Asymmetric catalytic synthesis of spirocyclobutyl oxindoles and beyond *via* [2+2] cycloaddition and sequential transformations

Xia Zhong, Jiuqi Tan, Jianglin Qiao, Yuqiao Zhou, Cidan Lv, Zhishan Su, Shunxi Dong,* and Xiaoming Feng*

Table of Contents

(A) General Information	
(B) General Procedure for the Synthesis of Products	3
(C) Optimization of Conditions	4
(D) X-ray Crystal Structure of Product 3aa, rac-4ka and rac-5aa	11
(E) Experimental Procedure for the Scale-up Reaction and Product Derivation	16
(F) Control Experiments and React IR Experiment	19
(G) Computational Details	22
(H) References	43
(H) The Analytical and Spectral Characterization Data of the Products	49
(I) Copies of NMR Spectra	86
(J) Copies of CD Spectra in CH ₂ Cl ₂	

(A) General Information

CH₂Cl₂, CHCl₃, CHCl₂CHCl₂, CH₂CICH₂Cl, EtOAc, MeCN were freshly distilled from CaH₂ prior to use; THF, toluene, Et₂O were freshly distilled from sodium metal prior to use. ¹H NMR spectra were recorded on bruker ASCENDTM operating at 400 MHz. The chemical shifts were recorded in ppm relative to tetramethylsilane and with the solvent resonance as the internal standard. Data were reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet, q = quartet), coupling constants (Hz), integration. ¹³C{¹H} NMR data were collected bruker ASCENDTM operating at 101 MHz with complete proton decoupling. ¹⁹F{¹H} NMR was collected bruker ASCENDTM operating at 376 M Hz with complete proton decoupling. Metal salts obtained from commercial sources were used without further purification. Enantiomeric excesses were determined by HPLC analysis on Daicel Chiralcel IA/IB/IE/ADH in comparison with the authentic racemates. Optical rotations were reported as follows: [α]^T_D = (*c* = g/100 mL, in solvent). HRMS was recorded on Thermo Q-Exactive Focus (FTMS+c ESI) and data were reported as (m/z). The chiral *N*,*N*-dioxide ligands were synthesized by the same procedure in the literature.¹ The substrates 1 and *N*-allenamides 2 were prepared according to the literature.^{2,3} Unless noted, other commercial reagents were used without further purification.

(B) General Procedure for the Synthesis of Products

1. Typical procedure for the chiral product 3aa

The reaction was conducted with Ni(OTf)₂ (3.6 mg, 10 mol%), L_5 -RaPr₂ (7.4 mg, 10 mol%), **1a** (34.5 mg, 0.10 mmol) under N₂, CH₂Cl₂ (1.0 mL) was added and the mixture was stirred at 30 °C for 15 min. Removed the solvent and **2a** (34.2 mg, 0.12 mmol) was added. The resulting mixture was dissolved with CH₂Cl₂ (0.5 mL) and stirred at 35 °C for 15 hours. The reaction mixture was subjected to column chromatography on silica gel and eluted with petroleum ether, dichloromethane and ethyl acetate (from 16/1/1 to 9/1/1,v/v) to afford the corresponding product **3aa**.

2. Typical procedure for the chiral product 4aa

The reaction was conducted with Ni(OTf)₂ (3.6 mg, 10 mol%), L_5 -RaPr₂ (7.4 mg, 10 mol%), 1a (34.5 mg, 0.10 mmol) under N₂, CH₂Cl₂ (1.0 mL) was added and the mixture was stirred at 30 °C for 15 min. Removed the solvent in vacuo and 2a (34.2 mg, 0.12 mmol) was added. The resulting mixture was dissolve with CH₂Cl₂ (0.5 mL) and stirred at 35 °C for 15 hours.

 $Cu(OTf)_2$ (1.8 mg, 5 mol%) and 4 Å MS (20.0 mg) were added after removed the solvent in vacuo. The resulting mixture was dissolve with CHCl₃ (2.0 mL) and stirred at 30 °C for 4 hours. The reaction mixture was subjected to column chromatography on silica gel and eluted with petroleum ether, dichloromethane and ethyl acetate (from 16/1/1 to 9/1/1,v/v) to afford the corresponding product **4aa**.

3. Typical procedure for the chiral product 5aa

The reaction was conducted with Ni(OTf)₂ (3.6 mg, 10 mol%), L_5 -RaPr₂ (7.4 mg, 10 mol%), **1a** (34.5 mg, 0.10 mmol) under N₂, CH₂Cl₂ (1.0 mL) was added and the mixture was stirred at 30 °C for 15 min. Removed the solvent in vacuo and **2a** (34.2 mg, 0.12 mmol) was added. The resulting mixture was dissolve with CH₂Cl₂ (0.5 mL) and stirred at 35 °C for 15 hours. The reaction mixture was subjected to column chromatography on silica gel to afford the corresponding product **3aa**. The isolated **3aa** was then dissolved in CH₂Cl₂ (1.0 mL) with Cu(OTf)₂ (3.6 mg, 10 mol%) at 35 °C for 4 hours. The reaction mixture was subjected to column chromatography on silica gel and eluted with dichloromethane and ethyl acetate 9/1,v/v) to afford the corresponding product **5aa**.

4. Typical procedure for transformation of the racemic product

The reaction was conducted with Ni(OTf)₂ (3.6 mg, 10 mol%), *rac-L*₂-PiPr₂ or *rac-L*₃-PiMe₃ (10 mol%), **1a** (34.5 mg, 0.10 mmol) under N₂, CH₂Cl₂ (1.0 mL) was added and the mixture was stirred at 30 °C for 15 min. Removed the solvent and **2a** (34.2 mg, 0.10 mmol) was added. The resulting mixture was dissolve with CH₂Cl₂ (1.0 mL) and stirred at 30 °C for 15 hours. The reaction mixture was subjected to column chromatography on silica gel and eluted with petroleum ether, dichloromethane and ethyl acetate (from 16/1/1 to 9/1/1, v/v) to afford the corresponding product *rac-*3aa and *rac-*4aa.

(C) Optimization of Conditions

1. Optimizing the conditions of the [2+2] cycloaddition reaction

Table S1. Screening of metal salts^a

	+ Ts-N 2a	$\begin{array}{c} \textbf{L}_{3}\text{-PiPr}_{2} (10 \text{ mol}\%) \\ \text{metal salt} (10 \text{ mol}\%) \\ \hline \textbf{CH}_{2}\text{Cl}_{2}, 30 \ ^{\circ}\text{C} \end{array} \qquad $	Ph COO'Bu + (Boc Baa	⁷ BuOOC ¹ BuOC ¹ BuOOC ¹ BuOC ¹ BuO
Entry	Metal salt	Yield of 3aa and 4aa $(\%)^{b}$	Ratio of 3aa:4aa c	ee (%) of 3aa/4aa ^c
1	Zn(OTf) ₂	52	87:13	89/81
2	Mg(OTf) ₂	69	70:30	89/40
3	Ni(OTf) ₂	58	89:11	91/51
4	Cu(OTf) ₂	40	90:10	74/
5	Yb(OTf) ₃	36	94:6	-38/
6	Fe(OTf) ₃	11	95:5	59/
7	Sc(OTf) ₃	< 3	34:66	0/0
8 ^{<i>d</i>}	Zn(OTf) ₂	42	1:99	/59
9 ^{[id}	Mg(OTf) ₂	48	46:54	82/28
10 ^{id}	Ni(OTf) ₂	39	1:99	/60
11	Ni(acac) ₂	No reaction		
12	Ni(BF ₄) ₂ .6H ₂ O	14	89:11	38/50
13	Ni(ClO ₄) ₂ .6H ₂ O	35	95:5	84/
14 ^e	Ni(OTf) ₂	13	1:99	/race
15 ^{<i>e</i>,<i>f</i>}	Ni(OTf) ₂	16	70:30	race/race

^aUnless otherwise noted, all reactions were carried out with **1a** (0.05 mmol), **2a** (0.05 mmol), **L**₃-**PiPr**₂ (10 mol%) and metal salt (10 mol%) in CH₂Cl₂ (0.1 M) at 30 °C for 16 h. ^bIsolated yield of **3aa** and **4aa** based on **1a**. ^cDetermined by HPLC on a chiral stationary phase ($\lambda = 224$ nm). ^dMetal salt (15 mol%) was used. ^eWithout **L**₃-**PiPr**₂. ^fThe reaction was carried out with Ni(OTf)₂ (2.5 mol%) at 20 °C.

Table S2. Screening of ligands^a

`R **L₃-PrPr₂**: R = 2,6-ⁱPr₂C₆H₃, n = 1, m = 1 $\begin{array}{l} \textbf{L}_{3}\textbf{-Pirr}_{2}, \textbf{R}=2, \textbf{0} \cdot \textbf{r}_{12} \boldsymbol{\omega}_{6} \textbf{r}_{3}, \textbf{n}=1, \textbf{m}=1\\ \textbf{L}_{4}\textbf{-Pr}\textbf{Pr}_{2}; \textbf{R}=2, \textbf{0} \cdot \textbf{P}_{72} \boldsymbol{C}_{6} \textbf{H}_{3}, \textbf{n}=1, \textbf{m}=2\\ \textbf{L}_{3}\textbf{-Pi}\textbf{P}_{2}; \textbf{R}=2, \textbf{0} \cdot \textbf{P}_{72} \boldsymbol{C}_{6} \textbf{H}_{3}, \textbf{n}=2, \textbf{m}=1\\ \textbf{L}_{3}\textbf{-Pi}\textbf{P}_{13}; \textbf{R}=2, \textbf{4}, \textbf{0} \cdot \textbf{P}_{73} \boldsymbol{C}_{6} \textbf{H}_{2}, \textbf{n}=2, \textbf{m}=1\\ \textbf{L}_{3}\textbf{-Pi}\textbf{E}\textbf{L}_{2}; \textbf{R}=2, \textbf{6} \cdot \textbf{E}\textbf{L}_{2} \boldsymbol{C}_{6} \textbf{H}_{3}, \textbf{n}=2, \textbf{m}=1\\ \textbf{L}_{3}\textbf{-Pi}\textbf{E}\textbf{L}_{2}; \textbf{R}=2, \textbf{6} \cdot \textbf{E}\textbf{L}_{2} \boldsymbol{C}_{6} \textbf{H}_{3}, \textbf{n}=2, \textbf{m}=1\\ \textbf{L}_{3}\textbf{-Pi}\textbf{E}\textbf{L}_{2}; \textbf{R}=2, \textbf{6} \cdot \textbf{E}\textbf{L}_{2} \boldsymbol{C}_{6} \textbf{H}_{2}, \textbf{n}=2, \textbf{m}=1\\ \textbf{L}_{3}\textbf{-Pi}\textbf{E}\textbf{L}_{3}; \textbf{R}=2, \textbf{4}, \textbf{6} \cdot \textbf{E}\textbf{L}_{3} \boldsymbol{C}_{6} \textbf{H}_{2}, \textbf{n}=2, \textbf{m}=1\\ \textbf{L}_{3}\textbf{-Pi}\textbf{E}\textbf{L}_{3}; \textbf{R}=2, \textbf{4}, \textbf{6} \cdot \textbf{E}\textbf{L}_{3} \boldsymbol{C}_{6} \textbf{H}_{2}, \textbf{n}=2, \textbf{m}=1\\ \end{array}$

Ή Ŕ

 $\begin{array}{l} \textbf{L_3-PiMe_2:} R = 2,6-Me_2C_6H_3, n = 2, m = 1\\ \textbf{L_3-Pi(O^iBu)_2:} R = 2,6-(O^iBu)_2C_6H_3, n = 2, m = 1\\ \textbf{L_3-Pi(O^iPr)_2:} R = 2,6-(O^iPr)_2C_6H_3, n = 2, m = 1\\ \textbf{L_3-Pi(OMe)_2:} R = 2,6-(OMe)_2C_6H_3, n = 2, m = 1\\ \textbf{L_3-Pi}(Bu:R = tert-butyl, n = 2, m = 1\\ \textbf{L_3-Pi}(PiPh_2:R = CH(C_6H_5)_2, n = 2, m = 1\\ \textbf{L_3-Pi}(Y:R = C_6H_{11}, n = 2, m = 1\\ \textbf{L_3-Pi}(Y:R = S, 5-KBu_2C_6H_3, n = 2, m = 1\\ \textbf{L_3-Pi}_r:R = 2, 6-Pir_5C_6H_2, n = 2, m = 1\\ \textbf{L_3-Pi}_r:R = 2, 6-Pir_5C_6H_2, n = 2, m = 0\\ \end{array}$ **L₂-PiPr₂**: R = 2,6-ⁱPr₂C₆H₃, n = 2, m = 0 **L₄-PiPr₂**: R = 2,6-ⁱPr₂C₆H₃, n = 2, m = 2 **L**₅-**PiPr**₂: R = 2,6-ⁱPr₂C₆H₃, n = 2, m = 3

 $\begin{array}{l} \textbf{L_{3}-RaPr_{2}: R = 2,6^{-i}Pr_{2}C_{6}H_{3}, m = 1 \\ \textbf{L_{4}-RaPr_{2}: R = 2,6^{-i}Pr_{2}C_{6}H_{3}, m = 2 \end{array}$ **L₅-RaPr₂**: R = 2,6-ⁱPr₂C₆H₃, m = 3

		J Z <i>J</i> Z U J		
Entry	Ligand	Yield of 3aa and 4aa $(\%)^{b}$	Ratio of 3aa:4aa c	ee (%) of 3aa/4aa ^c
1	L ₃ -PrPr ₂	58	74:26	55/79
2	L ₃ -PiPr ₂	58	89:11	91/51
3	L ₃ -RaPr ₂	72	80:20	60/80
4	L ₃ -PiPr ₃	65	90:10	90/
5	L ₃ -PiEt ₂	56	87:13	88/40
6	L ₃ -PiEt ₂ Me	58	95:5	89/
7	L ₃ -PiEt ₃	63	95:5	89/
8	L ₃ -PiMe ₂	61	90:10	79/
9	L ₃ -Pi(O ⁱ Bu) ₂	53	89:11	90/33
10	L ₃ -Pi(O ⁱ Pr) ₂	45	87:13	88/63
11	L₃-Pi(OMe)₂	52	93:7	70/
12	L₃-Pi ^t Bu	44	95:5	20/
13	L ₃ -PiCHPh ₂	38	93:7	25/
14	L ₃ -PiCy	40	89:11	35/34
15	L ₃ -Pi ^{<i>t</i>} Bu ₂	52	98:2	8/
16	L ₂ -PiPr ₂	59	60:40	58/83
17	L ₄ -PiPr ₂	55	97:3	95/
18	L ₄ -PrPr ₂	55	98:2	79/
19	L₄-RaPr₂	75	97:3	90/
20	L ₅ -PiPr ₂	49	98:2	90/
21	L₅-RaPr₂	74	98:2	95/

^aUnless otherwise noted, all reactions were carried out with **1a** (0.05 mmol), **2a** (0.05 mmol), **Ligand** (10 mol%) and Ni(OTf)₂ (10 mol%) in CH₂Cl₂ (0.1 M) at 30 °C for 16 h. ^bIsolated yield of **3aa** and **4aa** based on **1a**. ^cDetermined by HPLC on a chiral stationary phase (λ = 224 nm).

^aUnless otherwise noted, all reactions were carried out with **1a** (0.05 mmol), **2a** (0.05 mmol), **L**₅-**RaPr**₂ (10 mol%) and Ni(OTf)₂ (10 mol%) in solvent (0.1 M) at 30 °C for 16 h. ^bIsolated yield of **3aa** and **4aa** based on **1a**. ^cDetermined by HPLC on a chiral stationary phase ($\lambda = 224$ nm). ^dCH₂Cl₂ (0.2 M) was used. ^eCH₂Cl₂ (0.05 M) was used.

Table S4. Screening of ratio of 1a and 2a^a

^{'BuOOC}	$= 0 + T_{s} - N = =$	L ₅ -RaPr ₂ (10 mol%) Ni(OTf) ₂ (10 mol%) CH ₂ Cl ₂ , 30 °C 3a	coo'Bu +	Ph-N ^{Ts} ⁷ BuOOC N Boc 4aa
Entry	Ratio of 1a and 2a	Yield of 3aa and 4aa $(\%)^{b}$	Ratio of 3aa:4aa ^c	ee (%) of 3aa/4aa ^c
1	1:1	84	98:2	95/
2	1.2:1	85	98:2	95/
3	1.5:1	83	98:2	95/
4	1:1.2	88	98:2	95/
5	1:1.5	91	98:2	95/
6 ^{<i>d</i>}	1:1.2	81	98:2	95/
7 ^e	1:1.2	94	98:2	95/
8 ^{e,f}	1:1.2	80	98:2	95/
9 ^{e,g}	1:1.2	93	98:2	95/

^aUnless otherwise noted, all reactions were carried out with **1a** (0.050 mmol), **2a**, **L**₅-**RaPr**₂ (10 mol%) and Ni(OTf)₂ (10 mol%) in CH₂Cl₂ (0.2 M) at 30 °C for 16 h. ^bIsolated yield of **3aa** and **4aa** based on **1a**. ^cDetermined by HPLC on a chiral stationary phase ($\lambda = 224$ nm). ^dThe reaction was carried out at 20°C for 40 h. ^eThe reaction was carried out at 35°C for 16 h. ^fL₅-**RaPr**₂ (5 mol%) and Ni(OTf)₂ (5 mol%) were used. ^gThe reaction was carried out with **1a** (0.10 mmol), **2a** (0.12 mmol), **L**₅-**RaPr**₂ (10 mol%) and Ni(OTf)₂ (10 mol%) in CH₂Cl₂ (0.2 M) at 35 °C for 16 h.

2. Optimizing the conditions of the transformation

Table S5. Screening of metal salts^a

ĺ	^{/BuOOC} N 1a Boc	1) L ₅ -RaPr ₂ (10 m Ni(OTf) ₂ (10 m - CH ₂ Cl ₂ , 35 ° 2) metal salt (5 r CH ₂ Cl ₂ , 30 °	P 'BuOOC ol%) C N C Boc	h-N ^{Ts}
Entry	Metal salt	Yield of 3aa and 4aa $(\%)^{b}$	Ratio of 3aa:4aa ^c	ee (%) of 3aa/4aa ^c
1	Ni(OTf) ₂	76	82:18	95/92
2 ^{<i>d</i>}	Ni(OTf) ₂	37	3:97	/92
3 ^e	Ni(OTf) ₂	56	1:99	/92
4	Zn(OTf) ₂	54	6:94	/91
5	Mg(OTf) ₂	52	34:66	94/91
6	Cu(OTf) ₂	49	1:99	/93
7 ^e	Cu(OTf) ₂	46	1:99	/92
8 ^f	Cu(OTf)₂	58	1:99	/92

^aUnless otherwise noted, all reactions were carried out with 1) **1a** (0.05 mmol), **2a** (0.06 mmol), **L**₅-**RaPr**₂ (10 mol%) and Ni(OTf)₂ (10 mol%) in CH₂Cl₂ (0.2 M) at 35 °C for 16 h. 2) Metal salt (5 mol%) was then added in CH₂Cl₂ (0.1 M) at 30°C for 16 h under air. ^bIsolated yield of **3aa** and **4aa** based on **1a**. ^cDetermined by HPLC on a chiral stationary phase ($\lambda = 224$ nm). ^d**3aa** was isolated and treated with Ni(OTf)₂ (10 mol%) in CH₂Cl₂, **5aa** was found in 18% yield, 65:35 dr and 95% ee for each diastereoisomer. ^eMetal salt (10 mol%) was used. ^f5 Å MS (15 mg) was added.

Table S6. Screening of solvent^a

$\begin{array}{c} {}^{'BuOOC} \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ $				
Entry	Solvent	Yield of 3aa and 4aa $(\%)^b$	Ratio of 3aa:4aa ^c	ee (%) of 3aa/4aa ^c
1	CH_2CI_2	58	1:99	/92
2	CHCl₃	63	2:98	/92
3 ^d	CHCl₃	60	45:55	95/91
4	CH ₂ CICH ₂ CI	52	1:99	/91
5	CHCl ₂ CHCl ₂	52	1:99	/91
6	Et ₂ O	64	85:15	95/93
7	THF	48	22:78	96/91
8	EtOAc	83	93:7	94/92

^aUnless otherwise noted, all reactions were carried out with 1) **1a** (0.05 mmol), **2a** (0.06 mmol), **L**₅-**RaPr**₂ (10 mol%) and Ni(OTf)₂ (10 mol%) in CH₂Cl₂ (0.2 M) at 35 °C for 16 h. 2) Cu(OTf)₂ (5 mol%) and 5 Å MS (15 mg) were then added in solvent (0.1 M) at 30°C for 16 h under air. ^bIsolated yield of **3aa** and **4aa** based on **1a**. ^cDetermined by HPLC on a chiral stationary phase ($\lambda = 224$ nm). ^dWithout 5 Å MS.

Table S7. Screening of additives^a

	^t BuOOC N 1a Boc + Ts	$\begin{array}{c} 1) \mathbf{L_{5}} \cdot \mathbf{RaPr_{2}} (10) \\ Ni(OTf)_{2} (10) m \\ \cdot \mathbf{CH_{2}Cl_{2}} \cdot 35 \\ \cdot \mathbf{CH_{2}Cl_{2}} \cdot 35 \\ \cdot \mathbf{CH_{2}Cl_{2}} \cdot 30 \\ \cdot \mathbf{CH_{2}Cl_{2}} \cdot 30 \end{array}$	mol%) pol%) pol%) pol%) pol%) pol%) N box N box N box N box N box N box N box N box N N N N N N N N N N N N N	th N Ts 0
Entry	Additive	Yield of 3aa and 4aa $(\%)^{b}$	Ratio of 3aa:4aa ^c	ee (%) of 3aa/4aa ^c
1	5 Å MS (15 mg)	63	2:98	/92
2	3 Å MS (15 mg)	63	1:99	/93
3	4 Å MS (15 mg)	65	1:99	/93
4	4 Å MS (5 mg)	57	1:99	/93
5	4 Å MS (10 mg)	65	1:99	/93
6	TsOH·H ₂ O (20 mol%)	26	1:99	/91
7	MgSO ₄ (10 mg)	87	97:3	94/
8 ^d	TsOH·H ₂ O (50 mol%)	Decomposed		
9 ^d	TsOH·H ₂ O (100 mol%)	Decomposed		

^aUnless otherwise noted, all reactions were carried out with 1) **1a** (0.05 mmol), **2a** (0.06 mmol), **L**₅-**RaPr**₂ (10 mol%) and Ni(OTf)₂ (10 mol%) in CH₂Cl₂ (0.2 M) at 35 °C for 16 h. 2) Cu(OTf)₂ (5 mol%) and additive were then added in CHCl₃ (0.1 M) at 30°C for 16 h under air. ^bIsolated yield of **3aa** and **4aa** based on **1a**. ^cDetermined by HPLC on a chiral stationary phase ($\lambda = 224$ nm). ^dWithout Cu(OTf)₂.

Table S8. Screening of temperature^a

	¹ BuOOC N 1a Boc + Te	$\begin{array}{c} 1) \ \textbf{L_5-RaPr_2} (10) \\ Ni(OTf)_2 (10 \text{ m}) \\ S-N & \phantom{AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA$	P ¹ BuOOC ¹ BuOC ¹ BuOC 	h-N ^{Ts} -0 4aa
Entry	Temperature (°C)	Yield of 3aa and 4aa $(\%)^{b}$	Ratio of 3aa:4aa ^c	ee (%) of 3aa/4aa ^c
1	0	87	83:17	95/93
2	10	86	87:13	95/93
3	20	65	1:99	/93
4	25	65	1:99	/93
5	30	65	1:99	/93
6	35	65	1:99	/93
7 ^d	30	68	1:99	/93
8 ^e	30	74	59:41	95/93
9 ^{<i>d,f</i>}	30	83	94:6	95/
10 ^{<i>d,g</i>}	30	96	97:3	94/
11 ^{<i>d,h</i>}	30	75	85:15	95/92
12 ^{<i>d,i</i>}	30	43	1:99	/93
13 ^{<i>d,j</i>}	30	70	1:99	/93
14 ^{<i>k</i>}	30	72	1:99	/93

14′	30	70	1:99	/93

^aUnless otherwise noted, all reactions were carried out with 1) **1a** (0.050 mmol), **2a** (0.060 mmol), **L**₅-**RaPr**₂ (10 mol%) and Ni(OTf)₂ (10 mol%) in CH₂Cl₂ (0.2 M) at 35 °C for 16 h. 2) Cu(OTf)₂ (5 mol%) and 4 Å MS (10 mg) were then added in CHCl₃ (0.1 M) at 30°C for 16 h under air. ^bIsolated yield of **3aa** and **4aa** based on **1a**. ^cDetermined by HPLC on a chiral stationary phase ($\lambda = 224$ nm). ^dThe reaction was carried out with CHCl₃ (0.05 M). ^cCu(OTf)₂ was replaced by Cu(acac)₂. ^gCu(OTf)₂ was replaced by Cu(ClO₄)₂. ^hCu(OTf)₂ was replaced out with 1) **1a** (0.10 mmol), **2a** (0.12 mmol), **L**₅-**RaPr**₂ (10 mol%) and Ni(OTf)₂ (10 mol%) in CH₂Cl₂ (0.1 M) at 35 °C for 16 h. 2) Cu(OTf)₂ (5 mol%) and 4 Å MS (20 mg) were then added in CHCl₃ (0.05 M) at 30°C for 3 h under air.

Table S9. Screening of ligands^a

Entry	Ligand	Yield of 3aa and 4aa (%) ^b	Ratio of 3aa:4aa ^c	ee (%) of 3aa/4aa ^c
1	L1	29	1:99	/0
2	L2	33	1:99	/—11
3	L3	27	6:94	/36

^aUnless otherwise noted, all reactions were carried out with **1a** (0.05 mmol), **2a** (0.05 mmol), **Ligand** (10 mol%) and Ni(OTf)₂ (10 mol%) in CH₂Cl₂ (0.1 M) at 30 °C for 16 h. ^bIsolated yield of **3aa** and **4aa** based on **1a**. ^cDetermined by HPLC on a chiral stationary phase (λ = 224 nm).

Table S10. Optimization of the conditions of reaction with alkoxyallene^a

	¹ BuOOC N Boc 1a 5a	L ₅ -RaPr ₂ /Ni(OTf) ₂ DCM, 35 °C	²'n ⟩)
Entry	Ratio of L_5 -RaPr ₂ and Ni(OTf) ₂	Yield (%) ^b	ee (%) ^c
1	1:1	60	97
2	1:1.5	56	97
3	1.5:1	50	97
4 ^{<i>d</i>}	1:1	59	97
5 ^e	1:1	8	97

^aUnless otherwise noted, all reactions were carried out with **1a** (0.1 mmol), **5a** (0.6 mmol), **L**₅-**RaPr**₂/Ni(OTf)₂ (x:y, 10 mol%) in solvent (0.2 M) at 30 °C for 16 h. ^bIsolated yield of **3aa** and **4aa** based on **1a**. ^cDetermined by HPLC on a chiral stationary phase. ^dThe reaction was carried out at 20 °C. ^cThe reaction was carried out at 0 °C.

Table S11. Faild examples

(D) X-ray Crystal Structure of Product 3aa, rac-4ka and rac-5aa

The colourless crystal in block-shape, with approximate dimensions of $0.298 \times 0.219 \times 0.131 \text{ mm}^3$, was selected and mounted for the single-crystal X-ray diffraction. The data set was collected by Bruker D8 Venture Photon II diffractometer at 148(2)K equipped with micro-focus Cu radiation source ($K_{\alpha} = 1.54178$ Å). Applied with face-indexed numerical absorption correction, the structure solution was solved and refinement was processed by SHELXTL (version 6.14) program package. The structure was analyzed by ADDSYM routine implemented in PLATON suite and no higher symmetry was suggested.

The crystal of product **3aa** was obtained in the solvents of ethyl acetate and *n*-hexane. CCDC 2042864 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Center *via* <u>https://www.ccdc.cam.ac.uk/.</u>

Figure S1. X-ray Crystal Structure of Product 3aa

Formula	$C_{35}H_{38}N_2O_7S$
Formula mass (amu)	630.73
Space group	P 21 21 21
a (Å)	9.6132(4)
b (Å)	17.1589(7)

<i>c</i> (Å)	20.1048(9)
a (deg)	90
β (deg)	90
γ (deg)	90
V (Å ³)	3316.3(2)
Ζ	4
λ (Å)	1.54178
<i>Т</i> (К)	148 K
$r_{\rm calcd} (\rm g \ \rm cm^{-3})$	1.263
<i>m</i> (mm ⁻¹)	1.280
Transmission factors	0.736, 0.895
$2q_{\text{max}}(\text{deg})$	80.721
No. of unique data, including $F_o^2 < 0$	7224
No. of unique data, with $F_o^2 > 2s(F_o^2)$	7063
No. of variables	413
$R(F)$ for $F_{o}^{2} > 2s(F_{o}^{2})^{a}$	0.0275
$R_w(F_o^2)^{b}$	0.0710
Goodness of fit	1.058
Flack Parameter	0.014(3)
${}^{a}R(F) = \sum F_{\rm o} - F_{\rm c} / \sum F_{\rm o} . {}^{b}R_{\rm w}(F_{\rm o}^{2}) = \left[\sum [w(F_{\rm o}^{2} - F_{\rm c}^{2})^2\right] /$	$\sum w F_o^4]^{1/2}; w^{-1} = [\sigma^2 (F_o^2) + (Ap)^2 + Bp], \text{ where } p$
$= [\max(F_{\rm o}^{2}, 0) + 2F_{\rm c}^{2}] / 3.$	

The crystal of product **rac-4ka** was obtained in the solvents of ethyl acetate and *n*-hexane. CCDC 2052253 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Center *via* <u>https://www.ccdc.cam.ac.uk/.</u>

Figure S2. X-ray Crystal Structure of Product rac-4ka

, , ,	66 61 <u>2</u> 1
Formula	$C_{35}H_{37}IN_2O_7S$
Formula mass (amu)	756.62
Space group	C 2/c
a (Å)	26.3668(7)
b (Å)	12.0985(3)
<i>c</i> (Å)	22.1997(6)
α (deg)	90
β (deg)	101.169(1)
γ (deg)	90
<i>V</i> (Å ³)	6947.5(3)
Ζ	8
λ (Å)	1.54178
Т (К)	174 K
$r_{\rm calcd} (\rm g \ cm^{-3})$	1.447
<i>m</i> (mm ⁻¹)	8.212
Transmission factors	0.180, 0.719
$2q_{\max}(\deg)$	68.379
No. of unique data, including $F_o^2 < 0$	6388
No. of unique data, with $F_o^2 > 2s(F_o^2)$	6318
No. of variables	422
$R(F)$ for $F_{o}^{2} > 2s(F_{o}^{2})^{a}$	0.0259
$R_{\rm w}(F_{\rm o}^{2})^{b}$	0.0651
Goodness of fit	1.036
${}^{a}R(F) = \sum F_{o} - F_{c} / \sum F_{o} . {}^{b}R_{w}(F_{o}^{2}) = \left[\sum [w(F_{o}^{2} - F_{c}^{2})^{2}] / \sum (F_{o}^{2} - F_{c}^{2})^{2}\right] / \sum F_{o} ^{2}$	$[wF_o^4]^{1/2}$; $w^{-1} = [\sigma^2(F_o^2) + (Ap)^2 + Bp]$, where p
$= [\max(F_o^2, 0) + 2F_c^2] / 3.$	

Crystallographic Data for $C_{35}H_{37}IN_2O_7S$.

The crystal of product **rac-5aa** was obtained in the solvents of ethyl acetate and *n*-hexane. CCDC 2079315 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Center via <u>https://www.ccdc.cam.ac.uk/.</u>

Figure S3. X-ray Crystal Structure of Product rac-5aa

Crystallographic Data for $C_{26}H_{22}IN_2O_5S$.

