Modelling Local Structural and Electronic Consequences of Proton- and Hydrogen-Atom uptake in VO₂ with Polyoxovanadate Clusters

Sourav Chakraborty, Eric Schreiber, Karla R. Sanchez-Lievanos, Mehrin Tariq, William W. Brennessel, Kathryn E. Knowles, and Ellen M. Matson*

Corresponding author email: matson@chem.rochester.edu

Supporting Information Table of contents.

Fig. S1 ¹ H-NMR spectra of $1-V_6O_7^{2-}$ and $2-V_6O_6(OSiMe_3)^{1-}$	S2
Fig. S2 ESI-MS (-ve) spectrum of 2-V ₆ O ₆ (OSiMe ₃) ¹⁻	S2
Table S1 Crystallographic parameters for 2-V ₆ O ₆ (OSiMe ₃) ¹⁻ and 3-V ₆ O ₆ (OSiMe ₃) ²⁻	S3
Table S2 Bond valence sum calculations for the crystallographically independent vanad	lium
ions in 2-V ₆ O ₆ (OSiMe ₃) ¹⁻	S3
Fig. S3 X-ray photoelectron spectra of $2-V_6O_6(OSiMe_3)$] ¹⁻ and V_6O_7 ¹⁻	S4
Fig. S4 ¹ H-NMR spectra corresponding to stability of 2-V ₆ O ₆ (OSiMe ₃) ¹	S4
Fig. S5 CV of $2-V_6O_6(OSiMe_3)^{1-}$ with various potential ranges	S5
Fig. S6 ¹ H-NMR spectrum of $3-V_6O_6(OSiMe_3)^2$	S6
Fig. S7 Sigle crystal X-ray structure of $3-V_6O_6(OSiMe_3)^{2-}$	S6
Table S3 Bond valence sum calculations for the crystallographically independent vanad	lium
ions in 3-V₆O₆(OSiMe₃)²⁻	S7

Fig. S1 ¹H-NMR spectra of $1-V_6O_7^{2-}$ and $2-V_6O_6(OSiMe_3)^{1-}$ in CD₃CN, 21°C.

Fig. S2 ESI-MS (-) ve spectrum of $2-V_6O_6(OSiMe_3)^{1-}$ in CH₃CN (m/z = 863 amu). The m/z = 790 amu corresponds to $[V_6O_7(OMe)_{12}]^{1-}$.

NT	2 V O (OS! V)	$2 V O (OS! M)^2$
Name	$2-V_6O_6(OSIMe_3)^{-1}$	3-V ₆ O ₆ (OSIMe ₃) ²⁻
Empirical formula	$C_{31}H_{81}NO_{19}SiV_6$	$C_{47}H_{117}N_2O_{19}SiV_6$
Formula weight	1105.69	1348.15
Temperature	100.00(10) K	100.00(10) K
Wavelength	1.54184 Å	1.54184 Å
Crystal system	orthorhombic	monoclinic
Space group	P _{bca}	$P2_{1}/n$
Unit cell dimensions	$a = 18.6012(3)$ Å, $\alpha = 90^{\circ}$	$a = 11.77236(17)$ Å, $\alpha = 90^{\circ}$
	$b = 18.2780(3)$ Å, $\beta = 90^{\circ}$	b = 34.8563(7) Å,
	$c = 29.0427(6)$ Å, $\gamma = 90^{\circ}$	$\beta = 96.0925(16)^{\circ}$
		$c = 16.6545(3)$ Å, $\gamma = 90^{\circ}$
Volume	9874.3(3) Å ³	6795.4(2) Å ³
Ζ	8	4
Reflections collected	65851	67275
Independent reflections	10356	14212
Goodness-of-fit on F2	1.094	1.060
Final R indices	R1 = 0.0619, wR2 = 0.1762	R1 = 0.0840, wR2 = 0.2377
[I>2sigma(I)]		
CCDC numbers	2058289	2058288

Table S1: Crystallographic parameters of 2-V₆O₆(OSiMe₃)¹⁻ and 3-V₆O₆(OSiMe₃)²⁻.

