Supporting Information

Electrooxidative o-Carborane Chalcogenations Without Directing

Groups: Cage Activation by Copper Catalysis at Room Temperature

Long Yang,⁺ Becky Bongsuiru Jei,⁺ Alexej Scheremetjew, Binbin Yuan, A. Claudia Stückl and Lutz Ackermann*

> Institut für Organische und Biomolekulare Chemie and Wöhler Research Institute for Sustainable Chemistry Georg-August-Universität Göttingen Tammannstraße 2, 37077 Göttingen, Germany Lutz.Ackermann@chemie.uni-goettingen.de

Table of Contents

General remarks	2
General procedure for electrochemical cage C-H chalcogenation	3
Optimization studies	4
Analytical data for products	5
Late-stage diversification	21
Mechanistic studies	23
Cyclic voltammetry	24
EPR studies	26
Possible catalytic cycle	
Computational studies	29
X-Ray crystallographic analysis	41
References	47
¹ H, ¹³ C, ¹⁹ F and ¹¹ B NMR spectra	48

General remarks

Catalytic reactions were carried out in undivided electrochemical cells (10 mL) using pre-dried glassware, unless otherwise stated. The following starting materials were synthesized according to previously described methods: **1a–1g**.^[1-3] Other chemicals were obtained from commercial sources and used without further purification. Platinum electrodes ($10 \text{ mm} \times 15 \text{ mm} \times 0.25 \text{ mm}$, 99.9%; obtained from ChemPur® Karlsruhe, Germany) and graphite felt (GF) electrodes (10 mm × 15 mm × 6 mm, SIGRACELL® GFA 6 EA, obtained from SGL Carbon, Wiesbaden, Germany) were connected using stainless steel adapters. Electrocatalysis was conducted using an AXIOMET AX-3003P potentiostat in constant current mode. IR spectra were recorded on a Bruker FT-IR alpha-P device. EI-MS was recorded on Jeol AccuTOF at 70 eV. Melting points (M.p.) were measured on StuartTM melting point apparatus SMP3, and the values are uncorrected. NMR spectra were recorded on Inova 500 or Bruker Avance III 300, Avance III 400 and Avance III HD 500 in the solvent indicated. Chemical shifts (δ) are provided in ppm and spectra refer to non-deuterated solvent signal. Yields refer to isolated compounds estimated to be >95% pure as determined by ¹H NMR. Recycling preparative HPLC (GPC) was performed on a system from JAI (LC-92XX II Series, Injection-and Control-Valve, UV and RI Detector) connected to JAIGEL HH series columns. CHCl3 of HPLC grade was employed. Xray structures were measured on Bruker APEX-II CCD diffractometer. CV studies were performed using a Metrohm Autolab PGSTAT204 workstation and Nova 2.1 software.

General procedure for electrochemical cage C-H chalcogenation

Procedure A: The electrocatalysis was carried out in an undivided cell under air, with a graphite felt (GF) anode (10 mm \times 15 mm \times 6 mm) and a platinum cathode (10 mm \times 15 mm \times 0.25 mm). *o*-Carborane **1** (0.10 mmol, 1.0 equiv), thiol **2** (0.30 mmol, 3.0 equiv), CuOAc (15 mol %), 2-PhPy (15 mol %), LiO*t*Bu (0.2 mmol, 2.0 equiv) and TBAI (0.2 mmol, 2.0 equiv) were dissolved in THF (3.0 mL). Electrocatalysis was performed at room temperature with a constant current of 2.0 mA maintained for 16 h. The GF anode was washed with ethyl acetate (3 \times 10 mL). Evaporation of the solvent and subsequent purification by column chromatography on silica gel with *n*-hexane (500 mL) or gel permeation chromatography (GPC) afford the corresponding products **3**.

Procedure B: The electrocatalysis was carried out in an undivided cell under air, with a graphite felt (GF) anode (10 mm × 15 mm × 6 mm) and a platinum cathode (10 mm × 15 mm × 0.25 mm). Thiol **2** (0.30 mmol, 3.0 equiv), LiO*t*Bu (0.2 mmol, 2.0 equiv) and TBAI (0.2 mmol, 2.0 equiv) were dissolved in THF (3.0 mL). Electrocatalysis was performed at room temperature with a constant current of 2.0 mA maintained for 3 h. Then, *o*-carborane **1** (0.10 mmol, 1.0 equiv), CuOAc (15 mol %) and 2-PhPy (15 mol %) were added to the reaction mixture and electrocatalysis was performed at room temperature with a constant current of 2.0 mA maintained for another 16 h. The GF anode was washed with ethyl acetate (3×10 mL). Evaporation of the solvent and subsequent purification by column chromatography on silica gel with *n*-hexane (500 mL) or gel permeation chromatography (GPC) afford the corresponding products **3**.

Optimization studies

Table S1. Optimization of reaction conditions.^[a]

H +		CuOAc (15 mol %) 2-PhPy (15 mol %)	SAr
Ph	$RU_6\Pi_4S\Pi$	LiO <i>t</i> Bu, TBAI, THF rt, 16 h, CCE @ 2 mA	Ph
1a	R = 4- <i>t</i> Bu 2b		3

Entry	Variation from standard conditions	Yield [%] ^[b]
1	none	90% (85%) ^[c]
2	Cu(OAc) ₂ instead of CuOAc	51%
3	CuI instead of CuOAc	43%
4	2,6-Lutidine instead of 2-PhPy	71%
5	1,10-Phen instead of 2-PhPy	16%
6	TBAPF ₆ instead of TBAI	
7	TBAI (1 equiv) and TBAPF ₆ (1 equiv)	57%
8	TBAI (3 equiv)	49%
9	KI (1 equiv) as additive	67%
10	KI (0.5 equiv) as additive	23%
11	DCE instead of THF	
12	CH ₃ CN instead of THF	49%
13	No electricity	14% ^[d]
14	In the dark	89%
15	Under N ₂	19%
16	No [Cu]	
17	Procedure B (2b)	66% (62%) ^[e,d]
18	Procedure B: second step without electricity (2b)	[f]
19	Procedure B (2a)	92% ^[e]

[a] Reaction conditions: Procedure A: **1a** (0.10 mmol), **2a** (0.30 mmol), CuOAc (15 mol %), 2-PhPy (15 mol %), LiOtBu (0.2 mmol), TBAI (2.0 equiv), THF (3.0 mL), platinum (Pt) cathode (10 mm × 15 mm × 0.25 mm), graphite felt (GF) anode (10 mm × 15 mm × 6 mm), 2 mA, under air, 25 °C, 16 h. [b] Yield was determined by ¹H NMR with CH₂Br₂ as the standard. [c] Isolated yields in parenthesis. [d] KI (1.0 equiv) as additive. [e] Procedure B: **2** (0.3 mmol), LiOtBu (0.2 mmol), TBAI (2.0 equiv), THF (3.0 mL), 2 mA, 25 °C, 3 h, then **1a** (0.10 mmol), 2-PhPy (15 mol %), CuOAc (15 mol %), 2 mA, 25 °C, 16 h. [f] **2b** (0.30 mmol), LiOtBu (0.2 mmol), 2 mA, 25 °C, 3 h, then adding **1a** (0.10 mmol), 2-PhPy (15 mol %), CuOAc (15 mol %), 25 °C, 16 h. TBAI = Tetrabutylammonium iodide, TBAPF₆ = Tetrabutylammonium hexafluorophosphate. DCE = 1,2-Dichloroethane, THF = Tetrahydrofuran.

Analytical data for products

3aa

3aa. The representative procedure A was followed using *o*-carborane **1a** (22.0 mg, 0.10 mmol) and 4-methoxybenzenethiol **2a** (36.9 µL, 0.30 mmol). Isolation by column chromatography (*n*-hexane) yielded **3aa** (30.5 mg, 85%) as a colorless solid. **M.p.** = 141 – 143 °C. ¹**H NMR** (400 MHz, CDCl₃): δ = 7.66 (d, *J* = 8.0 Hz, 2H), 7.57 (t, *J* = 7.4 Hz, 1H), 7.48 (t, *J* = 7.6 Hz, 2H), 6.86 (d, *J* = 8.7 Hz, 2H), 6.77 (d, *J* = 8.8 Hz, 2H), 3.83 (s, 3H). ¹³**C NMR** (101 MHz, CDCl₃): δ = 161.8 (C_q), 138.5 (CH), 132.2 (CH), 131.0 (C_q), 130.8 (CH), 128.5 (CH), 120.8 (C_q), 114.5 (CH), 87.9 (Cage C), 86.9 (Cage C), 55.4 (CH₃). ¹¹**B NMR** (96 MHz, CDCl₃): δ = -2.78 (2B), -9.14 (3B), -10.46 (3B), -11.59 (2B). **IR** (ATR): 2924, 2853, 2601, 2574, 2561, 1588, 1253, 1170, 1027 cm⁻¹. **MS** (EI) *m/z*: 358 [M]⁺. **HR-MS** (EI): *m/z* calcd. for C₁₅H₂₂¹⁰B₂¹¹B₈OS [M]⁺: 358.2397, found: 358.2386.