Formula	$C_{26}H_{22}IN_2O_5S$
Formula mass (amu)	474.51
Space group	P –1
a (Å)	8.3490(2)
b (Å)	11.8120(3)
<i>c</i> (Å)	14.8662(4)
a (deg)	96.220(1)
β (deg)	95.738(1)
γ (deg)	105.762(1)
V(Å ³)	1389.76(6)
Ζ	2
λ (Â)	1.54178
<i>Т</i> (К)	172 K

$r_{\rm calcd} (\rm g \ \rm cm^{-3})$	1.134
<i>m</i> (mm ⁻¹)	1.322
Transmission factors	0.717, 0.951
2q _{max} (deg)	68.323
No. of unique data, including $F_o^2 < 0$	4998
No. of unique data, with $F_o^2 > 2s(F_o^2)$	4334
No. of variables	318
$R(F)$ for $F_{o}^{2} > 2s(F_{o}^{2})^{a}$	0.0429
$R_{w}(F_{o}^{2})^{b}$	0.1110
Goodness of fit	1.037
${}^{a}R(F) = \sum F_{\rm o} - F_{\rm c} / \sum F_{\rm o} . {}^{b}R_{\rm w}(F_{\rm o}^{2}) = [\sum [w(F_{\rm o}^{2} - F_{\rm c}^{2})]$	$[\sigma^{2}] / \sum w F_{o}^{4}]^{1/2}; w^{-1} = [\sigma^{2}(F_{o}^{2}) + (Ap)^{2} + Bp], \text{ where } p$
$= [\max(F_{\rm o}^{2}, 0) + 2F_{\rm c}^{2}] / 3.$	

(E) Experimental Procedure for the Scale-up Reaction and Product Derivation

1. Scale-up reaction procedure for the chiral product 3aa

The reaction was conducted with Ni(OTf)₂ (72.0 mg, 10 mol%), L_5 -RaPr₂ (148.0 mg, 10 mol%), 1a (690.0 mg, 2.0 mmol) under N₂, CH₂Cl₂ (20.0 mL) was added and the mixture was stirred at 30 °C for 30 min. Removed the solvent and 2a (684.0 mg, 2.4 mmol) was added. The resulting mixture was dissolve with CH₂Cl₂ (10.0 mL) and stirred at 35 °C for 15 hours. The reaction mixture was subjected to column chromatography on silica gel to afford the product **3aa** (petroleum ether/ethyl acetate/dichloromethane = 16/1/1 to petroleum ether/ethyl acetate/dichloromethane = 9/1/1 as eluent) as a white soild (1.124 g, 89% yield, **3aa:4aa** > 19:1, 90% ee).

2. Scale-up reaction procedure for the chiral product 4qa

The reaction was conducted with Ni(OTf)₂ (57.6 mg, 10 mol%), L_5 -RaPr₂ (116.8 mg, 10 mol%), 1q (609.0 mg, 1.60 mmol) under N₂, CH₂Cl₂ (16.0 mL) was added and the mixture was stirred at 30 °C for 30 min. Removed the solvent in vacuo and 2a (547.2 mg, 1.92 mmol) was added. The resulting mixture was dissolve with CH₂Cl₂ (8.0 mL) and stirred at 35 °C for 15 hours.

The solvent removed in vacuo. Then $Cu(OTf)_2$ (36.0 mg, 7.5 mol%) and 4 Å MS (400.0 mg) were added. The resulting mixture was dissolve with CHCl₃ (24.0 mL) and stirred at 30 °C for 4 hours. The reaction mixture was subjected to column chromatography on silica gel to afford the product **3qa** (petroleum ether/ethyl acetate/dichloromethane = 16/1/1 to petroleum ether/ethyl acetate/dichloromethane = 9/1/1 as eluent) as white soild (0.618 g, 58% yield, **3qa:4qa** > 19:1, 88% ee).

3. Scale-up reaction procedure for the chiral product 5ba

The reaction was conducted with **3ba** (1.74 mg, 2.5 mol) and Cu(OTf)₂ (90.0 mg, 10 mol%), CH₂Cl₂ (25.0 mL) was added and the mixture was stirred at 35 °C for 6 hours under air. The reaction mixture was subjected to column chromatography on silica gel to afford the product **5ab** (ethyl acetate/dichloromethane = 1/12 to ethyl acetate/dichloromethane = 1/9 as eluent) as yellow soild (0.72 g, 63% yield, 66:34 dr, 94/94% *ee*).

4. Hydrogrnation of 3aa

In a 10 mL tube equipped with a magnetic stirring bar, **3aa** (0.1 mmol) was dissolved in 2.0 mL MeOH, the mixture was then hydrogenated at 50 atm with Pd/C (10% wt) at 25 °C for 24 h, The reaction was determined by TLC, after the substrate was consumed, the reaction mixture were filtered over Celite, evaporated under reduced pressure, and was subjected to column chromatography on silica gel.

Di-*tert*-butyl (1*R*,2*R*,3*S*,4*S*)-3-methyl-4-[(4-methyl-*N*-phenylphenyl)sulfonamido]-2'-oxospiro[cyclobutane-1,3'-indoline]-1',2-dicarboxylate (8)

97% yield, Pale yellow oil; $R_f = 0.4$ (petroleum ether/ethyl acetate/dichloromethane = 9/1/1); Dissolved in ¹PrOH for HPLC; **HPLC** (Chiralcel IB, hexane/¹PrOH = 95/5, flow rate 1.0 mL/min, $\lambda = 224$ nm), major isomer: t_r (major) = 9.95 min, t_r (minor) = 12.21 min, ee = 95%; minor isomer: t_r (major) = 8.04 min, t_r (minor) = 8.48 min, ee = 84%. dr = 85:15, determined by ¹H NMR. $[\alpha]^{22}_{D} = -55.2$ (*c* = 0.47, in dichloromethane). ¹H NMR (600 MHz, CDCl₃) δ 7.64 – 7.59 (m, 2H), 7.23 – 7.08 (m, 8H), 6.97 – 6.93 (m, 1H), 6.90 – 6.79 (m, 1H), 6.48 – 6.46 (m, 1H), 4.78 (d, *J* = 8.4 Hz, 1H), 3.54 (d, *J* = 9.6 Hz, 1H), 3.12 (dt, *J* = 15.6, 7.8 Hz, 1H), 2.38 (s, 3H), 1.63 (s, 9H), 1.34 (d, *J* = 7.2 Hz, 3H), 0.94 (s, 9H) ppm; ¹³Cl¹H} NMR (151 MHz, CDCl₃) δ 177.2, 167.4, 148.7, 144.1, 140.9, 138.8, 131.4, 129.4, 129.1, 128.9, 128.7, 128.4, 128.3, 128.23, 128.16, 127.7, 127.5, 126.6, 125.9, 125.4, 123.7, 114.6, 84.2, 81.0, 58.0, 57.2, 45.4, 35.3, 28.1, 27.2, 21.6, 11.0 ppm; IR (neat) ν (cm⁻¹): 2979, 1730, 1601, 1481, 1359, 1299, 1248, 1157, 841, 750, 702, 601; HRMS (ESI-FT) calcd for C₃₅H₄₀N₂O₇SNa⁺ ([M]+Na⁺) = 655.2448, found 655.2450. Relative configuration of **8** was determined by COSY and NOESY NMR spectra.

5. Hydrogrnation of 4aa

In a 10 mL tube equipped with a magnetic stirring bar, 4aa (0.1 mmol) was dissolved in 2.0 mL MeOH, the mixture was then hydrogenated at 50 atm with Pd/C (100% wt) at 25 °C for 24 h, The reaction was determined by TLC, after the substrate was consumed, the reaction mixture were filtered over Celite, evaporated under reduced pressure, and was subjected to column

chromatography on silica gel.

Tert-butyl (*Z*)-3-{1-(*tert*-butoxy)-3-methyl-4-[(4-methyl-*N*-phenylphenyl)sulfonamido]-1-oxobut-3-en-2-yl}-2-oxoindoline-1-carboxylate (9)

75% yield, White solid; **m.p.**: 71.8 – 94.0 °C; R_f = 0.5 (petroleum ether/ethyl acetate/dichloromethane = 9/1/1); Dissolved in ⁱPrOH for HPLC; **HPLC** (Chiralcel IF, hexane/ⁱPrOH = 90/10, flow rate 1.0 mL/min, λ = 224 nm), major isomer: t_r (major) = 19.88 min, t_r (minor) = 16.62 min, ee = 92%; minor isomer: t_r (major) = 27.94 min, t_r (minor) = 14.62 min, ee = 92%. dr = 60:40, determined by ¹H NMR. [α]²³_D = +46.1 (*c* = 0.43, in dichloromethane). ¹H NMR (600 MHz, CDCl₃) δ 7.78 – 7.75 (m, 1H), 7.48 – 7.44 (m, 2H), 7.30 – 7.27 (m, 1H), 7.25 – 7.18 (m, 6H), 7.13 – 7.06 (m, 3H), 5.96 (d, *J* = 1.8 Hz, 1H), 4.32 (d, *J* = 8.4 Hz, 1H), 4.12 (d, *J* = 9.0 Hz, 1H), 2.41 (s, 3H), 1.85 (d, *J* = 1.2 Hz, 3H), 1.59 (s, 9H), 1.31 (s, 9H) ppm. ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 173.1, 169.5, 149.1, 143.8, 141.2, 140.0, 136.3, 134.3, 134.1, 129.4, 128.9, 128.2, 128.0, 127.3, 126.7, 126.2, 125.5, 124.2, 123.5, 114.9, 83.8, 81.9, 48.7, 45.0, 28.1, 27.7, 21.6, 18.1 ppm. IR (neat) ν (cm⁻¹): 2978, 1767, 1727, 1484, 1357, 1297, 1251, 1157, 1093, 754, 697, 611; HRMS (ESI-FT) calcd for C₃₅H₄₀N₂O₇SNa⁺ ([M]+Na⁺) = 655.2448, found 655.2450.

(F) Control Experiments and React IR Experiment

1. Control experiments

1.1

When the transformation of **3aa** to **4aa** is carried out in glove box, the yield of **4aa** increased to 70% (Figure S4a). However, **4aa** could converted into **3aa** under the same condition (Figure S4b, condition 2), which indicates that the transformation from **3aa** to **4aa** is irreversible.

Figure S4

1.2

When **3aa** (95% ee) was heated in CHCl₂CHCl₂ at 80 $^{\circ}$ C under N₂ atmosphere for 24 h, compound **4aa** was isolated in 40% yield with 94% ee. It is indicated that **4aa** could be obtained through thermal conversion of **3aa**. (Figure S5).

1.3

Treatment 4aa with TFA led to the formation of 5aa in 59% yield, 65:35 dr and 93%/93% ee (Figure S6). Moreover, treatment of product 4aa with TFA gave rise to intermediate V, which underwent ring-open and proton transfer to produce 5aa.

Figure S6

2. React IR experiments

2.1. React IR experiment of the [2+2] cycloaddition reaction

Kinetic analyses were performed using in situ attenuated total reflectance Fouriertransform infrared (ATR FTIR) spectroscopy to track the formation of product **3aa** under synthetically relevant conditions. A Mettler Toledo ReactIR 701L was treated as main experiment equipment. All of the kinetic experiments on each plot were performed using a single batch of reagents.

A three-necked reaction tube was charge with Ni(OTf)₂ (10 mol%), L_5 -RaPr₂ (10 mol%), 1a (0.8 mmol) under N₂, CH₂Cl₂ (8.0 mL) was added and the mixture was stirred at 30 °C for 30 min. Removed the solvent in vacuo and 2a (0.96 mmol) was added. The resulting mixture was dissolve with CH₂Cl₂ (4.0 mL) and stirred at 35 °C and the IR data collection was started. The React IR spectra were recorded over the process of the reaction. ConcIRT Spectrum of the 1a with peak at 1484 cm⁻¹ and 3aa with peak at 1461 cm⁻¹ was selected to acquire kinetic data.

Figure S7. 3D ATR-FTIR Profile of the Recorded over the Reaction of 1a and 3aa

Figure S8. The trend of each component (X axes: reaction time; Y axes: absorbance unit). 1a: peak at 1461 cm⁻¹; 3aa: peak at 1484 cm⁻¹

2.2. React IR experiment of the transformation

Kinetic analyses were performed using in situ attenuated total reflectance Fouriertransform infrared (ATR FTIR) spectroscopy to track the formation of product **4aa** under synthetically relevant conditions. A Mettler Toledo ReactIR 701L was treated as main experiment equipment. All of the kinetic experiments on each plot were performed using a single batch of reagents.

A three-necked reaction tube was charge with $Cu(OTf)_2$ (7.5 mol%) and 4 Å MS (80 mg), **3aa** (0.4 mmol) was added and the resulting mixture was dissolve with CHCl₃ (8.0 mL) and stirred at 30 °C and the IR data collection was started. The React IR spectra were recorded over the process of the reaction. ConcIRT Spectrum of the **4aa** with peak at 1252 cm⁻¹ and intermediate **int.** with peak at 1420 cm⁻¹ was selected to acquire kinetic data.

Figure S9. 3D ATR-FTIR Profile of the Recorded over the Reaction of 4aa and int.

Figure S10. The trend of each component (X axes: reaction time; Y axes: absorbance unit). **4aa**: peak at 1252 cm⁻¹; intermediate **int**.: peak at 1420 cm⁻¹.

(G) Computational Details

All calculations were performed using Gaussian 09 program package.⁴ The geometries of **3aa** and **4aa** were optimized at the M062X-D3/6-31G(d,p)(SMD, dichloromethane) theoretical level, and characterized by frequency analysis at 303 K. In the Cu(OTf)₂-catalyzed isomerization reaction from **3aa** to **4aa**, the M06 density functional with the 6-31G(d,p) basis set was employed. The self-consistent reaction field (SCRF) method based on the universal solvation model SMD⁵ was adopted to evaluate the effect of solvent. The intrinsic reaction coordinate (IRC) path was traced to check the energy profiles connecting each transition state to two associated minima of the proposed mechanism.⁶ The stability of wavefunction was checked at the same theoretical level.

The optimized geometries of **3aa** and **4aa** obtained at the M062X-D3/6-31G(d,p)(SMD, dichloromethane) theoretical level were shown in Figure S11. The calculations indicated that *E***-4aa** was stable than **3aa** by 1.2 kcal mol⁻¹. Moreover, the ΔG of *Z***-4aa** was higher than that of *E***-4aa** by 2.3 kcal mol⁻¹.

Figure S11 Optimized geometries of 3aa and 4aa at the M062X-D3/6-31G(d,p)(SMD, dichloromethane) theoretical level. The relative Gibbs free energy (in kcal mol⁻¹) of 3aa was set to zero.

The Cu(OTf)₂-catalyzed isomerizations from **3aa** to *E***-4aa** or *Z***-4aa** were studied at the M06-D3/6-31G(d,p)(SMD, dichloromethane) theoretical level, and the energy profiles were shown in Figure S12. **3aa** coordinated to Cu(OTf)₂ in bidentate fashion, forming an intermediate **IM1**. This process was exothermic by 25.5 kcal mol⁻¹. Then, it underwent an open-ring process via transition state **TS1**, generating **I**. Suffering from the steric repulsion from OTf⁻ anion in the catalyst, the relative Gibbs free energy of intermediate **II** with *cis*-unsaturated imine **II** was slightly higher than that with *trans*-one by 0.8 kcal mol⁻¹. In the following step, the C-O bond in *<i>E*-**IM2** was constructed *via* transition state *E*-**TS2**, with ΔG^{\neq} of 12.3 kcal mol⁻¹. In contrast, the activation barrier associated with the formation of *Z*-**IM2** *via Z*-**TS2** was 14.3 kcal mol⁻¹. In addition, the *Z*-**IM2** was less stable than *E*-**IM2** by 5.0 kcal mol⁻¹. These results indicated that the *E*-**4aa** was predominantly formed in the presence of Cu(OTf)₂.

Figure S12 Energy profiles for the isomerization from **3aa** to *E***-4aa** or *Z***-4aa** catalyzed by $Cu(OTf)_2$. The relative Gibbs free energies (in kcal mol⁻¹) were obtained at the M06-D3/6-31G(d,p)(SMD, dichloromethane) theoretical level at 303 K.

*s-trans-*II (-16.5)

Figure S13 Optimized geometries of intermediates and transition states in the isomerizations from **3aa** to *E***-4aa** or *Z***-4aa** catalyzed by $Cu(OTf)_2$. The relative Gibbs free energies (in kcal mol⁻¹) were obtained at the M06-D3/6-31G(d,p)(SMD, dichloromethane) theoretical level at 303 K.

Cartesian coordinates and the corresponding energies of all stationary points in this work.

3aa (M062X-D3)

Zero-point correction = 0.67791 a.u. Thermal correction to Gibbs Free Energy = 0.60021 a.u. Sum of electronic and zero-point Energies = -2389.41999 a.u. Sum of electronic and thermal Free Energies = -2389.49770 a.u. Standard orientation:

Center	Atomic	Atomic	Coo	rdinates(Angs	stroms)
Number	Number	Туре	Х	Y	Z
1	16	0	2.183483	0.488726	1.439518
2	8	0	2.954405	0.123126	2.616243
3	8	0	0.823353	0.999302	1.566235
4	8	0	-2.825618	-1.700250	-1.428472
5	8	0	-1.720724	-3.632091	-1.890919
6	8	0	-0.762965	1.531002	-1.257055
7	8	0	-3.898803	1.557889	1.529626
8	8	0	-2.745372	2.756433	-0.007340
9	7	0	2.057693	-0.912179	0.496997
10	7	0	-1.998702	0.719578	0.572595
11	6	0	3.117907	1.654522	0.488042
12	6	0	2.447141	2.484451	-0.407691
13	6	0	3.193147	3.350818	-1.201520
14	6	0	4.586798	3.396179	-1.106616
15	6	0	5.230991	2.552855	-0.191764
16	6	0	4.508163	1.677168	0.607068
17	6	0	5.391540	4.343911	-1.953603
18	6	0	3.318905	-1.564721	0.243676
19	6	0	3.786965	-2.492604	1.171808
20	6	0	4.990979	-3.150323	0.934604
21	6	0	5.717329	-2.886185	-0.225792
22	6	0	5.246231	-1.952851	-1.147636
23	6	0	4.049928	-1.281558	-0.912033
24	6	0	-4.147014	-2.292550	-1.212030
25	6	0	-4.639769	-2.918015	-2.510732
26	6	0	-4.081489	-3.292453	-0.064350
27	6	0	-4.991125	-1.085690	-0.823494
28	6	0	-1.748579	-2.440766	-1.692183
29	6	0	-0.552991	-1.523824	-1.691789
30	6	0	0.854180	-2.030728	-1.483161
31	6	0	1.159703	-0.793600	-0.647443
32	6	0	-0.366832	-0.686956	-0.383108
33	6	0	-1.017701	0.681325	-0.439068
34	6	0	-2.977794	1.707142	0.756420
35	6	0	-3.694190	3.875737	-0.050242
36	6	0	-5.044780	3.386807	-0.558367

37	6	0	-3.783509	4.533427	1.320999
38	6	0	-3.043202	4.811996	-1.058676
39	6	0	1.431972	-3.196421	-1.735761
40	6	0	-0.936444	-1.309653	0.851380
41	6	0	-0.653613	-2.518667	1.467132
42	6	0	-1.359572	-2.865243	2.623178
43	6	0	-2.327274	-2.006580	3.135831
44	6	0	-2.628049	-0.788569	2.517524
45	6	0	-1.920215	-0.459484	1.369129
46	1	0	1.363068	2.459943	-0.478081
47	1	0	2.682666	4.004887	-1.902425
48	1	0	6.313613	2.586199	-0.106205
49	1	0	5.006571	1.026167	1.318499
50	1	0	6.210390	3.820052	-2.455020
51	1	0	5.838253	5.127887	-1.333615
52	1	0	4.770193	4.823404	-2.712741
53	1	0	3.197911	-2.691645	2.061052
54	1	0	5.357400	-3.876768	1.652715
55	1	0	6.650646	-3.408106	-0.412027
56	1	0	5.811071	-1.741572	-2.049895
57	1	0	3.680230	-0.550009	-1.625753
58	1	0	-4.611872	-2.180717	-3.318658
59	1	0	-5.674321	-3.249851	-2.383657
60	1	0	-4.029750	-3.778277	-2.791431
61	1	0	-3.648552	-2.816453	0.821397
62	1	0	-3.487117	-4.169029	-0.326299
63	1	0	-5.096954	-3.617147	0.181724
64	1	0	-4.970066	-0.332403	-1.616890
65	1	0	-4.612494	-0.634808	0.100020
66	1	0	-6.027644	-1.393069	-0.660505
67	1	0	-0.621843	-0.836107	-2.544587
68	1	0	1.430737	0.039716	-1.317382
69	1	0	-5.527168	2.721416	0.158935
70	1	0	-4.920789	2.862103	-1.510505
71	1	0	-5.694603	4.250427	-0.726193
72	1	0	-4.279995	3.885861	2.044258
73	1	0	-4.351459	5.464136	1.233161
74	1	0	-2.781512	4.777369	1.686384
75	1	0	-2.928092	4.312884	-2.024620
76	1	0	-2.056465	5.126155	-0.707485
77	1	0	-3.666310	5.700033	-1.192902
78	1	0	0.880093	-3.953202	-2.284033
79	1	0	2.435281	-3.436384	-1.402012
80	1	0	0.108332	-3.177351	1.060832
81	1	0	-1.148580	-3.804967	3.122631
82	1	0	-2.868922	-2.280425	4.035692
83	1	0	-3.381243	-0.128423	2.921229

3aa

Zero-point correction = 0.67005 a.u.

Thermal correction to Gibbs Free Energy = 0.59415 a.u.

Sum of electronic and zero-point Energies = -2388.96551 a.u.

Sum of electronic and thermal Free Energies = -2389.04141 a.u. Standard orientation:

Center Atomic Atomic Coordinates (Angstroms) Ζ Number Number Туре Х Υ 2.225451 1 16 0 0.588648 1.437642 2 8 0 2.975361 0.208690 2.624717 3 0.886715 8 0 1.156821 1.547689 4 8 0 -2.833037 -1.693791 -1.448404 5 8 0 -1.673410 -3.601815 -1.881349 6 -0.832518 8 0 1.574722 -1.223934 7 8 0 -3.976860 1.512753 1.545106 8 0.081900 8 0 -2.791235 2.773856

9	7	0	2.053152	-0.823758	0.511194
10	7	0	-2.025938	0.741916	0.626621
11	6	0	3.213632	1.692198	0.472253
12	6	0	2.593771	2.485090	-0.491975
13	6	0	3.383919	3.266924	-1.325073
14	6	0	4.775641	3.270062	-1.204615
15	6	0	5.369091	2.474273	-0.217225
16	6	0	4.600442	1.680891	0.620044
17	6	0	5.625783	4.114661	-2.100052
18	6	0	3.276187	-1.550775	0.300247
19	6	0	3.606266	-2.563873	1.196424
20	6	0	4.763284	-3.307752	0.994553
21	6	0	5.583170	-3.040034	-0.099396
22	6	0	5.252084	-2.022028	-0.990044
23	6	0	4.100052	-1.269491	-0.790441
24	6	0	-4.164555	-2.300284	-1.303124
25	6	0	-4.575741	-2.931768	-2.619379
26	6	0	-4.163260	-3.287706	-0.151556
27	6	0	-5.034656	-1.102392	-0.973486
28	6	0	-1.735259	-2.409658	-1.682865
29	6	0	-0.562445	-1.470260	-1.657656
30	6	0	0.849659	-1.953484	-1.464590
31	6	0	1.143851	-0.723160	-0.623344
32	6	0	-0.381822	-0.632522	-0.348065
33	6	0	-1.054731	0.721670	-0.398664
34	6	0	-3.033760	1.703555	0.807323
35	6	0	-3 769827	3 870551	-0.014772
36	6	0	-5 073654	3 345435	-0.585329
37	6	0	-3 940878	4 530289	1 339761
38	6	0	-3 093680	4 810906	-0.993393
39	6	0	1 445037	-3 102249	-1 752185
40	6	0	-0.936041	-1 272821	0.875701
41	6	0	-0.639672	-2 489356	1 467977
42	6	0	-1 348073	-2 872194	2 607282
43	6	0	-2 333009	-2 040148	3 129301
44	6	0	-2 644767	-0.814381	2 536438
45	6	0	-1 932492	-0 447868	1 4030430
46	1	0	1 509638	2 494620	-0 586169
40 //7	1	0	2 011883	3 800237	-2 0821/2
48	1	0	6 452626	2 478184	-0 110276
40 40	1	0	5.064073	1 059501	1 382288
50	1	0	6 418123	3 519836	-2 569237
51	1	0	6 122397	4 912089	-1 533387
52	1	0	5.034612	4.512005	-2 802211
52	1	0	2 940361	-2 760125	2.032556
54	1	0	5 021155	-4 104700	1 687609
55	1	0	6 483742	-3 628017	-0 259988
56	1	0	5 891079	-1 811268	-1 844002
57	1	0	3 830572	-0 477214	-1 487777
58	1	0	-4 506810	-2 199267	-3 432411
59	1	0	-5 617010	-3 268239	-2 552339
60	1	0	-3 949156	-3 793561	-2 865703
61	1	0	-3 821479	-2 800782	0 770423
62	1	0	-3 527230	-2.000702	-0.3527/0
63	1	0	-5 187768	-3 6/2312	0.002740
64	1	0	-/ 975319	-0.350224	-1 768958
65	1	0	-4.373313	-0.550224	-0.020105
66	1	0	-6.070655	-0.042323	-0.029103
67	1 1	0	-0 644520	-0 772512	-2 505/25
68	1 1	0	1 401216	0.112010	-1 207026
69	1 1	0	-5 582168	2 671529	1.231330
70	1 1	0	-4 802027	2 815102	-1 5270/0
71	1 1	0	-5.732516	1011132	-0 795754
72	1	0	-1 1/7522	3 87/761	2 052272
		~	1.1.1.000	5.51 7101	2.002010

73	1	0	-4.538420	5.441636	1.219964
74	1	0	-2.965620	4.816600	1.750429
75	1	0	-2.909192	4.306293	-1.948538
76	1	0	-2.134075	5.160687	-0.596274
77	1	0	-3.732663	5.681954	-1.175710
78	1	0	0.899528	-3.859563	-2.309188
79	1	0	2.458562	-3.337089	-1.439544
80	1	0	0.133375	-3.130705	1.047352
81	1	0	-1.128101	-3.821875	3.088239
82	1	0	-2.880102	-2.343389	4.018881
83	1	0	-3.416249	-0.172059	2.943151

E-4aa (M062X-D3)

Zero-point correction = 0.68024 a.u.

Thermal correction to Gibbs Free Energy = 0.60063 a.u.

Sum of electronic and zero-point Energies = -2389.42005 a.u.

Sum of electronic and thermal Free Energies = -2389.49966 a.u.

Standard orientation:

Center	Atomic	Atomic	Coordinates (Angstroms)			
Number	Number	Type	Y		7	
1	16	0	3 310608	-1 6/0502	1 878600	
י 2	R R	0	3 871276	-0.87/660	2 083675	
∠ 3	0 g	0	2 633838	-0.074009	2.303073	
Л	0 g	0	2.000020	-2.902001	-0 620611	
4 5	0 Q	0	-2.030/0/	-1.041100	-0.029011	
5	0	0	0.137254	1.344134	-2.174022	
0	0	0	-0.139540	2.920525	-0.572996	
/	0	0	-0.116222	-0.968579	0.334450	
8	8 7	0	-4.541527	-2.411682	-0.422183	
9	1	0	2.178005	-0.634960	1.124352	
10	1	0	-3.915813	-0.360656	0.238676	
11	6	0	1.231763	-1.286021	0.295763	
12	1	0	1.437381	-2.332776	0.089914	
13	6	0	0.133936	-0.713017	-0.203448	
14	6	0	-0.749761	-1.492729	-1.135473	
15	1	0	-0.384945	-2.508756	-1.287886	
16	1	0	-0.818114	-0.974708	-2.099068	
17	6	0	-0.353768	0.680499	0.107558	
18	1	0	0.089007	1.067639	1.029844	
19	6	0	-1.850704	0.593017	0.267336	
20	6	0	-2.557086	-0.517458	-0.079431	
21	6	0	4.594040	-1.885997	0.676178	
22	6	0	5.599607	-0.926376	0.548488	
23	1	0	5.629724	-0.071047	1.216455	
24	6	0	6.559233	-1.096257	-0.439754	
25	1	0	7.349117	-0.358524	-0.549547	
26	6	0	6.528799	-2.205388	-1.295551	
27	6	0	5.510174	-3.149867	-1.139984	
28	1	0	5.482049	-4.018495	-1.791133	
29	6	0	4.534645	-2.997640	-0.159161	
30	1	0	3.752862	-3.739144	-0.030382	
31	6	0	7.591812	-2.375585	-2.346469	
32	1	0	7.663332	-1.483714	-2.976074	
33	1	0	8.571215	-2.524582	-1.881024	
34	1	0	7.382839	-3.235311	-2.986180	
35	6	0	2.641194	0.690409	0.801630	
36	6	0	3 008541	0 997870	-0.509960	
37	1	0	2 905914	0 247099	-1 288112	
38	6	0	3 492075	2 269200	-0.802379	
39	1	0	3 776926	2 512504	-1 821188	
40	6	0	3 615028	3 222236	0.208135	
- - -0 //1	1	0	3 007022	1 211266	-0 023880	
41 10	6	0	3 343064	4.211000 2009171	-0.023000	
42 12	0 1	0	3.242004	2.300171	2 200707	
43	I C	0	3.329941	3.030908	2.299191	
44	ю	U	2.751144	1.041065	1.015//8	

45	1	0	2.454575	1.375208	2.824382
46	6	0	-0.058823	1.669838	-1.024531
47	6	0	-0.276068	4.054839	-1.494090
48	6	0	0.974299	4.218596	-2.348770
49	1	0	1.853097	4.354002	-1.712722
50	1	0	1.130023	3.356606	-2.998250
51	1	0	0.859397	5.112525	-2.969400
52	6	0	-1.531962	3.861016	-2.334968
53	1	0	-1.418186	3.037611	-3.042187
54	1	0	-2.389409	3.660274	-1.684735
55	1	0	-1.733874	4.777450	-2.896979
56	6	0	-0.433679	5.240982	-0.552460
57	1	0	0.415357	5.292905	0.135854
58	1	0	-0.473001	6.168748	-1.129577
59	1	0	-1.356046	5.154143	0.028811
60	6	0	-4.974713	-1.262362	0.060056
61	6	0	-5.473732	-3.509638	-0.702001
62	6	0	-4.543344	-4.596075	-1.223344
63	1	0	-3.805696	-4.864578	-0.462052
64	1	0	-5.122412	-5.486140	-1.481973
65	1	0	-4.014931	-4.249324	-2.115755
66	6	0	-6.464808	-3.082894	-1.777301
67	1	0	-7.144814	-2.311968	-1.413057
68	1	0	-5.930134	-2.706450	-2.654524
69	1	0	-7.054172	-3.952348	-2.082478
70	6	0	-6.155826	-3.951586	0.586248
71	1	0	-5.407220	-4.161663	1.356133
72	1	0	-6.845891	-3.192335	0.955775
73	1	0	-6.716121	-4.871125	0.393419
74	6	0	-2.786437	1.522211	0.848562
75	6	0	-4.062694	0.918168	0.820800
76	6	0	-5.188524	1.561390	1.331480
77	1	0	-6.161831	1.092524	1.307764
78	6	0	-5.010684	2.832028	1.874314
79	1	0	-5.872828	3.354142	2.277066
80	6	0	-3.750659	3.441949	1.915229
81	6	0	-2.631288	2.795377	1.405941
82	1	0	-1.649684	3.257129	1.433325
83	1	0	-3.646955	4.430431	2.352328

E-4aa

Zero-point correction = 0.67244 a.u. Thermal correction to Gibbs Free Energy = 0.59368 a.u. Sum of electronic and zero-point Energies = -2388.95952 a.u. Sum of electronic and thermal Free Energies = -2389.03827 a.u. Standard orientation:

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Z
1	16	0	3.274124	1.671496	-1.891287
2	8	0	3.743478	0.885253	-3.020834
3	8	0	2.600178	2.945766	-2.094472
4	8	0	-2.179912	1.648183	0.601318
5	8	0	-0.013250	-1.300908	2.195349
6	8	0	-0.050997	-2.854728	0.542911
7	8	0	-6.163380	0.882599	-0.473011
8	8	0	-4.673175	2.289494	0.496499
9	7	0	2.160598	0.686346	-1.047719
10	7	0	-3.948324	0.334437	-0.318209
11	6	0	1.186850	1.351094	-0.269672
12	1	0	1.375009	2.406526	-0.075467
13	6	0	0.079385	0.773901	0.208038
14	6	0	-0.827818	1.547658	1.107722
15	1	0	-0.490122	2.578279	1.242118
16	1	0	-0.888287	1.056573	2.088861
					20