Table S2: Bond valence sum calculations for the crystallographically independent vanadium ions in $2-V_6O_6(OSiMe_3)^{1-}$ based on X-ray crystallographic data collected at 100 K. Table reflects the results of BVS calculations using V-O bond valence parameters (r₀) for different oxidation states of vanadium.

2-V ₆ O ₆ (OSiMe ₃) ¹⁻	V1	V2	V3	V4	V5	V6
V(III)	3.788	3.940	4.005	3.944	3.957	3.927
V(IV)	3.878	4.034	4.100	4.038	4.051	4.021
V(V)	4.151	4.300	4.369	4.305	4.319	4.285

Fig. S3 X-ray photoelectron spectra of the V $2p_{3/2}$ region of (a) $2-V_6O_6(OSiMe_3)]^{1-}$, and (b) $V_6O_7^{1-}$.

Fig. S4 ¹H-NMR spectra of dichloromethane solution of $2-V_6O_6(OSiMe_3)^{1-}$. Each spectrum relates to an aliquot of dichloromethane solution of $2-V_6O_6(OSiMe_3)^{1-}$ removed from the mother liquor after certain time intervals, dried *in vacuo*, and spectrum recorded (in CD₃CN, 21°C) (i) 1hr; (ii) 2hr; (iii) 3hr; (iv) 5 hr; (v) 6hr; (vi) 24 hrs. Red circles correspond to $2-V_6O_6(OSiMe_3)^{1-}$ ($\delta = 27.50$, 24.12 and -9.79 ppm),

blue circles correspond to $[V_6O_6(OMe_{12})]^{1-}(\delta = 25.3, 23.7 \text{ and } -15.8 \text{ ppm}),^1$ green circle corresponds to $[V_6O_7(OMe_{12})]^{1-}(\delta = 23.3 \text{ ppm})$ and black circle corresponds to hexamethyldisiloxane ($\delta = 0.03 \text{ ppm}$).

Fig. S5 CV of $2-V_6O_6(OSiMe_3)^{1-}$ in DCM at 20 mV/s in various potential ranges: -1.7 to -0.72 V (black), -1.7 to -0.22 V (red), -1.7 to 0.4 V (blue), and -1.7 to 1.08 V (green). Oxidative instability is observed, with waves growing in at oxidizing potentials, corresponding with mixtures of $2-V_6O_6(OSiMe)_3^{1-}$, $[V_6O_6(OMe_{12})]^{1-}$, and $[V_6O_7(OMe_{12})]^{1-}_{12}^{1,2}$

Fig. S6 Molecular structures of $3-V_6O_6(OSiMe_3)^{2-}$ shown with 30% probability ellipsoids. Hydrogen atoms, counter ions, and solvent molecules have been removed for clarity. Details of the crystallographic parameters are mentioned in Table S1.

Fig. S7 ¹H-NMR spectrum of $3-V_6O_6(OSiMe_3)^{2-}$ in CD₃CN, 21°C.

Table S3: Bond valence sum calculations for the crystallographically independent vanadium ions in $3-V_6O_6(OSiMe_3)^{2-}$ based on X-ray crystallographic data collected at 100 K. Table reflects the results of BVS calculations using V-O bond valence parameters (r₀) for different oxidation states of vanadium.

3-V ₆ O ₆ (OSiMe ₃) ²⁻	V1	V2	V3	V4	V5	V6
V(III)	3.127	3.933	3.969	3.947	3.913	3.886
V(IV)	3.202	4.027	4.063	4.042	4.006	3.978
V(V)	3.441	4.295	4.333	4.310	4.272	4.244

References

- 1. B. E. Petel, W. W. Brennessel and E. M. Matson, *J. Am. Chem. Soc.*, 2018, **140**, 8424-8428.
- 2. C. Daniel and H. Hartl, J. Am. Chem. Soc., 2005, 127, 13978-13987.