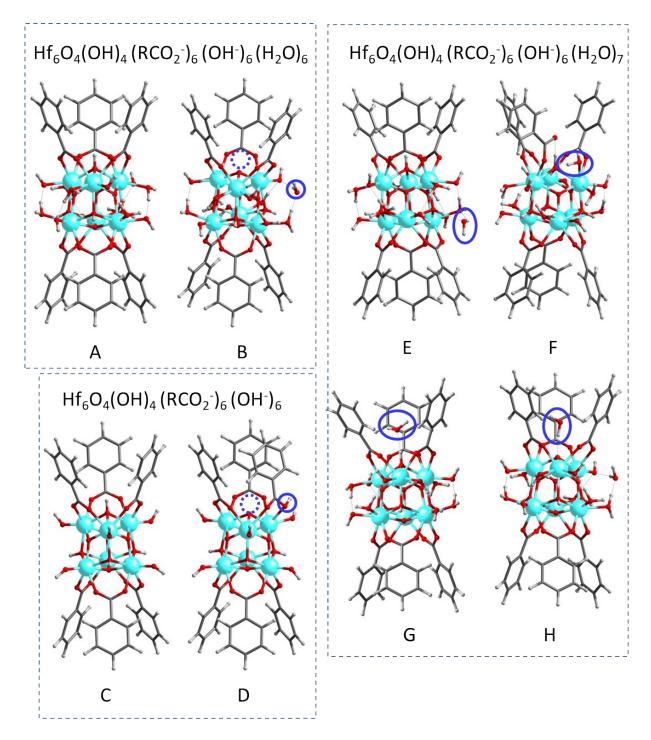
Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2021

Supporting Information

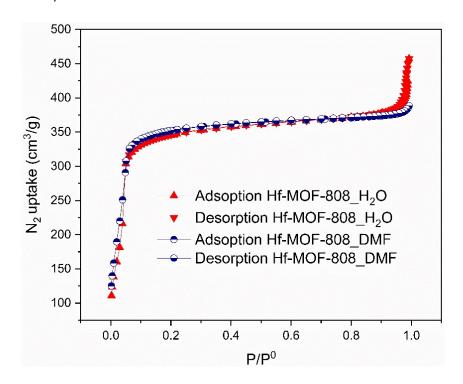
Tailoring Lewis/Brønsted acid properties of MOF nodes via hydrothermal and solvothermal synthesis: simple approach with exceptional catalytic implications

Sergio Rojas-Buzo,^a Benjamin Bohigues,^a Christian W. Lopes,^b Débora M. Meira,^{c,d} Mercedes Boronat,^a Manuel Moliner*^a and Avelino Corma*^a

^aInstituto de Tecnología Química, Universitat Politècnica de València - Consejo Superior de Investigaciones Científicas, Av. de los Naranjos, s/n, 46022 Valencia, Spain


^bInstitute of Chemistry, Universidade Federal do Rio Grande do Sul – UFRGS, Av. Bento Gonçalves, 9500, 91501-970 Porto Alegre, RS, Brazil.

^cCLS@APS, Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439, USA.

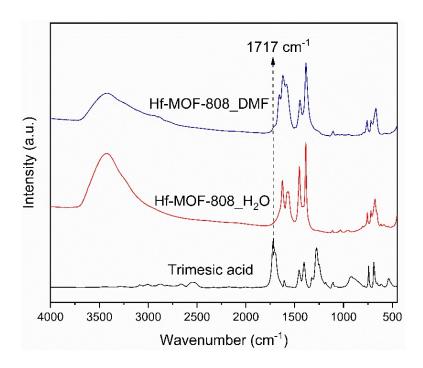
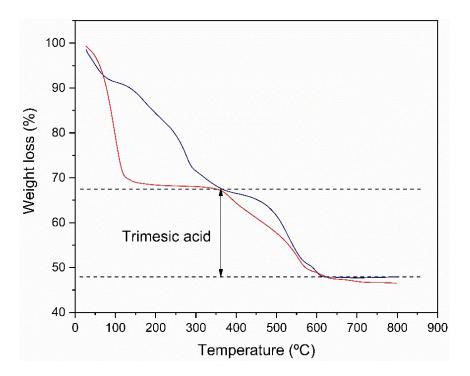
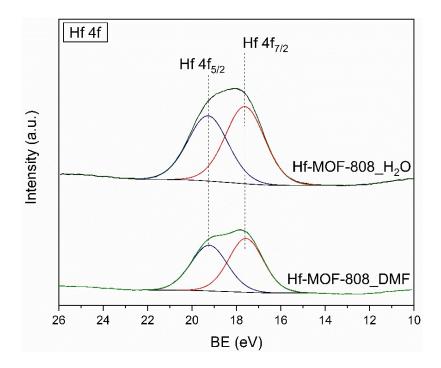