3ab. The representative procedure B with KI (16.6 mg, 0.10 mmol) was followed using *o*-carborane **1a** (22.0 mg, 0.10 mmol) and 4-(*tert*-butyl)benzenethiol **2b** (49.9 µL, 0.30 mmol). Isolation by column chromatography (*n*-hexane) yielded **3ab** (24.0 mg, 62%) as a colorless solid. **M.p.** = 177 – 179 °C. ¹**H NMR** (400 MHz, CDCl₃): δ = 7.69 – 7.64 (m, 2H), 7.62 – 7.53 (m, 1H), 7.51 – 7.46 (m, 2H), 7.30 – 7.26 (m, 2H), 6.92 – 6.85 (m, 2H), 1.33 (s, 9H). ¹³**C NMR** (101 MHz, CDCl₃): δ = 154.7 (C_q), 136.5 (CH), 132.2 (CH), 131.0 (C_q), 130.8 (CH), 128.5 (CH), 126.4 (C_q), 126.1 (CH), 88.1 (Cage C), 86.6 (Cage C), 34.9 (C_q), 31.1 (CH₃). ¹¹**B NMR** (96 MHz, CDCl₃): δ = -3.00 (2B), -9.24 (3B), -10.43 (2B), -11.65 (3B). **IR** (ATR): 2966, 2924, 2866, 2577, 2564, 1446, 1073, 687 cm⁻¹. **MS** (EI) *m/z*: 384 [M]⁺. **HR-MS** (EI): *m/z* calcd. for C₁₈H₂₈¹⁰B₂¹¹B₈S [M]⁺: 384.2919, found: 384.2904.

3ac. The representative procedure A with KI (16.6 mg, 0.10 mmol) was followed using *o*-carborane **1a** (22.0 mg, 0.10 mmol) and 4-methylbenzenethiol **2c** (37.2 mg, 0.30 mmol). Isolation by column chromatography (*n*-hexane) yielded **3ac** (18.9 mg, 55%) as a colorless solid. **M.p.** = 146 – 148 °C. ¹**H NMR** (400 MHz, CDCl₃): δ = 7.65 – 7.58 (m, 1H), 7.55 – 7.49 (m, 2H), 7.47 – 7.39 (m, 2H), 7.03 (d, *J* = 7.8 Hz, 2H), 6.79 (d, *J* = 8.2 Hz, 2H), 2.32 (s, 3H). ¹³**C NMR** (101 MHz, CDCl₃): δ = 141.6 (C_q), 136.7 (CH), 132.2 (CH), 130.9 (C_q), 130.8 (CH), 129.8 (CH), 128.5 (C_q), 126.5 (CH), 88.0 (Cage C), 86.5 (Cage C), 21.37 (CH₃). ¹¹**B NMR** (128 MHz, CDCl₃): δ = -2.59 (1B), -3.22 (1B), -8.51 (2B), -9.22 (2B), -10.42 (2B), -11.56 (2B). **IR** (ATR): 2954, 2598, 2568, 1973, 1492, 1446, 1179, 1073, 885 cm⁻¹. **MS** (EI) *m/z*: 342 [M]⁺. **HR-MS** (EI): *m/z* calcd. for C₁₅H₂₂¹⁰B₂¹¹B₈S [M]⁺: 342.2448, found: 342.2435.

3ad

3ad. The representative procedure B with KI (16.6 mg, 0.10 mmol) was followed using *o*-carborane **1a** (22.0 mg, 0.10 mmol) and 4-(trifluoromethyl)benzenethiol **2d** (41.1 µL, 0.30 mmol). Isolation by column chromatography (*n*-hexane) yielded **3ad** (30.6 mg, 77%) as a colorless solid. **M.p.** = 84 – 86 °C. ¹**H NMR** (400 MHz, CDCl₃): δ = 7.62 – 7.58 (m, 2H), 7.57 – 7.52 (m, 1H), 7.51 – 7.47 (m, 2H), 7.47 – 7.42 (m, 2H), 7.05 – 7.00 (m, 2H). ¹³**C NMR** (101 MHz, CDCl₃): δ = 137.0 (CH), 133.8 (C_q), 133.0 (q, ²*J*_{C-F} = 33 Hz, C_q), 132.1 (CH), 131.0 (CH), 130.7 (C_q), 128.6 (CH), 125.9 (q, ³*J*_{C-F} = 3.7 Hz, CH), 123.4 (q, ¹*J*_{C-F} = 273 Hz, C_q), 88.0 (Cage C), 84.7 (Cage C). ¹¹**B NMR** (128 MHz, CDCl₃): δ = -2.47 (2B), -9.09 (4B), -10.22 (2B), -11.48 (2B). ¹⁹**F NMR** (376 MHz, CDCl₃): δ = -63.07. **IR** (ATR): 2925, 2572, 1495, 1447, 1322, 1172, 1135, 1062, 842 cm⁻¹. **MS** (EI) *m/z*: 396 [M]⁺. **HR-MS** (EI): *m/z* calcd. for C₁₅H₁₉¹⁰B₂¹¹B₈F₃S [M]⁺: 396.2165, found: 396.2158.

3ae. The representative procedure A with KI (16.6 mg, 0.10 mmol) was followed using *o*-carborane **1a** (22.0 mg, 0.10 mmol) and 4-fluorobenzenethiol **2e** (32.0 μ L, 0.30 mmol). Isolation by column chromatography (*n*-hexane) yielded **3ae** (21.0 mg, 61%) as a colorless solid. **M.p.** = 103 – 105 °C. ¹**H NMR** (400 MHz, CDCl₃): δ = 7.69 – 7.61 (m, 2H), 7.61 – 7.54 (m, 1H), 7.51 – 7.44 (m, 2H), 7.01 – 6.87 (m, 4H). ¹³**C NMR** (101 MHz, CDCl₃): δ = 164.4 (d, ¹*J*_{C-F} = 254 Hz, C_q), 139.0 (d, ³*J*_{C-F} = 8.9 Hz, CH), 132.1 (CH), 130.9 (CH), 130.8 (C_q), 128.6 (CH), 125.3 (d, ⁴*J*_{C-F} = 3.6 Hz, C_q), 116.4 (d, ²*J*_{C-F} = 22 Hz, CH), 87.8 (Cage C), 85.8 (Cage C). ¹¹**B NMR** (96 MHz, CDCl₃): δ = -2.67 (2B), -8.91 (4B), -10.32 (2B), -11.54 (2B). ¹⁹**F NMR** (282 MHz, CDCl₃): δ = -107.68. **IR** (ATR): 2609, 2572, 2561, 1585, 1486, 1233, 1155, 835, 687 cm⁻¹. **MS** (EI) *m*/*z*: 346 [M]⁺. **HR-MS** (EI): *m*/*z* calcd. for C₁₄H₁₉¹⁰B₂¹¹B₈FS [M]⁺: 346.2197, found: 346.2185.

