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Materials and reagents. All the solvents for synthesis were of analytical grade. Acetonitrile 

for analysis was of spectrophotometric grade. 3-(Diethylamino)phenol, phthalic anhydride, 4-

bromophenol, 3-bromophenol, potassium tetrachloroplatinate(II), 4,4'-di-tert-butyl-6-phenyl-

2,2'-bipyridine, trimethylsilylacetylene, cuprous iodide, tetrabutylammonium fluoride were 

purchased from Aldrich Chemical Co. Lead(II) perchlorate hydrate was purchased from 

Aldrich Chemical Co. with purity over 99.0% and were used as received. 

Bis(triphenylphosphine)palladium(II) dichloride1 and [(C^N^N)PtCl]2 [(C^N^N) = 4,4'-di-tert-

butyl-6-phenyl-2,2'-bipyridine] were synthesized following reported procedures. 

Physical Measurements and Instrumentation. All solvents were dried and purified by 

standard procedures. NMR spectra were recorded on Bruker, AV 400 spectrometers. 1H and 

13C chemical shifts are determined by reference to residual 1H and 13C solvent signals. High-

resolution mass spectra (HRMS) and Elemental Analysis were performed at the CRMPO 

(Centre de Mesures Physiques de l’Ouest) in Rennes. Absorption spectra were taken on 

Varian Cary 60 UV–vis absorption spectrophotometer. Fluorescence spectra were recorded 

on FS5 fluorescence spectrometer from Edinburgh InstrumentTM. Transient absorption and 

time related emission spectra were recorded on LP 920 Laser flash photolysis spectrometer 

from Edinburgh InstrumentTM. Quartz cuvettes (path-length = 1 cm) was used in all 

spectrophotometric and fluorometric measurements. 
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Scheme S1. The synthetic routes of L1 and L2.

Synthesis of R1-Br. S1 (3.13g, 10 mmol) and 3-bromophenol (2.17 mL, 20 mmol) was added 

into methanesulfonic acid (30 mL) and heated at 100 °C overnight under stirring. Na2CO3 (aq) 

was used to tune the pH to about 7. Diluted with water and DCM, the organic layer of the 

resulting suspension was collected and dried over anhydrous MgSO4. The crude product was 

purified by column chromatography with petroleum ether/ethyl acetate 4:1 as an eluting agent 

to afford R1-Br (2.8g, 62%). 1H NMR (400 MHz, CDCl3) δ 8.05 – 7.98 (m, 1H), 7.67 (td, J = 

7.4, 1.3 Hz, 1H), 7.61 (td, J = 7.4, 1.1 Hz, 1H), 7.44 (d, J = 1.9 Hz, 1H), 7.20 – 7.15 (m, 1H), 

7.11 (dd, J = 8.5, 2.0 Hz, 1H), 6.64 (d, J = 8.5 Hz, 1H), 6.57 (d, J = 8.9 Hz, 1H), 6.44 (d, J = 

2.6 Hz, 1H), 6.37 (dd, J = 8.9, 2.6 Hz, 1H), 3.36 (q, J = 7.1 Hz, 4H), 1.18 (t, J = 7.1 Hz, 6H).
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Synthesis of R2-Br. The procedure is similar to that described for the preparation of R1-Br, 

except 4-bromophenol was used in place of 3-bromophenol to give R2-Br. (3.2 g, 71%). 1H 

NMR (400 MHz, CDCl3) δ 8.03 (d, J = 7.4 Hz, 1H), 7.69 (td, J = 7.4, 1.3 Hz, 1H), 7.64 (dt, J 

= 7.4, 3.8 Hz, 1H), 7.46 (dd, J = 8.8, 2.4 Hz, 1H), 7.19 (d, J = 7.5 Hz, 1H), 7.15 (d, J = 8.8 

Hz, 1H), 6.86 (d, J = 2.3 Hz, 1H), 6.56 (d, J = 8.9 Hz, 1H), 6.45 (d, J = 2.6 Hz, 1H), 6.37 (dd, 

J = 8.9, 2.6 Hz, 1H), 3.36 (q, J = 7.1 Hz, 4H), 1.17 (t, J = 7.1 Hz, 6H).

