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Supplementary text 1: Response properties

The energy predicted by FieldSchNet is an analytic function of the coordinates R, as

well as the external fields and their associated atomic dipole moments. This makes it

possible to access so-called response properties, which are partial derivatives of the potential

energy1. Assuming the presence of an external electric ε field and a magnetic field B with

its corresponding nuclear magnetic moments {Ii}, a general response property Π takes the

form

Π(nR, nε, nB, nIi) =
∂nR+nε+nB+nIiE(R, ε,B, Ii)

∂RnR∂εnε∂BnB∂I
nIi
i

, (1)

where the ns indicate the n-th order partial derivative w.r.t. the quantity in the subscript.

A response property modeled by most machine learning potentials are the nuclear forces

F = −Π(1, 0, 0, 0), which are the negative first derivative of the energy with respect to the

nuclear positions.

However, the expression above offers instructions on obtaining a wealth of other quanti-

ties, some of which are highly relevant for molecular spectroscopy and/or provide a direct

connection to experiment. Infrared spectra can e.g. be simulated based on dipole moments

µ = −Π(0, 1, 0, 0), while molecular polariziabilities α = −Π(0, 2, 0, 0) offer access to po-

larized and depolarized Raman spectra. A central response property of the magnetic field

are nuclear magnetic shielding tensors σi = Π(0, 0, 1, 1). These allow the computation of

chemical shifts recorded in nuclear magnetic resonance spectroscopy NMR via their average

trace σi = 1
3
tr[σi].

The power of FieldSchNet (and field-based models in general) lies in the fact, that a

single energy function provides access to a wide range of quantum chemical properties in a

highly systematic manner. Moreover, the expression in Eq. 1 above guarantees the correct

geometric transformations of the property tensors with respect to rotations and translations

of the molecule in the external field without the need of explicitly encoding the correspond-

ing symmetries. As is the practice with molecular forces, response properties can also be

incorporated during training of the FieldSchNet model by including the appropriate squared

errors into the loss function

L = ηE(Ẽ − E)2 +
1

3N

N∑
i

|F̃i − Fi|2 + ηµ
1

3
|µ̃− µ|2 + . . . (2)

Here, the trade-offs η weight the importance of a property in the loss and N is the total
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number of atoms. The properties predicted by FieldSchNet according to Eq. 1 are indicated

with a tilde.

Supplementary text 2: Reference data generation

All electronic structure reference computations were carried out at the PBE0/def2-

TZVP2,3 level of theory using the ORCA quantum chemistry package4. SCF convergence

was set to tight and integration grid levels of 4 and 5 were employed during SCF iterations

and the final computation of properties, respectively. In the case of allyl-p-tolyl ether, the

RIJK approximation was used to accelerate computations5. Nuclear shielding tensors were

computed with the Gauge Including Atomic Orbitals approach6 implemented in ORCA,

while continuum solvents calculations were performed with the in package conductor-like

polarizable continuum model7.

The reference data for ethanol was generated by selecting 10 000 random configurations

from the MD17 database8 and recomputing them at the above level of theory. In addition,

continuum solvent calculations for the four studied continuum solvents (toluene, ethanol,

methanol, water) were carried out for the structures selected in this manner. A training set

for continuum models containing 30 000 ethanol configurations were constructed by merging

the vacuum, ethanol and water data. The data was then filtered for configurations showing

artificially high forces due to numerical problems in the surface cavity generation, yielding a

final number of 27 990 structures. Reference data for the ML/MM simulations was generated

in a two-step approach. Initially, a periodic box of 1250 ethanol molecules was equilibrated

with the NAMD molecular dynamics package9 using the CHARMM General Force Field10

for 1 µs. Using the native NAMD interface to ORCA, electrostatic embedding QM/MM

simulations were carried out, where one of the ethanols was described at the PBE/def2-

SVP3,11 level of theory. CHELPG charges12 were used as partial charges for the quantum

regions and simulations were run for 50 ps using 0.5 fs time steps. For all simulations,

temperatures were kept at 300 K using a Langevin thermostat13 and pressures at 1 atm

using a Langevin piston barostat14. From this trajectory, 30 000 QM ethanol configurations

and the associated charge distributions of the environment were sampled at random and

recomputed at the PBE0/def2-TZVP level.