3af

3af. The representative procedure A was followed using *o*-carborane **1a** (22.0 mg, 0.10 mmol) and 4-chlorobenzenethiol **2f** (43.0 mg, 0.30 mmol). Isolation by column chromatography (*n*-hexane) yielded **3af** (26.0 mg, 71%) as a colorless solid. **M.p.** = 108 – 110 °C. ¹**H NMR** (400 MHz, CDCl₃): δ = 7.68 – 7.62 (m, 2H), 7.61 – 7.54 (m, 1H), 7.52 – 7.44 (m, 2H), 7.28 – 7.22 (m, 2H), 6.90 – 6.81 (m, 2H). ¹³**C NMR** (101 MHz, CDCl₃): δ = 138.0 (CH), 137.9 (C_q), 132.1 (CH), 131.0 (CH), 130.8 (C_q), 129.4 (CH), 128.6 (CH), 128.1 (C_q), 87.9 (Cage C), 85.4 (Cage C). ¹¹**B NMR** (96 MHz, CDCl₃): δ = -2.60 (2B), -8.90 (4B), -10.31 (2B), -11.54 (2B). **IR** (ATR): 2610, 2567, 1572, 1473, 1445, 1092, 1073, 746 cm⁻¹. **MS** (EI) *m/z*: 362 [M]⁺. **HR-MS** (EI): *m/z* calcd. for C₁₄H₁₉¹⁰B₂¹¹B₈³⁵ClS [M]⁺: 362.1904, found: 362.1893.

3ag. The representative procedure B with KI (16.6 mg, 0.10 mmol) and CuI (2.9 mg, 15 mol %) was followed using *o*-carborane **1a** (22.0 mg, 0.10 mmol) and 4-bromobenzenethiol **2g** (56.1 mg, 0.30 mmol). Isolation by column chromatography (*n*-hexane) yielded **3ag** (29.0 mg, 71 %) as a colorless solid. **M.p.** = 126 – 128 °C. ¹**H NMR** (400 MHz, CDCl₃): δ = 7.62 – 7.58 (m, 2H), 7.56 – 7.50 (m, 1H), 7.46 – 7.41 (m, 2H), 7.39 – 7.34 (m, 2H), 6.78 – 6.70 (m, 2H). ¹³C **NMR** (101 MHz, CDCl₃): δ = 138.1 (CH), 132.4 (CH), 132.1 (CH), 130.9 (CH), 130.7 (C_q), 128.6 (C_q), 128.5 (CH), 126.3 (C_q), 87.9 (Cage C), 85.2 (Cage C). ¹¹B NMR (128 MHz, CDCl₃): δ = -2.46 (2B), -9.13 (4B), -10.31 (2B), -11.52 (2B). **IR** (ATR): 2622, 2596, 1564, 1471, 1446, 1386, 1070, 1010, 810 cm⁻¹. **MS** (EI) *m/z*: 408 [M]⁺. **HR-MS** (EI): *m/z* calcd. for C₁₄H₁₉¹¹B₁₀S⁷⁹Br [M]⁺: 408.1363, found: 408.1358.

3ah

3ah. The representative procedure B with KI (16.6 mg, 0.10 mmol) was followed using *o*-carborane **1a** (22.0 mg, 0.10 mmol) and 3-methylbenzenethiol **2h** (35.6 µL, 0.30 mmol). Isolation by column chromatography (*n*-hexane) yielded **3ah** (30.3 mg, 88%) as a colorless solid. **M.p.** = 58 – 60 °C. ¹**H** NMR (400 MHz, CDCl₃): δ = 7.63 – 7.59 (m, 2H), 7.56 – 7.51 (m, 1H), 7.46 – 7.41 (m, 2H), 7.20 – 7.16 (m, 1H), 7.13 (t, *J* = 7.6 Hz, 1H), 6.79 (d, *J* = 7.5 Hz, 1H), 6.55 (s, 1H), 2.22 (s, 3H). ¹³**C** NMR (101 MHz, CDCl₃): δ = 138.9 (C_q), 137.3 (CH), 133.6 (CH), 132.2 (CH), 131.8 (CH), 130.8 (C_q), 130.7 (CH), 129.4 (C_q), 128.8 (CH), 128.4 (CH), 87.8 (Cage C), 86.2 (Cage C), 21.1 (CH₃). ¹¹**B** NMR (128 MHz, CDCl₃): δ = -2.43 (1B), -3.16 (1B), -8.42 (1B), -9.16 (2B), -10.45 (3B), -11.42 (2B). **IR** (ATR): 2922, 2564, 1591, 1494, 1474, 1446, 1377, 885, 780 cm⁻¹. **MS** (EI) *m/z*: 342 [M]⁺. **HR-MS** (EI): *m/z* calcd. for C₁₅H₂₂¹⁰B₂¹¹B₈S [M]⁺: 342.2448, found: 342.2434.

3ai. The representative procedure B was followed using *o*-carborane **1a** (22.0 mg, 0.10 mmol) and 3-methoxylbenzenethiol **2i** (37.2 µL, 0.30 mmol). Isolation by column chromatography (*n*-hexane) yielded **3ai** (22.2 mg, 62%) as a colorless oil. ¹**H NMR** (400 MHz, CDCl₃): $\delta = 7.66$ (d, J = 8.0 Hz, 2H), 7.59 – 7.54 (m, 1H), 7.51 – 7.44 (m, 2H), 7.18 (t, J = 8.0 Hz, 1H), 6.97 (dd, J = 8.4, 2.5 Hz, 1H), 6.56 (d, J = 7.6 Hz, 1H), 6.50 (s, 1H), 3.75 (s, 3H). ¹³**C NMR** (101 MHz, CDCl₃): $\delta = 159.5$ (C_q), 132.2 (CH), 131.0 (C_q), 130.8 (CH), 130.6 (C_q), 129.8 (CH), 129.0 (CH), 128.5 (CH), 121.5 (CH), 117.4 (CH), 88.1 (Cage C), 86.1 (Cage C), 55.4 (CH₃). ¹¹**B NMR** (96 MHz, CDCl₃): $\delta = -2.69$ (2B), -9.12 (4B), -10.34 (2B), -11.44 (2B). **IR** (ATR): 2961, 2934, 2597, 2564, 1589, 1479, 1249, 1231, 1040, 688 cm⁻¹. **MS** (EI) *m/z*: 358 [M]⁺. **HR-MS** (EI): *m/z* calcd. for C₁₅H₂₂¹⁰B₂¹¹B₈OS [M]⁺: 358.2397, found: 358.2385.

3aj

3aj. The representative procedure B with KI (16.6 mg, 0.10 mmol) was followed using *o*-carborane **1a** (22.0 mg, 0.10 mmol) and 3-(trifluoromethyl)benzenethiol **2j** (40.8 µL, 0.30 mmol). Isolation by column chromatography (*n*-hexane) yielded **3aj** (29.5 mg, 74%) as a colorless oil. ¹**H NMR** (400 MHz, CDCl₃): $\delta = 7.65$ (d, J = 7.8 Hz, 1H), 7.61 – 7.52 (m, 3H), 7.47 – 7.40 (m, 3H), 7.34 – 7.30 (m, 1H), 6.93 – 6.87 (m, 1H). ¹³**C NMR** (101 MHz, CDCl₃): $\delta = 139.9$ (CH), 133.5 (q, ³*J*_{C-F} = 3.8 Hz, CH), 132.0 (CH), 131.5 (q, ²*J*_{C-F} = 33 Hz, C_q), 131.1 (CH), 130.8 (C_q), 130.5 (C_q), 129 (CH), 128.7 (CH), 127.9 (q, ³*J*_{C-F} = 3.7 Hz, CH), 123.2 (q, ¹*J*_{C-F} = 273 Hz, C_q), 88.0 (Cage C), 84.9 (Cage C). ¹¹**B NMR** (128 MHz, CDCl₃): $\delta = -2.31$ (2B), -9.02 (4B), -10.25 (2B), -11.46 (2B). ¹⁹**F NMR** (376 MHz, CDCl₃): $\delta = -62.78$. **IR** (ATR): 2755, 1580, 1420, 1320, 1272, 1165, 1122, 1071, 792 cm⁻¹. **MS** (EI) *m/z*: 396 [M]⁺. **HR-MS** (EI): *m/z* calcd. for C₁₅H₁₉¹⁰B₂¹¹B₈F₃S [M]⁺: 396.2165, found: 396.2154.