17	6	0	-0.373064	-0.625812	-0.103417
18	1	0	0.102049	-1.003474	-1.017759
10	6	0	-1 860/131	-0 560006	-0.301/180
19	0	0	-1.000431	-0.009990	-0.301469
20	6	0	-2.603121	0.519693	0.041960
21	6	0	4.614741	1.885650	-0.760765
22	6	0	5.626100	0.925971	-0.714973
23	1	0	5.628549	0.096755	-1.418643
24	6	0	6.618314	1.047859	0.244543
25	1	0	7.413369	0.305621	0.294170
26	6	0	6 617133	2 111744	1 154288
27	6	0	5 501312	3 058007	1.083274
21	4	0	5.531512	2.000007	1.000274
28	1	0	0.000300	3.892041	1.782572
29	6	0	4.583176	2.951226	0.134233
30	1	0	3.789761	3.692899	0.076906
31	6	0	7.707975	2.232937	2.170118
32	1	0	7.842578	1.295494	2.722193
33	1	0	8.667533	2.456330	1.687262
34	1	0	7,501537	3.030163	2,890393
35	6	0	2 679916	-0 586957	-0 627529
36	6	0	3 10//81	-0 750721	0.601235
30	0	0	3.104401	-0.739721	0.091233
37	1	0	3.001008	0.009172	1.401752
38	6	U	3.652253	-1.9/5222	1.080640
39	1	0	3.977748	-2.113975	2.108963
40	6	0	3.794803	-3.006275	0.154004
41	1	0	4.231756	-3.954168	0.460277
42	6	0	3.369796	-2.827800	-1.159622
43	1	0	3.470307	-3.634413	-1.881515
44	6	0	2.806194	-1.619474	-1.554645
45	1	0	2,461027	-1.464107	-2.573257
46	6	0	-0.096514	-1 615018	1 027347
47	6	0	0.000014	4 020101	1 /19651
40	0	0	-0.212044	-4.029191	0.074744
48	6	0	0.957749	-4.150952	2.3/4/11
49	1	0	1.897185	-4.221358	1.815276
50	1	0	1.012622	-3.300894	3.059317
51	1	0	0.843923	-5.070015	2.962105
52	6	0	-1.545888	-3.931858	2.138135
53	1	0	-1.559655	-3.114006	2.863722
54	1	0	-2.361556	-3.783529	1.419304
55	1	0	-1.733383	-4.869003	2.675272
56	6	0	-0.215774	-5.185763	0.437214
57	1	0	0 711233	-5 198040	-0 148761
58	1	0	_0 200010	-6 133654	0.082008
50	1	0	1 065656	5 117701	0.302030
09	1	0	-1.000000	-0.117701	-0.232300
Ud	Ö	0	-5.046261	1.103304	-0.114720
61	6	0	-5.639486	3.349538	0.829328
62	6	0	-4.753447	4.382357	1.499074
63	1	0	-3.972165	4.726118	0.811552
64	1	0	-5.352033	5.247254	1.805823
65	1	0	-4.270856	3.959650	2.387723
66	6	0	-6.675551	2.814615	1.798617
67	1	0	-7.325020	2.070849	1.329856
68	1	0	-6.187963	2.362953	2.670611
69	1	0	-7 297946	3 645782	2 150252
70	6	n n	-6 251122	3 904684	-0 442394
70	1	0	5 /65117	4 210609	1 1 1 2 2 0 0 0
70	1	0	-0.400117	7.210000	0.000005
12	1	U	-0.900716	3.1/013/	-0.933865
/3	1	0	-6.848652	4.790001	-0.195280
74	6	0	-2.748486	-1.507797	-0.926559
75	6	0	-4.040424	-0.938468	-0.930295
76	6	0	-5.128351	-1.604957	-1.482150
77	1	0	-6.115766	-1.160289	-1.481846
78	6	0	-4.901712	-2.862112	-2.038070
79	1	0	-5.738612	-3.401300	-2.475856
80	6	0	-3.626524	-3,435880	-2.048313
	~	~	0.020021	2	

81	6	0	-2.542766	-2.765995	-1.495631
82	1	0	-1.545992	-3.202799	-1.492886
83	1	0	-3.481704	-4.417472	-2.495125

Z-4aa (M062X-D3)

Zero-point correction = 0.67975 a.u. Thermal correction to Gibbs Free Energy = 0.60107 a.u. Sum of electronic and zero-point Energies = -2389.41731 a.u. Sum of electronic and thermal Free Energies = -2389.49599 a.u. Standard orientation:

Center	Atomic	Atomic	Coord	inates (Angst	roms)
Number	Number	Туре	Х	Y	Z
1	16	0	2.887557	-1.696170	-1.277650
2	8	0	3.605606	-2.944561	-1.483235
3	8	0	1.862241	-1.269873	-2.217464
4	8	0	-1.937069	-1.281745	-0.410054
5	8	0	0.343801	1.952035	-1.429084
6	8	0	-0.093586	3.304038	0.330956
7	8	0	-6.066256	-0.741016	0.035437
8	8	0	-4.372745	-2.096625	-0.617714
9	7	0	2 117658	-1 845534	0 237946
10	7	0	-3 887024	-0 118221	0.325245
10	6	0	1 414955	-0 686833	0.686630
12	1	0	1 916123	-0 084984	1 443738
12	6	0	0.224280	-0 31100/	0.217534
17	6	0	-0 566254	-1.067020	-0.81/106
14	1	0	-0.300234	-2.060523	-0.014190
16	1	0	-0.137907	-2.000323	1 75/109
10	1 C	0	-0.370466	-0.505199	-1.754100
17	0	0	-0.375513	0.998362	0.081327
10	1	0	-0.005571	1.260269	1.0/8938
19	6	0	-1.8/22/8	0.870318	0.687557
20	6	0	-2.496369	-0.220035	0.167307
21	6	0	4.055718	-0.378841	-1.099412
22	6	0	5.365964	-0.675823	-0.725264
23	1	0	5.677880	-1.707898	-0.600414
24	6	0	6.255574	0.372498	-0.529831
25	1	0	7.282132	0.158032	-0.245453
26	6	0	5.852038	1.703226	-0.699468
27	6	0	4.530925	1.966394	-1.074778
28	1	0	4.211367	2.994829	-1.218267
29	6	0	3.620373	0.933107	-1.275092
30	1	0	2.594504	1.136668	-1.572511
31	6	0	6.838227	2.821726	-0.498574
32	1	0	7.342489	2.728747	0.467578
33	1	0	7.611694	2.795139	-1.273061
34	1	0	6.347117	3.795946	-0.542016
35	6	0	2.894002	-2.543776	1.237665
36	6	0	3.806583	-1.869218	2.049985
37	1	0	3.954211	-0.798843	1.937081
38	6	0	4.531078	-2.580729	3.002953
39	1	0	5.240338	-2.058333	3.636947
40	6	0	4.351027	-3.955797	3.136615
41	1	0	4.917592	-4.506708	3.880647
42	6	0	3.442846	-4.623632	2.316922
43	1	0	3.300725	-5.694713	2.418992
44	6	0	2.710482	-3.918565	1.366347
45	1	0	1 996516	-4 416793	0 718621
46	6	0	0.016436	2,126192	-0.275893
47	6	0	0 098820	4 559123	-0 405033
48	6	0	1 532923	4 639674	-0.916610
40	1	0	2 234254	A 471161	-0 003237
	1	0	2.204204	3 006120	-0.033237
51	1	0	1.71044	5.500120	-1.20102
50	6	0	0.022270	J.UJ9940	-1.321001
52	0	U	-0.933219	4.009247	-1.521305

53	1	0	-0.747613	3.925391	-2.306213
54	1	0	-1.937818	4.504225	-1.115232
55	1	0	-0.889500	5.660644	-1.959264
56	6	0	-0.154551	5.619129	0.658318
57	1	0	0.538987	5.495845	1.495072
58	1	0	-0.010695	6.613976	0.228816
59	1	0	-1.179220	5.548216	1.034765
60	6	0	-4.892022	-1.001672	-0.096333
61	6	0	-5.234274	-3.147452	-1.172149
62	6	0	-4.219261	-4.164267	-1.675562
63	1	0	-3.595639	-4.521183	-0.851337
64	1	0	-4.739684	-5.017505	-2.118090
65	1	0	-3.572087	-3.715288	-2.434124
66	6	0	-6.056929	-2.586934	-2.325411
67	1	0	-6.803588	-1.872713	-1.976601
68	1	0	-5.401523	-2.096779	-3.051573
69	1	0	-6.569393	-3.411414	-2.829251
70	6	0	-6.098696	-3.742489	-0.068245
71	1	0	-5.472167	-4.075071	0.764706
72	1	0	-6.829997	-3.021891	0.299627
73	1	0	-6.631084	-4.611951	-0.464573
74	6	0	-2.898528	1.736016	1.213203
75	6	0	-4.142417	1.107509	0.979017
76	6	0	-5.343911	1.684712	1.384105
77	1	0	-6.290262	1.197303	1.199189
78	6	0	-5.278477	2.914058	2.034854
79	1	0	-6.201093	3.385416	2.358276
80	6	0	-4.053912	3.547575	2.281105
81	6	0	-2.858332	2.967164	1.875878
82	1	0	-1.905370	3.452428	2.060347
83	1	0	-4.038843	4.503344	2.795974

Z-4aa

Zero-point correction = 0.67220 a.u.

Thermal correction to Gibbs Free Energy = 0.59441 a.u.

Sum of electronic and zero-point Energies = -2388.95479 a.u.

Sum of electronic and thermal Free Energies = -2389.03258 a.u.

Standard orientation:

Center	Atomic	Atomic	Coordinates (Angstroms)			
Number	Number	Туре	Х	Y	Z	
1	16	0	2.844277	-1.716331	-1.305772	
2	8	0	3.533281	-2.978899	-1.528024	
3	8	0	1.827389	-1.249853	-2.236334	
4	8	0	-2.014042	-1.275233	-0.372799	
5	8	0	0.278191	1.935639	-1.441186	
6	8	0	0.139585	3.237346	0.409442	
7	8	0	-6.132254	-0.564688	-0.072052	
8	8	0	-4.467757	-2.040512	-0.513268	
9	7	0	2.068157	-1.870880	0.218177	
10	7	0	-3.937110	-0.015890	0.270519	
11	6	0	1.373437	-0.716454	0.669296	
12	1	0	1.890136	-0.091923	1.402518	
13	6	0	0.169449	-0.347127	0.225711	
14	6	0	-0.636168	-1.110503	-0.774274	
15	1	0	-0.252937	-2.121904	-0.917914	
16	1	0	-0.626193	-0.584327	-1.737869	
17	6	0	-0.398760	0.975357	0.677252	
18	1	0	-0.037848	1.216444	1.687316	
19	6	0	-1.893095	0.906493	0.649605	
20	6	0	-2.547964	-0.179398	0.155034	
21	6	0	4.041626	-0.428959	-1.109508	
22	6	0	5.341017	-0.756045	-0.722918	
23	1	0	5.627619	-1.797107	-0.595796	
24	6	0	6.254996	0.266408	-0.520470	

25	1	0	7.274923	0.025880	-0.224544
26	6	0	5.891012	1.606048	-0.700877
27	6	0	4.581771	1.901924	-1.089688
28	1	0	4.295177	2.941021	-1.245012
29	6	0	3.646436	0.894960	-1.291531
30	1	0	2 628512	1 128716	-1 601755
31	6	0	6 900440	2 691521	-0.498563
22	1	0	7 401214	2.001021	0.471469
32	1	0	7.401314	2.092017	0.47 1400
33	I	0	7.083089	2.044503	-1.200001
34	1	0	6.441787	3.683683	-0.549264
35	6	0	2.812367	-2.601592	1.213072
36	6	0	3.709822	-1.962892	2.069398
37	1	0	3.877880	-0.890365	1.988333
38	6	0	4.393539	-2.707083	3.024921
39	1	0	5.091912	-2.210442	3.694109
40	6	0	4.189863	-4.080725	3.119771
41	1	0	4,726333	-4.658605	3.868559
42	6	0	3 298502	-4 714121	2 257606
43	1	0	3 137360	-5 786946	2 329468
43	6	0	2 606462	-3 075784	1 305208
44	1	0	2.000402	-3.973704	0.624142
45	1	0	1.902442	-4.447537	0.024142
46	6	0	0.060298	2.090889	-0.258256
47	6	0	0.387773	4.516618	-0.276753
48	6	0	1.759079	4.492067	-0.926798
49	1	0	2.514218	4.170691	-0.198326
50	1	0	1.788836	3.822691	-1.791044
51	1	0	2.019107	5.503445	-1.260901
52	6	0	-0.733696	4.784747	-1.262376
53	1	0	-0.719330	4.078960	-2.097139
54	1	0	-1.706201	4.716705	-0.758558
55	1	0	-0.627156	5.799096	-1.664471
56	6	0	0.352720	5.516978	0.862254
57	1	0	1 125910	5 289719	1 605218
58	1	0	0 520052	6 526057	0 475701
50	1	0	-0.624150	5 506163	1 360650
59	I C	0	4 065096	0.000103	0.101494
00	6	0	-4.900900	-0.000101	-0.121404
61	6	0	-5.318922	-3.111680	-1.054309
62	6	0	-4.296374	-4.175565	-1.405695
63	1	0	-3.741057	-4.488220	-0.514065
64	1	0	-4.798934	-5.052367	-1.828570
65	1	0	-3.579902	-3.793303	-2.141974
66	6	0	-6.037372	-2.621413	-2.296610
67	1	0	-6.787894	-1.862636	-2.061454
68	1	0	-5.320300	-2.203455	-3.013017
69	1	0	-6.540800	-3.468810	-2.776520
70	6	0	-6.267797	-3.603644	0.021115
71	1	0	-5.710685	-3.887330	0.921726
72	1	0	-7 009820	-2 845801	0 285379
73	1	0	-6 79/596	-1 192366	-0 345585
74	6	0	-2 801220	1 833001	1 106440
74	0	0	-2.091229	1.000091	0.961077
75	0	0	-4.104400	1.200200	1 104005
/6	6	U	-5.33/282	1.899169	1.194065
77	1	0	-6.299524	1.442249	0.995831
78	6	0	-5.238813	3.155192	1.787617
79	1	0	-6.150738	3.685406	2.052168
80	6	0	-3.996727	3.742820	2.046649
81	6	0	-2.817444	3.088895	1.714215
82	1	0	-1.846910	3.538408	1.913957
83	1	0	-3.953131	4.723243	2.516246

Cu(OTf)₂

Zero-point correction = 0.06059 a.u. Thermal correction to Gibbs Free Energy = 0.01228 a.u. Sum of electronic and zero-point Energies = -3562.62744 a.u.

Sum of electronic and thermal Free Energies = -3562.67575 a.u. Standard orientation:

onomation.				
Atomic	Atomic	Coor	dinates (Ang	stroms)
Number	Туре	Х	Y	Z
29	0	0.122689	-0.982900	-0.464843
8	0	-1.334604	-0.822734	0.703286
16	0	-2.788077	-0.720854	0.233116
8	0	-2.960389	-1.240980	-1.117475
6	0	-2.942151	1.102959	0.074767
9	0	-4.132165	1.407116	-0.415456
9	0	-2.792868	1.674327	1.256032
8	0	-3.708493	-1.118177	1.280469
9	0	-2.002620	1.549491	-0.750300
8	0	0.955695	0.748376	0.093988
16	0	2.247667	0.445740	-0.621326
8	0	1.966501	-0.891569	-1.268320
6	0	3.443490	0.056802	0.725530
9	0	4.576429	-0.343105	0.186224
9	0	3.638797	1.139071	1.448693
8	0	2.839411	1.479647	-1.432980
9	0	2.936380	-0.903470	1.476837
	Atomic Number 29 8 16 8 6 9 9 8 9 8 9 8 9 8 16 8 6 9 9 8 16 8 6 9 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8	Atomic Atomic Number Type 29 0 8 0 16 0 8 0 6 0 9 0 8 0 9 0 8 0 9 0 8 0 9 0 8 0 9 0 8 0 9 0 8 0 9 0 8 0 9 0 8 0 9 0 8 0 9 0 8 0 9 0	Atomic Atomic Coor Number Type X 29 0 0.122689 8 0 -1.334604 16 0 -2.788077 8 0 -2.960389 6 0 -2.942151 9 0 -4.132165 9 0 -2.792868 8 0 -3.708493 9 0 -2.002620 8 0 0.955695 16 0 2.247667 8 0 1.966501 6 0 3.443490 9 0 4.576429 9 0 3.638797 8 0 2.839411 9 0 2.936380	Atomic Atomic Coordinates (Angeneration) Number Type X Y 29 0 0.122689 -0.982900 8 0 -1.334604 -0.822734 16 0 -2.788077 -0.720854 8 0 -2.960389 -1.240980 6 0 -2.942151 1.102959 9 0 -4.132165 1.407116 9 0 -2.792868 1.674327 8 0 -3.708493 -1.118177 9 0 -2.002620 1.549491 8 0 0.955695 0.748376 16 0 2.247667 0.445740 8 0 1.966501 -0.891569 6 0 3.443490 0.056802 9 0 4.576429 -0.343105 9 0 2.839411 1.479647 9 0 2.936380 -0.903470

IM1

Zero-point correction = 0.73514 a.u.

Thermal correction to Gibbs Free Energy = 0.63962 a.u.

Sum of electronic and zero-point Energies = -5951.66221 a.u. Sum of electronic and thermal Free Energies = -5951.75773 a.u.

Standard orientation:

Center	Atomic	Atomic	Coor	dinates (Ang	stroms)
Number	Number	Туре	Х	Y	Z
1	29	0	1.951305	1.288000	-0.599187
2	8	0	3.389927	2.282303	-1.357509
3	16	0	4.879801	2.016374	-1.419432
4	8	0	5.226207	0.771560	-2.093327
5	6	0	5.284291	1.708613	0.348082
6	9	0	6.570247	1.417554	0.463215
7	9	0	5.008401	2.771387	1.079565
8	8	0	5.610136	3.222188	-1.775364
9	9	0	4.572587	0.671623	0.801852
10	8	0	1.962849	2.465836	0.927639
11	16	0	1.780862	1.904210	2.323877
12	8	0	1.572029	0.456158	2.322233
13	6	0	0.153089	2.633860	2.781308
14	9	0	-0.224808	2.159580	3.959904
15	9	0	0.248408	3.950836	2.850056
16	8	0	2.716473	2.469004	3.281130
17	9	0	-0.773504	2.319268	1.880002
18	16	0	-3.391673	-0.050445	-2.040221
19	8	0	-4.357387	-0.697484	-2.912210
20	8	0	-1.956750	-0.247048	-2.243074
21	8	0	0.571414	-2.366429	2.042846
22	8	0	-1.027859	-2.770934	3.612441
23	8	0	0.201907	0.595973	-0.208844
24	8	0	2.269342	-0.297832	-1.680512
25	8	0	2.158176	-2.482178	-2.165735
26	7	0	-3.704600	-0.613874	-0.467121
27	7	0	0.464650	-1.575531	-1.036413
28	6	0	-3.722538	1.682748	-2.003489
29	6	0	-2.732266	2.560671	-1.564428
30	6	0	-3.047717	3.904152	-1.413298
31	6	0	-4.331641	4.379447	-1.696185
32	6	0	-5.303201	3.475780	-2.142414
33	6	0	-5.011720	2.129708	-2.294100
34	6	0	-4.664746	5.830024	-1.551397
					~~

35	6	0	-5.070391	-0.481664	-0.037628
36	6	0	-5.944533	-1.536502	-0.285322
37	6	0	-7.264605	-1.446082	0.140777
38	6	0	-7.703179	-0.309054	0.815030
39	6	0	-6.826619	0.746156	1.054978
40	6	0	-5.507634	0.668300	0.622201
41	6	0	1 584416	-3 328055	2 487213
42	6	0	2 039590	-2 971953	3 888367
43	6	0	1 021400	-4 731511	2 383346
40	6	0	2 600207	-3 10/062	1 480325
44	6	0	2.099297	-3.104902	2 656207
40	0	0	-0.390497	-2.173362	2.030297
40	b C	0	-1.272508	-1.036243	1.948345
47	6	0	-2.762531	-0.823135	1.934777
48	6	0	-2.661118	-0.325011	0.500760
49	6	0	-1.345561	-1.143977	0.387573
50	6	0	-0.165775	-0.575218	-0.323385
51	6	0	1.699667	-1.394578	-1.652323
52	6	0	3.536829	-2.604609	-2.778743
53	6	0	3.660475	-1.632623	-3.929994
54	6	0	4.553558	-2.392943	-1.680841
55	6	0	3.521297	-4.039722	-3.254791
56	6	0	-3.718890	-1.142982	2.793270
57	6	0	-1.419838	-2.537701	-0.136078
58	6	0	-2.342102	-3.539280	0.116760
59	6	0	-2.148719	-4.789775	-0.467347
60	6	0	-1 047797	-5 021533	-1 284437
61	6	0	-0 107357	-4 022419	-1 542726
62	6	0	-0 31751/	-2 786587	-0.953680
62	1	0	-1 726072	2.700007	-1 352001
64	1	0	2 202056	2.202901	1 072240
04	1	0	-2.203030	4.000427	-1.072240
00	1	0	-0.304310	3.037734	-2.309039
00	1	0	-5.769930	1.428078	-2.633301
67	1	0	-5.614453	5.968428	-1.022322
68	1	0	-4.///51/	6.302856	-2.535292
69	1	0	-3.883422	6.371490	-1.009620
70	1	0	-5.570085	-2.416025	-0.804461
71	1	0	-7.950200	-2.268723	-0.045810
72	1	0	-8.733925	-0.244872	1.155230
73	1	0	-7.169818	1.634640	1.579025
74	1	0	-4.815160	1.488779	0.807960
75	1	0	2.382291	-1.931511	3.923995
76	1	0	2.878526	-3.618198	4.171455
77	1	0	1.238126	-3.106333	4.619605
78	1	0	0.634423	-4.912986	1.372036
79	1	0	0.215067	-4.895843	3.103507
80	1	0	1.817262	-5.459517	2.579362
81	1	0	2,997823	-2.046537	1,469758
82	1	0	2 372604	-3 395222	0 472061
83	1	0	3 573643	-3 711203	1 743263
84	1	0	-0 728191	-0 114973	2 207619
85	1	0	-2 38/303	0.7/5186	0.523097
00	1	0	-2.304303	0.743100	2 502247
00	1	0	2 905116	1 725529	-3.392247
07	1	0	2.000110	-1.725526	-4.609092
88		0	4.564407	-1.890314	-4.493725
89	1	0	4.502656	-1.385975	-1.259857
90	1	0	5.553498	-2.516049	-2.112///
91	1	0	4.431100	-3.139589	-0.887926
92	1	0	2.755565	-4.193428	-4.023618
93	1	0	3.336846	-4.726222	-2.419920
94	1	0	4.497223	-4.281714	-3.688678
95	1	0	-3.449120	-1.574762	3.753687
96	1	0	-4.775243	-1.005169	2.579716
97	1	0	-3.197479	-3.349656	0.761105
	4	٥	-2 86/037	-5 585882	-0 283376

99	1	0	-0.907545	-5.998902	-1.738654	
100	1	0	0.740935	-4.223023	-2.183225	

TS1

Zero-point correction = 0.73356 a.u. Thermal correction to Gibbs Free Energy = 0.63737 a.u. Sum of electronic and zero-point Energies = -5951.64114 a.u. Sum of electronic and thermal Free Energies = -5951.73733 a.u. Standard orientation:

Center	Atomic	Atomic	Coor	dinates (Angs	stroms)
Number	Number	Туре	Х	Y	Z
1	16	0	-3.062571	-2.951744	-1.011661
2	8	0	-1.932202	-3.276296	-1.861427
3	8	0	-4.310769	-3.685172	-1.072335
4	8	0	-0.608272	3.449965	-1.042924
5	8	0	-1.854096	3.705268	-2.924972
6	8	0	0.547793	-0.369188	-0.762565
7	8	0	1.856582	-0.388552	1.640535
8	8	0	0.669275	0.407630	3.353670
9	7	0	-3.517084	-1.293419	-1.464964
10	7	0	-0.274301	0.419454	1.323413
11	6	0	-2.530132	-2.769249	0.653152
12	6	0	-3.490377	-2.561640	1.644146
13	6	0	-3.061696	-2.379031	2.948668
14	6	0	-1 701473	-2 430206	3 274840
15	6	0	-0 769904	-2 683883	2 260852
16	6	0	-1 168774	-2 840719	0.940975
17	6	0	-1 253174	-2 190025	4 679110
18	6	0	-// 87/81/	-0.886024	-1 219052
10	6	0	-5 17/600	-0.155704	-0.074413
20	6	0	-J.174090	-0.155794	0.074413
20	6	0	-0.400113	0.230000	0.140207
21	0	0	-7.480311	-0.084155	-0.770989
22	6	0	-7.171352	-0.840952	-1.899415
23	6	0	-5.864074	-1.250277	-2.129066
24	6	0	-0.303026	4.861753	-0.777214
25	6	0	0.712052	5.326985	-1.801314
26	6	0	-1.568311	5.699709	-0.777112
27	6	0	0.293458	4.804106	0.617581
28	6	0	-1.352587	3.028403	-2.053823
29	6	0	-1.445200	1.517525	-1.991834
30	6	0	-2.675467	0.829892	-2.516054
31	6	0	-2.531839	-0.478369	-1.855857
32	6	0	-1.423659	0.950924	-0.595350
33	6	0	-0.289464	0.280504	-0.089082
34	6	0	0.820813	0.114077	2.099026
35	6	0	1.833123	0.476410	4.308982
36	6	0	2.354884	-0.918575	4.570308
37	6	0	2.884675	1.409235	3.743913
38	6	0	1.180047	1.071390	5.538190
39	6	0	-3.693024	1.281358	-3.245919
40	6	0	-2.106857	1.538256	0.539800
41	6	0	-3.219413	2.371386	0.616247
42	6	0	-3.672727	2.773250	1.869128
43	6	0	-3.022352	2.348572	3.027451
44	6	0	-1.883652	1.543852	2.969091
45	6	0	-1.428145	1.171380	1.713437
46	- 1	0	-4.549874	-2.548325	1.400252
47	1	0	-3 793318	-2 207746	3 735375
48	1	0	0 288877	-2 767017	2 509057
49	1	0	-0 432085	-3 026642	0 160453
50	1	0	-0 872818	-1 162810	4 779222
51	1	0	-0 440240	-2 867557	4.062696
50	1	0	-0.440249 2.072024	-2.00/00/	4.902000 5 202151
52 52	1	0	-2.073921	-2.310398	0.092401
53	1	U	-4.3861/3	0.084253	0.634011

54	1	0	-6.723840	0.841926	1.024771
55	1	0	-8.504331	0.238493	-0.600381
56	1	0	-7.951099	-1.111138	-2.606410
57	1	0	-5.598522	-1.835115	-3.006651
58	1	0	1.606386	4.693675	-1.769293
59	1	0	1.013968	6.357297	-1.579455
60	1	0	0.296999	5.301710	-2.814322
61	1	0	-2.322745	5.248298	-0.120310
62	1	0	-1.993623	5.812131	-1.777067
63	1	0	-1.330861	6.694409	-0.381738
64	1	0	1.141054	4.108505	0.648510
65	1	0	-0.461243	4.466774	1.340474
66	1	0	0.639420	5.799422	0.919228
67	1	0	-0.554523	1.141997	-2.524412
68	1	0	-1.573615	-0.981184	-2.015831
69	1	0	2.797758	-1.366429	3.677206
70	1	0	1.562418	-1.573157	4.948864
71	1	0	3.133085	-0.854263	5.339803
72	1	0	3.470774	0.941844	2.948895
73	1	0	3.574016	1.676905	4.552173
74	1	0	2.428675	2.333883	3.370121
75	1	0	0.367348	0.433223	5.904356
76	1	0	0.780836	2.069407	5.324437
77	1	0	1.926799	1.162088	6.333822
78	1	0	-3.646092	2.278282	-3.673773
79	1	0	-4.574789	0.678270	-3.441879
80	1	0	-3.728860	2.685901	-0.294257
81	1	0	-4.544843	3.418338	1.944273
82	1	0	-3.395251	2.658294	4.000292
83	1	0	-1.379234	1.238439	3.878038
84	29	0	2.349449	-0.629199	-0.189628
85	8	0	4.063015	0.291131	0.016245
86	16	0	3.823049	1.786993	-0.021526
87	8	0	2.395965	2.099066	0.124870
88	6	0	4.176842	2.164531	-1.781715
89	9	0	4.003691	3.460356	-2.003095
90	9	0	5.420985	1.835094	-2.084156
91	8	0	4.788951	2.545085	0.754681
92	9	0	3.343037	1.477805	-2.553046
93	8	0	2.857704	-1.561127	-1.826794
94	16	0	2.495126	-3.006178	-1.553893
95	8	0	1.849751	-3.095691	-0.232437
96	6	0	4.148041	-3.760564	-1.294700
97	9	0	4.003917	-5.027996	-0.941247
98	9	0	4.860231	-3.692625	-2.406048
99	8	0	1.903850	-3.706666	-2.677584
100	9	0	4.782147	-3.109460	-0.328527

I

Zero-point correction = 0.73455 a.u. Thermal correction to Gibbs Free Energy = 0.63803 a.u. Sum of electronic and zero-point Energies = -5951.64704 a.u. Sum of electronic and thermal Free Energies = -5951.74357 a.u.

Standard orientation:

Standard orientation:					
Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Z
1	16	0	-3.223452	-2.584220	-1.880404
2	8	0	-2.008704	-2.744702	-2.652819
3	8	0	-4.497817	-3.123132	-2.301340
4	8	0	-0.009221	3.812658	-1.051080
5	8	0	-1.275056	4.062075	-2.912989
6	8	0	0.489539	-0.394037	-0.666603
7	8	0	1.556240	-0.949993	1.771190
8	8	0	0.298955	-0.324606	3.510777
9	7	0	-3.502994	-0.764264	-1.885389
----------	---	---	-----------------------	-----------	-----------
10	7	0	-0.340999	0.303879	1.462429
11	6	0	-2.944274	-2.818106	-0.173801
12	6	0	-4.037845	-2.974901	0.677835
13	6	0	-3.803493	-2.993077	2.044351
14	6	0	-2.508836	-2.865169	2.557063
15	6	0	-1.433220	-2.748623	1.665846
16	6	0	-1 636194	-2 699411	0 297929
17	6	0	-2 267405	-2 853119	4 030792
18	6	0	-4 715589	-0 321014	-1 251360
10	6	0	-1 635888	0.136316	0.063062
20	6	0	-4.000000 5 000770	0.100010	0.003002
20	0	0	-0.000779	0.499031	0.711709
21	6	0	-7.031336	0.369705	0.054165
22	6	0	-7.091770	-0.079687	-1.200842
23	6	0	-5.928147	-0.446120	-1.921116
24	6	0	0.506576	5.186346	-0.974021
25	6	0	1.398537	5.447347	-2.171796
26	6	0	-0.638967	6.175146	-0.864048
27	6	0	1.305042	5.153466	0.314620
28	6	0	-0.838749	3.400953	-1.994739
29	6	0	-1.126425	1.919010	-1.803911
30	6	0	-2.463809	1.436854	-2.319509
31	6	0	-2.502361	-0.012891	-2.237618
32	6	0	-1.017253	1.450386	-0.386168
33	6	0	-0.211529	0.421359	0.032429
34	6	0	0.569425	-0.356119	2.236974
35	6	0	1 303990	-0 717785	4 550777
36	6	0	1 521546	-2 214629	4 506684
37	6	0	2 578762	0 075247	4 345903
38	6	0	0.601212	-0.208056	5 824773
20	6	0	2 512614	2 152201	2 742502
39	6	0	-3.512014	2.100001	-2.743362
40	0	0	-1.720400	1.902015	0.752622
41	6	0	-2.690933	2.962223	0.876858
42	6	0	-3.254661	3.200423	2.126610
43	6	0	-2.866690	2.452522	3.238514
44	6	0	-1.890172	1.458628	3.138292
45	6	0	-1.322067	1.237842	1.893790
46	1	0	-5.046475	-3.067073	0.281917
47	1	0	-4.640691	-3.100713	2.730222
48	1	0	-0.415431	-2.702801	2.052549
49	1	0	-0.797778	-2.572699	-0.385928
50	1	0	-1.741636	-1.935455	4.328870
51	1	0	-1.635296	-3.698018	4.331346
52	1	0	-3.203099	-2.910327	4.593908
53	1	0	-3.667973	0.192533	0.562527
54	1	0	-5.763274	0.860749	1.735728
55	1	0	-7.946713	0.669337	0.569546
56	1	0	-8.048981	-0.164261	-1.762846
57	1	0	-5 948476	-0.821290	-2 940785
58	1	0	2 182798	4 683837	-2 236200
50	1	0	1 883087	6 /2/311	-2.059268
53 60	1	0	0.827147	5 440420	-2.053200
61	1	0	1 206212	5.449429	-3.104779
01	1	0	-1.290312	5.905765	-0.020309
62		0	-1.230338	6.229600	-1.781044
63	1	0	-0.227268	7.170519	-0.659099
64	1	0	2.093544	4.394765	0.264130
65	1	0	0.652544	4.909964	1.162397
66	1	0	1.766604	6.130500	0.496153
67	1	0	-0.331345	1.408205	-2.375032
68	1	0	-1.585279	-0.552597	-2.503691
69	1	0	1.986010	-2.535572	3.570878
70	1	0	0.577493	-2.752915	4.647392
71	1	0	2.190521	-2.490364	5.330039
72	1	0	3.164081	-0.287408	3.496906

73	1	0	3.193270	-0.023435	5.247697
74	1	0	2.356848	1.138765	4.200331
75	1	0	-0.368862	-0.800786	5.922430
76	1	0	0.442287	0.786111	5.845005
77	1	0	1.217435	-0.572220	6.687654
78	1	0	-3.428341	3.227373	-2.878105
79	1	0	-4.450902	1.677846	-3.016959
80	1	0	-3.009452	3.528761	0.002857
81	1	0	-4.014522	3.970879	2.235575
82	1	0	-3.326459	2.641484	4.205357
83	1	0	-1.595602	0.886295	4.010190
84	29	0	2.208758	-0.788241	-0.029289
85	8	0	3.986328	-0.162631	0.523274
86	16	0	3.933542	1.318353	0.824310
87	8	0	2.578904	1.757211	1.173159
88	6	0	4.204262	2.033976	-0.847862
89	9	0	4.327344	3.352253	-0.761589
90	9	0	5.298784	1.534426	-1.397429
91	8	0	5.048427	1.776163	1.636456
92	9	0	3.161672	1.753118	-1.625103
93	8	0	2.826210	-1.355124	-1.797700
94	16	0	2.391552	-2.790536	-1.991364
95	8	0	1.640439	-3.263075	-0.820276
96	6	0	4.002905	-3.661931	-1.873230
97	9	0	3.806029	-4.971080	-1.930288
98	9	0	4.798315	-3.297875	-2.866374
99	8	0	1.877944	-3.083796	-3.318510
100	9	0	4.585198	-3.362384	-0.718876

s-trans-ll

Zero-point correction = 0.73433 a.u.