Reference data for the allyl-p-tolyl ether Claisen rearrangement reaction in vacuum was
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obtained via metadynamics15 at the PBE/def2-SVP level of theory. The two bonds in-

volved in the reaction were selected as collective coordinates and Gaussians with a height of

1 kcal/mol and a width of 0.529 Å were deposited each 100 simulation steps. The system

was simulated for a total of 50 ps using 0.5 fs time steps. Temperature was kept constant at

500 K by means of a Nose-Hoover chain thermostat16. We then selected 61 000 configura-

tions from this and recalculated them with the reference level of theory. Data for MM/ML

simulations was generated by suspending 20334 configurations sampled during metadynam-

ics in periodic solvation boxes with 9260 TIP3P waters17. Keeping the allyl-p-tolyl ether

coodinates frozen, the water box was then optimized and simulated for 50 ps with NAMD.

For temperature and pressure control, the same setup as in the ethanol box was used. From

each of these boxes, 3 ether configurations and associated charge distributions were drawn

and recomputed at the PBE0/def2-TZVP level, yielding 61 002 reference data points.

Supplementary text 3: Model training

The training settings for each data set are provided in Supplementary Tab. 1. The

initial learning rates were decayed by a factor of 0.8 after tpatience epochs of no improvement.

Training was stopped the learning rate reached a value of 1e-6. The dipole cutoffs were

chosen to be the same as the cutoffs for the interactions. Supplementary Tab. 2 provides

the tradeoffs eta used for the different response properties in the composited loss function

minimized during training. As the 1H, 13C and 17O chemical shifts lie on completely different

scales, the shielding tensor loss terms for each atom were weighted by an element dependent

factor in order to achieve equal relative accuracy between all contributions. We used factors

of ωH = 1.0, ωC = 0.167 and ωO = 0.022, which were determined based on the reference

data. The FieldSchNet model and training procedures were implemented using PyTorch18

and the SchNetPack code package for machine learning in atomistic systems19.

Supplementary text 4: Molecular dynamics and spectra computation

Unless stated otherwise, the velocity Verlet algorithm and a time step of 0.5 fs were used

to integrate the equations of motion. All simulations not using NAMD9 were carried out

with the molecular dynamics module implemented in SchNetPack19.
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Supplementary Table 1: Training parameters for all models.

Dataset ntrain nvalid ntest nbatch lrinit tpatience nfeatures ninteractions rcutoff [Å]

ethanol (vacuum) 8000 1000 1000 20 1e-4 15 256 6 5.0

ethanol (continuum) 16 000 2000 9990 20 1e-4 15 256 6 5.0

ethanol (ML/MM) 18 000 2000 10 000 20 1e-4 15 256 6 5.0

ethanol (ML/MM, reduced) 1800 200 28 000 20 1e-4 15 256 6 5.0

ethanol + methanol (ML/MM) 1890 105 105 20 1e-4 15 256 6 5.0

ether (vacuum) 50 000 5000 6000 10 1e-4 25 256 5 5.0

ether (ML/MM) 50 000 5000 6002 10 1e-4 25 256 5 5.0

Supplementary Table 2: Tradeoffs η used for training the different properties, assuming all

quantities use atomic units.

ethanol allyl-p-tolyl ether

Property all vacuum ML/MM

E 1.0 1.0 1.0

F 10.0 5.0 5.0

µ 0.01 0.05 0.01

α 0.01 0.001 0.0001

σall 0.05 10.0 0.1

Classical molecular dynamics simulations for ethanol in vacuum and continuum solvents

were carried for 50 ps at a temperature of 300 K controlled via Nose-Hoover chain16 thermo-

stat with a chain length of 3 and time constant of 100 fs. The first 10 ps of these trajectories

were then discarded. Ring polymer molecular dynamics were performed for 20 ps, using a

time step of 0.2 fs and a specially adapted global Nose-Hoover chain as introduced in Ref.20

to keep the temperature at 300 K. Once again, a chain length of 3 and time constant of

100 fs were chosen for the thermostat.