3ak

3ak. The representative procedure B with KI (16.6 mg, 0.10 mmol) was followed using *o*-carborane **1a** (22.0 mg, 0.10 mmol) and 3-chlorobenzenethiol **2k** (34.5 μ L, 0.30 mmol). Isolation by column chromatography (*n*-hexane) yielded **3ak** (21.4 mg, 59%) as a colorless solid. **M.p.** = 60 – 62 °C. ¹**H NMR** (400 MHz, CDCl₃): δ = 7.63 – 7.52 (m, 3H), 7.49 – 7.42 (m, 2H), 7.37 (ddd, *J* = 8.1, 2.1, 1.0 Hz, 1H), 7.23 – 7.17 (m, 1H), 6.95 (ddd, *J* = 7.8, 1.7, 1.1 Hz, 1H), 6.62 (ddd, *J* = 2.1, 1.7, 0.4 Hz, 1H). ¹³**C NMR** (101 MHz, CDCl₃): δ = 136.4 (CH), 134.7 (CH), 134.4 (Cq), 132.1 (CH), 131.3 (CH), 131.1 (Cq), 131.0 (CH), 130.6 (Cq), 130.1 (CH), 128.6 (CH), 87.8 (Cage C), 85.1 (Cage C). ¹¹**B NMR** (128 MHz, CDCl₃): δ = -2.37 (1B), -2.90 (1B), -9.11 (4B), -10.37 (2B), -11.46 (2B). **IR** (ATR): 2922, 2565, 1573, 1459, 1398, 1116, 1071, 864, 771 cm⁻¹. **MS** (EI) *m/z*: 362 [M]⁺. **HR-MS** (EI): *m/z* calcd. for C₁₄H₁₉¹⁰B₂¹¹B₈S³⁵Cl [M]⁺: 362.1904, found: 362.1893.

3al

3al. The representative procedure B with KI (16.6 mg, 0.10 mmol) and CuI (2.9 mg, 15 mol %) was followed using *o*-carborane **1a** (22.0 mg, 0.10 mmol) and 3-bromobenzenethiol **2l** (31.0 μ L, 0.30 mmol). Isolation by column chromatography (*n*-hexane) yielded **3al** (24.1 mg, 59%) as a colorless oil. ¹**H NMR** (400 MHz, CDCl₃): $\delta = 7.62 - 7.57$ (m, 2H), 7.57 - 7.50 (m, 2H), 7.49 - 7.42 (m, 2H), 7.15 (t, J = 7.9 Hz, 1H), 7.02 (ddd, J = 7.8, 1.7, 1.1 Hz, 1H), 6.75 (t, J = 1.8 Hz, 1H). ¹³**C NMR** (101 MHz, CDCl₃): $\delta = 139.2$ (CH), 135.1 (CH), 134.2 (CH), 132.1 (CH), 131.4 (Cq), 131.0 (CH), 130.5 (Cq), 130.4 (CH), 128.7 (CH), 122.4 (Cq), 87.8 (Cage C), 85.1 (Cage C). ¹¹**B NMR** (128 MHz, CDCl₃): $\delta = -2.35$ (2B), -9.11 (4B), -10.37 (2B), -11.44 (2B). **IR** (ATR): 2918, 2589, 1559, 1455, 1394, 1066, 866, 770, 672 cm⁻¹. **MS** (EI) m/z: 408 [M]⁺. **HR-MS** (EI): m/z calcd. for C₁₄H₁₉¹¹B₁₀S⁷⁹Br [M]⁺: 408.1363, found: 408.1360.

3am

3am. The representative procedure B with KI (16.6 mg, 0.10 mmol) was followed using *o*-carborane **1a** (22.0 mg, 0.10 mmol) and 2-florobenzenethiol **2m** (32.0 µL, 0.30 mmol). Isolation by column chromatography (*n*-hexane) yielded **3am** (18.5 mg, 53%) as a colorless solid. **M.p.** = 116 – 118 °C. ¹**H NMR** (400 MHz, CDCl₃): $\delta = 7.73 - 7.66$ (m, 2H), 7.61 – 7.54 (m, 1H), 7.53 – 7.44 (m, 3H), 7.17 – 7.03 (m, 2H), 6.94 – 6.84 (m, 1H). ¹³C **NMR** (101 MHz, CDCl₃): $\delta = 163.3$ (d, ¹*J*_{C-F} = 253 Hz, C_q), 139.4 (CH), 134.1 (d, ³*J*_{C-F} = 8.4 Hz, CH), 132.1 (CH), 130.9 (C_q), 130.9 (CH), 128.5 (CH), 124.5 (d, ³*J*_{C-F} = 4.0 Hz, CH), 117.0 (d, ²*J*_{C-F} = 18.2 Hz, C_q), 116.5 (d, ²*J*_{C-F} = 23.1 Hz, CH), 88.7 (Cage C), 85.2 (Cage C). ¹¹B **NMR** (96 MHz, CDCl₃): $\delta = -2.87$ (2B), -8.30 (2B), -9.21 (1B), -9.90 (3B), -11.53 (2B). ¹⁹F **NMR** (282 MHz, CDCl₃): $\delta = -102.48$. **IR** (ATR): 2598, 2557, 1470, 1261, 1223, 1067, 755, 689 cm⁻¹. **MS** (EI) *m*/*z*: 346 [M]⁺. **HR-MS** (EI): *m*/*z* calcd. for C₁₄H₁₉¹⁰B₂¹¹B₈FS [M]⁺: 346.2197, found: 346.2183.

3an. The representative procedure B with KI (16.6 mg, 0.10 mmol) was followed using *o*-carborane **1a** (22.0 mg, 0.10 mmol) and 2-chlorobenzenethiol **2n** (33.6 µL, 0.30 mmol). Isolation by column chromatography (*n*-hexane) yielded **3an** (27.5 mg, 76%) as a colorless solid. **M.p.** = 146 – 148 °C. ¹**H NMR** (400 MHz, CDCl₃): δ = 7.72 – 7.64 (m, 2H), 7.56 – 7.47 (m, 1H), 7.49 – 7.40 (m, 3H), 7.40 – 7.31 (m, 1H), 7.21 – 7.12 (m, 1H), 7.02 (d, *J* = 7.8 Hz, 1H). ¹³**C NMR** (101 MHz, CDCl₃): δ = 141.1 (C_q), 140.0 (CH), 132.7 (CH), 132.1 (CH), 131.1 (C_q), 130.9 (CH), 130.6 (CH), 128.9 (C_q), 128.6 (CH), 127.1 (CH), 89.5 (Cage C), 85.7 (Cage C). ¹¹**B NMR** (128 MHz, CDCl₃): δ = -2.90 (2B), -8.40 (2B), -9.57 (4B), -11.70 (2B). **IR** (ATR): 2500, 1945, 1447, 1321, 1259, 1166, 1134, 1070, 749 cm⁻¹. **MS** (EI) *m/z*: 362 [M]⁺. **HR-MS** (EI): *m/z* calcd. for C₁₄H₁₉¹⁰B₂¹¹B₈S³⁵C1 [M]⁺: 362.1904, found: 362.1893.

3ao

3ao. The representative procedure B was followed using *o*-carborane **1a** (22.0 mg, 0.10 mmol) and benzenethiol **2o** (31.0 µL, 0.30 mmol). Isolation by column chromatography (*n*-hexane) yielded **3ao** (20.0 mg, 61%) as a colorless solid. **M.p.** = 112 – 114 °C. ¹**H NMR** (300 MHz, CDCl₃): δ = 7.66 (d, *J* = 7.6 Hz, 2H), 7.61 – 7.54 (m, 1H), 7.51 – 7.40 (m, 3H), 7.32 – 7.25 (m, 2H), 6.96 (d, *J* = 7.7 Hz, 2H). ¹³**C NMR** (75 MHz, CDCl₃): δ = 136.8 (CH), 132.2 (CH), 131.1 (CH), 130.9 (Cq), 130.9 (CH), 129.8 (Cq), 129.1 (CH), 128.5 (CH), 88.1 (Cage C), 86.1 (Cage C). ¹¹**B NMR** (96 MHz, CDCl₃): δ = -2.78 (2B), -9.14 (3B), -10.35 (3B), -11.50 (2B). **IR** (ATR): 2612, 2589, 2560, 1585, 1486, 1232, 1077, 686 cm⁻¹. **MS** (EI) *m/z*: 328 [M]⁺. **HR-MS** (EI): *m/z* calcd. for C₁₄H₂₀¹⁰B₂¹¹B₈S [M]⁺: 328.2291, found: 328.2279.