Synthesis of L1. R1-Br (450 mg, 1.0 mmol), Pd(PPh3)2Cl2 (281 mg, 0.4 mmol), CuI (150 

mg, 0.8 mmol), and TMSA (1.42 mL, 10 mmol) was dissolved in THF/Et3N = 3:1 in N2 

atmosphere. The resulting mixture was heated to reflux overnight, then diluted with water and 

extracted with DCM. The organic layer was collected and dried over anhydrous MgSO4 and 

the solvent was removed. The remaining solid was then dissolved in 30 mL THF, and THF 

solution of TBAF (1.2 mL, 1 mol/L, 1.2 mmol) was added under N2 atmosphere over ice-salt 

bath in the dark. The residue was purified by column chromatography with 9:1 petroleum 

ether / ethyl acetate as an eluent. Removal of the solvent afforded crude product as white 

powder. Sequent recrystallization by slowly evaporation of solution in DCM: hexane = 20:1 

provided the target compound (162 mg, 41%). 1H NMR (400 MHz, CDCl3) δ 8.04 (d, J = 7.4 

Hz, 1H), 7.66 (dt, J = 14.7, 6.9 Hz, 2H), 7.41 (s, 1H), 7.20 (d, J = 7.5 Hz, 1H), 7.11 (dd, J = 

8.2, 1.4 Hz, 1H), 6.75 (d, J = 8.1 Hz, 1H), 6.60 (d, J = 8.9 Hz, 1H), 6.48 (d, J = 2.5 Hz, 1H), 

6.39 (dd, J = 8.9, 2.5 Hz, 1H), 3.39 (q, J = 7.0 Hz, 4H), 3.14 (s, 1H), 1.20 (t, J = 7.0 Hz, 6H).

Synthesis of L2. The procedure is similar to that described for the preparation of L1, except 

R2-Br was used in place of R1-Br to give L2 (118 mg, 30%). 1H NMR (400 MHz, CDCl3) δ 

8.05 (d, J = 7.3 Hz, 1H), 7.74 – 7.60 (m, 2H), 7.50 (dd, J = 8.6, 2.0 Hz, 1H), 7.25 – 7.17 (m, 

2H), 6.94 (d, J = 1.9 Hz, 1H), 6.59 (d, J = 8.9 Hz, 1H), 6.48 (d, J = 2.5 Hz, 1H), 6.39 (dd, J = 

8.9, 2.6 Hz, 1H), 3.39 (q, J = 7.1 Hz, 4H), 2.97 (s, 1H), 1.20 (t, J = 7.1 Hz, 6H).
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Scheme S2. The synthetic routes of 1 and 2.

Procedure for synthesis of complexes 1 and 2. To a dry and degassed CH2Cl2/iPr2NH 

(4/1: 20 mL) solution of 4,4'-di(tert-butyl)-6-phenyl-2,2'-bipyridine platinum(II) chloride 

[(C^N^N)PtCl)] (0.217 g, 0.38 mmol), L1 or L2 (0.145 g, 0.38 mmol) and CuI (0.001 g, 0.04 

mmol) were added. After 15 h of stirring at 30ºC in the dark, the solvents were removed under 

reduce pressure. The residue was purified by column chromatography (SiO2, CH2Cl2 → 

CH2Cl2/AcOEt: 9/1) to afford 1 or 2 (70 % brown powder).

1: 1H NMR (400 MHz, CDCl3): δ = 9.00 (d, J = 4 Hz, 1H, N^N^C), 8.00 (d, J = 8 Hz, 1H, 

Rhod.), 7.89 (d, J = 4 Hz, 1H, N^N^C), 7.79 (d, J = 8 Hz, 1H, N^N^C), 7.71 (t, J = 8 Hz, 1H, 

N^N^C), 7.68 – 7.60 (m, 3H, N^N^C), 7.55 (dd, 1J = 8 Hz, 2J = 4 Hz, 1H, Rhod.), 7.45 (d, J = 

8 Hz, 1H, Rhod.), 7.37 (d, J = 4 Hz, 1H, Rhod.), 7.23 (d, J = 8 Hz, 1H, Rhod.), 7.18 – 7.05 (m, 

1H Rhod.+ 2H N^N^C), 6.66 (d, J = 8 Hz, 1H, Rhod.), 6.59 (s, 1H, Rhod.), 6.57 (s, 1H, Rhod.), 

6.39 (dd, 1J = 8 Hz, 2J = 4 Hz, 1H, Rhod.), 3.39 (q, J = 8 Hz, 4H, Rhod.), 1.45 (s, 9H, N^N^C), 

1.43 (s, 9H, N^N^C), 1.20 (t,, J = 8 Hz, 6H, Rhod). 13C [1H] NMR (100 MHz, CD2Cl2): δ = 

169.9, 165.3, 164.5, 164.4, 158.6, 155.1, 153.7, 153.4, 151.8, 150.2, 149.9, 147.9, 143.0, 