Thermal correction to Gibbs Free Energy = 0.63634 a.u.

Sum of electronic and zero-point Energies = -5951.64545 a.u.

Sum of electronic and thermal Free Energies = -5951.74344 a.u.

Standard orientation:

Center	Atomic	Atomic	Coordinates (Angstroms)			
Number	Number	Туре	Х	Y	Z	
1	16	0	-5.116358	-1.504857	0.457586	
2	8	0	-5.661903	-1.221083	1.768764	
3	8	0	-4.379407	-2.720831	0.176534	
4	8	0	1.393761	0.561159	1.242130	
5	8	0	-1.279102	1.922748	2.899106	
6	8	0	-1.637569	-0.179883	2.133885	
7	8	0	3.943421	1.064316	0.530095	
8	8	0	4.331318	3.233487	0.081539	
9	7	0	-3.898519	-0.186619	0.187685	
10	7	0	2.218623	2.537136	0.187189	
11	6	0	-2.697115	-0.521064	-0.201485	
12	6	0	-1.583014	0.372082	-0.406793	
13	6	0	-0.760292	0.002687	-1.402285	
14	6	0	-1.336427	1.547364	0.524865	
15	6	0	-0.030793	2.218657	0.269159	
16	6	0	1.170826	1.649448	0.598793	
17	6	0	-6.263840	-1.124760	-0.804794	
18	6	0	-7.374534	-0.343137	-0.496934	
19	6	0	-8.212715	0.040985	-1.533446	
20	6	0	-7.947762	-0.335227	-2.853026	
21	6	0	-6.818660	-1.121837	-3.125042	
22	6	0	-5.968121	-1.522345	-2.110901	
23	6	0	-8.847533	0.086894	-3.968144	
24	6	0	-4.378687	1.166834	0.292985	
25	6	0	-4.562658	1.880161	-0.890753	
26	6	0	-5.002988	3.194504	-0.816615	
27	6	0	-5.255971	3.775824	0.424211	

28	6	0	-5.084292	3.042999	1.595164
29	6	0	-4.650872	1.723295	1.539261
30	6	0	-1.404577	1.122078	2.001931
31	6	0	-1.699055	-0.852771	3.446834
32	6	0	-2.846865	-0.290702	4.263315
33	6	0	-0.350693	-0.717337	4.125586
34	6	0	-1.974497	-2.295522	3.074051
35	6	0	3.547635	2.211794	0.278567
36	6	0	5.813530	3.118090	-0.058019
37	6	0	6.215320	4.565905	-0.248908
38	6	0	6.412025	2.544776	1.209472
39	6	0	6.115229	2.294059	-1.290064
40	6	0	0.223165	3.482912	-0.354927
41	6	0	1.622971	3.684268	-0.396400
42	6	0	2.182892	4.818446	-0.964704
43	6	0	1.315290	5.773000	-1.494992
44	6	0	-0.069453	5.592624	-1.459779
45	6	0	-0.624944	4.451893	-0.893474
46	1	0	-2.527693	-1.586150	-0.391201
47	1	0	-0.928393	-0.912882	-1.962422
48	1	0	0.078469	0.626437	-1.700665
49	1	0	-2.127954	2.304148	0.419976
50	1	0	-7.571684	-0.038962	0.527817
51	1	0	-9.087577	0.649510	-1.316066
52	1	0	-6.610523	-1.419385	-4.150855
53	1	0	-5.090614	-2.128520	-2.325660
54	1	0	-9.328892	-0.783407	-4.430756
55	1	0 0	-8 281446	0 592147	-4 759434
56	1	0 0	-9 632768	0 763663	-3 619275
57	1	0 0	-4 353085	1 405626	-1 847739
58	1	0 0	-5 147323	3 765181	-1 729863
59	1	0 0	-5 592584	4 807793	0 477841
60	1	0	-5.281459	3.500005	2.560850
61	1	0 0	-4 503324	1 144619	2 447611
62	1	0 0	-3 798447	-0 439787	3 734796
63	1	0 0	-2 713279	0 770394	4 488707
64	1	0 0	-2 909063	-0.840124	5 210234
65	1	0 0	-0 132327	0.321568	4 387466
66	1	0 0	0 436908	-1 095431	3 462583
67	1	0 0	-0.347883	-1 316989	5 043532
68	1	0 0	-2 920614	-2 387704	2 523916
69	1	0 0	-2 055028	-2 900092	3 984597
70	1	0	-1 167412	-2 696643	2 454009
71	1	0	5 749079	4 987498	-1 147362
72	1	0	7 302353	4 628849	-0.366428
73	1	0	5.925089	5.171091	0.617444
74	1	0	6,199833	1.478782	1.321279
75	1	0	6.043422	3.084961	2.089548
76	1	0	7,499508	2.675028	1.166465
77	1	0	5.602632	2,709180	-2.166081
78	1	0	5.834169	1.247214	-1.154357
79	1	0	7,194454	2.328019	-1.479123
80	1	0	3.256078	4.970224	-0.990117
81	1	0	1.731800	6.674517	-1.937688
82	1	0	-1.704486	4.307730	-0.866807
83	1	0	-0.720892	6.355806	-1.879865
84	29	0	2,758687	-0.525115	0.590059
85	8	0	4,151557	-1.852472	0.543902
86	16	0	5.375906	-1.936421	-0.333632
87	8	Õ	6.323126	-0.844726	-0.139977
88	6	Õ	4.633646	-1.624543	-1.987501
89	9	Õ	5.581393	-1.560886	-2.910384
90	9	0	3.777535	-2.581029	-2.304689
91	8	0	5.905862	-3.289761	-0.402408
	-	-			

92	9	0	3.976507	-0.458773	-1.976195
93	8	0	1.516792	-1.640509	-0.458010
94	16	0	0.783119	-2.749211	0.251755
95	8	0	1.133601	-2.836008	1.667561
96	6	0	1.520605	-4.243718	-0.523932
97	9	0	0.973938	-5.328697	0.012173
98	9	0	1.274412	-4.241419	-1.828656
99	8	0	-0.628633	-2.831655	-0.114977
100	9	0	2.826478	-4.277122	-0.329683

*E-*TS2

Zero-point correction = 0.73611 a.u.

Thermal correction to Gibbs Free Energy = 0.64350 a.u.

Sum of electronic and zero-point Energies = -5951.63131 a.u.

Sum of electronic and thermal Free Energies = -5951.72392 a.u.

Standard orientation:

Conter		A to mail a	Coordination	(Annotre	
Center	Atomic	Atomic	Coordinates	s (Angstroms)	
Number	number	туре	X	Y	<u> </u>
1	16	0	-4.409864	2.716979	0.974285
2	8 0	0	-4.072548	3.373160	2.227990
3	8	0	-5.796609	2.611346	0.557123
4	8	0	0.690519	-0.703893	0.911808
5	8	0	-2.326091	-0.624471	-1.231822
6	8	0	-3.371808	-2.590404	-0.800822
7	8	0	3.057626	-1.626819	0.044461
8	8	0	3.271049	-3.852868	0.041728
9	7	0	-3.854962	1.050062	1.078254
10	7	0	1.247032	-2.983286	0.407265
11	6	0	-2.560197	0.888467	1.439399
12	6	0	-1.833154	-0.274417	1.545211
13	6	0	-0.599659	-0.115634	2.206011
14	6	0	-2.175337	-1.631821	0.971192
15	6	0	-0.932501	-2.469403	0.821075
16	6	0	0.318503	-1.946581	0.679495
17	6	0	-3.373249	3.338339	-0.305648
18	6	0	-3.139998	2.567113	-1.444111
19	6	0	-2.319366	3.080572	-2.431487
20	6	0	-1.737208	4.347827	-2.299796
21	6	0	-2.010928	5.102355	-1.157601
22	6	0	-2.820965	4.603817	-0.146975
23	6	0	-0.798374	4.849831	-3.349029
24	6	0	-4.831305	-0.001782	1.081172
25	6	0	-5.017501	-0.736217	2.252153
26	6	0	-5.945735	-1.770190	2.267746
27	6	0	-6.707992	-2.040568	1.134513
28	6	0	-6.539326	-1.278027	-0.017831
29	6	0	-5.594555	-0.260196	-0.054251
30	6	0	-2.658542	-1.515678	-0.480839
31	6	0	-3.570787	-2.990124	-2.206635
32	6	0	-2.214018	-3.272350	-2.826958
33	6	0	-4.349442	-1.940299	-2.977598
34	6	0	-4.383637	-4.263131	-2.077994
35	6	0	2.575466	-2.765208	0.153394
36	6	0	4.735229	-3.848280	-0.300259
37	6	0	5.032858	-5.331658	-0.354802
38	6	0	4.928316	-3.198423	-1.653747
39	6	0	5.501638	-3.173400	0.817257
40	6	0	-0.826827	-3.893132	0.634080
41	6	0	0.522021	-4.205255	0.366799
42	6	0	0.938115	-5.501117	0.093572
43	6	0	-0.027818	-6.503815	0.117802
44	6	0	-1.365029	-6.217574	0.404991
45	6	0	-1.775694	-4.915861	0.662927
46	1	0	-2.044651	1.815950	1.701566

47	1	0	-0.244011	0.887934	2.437860
48	1	0	-0.231605	-0.901727	2.861815
49	1	0	-2.934825	-2.176502	1.550054
50	1	0	-3.550704	1.563773	-1.533865
51	1	0	-2.094259	2.477657	-3.309473
52	1	0	-1.553180	6.082945	-1.043064
53	1	0	-3.001943	5.175164	0.759392
54	1	0	0.063997	4.177652	-3.444974
55	1	0	-0.424354	5.850469	-3.111575
56	1	0	-1.281649	4.887427	-4.332613
57	1	0	-4.426219	-0.499627	3.134431
58	1	0	-6.083245	-2.354255	3.173930
59	1	0	-7.440877	-2.843381	1.151760
60	1	0	-7.141005	-1.483839	-0.900187
61	1	0	-5.446018	0.330505	-0.955022
62	1	0	-1.689681	-4.062165	-2.274085
63	1	0	-1.585106	-2.376540	-2.852489
64	1	0	-2.353132	-3.618071	-3.858033
65	1	0	-3.777814	-1.018545	-3.109355
66	1	0	-5.290441	-1.708177	-2.466555
67	1	0	-4.594951	-2.342329	-3.967763
68	1	0	-3.833567	-5.021857	-1.508915
69	1	0 0	-4 600743	-4 668804	-3 072492
70	1	0 0	-5 334420	-4 064969	-1 568344
71	1	0 0	4 807149	-5 812974	0.603657
72	1	0 0	6 096190	-5 478291	-0.572091
73	1	0 0	4 451003	-5 820599	-1 144715
74	1	0 0	4 778792	-2 116025	-1 623842
75	1	0 0	4 257263	-3 649128	-2 394289
76	1	0 0	5 959186	-3 384126	-1 977002
77	1	0 0	5 255708	-3 629443	1 783180
78	1	0 0	5 319687	-2 096464	0.857003
79	1	0 0	6 572366	-3 323446	0.636489
80	1	0 0	1 973730	-5 734557	-0 123270
81	1	0 0	0 272633	-7 528180	-0.087540
82	1	0 0	-2 819400	-4 685508	0.864252
83	1	0	-2.015400	-7 023454	0.004202
84	29	0	2.000400	0 107417	0.421070
85	8	0 0	3 558923	0.960494	-0.936562
86	16	0 0	5 038891	1 133174	-0.673388
87	8	0 0	5 786703	-0 118744	-0 654548
88	6	0	5.027516	1 664674	1 084068
89	9	0	6 265025	1 735956	1.544906
90	9	0	0.203023 A AA1AA7	2 839413	1.044500
Q1	8	0	5 500331	2.000410	-1 /10655
02	9	0	1 356285	0 756776	1 806132
02	8	0	4.330203	1 760360	1.000132
93 94	16	0	0 726122	2 641160	0.288086
05	Q	0	0.700103	2.070120	-1 006046
90	6	0	0.400/00	2.070130 1 101115	-1.000940
90 07	0	0	1 11062/	5 020222	-0.07 1039
08 91	9 0	0	1.118034 2 202001	J.UZUZJZ	1 062171
90	J Q	0	2.20020 I	7.020222	1 150505
99 100	0	0	-U.ZIO/99	3.143032 3.755602	1.100000
100	Э	U	2.002312	3.10002	-0.029921

*E-*IM2

Zero-point correction = 0.73379 a.u.

Thermal correction to Gibbs Free Energy = 0.63114 a.u.

Sum of electronic and zero-point Energies = -5951.64052 a.u.

Sum of electronic and thermal Free Energies = -5951.74317 a.u. Standard orientation:

Otaridard									
Center	Atomic	Atomic	Coordinates (Angstroms)						
Number	Number	Туре	Х	Y	Z				
1	16	0	-4.191636	-1.491400	-2.819622				

2	8	0	-5.090868	-0.743230	-3.681304
3	8	0	-3.076399	-2.245968	-3.372017
4	8	0	0.968796	0.353280	-0.244637
5	8	0	-2.121677	0.888341	2.261734
6	8	0	-2.874299	2.899027	1.527852
7	8	0	3.503318	1.140495	-0.637052
8	8	0	3.802238	3.319140	-1.023880
9	7	0	-3.486860	-0.335710	-1.754880
10	7	0	1.762507	2.619516	-0.451301
11	6	0	-2.230659	-0.641461	-1.229016
12	1	0	-1.836712	-1.608928	-1.535614
13	6	0	-1.486589	0.137303	-0.428053
14	6	0	-0.248498	-0.437324	0.144683
15	1	0	-0.036703	-1.447352	-0.207402
16	1	0	-0.260343	-0.415905	1.240807
17	6	0	-1.769604	1.561662	-0.038633
18	1	0	-2.491529	2.030529	-0.717645
19	6	0	-0.471674	2.303850	-0.147270
20	6	0	0.727183	1.687727	-0.248528
21	6	0	-5.144270	-2.522842	-1.749699
22	6	0	-6.483644	-2.213212	-1.518071
23	1	0	-6.961574	-1.401516	-2.061445
24	6	0	-7.184479	-2.950925	-0.577043
25	1	0	-8.231079	-2.720956	-0.384639
26	6	0	-6.566560	-3.982715	0.138732
27	6	0	-5.223290	-4.271936	-0.118801
28	1	0	-4.735955	-5.077746	0.426507
29	6	0	-4.502607	-3.547425	-1.058021
30	1	0	-3.458183	-3.778701	-1.253902
31	6	0	-7.341677	-4.757851	1.156509
32	1	0	-7.766792	-4.092748	1.917701
33	1	0	-8.183527	-5.284713	0.691115
34	1	0	-6.716219	-5.499485	1.662306
35	6	0	-4.433179	0.457049	-1.015723
36	6	0	-4.791542	0.071059	0.276857
37	1	0	-4.332754	-0.808903	0.725479
38	6	0	-5.737750	0.814148	0.971518
39	1	0	-6.024597	0.512418	1.976075
40	6	0	-6.320436	1.932627	0.380069
41	1	0	-7.060381	2.511794	0.928408
42	6	0	-5.955541	2.312494	-0.908836
43	1	0	-6.407274	3.187367	-1.369421
44	6	0	-5.013042	1.572497	-1.614737
45	1	0	-4.715661	1.848901	-2.622917
46	6	0	-2.292003	1.713181	1.391621
47	6	0	-3.162959	3.476479	2.854643
48	6	0	-4.203886	2.650552	3.584364
49	1	0	-5.131902	2.602093	3.002829
50	1	0	-3.851585	1.634863	3.781313
51	1	0	-4.429541	3.133364	4.542648
52	6	0	-1.864248	3.597707	3.628906
53	1	0	-1.467810	2.620340	3.917830
54	1	0	-1.111504	4.125936	3.030043
55	1	0	-2.041529	4.179577	4.540766
56	6	0	-3.716822	4.844997	2.509593
57	1	0	-4.585572	4.751382	1.846830
58	1	0	-4.032422	5.359391	3.424141
59	1	0	-2.960158	5.462259	2.010815
60	6	0	3.073343	2.303260	-0.701795
61	6	0	5.260175	3.194751	-1.390495
62	6	0	5.646138	4.647012	-1.568288
63	1	0	5.536472	5.200384	-0.628621
64	1	0	6.693980	4.703745	-1.880951
65	1	0	5.029993	5.124159	-2.338718

66	6	0	5.353573	2.426275	-2.689133
67	1	0	5.065604	1.376878	-2.572854
68	1	0	4.732828	2.895471	-3.460795
69	1	0	6.394833	2.453986	-3.030179
70	6	0	6.026084	2.557358	-0.251380
71	1	0	5.788329	3.048056	0.699580
72	1	0	5.835443	1.484689	-0.164822
73	1	0	7.095942	2.698335	-0.442078
74	6	0	-0.225537	3.718447	-0.273806
75	6	0	1.156310	3.909630	-0.456890
76	6	0	1.709732	5.176544	-0.592796
77	1	0	2.773668	5.329621	-0.724390
78	6	0	0.837165	6.260257	-0.557316
79	1	0	1.244635	7.262469	-0.662043
80	6	0	-0.540041	6.086668	-0.395831
81	6	0	-1.083515	4.817727	-0.251749
82	1	0	-2.152059	4.669796	-0.115159
83	1	0	-1.193062	6.955994	-0.379993
84	29	0	2.787438	-0.381042	0.243623
85	8	0	4.476054	-1.290929	0.141553
86	16	0	4.921050	-1.926086	-1.161127
87	8	0	4.892819	-1.006709	-2.291761
88	6	0	3.529872	-3.081120	-1.504363
89	9	0	3.728029	-3.692151	-2.659462
90	9	0	3.409228	-3.982762	-0.547606
91	8	0	6.088352	-2.769356	-0.967039
92	9	0	2.386767	-2.384509	-1.583796
93	8	0	1.989700	-1.838205	1.163222
94	16	0	2.220177	-2.027857	2.656543
95	8	0	3.145792	-1.037535	3.196546
96	6	0	3.125579	-3.627487	2.679633
97	9	0	3.322206	-3.982701	3.941990
98	9	0	2.403633	-4.558652	2.074480
99	8	0	0.974897	-2.289039	3.360724
100	9	0	4.293428	-3.516340	2.074088

s-cis-ll

Zero-point correction = 0.73586 a.u.

Thermal correction to Gibbs Free Energy = 0.64278 a.u. Sum of electronic and zero-point Energies = -5951.64912 a.u.

Sum of electronic and thermal Free Energies = -5951.74221 a.u. Standard orientation:

Stanuaru								
Center	Atomic	Atomic	Coordinates	s (Angstroms)				
Number	Number	Туре	Х	Υ	Z			
1	8	0	-0.730053	0.834940	-0.460616			
2	8	0	-3.414933	0.462696	-0.549495			
3	8	0	-4.652909	2.310987	-0.321320			
4	7	0	-2.440570	2.482881	-0.079667			
5	6	0	-0.274622	3.053185	0.297763			
6	6	0	-1.082371	2.013528	-0.092464			
7	6	0	-3.516098	1.680262	-0.330121			
8	6	0	-5.976783	1.610034	-0.329716			
9	6	0	-6.935264	2.779566	-0.417324			
10	6	0	-6.108813	0.708025	-1.540735			
11	6	0	-6.113494	0.876899	0.986762			
12	6	0	-1.096121	4.190293	0.585217			
13	6	0	-2.442220	3.841352	0.342462			
14	6	0	-3.477349	4.745398	0.528637			
15	6	0	-3.149700	6.023884	0.980918			
16	6	0	-1.825528	6.380989	1.240599			
17	6	0	-0.792133	5.471697	1.047861			
18	1	0	-6.792861	3.469971	0.422090			
19	1	0	-7.964786	2.407694	-0.383779			
20	1	0	-6.796496	3.328978	-1.355642			

21	1	0	-5.578345	-0.239605	-1.417818
22	1	0	-5.752967	1.218627	-2.443380
23	1	0	-7.173132	0.486348	-1.682874
24	1	0	-6.028528	1.575493	1.827055
25	1	0	-5.371286	0.080436	1.089037
26	1	0	-7.103695	0.408062	1.028168
27	1	0	-4.508512	4.480578	0.328326
28	1	0	-3.945444	6.749401	1.130595
29	1	0	0.240852	5.748262	1.254470
30	1	0	-1.599711	7.383429	1.597798
31	29	0	-1.856944	-0.658024	-0.605720
32	8	0	-2.966031	-2.191365	-1.030841
33	16	0	-3.948583	-2.901451	-0.135363
34	8	0	-5.171727	-2.146475	0.115138
35	6	0	-3.076172	-2.869434	1.486747
36	9	0	-3.864611	-3.348837	2.434559
37	9	0	-1.962810	-3.582574	1.448248
38	8	0	-4.077265	-4.311476	-0.470646
39	9	0	-2.758613	-1.604487	1.801182
40	8	0	-0.376857	-1.859524	-0.254884
41	16	0	0.459835	-2.379122	-1.398063
42	8	0	-0.110986	-2.071209	-2.705917
43	6	0	0.271050	-4.195450	-1.193260
44	9	0	1.041373	-4.808728	-2.084173
45	9	0	0.657633	-4.553157	0.026002
46	8	0	1.886962	-2.151855	-1.188212
47	9	0	-0.981609	-4.570999	-1.379050
48	16	0	5.247404	0.328069	2.040650
49	8	0	5.434623	-0.886620	2.804070
50	8	0	5.890762	1.577124	2.402215
51	8	0	2.684560	1.347534	-0.596859
52	8	0	1.399494	2.662987	-1.911082
53	1	0	3.466309	0.668146	2.237366
54	6	0	3.025780	1.766302	1.680614
55	6	0	1.655384	2.250547	1.698235
56	6	0	0.902618	2.184747	2.799985
57	6	0	1.201701	2.936320	0.417310
50	0	0	0.374710	0.046799	0.310110
59	0	0	4.079080	-1.021898	-0.250510
60	6	0	4.700000	-1.200000	-1.010441
62	6	0	0.000709	-0.352147	-2.413704
62	0	0	6 127656	0.707939	-1.013001
64	0	0	5 507292	0.927001	-0.440109
65	6	0	2 620152	-0.374200	2 787284
66	6	0	2.039132	-1.050134	1 0/287/
67	6	0	0.077230	-2.063663	2 /08520
68	6	0	1 069969	-2 368200	3 853998
69	6	0	1 951491	-1 670468	4 675658
70	6	0	2 748637	-0 665294	4 143256
70	6	0	1 830654	2 207203	-0 762022
72	6	0	1 835971	2.207200	-3 206648
73	6	0	1 509337	0.616730	-3 239048
74	6	0	3 307268	2 392728	-3 414533
75	6	0	0.981516	2 861832	-4 195191
76	1	0	3,790593	2.419979	1.254619
77	1	0	1.261805	1.742863	3.725212
78	1	õ	-0.092653	2.622853	2,807185
79	1	0	1.640559	3.949315	0.390165
80	1	0	4.056885	-1.682034	0.350197
81	1	õ	4,198551	-2.011702	-2.079886
82	1	0	6.814878	1.379591	-2.430290
83	1	0	6.654082	1.761027	0.022512
84	1	0	6.142016	-1.482950	-4.137727

85	1	0	6.097084	0.269347	-4.400352
86	1	0	4.589557	-0.671028	-4.313458
87	1	0	1.700436	-0.807447	0.890140
88	1	0	0.292237	-2.603807	1.852597
89	1	0	0.447625	-3.155565	4.272272
90	1	0	2.020482	-1.908311	5.733754
91	1	0	3.442042	-0.103899	4.764933
92	1	0	0.463283	0.455197	-2.954750
93	1	0	2.138715	0.031056	-2.561728
94	1	0	1.645201	0.237535	-4.258978
95	1	0	3.938763	1.843365	-2.709392
96	1	0	3.501901	3.466602	-3.307469
97	1	0	3.590551	2.100569	-4.433220
98	1	0	-0.083064	2.673376	-4.015079
99	1	0	1.221602	2.546316	-5.216395
100	1	0	1.163732	3.939621	-4.113660

Z-TS2

Zero-point correction = 0.73491 a.u. Thermal correction to Gibbs Free Energy = 0.64078 a.u. Sum of electronic and zero-point Energies = -5951.62533 a.u. Sum of electronic and thermal Free Energies = -5951.71946 a.u. Standard orientation:

Center	Atomic	Atomic	Coordinates (Angstroms)				
Number	Number	Туре	Х	Y	Z		
1	8	0	0.500206	0.152545	-0.962780		
2	8	0	1.899884	1.640977	0.776945		
3	8	0	1.148068	3.741198	0.986068		
4	7	0	0.313396	2.502182	-0.657036		
5	6	0	-1.135009	1.523982	-2.125302		
6	6	0	-0.093213	1.282192	-1.268548		
7	6	0	1.179530	2.579668	0.405860		
8	6	0	2.051338	4.134536	2.112840		
9	6	0	1.579261	5.543966	2.402592		
10	6	0	1.807548	3.219367	3.293418		
11	6	0	3.479245	4.127359	1.614171		
12	6	0	-1.357465	2.948083	-2.127727		
13	6	0	-0.473618	3.547657	-1.210257		
14	6	0	-0.437946	4.921468	-1.013852		
15	6	0	-1.325689	5.702036	-1.751042		
16	6	0	-2.210149	5.126075	-2.664707		
17	6	0	-2.229486	3.751491	-2.865104		
18	1	0	1.740838	6.198070	1.537947		
19	1	0	2.146729	5.948261	3.247582		
20	1	0	0.514852	5.555450	2.662667		
21	1	0	2.138189	2.197745	3.092589		
22	1	0	0.745928	3.222368	3.568235		
23	1	0	2.377597	3.598458	4.149302		
24	1	0	3.571464	4.744564	0.712934		
25	1	0	3.838383	3.116909	1.410528		
26	1	0	4.121821	4.560506	2.389315		
27	1	0	0.251006	5.380873	-0.315340		
28	1	0	-1.318139	6.780090	-1.611433		
29	1	0	-2.903063	3.309796	-3.596772		
30	1	0	-2.885183	5.760324	-3.234493		
31	29	0	2.151496	-0.097586	-0.055885		
32	8	0	3.420538	-0.756965	1.218643		
33	16	0	4.651556	-0.093432	1.792645		
34	8	0	4.359724	1.075574	2.613342		
35	6	0	5.414300	0.579675	0.259191		
36	9	0	6.439372	1.359594	0.557747		
37	9	0	5.819021	-0.400520	-0.529088		
38	8	0	5.600513	-1.067212	2.308517		
39	9	0	4.505561	1.309273	-0.402469		

40	8	0	2.898826	-1.152799	-1.502796
41	16	0	2.783288	-2.646014	-1.712317
42	8	0	1.979887	-3.300895	-0.681735
43	6	0	4.508300	-3.210227	-1.419419
44	9	0	4.587524	-4.506048	-1.695759
45	9	0	5.341677	-2.549087	-2.210071
46	8	0	2 515760	-2 979012	-3 105270
47	q	0 0	4 855304	-3.017270	-0 159858
-1 /8	16	0	-3 583703	-3 /18350	0.155050
40	Q	0	-2 704031	-4.444861	0.202000
49 50	0	0	-2.7 94031	2 690924	0.304100
50	0	0	-4.377010	-3.009024	-0.932719
51	8	0	-4.201400	0.965699	-3.675544
52	8	0	-3.806597	1.063485	-1.444916
53	1	0	-2.404693	-2.227852	-0.280299
54	6	0	-2.657203	-1.532098	-1.410339
55	6	0	-1.699164	-0.824635	-2.123229
56	6	0	-0.365656	-1.214051	-2.085948
57	6	0	-1.990974	0.489922	-2.824804
58	6	0	-4.551750	-2.554814	1.440636
59	6	0	-4.005872	-2.256826	2.689526
60	6	0	-4.771776	-1.526026	3.586613
61	6	0	-6.068974	-1.114823	3.263709
62	6	0	-6.599234	-1.462666	2.015953
63	6	0	-5.848397	-2.174735	1.095149
64	6	0	-6.889031	-0.318877	4.226896
65	6	0	-1.446759	-1.755630	0.689407
66	6	0	-1.632356	-0.472973	1.210742
67	6	0	-0.737032	0.010494	2.153293
68	6	0	0.333273	-0.782908	2.566378
69	6	0	0.514651	-2.054969	2.028585
70	6	0	-0.384610	-2 555339	1 091116
71	6	0	-3 466475	0.872353	-2 718710
72	6	0	-5 178728	1 405392	-1 032316
73	6	0	-6 138072	0.316737	-1 474534
7/	6	0	-5 5/5510	2 771136	-1 577/02
75	6	0	-5.061088	1 440410	0 470350
76	1	0	-3.001000	1.440410	1 766452
70	1	0	-3.069703	-1.302213	-1.700432
70	1	0	-0.055439	-2.089948	-1.518931
78	1	0	0.275061	-0.930843	-2.919279
79	1	0	-1.767360	0.431831	-3.899838
80	1	0	-3.006273	-2.590155	2.958862
81	1	0	-4.358039	-1.273038	4.560396
82	1	0	-7.614126	-1.159431	1.763123
83	1	0	-6.259494	-2.447473	0.126791
84	1	0	-6.322081	-0.061546	5.126325
85	1	0	-7.782424	-0.875700	4.534497
86	1	0	-7.240159	0.611533	3.763731
87	1	0	-2.457243	0.140559	0.849176
88	1	0	-0.868892	1.011036	2.560686
89	1	0	1.038676	-0.403886	3.302958
90	1	0	1.367805	-2.659144	2.325388
91	1	0	-0.250949	-3.540226	0.653914
92	1	0	-5.774988	-0.665679	-1.144898
93	1	0	-6.271610	0.300269	-2.558757
94	1	0	-7.115192	0.484760	-1.005292
95	1	0	-5.614292	2,766553	-2,668658
96	1	0	-4.801814	3.516102	-1,269651
97	1	0	-6.518542	3.071556	-1.171189
98	1	0 0	-4 752084	0 459794	0.865688
99	1	0	-6 02004	1 693848	0 926789
100	1	0	-1 225017	2 101286	0.020109
100	I	U	-4.323947	2.131200	0.192240

Z-IM2

Zero-point correction = 0.73757 a.u.