Simulations for ethanol ML/MM models were carried out using a custom interface be-

tween NAMD and our machine learning code. First, a periodic box of 1250 ethanol molecules
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Supplementary Table 3: Test set performance of ethanol models. Mean absolute

errors of FieldSchNet trained on ethanol in vaccuum and pc-FieldSchNet trained with

vaccum, ethanol and water as solvents. Solvents marked by * have not been used to train

the continuum model.

Property Unit Vacuum Continuum ML/MM

vacuum toluene* ethanol methanol* water

E kcal mol−1 0.017 0.035 0.137 0.052 0.056 0.062 0.557

F kcal mol−1 Å−1 0.128 0.145 0.174 0.139 0.140 0.142 0.683

µ D 0.004 0.004 0.006 0.005 0.005 0.005 0.007

α Bohr3 0.008 0.007 0.243 0.007 0.007 0.008 0.010

σall ppm 0.169 0.157 0.149 0.140 0.140 0.141 0.154

σH ppm 0.123 0.122 0.116 0.113 0.113 0.114 0.094

σC ppm 0.194 0.186 0.175 0.166 0.166 0.167 0.182

σO ppm 0.401 0.312 0.298 0.248 0.248 0.250 0.453

Supplementary Table 4: Test set errors obtained for the allyl-p-toly Claisen rearrangement

datasets.

Property Unit Vacuum ML/MM

E kcal mol−1 0.084 0.400

F kcal mol−1 Å−1 0.141 0.454

µ D 0.003 0.026

α Bohr3 0.039 0.157

σall ppm 0.273 1.144

σH ppm 0.045 0.154

σC ppm 0.301 1.331

σO ppm 2.732 11.144
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was equilibrated with NAMD for 1 µ, using the CHARMM General Force Field10. Bonds

to hydrogens were kept frozen with the SHAKE algorithm21 and a time step of 1 fs was

used. One ethanol was then selected for modeling via the FieldSchNet ML/MM model

and ML/MM simulations were carried out using a custom interface between NAMD and

our machine learning code for a total of 50 ps. For both simulations, temperatures were

kept at 300 K with a Langevin thermostat13 and pressures at 1 atm using Langevin piston

barostat14. The first 10 ps of the trajectory were discarded.

Simulations for methanol ML/MM models were carried out with the same protocol, using

a periodic box of 1860 methanol molecules.

Umbrella sampling simulations for the Claisen rearrangement set up according to the

following protocol. Using the difference between the bonds formed and broken as the re-

action coordinate, we determined the centers for the harmonic bias potentials by choosing

50 equidistant points along the reaction coordinate. The centers ranged from values of -

4.15 Å to 5.18 Å with an increment of 0.19 Å. For each center, we selected the closest

lying structure in the metadynamics trajectory used for generating the reference data as a

starting configuration for the umbrella sampling run. All simulations used a force constant

of 112.04 kcal/mol/Å2. Umbrella sampling in vacuum was carried out for each window

by first equilibrating the system for 25 ps using a Berendsen thermostat22 at 300 K (time

constant of 100 fs) followed by 25 ps production simulation at the same temperature with

a Nose-Hoover chain (chain length of 3 and time constant of 100 fs). For the ML/MM

model umbrella simulations, the starting configurations were first solvated in a periodic box

of 9260 water molecules treated with the TIP3P force field. Keeping the allyl-p-tolyl ether

structures frozen, the water box was first minimized and the equilibrated for 200 ps to a

temperature of 300 K and pressure of 1 atm with a Langevin thermostat and Langevin

piston barostat using NAMD. Bonds involving water hydrogens were kept frozen with the

SHAKE algorithm and a time step of 1 fs was used. Starting from the systems prepared

in this manner, ML/MM simulations were performed for 25 ps using the same pressure and

temperature control as above.