3ap

3ap. The representative procedure B with KI (16.6 mg, 0.10 mmol) was followed using *o*-carborane **1a** (22.0 mg, 0.10 mmol) and 2,4-dimethylbenzenethiol **2p** (40.3 µL, 0.30 mmol). Isolation by column chromatography (*n*-hexane) yielded **3ap** (23.1 mg, 65%) as a colorless solid. **M.p.** = 97 – 99 °C. ¹**H NMR** (400 MHz, CDCl₃): δ = 7.71 – 7.64 (m, 2H), 7.55 – 7.47 (m, 1H), 7.49 – 7.40 (m, 2H), 7.05 – 6.99 (m, 1H), 6.91 – 6.84 (m, 1H), 6.75 (d, *J* = 7.9 Hz, 1H), 2.29 (s, 3H), 2.21 (s, 3H). ¹³**C NMR** (101 MHz, CDCl₃): δ = 143.9 (C_q), 141.9 (C_q), 138.6 (CH), 132.1 (CH), 131.7 (CH), 131.3 (C_q), 130.7 (CH), 128.6 (CH), 127.3 (CH), 126.1 (C_q), 89.5 (Cage C), 87.4 (Cage C), 21.3 (CH₃), 20.7 (CH₃). ¹¹**B NMR** (128 MHz, CDCl₃): δ = -3.05 (2B), -8.58 (2B), -9.80 (4B), -11.72 (2B). **IR** (ATR): 2919, 2851, 2586, 2569, 1600, 1446, 1232, 1074, 886 cm⁻¹. **MS** (EI) *m/z*: 356 [M]⁺. **HR-MS** (EI): *m/z* calcd. for C₁₆H₂₄¹⁰B₂¹¹B₈S [M]⁺: 356.2605, found: 356.2593.

3aq

3aq. The representative procedure B with KI (16.6 mg, 0.10 mmol) was followed using *o*-carborane **1a** (22.0 mg, 0.10 mmol) and 2,4-difluorobenzenethiol **2q** (33.1 µL, 0.30 mmol). Isolation by column chromatography (*n*-hexane) yielded **3aq** (32.8 mg, 65%) as a colorless solid. **M.p.** = 109 – 111 °C. ¹**H NMR** (400 MHz, CDCl₃): δ = 7.69 – 7.60 (m, 2H), 7.56 – 7.48 (m, 1H), 7.48 – 7.39 (m, 2H), 6.88 – 6.71 (m, 3H). ¹³**C NMR** (101 MHz, CDCl₃): δ = 165.4 (dd, ¹*J*_{C-F} = 257 Hz, ³*J*_{C-F} = 10.8 Hz, C_q), 163.9 (dd, ¹*J*_{C-F} = 256 Hz, ³*J*_{C-F} = 13.4 Hz, C_q), 140.6 (dd, ³*J*_{C-F} = 10.2, 10.2 Hz, CH), 132.1 (CH), 131.0 (CH), 130.9 (C_q), 128.6 (CH), 112.9 (dd, ²*J*_{C-F} = 18.5 Hz, ⁴*J*_{C-F} = 3.9 Hz, C_q), 112.2 (dd, ²*J*_{C-F} = 22.0 Hz, ⁴*J*_{C-F} = 3.9 Hz, CH), 105.1 (dd, ²*J*_{C-F} = 25.8, 25.9 Hz, CH), 88.5 (Cage C), 84.9 (Cage C). ¹¹**B NMR** (128 MHz, CDCl₃): δ = -2.20 (1B), -3.38 (1B), -7.71 (2B), -9.26 (2B), -10.50 (2B), -12.38 (2B). ¹⁹**F NMR** (282 MHz, CDCl₃): δ = -97.08 (d, *J* = 11.5 Hz), -101.85 (d, *J* = 11.5 Hz). **IR** (ATR): 3059, 1487, 1443, 1201, 1155, 1056, 907, 734 cm⁻¹. **MS** (EI) *m/z*: 364 [M]⁺. **HR-MS** (EI): *m/z* calcd. for C₁₄H₁₈¹⁰B₂¹¹B₈SF₂ [M]⁺: 364.2102, found: 364.2098.

3ar. The representative procedure B was followed using *o*-carborane **1a** (22.0 mg, 0.10 mmol) and naphthalene-2-thiol **2r** (43.2 mg, 0.30 mmol). Isolation by column chromatography (*n*-hexane) yielded **3ar** (35.2 mg, 93%) as a colorless solid. **M.p.** = 129 – 131 °C. ¹**H NMR** (400 MHz, CDCl₃): δ = 7.83 – 7.79 (m, 1H), 7.71 (d, *J* = 8.7 Hz, 1H), 7.64 – 7.44 (m, 8H), 7.18 – 7.15 (m, 1H), 7.08 (dd, *J* = 8.5, 1.8 Hz, 1H). ¹³**C NMR** (101 MHz, CDCl₃): δ = 137.6 (CH), 133.9 (C_q), 132.8 (C_q), 132.3 (CH), 132.1 (CH), 130.9 (C_q), 130.8 (CH), 128.8 (CH), 128.5 (CH), 128.3 (CH), 128.0 (CH), 127.7 (CH), 126.8 (CH), 126.8 (C_q) 87.8 (Cage C), 85.9 (Cage C). ¹¹**B NMR** (128 MHz, CDCl₃): δ = -2.37 (1B), -3.12 (1B), -8.44 (2B), -9.14 (2B), -10.49 (3B), -11.39 (1B). **IR** (ATR): 3057, 2594, 1581, 1494, 1446, 1072, 901, 859, 808, 743 cm⁻¹. **MS** (EI) *m/z*: 378 [M]⁺. **HR-MS** (EI): *m/z* calcd. for C₁₈H₂₂¹⁰B₂¹¹B₈S [M]⁺: 378.2449, found: 378.2436.

3as. The representative procedure B with KI (16.6 mg, 0.10 mmol) was followed using *o*-carborane **1a** (22.0 mg, 0.10 mmol) and benzenethiol **2s** (27.8 µL, 0.30 mmol). Isolation by column chromatography (*n*-hexane) yielded **3as** (18.0 mg, 54%) as a colorless solid. **M.p.** = 83 – 85 °C. ¹H NMR (300 MHz, CDCl₃): δ = 7.68 (d, *J* = 7.6 Hz, 2H), 7.59 – 7.45 (m, 4H), 6.97 (dd, *J* = 5.3, 3.6 Hz, 1H), 6.64 (d, *J* = 3.9 Hz, 1H). ¹³C NMR (75 MHz, CDCl₃): δ = 139.3 (CH), 134.1 (CH), 132.1 (CH), 130.9 (CH), 130.6 (C_q), 128.6 (CH), 127.7 (CH), 127.6 (C_q), 87.4 (Cage C), 85.6 (Cage C). ¹¹B NMR (96 MHz, CDCl₃): δ = -2.70 (2B), -9.16 (3B), -10.37 (3B), -11.72 (2B). **IR** (ATR): 2922, 2852, 2605, 2589, 2559, 1399, 1218, 852, 710 cm⁻¹. **MS** (EI) *m/z*: 334 [M]⁺. **HR-MS** (EI): *m/z* calcd. for C₁₂H₁₈¹⁰B₂¹¹B₈S₂ [M]⁺: 334.1854, found: 334.1845.

3at. The representative procedure B with KI (16.6 mg, 0.10 mmol) was followed using *o*-carborane **1a** (22.0 mg, 0.10 mmol) and cyclohexanethiol **2t** (35.5 µL, 0.30 mmol). Isolation by column chromatography (*n*-hexane) yielded **3at** (20.0 mg, 60%) as a colorless oil. ¹H NMR (400 MHz, CDCl₃): $\delta = 7.65 - 7.58$ (m, 2H), 7.47 - 7.41 (m, 1H), 7.41 - 7.33 (m, 2H), 2.76 - 2.68 (m, 1H), 1.69 - 1.60 (m, 2H), 1.51 - 1.40 (m, 2H), 1.33 - 0.98 (m, 6H). ¹³C NMR (101 MHz, CDCl₃): $\delta = 131.8$ (CH), 131.0 (C_q), 130.6 (CH), 128.3 (CH), 88.6 (Cage C), 87.0 (Cage C), 50.5 (CH), 33.9 (CH₂), 25.7 (CH₂), 25.0 (CH₂). ¹¹B NMR (128 MHz, CDCl₃): $\delta = -2.81$ (2B), -8.18 (2B), -9.37 (2B), -10.21 (2B), -11.07 (2B). IR (ATR): 2932, 2852, 2557, 1494, 1447, 1321, 1261, 1075, 884 cm⁻¹. MS (EI) *m/z*: 334 [M]⁺. HR-MS (EI): *m/z* calcd. for C₁₄H₂₆¹⁰B₂¹¹B₈S [M]⁺: 334.2760, found: 334.2748.