Thermal correction to Gibbs Free Energy = 0.64309 a.u. Sum of electronic and zero-point Energies = -5951.64076 a.u. Sum of electronic and thermal Free Energies = -5951.73524 a.u. Standard orientation:

Center	Atomic	Atomic	Coordinates (Angstroms)			
Number	Number	Туре	Х	Y	Z	
1	8	0	0.346716	0.151162	-0.896878	
2	8	0	1.867479	1.519878	0.841407	
3	8	0	1,274168	3,666310	1,107885	
4	7	0	0 328823	2 521827	-0 542455	
5	6	0	-1 105261	1 656048	-2.006340	
5	0	0	-1.190201	1.030040	-2.000349	
0	6	0	-0.100330	1.373320	-1.174096	
7	6	0	1.217241	2.522316	0.509761	
8	6	0	2.229787	3.987357	2.225129	
9	6	0	1.802857	5.392796	2.590274	
10	6	0	2.007302	3.029334	3.375169	
11	6	0	3.632814	3.963044	1.663496	
12	6	0	-1.354646	3.090252	-1.972210	
13	6	0	-0.421854	3.617417	-1.057994	
14	6	0	-0.319121	4.980967	-0.816066	
15	6	0	-1.189960	5.818245	-1.506870	
16	6	0	-2.124983	5.312999	-2.414148	
17	6	0	-2.212873	3.949493	-2.658652	
18	1	0	1.914196	6.073372	1.738503	
19	1	0	2,436526	5,758715	3,405061	
20	1	0	0 760426	5 411767	2 927161	
20	1	0	2 382849	2 027166	3 158528	
21	1	0	0.043270	2.027100	3 637728	
22	1	0	0.945279	2.903033	4.246750	
23	1	0	2.349030	3.412919	4.240759	
24	1	0	3.725432	4.667081	0.828745	
25	1	0	3.930149	2.964738	1.336531	
26	1	0	4.328229	4.274286	2.451309	
27	1	0	0.404242	5.386009	-0.118314	
28	1	0	-1.132975	6.889810	-1.334186	
29	1	0	-2.927239	3.554484	-3.378686	
30	1	0	-2.786551	5.996588	-2.940322	
31	29	0	2.127327	-0.170806	-0.056996	
32	8	0	3.453820	-0.861347	1.120971	
33	16	0	4.717468	-0.219579	1.657753	
34	8	0	4.469159	0.875119	2.586066	
35	6	0	5.365349	0.579208	0.130506	
36	9	0	6.388698	1.361963	0.421147	
37	9	0	5.737799	-0.335195	-0.745234	
38	8	0	5,708469	-1.218517	2.019436	
39	9	0	4.402930	1.328572	-0.427409	
40	8	0	2 780622	-1 138067	-1 568187	
41	16	0	2 709605	-2 640338	-1 801928	
12	8	0	1 051378	-3 325618	-0.760258	
42	6	0	1.331370	2 1/6500	1 552656	
43	0	0	4.400102	-3.140309	-1.552050	
44	9	0	4.562200	-4.447411	-1.788451	
45	9	0	5.242130	-2.490200	-2.396804	
46	8	0	2.419715	-2.943757	-3.194776	
47	9	0	4.843081	-2.897811	-0.314575	
48	16	0	-3.284641	-3.500840	0.276996	
49	8	0	-2.539374	-4.419653	1.120318	
50	8	0	-3.865753	-3.923781	-0.987513	
51	8	0	-4.201973	1.111062	-3.603008	
52	8	0	-3.903404	1.231047	-1.359595	
53	7	0	-2.195225	-2.252671	-0.131972	
54	6	0	-2.600754	-1.377387	-1.160777	
55	6	0	-1.721394	-0.663253	-1.876981	
56	6	0	-0.258515	-0.889436	-1.766069	
57	6	õ	-2 049897	0 593971	-2 654863	
58	6	Õ	-4 536017	-2 710/05	1 250868	
	0	0	1.000817	2.113430	1.200000	

59	6	0	-4.271840	-2.415554	2.585326
60	6	0	-5.244346	-1.757618	3.326326
61	6	0	-6.473678	-1.410120	2.758614
62	6	0	-6.713995	-1.735993	1.419021
63	6	0	-5.754096	-2.387077	0.658127
64	6	0	-7.523961	-0.709816	3.561002
65	6	0	-1.362726	-1.716243	0.915395
66	6	0	-1.651631	-0.458746	1.452970
67	6	0	-0.785203	0.103772	2.381819
68	6	0	0.353320	-0.591606	2.788529
69	6	0	0.613401	-1.861628	2.278761
70	6	0	-0.243682	-2.427364	1.338200
71	6	0	-3.518777	1.001891	-2.610022
72	6	0	-5.281521	1.618182	-1.013921
73	6	0	-6.271551	0.600900	-1.550312
74	6	0	-5.549341	3.017362	-1.531400
75	6	0	-5.251800	1.589940	0.502226
76	1	0	-3.675378	-1.255681	-1.302255
77	1	0	-0.000283	-1.839626	-1.296079
78	1	0	0.239059	-0.798588	-2.739103
79	1	0	-1.798702	0.478486	-3.718937
80	1	0	-3.326396	-2.699158	3.041141
81	1	0	-5.051840	-1.515849	4.369731
82	1	0	-7.671380	-1.476621	0.968697
83	1	0	-5.946202	-2.654650	-0.378458
84	1	0	-7.187886	-0.516045	4.583933
85	1	0	-8.442961	-1.306304	3.611685
86	1	0	-7.797011	0.249196	3.104095
87	1	0	-2.532964	0.083768	1.109220
88	1	0	-0.997790	1.091172	2.787410
89	1	0	1.045191	-0.142210	3.498517
90	1	0	1.498208	-2.410007	2.591122
91	1	0	-0.029483	-3.396121	0.897402
92	1	0	-5.956343	-0.416463	-1.286220
93	1	0	-6.384550	0.663256	-2.634689
94	1	0	-7.249588	0.779678	-1.087617
95	1	0	-5.544099	3.047558	-2.625045
96	1	0	-4.798847	3.720979	-1.150938
97	1	0	-6.535260	3.349337	-1.184850
98	1	0	-5.016129	0.581102	0.868206
99	1	0	-6.231571	1.878336	0.900322
100	1	0	-4.500044	2.288030	0.888848

(H) References

- (a) Y. H. Wen, J. L. Huang, Y. Xiong, B. Qin and X. M. Feng, *Synlett*, **2005**, 2445; (b) J. L. Huang, X. H. Liu, Y. H. Wen, B. Qin and X. M. Feng, *J. Org. Chem.*, 2007, **72**, 204; (c) D. J. Shang, J. G. Xin, Y. L. Liu, X. Zhou, X. H. Liu and X. M. Feng, *J. Org. Chem.*, 2008, **73**, 630; (d) X. Li, X. H. Liu, Y. Z. Fu, L. J. Wang, L. Zhou and X. M. Feng, *Chem. -Eur. J.*, 2008, **14**, 4796; (e) J. L. Huang, J. Wang, X. H. Chen, Y. H. Wen, X. H. Liu and X. M. Feng, *Adv. Synth. Catal.*, 2008, **350**, 287; (f) X. Yang, X. Zhou, L. L. Lin, L. Chang, X. H. Liu and X. M. Feng, *Angew. Chem., Int. Ed.*, 2008, **47**, 7079; (g) Y. L. Liu, D. J. Shang, X. Zhou, X. H. Liu and X. M. Feng, *Chem. -Eur. J.*, 2009, **15**, 2055; (h) D. J. Shang, Y. L. Liu, X. Zhou, X. H. Liu and X. M. Feng, *Chem. -Eur. J.*, 2009, **15**, 3678; (i) X. M. Feng, L. Chen, X. H. Liu, L. L. Lin and P. F. Zhou, Pat. Appl. CN 201711405733.3, December, 22, 2017.
- 2 Y. M. Cao, X. X. Jiang, L. P. Liu, F. F. Shen, F. T. Zhang and R. Wang, Angew. Chem., Int. Ed., 2011, 50, 9124.
- 3 R.-R. Liu, J.-P. Hu, J.-J. Hong, C.-J. Lu, J.-R. Gao and Y.-X. Jia, *Chem. Sci.*, 2017, **8**, 2811.
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, Z G. heng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, J. J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Taroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian 09 (Revision D.01) I. Gaussian, Wallingford, CT, 2013.
- 5 A. V. Marenich, C. J. Cramer and D. Truhlar, *J. Phys. Chem. B*, 2009, **113**, 6378.
- 6 C. Gonzalez and H. B. Schlegel, J. Chem. Phys., 1989, 90, 2154.

(H) The Analytical and Spectral Characterization Data of the Products

Di-*tert*-butyl (1*R*,2*R*,4*S*)-4-[(4-methyl-*N*-phenylphenyl)sulfonamide]-3-methylene-2'-oxospiro[cyclobutane-1,3'-indoline]-1',2-dicarboxylate (3aa)

93% yield, White solid; **m.p.**: 138.4 – 143.5 °C; R_f = 0.4 (petroleum ether/ethyl acetate/dichloromethane = 9/1/1); Dissolved in ⁱPrOH for HPLC; **HPLC** (Chiralcel IA, hexane/^jPrOH = 90/10, flow rate 1.0 mL/min, λ = 224 nm), t_r (major) = 11.88 min, t_r (minor) = 36.87 min, ee = 95%. **3aa:4aa** > 19:1, determined by ¹H NMR. [α]¹⁸_D = -24.3 (*c* = 0.46, in dichloromethane). ¹H NMR (400 MHz, CDCl₃) δ 7.86 – 7.83 (m, 1H), 7.41 – 7.15 (m, 12H), 5.34 – 5.31 (m, 1H), 5.26 – 5.24 (m, 1H), 3.98 – 3.96 (m, 1H), 3.93 – 3.91 (m, 1H), 2.40 (s, 3H), 1.67 (s, 9H), 0.94 (s, 9H) ppm; ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 174.9, 166.2, 149.1, 144.1, 141.4, 138.1, 137.9, 132.5, 129.2, 128.9, 128.8, 128.7, 128.6, 125.5, 123.8, 115.0, 110.7, 84.1, 81.5, 61.0, 56.0, 51.9, 28.1, 27.2, 21.6 ppm; IR (neat) ν (cm⁻¹): 2979, 1766, 1732, 1601, 1483, 1366, 1299, 1251, 1156, 1087, 1007, 890, 857, 816, 755, 700, 670; HRMS (ESI-FT) calcd for C₃₅H₃₈N₂O₇SNa⁺ ([M]+Na⁺) = 653.2292, found 653.2294.

Di-*tert*-butyl (*R*,*E*)-3-{[(4-methyl-*N*-phenylphenyl)sulfonamido]methylene}-3,4-dihydropyrano[2,3-*b*]indole-4,9(2*H*)-dicarboxy-late (4aa)

70% yield for two steps, White solid; **m.p.**: 189.7 – 197.4 °C; $R_f = 0.4$ (petroleum ether/ethyl acetate/dichloromethane = 9/1/1); Dissolved in ⁱPrOH for HPLC; **HPLC** (Chiralcel IA, hexane/ⁱPrOH = 90/10, flow rate 1.0 mL/min, $\lambda = 224$ nm), t_r (major) = 7.81 min, t_r (minor) = 9.66 min, ee = 93%. **3aa:4aa** < 1:19, determined by ¹H NMR. $[\alpha]^{23}_{D} = +154.8$ (c = 0.37, in dichloromethane). ¹H NMR (400 MHz, CDCl₃) δ 7.90 – 7.85 (m, 1H), 7.49 – 7.44 (m, 2H), 7.33 – 7.25 (m, 4H), 7.22 – 7.20 (m, 2H), 7.14 – 7.07 (m, 4H), 6.83 (s, 1H),

5.14 (d, J = 11.6 Hz, 1H), 4.75 (d, J = 11.6 Hz, 1H), 4.02 (s, 1H), 2.37 (s, 3H), 1.66 (s, 9H), 1.24 (s, 9H) ppm; ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 169.4, 149.0, 148.4, 144.3, 139.3, 134.3, 131.0, 129.6, 129.4, 128.5, 128.2, 127.81, 127.75, 126.9, 122.7, 121.7, 119.4, 117.6, 114.7, 89.6, 84.1, 81.7, 71.3, 38.5, 28.2, 27.9, 21.5 ppm; IR (neat) ν (cm⁻¹): 2979, 1730, 1625, 1599, 1464, 1415, 1351, 1327, 1302, 1254, 1146, 1116, 1091, 1001, 951, 839, 747, 696, 663; HRMS (ESI-FT) calcd for C₃₅H₃₈N₂O₇SNa⁺ ([M]+Na⁺) = 653.2292, found 653.2294.

85% yield, White solid; **m.p.**: 91.3 – 102.9 °C; $R_f = 0.3$ (petroleum ether/ethyl acetate/dichloromethane = 9/1/1); Dissolved in ¹PrOH for HPLC; **HPLC** (Chiralcel IA, hexane/¹PrOH = 90/10, flow rate 1.0 mL/min, $\lambda = 224$ nm), t_r (major) = 14.99 min, t_r (minor) = 13.36 min, ee = 70%. **3ba:4ba** > 19:1, determined by ¹H NMR. $[\alpha]^{21}_{\lambda} = -16.256$ (c = 0.41, in dichloromethane, $\lambda = 405$ nm). ¹H NMR (400 MHz, **CDCI₃**) δ 7.85 – 7.83 (m, 1H), 7.35 – 7.15 (m, 12H), 5.33 – 5.30 (m, 1H), 5.29 – 5.26 (m, 1H), 4.12 – 4.09 (m, 1H), 4.07 – 4.04 (m, 1H), 3.22 (s, 3H), 2.40 (s, 3H), 1.68 (s, 9H) ppm; ¹³C{¹H} NMR (101 MHz, **CDCI₃**) δ 174.8, 167.6, 149.1, 144.1, 141.1, 137.7, 137.6, 132.7, 129.6, 129.3, 129.2, 128.9, 128.84, 128.80, 128.6, 127.2, 125.4, 124.8, 123.7, 121.7, 115.1, 111.5, 84.2, 62.1, 56.0, 51.5, 51.0, 28.2, 21.6 ppm; IR (neat) ν (cm⁻¹): 2981, 1734, 1600, 1483, 1349, 1287, 1252, 1211, 1155, 1089, 1029, 916, 845, 816, 755, 700, 669; HRMS (ESI-FT) calcd for C₃₂H₃₂N₂O₇SNa⁺ ([M]+Na⁺) = 611.1822, found 611.1828.

13.363	556358	14.94
14.993	3167204	85.06

1

9-(*tert*-Butyl) 4-methyl (*R*,*E*)-3-{[(4-methyl-*N*-phenylphenyl)sulfonamide]methylene}-3,4-dihydropyrano[2,3-*b*]indole-4,9(2*H*)-dicarboxylate (4ba)

73% yield for two steps, Yellow oil; $R_f = 0.3$ (petroleum ether/ethyl acetate/dichloromethane = 9/1/1); Dissolved in ¹PrOH for HPLC; HPLC (Chiralcel IA, hexane/PrOH = 90/10, flow rate 1.0 mL/min, $\lambda = 224$ nm), t_r (major) = 12.48 min, t_r (minor) = 10.44 min, ee = 70%. **3ba:4ba** < 1:19, determined by ¹H NMR. $[\alpha]^{21}_{D} = +105.8$ (c = 0.27, in dichloromethane). ¹H NMR (400 MHz, CDCI₃) δ 7.90 – 7.84 (m, 1H), 7.48 – 7.43 (m, 2H), 7.34 – 7.29 (m, 3H), 7.25 – 7.21 (m, 3H), 7.13 – 7.07 (m, 4H), 6.88 (d, J = 1.2 Hz, 1H), 5.11 (d, J = 11.6 Hz, 1H), 4.78 (d, J = 11.6 Hz, 1H), 4.11 (s, 1H), 3.35 (s, 3H), 2.39 (s, 3H), 1.65 (s, 9H) ppm; ¹³C{¹H} NMR (101 MHz, CDCI₃) δ 170.6, 148.9, 148.5, 144.5, 139.2, 134.2, 131.0, 129.6, 129.3, 128.8, 128.3, 128.2, 127.7, 126.7, 123.0, 121.9, 117.6, 117.3, 114.7, 88.8, 84.2, 71.2, 52.0, 37.4, 28.2, 21.6 ppm; IR (neat) ν (cm⁻¹): 2979, 1733, 1625, 1599, 1463, 1416, 1349, 1326, 1302, 1254, 1223, 1165, 1145, 1115, 1091, 1000, 946, 913, 841, 817, 747, 697, 663, 633; HRMS (ESI-FT) calcd for C₃₂H₃₂N₂O₇SNa⁺ ([M]+Na⁺) = 611.1822, found 611.1831.

1'-(*tert*-Butyl) 2-ethyl (1*R*,2*R*,4*S*)-4-[(4-methyl-*N*-phenylphenyl)sulfonamide]-3-methylene-2'-oxospiro[cyclobutane-1,3'-indoline]-1',2-dicarboxylate (3ca)

86% yield, White solid; **m.p.**: 121.9 – 126.5 °C; R_f = 0.4 (petroleum ether/ethyl acetate/dichloromethane = 9/1/1); Dissolved in ⁱPrOH for HPLC; **HPLC** (Chiralcel IA, hexane/^jPrOH = 90/10, flow rate 1.0 mL/min, λ = 224 nm), t_r (major) = 14.82 min, t_r (minor) = 16.11 min, ee = 78%. **3ca:4ca** > 19:1, determined by ¹H NMR. [α]²²_{λ} = -17.5 (*c* = 0.41, in dichloromethane, λ = 405 nm). ¹H NMR (400 MHz, **CDCl**₃) δ 7.84 – 7.81 (m, 1H), 7.38 – 7.26 (m, 4H), 7.25 – 7.12 (m, 8H), 5.35 – 5.32 (m, 1H), 5.29 – 5.26 (m, 1H), 4.08 – 4.05 (m, 1H), 4.03 – 4.01 (m, 1H), 3.78 – 3.71 (m, 1H), 3.66 – 3.58 (m, 1H), 2.40 (s, 3H), 1.68 (s, 9H), 0.66 (t, *J* = 7.2 Hz, 3H) ppm; ¹³C{¹H} NMR (101 MHz, **CDCl**₃) δ 174.9, 167.1, 149.1, 144.1, 141.2, 137.8, 137.7, 132.6, 129.6, 129.2, 128.9, 128.82, 128.79, 128.6, 127.2, 125.0, 123.7, 123.6, 121.7, 115.1, 111.3, 84.2, 61.7, 60.4, 56.0, 51.1, 28.1, 21.6, 13.4 ppm; IR (neat) ν (cm⁻¹): 2981, 1764, 1734, 1600, 1483, 1354, 1298, 1252, 1206, 1156, 1088, 1034, 891, 846, 816, 755, 700, 670; HRMS (ESI-FT) calcd for C₃₃H₃₄N₂O₇SNa⁺ ([M]+Na⁺) = 625.1979, found 625.1986.

9-(*tert*-Butyl) 4-ethyl (*R*,*E*)-3-{[(4-methyl-*N*-phenylphenyl)sulfonamide]methylene}-3,4-dihydropyrano[2,3-*b*]indole-4,9(2*H*)-dicarboxylate (4ca)

83% yield for two steps, Colorless oil; $R_f = 0.4$ (petroleum ether/ethyl acetate/dichloromethane = 9/1/1); Dissolved in ⁱPrOH for HPLC; HPLC (Chiralcel IA, hexane/ⁱPrOH = 90/10, flow rate 1.0 mL/min, $\lambda = 224$ nm), t_r (major) = 11.57 min, t_r (minor) = 10.58 min, ee = 78%. **3ca:4ca** < 1:19, determined by ¹H NMR. [α]²²_D = +104.6 (*c* = 0.30, in dichloromethane). ¹H NMR (400 MHz, CDCI₃) δ 7.90 – 7.86 (m, 1H), 7.48 – 7.44 (m, 2H), 7.34 – 7.27 (m, 4H), 7.24 – 7.20 (m, 2H), 7.13 – 7.08 (m, 4H), 5.12 (d, *J* = 12.0 Hz, 1H), 4.78 (d, *J* = 12.0 Hz, 1H), 4.10 (s, 1H), 3.87 – 3.80 (m, 1H), 3.74 – 3.67 (m, 1H), 2.39 (s, 3H), 1.66 (s, 9H), 1.08 (t, *J* = 7.2 Hz, 3H) ppm; ¹³C{¹H} NMR (101 MHz, CDCI₃) δ 170.1, 148.9, 148.5, 144.4, 139.2, 134.2, 131.0, 129.62, 129.56, 129.2, 128.7, 128.2, 128.1, 127.7, 127.2, 126.7, 122.8, 121.9, 121.7, 117.8, 117.4, 114.7, 89.0, 84.2, 71.3, 61.1, 37.6, 28.2, 21.6, 13.9 ppm; IR (neat) ν (cm⁻¹): 2982, 1733, 1625, 1600, 1465, 1416, 1351, 1328, 1301, 1255, 1223, 1166, 1147, 1116, 1091, 1002, 951, 922, 841, 749, 698, 663; HRMS (ESI-FT) calcd for C₃₃H₃₅N₂O₇S⁺ ([M]+H⁺) = 603.2159, found 603.2158.

1'-(*tert*-Butyl) 2-isopropyl (1*R*,2*R*,4*S*)-4-[(4-methyl-*N*-phenylphenyl)sulfonamide]-3-methylene-2'-oxospiro[cyclobutane-1,3'-indoline]-1',2-dicarboxylate (3da)

93% yield, White solid; **m.p.**: 70.1 – 76.4 °C; R_f = 0.4 (petroleum ether/ethyl acetate/dichloromethane = 9/1/1); Dissolved in ⁱPrOH for HPLC; **HPLC** (Chiralcel IA, hexane/ⁱPrOH = 90/10, flow rate 1.0 mL/min, λ = 224 nm), t_r (major) = 11.35 min, t_r (minor) = 19.02 min, ee = 93%. **3da:4da** > 19:1, determined by ¹H NMR. [α]²² $_{\lambda}$ = -38.1 (*c* = 0.46, in dichloromethane, λ = 436 nm). ¹H NMR (400 MHz, CDCI₃) δ 7.84 – 7.81 (m, 1H), 7.40 – 7.26 (m, 4H), 7.25 – 7.11 (m, 8H), 5.34 – 5.32 (m, 1H), 5.28 – 5.26 (m, 1H), 4.55 (hept, *J* = 6.4 Hz, 1H), 4.04 – 4.01 (m, 1H), 4.00 – 3.97 (m, 1H), 2.40 (s, 3H), 1.68 (s, 9H), 0.97 (d, *J* = 6.0 Hz, 3H), 0.45 (d, *J* = 6.0 Hz, 3H) ppm; ¹³C{¹H} NMR (101 MHz, CDCI₃) δ 175.0, 166.6, 149.1, 144.1, 141.3, 137.8, 137.7, 132.5, 129.6, 129.3, 129.2, 128.8, 128.7, 128.6, 127.2, 125.0, 123.7, 121.7, 115.1, 111.1, 84.1, 68.2, 61.5, 56.0, 51.2, 28.1, 21.6, 21.5, 20.4 ppm; IR (neat) ν (cm⁻¹): 2981, 1765, 1732, 1600, 1484,

1352, 1298, 1251, 1210, 1155, 1107, 1008, 909, 857, 816, 755, 700, 669; **HRMS** (ESI-FT) calcd for $C_{34}H_{36}N_2O_7SNa^+$ ([M]+Na⁺) = 639.2135, found 639.2148.

9-(*tert*-Butyl) 4-isopropyl (*R*,*E*)-3-{[(4-methyl-*N*-phenylphenyl)sulfonamide]methylene}-3,4-dihydropyrano[2,3-*b*]indole-4,9 (2*H*)-dicarboxylate (4da)

71% yield for two steps, White solid; **m.p.**: $167.3 - 174.7 \,^{\circ}$ C; $R_f = 0.4$ (petroleum ether/ethyl acetate/dichloromethane = 9/1/1); Dissolved in ⁱPrOH for HPLC; **HPLC** (Chiralcel IA, hexane/ⁱPrOH = 90/10, flow rate 1.0 mL/min, $\lambda = 224$ nm), t_r (major) = 9.00 min, t_r (minor) = 12.25 min, ee = 92%. **3da:4da** < 1:19, determined by ¹H NMR. [α]²³_D = +125.6 (*c* = 0.31, in dichloromethane). ¹H NMR (400 **MHz, CDCI₃**) δ 7.90 - 7.85 (m, 1H), 7.48 - 7.44 (m, 2H), 7.33 - 7.27 (m, 4H), 7.23 - 7.20 (m, 2H), 7.12 - 7.07 (m, 4H), 6.86 (s, 1H), 5.13 (d, *J* = 12.0 Hz, 1H), 4.78 (d, *J* = 11.6 Hz, 1H), 4.63 (hept, *J* = 6.0 Hz, 1H), 4.06 (s, 1H), 2.38 (s, 3H), 1.66 (s, 9H), 1.09 (d, *J* = 6.4 Hz, 3H), 0.99 (d, *J* = 6.0 Hz, 3H) ppm; ¹³C{¹H} NMR (101 MHz, CDCI₃) δ 169.6, 148.9, 148.4, 144.4, 139.1, 134.2, 131.0, 129.6, 129.3, 128.6, 128.3, 128.0, 127.7, 127.2, 126.8, 122.7, 121.8, 118.5, 117.7, 114.6, 89.2, 84.1, 71.3, 68.9, 37.8, 28.2, 21.64, 21.55, 21.5 ppm; **IR (neat)** ν (cm⁻¹): 2980, 1728, 1625, 1599, 1463, 1415m 1349, 1326, 1298, 1253, 1224, 1166, 1146, 1108, 1000, 952, 838, 748, 697, 663, 632; **HRMS** (ESI-FT) calcd for C₃₄H₃₆N₂O₇SNa⁺ ([M]+Na⁺) = 639.2135, found 639.2140.

1	8.995	4414515	96.04
2	12.245	181978	3.96

2-Benzyl 1'-(*tert*-butyl) (1*R*,2*R*,4*S*)-4-[(4-methyl-*N*-phenylphenyl)sulfonamide]-3-methylene-2'-oxospiro[cyclobutane-1,3'-indoline]-1',2-dicarboxylate (3ea)

93% yield, White solid; **m.p.**: 70.1 – 78.6 °C; R_f = 0.4 (petroleum ether/ethyl acetate/dichloromethane = 9/1/1); Dissolved in ⁱPrOH for HPLC; **HPLC** (Chiralcel AD-H, hexane/^jPrOH = 90/10, flow rate 1.0 mL/min, λ = 220 nm), t_r (major) = 48.22 min, t_r (minor) = 18.02 min, ee = 81%. **3ea:4ea** > 19:1, determined by ¹H NMR. [α]²² $_{\lambda}$ = -15.1 (*c* = 0.48, in dichloromethane, λ = 405 nm). ¹H NMR (400 MHz, **CDCI₃**) δ 7.79 – 7.76 (m, 1H), 7.33 – 7.07 (m, 15H), 6.84 – 6.81 (m, 2H), 5.37 – 5.35 (m, 1H), 5.30 – 5.27 (m, 1H), 4.62 (q, *J* = 12.0 Hz, 2H), 4.11 – 4.07 (m, 2H), 2.39 (s, 3H), 1.63 (s, 9H) ppm; ¹³C{¹H} NMR (101 MHz, **CDCI₃**) δ 174.7, 167.1, 148.9, 144.1, 141.1, 137.7, 137.5, 134.6, 132.6, 129.6, 129.2, 128.91, 128.85, 128.78, 128.6, 128.3, 128.2, 128.0, 127.2, 124.6, 123.8, 123.6, 121.7, 115.2, 111.5, 84.1, 66.6, 62.0, 56.0, 50.9, 28.1, 21.6 ppm; **IR (neat)** ν (cm⁻¹): 2980, 1764, 1734, 1600, 1483, 1361, 1298, 1252, 1156, 1087, 1023, 910, 845, 817, 752, 699, 670; **HRMS** (ESI-FT) calcd for C₃₈H₃₆N₂O₇SNa⁺ ([M]+Na⁺) = 687.2135, found 687.2135.

4-Benzyl 9-(*tert*-butyl) (*R*,*E*)-3-{[(4-methyl-*N*-phenylphenyl)sulfonamide]methylene}-3,4-dihydropyrano[2,3-*b*]indole-4,9(2*H*)-dicarboxylate (4ea)

64% yield for two steps, White solid; **m.p.**: 161.9 – 170.9 °C; R_f = 0.4 (petroleum ether/ethyl acetate/dichloromethane = 9/1/1); Dissolved in ⁱPrOH for HPLC; **HPLC** (Chiralcel AD-H, hexane/ⁱPrOH = 90/10, flow rate 1.0 mL/min, λ = 220 nm), t_r (major) = 53.04 min, t_r (minor) = 31.62 min, ee = 83%. **3ea:4ea** < 1:19, determined by ¹H NMR. [α]²³_D = +127.5 (*c* = 0.35, in dichloromethane). ¹H NMR (400 MHz, CDCl₃) δ 7.88 – 7.83 (m, 1H), 7.48 – 7.43 (m, 2H), 7.34 – 7.30 (m, 3H), 7.25 – 7.15 (m, 8H), 7.09 – 7.00 (m, 4H), 6.91 (s, 1H),

5.12 (d, J = 11.6 Hz, 1H), 4.84 – 4.76 (m, 2H), 4.70 (d, J = 12.0 Hz, 1H), 4.12 (s, 1H), 2.39 (s, 3H), 1.66 (s, 9H) ppm; ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 169.9, 148.9, 148.6, 144.4, 139.0, 135.1, 134.2, 130.9, 129.63, 129.57, 129.3, 128.8, 128.40, 128.35, 128.3, 128.2, 127.7, 127.2, 126.6, 125.4, 122.8, 121.9, 121.7, 117.6, 117.1, 114.6, 88.8, 84.2, 71.3, 67.1, 37.6, 28.2, 21.6 ppm; IR (neat) ν (cm⁻¹): 2979, 1733, 1625, 1600, 1463, 1416, 1351, 1327, 1299, 1165, 1147, 1116, 1091, 1000, 953, 842, 817, 748, 697, 664; HRMS (ESI-FT) calcd for C₃₈H₃₆N₂O₇SNa⁺ ([M]+Na⁺) = 687.2135, found 687.2147.

91% yield, White solid; **m.p.**: 80.5 –88.6 °C; $R_f = 0.4$ (petroleum ether/ethyl acetate/dichloromethane = 9/1/1); Dissolved in ⁱPrOH for HPLC; **HPLC** (Chiralcel IA, hexane/ⁱPrOH = 90/10, flow rate 1.0 mL/min, $\lambda = 227$ nm), t_r (major) = 20.00 min, t_r (minor) = 12.14 min, ee = 93%. **3fa:4fa** > 19:1, determined by ¹H NMR. $[\alpha]^{22}_{\lambda} = -85.2$ (c = 0.49, in dichloromethane, $\lambda = 436$ nm). ¹H NMR (400 MHz, CDCI₃) δ 7.72 - 7.69 (m, 1H), 7.34 - 7.26 (m, 2H), 7.26 - 7.14 (m, 8H), 5.34 - 5.32 (m, 1H), 5.26 - 5.24 (m, 1H), 4.04 - 4.00 (m, 1H), 3.92 - 3.89 (m, 1H), 2.40 (s, 3H), 2.34 (s, 3H), 1.66 (s, 9H), 0.94 (s, 9H) ppm; ¹³C{¹H} NMR (101 MHz, CDCI₃) δ 175.1, 166.3, 149.1, 144.1, 139.0, 138.3, 137.8, 133.3, 132.7, 129.2, 129.1, 128.8, 128.6, 125.4, 124.4, 114.8, 110.9, 83.9, 81.4, 61.1, 56.1, 51.7, 28.1, 27.1, 21.6, 21.1 ppm; IR (neat) ν (cm⁻¹): 2978, 1766, 1732, 1596, 1489, 1365, 1339, 1308, 1251, 1158, 1088, 1009, 878, 816, 700, 669; HRMS (ESI-FT) calcd for C₃₆H₄₀N₂O₇SNa⁺ ([M]+Na⁺) = 667.2445, found 667.2448.

	Retention Time	Area	% Area	
1	7.903	23086	0.47	
2	8.626	96174	1.96	
3	12.138	166052	3.38	

4	19.999	4625464	94.19
---	--------	---------	-------

Di-*tert*-butyl (*R*,*E*)-6-methyl-3-{[(4-methyl-*N*-phenylphenyl)sulfonamide]methylene}-3,4-dihydropyrano[2,3-*b*]indole-4,9(2*H*)-dicarboxylate (4fa)

72% yield for two steps, White solid; **m.p.**: 160.6 – 168.5 °C; $R_f = 0.4$ (petroleum ether/ethyl acetate/dichloromethane = 9/1/1); Dissolved in ⁱPrOH for HPLC; **HPLC** (Chiralcel IA, hexane/ⁱPrOH = 90/10, flow rate 1.0 mL/min, $\lambda = 227$ nm), t_r (major) = 7.75 min, t_r (minor) = 8.46 min, ee = 91%. **3fa:4fa** = 1:19, determined by ¹H NMR. $[\alpha]^{24}_D = +132.7$ (*c* = 0.28, in dichloromethane). ¹H NMR (400 **MHz, CDCI**₃) δ 7.74 – 7.72 (m, 1H), 7.49 – 7.45 (m, 2H), 7.34 – 7.30 (m, 3H), 7.22 – 7.19 (m, 3H), 7.11 – 7.09 (m, 2H), 6.92 – 6.90 (m, 1H), 6.79 (s, 1H), 5.13 (d, *J* = 11.6 Hz, 1H), 4.74 (d, *J* = 11.6 Hz, 1H), 4.06 (s, 1H), 2.38 – 2.36 (m, 6H), 1.65 (s, 9H), 1.24 (s, 9H) ppm; ¹³C{¹H} NMR (101 MHz, CDCI₃) δ 169.4, 149.0, 148.4, 144.3, 139.4, 134.3, 132.1, 129.6, 129.4, 129.2, 129.1, 128.8, 128.4, 128.2, 127.8, 127.0, 122.8, 120.3, 118.0, 114.8, 114.3, 89.4, 83.9, 81.6, 71.1, 38.6, 28.2, 27.8, 21.5, 21.3 ppm; IR (neat) ν (cm⁻¹): 2978, 1729, 1607, 1477, 1413, 1394, 1354, 1320, 1254, 1223, 1169, 1141, 1091, 1005, 959, 841, 766, 696, 665; HRMS (ESI-FT) calcd for C₃₆H₄₀N₂O₇SNa⁺ ([M]+Na⁺) = 667.2445, found 667.2445.

