment of previously reported ACPs from nrPKS.

(A) Multiple sequence alignment, and (B) phylogenetic tree of nrPKS ACPs. The aspartate residue in DSL motif is highlighted in red, among all characterized ACPs. Uv: *Ustilaginoidea virens*, Th: *Trichoderma harzianum*, Ff: *Fusarium fujikuroi*, Af: *Aspergillus flavus*, Cb: *Cercospora beticola*, Cg: *Chaetomium globosum* CBS 148.51.

٧

(A)

	unnam	ed protei	in produ	ict											
	Grap	hical su	mmary	Zoom to	residue level	show ex	tra options	* *						10.00	
	Query	seq.	1	S	0	100	· . · .	150			200		250	273	
	Non-sp hits	ec111C									DUF 12	95			
	Superf	amiliee							-	DE	MT CUDO	52 xfomilu			
	ouport	unifico									in supe	Taming			
Li	st of	domain	hits												()
+	Nam	e Acc	ession	the second second second				Description						Interval	E-value
[-]	DUF129	95 pfaml	06966	Protein of unkno	wn function (DU	IF1295); Thi	s family con	tains a numbe	r of bact	erial and	Constant day			160-264	1.99e-07
	Protein	of unknow	n function	(DUF1295); This	family contains	a number of	bacterial a	nd eukaryotic	oroteins	of unknown	function tha	t are approx	imately 300 r	esidues long	9.
					Pss	m-ID: 39974	43 Cd Leng	gth: 235 Bit S	core: 50	.44 E-valu	e: 1.99e-07				
		Query_124 Cdd:pfam0	165 160 16966 123	10 *	20 * * CVCEIDRKVFKNM ALADQQLWAFKADF 100	30 	40 *. GLFSLVRHPN LWRYSRHPN	50 *. YTAFTIWRSGLA YFGEALIWWGIF	60 . * LASGGMI LIALNVL	70 * YGMSIAM SGLEWWTifg	80 231 plvmt 202				
		Query_124 Cdd:pfam0	165 232 16966 203	2 FFNWDFSnrAVPA 8 LLLVFVSGIPL	LDEYCTKRYGDM IERSADKKYGDRed	-WAEYKRKT :	264 235								
[-]	COG37	52 COG	3752	Steroid 5-alpha r	eductase family	enzyme [G	eneral funct	ion prediction	only];					161-265	5.84e-07
	Steroid	o-alpha rei	auctase la	anniy enzyme [Ge	neral function pr	ediction on	y],								
					Pss	m-ID: 2262	75 Cd Leng	gth: 272 Bit S	core: 49	34 E-valu	e: 5.84e-07				
		Query_124 Cdd:COG37	65 161 0 52 153 0	10 * *. FIIFAVGLVTECVCI LAIWIVGIVFEALGI	20 3 I* SIDRKVFKKNPMN DAQLWVFKKDPRN	30 4 . *. KGKPYTGGLF: KGKLLDTGLWI	10 * SLVRHPNYTA RWTRHPNYFG	50 60 * -FTIWRSGLALA eALVWWGFYLIA	SGGMIYG ISEWLLL	70 * MSIAMFFMW- WAVASPLLMt	80 235 wll 232				
		Query_124 Cdd:COG37	165 236 - 152 233 v	90 *	100 11 I* YCTKrygDMWAEYH LKSRPGFREYO	10 KRKTP 265 QRRTN 260									

[Superfamily, PEMT] Phospholipid methyltransferase.

domain hits:

3-oxo-5-alpha-steroid 4-dehydrogenase, C-terminal, IPR001104 (*3-oxo-5_a-steroid_4-DH_C*) Steroid 5-alpha reductase C-terminal domain profile, PS50244, (S5A_REDUCTASE)

Fig. S2 Conserved domain analysis of UsgR.

(A) CDD search, (B) Interpro search.