138.7, 135.5, 134.4, 131.5, 131.0, 130.1, 129.3, 127.8, 125.3, 125.3, 124.9, 124.7, 124.6, 
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124.0, 120.1, 119.7, 117.1, 116.3, 115.5, 108.9, 106.9, 105.7, 104.7, 98.1, 84.4, 45.0, 36.5, 

36.2, 30.7, 30.6, 30.5, 12.8. HRMS: m/z [M+H]+ Calcd. for C50H48N3O3
195Pt 933.3338, found: 

933.3338. Elemental Analysis (%): Calcd. for C50H47N3O3Pt•1/4CH2Cl2: C, 63.25; H, 5.02; N, 

4.40. Found: C, 63.25; H, 4.78; N, 4.41.

2: 1H NMR (400 MHz, CDCl3): δ = 8.94 (d, J = 4 Hz, 1H, N^N^C), 7.98 (d, J = 8 Hz, 1H, 

Rhod.), 7.87 (d, J = 4 Hz, 1H, N^N^C), 7.73 – 7.60 (m, 5H, N^N^C), 7.54 (dd, 1J = 8 Hz, 2J = 

4 Hz, 1H, Rhod.), 7.52 (dd, 1J = 8 Hz, 2J = 4 Hz, 1H, Rhod.), 7.45 (dd, 1J = 8 Hz, 2J = 4 Hz, 

1H, Rhod.), 7.23 (d, J = 8 Hz, 1H, Rhod.), 7.18 (d, J = 8 Hz, 1H, Rhod.), 7.10 (td, 1J = 8 Hz, 

2J = 4 Hz, 1H, N^N^C), 7.05 (td, 1J = 8 Hz, 2J = 4 Hz, 1H, N^N^C), 6.88 (d, J = 4 Hz, 1H, 

Rhod.), 6.58 (s, 1H, Rhod.), 6.55 (s, 1H, Rhod.), 6.49 (d, J = 4 Hz, 1H, Rhod.), 6.38 (dd, 1J = 

8 Hz, 2J = 4 Hz, 1H, Rhod.), 3.38 (q, J = 8 Hz, 4H, Rhod.), 1.44 (s, 9H, N^N^C), 1.42 (s, 9H, 

N^N^C), 1.18 (t, J = 8 Hz, 6H, Rhod). 13C [1H] NMR (100 MHz, CD2Cl2): δ = 169.4, 164.7, 

163.9, 163.8, 158.0, 154.5, 153.1, 152.8, 151.3, 149.7, 149.3, 147.4, 142.4, 138.2, 134.8, 

133.8, 130.9, 130.4, 129.5, 128.7, 127.2, 124.8, 124.7, 124.4, 124.1, 124.0, 123.4, 119.5, 

119.1, 116.5, 115.7, 114.9, 108.3, 106.3, 105.0, 104.1, 97.5, 83.8, 44.4, 35.9, 35.6, 30.2, 

30.0, 12.3. HRMS: m/z [M+H]+ Calcd. For C50H48N3O3
195Pt 933.3338, found: 933.3336. 

Elemental Analysis (%): Calcd. for C50H47N3O3Pt•½CH2Cl2: C, 62.18; H, 4.96; N, 4.31 Found: 

C, 62.81; H, 5.06; N, 4.43.

Singlet Oxygen Quantum Yield Determination

Singlet oxygen emission was detected by using FLS-980 spectrofluorometer. All of the 

compounds were dissolved in CH3CN. The absorbance at 514.5 nm, as the excitation 

wavelength, was adjusted to be around 0.36 for opened forms of 1 and 2; and Rose Bengal. 

Upon measurements, an 850 nm long-pass filter was inserted in between the sample and the 

detector to avoid any high-order diffraction from the visible emission. Singlet oxygen quantum 

yield was determined by comparing the 1O2 emission intensity of Rose Bengal (ΦΔ = 45% in 

CH3CN).
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Computational Details

All geometries and energies presented in this study were computed using the B3PW91 

density functional theory method as implemented in the Gaussian 09 program package.3 

Geometry optimizations were performed using basis set 6-31++G*, Meanwhile, LANL2DZ 

effective-core potentials are used for heavy atom (Pt). The stationary structures are obtained 

by verifying that all of the harmonic frequencies are real.