Di-*tert*-butyl (1*R*,2*R*,4*S*)-5'-methoxy-4-[(4-methyl-*N*-phenylphenyl)sulfonamide]-3-methylene-2'-oxospiro[cyclobutane-1,3'-in-doline]-1',2-dicarboxylate (3ga)

94% yield, White solid; **m.p.**: 83.0 – 92.8 °C; R_f = 0.4 (petroleum ether/ethyl acetate/dichloromethane = 9/1/1); Dissolved in ⁱPrOH for HPLC; **HPLC** (Chiralcel IB, hexane/ⁱPrOH = 95/5, flow rate 1.0 mL/min, λ = 231 nm), t_r (major) = 21.32 min, t_r (minor) = 12.29 min, ee = 94%. **3ga:4ga** > 19:1, determined by ¹H NMR. [α]²³ $_{\lambda}$ = -88.2 (*c* = 0.45, in dichloromethane, λ = 436 nm). ¹H NMR (400 MHz, CDCl₃) δ 7.76 – 7.73 (m, 1H), 7.33 – 7.29 (m, 1H), 7.26 – 7.15 (m, 7H), 6.97 – 6.96 (m, 1H), 6.92 – 6.85 (m, 2H), 5.35 – 5.33 (m, 1H), 5.24 – 5.23 (m, 1H), 4.00 – 3.99 (m, 1H), 3.92 – 3.90 (m, 1H), 3.78 (s, 3H), 2.40 (s, 3H), 1.66 (s, 9H), 0.98 (s, 9H) ppm; ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 175.0, 166.1, 156.4, 149.1, 144.1, 138.3, 138.0, 134.9, 132.5, 129.2, 128.9, 128.8, 128.6, 126.7, 115.7, 113.5, 110.6, 110.3, 83.9, 81.4, 61.1, 56.2, 55.7, 51.9, 28.2, 27.2, 21.6 ppm; IR (neat) ν (cm⁻¹): 2979, 1764, 1731, 1598, 1489, 1364, 1304, 1239, 1158, 1087, 1007, 877, 817, 700, 669; HRMS (ESI-FT) calcd for C₃₆H₄₀N₂O₈SNa⁺ ([M]+Na⁺) = 683.2398, found 683.2401.

	Retention Time	Area	% Area
1	12.634	584007	39.74
2	13.658	144442	9.83
3	19.350	134652	9.16
4	22.315	606307	41.26

	Retention Time	etention Time Area	
1	12.291	229442	2.99
2	21.321	7388676	97.01

Di-*tert*-butyl (*R*,*E*)-6-methoxy-3-{[(4-methyl-*N*-phenylphenyl)sulfonamide]methylene}-3,4-dihydropyrano[2,3-*b*]indole-4,9(2*H*)-dicarboxylate (4ga)

79% yield for two steps, yellow oil; $R_f = 0.4$ (petroleum ether/ethyl acetate/dichloromethane = 9/1/1); Dissolved in ⁱPrOH for HPLC; HPLC (Chiralcel IB, hexane/^jPrOH = 95/5, flow rate 1.0 mL/min, $\lambda = 231$ nm), t_r (major) = 18.21 min, t_r (minor) = 13.07 min, ee = 92%. **3ga:4ga** < 1:19, determined by ¹H NMR. $[\alpha]^{24}_{D} = +146.0$ (*c* = 0.30, in dichloromethane). ¹H NMR (400 MHz, CDCI₃) δ 7.77 - 7.74 (m, 1H), 7.48 - 7.43 (m, 2H), 7.33 - 7.28 (m, 3H), 7.22 - 7.20 (m, 2H), 7.12 - 7.07 (m, 2H), 6.79 (s, 1H), 6.78 - 6.77 (m, 1H), 6.70 - 6.67 (m, 1H), 5.16 (d, *J* = 11.6 Hz, 1H), 4.75 (d, *J* = 11.6 Hz, 1H), 4.02 (s, 1H), 3.81 (s, 3H), 2.38 (s, 3H), 1.65 (s, 9H), 1.26 (s, 9H) ppm; ¹³C{¹H} NMR (101 MHz, CDCI₃) δ 169.4, 155.9, 148.91, 148.89, 144.4, 139.3, 134.3, 129.6, 129.4, 129.3, 128.4, 128.2, 127.9, 127.8, 127.2, 125.5, 121.7, 120.1, 115.4, 109.0, 101.8, 89.7, 84.0, 81.7, 71.2, 55.6, 38.5, 28.2, 27.9, 21.5 ppm; IR (neat) ν (cm⁻¹): 2978, 1728, 1604, 1479, 1416, 1394, 1362, 1322, 1305, 1257, 1221, 1169, 1143, 1091, 1027, 1003, 962, 841, 696, 665; HRMS (ESI-FT) calcd for C₃₆H₄₀N₂O₈SNa⁺ ([M]+Na⁺) = 683.2398, found 683.2397.

Di-*tert*-butyl (1*R*,2*R*,4*S*)-5'-fluoro-4-[(4-methyl-*N*-phenylphenyl)sulfonamide]-3-methylene-2'-oxospiro[cyclobutane-1,3'-indo-line]-1',2-dicarboxylate (3ha)

F Ts COO^tBu Boc 77% yield, White solid; **m.p.**: 89.1 – 95.6 °C; $R_f = 0.4$ (petroleum ether/ethyl acetate/dichloromethane = 9/1/1); Dissolved in ⁱPrOH for HPLC; **HPLC** (Chiralcel IA, hexane/ⁱPrOH = 90/10, flow rate 1.0 mL/min, $\lambda = 226$ nm), t_r (major) = 13.24 min, t_r (minor) = 7.54 min, ee = 92%. **3ha:4ha** > 19:1, determined by ¹H NMR. $[\alpha]^{23}_{\lambda} = -69.9$ (*c* = 0.44, in dichloromethane, $\lambda = 436$ nm). ¹H NMR (400 MHz, CDCl₃) δ 7.85 - 7.82 (m, 1H), 7.35 - 7.27 (m, 2H), 7.25 - 7.18 (m, 6H), 7.18 - 6.99 (m, 3H), 5.35 - 5.33 (m, 1H), 5.23 - 5.22 (m, 1H), 3.96 - 3.91 (m, 2H), 2.41 (s, 3H), 1.66 (s, 9H), 1.00 (s, 9H) ppm; ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 174.5, 159.4 (d, *J* = 244.2 Hz), 158.2, 149.0, 144.3, 137.8 (d, *J* = 7.5 Hz), 137.5, 132.3, 129.0, 128.9, 128.7, 127.4 (d, *J* = 8.6 Hz), 116.1 (d, *J* = 8.0 Hz), 116.0, 115.0 (d, *J* = 23.0 Hz), 111.4 (d, *J* = 25.0 Hz), 111.0, 84.3, 81.7, 61.1, 51.9, 28.1, 27.2, 21.6 ppm; ¹⁹F NMR (376 MHz, CDCl₃) δ -118.7 ppm; **IR (neat)** ν (cm⁻¹): 2979, 1768, 1733. 1598, 1484, 1364, 1303, 1230, 1154, 1084, 1010, 910, 883, 819, 700, 669; HRMS (ESI-FT) calcd for C₃₅H₃₇FN₂O₇SNa⁺ ([M]+Na⁺) = 671.2198, found 671.2203.

Di-*tert*-butyl (*R*,*E*)-6-fluoro-3-{[(4-methyl-*N*-phenylphenyl)sulfonamide]methylene}-3,4-dihydropyrano[2,3-*b*]indole-4,9(2*H*)-dicarboxylate (4ha)

67% yield for two steps, White solid; **m.p.**: 168.7 – 178.5 °C; R_f = 0.4 (petroleum ether/ethyl acetate/dichloromethane = 9/1/1); Dissolved in ⁱPrOH for HPLC; **HPLC** (Chiralcel IA, hexane/ⁱPrOH = 90/10, flow rate 1.0 mL/min, λ = 226 nm), t_r (major) = 7.29 min, t_r (minor) = 8.88 min, ee = 92%. **3ha:4ha** < 1:19, determined by ¹H NMR. [α]²¹_D = +148.7 (*c* = 0.38, in dichloromethane). ¹H NMR (400 MHz, CDCI₃) δ 7.83 – 7.80 (m, 1H), 7.48 – 7.43 (m, 2H), 7.36 – 7.29 (m, 3H), 7.22 – 7.20 (m, 2H), 7.10 – 7.08 (m, 2H), 6.93 – 6.90 (m, 1H), 6.87 (s, 1H), 6.82 – 6.76 (m, 1H), 5.12 (d, *J* = 11.6 Hz, 1H), 4.75 (d, *J* = 11.6 Hz, 1H), 3.93 (s, 1H), 2.38 (s, 3H), 1.65 (s, 9H), 1.24 (s, 9H) ppm; ¹³C{¹H} NMR (101 MHz, CDCI₃) δ 169.2, 159.4 (d, *J* = 239.3 Hz), 149.5, 148.7, 144.4, 139.1, 134.3, 129.6, 129.5, 128.6, 128.4, 128.1, 128.0, 127.8, 127.2, 118.2, 115.7, 115.6, 108.8 (d, *J* = 24.2 Hz), 103.8 (d, *J* = 25.4 Hz), 89.6, 84.3, 81.9, 71.5, 38.4, 28.2, 27.8, 21.5 ppm; ¹⁹F NMR (376 MHz, CDCI₃) δ -120.46 ppm; IR (neat) ν (cm⁻¹): 2980, 1729, 1599, 1473, 1417, 1364, 1324, 1300, 1255, 1167, 1140, 1114, 1091, 1004, 967, 896, 843, 813, 766, 736, 696, 664; HRMS (ESI-FT) calcd for C₃₅H₃₇FN₂O₇SNa⁺ ([M]+Na⁺) = 671.2198, found 671.2198.

Di-*tert*-butyl (1*R*,2*R*,4*S*)-5'-chloro-4-[(4-methyl-*N*-phenylphenyl)sulfonamide]-3-methylene-2'-oxospiro[cyclobutane-1,3'-indoline]-1',2-dicarboxylate (3ia)

72% yield, White solid; **m.p.**: 87.2 – 94.0 °C; $R_f = 0.4$ (petroleum ether/ethyl acetate/dichloromethane = 9/1/1); Dissolved in ⁱPrOH for HPLC; **HPLC** (Chiralcel IA, hexane/ⁱPrOH = 90/10, flow rate 1.0 mL/min, $\lambda = 232$ nm), t_r (major) = 18.11 min, t_r (minor) = 8.35 min, ee = 88%. **3ia:4ia** > 19:1, determined by ¹H NMR. $[\alpha]^{21}_{\lambda} = -60.9$ (c = 0.40, in dichloromethane, $\lambda = 436$ nm). ¹H NMR (400 MHz, CDCl₃) δ 7.85 – 7.81 (m, 1H), 7.39 – 7.31 (m, 4H), 7.29 – 7.18 (m, 7H), 5.35 (p, J = 1.4 Hz, 1H), 5.26 – 5.21 (m, 1H), 3.98 – 3.96 (m, 1H), 3.94 – 3.91 (m, 1H), 2.41 (s, 3H), 1.66 (s, 9H), 1.00 (s, 9H) ppm; ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 174.3, 165.9, 148.9, 144.3, 140.0, 137.7, 137.6, 132.4, 129.3, 129.2, 129.0, 128.8, 128.6, 127.5, 123.9, 116.2, 111.3, 84.5, 81.8, 61.1, 56.1, 51.8, 28.1, 27.2, 21.6 ppm; IR (neat) ν (cm⁻¹): 2979, 1769, 1732, 1595, 1475, 1395, 1364, 1336, 1302, 1276, 1251, 1155, 1093, 1008, 862, 818, 739, 700, 667; HRMS (ESI-FT) calcd for C₃₅H₃₈³⁵ClN₂O₇S⁺ ([M]+H⁺) = 665.2083, found 665.2089; C₃₅H₃₈³⁷ClN₂O₇S⁺ ([M]+H⁺) = 667.2053, found 6667.2065.

Di-*tert*-butyl (*R*,*E*)-6-chloro-3-{[(4-methyl-*N*-phenylphenyl)sulfonamide]methylene}-3,4-dihydropyrano[2,3-*b*]indole-4,9(2*H*)-dicarboxylate (4ia)

55% yield for two steps, White solid; **m.p.**: 171.4 – 179.4 °C; R_f = 0.4 (petroleum ether/ethyl acetate/dichloromethane = 9/1/1); Dissolved in ⁱPrOH for HPLC; **HPLC** (Chiralcel IA, hexane/ⁱPrOH = 90/10, flow rate 1.0 mL/min, λ = 232 nm), t_r (major) = 7.58 min, t_r (minor) = 8.41 min, ee = 89%. **3ia:4ia** < 1:19, determined by ¹H NMR. [α]²²_D = +132.4 (*c* = 0.41, in dichloromethane). ¹H NMR (400 **MHz, CDCI**₃) δ 7.82 – 7.79 (m, 1H), 7.48 – 7.44 (m, 2H), 7.37 – 7.31 (m, 3H), 7.25 – 7.24 (m, 1H), 7.23 – 7.19 (m, 2H), 7.10 – 7.02 (m, 3H), 6.86 (s, 1H), 5.11 (d, *J* = 11.6 Hz, 1H), 4.76 (d, *J* = 11.6 Hz, 1H), 3.98 (s, 1H), 2.38 (s, 3H), 1.65 (s, 9H), 1.24 (s, 9H) ppm; ¹³C{¹H} NMR (101 MHz, CDCI₃) δ 169.2, 149.2, 148.6, 144.4, 139.2, 134.3, 129.6, 129.5, 129.4, 128.5, 128.34, 128.26, 128.2, 127.8, 121.6, 118.5, 117.5, 115.7, 89.2, 84.5, 82.0, 71.5, 38.4, 28.1, 27.8, 21.5 ppm; IR (neat) ν (cm⁻¹): 2979, 1732, 1624, 1594, 1469, 1412, 1351, 1297, 1147, 1091, 1003, 955, 840, 766, 697, 665; HRMS (ESI-FT) calcd for C₃₅H₃₇³⁵CIN₂O₇SNa⁺ ([M]+Na⁺) = 687.1902, found 687.1881.

Di-*tert*-butyl (1*R*,2*R*,4*S*)-5'-bromo-4-[(4-methyl-*N*-phenylphenyl)sulfonamide]-3-methylene-2'-oxospiro[cyclobutane-1,3'-indo-line]-1',2-dicarboxylate (3ja)

999010

5 46

8.405

2

81% yield, White solid; **m.p.**: 81.8 – 88.7 °C; $R_f = 0.4$ (petroleum ether/ethyl acetate/dichloromethane = 9/1/1); Dissolved in ⁱPrOH for HPLC; **HPLC** (Chiralcel IA, hexane/ⁱPrOH = 95/5, flow rate 1.0 mL/min, $\lambda = 231$ nm), t_r (major) = 45.22 min, t_r (minor) = 20.68 min, ee = 88%. **3ja**:4**ja** > 19:1, determined by ¹H NMR. [α]²³ $_{\lambda}$ = -75.0 (*c* = 0.44, in dichloromethane, λ = 436 nm). ¹H NMR (400 MHz, CDCl₃) δ 7.79 – 7.77 (m, 1H), 7.52 – 7.50 (m, 1H), 7.47 – 7.46 (m, 1H), 7.43 – 7.26 (m, 3H), 7.25 – 7.08 (m, 6H), 5.36 – 5.33 (m, 1H), 5.25 – 5.22 (m, 1H), 3.99 – 3.96 (m, 1H), 3.94 – 3.91 (m, 1H), 2.41 (s, 3H), 1.66 (s, 9H), 1.01 (s, 9H) ppm; ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 174.1, 165.9, 148.9, 144.3, 140.4, 137.6, 132.6, 131.5 129.3, 129.0, 128.8, 127.9, 126.8, 116.69, 116.66, 111.4, 84.5, 81.8, 61.2, 56.0, 51.8, 28.1, 27.2, 21.6 ppm; IR (neat) ν (cm⁻¹): 2979, 1770, 1733, 1596, 1473, 1395, 1365, 1336, 1301, 1276, 1251, 1156, 1091, 1007, 890, 860, 817, 700, 666; HRMS (ESI-FT) calcd for C₃₅H₃₇⁷⁹BrN₂O₇SNa⁺ ([M]+Na⁺) = 731.1397, found 731.1393; C₃₅H₃₇⁸¹BrN₂O₇SNa⁺ ([M]+Na⁺) = 733.1377, found 733.1375.

				Minutes				
	0.00	10.00	20.00	30.0	00	40.00	50.00	
	0.00				1 1 1			-
	-		4			/		
AU	0.10	4.1	20.0			ļ.	42 1 2 4	
	0 10	S	375				222	
	-						Δ	
		4	41.100	007000	22.00			
		4	41 158	807835	22.59			
		3	18.800	813267	22.75			
		2	15.180	992375	27.75			

	Retention Time	Area	% Area
1	14.103	259446	1.39
2	20.675	1034993	5.53
3	45.222	17419146	93.08

Di-*tert*-butyl (*R*,*E*)-6-bromo-3-{[(4-methyl-*N*-phenylphenyl)sulfonamide]methylene}-3,4-dihydropyrano[2,3-*b*]indole-4,9(2*H*)-dicarboxylate (4ja)

61% yield for two steps, White solid; **m.p.**: 173.4 – 179.4 °C; R_f = 0.4 (petroleum ether/ethyl acetate/dichloromethane = 9/1/1); Dissolved in ⁱPrOH for HPLC; **HPLC** (Chiralcel IA, hexane/ⁱPrOH = 95/5, flow rate 1.0 mL/min, λ = 231 nm), t_r (major) = 12.97 min, t_r (minor) = 14.97 min, ee = 88%. **3ja**:**4ja** < 1:19, determined by ¹H NMR. [α]²³_D = +106.5 (*c* = 0.41, in dichloromethane). ¹H NMR (**400 MHz, CDCI**₃) δ 7.77 – 7.75 (m, 1H), 7.47 – 7.43 (m, 2H), 7.42 – 7.40 (m, 1H), 7.36 – 7.31 (m, 3H), 7.23 – 7.16 (m, 3H), 7.12 – 7.06 (m, 2H), 6.85 (s, 1H), 5.10 (d, *J* = 11.6 Hz, 1H), 4.75 (d, *J* = 11.6 Hz, 1H), 3.98 (s, 1H), 2.38 (s, 3H), 1.65 (s, 9H), 1.23 (s, 9H) ppm; ¹³C{¹H} NMR (**101 MHz, CDCI**₃) δ 169.1, 149.0, 148.6, 144.4, 139.2, 134.2, 129.8, 129.6, 129.5, 128.6, 128.5, 128.33, 128.29, 127.7, 124.4, 120.5, 118.5, 116.1, 116.1, 89.0, 84.5, 82.0, 71.5, 38.4, 28.1, 27.8, 21.6 ppm; **IR (neat)** ν (cm⁻¹): 2978, 1732, 1624, 1592, 1468, 1350, 1296, 1168, 1147, 1091, 1063, 1002, 953, 839, 697, 664; **HRMS** (ESI-FT) calcd for C₃₅H₃₇⁷⁹BrN₂O₇SNa⁺ ([M]+Na⁺) = 731.1397, found 733.1378.

Di-*tert*-butyl (1*R*,2*R*,4*S*)-5'-iodo-4-[(4-methyl-*N*-phenylphenyl)sulfonamide]-3-methylene-2'-oxospiro[cyclobutane-1,3'-indo-line]-1',2-dicarboxylate (3ka)

83% yield, White solid; **m.p.**: 88.6 – 95.3 °C; $R_f = 0.4$ (petroleum ether/ethyl acetate/dichloromethane = 9/1/1); Dissolved in ⁱPrOH for HPLC; **HPLC** (Chiralcel IA, hexane/ⁱPrOH = 90/10, flow rate 1.0 mL/min, $\lambda = 237$ nm), t_r (major) = 18.77 min, t_r (minor) = 11.10 min, ee = 90%. **3ka:4ka** > 19:1, determined by ¹H NMR. [α]²² $_{\lambda} = -78.4$ (c = 0.50, in dichloromethane, $\lambda = 436$ nm). ¹H NMR (400 MHz, CDCl₃)

 δ 7.73 – 7.26 (m, 8H), 7.24 – 7.12 (m, 4H), 5.35 – 5.32 (m, 1H), 5.25 – 5.22 (m, 1H), 3.97 – 3.95 (m, 1H), 3.93 – 3.91 (m, 1H), 2.41 (s, 3H), 1.66 (s, 9H), 1.00 (s, 9H). ppm; ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 174.0, 165.9, 148.8, 144.283 141.2, 137.53, 137.50, 137.47, 132.5, 132.4, 129.3, 129.1, 128.8, 128.1, 117.1, 111.5, 87.0, 84.5, 81.8 61.2, 55.9, 51.7, 28.1, 27.2, 21.7 ppm; IR (neat) ν (cm⁻¹): 2978, 1770, 1732, 1597, 1472, 1395, 1365, 1334, 1302, 1276, 1252, 1157, 1090, 1006, 890, 859, 817, 740, 700, 666; HRMS (ESI-FT) calcd for C₃₅H₃₇IN₂O₇SNa⁺ ([M]+Na⁺) = 779.1258, found 779.1259.

Di-*tert*-butyl (*R*,*E*)-6-iodo-3-{[(4-methyl-*N*-phenylphenyl)sulfonamide]methylene}-3,4-dihydropyrano[2,3-*b*]indole-4,9(2*H*)-dicarboxylate (4ka)

57% yield for two steps, White solid; **m.p.**: 147.1 – 153.8 °C; R_f = 0.4 (petroleum ether/ethyl acetate/dichloromethane = 9/1/1); Dissolved in ⁱPrOH for HPLC; **HPLC** (Chiralcel IA, hexane/ⁱPrOH = 90/10, flow rate 1.0 mL/min, λ = 237 nm), t_r (major) = 7.81 min, t_r (minor) = 8.44 min, ee = 90%. **3ka:4ka** < 1:19, determined by ¹H NMR. [α]²²_D = +83.2 (*c* = 0.19, in dichloromethane). ¹H NMR (400 **MHz, CDCI**₃) δ 7.68 – 7.61 (m, 2H), 7.48 – 7.44 (m, 2H), 7.39 – 7.29 (m, 4H), 7.22 – 7.20 (m, 2H), 7.11 – 7.06 (m, 2H), 6.84 (s, 1H), 5.11 (d, *J* = 11.6 Hz, 1H), 4.75 (d, *J* = 11.6 Hz, 1H), 3.99 (s, 1H), 2.38 (s, 3H), 1.64 (s, 9H), 1.24 (s, 9H) ppm; ¹³C{¹H} NMR (101 MHz, **CDCI**₃) δ 169.1, 148.7, 144.4, 139.2, 134.3, 130.4, 130.2, 129.6, 129.5, 129.1, 128.5, 128.3, 127.8, 126.5, 118.9, 116.6, 88.7, 86.8, 84.6, 82.1, 71.5, 38.4, 28.2, 27.9, 21.6 ppm; **IR (neat)** ν (cm⁻¹): 2971, 1732, 1622, 1588, 1468, 1347, 1296 1146 1092, 1000 952, 892, 797,762, 696 669; HRMS (ESI-FT) calcd for C₃₅H₃₇IN₂O₇SNa⁺ ([M]+Na⁺) = 779.1258, found 779.1259.

Di-*tert*-butyl (1*R*,2*R*,4*S*)-6'-methoxy-4-[(4-methyl-*N*-phenylphenyl)sulfonamide]-3-methylene-2'-oxospiro[cyclobutane-1,3'-in-doline]-1',2-dicarboxylate (3la)

84% yield, White solid; **m.p.**: 88.4 – 93.1 °C; $R_f = 0.4$ (petroleum ether/ethyl acetate/dichloromethane = 9/1/1); Dissolved in ⁱPrOH for HPLC; **HPLC** (Chiralcel AD-H, hexane/ⁱPrOH = 90/10, flow rate 1.0 mL/min, $\lambda = 226$ nm), t_r (major) = 15.08 min, t_r (minor) = 36.08 min, ee = 93%. **3la:4la** > 19:1, determined by ¹H NMR. $[\alpha]^{22}_{\lambda} = -74.7$ (*c* = 0.95, in dichloromethane, $\lambda = 436$ nm). ¹H NMR (400 MHz, CDCl₃) δ 7.53 – 7.51 (m, 1H), 7.33 – 7.28 (m, 2H), 7.25 – 7.12 (m, 8H), 6.72 – 6.69 (m, 1H), 5.30 – 5.28 (m, 1H), 5.22 – 5.19 (m, 1H), 3.95 – 3.93 (m, 1H), 3.90 – 3.88 (m, 1H), 3.85 (s, 3H), 2.40 (s, 3H), 1.66 (s, 9H), 0.98 (s, 9H) ppm; ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 175.3, 166.3, 160.3, 149.0, 144.1, 142.4, 138.2, 137.9, 132.5, 129.9, 129.6, 129.20, 129.17, 129.0, 128.84, 128.77, 128.6, 127.6, 124.3, 117.2, 110.6, 109.1, 102.2, 84.0, 81.3, 61.1, 55.7, 55.5, 51.9, 28.1, 27.3, 21.6 ppm; IR (neat) ν (cm⁻¹): 2978, 1793, 1767, 1731, 1618, 1495, 1452, 1366, 1307, 1254, 1207, 1154, 1090, 1022, 903, 851, 819, 700, 671; HRMS (ESI-FT) calcd for C₃₆H₄₀N₂O₈SNa⁺ ([M]+Na⁺) = 683.2398, found 683.2402.

Di-*tert*-butyl (*R*,*E*)-7-methoxy-3-{[(4-methyl-*N*-phenylphenyl)sulfonamide]methylene}-3,4-dihydropyrano[2,3-*b*]indole-4,9(2*H*)-dicarboxylate (4la)

33% yield for two steps, Yellow oil; $R_f = 0.4$ (petroleum ether/ethyl acetate/dichloromethane = 9/1/1); Dissolved in ¹PrOH for HPLC; HPLC (Chiralcel AD-H, hexane/¹PrOH = 90/10, flow rate 1.0 mL/min, $\lambda = 226$ nm), t_r (major) = 14.01 min, t_r (minor) = 19.43 min, ee = 91%. **3Ia:4Ia** = 1:9, determined by ¹H NMR. $[\alpha]^{23}_{D} = +73.8$ (*c* = 0.26, in dichloromethane). ¹H NMR (400 MHz, CDCI₃) δ 7.55 – 7.53 (m, 1H), 7.48 – 7.44 (m, 2H), 7.33 – 7.28 (m, 3H), 7.24 – 7.18 (m, 2H), 7.15 – 7.13 (m, 1H), 7.10 – 7.07 (m, 2H), 6.80 (s, 1H), 6.77 – 6.74 (m, 1H), 5.10 (d, *J* = 11.6 Hz, 1H), 4.71 (d, *J* = 11.6 Hz, 1H), 3.99 (s, 1H), 3.81 (s, 3H), 2.38 (s, 3H), 1.66 (s, 9H), 1.23 (s, 9H) ppm; $^{13}C{^{1}H} \text{ NMR (101 MHz, CDCl}_{3}) \delta 169.5, 155.9, 149.0, 147.4, 144.3, 139.3, 134.4, 131.8, 129.6, 129.4, 129.2, 128.9, 128.5, 128.2, 127.8, 127.7, 121.8, 120.6, 119.8, 118.1, 110.7, 100.5, 89.3, 84.0, 81.6, 71.1, 55.7, 38.6, 28.2, 27.9, 21.5 ppm; IR (neat) <math>\nu$ (cm⁻¹): 2978, 1731, 1627, 1486, 1453, 1352, 1301, 1256, 1147, 1113, 1016, 939, 845, 771, 695, 665; HRMS (ESI-FT) calcd for $C_{36}H_{40}N_2O_8SNa^+$ ([M]+Na⁺) = 683.2398, found 683.2402.

Di-*tert*-butyl (1*R*,2*R*,4*S*)-6'-fluoro-4-[(4-methyl-*N*-phenylphenyl)sulfonamide]-3-methylene-2'-oxospiro[cyclobutane-1,3'-indoline]-1',2-dicarboxylate (3ma)

90% yield, White solid; **m.p.**: 87.2 – 93.5 °C; $R_f = 0.4$ (petroleum ether/ethyl acetate/dichloromethane = 9/1/1); Dissolved in ⁱPrOH for HPLC; **HPLC** (Chiralcel IA, hexane/ⁱPrOH = 90/10, flow rate 1.0 mL/min, $\lambda = 224$ nm), t_r (major) = 6.29 min, t_r (minor) = 15.23 min, ee = 93%. **3ma:4ma** > 19:1, determined by ¹H NMR. [α]²² $_{\lambda}$ = -76.5 (*c* = 0.49, in dichloromethane, λ = 436 nm). ¹H NMR (400 MHz, CDCI₃) δ 7.67 - 7.63 (m, 1H), 7.42 - 7.26 (m, 4H), 7.25 - 7.16 (m, 6H), 6.91 - 6.87 (m, 1H), 5.33 - 5.30 (m, 1H), 5.22 - 5.20 (m, 1H), 3.96 - 3.93 (m, 1H), 3.92 - 3.90 (m, 1H), 2.41 (s, 3H), 1.67 (s, 9H), 0.99 (s, 9H) ppm; ¹³C{¹H} NMR (101 MHz, CDCI₃) δ 74.8, 166.1, 163.0 (d, J = 245.4 Hz), 148.8, 144.3, 142.6, 142.5, 137.8, 137.82, 132.2, 129.3, 129.0, 128.9, 128.7, 124.7 (d, J = 9.6 Hz), 121.0 (d, J = 2.9 Hz), 111.0, 110.4 (d, J = 22.5 Hz), 104.0 (d, J = 29.8 Hz), 84.7, 81.7, 61.1, 55.7, 52.0, 28.1, 27.3, 21.7 ppm; ¹⁹F NMR (376 MHz, CDCI₃) δ - 110.7 ppm; IR (neat) ν (cm⁻¹): 2981, 1771, 1734, 1611, 1493, 1445, 1368, 1303, 1255, 1153, 1089, 1011, 907, 851, 701, 672; HRMS (ESI-FT) calcd for C₃₅H₃₇FN₂O₇SNa⁺ ([M]+Na⁺) = 671.2198, found 671.2194.

Di-*tert*-butyl (*R*,*E*)-7-fluoro-3-{[(4-methyl-*N*-phenylphenyl)sulfonamide]methylene}-3,4-dihydropyrano[2,3-*b*]indole-4,9(2*H*)-dicarboxylate (4ma)

62% yield for two steps, White solid; **m.p.**: 185.7 – 195.1 °C; $R_f = 0.4$ (petroleum ether/ethyl acetate/dichloromethane = 9/1/1); Dissolved in ¹PrOH for HPLC; **HPLC** (Chiralcel IA, hexane/¹PrOH = 90/10, flow rate 1.0 mL/min, $\lambda = 224$ nm), t_r (major) = 6.89 min, t_r (minor) = 7.58 min, ee = 93%. **3ma:4ma** < 1:19, determined by ¹H NMR. [α]²³_D = +129.1 (*c* = 0.37, in dichloromethane). ¹H NMR (400 **MHz, CDCI**₃) δ 7.66 – 7.62 (m, 1H), 7.47 – 7.45 (m, 2H), 7.34 – 7.28 (m, 3H), 7.22 – 7.20 (m, 2H), 7.17 – 7.14 (m, 1H), 7.11 – 7.07 (m, 2H), 6.90 – 6.84 (m, 1H), 6.82 (s, 1H), 5.10 (d, *J* = 10.8 Hz, 1H), 4.73 (d, *J* = 11.2 Hz, 1H), 4.00 (s, 1H), 2.38 (s, 3H), 1.66 (s, 9H), 1.23 (s, 9H). ppm; ¹³C{¹H} NMR (101 MHz, CDCI₃) δ 148.7, 148.3, 144.4, 139.2, 134.3, 131.1 (d, *J* = 12.9 Hz), 129.6, 129.5, 128.5, 128.3, 128.0, 127.8, 123.0, 119.1, 118.0, 117.9, 110.2 (d, *J* = 23.4 Hz), 102.7 (d, *J* = 29.7 Hz), 89.2, 84.6, 81.8, 71.3, 38.5, 28.1, 27.8, 21.5 ppm; ¹⁹F NMR (376 MHz, CDCI₃) δ –120.3 ppm; **IR (neat)** ν (cm⁻¹): 2979, 1731, 1627, 1486, 1453, 1352, 1301, 1256, 1147, 1113, 1016, 939, 845, 814, 769, 697, 668; HRMS (ESI-FT) calcd for C₃₅H₃₇FN₂O₇SNa⁺ ([M]+Na⁺) = 671.2198, found 671.2196.