TMHMM result

HELP with output formats

# WEBSEQUENCE	Length: 273			
# WEBSEQUENCE	Number of predict	ted TMHs:	3	
# WEBSEQUENCE	Exp number of AAs	s in TMHs:	93.1977	6
# WEBSEQUENCE	Exp number, first	60 AAs:	9.84814	
# WEBSEQUENCE	Total prob of N-	in:	0.96621	
WEBSEQUENCE	TMHMM2.0	inside	1	100
WEBSEQUENCE	TMHMM2.0	TMhelix	101	123
WEBSEQUENCE	TMHMM2.0	outside	124	152
WEBSEQUENCE	TMHMM2.0	TMhelix	153	175
WEBSEQUENCE	TMHMM2.0	inside	176	210
WEBSEQUENCE	TMHMM2.0	TMhelix	211	233
WEBSEQUENCE	TMHMM2.0	outside	234	273

Fig. S3 TMHMM analysis of UsgR.

Fig. S4 Phylogenetic analysis of UsgR.

note: protein ID, see table S1. The maximum likelihood method was used with Bootstrap 1000 using the software Mega 5.

Fig. S5 Tblastx comparison of the usg BGC.

The illustration was created using Easyfig.^[15] For genome and protein information see Table S2.

Fig. S6 Schematic of gene knockout.

The position and direction of primers used to generate and screen transformants are marked with arrows.

Fig. S7 Selection of knockout transformants by PCR.

A) Target gene was amplified with primer pairs 5F/6R. B) Upstream recombination sequence was amplified with primer pairs 7F/G855R or 7F/H855R. Fragment was only found in the transformants. C) Downstream recombination sequence was amplified with primer pairs G855F/8R or H855F/8R. Fragment was only found in the transformants. P1: wild-type; M: Marker; CK: blank control.

Fig. S8 Overview of A. oryzae heterologous expression vectors constructed in this work.

EXPL1: 1+UsgL

EXPL2: 1+2+UsgL

EXPL4: 1+4+UsgL

EXPL5: 1+5+UsgL

EXPL6: 1+7+UsgL

EXPL7: 2+UsgL

EXPL8: 2+3+UsgL

EXPL9: 2+4+UsgL

EXPL10: 2+5+UsgL

EXPL11: 2+7+UsgL

EXPL12: 3+UsgL

EXPL13: 3+4+UsgL

EXPL14: 3+5+UsgL

EXPL15:3+7+UsgL

EXPL16: 4+UsgL

EXPL17: 4+5+UsgL

EXPL18: 4+7+UsgL

EXPL19: 5+UsgL

EXPL20: 5+7+UsgL

EXPL21: 7+UsgL

Fig. S9 LC-MS analysis of *in vitro* dimerization catalyzed by UsgL (24 h, λ = 280 nm).

Fig. S10 The atropselectivity varied with different concentration of UsgL.

(A) HPLC analysis of the reaction products of **5** and UsgL. (B) percentage of (*M*)-usgF (**18**) varied as enzyme concentration changed. (C) UV, MS, and CD spectra of (M)/(P)-**18**.

Note: (1) condition 1 was used for HPLC analysis; (2) percentage of (*M*)-usgF was calculated as follows: M/(M+P)*100%

40

Fig. S11 LC-MS chromatograms of feeding experiments in AO-usgR (2 d, λ = 280 nm).

5

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

2+UsgO

4+UsgO

14+UsgO

Fig. S12 LC-MS chromatograms of feeding experiments in AO-*usgO* (2 d, λ = 280 nm).

Fig. S13 LC-MS chromatograms of feeding experiments in AO-*usgM* (2 d, λ = 280 nm).

Fig. S14 HPLC-DAD analysis of $\Delta usgO$ and wild-type strain (WT) cultured on different media. Note: condition 1 was used.

Fig. S15 HPLC-DAD analysis of $\Delta usgM$. Note: condition 1 was used.

Fig. S16 HPLC-DAD analysis of $\Delta usgD/\Delta usgL$ Note: condition 2 was used.

Fig. S17 HPLC-DAD analysis of $\Delta usgM/\Delta usgD$. Note: condition 3 was used. *-unrelated peak.

Fig. S18 HPLC-DAD analysis of AO-*usgPDRMO* (EXP15), AO-*usgPDRM* (EXP12) and AO-*usgPRM* (EXP10).