^dCanadian Light Source Inc., 44 Innovation Boulevard, Saskatoon, Saskatchewan S7N 2V3, Canada.

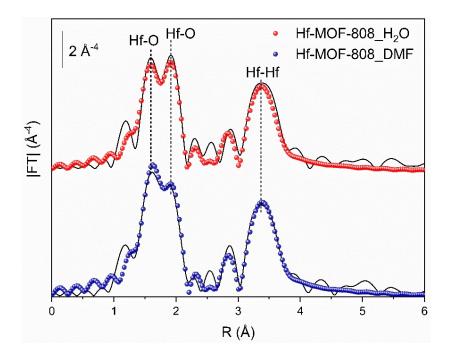
*Corresponding authors: mmoliner@itq.upv.es, acorma@itq.upv.es

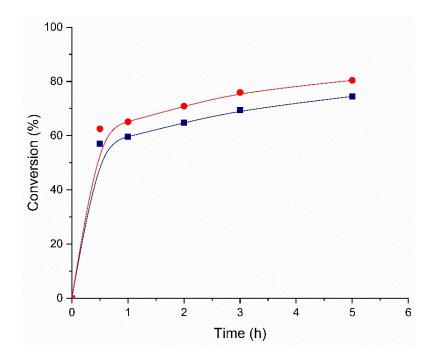
Figure S1. Hf-MOF-808 models used in the DFT simulations. The transferred proton in structures B and D, and the additional water molecules in E, F, G and H are marked with a blue circle. C and O atoms are depicted as gray and red sticks, Hf and H as cyan and white balls. The additional water molecules in G and H are not accessible for interaction with TMPO.

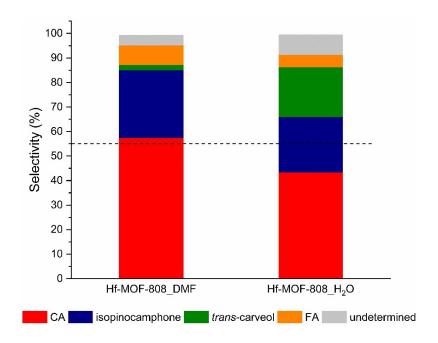
Figure S2. N₂ adsorption and desorption isotherms of Hf-MOF-808_H₂O (red triangles) and Hf-MOF-808_DMF (blue circles) materials.

Figure S3. FTIR spectra of Hf-MOF-808_H₂O (red line) and Hf-MOF-808_DMF (blue line) together with the FTIR spectrum of the organic ligand (black line) employed in its preparation.


Figure S4. Thermogravimetric analysis of Hf-MOF-808_H₂O (red line) and Hf-MOF-808_DMF (blue line).


Figure S5. Curve fitting for the Hf4f XPS spectra of Hf-MOF-808_DMF (bottom) and Hf-MOF-808_ H_2O (top).


Figure S6. Curve-fittings and |FT| of the k^3 -weighted $\chi(k)$ functions of Hf-MOF-808_H₂O (red) and Hf-MOF-808_DMF (blue).

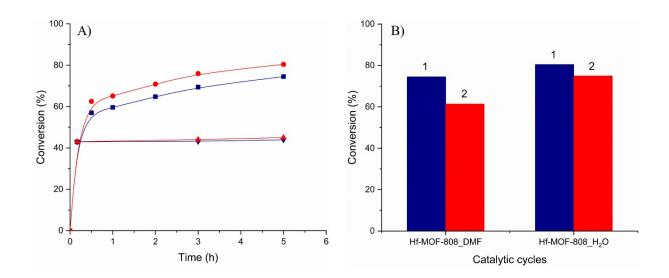

Figure S7. Kinetic profiles for α -pinene oxide conversion employing Hf-MOF-808_H₂O (red circles) and Hf-MOF-808_DMF (blue squares) as catalysts.