X-ray crystallography

Single crystals of 1 and 2 were grown by slow diffusion of diethyl ether vapors into a saturated 

dichloromethane solution of the corresponding complex. The unit cell and data collection 

summarized in Table S1 and S2. The structures were solved by dual-space algorithm using 

the SHELXT program,4 and then refined with full-matrix least-square methods based on F2 

(SHELXL-2014).5 The contribution of the disordered solvents to the calculated structure 

factors was estimated following the BYPASS algorithm,6 implemented as the SQUEEZE 

option in PLATON.7 A new data set, free of solvent contribution, was then used in the final 

refinement. All non-hydrogen atoms were refined with anisotropic atomic displacement 

parameters. H atoms were finally included in their calculated positions.
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Table S1. Crystal structure determination of 1. CCDC 1503542

An orange crystal of dimensions 0.58 mm x 0.15 mm x 0.09 mm mounted in a glass capillary was 
used for data collection:

Empirical formula C51H49Cl2N3O3Pt
Extended formula C50H47N3O3Pt•CH2Cl2
Formula weight 1017.92
Temperature 150 K
Wavelength 0.71073 Å 
Crystal system, space group monoclinic, P21/c
Unit cell dimensions a = 11.4845(19) Å, α = 90°

b = 24.408(5) Å, β = 91.637(7)°
c = 17.785(4) Å, γ = 90°

Volume 4983.4(16) Å3

Z, Calculated density 4, 1.357 (g.cm-3)
Absorption coefficient  2.964 mm-1

F(000) 2048
Crystal size 0.580 x 0.150 x 0.090 mm
Crystal color yellow
Theta range for data collection 2.938 to 27.483°
h_min, h_max -14, 14
k_min, k_max -23, 31
l_min, l_max -23, 20
Reflections collected / unique 31653 / 11243 [R(int) = 0.0716]
Reflections [I>2σ] 7244
Completeness to theta_max 0.985
Absorption correction type multi-scan
Max. and min. transmission 0.766, 0.430
Refinement method Full-matrix least-squares on F2

Data / restraints / parameters 11243 / 0 / 483
bGoodness-of-fit 1.080
Final R indices [I>2σ] R1c = 0.0878, wR2 = 0.2174
R indices (all data) R1c = 0.1347, wR2 = 0.2352
Largest diff. peak and hole 3.123 and -3.525 e-.Å-3
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Table S2. Crystal structure determination of 2. CCDC 1507269

An orange crystal of dimensions 0.60 mm x 0.25 mm x 0.21 mm mounted in a glass capillary was 
used for data collection:

Empirical formula C50H45N3O3Pt
Formula weight 930.98
Temperature 150(2) K
Wavelength 0.71073 Å 
Crystal system, space group triclinic, P-1
Unit cell dimensions a = 9.0585(14) Å, α = 100.971(5)°

b = 15.851(3) Å, β = 101.370(5)°
c = 16.470(3) Å, γ = 104.503(5)°

Volume 2171.8(6) Å3

Z, Calculated density 2, 1.424 (g.cm-3)
Absorption coefficient 3.275 mm-1

F(000) 936
Crystal size 0.600 x 0.250 x 0.210 mm
Crystal color orange
Theta range for data collection 2.969 to 27.476°
h_min, h_max -7, 11
k_min, k_max -20, 20
l_min, l_max -21, 21
Reflections collected / unique 50344 / 9875 [R(int) = 0.0534]
Reflections [I>2σ] 8137
Completeness to theta_max 0.992
Absorption correction type multi-scan
Max. and min. Transmission 0.503 , 0.273
Refinement method Full-matrix least-squares on F2

Data / restraints / parameters 9875 / 11 / 499
bGoodness-of-fit 1.000
Final R indices [I>2σ] R1c = 0.0490, wR2 = 0.1216
R indices (all data) R1c = 0.0683, wR2 = 0.1402
Largest diff. peak and hole 3.848 and -3.066 e-.Å-3



S10

Table S3. Calculated structural data of 1 and 2.

1 2

Bond 

distance 

in closed 

form (Å)

Bond 

distance 

in opened 

form (Å)

Δ distance

= opened form 

– closed form 

(Å)

Bond 

distance 

in closed 

form (Å)

Bond 

distance 

in opened 

form (Å)

Δ distance

= opened form 

– closed form 

(Å)