Note: condition 4 was used.

Fig. S19 HPLC-DAD analysis of AO-*usgPDRL* (EXP13 in Fig. 3). Note: condition 5 was used.

Fig. S20 HPLC-DAD analysis of *in vitro* reactions of AO-*usgL* cell-free lysate (EXP L10, L5). Note: condition 5 was used. *-unrelated peak.

(A) Truncation 1: 76-273 AA

(B) Truncation 2: 160-264 AA

Fig. S21 Two truncated sequences of UsgR.

The experiments were performed at 16°C overnight, with or without addition of IPTG. CK: Control, without IPTG; I: Induction with 0.1 mM IPTG; S: supernatant of I; P: Pellet of I; M: Protein molecular weight marker. A-C: different expression vectors indicated.

Fig. S23 LC-MS chromatograms of the feeding experiments in E. coli expressing UsgR¹⁶⁰⁻²⁶⁴

Fig. S24 HPLC analysis of the feeding experiments in *A. oryzae*-UsgR¹⁶⁰⁻²⁶⁴. Note: condition 1 was used.

Fig. S25 *In vitro* reaction of microsomes with **2**. A) pPIZGM-*usgR P. pastoris* GS115, B) pYES2-*usgR S. cerevisiae* BY4741, C) pTYGS-*usgR A. oryzae* Note: condition 1 was used.

Compound characterization data

YWA1 (1)

Chemical Formula: $C_{14}H_{12}O_6$; Exact Mass: 276.0634 UV λ_{max} (MeOH): 229, 277, 323, 336, 408 nm HRESIMS: m/z [M-H]⁻ calcd for $C_{14}H_{11}O_6$: 275.0561, found: 275.0567. Compound was identified based on mass, UV-absorption, and NMR (Table S10, Fig. S28, S29), which was consistent with the literature. ^[11, 16]

Fig. S26 HRESIMS (top) and UV (bottom) spectra of 1.

Position	$\delta_{ m c}$, type	$\delta_{ m c}$, type ^[16]	$\delta_{ extsf{H}}$, mult. (<i>J</i> in Hz)	$\delta_{ extsf{H}}$, mult. (J in Hz) $^{[11]}$
2	101.3 C	101.3 C		
3	47.7 CH ₂	47.8 CH ₂	3.17 d (17.1)	3.17 d (17.1)
			2.86 d (17.1)	2.86 d (17.1)
4	198.8 C	198.8 C		
4a	102.9 C	102.9 C		
5	164.8 C	165.0 C		
5a	104.9 C	105.0 C		
6	160.7 C	160.8 C		
7	100.7 CH	100.8 CH	6.28 d (2.2)	6.28 d (2.2)
8	162.7 C	162.8 C		
9	102.4 CH	102.4 CH	6.51 d (2.2)	6.51 d (2.2)
9a	143.5 C	143.6 C		
10	102.7 CH	102.8 CH	6.44 s	6.45 s
10a	154.1 C	154.1 C		
2-CH ₃	28.3 CH ₃	28.4 CH ₃	1.72 s	1.72 s
5-OH			15.29 brs	15.4 brs
6-OH			9.43 brs	9.43 brs
8-OH			9.16 brs	n.d.

Table S10. ^{13}C and ^{1}H NMR data of 1 (CD_3COCD_3).

n.d.: not detected

Fig. S29 ¹³C NMR spectrum of 1 (125 MHz, CD₃COCD₃).

norrubrofusarin (2)

Chemical Formula: $C_{14}H_{10}O_5$, Exact Mass: 258.0528 UV λ_{max} (MeOH): 225, 277, 328, 413 nm HRESIMS: m/z [M-H]⁻ calcd for $C_{14}H_9O_5$: 257.0455, found: 257.0454

Compound was identified based on mass and UV-absorption, and characterized by NMR (Table S11, Fig. S32,S33)^[11, 17, 18].

100 125 150 175 200 225 250 275 300 325 360 375 400 425 450 475 500 525 550 575 600 625 650 675 700 725 750 775 800 1 Fig. S30 HRESIMS (top) and UV (bottom) spectra of 2.

