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Table S1: Overlap of top N molecules sampled by ExactMEMES framework(CDDD,
Mol2Vec and ECFP) with actual top hits from Zinc250K against both target proteins. Re-
ported results are for three runs.

Target Protein Molecular Embedding Run No. N No. of molecules matched

TTBK1 Mol2Vec 1 100 98
TTBK1 Mol2Vec 2 100 96
TTBK1 Mol2Vec 3 100 96
TTBK1 Mol2Vec 1 500 467
TTBK1 Mol2Vec 2 500 461
TTBK1 Mol2Vec 3 500 462

TTBK1 CDDD 1 100 100
TTBK1 CDDD 2 100 100
TTBK1 CDDD 3 100 100
TTBK1 CDDD 1 500 489
TTBK1 CDDD 2 500 487
TTBK1 CDDD 3 500 487

TTBK1 ECFP 1 100 92
TTBK1 ECFP 2 100 90
TTBK1 ECFP 3 100 92
TTBK1 ECFP 1 500 423
TTBK1 ECFP 2 500 419
TTBK1 ECFP 3 500 424

SARS-CoV-2 Mpro Mol2Vec 1 100 99
SARS-CoV-2 Mpro Mol2Vec 2 100 98
SARS-CoV-2 Mpro Mol2Vec 3 100 98
SARS-CoV-2 Mpro Mol2Vec 1 500 465
SARS-CoV-2 Mpro Mol2Vec 2 500 469
SARS-CoV-2 Mpro Mol2Vec 3 500 472

SARS-CoV-2 Mpro CDDD 1 100 99
SARS-CoV-2 Mpro CDDD 2 100 98
SARS-CoV-2 Mpro CDDD 3 100 99
SARS-CoV-2 Mpro CDDD 1 500 480
SARS-CoV-2 Mpro CDDD 2 500 483
SARS-CoV-2 Mpro CDDD 3 500 484

SARS-CoV-2 Mpro ECFP 1 100 80
SARS-CoV-2 Mpro ECFP 2 100 79
SARS-CoV-2 Mpro ECFP 3 100 80
SARS-CoV-2 Mpro ECFP 1 500 387
SARS-CoV-2 Mpro ECFP 2 500 393
SARS-CoV-2 Mpro ECFP 3 500 390
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Table S2: Overlap of top N molecules sampled by DeepMEMES framework(Mol2Vec,
CDDD, ECFP) with actual top hits from Enamine HTS Collection against target protein
TTBK1. Reported results are for three runs.

Molecular Embedding Run No. N No. of molecules matched

CDDD 1 100 89
CDDD 2 100 88
CDDD 3 100 89
CDDD 1 500 448
CDDD 2 500 448
CDDD 3 500 448

Mol2Vec 1 100 99
Mol2Vec 2 100 96
Mol2Vec 3 100 96
Mol2Vec 1 500 487
Mol2Vec 2 500 485
Mol2Vec 3 500 488

ECFP 1 100 78
ECFP 2 100 77
ECFP 3 100 76
ECFP 1 500 362
ECFP 2 500 361
ECFP 3 500 356

Table S3: Overlap of top N molecules sampled by DeepMEMES framework(Mol2Vec) with
actual top hits from Ultra Large Docking Library against target protein AmpC. Reported
results are for three runs.

Molecular Embedding Run No. N No. of molecules matched

Mol2Vec 1 500 445
Mol2Vec 2 500 437
Mol2Vec 3 500 437
Mol2Vec 1 1000 900
Mol2Vec 2 1000 889
Mol2Vec 3 1000 880
Mol2Vec 1 5000 4396
Mol2Vec 2 5000 4354
Mol2Vec 3 5000 4342
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Table S4: Overlap of top N molecules sampled by DeepMEMES framework(CDDD, Mol2Vec
and ECFP) with actual top hits from Zinc250K against both target proteins. Reported
results are for three runs.

Target Protein Molecular Embedding Run No. N No. of molecules matched

TTBK1 Mol2Vec 1 100 97
TTBK1 Mol2Vec 2 100 95
TTBK1 Mol2Vec 3 100 98
TTBK1 Mol2Vec 1 500 464
TTBK1 Mol2Vec 2 500 473
TTBK1 Mol2Vec 3 500 471

TTBK1 CDDD 1 100 98
TTBK1 CDDD 2 100 99
TTBK1 CDDD 3 100 98
TTBK1 CDDD 1 500 469
TTBK1 CDDD 2 500 474
TTBK1 CDDD 3 500 472