Di-*tert*-butyl (1*R*,2*R*,4*S*)-6'-chloro-4-[(4-methyl-*N*-phenylphenyl)sulfonamide]-3-methylene-2'-oxospiro[cyclobutane-1,3'-indoline]-1',2-dicarboxylate (3na)

81% yield, White solid; **m.p.**: 91.1 – 97.4 °C; $R_f = 0.4$ (petroleum ether/ethyl acetate/dichloromethane = 9/1/1); Dissolved in ⁱPrOH for HPLC; **HPLC** (Chiralcel IA, hexane/ⁱPrOH = 90/10, flow rate 1.0 mL/min, $\lambda = 225$ nm), t_r (major) = 6.77 min, t_r (minor) = 11.40 min, ee = 93%. **3na:4na** > 19:1, determined by ¹H NMR. $[\alpha]^{20}_{\lambda} = -40.5$ (*c* = 0.37, in dichloromethane, $\lambda = 436$ nm). ¹H NMR (400 MHz, CDCI₃) δ 7.95 – 7.94 (m, 1H), 7.36 – 7.16 (m, 11H), 5.32 – 5.30 (m, 1H), 5.23 – 5.21 (m, 1H), 3.95 – 3.89 (m, 2H), 2.41 (s, 3H), 1.67 (s, 9H), 1.00 (s, 9H) ppm; ¹³C{¹H} NMR (101 MHz, CDCI₃) δ 174.4, 166.0, 148.8, 144.3, 142.3, 137.8, 137.7, 134.5, 132.3, 129.2, 129.0, 128.8, 128.7, 124.5, 124.0, 123.7, 115.8, 111.0, 84.7, 81.7, 61.0, 55.8, 51.9, 28.1, 27.3, 21.6 ppm; IR (neat) ν (cm⁻¹): 2927, 1770, 1733, 1606, 1483, 1425, 1366, 1341, 1298, 1246, 1154, 1089, 1013, 845, 816, 700, 670, 602; HRMS (ESI-FT) calcd for C₃₅H₃₇³⁵CIN₂O₇SNa⁺ ([M]+Na⁺) = 687.1902, found 687.1896; C₃₅H₃₇³⁷CIN₂O₇SNa⁺ ([M]+Na⁺) = 687.1873 found 687.1874.

Di-tert-butyl (R,E)-7-chloro-3-{[(4-methyl-N-phenylphenyl)sulfonamide]methylene}-3,4-dihydropyrano[2,3-b]indole-4,9(2H)-dicarboxylate (4na)

54% yield for two steps, White solid; m.p.: 191.5 - 197.4 °C; R_f = 0.4 (petroleum ether/ethyl acetate/dichloromethane = 9/1/1); Dissolved in ⁱPrOH for HPLC; HPLC (Chiralcel IA, hexane/ⁱPrOH = 90/10, flow rate 1.0 mL/min, λ = 225 nm), t_r (major) = 6.88 min, t_r (minor) = 8.19 min, ee = 90%. **3na:4na** < 1:19, determined by ¹H NMR. $[\alpha]^{23}_{D}$ = +90.6 (*c* = 0.35, in dichloromethane). ¹H NMR (400 MHz, CDCl₃) δ 7.94 - 7.92 (m, 1H), 7.46 - 7.44 (m, 2H), 7.35 - 7.28 (m, 3H), 7.22 - 7.20 (m, 2H), 7.15 - 7.10 (m, 1H), 7.10 - 7.07 (m, 1H), 7.10 - 7.10 (m, 1H), 7.10 (m, 1H) 3H), 5.11 (d, J = 11.2 Hz, 1H), 4.74 (d, J = 12.0 Hz, 1H), 3.97 (s, 1H), 2.38 (s, 3H), 1.66 (s, 9H), 1.22 (s, 9H) ppm; ¹³C{¹H} NMR (101 **MHz, CDCI**₃) *δ* 169.2, 148.6, 144.4, 139.2, 134.3, 131.4, 129.6, 129.5, 128.6, 128.3, 128.1, 127.8, 127.3, 125.4, 123.0, 118.6, 118.3, 115.2, 89.4, 84.7, 81.9, 71.4, 38.4, 28.1, 27.8, 21.6 ppm; IR (neat) v (cm⁻¹): 2979, 1731, 1624, 1597, 1470, 1410, 1347, 1295, 1249, 1149, 1123, 1091, 1013, 926, 841, 816, 764, 697, 663; **HRMS** (ESI-FT) calcd for $C_{35}H_{37}^{35}CIN_2O_7SNa^+$ ([M]+Na⁺) = 687.1902, found 687.1891; $C_{35}H_{37}^{37}CIN_2O_7SNa^+$ ([M]+Na⁺) = 687.1873 found 687.1874.

2714192

137647

4.83

6.877

8.187

2

Di-*tert*-butyl (1*R*,2*R*,4*S*)-6'-bromo-4-[(4-methyl-*N*-phenylphenyl)sulfonamide]-3-methylene-2'-oxospiro[cyclobutane-1,3'-indo-line]-1',2-dicarboxylate (3oa)

86% yield, White solid; **m.p.**: 98.1 – 107.4 °C; $R_f = 0.4$ (petroleum ether/ethyl acetate/dichloromethane = 9/1/1); Dissolved in ⁱPrOH for HPLC; **HPLC** (Chiralcel IA, hexane/ⁱPrOH = 90/10, flow rate 1.0 mL/min, $\lambda = 225$ nm), t_r (major) = 6.15 min, t_r (minor) = 8.83 min, ee = 87%. **3oa:4oa** > 19:1, determined by ¹H NMR. $[\alpha]^{22}_{\lambda} = -29.1$ (c = 0.48, in dichloromethane, $\lambda = 436$ nm). ¹H NMR (400 MHz, CDCl₃) δ 8.11 – 8.10 (m, 1H), 7.35 – 7.19 (m, 11H), 5.32 – 5.29 (m, 1H), 5.23 – 5.21 (m, 1H), 3.92 – 3.90 (m, 2H), 2.41 (s, 3H), 1.67 (s, 9H), 0.99 (s, 9H) ppm; ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 174.3, 166.0, 148.7, 144.3, 142.5, 137.72, 137.66, 132.2, 129.3, 129.0, 128.8, 126.7, 124.9, 124.6, 122.4, 118.6, 111.1, 84.7, 81.8, 60.9, 55.9, 51.8, 28.1, 27.2, 21.6 ppm; IR (neat) ν (cm⁻¹): 2978, 1771, 1733, 1602, 1478, 1420, 1366, 1340, 1297, 1245, 1154, 1090, 1012, 859, 816, 760, 700, 668; HRMS (ESI-FT) calcd for C₃₅H₃₇⁷⁹BrN₂O₇SNa⁺ ([M]+Na⁺) = 731.1397, found 731.1392; C₃₅H₃₇⁸¹BrN₂O₇SNa⁺ ([M]+Na⁺) = 733.1377, found 733.1376.

Di-*tert*-butyl (*R*,*E*)-7-bromo-3-{[(4-methyl-*N*-phenylphenyl)sulfonamide]methylene}-3,4-dihydropyrano[2,3-*b*]indole-4,9(2*H*)-dicarboxylate (40a)

57% yield for two steps, White solid; **m.p.**: 192.5 – 199.7 °C; R_f = 0.4 (petroleum ether/ethyl acetate/dichloromethane = 9/1/1); Dissolved in ⁱPrOH for HPLC; **HPLC** (Chiralcel IA, hexane/ⁱPrOH = 90/10, flow rate 1.0 mL/min, λ = 225 nm), t_r (major) = 6.97 min, t_r (minor) = 8.21 min, ee = 88%. **30a:40a** < 1:19, determined by ¹H NMR. [α]²³_D = +87.4 (*c* = 0.36, in dichloromethane). ¹H NMR (400 **MHz, CDCI₃**) δ 8.10 – 8.08 (m, 1H), 7.46 – 7.44 (m, 2H), 7.35 – 7.28 (m, 3H), 7.24 – 7.20 (m, 3H), 7.11 – 7.06 (m, 3H), 6.85 (s, 1H), 5.11 (d, *J* = 11.6 Hz, 1H), 4.74 (d, *J* = 12.0 Hz, 1H), 3.97 (s, 1H), 2.38 (s, 3H), 1.66 (s, 9H), 1.22 (s, 9H) ppm; ¹³C{¹H} NMR (101 MHz, 10.5 + 1.5 +

CDCl₃) δ 169.2, 148.6, 148.5, 144.4, 139.2, 134.3, 131.7, 129.6, 129.5, 128.6, 128.3, 128.1, 127.8, 125.8, 118.7, 118.5, 117.9, 114.8, 89.4, 84.7, 81.9, 71.4, 38.4, 28.1, 27.8, 21.6 ppm; **IR (neat)** ν (cm⁻¹): 2978, 1731, 1623, 1597, 1470, 1410, 1347, 1295, 1249, 1149, 1123, 1091, 1013, 926, 841, 816, 764, 697, 663; **HRMS** (ESI-FT) calcd for C₃₅H₃₇⁷⁹BrN₂O₇SNa⁺ ([M]+Na⁺) = 731.1397, found 731.1397; C₃₅H₃₇⁸¹BrN₂O₇SNa⁺ ([M]+Na⁺) = 733.1377, found 733.1377.

83% yield, White solid; **m.p.**: 89.5 – 95.8 °C; R_f = 0.4 (petroleum ether/ethyl acetate/dichloromethane = 9/1/1); Dissolved in ⁱPrOH for HPLC; **HPLC** (Chiralcel IA, hexane/ⁱPrOH = 90/10, flow rate 1.0 mL/min, λ = 225 nm), t_r (major) = 6.87 min, t_r (minor) = 17.25 min, ee = 96%. **3pa:4pa** > 19:1, determined by ¹H NMR. [α]²³_λ = -27.5 (*c* = 0.45, in dichloromethane, λ = 405 nm). ¹H NMR (400 MHz, CDCl₃) δ 7.36 - 7.26 (m, 4H), 7.26 - 7.17 (m, 7H), 7.11 - 7.07 (m, 1H), 5.35 - 5.34 (m, 1H), 5.23 - 5.21 (m, 1H), 4.03 - 4.01 (m, 1H), 3.95 - 3.93 (m, 1H), 2.40 (s, 3H), 1.62 (s, 9H), 1.00 (s, 9H) ppm; ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 174.8, 166.0, 147.5, 144.2, 138.8, 137.9, 137.8, 132.7, 130.4, 129.3, 128.90, 128.86, 128.8, 128.7, 124.6, 122.2, 119.4, 111.0, 84.8, 81.8, 61.7, 56.6, 51.2, 27.7, 27.4, 21.6 ppm; **IR (neat)** ν (cm⁻¹): 2980, 1737, 1598, 1451, 1366, 1253, 1152, 1010, 894, 857, 815, 701, 669; HRMS (ESI-FT) calcd for C₃₅H₃₇³⁵ClN₂O₇SNa⁺ ([M]+Na⁺) = 687.1892, found 687.1902; C₃₅H₃₇³⁷ClN₂O₇SNa⁺ ([M]+Na⁺) = 687.1873 found 687.1882.

	Retention Time	Area	% Area
1	6.871	6968158	97.96
2	17.254	145009	2.04

Di-*tert*-butyl (*R*,*E*)-8-chloro-3-{[(4-methyl-*N*-phenylphenyl)sulfonamide]methylene}-3,4-dihydropyrano[2,3-*b*]indole-4,9(2*H*)-dicarboxylate (4pa)

61% yield for two steps, White solid; **m.p.**: 173.6 – 181.3 °C; R_f = 0.4 (petroleum ether/ethyl acetate/dichloromethane = 9/1/1); Dissolved in ⁱPrOH for HPLC; **HPLC** (Chiralcel IA, hexane/ⁱPrOH = 90/10, flow rate 1.0 mL/min, λ = 225 nm), t_r (major) = 9.21 min, t_r (minor) = 7.62 min, ee = 94%. **3pa:4pa** < 1:19, determined by ¹H NMR. [α]²³_D = +99.7 (*c* = 0.30, in dichloromethane). ¹H NMR (400 **MHz, CDCI**₃) δ 7.50 – 7.43 (m, 2H), 7.35 – 7.29 (m, 3H), 7.22 – 7.18 (m, 2H), 7.16 – 7.14 (m, 1H), 7.11 – 7.07 (m, 2H), 7.07 – 6.98 (m, 2H), 5.11 (d, *J* = 11.6 Hz, 1H), 4.73 (d, *J* = 12.0 Hz, 1H), 3.98 (s, 1H), 2.36 (s, 3H), 1.63 (s, 9H), 1.23 (s, 9H) ppm; ¹³C{¹H} NMR (101 **MHz, CDCI**₃) δ 169.4, 149.0, 147.8, 144.4, 139.2, 134.3, 130.0, 129.6, 129.5, 128.6, 128.3, 128.2, 127.8, 123.2, 123.0, 119.0, 116.3, 87.7, 85.0, 81.8, 71.6, 38.4, 27.9, 27.8, 21.5 ppm; **IR (neat)** ν (cm⁻¹): 2980, 1753, 1727, 1628, 1598, 1460, 1366, 1335, 1303, 1250, 1143, 1091, 999, 952, 841, 775, 731, 697, 662; **HRMS** (ESI-FT) calcd for C₃₅H₃₇³⁵CIN₂O₇SNa⁺ ([M]+Na⁺) = 687.1902, found 687.1902; C₃₅H₃₇³⁷CIN₂O₇SNa⁺ ([M]+Na⁺) = 687.1873 found 687.1878.

Di-*tert*-butyl (1*R*,2*R*,4*S*)-5',6'-difluoro-4-[(4-methyl-*N*-phenylphenyl)sulfonamide]-3-methylene-2'-oxospiro[cyclobutane-1,3'indoline]-1',2-dicarboxylate (3qa)

76% yield, White solid; **m.p.**: 82.6 – 89.1 °C; R_f = 0.4 (petroleum ether/ethyl acetate/dichloromethane = 9/1/1); Dissolved in ⁱPrOH for HPLC; **HPLC** (Chiralcel IB, hexane/ⁱPrOH = 95/5, flow rate 1.0 mL/min, λ = 224 nm), t_r (major) = 11.66 min, t_r (minor) = 7.93 min, ee = 92%. **3qa:4qa** > 19:1, determined by ¹H NMR. [α]²³_λ = -62.2 (*c* = 0.47, in dichloromethane, λ = 436 nm). ¹H NMR (400 MHz, CDCl₃) δ 7.83 – 7.78 (m, 1H), 7.37 – 7.29 (m, 2H), 7.27 – 7.21 (m, 8H), 5.34 – 5.31 (m, 1H), 5.20 – 5.17 (m, 1H), 3.94 – 3.90 (m, 2H), 2.42 (s, 3H), 1.67 (s, 9H), 1.04 (s, 9H) ppm; ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 174.1, 165.8 149.0 (d, *J* = 13.6 Hz), 148.6, 148.3 (d, *J* = 13.6 Hz), 144.5, 137.7, 137.4, 131.9, 129.4, 129.0, 128.9, 121.3 (dd, *J* = 7.0, 3.9 Hz), 112.8 (d, *J* = 20.5 Hz), 111.2, 105.7 (d, *J* = 25.1 Hz), 84.8, 81.8, 61.0, 55.8, 51.9, 28.1, 27.3, 21.6 ppm; ¹⁹F NMR (376 MHz, CDCl₃) δ –135.4 (d, *J* = 20.7 Hz, 1F), -143.3 (d, *J* = 20.7 Hz, 1F) ppm; IR (neat) ν (cm⁻¹): 2979, 1773, 1734, 1623, 1597, 1496, 1454, 1391, 1301, 1254, 1149, 1088, 1011, 883, 851, 816, 792, 700, 671; HRMS (ESI-FT) calcd for C₃₅H₃₆F₂N₂O₇SNa⁺ ([M]+Na⁺) = 689.2103, found 689.2091.

Di-*tert*-butyl (*R*,*E*)-6,7-difluoro-3-{[(4-methyl-*N*-phenylphenyl)sulfonamido]methylene}-3,4-dihydropyrano[2,3-*b*]indole-4,9 (2*H*)-dicarboxylate (4qa)

57% yield for two steps, White solid; **m.p.**: 200.2 – 206.8 °C; R_f = 0.4 (petroleum ether/ethyl acetate/dichloromethane = 9/1/1); Dissolved in ⁱPrOH for HPLC; **HPLC** (Chiralcel IB, hexane/ⁱPrOH = 95/5, flow rate 1.0 mL/min, λ = 224 nm), t_r (major) = 13.84 min, t_r (minor) = 10.18 min, ee = 90%. **3qa:4qa** < 1:19, determined by ¹H NMR. [α]²³_D = +125.6 (*c* = 0.46, in dichloromethane). ¹H NMR (400 **MHz, CDCI**₃) δ 7.79 – 7.74 (m, 1H), 7.48 – 7.43 (m, 2H), 7.37 – 7.30 (m, 3H), 7.23 – 7.21 (m, 2H), 7.09 – 7.07 (m, 2H), 7.03 – 6.98 (m, 1H), 6.86 (s, 1H), 5.07 (d, *J* = 11.6 Hz, 1H), 4.74 (d, *J* = 11.6 Hz, 1H), 3.91 (s, 1H), 2.39 (s, 3H), 1.65 (s, 9H), 1.24 (s, 9H) ppm; ¹³C{¹H} **NMR (101 MHz, CDCI**₃) δ 169.1, 148.9, 148.4, 144.4, 139.1, 134.2, 129.6, 129.5, 128.6, 128.4, 128.3, 127.8, 126.0 (d, *J* = 11.5 Hz), 122.7 (d, *J* = 9.7 Hz), 117.9, 105.1 (d, *J* = 20.7 Hz), 104.5 (d, *J* = 20.7 Hz, 1F) ppm; **IR (neat)** ν (cm⁻¹): 2980, 1731, 1612, 1481, 1362, 1301, 1169, 1141, 1091, 1013, 940, 841, 777, 697, 667; **HRMS** (ESI-FT) calcd for C₃₅H₃₆F₂N₂O₇SNa⁺ ([M]+Na⁺) = 689.2103, found 689.2098.

	Retention Time	Area	% Area
1	10.178	624196	5.00
2	13.836	11855878	95.00

Di-*tert*-butyl (1*R*,2*R*,4*S*)-3-methylene-2'-oxo-4-(*N*-phenylphenylsulfonamido)spiro[cyclobutane-1,3'-indoline]-1',2-dicarboxy-late (3ab)

94% yield, White solid; **m.p.**: 167.4 – 174.1 °C; R_f = 0.4 (petroleum ether/ethyl acetate/dichloromethane = 9/1/1); Dissolved in ⁱPrOH for HPLC; **HPLC** (Chiralcel IA, hexane/^jPrOH = 95/5, flow rate 1.0 mL/min, λ = 220 nm), t_r (major) = 16.78 min, t_r (minor) = 33.71 min, ee = 95%. **3ab:4ab** > 19:1, determined by ¹H NMR. [α]²² $_{\lambda}$ = -88.6 (*c* = 0.47, in dichloromethane, λ = 436 nm). ¹H NMR (400 MHz, CDCI₃) δ 7.88 – 7.85 (m, 1H), 7.58 – 7.54 (m, 1H), 7.42 – 7.26 (m, 9H), 7.25 – 7.14 (m, 3H), 5.34 – 5.31 (m, 1H), 5.29 – 5.26 (, 1H), 3.96 – 3.92 (m, 2H), 1.67 (s, 9H), 0.94 (s, 9H) ppm; ¹³C{¹H} NMR (101 MHz, CDCI₃) δ 174.9, 166.2, 149.0, 141.4, 138.0, 137.7, 135.4, 133.2, 128.9, 128.8, 128.7, 128.6, 125.4, 123.81, 123.77, 115.0, 110.8, 84.1, 81.5, 61.0, 56.0, 51.9, 28.1, 27.2 ppm; IR (neat) ν (cm⁻¹): 2978, 1794, 1766, 1733, 1609, 1482, 1366, 1299, 1251, 1155, 1088, 1007, 891, 858, 757, 696; HRMS (ESI-FT) calcd for C₃₄H₃₆N₂O₇SNa⁺ ([M]+Na⁺) = 639.2135, found 639.2135.

Di-tert-butyl (R,E)-3-[(N-phenylphenylsulfonamido)methylene]-3,4-dihydropyrano[2,3-b]indole-4,9(2H)-dicarboxylate (4ab)

71% yield for two steps, White solid; **m.p.**: 180.2 – 188.2 °C; $R_f = 0.4$ (petroleum ether/ethyl acetate/dichloromethane = 9/1/1); Dissolved in ⁱPrOH for HPLC; **HPLC** (Chiralcel IA, hexane/ⁱPrOH = 90/10, flow rate 1.0 mL/min, $\lambda = 220$ nm), t_r (major) = 10.60 min, t_r (minor) = 11.42 min, ee = 92%. **3ab:4ab** < 1:19, determined by ¹H NMR. [α]²⁴_D = +138.6 (*c* = 0.31, in dichloromethane). ¹H NMR (400 **MHz, CDCI₃**) δ 7.90 – 7.86 (m, 1H), 7.60 – 7.55 (m, 3H), 7.45 – 7.41 (m, 2H), 7.33 – 7.27 (m, 3H), 7.12 – 7.07 (m, 4H), 6.84 (s, 1H), 5.15 (d, *J* = 11.6 Hz, 1H), 4.76 (d, *J* = 11.6 Hz, 1H), 4.04 (s, 1H), 1.66 (s, 9H), 1.24 (s, 9H) ppm; ¹³C{¹H} NMR (101 MHz, CDCI₃) δ 169.5, 149.0, 148.4, 139.1, 137.2, 133.4, 131.1, 129.5, 129.0, 128.6, 128.4, 127.8, 127.7, 127.2, 126.9, 122.7, 121.8, 119.5, 117.7, 114.7, 89.6, 84.2, 81.8, 71.3, 38.6, 28.2, 27.9 ppm; **IR (neat)** ν (cm⁻¹): 2978, 1729, 1625, 1600, 1464, 1415, 1351, 1327, 1253, 1145, 115, 1092, 1000, 952, 838, 746, 693; **HRMS** (ESI-FT) calcd for C₃₄H₃₆N₂O₇SNa⁺ ([M]+Na⁺) = 639.2135, found 639.2137.

Di-*tert*-butyl (1*R*,2*R*,4*S*)-4-[(4-methoxy-*N*-phenylphenyl)sulfonamide]-3-methylene-2'-oxospiro[cyclobutane-1,3'-indoline]-1',2-dicarboxylate (3ac)

88% yield, White solid; **m.p.**: 89.1 – 96.2 °C; R_f = 0.3 (petroleum ether/ethyl acetate/dichloromethane = 9/1/1); Dissolved in ⁱPrOH for HPLC; **HPLC** (Chiralcel IA, hexane/ⁱPrOH = 90/10, flow rate 1.0 mL/min, λ = 227 nm), t_r (major) = 17.49 min, t_r (minor) = 40.45 min, ee = 95%. **3a**:4**a**c > 19:1, determined by ¹H NMR. [α]²³_{λ} = -82.1 (*c* = 0.25, in dichloromethane, λ = 436 nm). ¹H NMR (400 MHz, CDCI₃) δ 7.87 – 7.84 (m, 1H), 7.46 – 7.27 (m, 5H), 7.26 – 7.08 (m, 11H), 6.86 – 6.82 (m, 2H), 5.34 – 5.31 (m, 1H), 5.25 – 5.23 (m, 1H), 3.95 – 3.91 (m, 2H), 3.85 (s, 3H), 1.67 (s, 9H), 0.94 (s, 9H) ppm; ¹³C{¹H} NMR (101 MHz, CDCI₃) δ 175.0, 166.2, 163.3, 149.0, 141.3, 138.1, 138.0, 131.0, 128.8, 128.6, 127.0, 125.5, 123.8, 115.0, 113.7, 110.7, 84.1, 81.4, 60.9, 55.9, 55.5, 51.9, 28.1, 27.1 ppm; IR (neat) ν (cm⁻¹): 2980, 1766, 1733, 1596, 1496, 1366, 1300, 1258, 1156, 1089, 1023, 840, 757, 698, 675; HRMS (ESI-FT) calcd for C₃₅H₃₈N₂O₈SNa⁺ ([M]+Na⁺) = 669.2241, found 669.2230.

Di-*tert*-butyl (*R*,*E*)-3-{[(4-methoxy-*N*-phenylphenyl)sulfonamide]methylene}-3,4-dihydropyrano[2,3-*b*]indole-4,9(2*H*)-dicarb-oxylate (4ac)

63% yield for two steps, White solid; **m.p.**: 181.7 – 187.6 °C; R_f = 0.4 (petroleum ether/ethyl acetate/dichloromethane = 9/1/1); Dissolved in ⁱPrOH for HPLC; **HPLC** (Chiralcel IA, hexane/ⁱPrOH = 90/10, flow rate 1.0 mL/min, λ = 227 nm), t_r (major) = 10.87 min, t_r (minor) = 14.19 min, ee = 93%. **3ac**:**4ac** < 1:19, determined by ¹H NMR. [α]²⁴_D = +137.5 (*c* = 0.17, in dichloromethane). ¹H NMR (**400 MHz, CDCI**₃) δ 7.89 – 7.85 (m, 1H), 7.53 – 7.49 (m, 2H), 7.34 – 7.29 (m, 3H), 7.26 – 7.25 (m, 1H), 7.13 – 7.07 (m, 4H), 6.90 – 6.86 (m, 2H), 6.83 (s, 1H), 5.14 (d, *J* = 12.0 Hz, 1H), 4.75 (d, *J* = 11.6 Hz, 1H), 4.02 (s, 1H), 3.82 (s, 3H), 1.66 (s, 9H), 1.24 (s, 9H) ppm; ¹³C{¹H} NMR (**101 MHz, CDCI**₃) δ 169.5, 163.4, 149.0, 148.4, 139.3, 131.0, 129.9, 129.4, 128.9, 128.6, 128.2, 127.9, 126.9, 122.7, 121.7, 119.1, 117.6, 114.7, 114.1, 100.0, 89.6, 84.1, 81.7, 71.4, 55.6, 38.5, 28.2, 27.9 ppm; **IR (neat)** ν (cm⁻¹): 2979, 1729, 1625, 1600, 1464, 1415, 1351, 1327, 1253, 1145, 1115, 1092, 1000, 952, 838, 746, 693; **HRMS** (ESI-FT) calcd for C₃₅H₃₈N₂O₈SNa⁺ ([M]+Na⁺) = 669.2244, found 669.2244.

Di-*tert*-butyl (1*R*,2*S*,4*R*)-2-{[4-(*tert*-butyl)-*N*-phenylphenyl]sulfonamide}-3-methylene-2'-oxospiro[cyclobutane-1,3'-indoline]-1',4-dicarboxylate (3ad)

85% yield, White solid; **m.p.**: 100.3 – 108.1 °C; R_f = 0.5 (petroleum ether/ethyl acetate/dichloromethane = 9/1/1); Dissolved in ⁱPrOH for HPLC; **HPLC** (Chiralcel IE, hexane/ⁱPrOH = 80/20, flow rate 1.0 mL/min, λ = 224 nm), t_r (major) = 14.43 min, t_r (minor) = 22.08 min, ee = 95%. **3ad:4ad** > 19:1, determined by ¹H NMR. [α]²²_{λ} = -58.7 (*c* = 0.48, in dichloromethane, λ = 436 nm). ¹H NMR (400 MHz, **CDCl₃**) δ 7.87 – 7.83 (m, 1H), 7.42 – 7.16 (m, 12H), 5.34 – 5.31 (m, 1H), 5.26 – 5.23 (m, 1H), 3.97 – 3.95 (m, 1H), 3.93 – 3.91 (m, 1H), 1.67 (s, 9H), 1.32 (s, 9H), 0.94 (s, 9H) ppm; ¹³C{¹H} NMR (101 MHz, **CDCl₃**) δ 175.0, 166.3, 157.1, 149.0, 141.3, 138.1, 137.9, 132.3, 128.8, 128.72, 128.69, 125.6, 125.5, 123.8, 123.7, 115.0, 110.7, 84.1, 81.5, 60.9, 56.0, 51.9, 35.2, 31.0, 28.13, 27.2 ppm; **IR (neat)** *ν* (cm⁻¹): 2973, 1795, 1766, 1732, 1595, 1481, 1466, 1395, 1367, 1299, 1251, 1154, 1113, 1085, 1005, 890, 858, 841, 814, 758, 698, 670, 630; **HRMS** (ESI-FT) calcd for C₃₈H₄₄N₂O₇SNa⁺ ([M]+Na⁺) = 695.2761, found 695.2764.

	Retention Time	Area	% Area
1	14.426	12306433	93.21
2	17.535	584173	4.42
3	22.081	311949	2.36

Di-*tert*-butyl (*R*,*E*)-3-{[(4-(*tert*-butyl)-*N*-phenylphenyl)sulfonamide]methylene}-3,4-dihydropyrano[2,3-*b*]indole-4,9(2*H*)-dicarb-oxylate (4ad)

Ph-N^{*}O ^tBuOOC tBu

75% yield for two steps, White solid; **m.p.**: 195.1 – 202.4 °C; $R_f = 0.5$ (petroleum ether/ethyl acetate/dichloromethane = 9/1/1); Dissolved in ⁱPrOH for HPLC; **HPLC** (Chiralcel IE, hexane/ⁱPrOH = 80/20, flow rate 1.0 mL/min, $\lambda = 224$ nm), t_r (major) = 17.34 min, t_r (minor) = 13.04 min, ee = 91%. **3ad**:**4ad** < 1:19, determined by ¹H NMR. [α]²⁴_D = +128.1 (*c* = 0.39, in dichloromethane). ¹H NMR (400 **MHz, CDCI**₃) δ 7.91 – 7.85 (m, 1H), 7.51 – 7.49 (m, 2H), 7.45 – 7.43 (m, 2H), 7.36 – 7.29 (m, 3H), 7.26 – 7.23 (m, 1H), 7.13 – 7.08 (m, 4H), 6.85 (s, 1H), 5.14 (d, *J* = 11.6 Hz, 1H), 4.76 (d, *J* = 11.6 Hz, 1H), 4.00 (s, 1H), 1.66 (s, 9H), 1.31 (s, 9H), 1.24 (s, 9H) ppm; ¹³C{¹H} **NMR (101 MHz, CDCI**₃) δ 169.5, 157.3, 149.0, 148.4, 139.2, 134.3, 131.0, 129.4, 128.7, 128.3, 127.9, 127.6, 126.9, 126.0, 122.7, 121.7, 118.4, 117.6, 114.7, 89.6, 84.1, 81.7, 71.4, 38.5, 35.2, 31.0, 28.2, 27.8 ppm; **IR (neat)** ν (cm⁻¹): 2973, 1730, 1625, 1600, 1508, 1464, 1416, 1351, 1327, 1302, 1254, 1147, 1116, 1091, 912, 840, 748, 707, 664; **HRMS** (ESI-FT) calcd for C₃₈H₄₅N₂O₇S⁺ ([M]+H⁺) = 673.2942, found 673.2946.

	Retention Time	Area	% Area
1	13.036	641673	4.47
2	17.341	13714721	95.53

Di-*tert*-butyl (1*R*,2*R*,4*S*)-3-methylene-2'-oxo-4-(*N*-phenylnaphthalene-1-sulfonamido)spiro[cyclobutane-1,3'-indoline]-1',2-dicarboxylate (3ae)

96% yield, White solid; **m.p.**: 88.8 – 94.9 °C; R_f = 0.5 (petroleum ether/ethyl acetate/dichloromethane = 9/1/1); Dissolved in ⁱPrOH for HPLC; **HPLC** (Chiralcel IA, hexane/ⁱPrOH = 90/10, flow rate 1.0 mL/min, λ = 226 nm), t_r (major) = 11.15 min, t_r (minor) = 30.66 min, ee = 94%. **3ae:4ae** > 19:1, determined by ¹H NMR. [α]²⁴_D = -85.4 (*c* = 0.51, in dichloromethane). ¹H NMR (400 MHz, CDCI₃) δ 8.00 – 7.98 (m, 1H), 7.92 – 7.85 (m, 3H), 7.80 – 7.78 (m, 1H), 7.45 – 7.35 (m, 4H), 7.25 – 7.09 (m, 4H), 7.02 – 7.01 (m, 2H), 6.81 – 6.80 (m, 1H), 5.49 – 5.48 (m, 1H), 5.36 – 5.33 (m, 1H), 4.08 – 4.07 (m, 1H), 3.97 – 3.93 (m, 1H), 1.68 (s, 9H), 0.94 (s, 9H) ppm. ¹³C{¹H} NMR (151 MHz, CDCI₃) δ 174.7, 166.2, 149.1, 141.3, 138.5, 137.3, 134.8, 133.6, 131.7, 131.6, 129.5, 128.8, 128.5, 128.2, 127.7, 126.5, 125.3, 125.2, 124.1, 123.9, 123.8, 121.8, 115.0, 110.8, 84.1, 81.5, 61.2, 56.3, 51.8, 28.1, 27.2 ppm. IR (neat) ν (cm⁻¹): 2982, 2362, 2179, 2026, 1968, 1732, 1477, 1359, 1299, 1251, 1155, 1009, 766, 695, 595; HRMS (ESI-FT) calcd for C₃₈H₃₈N₂O₇SNa^{*} ([M]+Na^{*}) = 689.2292, found 689.2297.