Fig. S31 MS spectra of 2.

position	$\delta_{ m c}$, type	$\delta_{ m c}$, type ^[18]	$\delta_{ extsf{H}}$, mult. (J in Hz)	$\delta_{\scriptscriptstyle extsf{H}}$, mult. (<i>J</i> in Hz) ^[18]
2	169.7 C	169.76 C		
3	105.8 CH	106.06 CH	6.19 s	6.17 s
4	183.4 C	183.48 C		
4a	101.8 C	101.68 C		
5	162.4 C	162.34 C		
5a	105.4 C	105.38 C		
6	158.5 C	158.45 C		
7	100.7 CH	100.66 CH	6.33 d (2.2)	6.32 s
8	160.8 C	161.90 C		
9	100.8 CH	100.74 CH	6.57 d (2.2)	6.57 s
9a	140.4 C	140.00 C		
10	99.8 CH	99.75 CH	7.00 s	6.97 s
10a	152.0 C	151.00 C		
2-CH ₃	20.3 CH_3	20.3 CH_3	2.37 s	2.37 s
6-OH			9.85 s	9.84 s
8-OH			10.24 s	10.24 s
5-OH			15.77 brs	15.75 s

Table S11. ¹³C and ¹H NMR data of **2** (DMSO- d_6).

 190
 180
 170
 160
 150
 140
 130
 120
 110
 100
 90
 80
 70
 60
 50
 40

 Fig. S33 13 C NMR spectrum of 2 (125 MHz, DMSO-d₆).

3-methyl-YWA1 (3)

Chemical Formula: $C_{15}H_{14}O_6$, Exact Mass: 290.0790 UV λ_{max} (MeOH): 230, 279, 322, 334, 406 nm HRESIMS: m/z [M-H]⁻ calcd for $C_{15}H_{13}O_6$: 289.0718, found: 289.0710 Compound was identified based on mass and UV-absorption, and characterized by NMR (Fig. S36, S37 and Table S12). This compound appeared as a mixture of 2,3-diastereomers (major/minor= ca. 1.73/1), as two sets of signals could be seen in the ¹H NMR spectrum (Fig. S36).

Compound **3** was revealed to be the 2-epimeric mixtures due to the presence of an unstable hemi-ketal group (scheme S1). The NOESY experiment (Fig. 32) indicated that the major one has 2,3-*trans*-dimethyl groups (**3a**), while the less one has a *cis*-dimethylated structure (**3b**). Upon treatment of **3** in MeOH with catalytic amount of *p*-TsOH, the methyl ketal were produced (scheme S1). After purification by semi-prepartive HPLC, the major ketal was isolated (**3c**), and characterized by ¹H NMR (Fig. S38, and Table S12), and MS (Fig. S39). The absolute configuration of **3c** was determined by ECD calculations. The calculated ECD spectrum of (2*R*,3*S*)-**3c** at B3LYP/6-31+G(d), PCM=MeOH// B3LYP/6-31G(d) level fitted well with the experimental data (Fig. S40), thus the absolute configuration was assigned as 2*R*, 3*S*. This then established the absolute configuration of **3** at C-3 (3*S*).

Scheme S1. Epimerism of 3 and its conversion to the methyl ketal (3c).

Fig. S34 HRESIMS (top) and UV (bottom) spectra of 3.

Fig. S35 MS spectra of 3.

Positio	δ mult (Lin Hz) 2	$\delta_{ extsf{H}}$, mult. (J in Hz), 3b	$\delta_{ extsf{H}}$, mult. (<i>J</i> in Hz), 3c
n	ο _H , muit. (Σ m nz), 3a		
3	3.14 q (6.8)	2.79 q (7.4)	overlapped by water peak
7	6.23-6.32 overlapped	6.23-6.32 overlapped	6.31, s
9	6.56-6.36 overlapped	6.56-6.36 overlapped	6.56, s
10	6.56-6.36 overlapped	6.56-6.36 overlapped	6.54, s
$2-CH_3$	1.72 s	1.62 s	1.69, s
3-CH₃	1.33 d (6.8)	1.27 d (7.3)	1.28 d (7.3)
5-OH	15.28 brs	15.28 brs	15.17 brs
6-OH	9.37 brs	9.37 brs	9.38 brs
8-OH	9.13 brs	9.13 brs	-
2-			3.24, s
OMe	-	-	

Table S12. ¹H NMR data of 3 (CD₃COCD₃).