TTBK1 ECFP 1 100 74
TTBK1 ECFP 2 100 72
TTBK1 ECFP 3 100 73
TTBK1 ECFP 1 500 329
TTBK1 ECFP 2 500 318
TTBK1 ECFP 3 500 333

SARS-CoV-2 Mpro Mol2Vec 1 100 98
SARS-CoV-2 Mpro Mol2Vec 2 100 95
SARS-CoV-2 Mpro Mol2Vec 3 100 97
SARS-CoV-2 Mpro Mol2Vec 1 500 473
SARS-CoV-2 Mpro Mol2Vec 2 500 458
SARS-CoV-2 Mpro Mol2Vec 3 500 471

SARS-CoV-2 Mpro CDDD 1 100 98
SARS-CoV-2 Mpro CDDD 2 100 95
SARS-CoV-2 Mpro CDDD 3 100 99
SARS-CoV-2 Mpro CDDD 1 500 471
SARS-CoV-2 Mpro CDDD 2 500 462
SARS-CoV-2 Mpro CDDD 3 500 473

SARS-CoV-2 Mpro ECFP 1 100 71
SARS-CoV-2 Mpro ECFP 2 100 62
SARS-CoV-2 Mpro ECFP 3 100 63
SARS-CoV-2 Mpro ECFP 1 500 302
SARS-CoV-2 Mpro ECFP 2 500 303
SARS-CoV-2 Mpro ECFP 3 500 295
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Table S5: Overlap of top N molecules sampled by DeepMEMES framework(CDDD) and
Deep Docking with actual top hits from Zinc250K against both target proteins. Reported
results are for three runs.

Target Protein Method Run No. N No. of molecules matched

TTBK1 Deep Docking 1 500 59
TTBK1 Deep Docking 2 500 68
TTBK1 Deep Docking 3 500 69
TTBK1 DeepMEMES 1 500 469
TTBK1 DeepMEMES 2 500 474
TTBK1 DeepMEMES 3 500 472

SARS-CoV-2 Mpro Deep Docking 1 500 67
SARS-CoV-2 Mpro Deep Docking 2 500 67
SARS-CoV-2 Mpro Deep Docking 3 500 70
SARS-CoV-2 Mpro DeepMEMES 1 500 471
SARS-CoV-2 Mpro DeepMEMES 2 500 462
SARS-CoV-2 Mpro DeepMEMES 3 500 473

Table S6: Time taken (in hrs) by different steps of proposed method and Deep Docking for
identifying top hits against target protein TTBK1 from Zinc-250K drug library. Reported
metrics are of a single run of DeepMEMES and Deep Docking.

DeepMEMES Deep Docking Docking of all compounds

Clustering 0.0872 - -
Embedding Calculation 0.00294 0.00252 -
Docking Calculation 80.375 74.590 1012.855
Training 0.955 0.904 -

Total Time 81.420 75.49652 1012.855

Table S7: Overlap of top N molecules sampled by DeepMEMES framework(CDDD) and
Deep Docking with actual top hits from Enamine dataset against TTBK1 target protein.
Reported results are for three runs.

Target Protein Method Run No. N No. of molecules matched

TTBK1 Deep Docking 1 500 60
TTBK1 Deep Docking 2 500 56
TTBK1 Deep Docking 3 500 69
TTBK1 DeepMEMES 1 500 469
TTBK1 DeepMEMES 2 500 474
TTBK1 DeepMEMES 3 500 472
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Figure S1: Top 20 hits for target protein TTBK1 found in Zinc-250K dataset. The color
codes indicate if the molecules have also been found using ExactMEMES framework or
random search.
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Figure S2: Top 20 hits for target protein SARS-CoV-2 Mpro found in Zinc-250K dataset. The
color codes indicate if the molecules have also been found using ExactMEMES framework
or random search.
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(a) Target Protein: TTBK1 (b) Target Protein: TTBK1

(c) Target Protein: SARS-CoV-2 Mpro (d) Target Protein: SARS-CoV-2 Mpro

Figure S3: Figure shows the distribution of docking scores for top 2000 molecules sampled
by ExactMEMES, random sampling, and actual top 2000 docking hits of the complete Zinc-
250K molecular library. Vertical red line shows the cut-off docking score for top 100 molecules
in (a) and (c), and for top 500 molecules in (b) and (d).