3au. The representative procedure B was followed using *o*-carborane **1a** (22.0 mg, 0.10 mmol) and 1-undecanethiol **2u** (67.9 μ L, 0.30 mmol). Isolation by column chromatography (*n*-hexane)

yielded **3au** (22.0 mg, 54%) as a colorless oil. ¹H NMR (300 MHz, CDCl₃): δ = 7.65 (d, J = 7.6 Hz, 2H), 7.52 – 7.46 (m, 1H), 7.45 – 7.37 (m, 2H), 2.65 (t, J = 7.2 Hz, 2H), 1.37 – 1.12 (m, 18H), 0.95 – 0.88 (m, 3H). ¹³C NMR (75 MHz, CDCl₃): δ = 131.6 (CH), 131.1 (C_q), 130.7 (CH), 128.5 (CH), 88.7 (Cage C), 86.7 (Cage C), 36.9 (CH₂), 31.9 (CH₂), 29.6 (CH₂), 29.5 (CH₂), 29.3 (2CH₂), 28.8 (CH₂), 28.3 (CH₂), 28.0 (CH₂), 22.7 (CH₂), 14.1 (CH₃). ¹¹B NMR (96 MHz, CDCl₃): δ = -2.96 (2B), -8.35 (2B), -10.02 (5B), -11.34 (1B). IR (ATR): 2957, 2923, 2853, 2593, 1447, 1276, 766, 750 cm⁻¹. MS (EI) *m/z*: 406 [M]⁺. HR-MS (EI): *m/z* calcd. for C₁₉H₃₈¹⁰B₂¹¹B₈S [M]⁺: 406.3702, found: 406.3694.

4bo. The representative procedure B was followed using *o*-carborane **1b** (23.4 mg, 0.10 mmol) and benzenethiol **2o** (30.8 µL, 0.30 mmol). Isolation by column chromatography (*n*-hexane) yielded **4bo** (32.2 mg, 94%) as a colorless solid. **M.p.** = 114 – 116 °C. ¹**H NMR** (400 MHz, CDCl₃): δ = 7.51 – 7.46 (m, 2H), 7.42 – 7.37 (m, 1H), 7.28 – 7.21 (m, 4H), 7.01 – 6.96 (m, 2H), 2.43 (s, 3H). ¹³**C NMR** (101 MHz, CDCl₃): δ = 141.3 (C_q), 137.0 (CH), 132.1 (CH), 131.1 (CH), 129.9 (C_q), 129.2 (CH), 129.1 (CH), 128.2 (C_q), 88.6 (Cage C), 86.3 (Cage C), 21.2 (CH₃). ¹¹**B NMR** (128 MHz, CDCl₃): δ = -2.90 (2B), -9.10 (3B), -10.40 (3B), -11.55 (2B). **IR** (ATR): 2922, 2564, 1612, 1509, 1471, 1439, 1260, 1193, 888 cm⁻¹. **MS** (EI) *m/z*: 342 [M]⁺. **HR-MS** (EI): *m/z* calcd. for C₁₅H₂₂¹⁰B₂¹¹B₈S [M]⁺: 342.2448, found: 342.2436.

4bb. The representative procedure B was followed using *o*-carborane **1b** (23.0 mg, 0.10 mmol) and 4-(*tert*-butyl)benzenethiol **2b** (49.9 μ L, 0.30 mmol). Isolation by column chromatography (*n*-hexane) yielded **4bb** (24.7 mg, 62%) as a colorless solid. **M.p.** = 106 - 108 °C. **¹H NMR** (400 MHz, CDCl₃): δ = 7.51 (d, *J* = 8.4 Hz, 2H), 7.27 (d, *J* = 6.0 Hz, 2H), 7.25 (d,

J = 6.0 Hz, 2H), 6.93 (d, J = 8.4 Hz, 2H), 2.45 (s, 3H), 1.30 (s, 9H). ¹³C NMR (101 MHz, CDCl₃): $\delta = 154.6$ (C_q), 141.2 (C_q), 136.6 (CH), 132.1 (CH), 129.2 (CH), 128.3 (C_q), 126.5 (C_q), 126.1 (CH), 88.6 (Cage C), 86.7 (Cage C), 34.9 (C_q), 31.1 (CH₃), 21.2 (CH₃). ¹¹B NMR (96 MHz, CDCl₃): $\delta = -3.14$ (2B), -9.15 (3B), -10.52 (3B), -11.76 (2B). IR (ATR): 2962, 2924, 2852, 2594, 2572, 1460, 1259, 765 cm⁻¹. MS (EI) *m/z*: 398 [M]⁺. HR-MS (EI): *m/z* calcd. for C₁₉H₃₀¹⁰B₂¹¹B₈S [M]⁺: 398.3076, found: 398.3064.

4br. The representative procedure B was followed using *o*-carborane **1b** (23.4 mg, 0.10 mmol) and naphthalene-2-thiol **2r** (43.2 mg, 0.30 mmol). Isolation by column chromatography (*n*-hexane) yielded **4br** (39.2 mg, 62%) as a colorless solid. **M.p.** = 165 – 166 °C. ¹**H NMR** (400 MHz, CDCl₃): δ = 7.84 – 7.79 (m, 1H), 7.72 (dd, *J* = 8.5, 0.6 Hz, 1H), 7.62 – 7.58 (m, 1H), 7.57 – 7.53 (m, 1H), 7.53 – 7.47 (m, 3H), 7.27 – 7.24 (m, 2H), 7.22 (dd, *J* = 1.8, 0.9 Hz, 1H), 7.12 (dd, *J* = 8.5, 1.8 Hz, 1H), 2.49 (s, 3H). ¹³**C NMR** (101 MHz, CDCl₃): δ = 141.3 (C_q), 137.6 (CH), 133.9 (C_q), 132.9 (C_q), 132.2 (CH), 132.2 (CH), 129.2 (CH), 128.8 (CH), 128.2 (CH), 128.2 (CH), 128.2 (CH), 126.9 (C_q), 126.8 (CH), 88.1 (Cage C), 86.0 (Cage C), 21.3 (CH₃). ¹¹**B NMR** (128 MHz, CDCl₃): δ = -2.63 (2B), -9.08 (4B), -10.53 (2B), -11.48 (2B). **IR** (ATR): 2591, 1276, 1259, 816, 766, 748 cm⁻¹. **MS** (EI) *m*/*z*: 392 [M]⁺. **HR-MS** (EI): *m*/*z* calcd. for C₁₉H₂₄¹⁰B₂¹¹B₈S [M]⁺: 392.2600, found: 392.2600.

4co. The representative procedure B was followed using *o*-carborane **1c** (25.1 mg, 0.10 mmol) and benzenethiol **2o** (30.8 μ L, 0.30 mmol). Isolation by column chromatography (*n*-hexane) yielded **4co** (25.1 mg, 70%) as a colorless oil. ¹**H NMR** (400 MHz, CDCl₃): δ = 7.51 (d, *J* = 9.0 Hz, 2H), 7.42 – 7.37 (m, 1H), 7.28 – 7.22 (m, 2H), 6.99 (dd, *J* = 8.3, 1.3 Hz, 2H), 6.92 (d, *J*

= 9.0 Hz, 2H), 3.88 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): δ = 161.6 (C_q), 136.9 (CH), 133.7 (CH), 131.1 (CH), 129.9 (C_q), 129.1 (CH), 123.3 (C_q), 113.7 (CH), 88.9 (Cage C), 86.7 (Cage C), 55.5 (CH₃). ¹¹B NMR (128 MHz, CDCl₃): δ = -3.01 (2B), -9.06 (4B), -10.52 (2B), -11.55 (2B). IR (ATR): 2588, 1971, 1607, 1511, 1302, 1261, 1184, 835, 748 cm⁻¹. MS (EI) *m/z*: 358 [M]⁺. HR-MS (EI): *m/z* calcd. for C₁₅H₂₂¹⁰B₂¹¹B₈SO [M]⁺: 358.2395, found: 358.2391.