Di-*tert*-butyl (*R*,*E*)-3-[(*N*-phenylnaphthalene-1-sulfonamido)methylene]-3,4-dihydropyrano[2,3-*b*]indole-4,9(2*H*)-dicarboxylate (4ae)

83% yield for two steps, White solid; **m.p.**: 90.7 – 96.1 °C; R_f = 0.5 (petroleum ether/ethyl acetate/dichloromethane = 9/1/1); Dissolved in ⁱPrOH for HPLC; **HPLC** (Chiralcel IA, hexane/ⁱPrOH = 90/10, flow rate 1.0 mL/min, λ = 226 nm), t_r (major) = 7.82 min, t_r (minor) = 7.20 min, ee = 90%. **3ae**:**4ae** < 19:1, determined by ¹H NMR. [α]²¹_D = +136.0 (*c* = 0.47, in dichloromethane). ¹H NMR (**400 MHz**, **CDCI**₃) δ 8.37 – 8.34 (m, 1H), 8.08 – 8.06 (m, 1H), 8.00 – 7.98 (m, 1H), 7.90 – 7.87 (m, 1H), 7.83 – 7.81 (m, 1H), 7.45 – 7.41 (m, 2H), 7.36 – 7.32 (m, 1H), 7.25 – 7.21 (m, 1H), 7.21 – 7.19 (m, 1H), 7.19 – 7.13 (m, 2H), 7.12 – 7.08 (m, 2H), 7.01 – 6.98 (m, 3H), 5.14 (d, *J* = 11.6 Hz, 1H), 4.77 (d, *J* = 11.6 Hz, 1H), 4.01 (s, 1H), 1.67 (s, 9H), 1.19 (s, 9H) ppm. ¹³C{¹H} NMR (151 MHz, CDCI₃) δ 169.3, 149.0, 148.3, 139.1, 135.0, 134.1, 133.0, 131.2, 131.0, 129.4, 128.73, 128.67, 128.3, 127.7, 126.9, 124.7, 123.9, 122.7, 121.8, 121.0, 117.7, 114.6, 89.5, 84.1, 81.7, 71.1, 38.6, 28.2, 27.8 ppm. IR (neat) ν (cm⁻¹): 2979, 1731, 1599, 1464, 1352, 1117, 1003, 836, 769, 694; HRMS (ESI-FT) calcd for C₃₈H₃₈N₂O₇SNa⁺ ([M]+Na⁺) = 689.2292, found 689.2301.

Di-*tert*-butyl (1*R*,2*R*,4*S*)-3-methylene-2'-oxo-4-(*N*-phenylmethylsulfonamido)spiro[cyclobutane-1,3'-indoline]-1',2-dicarboxy-late (3af)

69% yield, White solid; **m.p.**: 85.1 – 93.9 °C; R_f = 0.2 (petroleum ether/ethyl acetate/dichloromethane = 9/1/1); Dissolved in ⁱPrOH for HPLC; **HPLC** (Chiralcel IA, hexane/ⁱPrOH = 90/10, flow rate 1.0 mL/min, λ = 240 nm), t_r (major) = min, t_r (minor) = min, ee = 96%. **3af:4af** > 19:1, determined by ¹H NMR. [α]²²_{λ} = +57.9 (*c* = 0.32, in dichloromethane, λ = 436 nm). ¹H NMR (400 MHz, CDCl₃) δ 7.90 – 7.88 (m, 1H), 7.43 – 7.39 (m, 4H), 7.36 – 7.31 (m, 3H), 7.22 – 7.15 (m, 1H), 5.46 – 5.43 (m, 1H), 5.38 – 5.35 (m, 1H), 4.00 – 3.97 (m, 2H), 2.39 (s, 3H), 1.65 (s, 9H), 0.94 (s, 9H) ppm; ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 174.6, 166.2, 149.2, 141.5, 137.9, 137.7, 130.6, 129.7, 129.4, 129.3, 129.0, 125.2, 123.9, 123.5, 120.7, 115.2, 111.2, 84.2, 81.5, 62.1, 55.8, 51.3, 37.4, 28.1, 27.2 ppm; IR (neat) ν (cm⁻¹): 2979, 1770, 1732, 1604, 1482, 1347, 1299, 1251, 1153, 1082, 1007, 969, 894, 842, 756, 699; HRMS (ESI-FT) calcd for C₂₉H₃₄N₂O₇SNa⁺ ([M]+Na⁺) = 577.1979, found 577.1980.

	Retention Time	Area	% Area
1	9.646	1716114	98.31
2	17.393	29434	1.69

 $\label{eq:linear} Di-tert-butyl \ (R,E)-3-[(N-phenylmethylsulfonamido)methylene]-3,4-dihydropyrano[2,3-b] indole-4,9(2H)-dicarboxylate \ (4af) and (4af) a$

40% yield for two steps, Colorless oil; $R_f = 0.2$ (petroleum ether/ethyl acetate/dichloromethane = 9/1/1); Dissolved in ⁱPrOH for HPLC; HPLC (Chiralcel IA, hexane/ⁱPrOH = 90/10, flow rate 1.0 mL/min, $\lambda = 240$ nm), t_r (major) = 8.69 min, t_r (minor) = 7.92 min, ee = 93%. **3af:4af** < 1:19, determined by ¹H NMR. [α]²⁴_D = +92.4 (*c* = 0.13, in dichloromethane). ¹H NMR (400 MHz, CDCI₃) δ 7.93 – 7.86 (m, 1H), 7.45 – 7.37 (m, 5H), 7.29 – 7.27 (m, 1H), 7.15 – 7.08 (m, 2H), 6.91 (s, 1H), 5.18 (d, *J* = 11.6 Hz, 1H), 4.79 (d, *J* = 12.0 Hz, 1H), 4.01 (s, 1H), 2.96 (s, 3H), 1.66 (s, 9H), 1.27 (s, 9H) ppm; ¹³C{¹H} NMR (101 MHz, CDCI₃) δ 169.4, 149.0, 148.4, 138.9, 131.0, 130.0, 128.5, 128.1, 127.3, 126.8, 122.7, 121.8, 118.8, 117.6, 114.7, 89.4, 84.2, 81.9, 71.3, 38.5, 37.9, 28.2, 27.9 ppm; IR (neat) ν (cm⁻¹): 2979, 1729, 1626, 1600, 1464, 1415, 1350, 1301, 1253, 1149, 1116, 1000, 963, 841, 750, 696; HRMS (ESI-FT) calcd for C₂₉H₃₄N₂O₇SNa⁺ ([M]+Na⁺) = 577.1979, found 577.1979.

Di-*tert*-butyl (1*R*,2*R*,4*S*)-4-((4-methyl-*N*-(*p*-tolyl)phenyl)sulfonamido)-3-methylene-2'-oxospiro[cyclobutane-1,3'-indoline]-1',2-dicarboxylate (3ag)

97% yield, White solid; **m.p.**: 90.1 – 97.8 °C; R_f = 0.4 (petroleum ether/ethyl acetate/dichloromethane = 9/1/1); Dissolved in ⁱPrOH for HPLC; **HPLC** (Chiralcel IB, hexane/ⁱPrOH = 95/5, flow rate 1.0 mL/min, λ = 224 nm), t_r (major) = 10.46 min, t_r (minor) = 11.67 min, ee = %. **3ag:4ag** > 19:1, determined by ¹H NMR. [α]²³_D = -30.0 (*c* = 0.59, in dichloromethane). ¹H NMR (400 MHz, CDCl₃) δ .86 – 7.83 (m,

1H), 7.48 – 7.28 (m, 3H), 7.25 – 7.00 (m, 8H), 5.34 – 5.30 (m, 1H), 5.23 – 5.21 (m, 1H), 4.01 – 3.98 (m, 1H), 3.92 – 3.90 (m, 1H), 2.40 (s, 3H), 2.34 (s, 3H), 1.67 (s, 9H), 0.94 (s, 9H) ppm; ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 175.0, 166.3, 149.1, 144.0, 141.3, 138.9, 138.1, 135.1, 132.5, 129.2, 128.9, 128.6, 125.5, 123.8, 115.0, 110.7, 84.1, 81.4, 61.0, 56.0, 51.9, 28.1, 27.1, 21.6, 21.2 ppm; IR (neat) ν (cm⁻¹): 2979, 1766, 1732, 1603, 1508, 1480, 1365, 1299, 1251, 1156, 1087, 1009, 893, 863, 757, 712, 669; HRMS (ESI-FT) calcd for C₃₆H₄₀N₂O₇SNa⁺ ([M]+Na⁺) = 667.2448, found 667.2450.

Di-*tert*-butyl (*R*,*E*)-3-{[(4-methyl-*N*-(*p*-tolyl)phenyl)sulfonamido]methylene}-3,4-dihydropyrano[2,3-*b*]indole-4,9(2*H*)-dicarboxy-late (4ag)

71% yield for two steps, White solid; **m.p.**: 183.0 – 186.6 °C; $R_f = 0.4$ (petroleum ether/ethyl acetate/dichloromethane = 9/1/1); Dissolved in ⁱPrOH for HPLC; **HPLC** (Chiralcel IB, hexane/ⁱPrOH = 95/5, flow rate 1.0 mL/min, $\lambda = 224$ nm), t_r (major) = 13.34 min, t_r (minor) = 10.19 min, ee = 93%. **3ag:4ag** < 1:19, determined by ¹H NMR. [α]²⁴_D = +90.3 (*c* = 0.39, in dichloromethane). ¹H NMR (400 **MHz, CDCI**₃) δ 7.91 – 7.86 (m, 1H), 7.50 – 7.45 (m, 2H), 7.25 – 7.19 (m, 3H), 7.14 – 7.07 (m, 4H), 6.97 – 6.94 (m, 2H), 6.83 (s, 1H), 5.13 (d, *J* = 11.6 Hz, 1H), 4.74 (d, *J* = 11.6 Hz, 1H), 4.00 (s, 1H), 2.38 (s, 3H), 2.36 (s, 3H), 1.66 (s, 9H), 1.24 (s, 9H) ppm; ¹³C{¹H} NMR (101 MHz, CDCI₃) δ 169.5, 149.0, 148.4, 144.2, 138.2, 136.5, 134.4, 131.0, 130.1, 129.8, 129.6, 129.5, 128.5, 128.0, 127.8, 127.2, 126.9, 122.6, 122.5, 121.7, 118.2, 117.6, 114.6, 89.6, 84.1, 81.6, 71.4, 38.4, 28.2, 27.8, 21.5, 21.2 ppm; IR (neat) ν (cm⁻¹): 2979, 1730, 1625, 1600, 1508, 1464, 1416, 1351, 1327, 1302, 1254, 1147, 1116, 1091, 912, 840, 748, 707, 664; HRMS (ESI-FT) calcd for C₃₆H₄₀N₂O₇SNa⁺ ([M]+Na⁺) = 667.2448, found 667.2446.

4-Methyl-N-{(2R,4S)-3-methylene-5-oxo-4-[(R)-2-oxoindolin-3-yl]tetrahydrofuran-2-yl}-N-phenylbenzenesulfonamide (5aa)

70% yield, Yellow solid; **m.p.**: 107.7 – 126.7 °C; R_f = 0.4 (ethyl acetate/dichloromethane = 1/9); Dissolved in ⁱPrOH for SFC; **SFC** (Chiralcel IA-3, MeOH/CO₂ = 80/20, flow rate 1.5 mL/min, λ = 230 nm), major isomer: t_r (major) = 5.14 min, t_r (minor) = 9.55 min, ee = 95%; minor isomer: t_r (major) = 7.18 min, t_r (minor) = 4.39 min, ee = 95%. dr = 65:35, determined by ¹H NMR. [α]²⁵_D = -178.2 (*c* = 0.25, in dichloromethane). ¹H **NMR (600 MHz, CDCl₃)** δ 8.43 (s, 1H), 7.58 – 7.55 (m, 2H), 7.36 – 7.32 (m, 1H), 7.28 – 7.23 (m, 6H), 7.10 – 7.03 (m, 2H), 7.02 – 6.98 (m, 1H), 6.95 – 6.90 (m, 2H), 6.89 – 6.86 (m, 1H), 5.53 – 5.51 (m, 1H), 4.92 – 4.90 (m, 1H), 3.92 (d, *J* = 3.6 Hz, 1H), 3.10 (p, *J* = 3.0 Hz, 1H), 2.42 (s, 3H) ppm. ¹³C{¹H} **NMR (151 MHz, CDCl₃)** δ 176.6, 173.6, 144.3, 142.0, 139.3, 135.3, 134.2, 131.8, 129.5, 129.4, 129.28, 129.26, 129.2, 128.2 125.6, 123.6, 122.8, 115.4, 110.4, 90.3, 46.7, 43.6, 21.6 ppm. **IR (neat)** ν (cm⁻¹): 1786, 1713, 1621, 1521, 1480, 1349, 1232, 1166, 1094, 975, 809, 752, 660, 572; **HRMS** (ESI-FT) calcd for C₂₆H₂₂N₂O₅SNa⁺ ([M]+Na⁺) = 497.1142, found 497.1145.

1	4.386	35607	0.80
2	5.135	2865814	64.06
3	7.179	1499080	33.51
4	9.549	73394	1.64

N-{(2*R*,4*S*)-4-[(*R*)-5-Methoxy-2-oxoindolin-3-yl]-3-methylene-5-oxotetrahydrofuran-2-yl}-4-methyl-*N*-phenylbenzenesulfonami de (5ga)

56% yield, Red solid; **m.p.**: 111.9 – 128.2°C; $R_f = 0.5$ (ethyl acetate/dichloromethane = 1/9); Dissolved in ⁱPrOH for SFC; **SFC** (Chiralcel IA-3, MeOH/CO₂ = 80/20, flow rate 1.5 mL/min, $\lambda = 230$ nm), major isomer: t_r (major) = 5.73 min, t_r (minor) = 10.39 min, ee = 94%; minor isomer: t_r (major) = 7.93 min, t_r (minor) = 4.79 min, ee = 94%. dr = 69:31, determined by ¹H NMR. [α]²⁶_D = -158.8 (*c* = 0.31, in dichloromethane). ¹H NMR (600 MHz, CDCl₃) δ 8.19 (s, 1H), 7.59 – 7.56 (m, 2H), 7.37 – 7.31 (m, 1H), 7.27 – 7.24 (m, 4H), 7.04 (d, *J* = 1.2 Hz, 1H), 6.97 – 6.93 (m, 2H), 6.81 – 6.76 (m, 2H), 6.70 – 6.68 (m, 1H), 5.51 (s, 1H), 4.89 (s, 1H), 3.92 – 3,90 (m, 1H), 3.75 (s, 3H), 3.05 (p, *J* = 3.0 Hz, 1H), 2.42 (s, 3H) ppm. ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 176.3, 173.6, 155.9, 144.3, 139.2, 135.33, 135.28, 131.8, 129.6, 129.4, 129.30, 129.27, 128.3, 127.0, 115.4, 113.1, 111.2, 110.6, 90.3, 55.8, 47.1, 43.6, 21.6 ppm. IR (neat) ν (cm⁻¹): 1787, 1713, 1602, 1490, 1448, 1351, 1314, 1208, 1164, 1092, 1031, 972, 813, 689, 663, 571; HRMS (ESI-FT) calcd for C₂₆H₂₁³⁵CIN₂O₅SNa⁺ ([M]+Na⁺) = 531.0752, found 531.0756; C₂₇H₂₄N₂O₆SNa⁺ ([M]+Na⁺) = 527.1247 found 527.1246.

N-{(2*R*,4*S*)-4-[(*R*)-5-Chloro-2-oxoindolin-3-yl))-3-methylene-5-oxotetrahydrofuran-2-yl}-4-methyl-*N*-phenylbenzenesulfonamid e (5ia)

52% yield, Yellow solid; **m.p.**: 115.7 – 131.6°C; $R_f = 0.5$ (ethyl acetate/dichloromethane = 1/9); Dissolved in ⁱPrOH for SFC; **SFC** (Chiralcel IA-3, MeOH/CO₂ = 80/20, flow rate 1.5 mL/min, $\lambda = 230$ nm), major isomer: t_r (major) = 5.13 min, t_r (minor) = 9.66 min, ee = 88%; minor isomer: t_r (major) = 5.74 min, t_r (minor) = 4.80 min, ee = 88%. dr = 68:32, determined by ¹H NMR. [α]²⁵_D = -138.4 (*c* = 0.32, in dichloromethane). ¹H NMR (600 MHz, CDCl₃) δ 8.49 (s, 1H), 7.58 – 7.56 (m, 2H), 7.38 – 7.33 (m, 1H), 7.29 – 7.22 (m, 6H), 7.07 (s, 1H), 7.06 – 7.04 (m, 1H), 6.96 – 6.92 (m, 2H), 6.84 – 6.81 (m, 1H), 5.56 (s, 1H), 4.95 (s, 1H), 3.93 – 3.91 (m, 1H), 3.06 (s, 1H), 2.43 (s, 3H) ppm. ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 176.1, 173.3, 144.4, 140.6, 139.0, 135.2, 134.2, 131.8, 129.6, 129.5, 129.4, 129.3, 129.2, 128.3, 127.3, 124.0, 115.6, 111.4, 90.3, 46.6, 43.6, 21.6 ppm. IR (neat) ν (cm⁻¹): 1785, 1716, 1620, 1481, 1442, 1351, 1317, 1235, 1165, 1094, 971, 819, 755, 699, 660, 572; HRMS (ESI-FT) calcd for C₂₆H₂₁³⁵ClN₂O₅SNa⁺ ([M]+Na⁺) = 531.0752, found 531.0756; C₂₆H₂₁³⁷ClN₂O₅SNa⁺ ([M]+Na⁺) = 533.0722 found 533.0721.

N-{(2*R*,4*S*)-4-[(*R*)-6-Chloro-2-oxoindolin-3-yl]-3-methylene-5-oxotetrahydrofuran-2-yl}-4-methyl-*N*-phenylbenzenesulfonamide (5na)

3.78

9.664

44% yield, Yellow solid; m.p.: 135.4 - 148.6°C; R_f = 0.5 (ethyl acetate/dichloromethane = 1/9); Dissolved in ⁱPrOH for SFC; SFC (Chiralcel IA-3, MeOH/CO₂ = 80/20, flow rate 1.5 mL/min, λ = 230 nm), major isomer: t_r (major) = 5.97 min, t_r (minor) = 12.90 min, ee = 93%; minor isomer: t_r (major) = 6.64 min, t_r (minor) = 4.72 min, ee = 93%. dr = 67:32, determined by ¹H NMR. [α]²⁶_D = -139.4 (c = 0.29, in dichloromethane). ¹H NMR (600 MHz, CDCl₃) δ 8.23 (s, 1H), 7.57 – 7.54 (m, 2H), 7.36 – 7.33 (m, 1H), 7.28 – 7.23 (m, 4H), 7.06 – 7.01 (m, 2H), 7.00 - 6.99 (m, 1H), 6.96 - 6.92 (m, 2H), 6.89 - 6.88 (m, 1H), 5.59 (s, 1H), 5.02 (s, 1H), 3.86 (d, J = 3.0 Hz, 1H), 3.08 (s, 1H), 2.42 (s, 2H) ppm. ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 176.2, 173.2, 144.5, 143.0, 139.3, 135.2, 135.0, 131.8, 129.6, 129.5, 129.3, 128.3, 124.6, 123.9, 122.9, 115.6, 111.0, 90.3, 46.1, 43.7, 21.6 ppm. IR (neat) v (cm⁻¹): 1784, 1723, 1618, 1487, 1453, 1349, 1165, 1093, 972, 756, 696, 658, 571; HRMS (ESI-FT) calcd for $C_{26}H_{21}^{35}CIN_2O_5SNa^+$ ([M]+Na⁺) = 531.0752, found 531.0762; $C_{26}H_{21}^{37}CIN_2O_5SNa^+$ ([M]+Na⁺) = 533.0722 found 533.0732.

	Retention Time	Area	% Area
1	4.710	776588	17.49
2	6.012	1503128	33.86
3	6.745	743163	16.74
4	12.754	1416108	31.90

	Retention Time	Area	% Area
1	4.730	67236	1.39
2	5.974	3011795	62.25
3	6.636	1691182	34.95
4	12 861	68322	1 41

N-{(2R,4S)-3-Methylene-5-oxo-4-[(R)-2-oxoindolin-3-yl]tetrahydrofuran-2-yl}-N-phenylbenzenesulfonamide (5ba)

60% yield, Yellow solid; m.p.: 114.0 - 130.6°C; R_f = 0.4 (ethyl acetate/dichloromethane = 1/9); Dissolved in ⁱPrOH for SFC; SFC (Chiralcel IA-3, MeOH/CO₂ = 80/20, flow rate 1.5 mL/min, λ = 230 nm), major isomer: t_r (major) = 4.73 min, t_r (minor) = 9.40 min, ee = 95%; minor isomer: t_r (major) = 6.67 min, t_r (minor) = 4.02 min, ee = 95%. dr = 66:34, determined by ¹H NMR. $[\alpha]^{26}_{D} = -132.2$ (c = 0.62, in dichloromethane). ¹H NMR (600 MHz, CDCl₃) & 8.43 (s, 1H), 7.71 – 7.66 (m, 2H), 7.62 – 7.58 (m, 1H), 7.50 – 7.44 (m, 2H), 7.36 – 7.32 (m, 1H), 7.27 – 7.24 (m, 3H), 7.11 – 7.04 (m, 2H), 7.02 – 6.99 (m, 1H), 6.95 – 6.93 (m, 2H), 6.88 – 6.87 (m, 1H), 5.52 (s, 1H), 4.92 (s, 1H), 3.95 – 3.92 (m, 1H), 3.11 (s, 1H) ppm. ¹³C{¹H} NMR (151 MHz, CDCI₃) δ 176.6, 173.5, 142.0, 139.3, 138.2, 134.1, 133.4, 131.8, 129.5, 129.3, 129.2, 128.9, 128.2, 125.5, 123.6, 122.9, 115.5, 110.4, 90.2, 46.7, 43.6 ppm. **IR (neat)** ν(cm⁻¹): 1785, 1715, 1621, 1478, 1349, 1234, 1167, 1094, 973, 792, 755, 693, 589, 562; HRMS (ESI-FT) calcd for C₂₅H₂₀N₂O₅SNa⁺ ([M]+Na⁺) = 483.0985, found 483.0988.

19.81

3

Di-tert-butyl (E)-3-(phenoxymethylene)-3,4-dihydropyrano[2,3-b]indole-4,9(2H)-dicarboxylate (7aa)

60% yield, White solid; **m.p.**: 43.4 – 50.5 °C; R_f = 0.5 (petroleum ether/ethyl acetate/dichloromethane = 16/1/1); Dissolved in ⁱPrOH for HPLC; **HPLC** (Chiralcel IB, hexane/ⁱPrOH = 98/2, flow rate 1.0 mL/min, λ = 226 nm), t_r (major) = 14.48 min, t_r (minor) = 8.19 min, ee = 97%. [α]²⁴_D = +189.7 (*c* = 0.14, in dichloromethane). ¹H **NMR (400 MHz, CDCl₃)** δ7.94 – 7.92 (m, 1H), 7.57 – 7.55 (mz, 1H), 7.35 – 7.31 (m, 2H), 7.22 – 7.07 (m, 4H), 7.04 – 7.01 (m, 2H), 6.77 (s, 1H), 5.16 (d, *J* = 12.0 Hz, 1H), 4.81 (d, *J* = 12.0 Hz, 1H), 4.78 (s, 1H), 1.68 (s, 9H), 1.45 (s, 9H) ppm. ¹³C{¹H} **NMR (151 MHz, CDCl₃)** δ170.7, 156.8, 149.1, 148.9, 141.1, 131.1, 129.7, 127.4, 123.6, 122.9, 121.9, 117.7, 116.8, 114.8, 111.2, 90.4, 84.1, 81.8, 68.8, 37.4, 28.2, 28.0 ppm. **IR (neat)** ν (cm⁻¹): 2978, 1731, 1596, 1465, 1354, 1254, 1217, 1118, 999, 752; **HRMS** (ESI-FT) calcd for C₂₈H₃₁NO₆Na⁺ ([M]+Na⁺) = 500.2044, found 500.2048.

	Retention Time	Area	% Area
1	8.186	92223	1.47
2	14.481	6196244	98.53

Di-tert-butyl (R,E)-3-[(p-tolyloxy)methylene]-3,4-dihydropyrano[2,3-b]indole-4,9(2H)-dicarboxylate (7ab)

50% yield, Pure yellow oil; R_f = 0.5 (petroleum ether/ethyl acetate/dichloromethane = 16/1/1); Dissolved in ⁱPrOH for HPLC; **HPLC** (Chiralcel IB, hexane/ⁱPrOH = 95/5, flow rate 1.0 mL/min, λ = 272 nm), t_r (major) = 13.18 min, t_r (minor) = 5.41 min, ee = 94%. [α]²⁴_D = +159.1 (*c* = 0.25, in dichloromethane). ¹H **NMR (600 MHz, CD₂Cl₂)** δ 7.97 – 7.96 (m, 1H), 7.54 – 7.52 (m, 1H), 7.21 – 7.18 (m, 1H), 7.16 – 7.14 (m, 3H), 6.96 – 6.94 (m, 2H), 6.80 (s, 1H), 5.08 (d, *J* = 12.0 Hz, 1H), 4.79 – 4.75 (m, 2H), 2.32 (s, 3H), 1.66 (s, 9H), 1.44 (s, 9H) ppm. ¹³C{¹H} **NMR (151 MHz, CDCl₃)** δ 171.1, 155.2, 149.3, 141.9, 133.6, 131.6, 130.6, 130.3, 127.7, 123.2, 122.1, 117.9, 117.0, 115.1, 115.1, 111.1, 90.6, 84.2, 81.9, 69.1, 37.9, 28.3, 28.1, 20.7 ppm. **IR (neat)** ν (cm⁻¹): 2978, 1731, 1603, 1508, 1465, 1354, 1252, 1218, 1148, 998, 922, 842, 751; **HRMS** (ESI-FT) calcd for C₂₉H₃₃NO₆Na⁺ ([M]+Na⁺) = 514.2200, found 514.2206.

Di-tert-butyl (R,E)-3-[(4-chlorophenoxy)methylene]-3,4-dihydropyrano[2,3-b]indole-4,9(2H)-dicarboxylate (7ac)

48% yield, White solid; **m.p.**: 51.7 – 60.9 °C; $R_f = 0.5$ (petroleum ether/ethyl acetate/dichloromethane = 16/1/1); Dissolved in ⁱPrOH for HPLC; **HPLC** (Chiralcel IA, hexane/ⁱPrOH = 95/5, flow rate 1.0 mL/min, $\lambda = 271$ nm), t_r (major) = 6.95 min, t_r (minor) = 5.61 min, ee = 95%. [α]²³_D = +165.5 (*c* = 0.26, in dichloromethane). ¹H NMR (600 MHz, CD₂Cl₂) δ 7.97 – 7.76 (m, 1H), 7.53 – 7.50 (m, 1H), 7.34 – 7.32 (m, 2H), 7.21 – 7.18 (m, 1H), 7.16 – 7.14 (m, 1H), 7.03 – 7.00 (m, 2H), 6.78 (s, 1H), 5.08 (d, *J* = 12.0 Hz, 1H), 4.79 (d, *J* = 12.0 Hz, 1H), 4.76 (s, 1H), 1.66 (s, 9H), 1.43 (s, 9H) ppm. ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 170.4, 148.8, 140.5, 131.2, 129.6, 122.7, 121.8, 118.0, 117.5, 114.6, 112.3, 90.0, 83.8, 81.6, 68.4, 37.5, 27.9, 27.7 ppm. IR (neat) ν (cm⁻¹): 2979, 1731, 1597, 1485, 1354, 1251, 1219, 1148, 1001, 833, 750; HRMS (ESI-FT) calcd for C₂₈H₃₀³⁵CINO₆Na⁺ ([M]+Na⁺) = 534.1654, found 534.1652; C₂₈H₃₀³⁷CINO₆Na⁺ ([M]+Na⁺) = 536.1624, found 536.1623.

6.954 251451 97.47

(I) Copies of NMR Spectra

 ^1H NMR and $^{13}\text{C}\{^1\text{H}\}$ NMR spectra of compound 3aa in CDCl_3

7.78 7.79 7.74

7.7.8 7.7.8 7.7.8 7.7.8 7.7.7 7.

7.7.8 7.7.8 7.7.7.7.8 7.7.7.7.8 7.7.7.7.8 7.7.7.7.8 7.7.7.7.3 7.7.7.7.3 7.7.7.7.3 7.7.7.7 7.7.7.3 7.7.7.3 7.7.7.3 7.7.7.3 7.7.7.3 7.7.7.3 7.7.7.3 7.7.7.3 7.7.7.3 7.7.7.3 7.7.7.7 7.7.7.3 7.7.7.3 7.7.7.7 7.7.7.7 7.7.7.7 7.7.7.7 7.7.7.3 7.7.7.3 7.7.7.7 7.7.7.7 7.7.7.7 7.7.7.2 7.7.7.7 7.7.7.2 7.7.7.7 7.7.7.7 7.7.7.7 7.7.7.2 7.7.7.7 7.7.7.2 7.7.7.7 7.7.7.7 7.7.7.7 7.7.7.2 7.7.7.7 7.7.7.7 7.7.7.7 7.7.7.7 7.7.7.2 7.7.7.7 7.7.7 7.7.

NOESY and HSQC spectra of compound 3da in CDCI₃

HMBC spectra of compound 3da in CDCI₃

COSY and HSQC spectra of compound 4da in CDCI3

HMBC spectra of compound 4da in CDCI₃

 1H NMR and $^{13}C\{^1H\}$ NMR spectra of compound 3ea in CDCl_3

$\begin{array}{c} -2.2 \\ -2$

 ^1H NMR and $^{13}\text{C}\{^1\text{H}\}$ NMR spectra of compound 4ga in CDCl_3

 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1

 $^{19}\mathsf{F}$ NMR spectra of compound **3ha** in CDCI₃

$^{19}\mathsf{F}$ NMR spectra of compound 4ha in CDCI_3

-102 -104 -106 -108 -110 -112 -114 -116 -118 -120 -122 -124 -126 -128 -130 -132 -134 -136 -138 -140 -142 f1 (ppm)

1,000 1,

 1H NMR and $^{13}C\{^1H\}$ NMR spectra of compound 3ja in CDCI_3

7.7.7.7.8 7.7.7.7.7.7 7.7.7.7.7 7.7.7.7 7.7.7.7 7.7.

$\begin{array}{c} -1.02\\ -1$

 1H NMR and $^{13}C\{^1H\}$ NMR spectra of compound 3Ia in CDCI_3

 ^1H NMR and $^{13}\text{C}\{^1\text{H}\}$ NMR spectra of compound 4Ia in CDCI_3

¹H NMR and ¹³C{¹H} NMR spectra of compound **3ma** in CDCl₃

 $^{19}\mathsf{F}$ NMR spectra of compound **3ma** in CDCI₃

 $^{19}\mathsf{F}$ NMR spectra of compound 4ma in CDCI3

-112 -113 -120 -121 f1 (ppm) -114 -115 -116 -117 -118 -119 -122 -123 -124 -125 -126 -127 -128 -129 1H NMR and $^{13}C\{^1H\}$ NMR spectra of compound 3na in CDCl_3

イング、2010 イング、201

$^{19}\mathsf{F}$ NMR spectra of compound 3qa in CDCl_3

7.7.7.7 7.7.

$^{19}\mathsf{F}$ NMR spectra of compound 4qa in CDCl3

0.94 (0.1) 0.05 (

7.88 7.78 7.88 7.77 7.88 7.73 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.55 7.75 7.55

7.78 7.88 7.78 7.88 7.78 7.88 7.77 7.75

7.7.90 7.7.90 7.7.92 7.7.92 7.7.92 7.7.92 7.7.92 7.7.92 7.7.92 7.7.92 7.7.93 7.7.94 7.7.72 7.72

0.4223.332

7.7.7 7.88 7.88 7.7.7 7.88 7.88 7.7.7 7.88 7.88 7.7.7 7.7.7 7.88 7.7.7 7.7.7 7.88 7.7.7 7.7.7 7.88 7.7.7 7.7.7 7.88 7.7.7 7.7.7 7.89 7.7.7 7.7.7 7.7.7 7.7.7 7.7.7 8.89 8.66 6.69 8.81 7.7.7 7.7.7 7.7.7 7.7.7 7.7.7 8.81 7.7.7 7.7.7 8.81

f1 (ppm)

NOESY and HSQC spectra of compound **5aa** in CDCI₃

HMBC spectra of compound 5aa in CDCI₃

8.19 8.19 7.55

¹H NMR and ¹³C{¹H} NMR spectra of compound **5ab** in CDCl₃

7.92 <t

COSY and NOESY NMR spectra of compound ${\bf 8}\, \text{in CDCI}_3$

(J) Copies of CD Spectra in CH₂Cl₂