8



(a) Target Protein: TTBK1 (b) Target Protein: SARS-CoV-2 Mpro

Figure S4: The figure shows the distribution of top molecules sampled by ExactMEMES
(with CDDD as molecular embedding) from Zinc-250K across 20 different clusters.
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(a) Target Protein: TTBK1 (b) Target Protein: SARS-CoV-2 Mpro

(c) Target Protein: TTBK1 (d) Target Protein: AmpC

Figure S5: The histogram shows the distribution of top molecules identified by MEMES
across different bins (according to docking score) as well as the spread of actual top hits
missed by proposed framework. (a) and (b) shows the distribution of molecules sampled by
ExactMEMES (with Mol2Vec as molecular embedding) from Zinc-250K dataset. (c), and (d)
shows the distribution of molecules sampled by DeepMEMES (with Mol2Vec as molecular
embedding) from Enamine dataset, and Ultra Large Docking library, respectively.
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(a) Target Protein: TTBK1 (b) Target Protein: SARS-CoV-2 Mpro

Figure S6: The figure shows the fraction of top 100 molecules sampled by ExactMEMES that
matches with actual top hits in the Zinc-250K docking library (for target receptor TTBK1
and SARS-CoV-2 Mpro) against the percentage of dataset sampled.

(a) Target Protein: TTBK1 (b) Target Protein: SARS-CoV-2 Mpro

Figure S7: To compare the performance of ExactMEMES and DeepMEMES, fraction of the
top 100 molecules sampled by MEMES from Zinc-250K dataset that are actual top hits is
plotted against the percentage of dataset sampled. Mol2Vec as featurization technique was
used for this comparison. The reported trial results are average of 3 runs and the shaded
region represent standard deviation across these runs.
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(a) Target Protein: TTBK1 (b) Target Protein: SARS-CoV-2 Mpro

(c) Target Protein: TTBK1 (d) Target Protein: SARS-CoV-2 Mpro

Figure S8: To compare the performance of ExactMEMES and DeepMEMES, fraction of
the top molecules sampled that are actual top hits from Zinc-250K drug library is plotted
against the percentage of dataset sampled. CDDD as featurization technique was used for
this comparison. The reported trial results are average of 3 runs and the shaded region
represent standard deviation across these runs. (a) and (b) compares for top 100 sampled
molecules. (c) and (d) compares for top 500 sampled molecules.
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Figure S9: Figure shows the fraction of top 100 molecules that matches with actual top
hits from Enamine dataset (for target receptor TTBK1) against the percentage of dataset
sampled.
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(a)

(b)

Figure S10: Performance of DeepMEMES on Enamine Dataset against target receptor
TTBK1. Figure shows the distribution of docking scores of top 2000 molecules sampled by
DeepMEMES, random sampling, and actual top 2000 docking hits of the complete Enamine
Dataset. Vertical red line shows the cut-off docking score for top 100 molecules in (a) and
top 500 molecules in (b).
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(a) (b)

Figure S11: Performance of DeepMEMES on Ultra Large Docking Library against target
protein AmpC. Figure shows the distribution of docking scores of top 10000 molecules sam-
pled by DeepMEMES, random sampling, and actual top 10000 docking hits of the complete
dataset. Vertical red line shows the cut-off docking score for top 500 molecules in (a) and
top 5000 molecules in (b).

(a) Top 500 molecules (b) Top 5000 molecules

Figure S12: The figure shows the fraction of top molecules sampled by DeepMEMES that
are actual top hits from Ultra Large Docking Library (for target protein AmpC) against the
percentage of dataset sampled.
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(a) Target Protein: TTBK1 (b) Target Protein: SARS-CoV-2 Mpro

Figure S13: 3D Protein-Ligand Complex of target protein and the best hit (molecule with
most negative docking score) in complete Zinc-250K library.
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(a) Target Protein: TTBK1 (b) Target Protein: SARS-CoV-2 Mpro

Figure S14: Ligplot image showing the interaction between the target protein and best hit
in complete Zinc-250K library.
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(a) Target Protein: TTBK1 (b) Target Protein: SARS-CoV-2 Mpro

(c) Target Protein: TTBK1 (d) Target Protein: SARS-CoV-2 Mpro

Figure S15: Performance of DeepMEMES on Zinc-250K against protein receptor TTBK1
and SARS-CoV-2 Mpro. Figure shows the fraction of top molecules sampled by DeepMEMES
that matches with actual top hits of complete library. (a) and (b), and (c) and (d) shows the
plots for top 100 molecules and top 500 molecules, respecitvely. The reported trial results
are average of 3 runs and the shaded region represent standard deviation across these runs.
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(a) Target Protein: TTBK1 (b) Target Protein: TTBK1

(c) Target Protein: SARS-CoV-2 Mpro (d) Target Protein: SARS-CoV-2 Mpro

Figure S16: Figure shows the distribution of docking scores for top 2000 molecules sampled
by DeepMEMES, random sampling, and actual top 2000 docking hits of the complete Zinc-
250K molecular library. Vertical red line shows the cut-off docking score for top 100 molecules
in (a) and (c), and for top 500 molecules in (b) and (d).
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(a) Top 100 molecules (b) Top 500 molecules