Free energy profiles were constructed from the umbrella sampling data using the WHAM

code with convergence set to 1e-9 and a temperature of 300 K23,24.

Infrared and polarized as well as depolarized Raman spectra were computed from the

time-autocorrelation functions of the dipole moment and polarizability time derivatives ac-
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cording to the relations given in Ref.25. Autocorrelation functions were computed using the

Wiener-Khinchin theorem26 and a autocorrelation depth of 2048 fs. In order to enhance

the quality of the spectra, a Hann window function27 and zero-padding were applied to the

autocorrelation functions before computing the spectra. A laser frequency of 514 nm and

temperature of 300 K were used for calculating the Raman spectra.

NMR chemical shifts were computed as the average trace of the nuclear shielding tensor

σi = 1
3
tr[σi]. These chemical shifts were then referenced to the shifts computed for a

tetramethylsilane molecule via

σi = σ
(Z)
ref − σi (3)

The reference shifts computed with the PBE0/def2-TZVP were σH = 31.77 ppm and σH =

188.53 ppm.

Supplementary text 5: Adaptive sampling

In order to obtain representative structures from the original ethanol ML/MM data, we

applied adaptive sampling in a postprocessing manner. Starting from a randomly selected

set of 100 structures, we trained three separate FieldSchNet models using the settings and

tradeoffs reported in supplementary Tabs 1 and 2, omitting the nuclear shielding tensors.

We then used a weighted sum of the variances of the network predictions as an uncertainty

measure:

ν =
∑
π

wπ
M − 1

max

 M∑
m

(
Π(m)
π − 1

M

M∑
m

Π(m)
π

)2
 , (4)

where π is the index for a particular property, wπ the associated tradeoff weight, M the

total number of ensemble models and Π
(m)
π the prediction of model m for property π. In

case of a vectorial or tensorial property (e.g. dipole moment), the element with the maximal

value was used. As weights, we used the same tradeoffs as reported in supplementary

Tab. 2. The 100 molecules with the highest uncertainty were then selected and added to the

initial dataset. A new model ensemble was trained on this new data and the procedure was

repeated until satisfactory accuracy was achieved. The final dataset contained 2000 ethanol

configurations, resulting in a 10-fold reduction in training data. The ML/MM spectrum

simulated with a FieldSchNet model trained on the reduced dataset (using the settings

described in supplementary text 4) shows excellent agreement with the original spectrum
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Supplementary Figure 1: Ethanol ML/MM spectrum of the reduced dataset:

Comparison of the ML/MM spectra obtained with FieldSchNet models trained on the full

(20 000 data points) and reduced datasets (2000 data points). The experimental spectrum

is shown in gray.

(see supplementary Fig 1).

A modified adaptive sampling procedure was used to extend the FieldSchNet ML/MM

model to liquid ethanol. Starting with an ensemble of three FieldSchNet models trained

on the reduced dataset generated above, we performed 10 ps of ML/MM simulations on an

equilibrated box of 1860 methanol molecules (see supplementary text 4). During simulation,

uncertainties were computed for each timestep according to supplementary Eq. 4, yielding

the model uncertainty as a function of time. After the simulation, we determined the

maxima of this function and selected those with the 100 highest associated uncertainties.

The corresponding structures were then recomputed with the electronic structure reference

used to generated the original data (supplementary text 2). Finally, new ML models were

trained on the dataset expanded in this manner (2000 ethanol structures + 100 methanol

structures) and used in ML/MM simulations to compute infrared spectra.
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