Figure S8. Product selectivity for the isomerization of α -pinene oxide at 75-80% conversion employing Hf-MOF-808_H₂O and Hf-MOF-808_DMF as catalysts. The dotted line indicates the selectivity of 55%.

Figure S9. A) Hot filtration test of Hf-MOF-808_ H_2O (red triangles) and Hf-MOF-808_DMF (blue triangles). B) Recyclability test of Hf-MOF-808_ H_2O and Hf-MOF-808_DMF after two consecutive runs for the isomerization of α -pinene oxide.

Scheme S1. α -pinene oxide isomerization catalyzed by Hf-MOF-808.

Table S1. Relative amount of Brønsted and Lewis acid sites obtained from ^{31}P MAS NMR spectra when TMPO was adsorbed onto Hf-MOF-808_H₂O (P/Hf molar ratio=0.18) and Hf-MOF-808_DMF (P/Hf molar ratio=0.21). Integrated ^{31}P peak area normalized at X ppm are calculated as: (mol P/g-cat)(mol Hf/g-cat)⁻¹(area % at δ =X ppm). TOF values were calculated for the epoxide ring-opening (ERO) and Meerwein-Ponndorf-Verley (MPV) reactions.

Sample	Acid site	δ ³¹ P (ppm)	Integrated ³¹ P area (a.u.)	% area	Integrated area normalized (%)	Ratio Brønsted/Lewis acid sites	Ratio ERO/MPV TOFs
	Lewis	55	14340	4.17	0.75		
Hf-MOF-		58	86555	25.16	4.53	2.41	4.41
808_H ₂ O	Brønsted	62	202195	58.77	10.59		2
	Brønstea	68	40958	11.90	2.14		
	Lewis	56	203220	57.90	12.16		
Hf-MOF-	204413	58	74419	21.20	4.45	0.26	0.42
808_DMF	Brønsted	62	59814	17.04	3.58	3.20	0.12
	2. p. 13tea	69	13512	3.85	0.81		

Table S2. Isotropic $\delta(^{31}P)$ chemical shifts and optimized PO bond lengths calculated for TMPO interacting with different sites in Hf-MOF-808 catalyst models.

Model	Site	δ(³¹ P) (ppm)	r(PO) (Å)
Α	Hf	52	1.521
Α	μ3-OH	48	1.521
В	H ⁺	68	1.554
С	Hf	52	1.520
С	μ3-OH	48	1.519
D	H ⁺	86	1.578
E	H ₂ O	42	1.514
F	H ₂ O	43	1.516

Table S3. Summary of optimized parameters by fitting the Hf L₃-edge EXAFS data.^a

Parameter	Hf-MOF-808_H₂O	Hf-MOF-808_DMF		
N _{Hf-O1}	2.4 ± 0.5	3.0 ± 0.4		
R _{Hf-O1} (Å)	2.060 ± 0.018	2.085 ± 0.013		
N _{Hf-O2}	3.7 ± 0.7	3.9 ± 0.6		
R _{Hf-O2} (Å)	2.225 ± 0.015	2.242 ± 0.013		
σ^2_{Hf-O} (Å ²)	0.0036 ± 0.0012			
N _{Hf-Hf}	3.4 ± 1.1	3.8 ± 1.2		
R _{Hf-Hf} (Å)	3.498 ± 0.009	3.506 ± 0.005		
σ ² _{Hf-Hf} (Å ²)	0.0043 ± 0.0011			
ΔE_0 (eV)	7.2 ± 0.9			
r-factor (%)	0.049	0.034		

[[]a]The fits were performed up to the second coordination shell over FT of the k^3 -weighted $\chi(k)$ functions performed in the $\Delta k = 2.0$ -13.3 Å⁻¹ and $\Delta R = 1.1$ -4.0 Å intervals, resulting into a number of independent parameters of 41. $S_0^2 = 1.0$.