Figure S17: Figures shows the fraction of top molecules sampled by DeepMEMES (with
Mol2Vec as molecular embedding technique) from Zinc-250K drug library that are actual
top hits against target receptor TTBK1. The reported trial results are average of 3 runs and
the shaded region represent standard deviation across these runs.
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Supplementary Discussion

1. Performance of DeepMEMES on Zinc-250K

Statistics on the performance of DeepMEMES on Zinc250K against both target receptors is

given in this section.

Fraction Matched vs Percentage of docking library sampled

Figure S15 shows the fraction of top 100 and top 500 sampled molecules that are actual top

hits for both target proteins against the percentage of molecules sampled from the docking

library using DeepMEMES and random sampling.

Statistics on top sampled molecules

Table S4 represents the overlap of top 100 and top 500 molecules identified by DeepMEMES

framework (CDDD, Mol2Vec and ECFP) with actual top hits from the whole dataset.

Distribution of docking scores

Figure S16 compares distribution of docking scores for top molecules sampled using Deep-

MEMES framework (CDDD, Mol2Vec and ECFP) against random selection for both the

protein receptors.

2. Rule Based Screening followed by application of DeepMEMES

It is a common practice in drug discovery to apply rule based filters such as a molecular

volume or polar surface area filter to remove molecules and reduce the size of the dataset

to be screened. Rule based screening followed by application of MEMES framework on the

Enamine dataset against TTBK1 target receptor is shown in this section. Topological Polar

Surface Area (TPSA) filter was applied on the dataset to filter out the ligands that have

TPSA > 90 Å2. This reduces the dataset size from ∼2 million compounds to ∼1.6 million.

21



To asses the performance of DeepMEMES framework with rule-based filtering, it was applied

on the filtered dataset.

Figure S17 compares the performance of the DeepMEMES framework on the Enamine

dataset before and after applying the TPSA filter. Figure shows the fraction of top molecules

sampled by DeepMEMES that are actual top hits from the corresponding dataset. Note

that percentage sampled shown on the x-axis is calculated by taking the size of complete

dataset. It is quite evident from the figure that the proposed framework was able to identify

high percentage of top hits from the filtered dataset by performing less number of docking

calculations. Conclusively we can say that applying such rule based filter increases the

efficiency of the proposed framework.

3. Comparison with Deep Docking

Recently, Gentile et al. proposed a deep learning based method “Deep Docking” to augment

the process of SBDD.1 In this section, the MEMES framework performance was compared

with Deep Docking. To effectively compare the performance of both methods the compu-

tational budget of docking was kept 6% of the docking library size. The intersection of the

top molecules identified by the respective models with the top hits identified by docking the

whole dataset is used as a metric for comparison.

Table S5 shows the intersection of top 500 molecules identified by DeepMEMES frame-

work (CDDD) and Deep Docking method with actual top hits from the Zinc-250K dataset.

Time taken by both methods is also compared in table S6. Conclusively it can be said

that DeepMEMES has a superior performance over deep docking in the terms of identifying

top hits and have almost same performance as that of deep docking in terms of computa-

tional time taken. Table S7 compares performance in the terms of identifying top hits from

Enamine dataset that contains approximately 2 million compounds against target protein

TTBK1.
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4. Analysis of time taken by MEMES

In this section, the time taken by different steps of the proposed method is reported and is

compared against the time taken to perform docking of all the compounds in the library. For

this analysis, DeepMEMES was chosen as the method and Zinc-250K as the docking library.

We used 1 Nvidia GeForce RTX 2080 TI for GPU computations and 24 Intel(R) Xeon(R)

CPU E5-2640 v4 @ 2.40GHz for CPU computations.

The time reported in the table S6 is the computational hours taken by different steps of

proposed method. The clustering and training step requires GPU computation, and CPU

computation is required in embedding and docking calculations. It is quite evident from the

table that the most of the time taken in by the docking calculation. The proposed method

was able to reduce the computational cost by approximately 10 times.