Fig. S36 ¹H NMR spectrum of 3 (500 MHz, CD₃COCD₃).

Fig. S39 UV and MS spectra of 3c

Fig. S40 Calculated ECD spectrum of (2*R*,3*S*)-3c, and the experimental data of 3c.

3-methyl-norrubrofusarin (4)

ŀ

3-methyl-norrubrofusarin (4)

Chemical Formula: C₁₅H₁₂O₅, Exact Mass: 272.0685

UV λ_{max} (MeOH): 227, 277, 327, 414 nm

HRESIMS: *m*/*z* [M-H]⁻ calcd for C₁₅H₁₁O₅: 271.0612, found: 271.0610

Compound was identified based on mass and UV-absorption, and characterized by NMR (Table S13, Fig. S43, S44)^[19].

Fig. S41 HRESIMS (top) and UV (bottom) spectra of 4.

Fig. S42 MS spectra of 4.

Position	$\delta_{ m C}$ type	$\delta_{ extsf{H}}$ mult. (<i>J</i> in Hz)
2	165.2 C	
3	111.9 C	
4	182.7 C	
4a	101.3 C	
5	162.0 C	
5a	105.3 C	
6	158.4 C	
7	100.4 CH	6.31 d (2.0)
8	160.6 C	
9	100.5 CH	6.55 d (2.0)
9a	140.3 C	
10	99.2 CH	6.95 s
10a	151.4 C	
2-CH ₃	18.6 CH ₃	2.38 s
3-CH ₃	8.7 CH ₃	1.92 s
5-OH		16.04 brs
6-OH		10.20 s
8-OH		9.83 s

Table S13. ¹³C and ¹H NMR data of **4** (DMSO- d_6).

Fig. S44 ¹³C NMR spectrum of **4** (125 MHz, DMSO-*d*₆).

hemiustilaginoidin F (5)

Chemical Formula: $C_{14}H_{12}O_5$, Exact Mass: 260.0685 UV λ_{max} (MeOH): 231, 275, 325, 337, 413 nm HRESIMS: m/z [M-H]⁻ calcd for $C_{14}H_{11}O_5$: 259.0612, found: 259.0614

Compound was identified based on mass, retention time and UV-absorption with the standard^[13]

Fig. S45 HRESIMS (top) and UV (bottom) spectra of 5.

Fig. S46 MS spectra of 5.

epihemiustilaginoidin D (6)

epihemiustilaginoidin D (6)

Chemical Formula: $C_{15}H_{14}O_5$, Exact Mass: 274.0841 UV λ_{max} (MeOH): 231, 280, 325, 337, 414 nm

HRESIMS: *m*/*z* [M-H]⁻ calcd for C₁₅H₁₃O₅: 273.0768, found: 273.0769

Compound was identified based on mass, retention time and UV-absorption with the standard^[13]

Fig. S47 HRESIMS (top) and UV (bottom) spectra of 6.

Fig. S48 MS spectra of 6.

hemiustilaginoidin D (7)

Chemical Formula: $C_{15}H_{14}O_5$, Exact Mass: 274.0841 UV λ_{max} (MeOH): 231, 280, 324, 337, 413 nm HRESIMS: m/z [M-H]⁻ calcd for $C_{15}H_{13}O_5$: 273.0768, found: 273.0763

Fig. 49 HRESIMS (top) and UV (bottom) spectra of 7.

Fig. S50 MS spectra of 7.

Dimeric YMA1 (8)

Chemical Formula: C₂₈H₂₂O₁₂, Exact Mass: 550.1111

UV λ_{max}(MeOH): 232, 270, 291, 326, 412 nm

HRESIMS: *m*/*z* [M-H]⁻ calcd for C₂₈H₂₁O₁₂: 549.1038, found: 549.1057

Compound **8** was identified based on mass, UV-absorption, and biosynthetic consideration, as well as the fact that it was quickly dehydrated to **9** and **10** upon isolation and purification.