4do. The representative procedure B with KI (16.6 mg, 0.10 mmol) was followed using *o*-carborane **1d** (25.4 mg, 0.10 mmol) and benzenethiol **2o** (30.8 µL, 0.30 mmol). Isolation by column chromatography (*n*-hexane) yielded **4do** (28.2 mg, 78%) as a colorless oil. ¹H NMR (400 MHz, CDCl₃): δ = 7.55 (d, *J* = 8.6 Hz, 2H), 7.49 – 7.40 (m, 3H), 7.29 (t, *J* = 7.8 Hz, 2H), 7.00 (d, *J* = 7.6 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃): δ = 137.5 (C_q), 136.8 (CH), 133.4 (CH), 131.3 (CH), 129.7 (C_q), 129.6 (C_q), 129.2 (CH), 128.7 (CH), 87.1 (Cage C), 86.2 (Cage C). ¹¹B NMR (128 MHz, CDCl₃): δ = -2.39 (1B), -3.00 (1B), -8.40 (2B), -9.20 (1B), -10.19 (3B), -11.56 (2B). **IR** (ATR): 2924, 2593, 1593, 1492, 1401, 1100, 1070, 1016, 887 cm⁻¹. **MS** (EI) *m/z*: 362 [M]⁺. **HR-MS** (EI): *m/z* calcd. for C₁₄H₁₉¹⁰B₂¹¹B₈S³⁵Cl [M]⁺: 362.1904, found: 362.1894.

4eo

4eo. The representative procedure B was followed using *o*-carborane **1e** (23.4 mg, 0.10 mmol) and benzenethiol **2o** (31.0 µL, 0.30 mmol). Isolation by column chromatography (*n*-hexane) yielded **4eo** (22.0 mg, 64%) as a colorless solid. **M.p.** = 119 – 121 °C. ¹**H NMR** (300 MHz, CDCl₃): δ = 7.70 – 7.66 (m, 2H), 7.60 – 7.55 (m, 1H), 7.53 – 7.46 (m, 2H), 7.43 – 7.33 (m, 3H), 7.29 – 7.25 (m, 2H), 3.80 (s, 2H). ¹³**C NMR** (75 MHz, CDCl₃): δ = 137.2 (CH), 135.6 (C_q), 131.5 (CH), 130.4 (CH), 130.0 (C_q), 129.6 (CH), 128.6 (CH), 128.0 (CH), 84.3 (Cage C), 84.2 (Cage C), 40.9 (CH₂). ¹¹**B NMR** (96 MHz, CDCl₃): δ = -3.85 (2B), -9.37 (4B), -10.84 (4B). **IR** (ATR): 2923, 2852, 2577, 2560, 1493, 1470, 1439, 1419, 745 cm⁻¹. **MS** (EI) *m/z*: 342 [M]⁺. **HR-MS** (EI): *m/z* calcd. for C₁₅H₂₂¹⁰B₂¹¹B₈S [M]⁺: 342.2448, found: 342.2432.

4fa. The representative procedure A was followed using *o*-carborane **1f** (20.0 mg, 0.10 mmol) and 4-methoxybenzenethiol **2a** (36.9 µL, 0.30 mmol). Isolation by column chromatography (*n*-hexane) yielded **4fa** (18.0 mg, 53%) as a colorless oil. ¹**H NMR** (400 MHz, CDCl₃): δ = 7.48 (d, *J* = 8.8 Hz, 2H), 6.94 (d, *J* = 8.7 Hz, 2H), 3.88 (s, 3H), 2.52 – 2.47 (m, 2H), 1.59 – 1.53 (m, 2H), 1.49 – 1.41 (m, 2H), 1.01 (t, *J* = 7.2 Hz, 3H). ¹³**C NMR** (101 MHz, CDCl₃): δ = 162.0 (C_q), 138.8 (CH), 120.9 (C_q), 114.9 (CH), 84.7 (Cage C), 84.6 (Cage C), 55.5 (CH₃), 35.0 (CH₂), 31.8 (CH₂), 22.5 (CH₂), 13.8 (CH₃). ¹¹**B NMR** (96 MHz, CDCl₃): δ = -4.27 (2B), -9.91 (4B), -10.94 (4B). **IR** (ATR): 2959, 2930, 2564, 1591, 1493, 1254, 1172, 830 cm⁻¹. **MS** (EI) *m/z*: 338 [M]⁺. **HR-MS** (EI): *m/z* calcd. for C₁₃H₂₆¹⁰B₂¹¹B₈OS [M]⁺: 338.2709, found: 338.2703.

4fu. The representative procedure B was followed using *o*-carborane **1f** (20.0 mg, 0.10 mmol) and 1-undecanethiol **2u** (67.9 μL, 0.30 mmol). Isolation by column chromatography (*n*-hexane) yielded **4fu** (20.7 mg, 54%) as a colorless oil. ¹**H NMR** (300 MHz, CDCl₃): δ = 2.86 (t, *J* = 7.2 Hz, 2H), 2.35 – 2.26 (m, 2H), 1.67 – 1.59 (m, 2H), 1.57 – 1.47 (m, 2H), 1.45 – 1.21 (m, 18H), 1.01 – 0.85 (m, 6H). ¹³**C NMR** (75 MHz, CDCl₃): δ = 85.0 (Cage C), 83.9 (Cage C), 37.2 (CH₂), 34.6 (CH₂), 31.9 (CH₂), 31.8 (CH₂), 29.6 (CH₂), 29.5 (CH₂), 29.4 (CH₂), 29.3 (CH₂), 29.0 (CH₂), 28.7 (CH₂), 28.2 (CH₂), 22.7 (CH₂), 22.4 (CH₂), 14.1 (CH₃), 13.7 (CH₃). ¹¹**B NMR** (96 MHz, CDCl₃): δ = -4.29 (2B), -9.85 (4B), -10.95 (4B). **IR** (ATR): 2958, 2924, 2853, 2606, 2569, 1466, 1259, 748 cm⁻¹. **MS** (EI) *m/z*: 386 [M]⁺. **HR-MS** (EI): *m/z* calcd. for C₁₇H₄₂¹⁰B₂¹¹B₈S [M]⁺: 386.4014, found: 386.4008.

4ga. The representative procedure B was followed using *o*-carborane **1g** (15.8 mg, 0.10 mmol) and 4-methoxybenzenethiol **2a** (36.9 μ L, 0.30 mmol). Isolation by column chromatography (*n*-

hexane) yielded **4ga** (20.0 mg, 68%) as a colorless solid. **M.p.** = 81 – 83 °C. ¹H NMR (300 MHz, CDCl₃): δ = 7.49 (d, J = 8.9 Hz, 2H), 6.94 (d, J = 9.0 Hz, 2H), 3.87 (s, 3H), 2.24 (s, 3H). ¹³C NMR (75 MHz, CDCl₃): δ = 162.0 (C_q), 138.9 (CH), 121.0 (C_q), 114.9 (CH), 82.7 (Cage C), 79.3 (Cage C), 55.5 (CH₃), 23.6 (CH₃). ¹¹B NMR (96 MHz, CDCl₃): δ = -3.86 (1B), -4.97 (1B), -8.82 (2B), -9.90 (6B). **IR** (ATR): 2838, 2600, 2571, 2557, 1590, 1493, 1254, 828 cm⁻¹. **MS** (EI) *m/z*: 296 [M]⁺. **HR-MS** (EI): *m/z* calcd. for C₁₀H₂₀¹⁰B₂¹¹B₈OS [M]⁺: 296.2238, found: 296.2230.

4av. The representative procedure B was followed using *o*-carborane **1a** (22.0 mg, 0.10 mmol) and benzeneselenol **2v** (31.9 µL, 0.30 mmol). Isolation by column chromatography (*n*-hexane) yielded **4av** (22.0 mg, 59%) as a colorless solid. **M.p.** = 112 – 114 °C. ¹**H NMR** (300 MHz, CDCl₃): δ = 7.63 – 7.52 (m, 3H), 7.45 (t, *J* = 7.5 Hz, 3H), 7.29 (t, *J* = 7.6 Hz, 2H), 7.16 (d, *J* = 7.3 Hz, 2H). ¹³**C NMR** (75 MHz, CDCl₃): δ = 137.6 (CH), 132.0 (CH), 131.7 (C_q), 130.8 (CH), 130.7 (CH), 129.2 (CH), 128.5 (CH), 127.1 (C_q), 86.3 (Cage C), 72.7 (Cage C). ¹¹**B NMR** (96 MHz, CDCl₃): δ = -2.44 (2B), -8.29 (1B), -9.00 (1B), -9.78 (3B), -11.45 (3B). **IR** (ATR): 2630, 2609, 2572, 2561, 1585, 1486, 1233, 754 cm⁻¹. **MS** (EI) *m/z*: 376 [M]⁺. **HR-MS** (EI): *m/z* calcd. for C₁₄H₂₀¹⁰B₂¹¹B₈Se [M]⁺: 376.1729, found: 376.1726.