C1-C2 1.23 1.24 +0.01 1.23 1.23 0.00

C2-C3 1.42 1.40 -0.02 1.42 1.41 -0.01

C1-Pt 1.95 1.93 -0.02 1.94 1.94 0.00
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Table S4. HOMO and LUMO compositions (%) for the the lowest triplet (T1) state of 

opened forms of 1 and 2

opened form of 1 opened form of 2

Pt C≡C xanthene Pt C≡C xanthene

LUMO 2.6 8.1 86.7 0.3 1.2 98.3

HOMO 21.1 25.6 32.5 18.3 39.3 34.7
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Figure S1. 1H NMR spectrum of 1 in CD2Cl2.
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Figure S3. 1H NMR spectrum of 2 in CD2Cl2.
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Figure S5. Electronic absorption (a) and emission (b) spectra of 1 and 2 in acetonitrile at 

room temperature. Deoxygenated samples were prepared for emission measurement. 
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Figure S6. (a) Transient absorption different spectra at time zero of 1 (a) and 2 (b) in 

deoxygenated acetonitrile at room temperature following a 355-nm laser pulse excitation.
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Figure S8. (a) The plot of absorbance at 570 nm and 620 nm as a function of equivalents of 

Pb(II) ion. (b) Normalized electronic absorption spectra of 1 in the presence of 0.67 and 7.0 

equivalents of Pb(II) ion; and 1.0 equivalent of acid in acetonitrile. 
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Figure S9. Emission spectral changes of (a) 1 (conc. = 1E-5M) and (b) 2 (conc. = 1E-5M) 

upon addition of various equivalents of proton in air-saturated acetonitrile with the excitation 

wavelength at 348 nm for 1 and 330 nm for 2 at room temperature.
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Figure S10. Emission spectral changes of (a) 1 and (b) 2 (conc. = 10μM) with various 

concentrations of Pb(II) ion in air-saturated acetonitrile with the excitation wavelength at 348 

nm for 1 and 330 nm for 2. Insets show the plot of relative emission intensity versus the 

equivalents of Pb(II) ion and the theoretical fitting curves.
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Figure S11. Excitation spectra of opened form of 1 monitored at 620 nm and 760 nm in its 

ring-opened form triggered by Pb(II) ion in acetonitrile.
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Figure S12. Emission spectral changes of (a) L1 and (b) L2 upon addition of various 

concentrations of proton in air-saturated acetonitrile at room temperature.
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Figure S13. Optimized structure of ring-closed form of 1 (a) and 2 (b); ring-opened form of 1 

(c) and 2 (d). 
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Figure S14. (a) Time-resolved emission spectra of 1 in the ring-opened form in deoxygenated 

dichloromethane (with 1% acetonitrile) at room temperature and the corresponding lifetimes 

decay traces monitored at (b) 740 nm (with exclusion of the first data point) and (c) 620nm. 

Pulsed laser at excitation wavelength of 532 nm.
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Figure S15. The electronic density distribution of the HOMO and LUMO for the the lowest 

triplet (T1) state of opened forms of 1 and 2.
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Figure S16. (a) Time-resolved emission spectra of 1 in the ring-opened form in air-saturated 

acetonitrile at room temperature and the corresponding lifetimes decay traces monitored at 

(b) 740 nm (with exclusion of the first data point) and (c) 620nm. Pulsed laser at excitation 

wavelength of 532 nm.
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Figure S17. (a) Emission spectra of 1 in the ring-opened form in deoxygenated acetonitrile 

at room temperature with different excitation power intensity. 
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Figure S18. (a) Time-resolved emission spectra of 1 in the ring-opened form in deoxygenated 

glycerol triacetate at room temperature and the corresponding lifetimes decay traces 

monitored at (b) 740 nm and (c) 620nm. Pulsed laser at excitation wavelength of 532 nm.
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Figure S19. Variable-temperature emission spectra of 1 in the ring-opened form in 

deoxygenated acetonitrile (a) without normalization and (b) with normalization at 750 nm.
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Figure S20. Variable-temperature emission spectra of L1 in the ring-opened form in 

deoxygenated acetonitrile.
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Figure S21. Transient absorption different spectral change of 1 (conc. = 10μM) (conc. = 

20μM) in their ring-opened forms with excess amount of Pb(II) ion in deoxygenated 

acetonitrile (a), deoxygenated dichloromethane (with 1% acetonitrile) (b) and deoxygenated 

glycerol triacetate at room temperature. Insets show the transient absorption lifetime fitting of 

the signal monitoring at 570 nm. Excitation wavelength = 532 nm.
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Figure S22. Singlet oxygen emission spectra of 1 and 2 with excess amount of Pb(II) ion and 

Rose Bengal. Inset shows their corresponding absorption spectra in the measurement.
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Figure S24. Time-resolved emission spectra of 1 in the ring-opened form in deoxygenated 

acetonitrile at room temperature with 355 nm pulse laser excitation.
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