Fig. S51 HRESIMS (top) and UV (bottom) spectra of 8.

Fig. S52 MS spectra of 8.

Compound 9

Chemical Formula: $C_{28}H_{20}O_{11}$, Exact Mass: 532.1006 UV λ_{max} (MeOH): 229, 272, 290, 326, 416 nm

HRESIMS: *m*/*z* [M-H]⁻ calcd for C₂₈H₁₉O₁₁: 531.0933, found: 531.0918

Compound was identified based on mass and UV-absorption, and characterized by NMR (Table S14, Fig. S55). This compound appeared as a mixture of 2-epimers, as two sets of signals could be seen in the ¹H NMR spectrum (Fig. S55, and Table S14).

Fig. 53 HRESIMS (top) and UV (bottom) spectra of 9.

Fig. S54 MS spectra of 9.

Position	$\delta_{ extsf{H}}$, mult. (J in Hz), major	$\delta_{ extsf{H}}$, mult. (J in Hz), minor
3	~3.33, 3.14 overlapped ^{<i>a</i>}	~3.33, 3.14 overlapped ^a
3'	6.00 brs	6.00 brs
7/7'	6.34 brs	6.34 brs
10/10'	6.48/6.54 s ^a	6.48/6.54 s ^{<i>a</i>}
2-CH ₃	1.52 s	1.49 s
2′-CH₃	2.18 s	2.25 s

Table S14. ¹H NMR data of 9 (CD₃OD, 500 MHz).

^{*a*} tentative assigned.

Fig. S55 ¹H NMR spectrum of 9 (500 MHz, CD₃OD)

usg A (10)

Chemical Formula: $C_{28}H_{18}O_{10}$, Exact Mass: 514.0900 UV λ_{max} (MeOH): 227, 289, 416 nm HRESIMS: *m/z* [M-H]⁻ calcd for $C_{28}H_{17}O_{10}$: 513.0827, found: 513.0810

Compound was identified based on mass, retention time and UV-absorption with the standard^[12]

Fig. S56 HRESIMS (top) and UV (bottom) spectra of 10.

Fig. S57 MS spectra of 10.
usg G (11)

Chemical Formula: $C_{28}H_{20}O_{10}$, Exact Mass: 516.1057 UV λ_{max} (MeOH): 220, 272, 292, 327, 417 nm HRESIMS: m/z [M-H]⁻ calcd for $C_{28}H_{19}O_{10}$: 515.0984, found: 515.1000 Compound was identified based on mass, retention time and UV-absorption with the standard^[12]

Fig. S58 HRESIMS (top) and UV (bottom) spectra of 11.

usg E (12)

Chemical Formula: $C_{29}H_{24}O_{10}$, Exact Mass: 532.1370 UV λ_{max} (MeOH): 234, 271, 294, 327, 417 nm HRESIMS: m/z [M-H]⁻ calcd for $C_{29}H_{23}O_{10}$: 531.1297, found: 531.1302 Compound was identified based on mass, retention time and UV-absorption with the standard^[12]

Fig. S60 HRESIMS (top) and UV (bottom) spectra of 12.

Fig. S61 MS spectra of 12.

usg N (13)

Chemical Formula: C₂₉H₂₂O₁₀, Exact Mass: 530.1213 UV λ_{max}(MeOH): 229, 273, 292, 327, 417 nm HRESIMS: *m/z* [M-H]⁻ calcd for C₂₉H₂₁O₁₀: 529.1140, found: 529.1148

Fig. S62 HRESIMS (top) and UV (bottom) spectra of 13.

Fig. S63 MS spectra of 13.

usg O (14)

Chemical Formula: $C_{29}H_{22}O_{10}$, Exact Mass: 530.1213 UV λ_{max} (MeOH): 230, 272, 292, 327, 415 nm HRESIMS: *m/z* [M-H]⁻ calcd for $C_{29}H_{21}O_{10}$: 529.1140, found: 529.1141

Fig. S64 HRESIMS (top) and UV (bottom) spectra of 14.