Supplementary Methods

Docking Methodology

Ligand Preparation

Structure of the ligands was obtained from docking library and converted to the pdb format

for AutoDock. The conversion was carried out by OpenBabel 2.3.1 and the energy minimiza-

tion was done using a MMFF94 forcefield.2Preparation of the selected ligands for docking

was carried out using AutoDock 4.2 (AD 4).3

Protein Preparation

Target protein, Tau-Tubulin Kinase 1 (PDB ID:4BTK) and SARS-CoV-2 Mpro (PDB ID:6LU7)

with resolution 2.00 Å and 2.16 Å respectively were obtained from Research Collaboratory

for Structural Bioinformatics – Protein Data Bank (RCSB – PDB).4 All bound waters and

cofactors were removed from the protein manually, Kolmann charges were computed, polar

23



hydrogen atoms were subsequently added and the AutoDock atom types were defined us-

ing AutoDockTools (ADT), Graphical User Interface (GUI) of AutoDock implemented in

Molecular Graphics Laboratory (MGL) Tools.3

Grid Generation and Docking

Docking methodologies are utilized at initial stages of the drug discovery process to swiftly

determine fitting molecules that could act as potential leads against a desired protein.5

This methodology further gains significant prominence in circumstances when new targets

emerge for which hits are ascertained. Docking protocols aid in elucidation of the most

energetically favorable binding pose of a ligand to a receptor by ranking the ligands based

on their estimated binding energy. The objective of our current docking study is to establish

the crucial interactions responsible for inhibition of SARS-CoV-2 Mpro and Tau-Tubulin

Kinase 1. Besides, to give way for development of potential leads capable of halting the

coronavirus outbreak.

Docking was done using AD4, implementing Lamarckian Genetic Algorithm (LGA). LGA

has enhanced performance compared to simulated annealing or the simple genetic algorithm,

the other search algorithms available in AutoDock4 for ligand conformational searching.6

Grid maps were generated for each atom type along with electron density maps and desol-

vation maps using the Autogrid4 utility in AutoDock. The grid spacing was changed from

0.375 Å to 0.600 Å and the size of the docking grid was fixed at 40 Å x40 Å x40 Å for 4BTK

while for 6LU7 thegrid spacing was changed from 0.375 Å to 0.500 Å and the size of the

docking grid was fixed at 40 Å x40 Å x40 Å. The X, Y, and Z coordinates of the grid box

for 4BTK were fixed at 61.955,18.155,24.305 respectively while for 6LU7 they were fixed at

-10.063, 16.667, 67.294 respectively, thus encompassing the active site. The active site of

receptor was kept rigid and docking was carried out. The docking parameters for AD4 were

kept at their default values. The 10 independent GA runs from AD4 were processed using

the built-in clustering analysis with a 2.0 Å cutoff.
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Choice of protein receptors

The massive growth and improvement in the field of healthcare over the years has halted the

advent of fatal diseases. However, there are a class of diseases which have been going against

the tide and have become more prevalent over the years; neurodegenerative diseases. In lieu

of this, there is a desperate need of effective treatments/drugs that could combat them by

blocking or delaying the progressive loss of the neurons.7 In many neurodegenerative diseases,

a notable feature is the presence of neurofibrillary tangles (NFT), the chief component of

which is hyperphosphorylated tau protein (pTau). The presence of this pTau in NFT hints

towards an imbalance between tau kinase and phosphatase activity. Among many kinases

that are involved in phosphorylation of Tau, glycogen synthase kinase 3-β (GSK3β) and

cycline-dependent kinase 5 (Cdk5) have been suspected to play an intricate and major role

in phosphorylation of tau in the brain.8 Substantial efforts have been made to develop their

inhibitors, however due to their ubiquitous expression, there is a possibility of some serious

side effects9 . Thus, brain-specific tau kinases like tau-tubulin kinase 1 (TTBK1) are an

attractive target to combat a myriad of neurodegenerative diseases.10 Very few TTBK 1

inhibitors have been reported till date and consequently we selected TTBK1 as protein of

choice.

At the time of writing this article, more than 4.7 million people across the globe have

been infected by COVID-19 and there is still no available treatment/drug which has been

able to curb the outbreak.11 Among the drug targets available to combat SARS-CoV-2 like

RNA-dependent RNA-polymerase and spike protein, the main protease (M pro ) has been

most extensively characterized.12 M pro is a critical enzyme which plays a vital role in

mediating viral transcription and replication of coronaviruses. Over and above, the absence

of closely related homologues in humans, coupled with an urgent need to find a suitable

small molecule inhibitor, made this target an attractive choice.12 Present study was aimed

to establish scientific insights while designing small molecule inhibitors and also plausible

inhibitors targeting TTBK1 and SARS-COV-2 M pro proteins. Figure S13 shows the protein-
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ligand complex and Figure S14 shows the prtoein-ligand interaction Ligplot, respectively,

for target receptor (both TTBK1 and SARS-CoV-2 Mpro) and best ligand from Zinc-250K

dataset.
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