Fig. S65 MS spectra of 14.

usg L (15)

Chemical Formula: $C_{29}H_{20}O_{10}$, Exact Mass: 528.1056 UV λ_{max} (MeOH): 227, 290, 331, 416 nm HRESIMS: m/z [M-H]⁻ calcd for $C_{29}H_{19}O_{10}$: 527.0984, found: 527.0959

Fig. S66 HRESIMS (top) and UV (bottom) spectra of 15.

Fig. S67 MS spectra of 15.

usg D (16)

Chemical Formula: $C_{30}H_{26}O_{10}$, Exact Mass: 546.1526 UV λ_{max} (MeOH): 234, 271, 294, 327, 416 nm HRESIMS: m/z [M-H]⁻ calcd for $C_{30}H_{25}O_{10}$: 545.1453, found: 545.1452

Fig. S68 HRESIMS (top) and UV (bottom) spectra of 16.

Fig. S69 MS spectra of 16.

usg M (17)

Chemical Formula: $C_{30}H_{24}O_{10}$, Exact Mass: 544.1370 UV λ_{max} (MeOH): 232, 272, 292, 327, 416 nm HRESIMS: m/z [M-H]⁻ calcd for $C_{30}H_{23}O_{10}$: 543.1297, found: 543.1274

Fig. S70 HRESIMS (top) and UV (bottom) spectra of 17.

Fig. S71 MS spectra of 17.

usg F (18)

Chemical Formula: $C_{28}H_{22}O_{10}$, Exact Mass: 518.1213 UV λ_{max} (MeOH): 234, 271, 294, 328, 420 nm HRESIMS: m/z [M-H]⁻ calcd for $C_{28}H_{21}O_{10}$: 517.1140, found: 517.1147 Compound was identified based on mass, retention time and UV-absorption with the standard^[12]

Fig. S72 HRESIMS (top) and UV (bottom) spectra of 18.

Fig. S73 MS spectra of 18.

usg E₁ (19)

Chemical Formula: $C_{29}H_{24}O_{10}$, Exact Mass: 532.1370 UV λ_{max} (MeOH): 231, 273, 292, 327, 416 nm HRESIMS: m/z [M-H]⁻ calcd for $C_{29}H_{23}O_{10}$: 531.1297, found: 531. 1319

Fig. S74 HRESIMS (top) and UV (bottom) spectra of 19.

Fig. S75 MS spectra of 19.

Isochaetochromin B₂ (20)

Chemical Formula: C₃₀H₂₆O₁₀, Exact Mass: 546.1526

UV λ_{max}(MeOH): 234, 271, 294, 327, 420 nm

HRESIMS: *m*/*z* [M-H]⁻ calcd for C₃₀H₂₅O₁₀: 545.1453, found: 545.1433

Fig. S76 HRESIMS (top) and UV (bottom) spectra of 20.

Fig. S77 MS spectra of 20.

usg K (21)

Chemical Formula: $C_{30}H_{22}O_{10}$, Exact Mass: 542.1213 UV λ_{max} (MeOH): 228, 291, 327, 420 nm HRESIMS: m/z [M-H]⁻ calcd for $C_{30}H_{21}O_{10}$: 541.1140, found: 541.1145 Compound was identified based on mass, retention time and UV-absorption with the standard^[12]

Fig. S78 HRESIMS (top) and UV (bottom) spectra of 21.

Fig. S79 MS spectra of 21.

Compound 22

Chemical Formula: $C_{30}H_{24}O_{11}$, Exact Mass: 560.1319

UV $\lambda_{max}(\text{MeOH})$: 228, 291, 327, 420 nm

HRESIMS: *m*/*z* [M-H]⁻ calcd for C₃₀H₂₃O₁₁: 559.1246, found: 559.1262

Compound **22** was identified based on mass, UV-absorption, and biosynthetic consideration, as well as the fact that it was quickly dehydrated to **21** upon isolation and purification.

Fig. S80 HRESIMS (top) and UV (bottom) spectra of 22.

Fig. S81 MS spectra of 22.

References

- 1. K. Blin, S. Shaw, K. Steinke, R. Villebro, N. Ziemert, S. Y. Lee, M. H. Medema and T. Weber, *Nucleic Acids Res.*, 2019, **47**, W81-W87.
- S. Lu, J. Wang, F. Chitsaz, M. K. Derbyshire, R. C. Geer, N. R. Gonzales, M. Gwadz, D. I. Hurwitz, G. H. Marchler, J. S. Song, N. Thanki, R. A. Yamashita, M. Yang, D. Zhang, C. Zheng, C. J. Lanczycki and A. Marchler-Bauer, *Nucleic Acids Res.*, 2020, **48**, D265-D268.
- 3. S. Abbasi and S. Afsharzadeh, Prog. Mater. Sci., 2016, 6, 95-106.
- 4. J. H. Yu, Z. Hamari, K. H. Han, J. A. Seo, Y. Reyes-Dominguez and C. Scazzocchio, *Fungal Genet. Biol.*, 2004, **41**, 973-981.
- 5. Y. Liang, Y. Han, C. Wang, C. Jiang and J. R. Xu, Front. Plant Sci., 2018, 9, 699.
- 6. T. Arazoe, K. Miyoshi, T. Yamato, T. Ogawa, S. Ohsato, T. Arie and S. Kuwata, *Biotechnol. Bioeng.*, 2015, **112**, 2543-2549.
- F. A. Ran, P. D. Hsu, J. Wright, V. Agarwala, D. A. Scott and F. Zhang, *Nat. Protoc.*, 2013, 8, 2281-2308.
- 8. D. Zheng, Y. Wang, Y. Han, J. R. Xu and C. Wang, Sci. Rep., 2016, 6, 24824.
- L. Kahlert, E. F. Bassiony, R. J. Cox and E. J. Skellam, Angew. Chem. Int. Ed. Engl., 2020, 59, 5816-5822.
- 10. L. Ralston, S. T. Kwon, M. Schoenbeck, J. Ralston, D. J. Schenk, R. M. Coates, J. Chappell. Arch. Biochem. Biophys., 2001, 393: 222-235.
- 11. S. Obermaier, W. Thiele, L. Furtges and M. Muller, *Angew. Chem. Int. Ed. Engl.*, 2019, **58**, 9125-9128.
- 12. S. Lu, W. Sun, J. Meng, A. Wang, X. Wang, J. Tian, X. Fu, J. Dai, Y. Liu, D. Lai and L. Zhou, *J. Agric. Food Chem.*, 2015, **63**, 3501-3508.
- 13. D. Lai, J. Meng, D. Xu, X. Zhang, Y. Liang, Y. Han, C. Jiang, H. Liu, C. Wang, L. Zhou and J. R. Xu, *Sci. Rep.*, 2019, **9**, 1855.
- 14. X. Kong, X. Ma, Y. Xie, S. Cai, T. Zhu, Q. Gu and D. Li, Arch. Pharm. Res., 2013, 36, 739-744.
- 15. M. J. Sullivan, N. K. Petty and S. A. Beatson, *Bioinformatics*, 2011, 27, 1009-1010.
- 16. M. Piras, I. Patruno, C. Nikolakopoulou, J. A. Willment, N. L. Sloan, C. Zanato, G. D. Brown and M. Zanda, *J. Org. Chem.*, 2021, **86**, 6044-6055.
- R. J. Frandsen, N. J. Nielsen, N. Maolanon, J. C. Sorensen, S. Olsson, J. Nielsen and H. Giese, *Mol. Microbiol.*, 2006, 61, 1069-1080.
- 18. H. Lee, J. Park and J. Choi, *Nat. Prod. Res.*, 1998, **4**, 95-99.
- 19. Y. Y. Zheng, Z. Y. Liang, N. X. Shen, W. L. Liu, X. J. Zhou, X. M. Fu, M. Chen and C. Y. Wang, *Mar. Drugs*, 2019, **17**, 322.