4bv. The representative procedure B was followed using *o*-carborane **1b** (23.0 mg, 0.10 mmol) and benzeneselenol **2v** (31.9 µL, 0.30 mmol). Isolation by column chromatography (*n*-hexane) yielded **4bv** (30.0 mg, 77%) as a colorless solid. **M.p.** = 100 – 101 °C. ¹**H NMR** (300 MHz, CDCl₃): δ = 7.53 – 7.42 (m, 3H), 7.35 – 7.19 (m, 6H), 2.47 (s, 3H). ¹³C **NMR** (75 MHz, CDCl₃): δ = 141.1 (C_q), 137.7 (CH), 131.8 (CH), 130.8 (CH), 129.2 (CH), 129.1 (CH), 129.1 (C_q), 127.1 (C_q), 86.7 (Cage C), 73.0 (Cage C), 21.2 (CH₃). ¹¹**B NMR** (96 MHz, CDCl₃): δ = -2.5 (3B), -9.0 (3B), -9.8 (3B), -11.4 (1B). **IR** (ATR): 2918, 2848, 2598, 2555, 1473, 1436, 1066, 820, 738

cm⁻¹. **MS** (EI) m/z: 390 [M]⁺. **HR-MS** (EI): m/z calcd. for C₁₅H₂₂¹⁰B₂¹¹B₈Se [M]⁺: 390.1885, found: 390.1887.

4cv. The representative procedure B was followed using *o*-carborane 1c (25.0 mg, 0.10 mmol) and benzeneselenol 2v (31.9 µL, 0.30 mmol). Isolation by column chromatography (*n*-hexane) yielded 4cv (21.0 mg, 52%) as a colorless oil. ¹H NMR (300 MHz, CDCl₃): $\delta = 7.54 - 7.43$ (m, 3H), 7.34 – 7.28 (m, 2H), 7.26 – 7.18 (m, 2H), 7.00 – 6.90 (m, 2H), 3.91 (s, 3H). ¹³C NMR (75 MHz, CDCl₃): $\delta = 161.4$ (C_q), 137.7 (CH), 137.7 (CH), 133.4 (CH), 130.8 (CH), 129.2 (CH), 127.2 (C_q), 124.2 (C_q), 113.6 (CH), 87.0 (Cage C), 73.7 (Cage C), 55.5 (CH₃). ¹¹B NMR (96 MHz, CDCl₃): $\delta = -2.5$ (3B), -9.0 (3B), -9.9 (3B), -11.4 (1B). IR (ATR): 2959, 2837, 2567, 1734, 1605, 1510, 1258, 1183, 739 cm⁻¹. MS (EI) *m/z*: 406 [M]⁺. HR-MS (EI): *m/z* calcd. for C₁₅H₂₂¹⁰B₂¹¹B₈OSe [M]⁺: 406.1834, found: 406.1833.

4**fv**. The representative procedure B was followed using *o*-carborane **1f** (20.0 mg, 0.10 mmol) and benzeneselenol **2v** (31.9 μL, 0.30 mmol). Isolation by column chromatography (*n*-hexane) yielded **4fv** (23.0 mg, 65%) as a colorless oil. ¹**H NMR** (300 MHz, CDCl₃): δ = 7.73 – 7.65 (m, 2H), 7.57 – 7.50 (m, 1H), 7.49 – 7.38 (m, 2H), 2.47 – 2.38 (m, 2H), 1.56 – 1.37 (m, 4H), 1.00 (t, *J* = 7.1 Hz, 3H). ¹³**C NMR** (75 MHz, CDCl₃): δ = 137.8 (CH), 131.0 (CH), 129.6 (CH), 127.3 (C_q), 82.6 (Cage C), 71.3 (Cage C), 36.6 (CH₂), 31.8 (CH₂), 22.5 (CH₂), 13.8 (CH₃). ¹¹**B NMR** (96 MHz, CDCl₃): δ = -3.7 (3B), -9.3 (4B), -10.7 (3B). **IR** (ATR): 2960, 2934, 2873, 2573, 1736, 1372, 1237, 1045, 741 cm⁻¹. **MS** (EI) *m/z*: 356 [M]⁺. **HR-MS** (EI): *m/z* calcd. for C₁₂H₂₄¹⁰B₂¹¹B₈Se [M]⁺: 356.2041, found: 356.2043.

Late-stage diversification.

Compound **3ag** (40.7 mg, 0.10 mmol), trimethylsilylacetylene (56.5 µL, 0.40 mmol), PdCl₂(PPh₃)₂ (3.5 mg, 0.005 mmol), CuI (1.9 mg, 0.01 mmol) and NH*i*Pr₂ (28.2 µL, 0.20 mmol) were combined together in toluene (2.5 mL). The resulting mixture was heated at 100 °C for 24 h under N₂. Then, the reaction was quenched with with water (10 mL) and extracted with diethyl ether (10 mL x 3). The organic layers were combined and concentrated to dryness in vacuo. The residue was subjected to flash column chromatography on silica gel using *n*-hexane as eluent to give the product **5a** as a colorless oil (52%). ¹H NMR (300 MHz, CDCl₃): δ = 7.66 – 7.60 (m, 2H), 7.60 – 7.53 (m, 1H), 7.47 (t, *J* = 7.6 Hz, 2H), 7.34 (d, *J* = 8.0 Hz, 2H), 6.86 (d, *J* = 8.0 Hz, 2H), 0.28 (s, 9H). ¹³C NMR (101 MHz, CDCl₃): δ = 136.6 (CH), 132.5 (CH), 132.3 (CH), 131.0 (CH), 130.9 (Cq), 129.9 (Cq), 128.7 (CH), 126.3 (Cq), 103.6 (Cq), 98.0 (Cq), 88.1 (Cage C), 85.8 (Cage C), 0.0 (CH₃). ¹¹B NMR (96 MHz, CDCl₃): δ = -2.65 (2B), -8.99 (3B), - 10.46 (5B). IR (ATR): 2958, 2923, 2594, 2575, 2158, 1480, 1250, 862, 841 cm⁻¹. MS (EI) *m/z*: 424 [M]⁺. HR-MS (EI): *m/z* calcd. for C₁₉H₂₈¹⁰B₂¹¹B₈SSi [M]⁺: 424.2690, found: 424.2678.

Compound **3ag** (40.7 mg, 0.10 mmol), carbazole (33.4 mg, 0.20 mmol), Pd(OAc)₂ (1.1 mg, 0.005 mmol), P*t*Bu₃ (3.0 mg, 0.015 mmol), and K₂CO₃ (41.4 mg, 0.30 mmol) were combined together in toluene (2.5 mL). The resulting mixture was heated at 120 °C for 12 h. Then, the reaction was quenched with with water (10 mL) and extracted with diethyl ether (10 mL x 3). The organic layers were combined and concentrated to dryness in vacuo. The residue was subjected to flash column chromatography on silica gel using *n*-hexane and ethyl acetate (20/1) as eluent to give the product **5b** as a colorless solid (83%). **M.p.** = 214 - 216 °C. ¹**H NMR** (300

MHz, CDCl₃): $\delta = 8.14$ (d, J = 7.8 Hz, 2H), 7.70 (d, J = 7.7 Hz, 2H), 7.58 – 7.53 (m, 1H), 7.49 (d, J = 8.5 Hz, 4H), 7.45 – 7.39 (m, 4H), 7.32 (ddd, J = 8.0, 6.1, 2.1 Hz, 2H), 7.14 (d, J = 8.4 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃): $\delta = 140.5$ (C_q), 140.1 (C_q), 138.4 (CH), 132.2 (CH), 131.0 (CH), 130.9 (C_q), 128.6 (CH), 128.0 (C_q), 127.0 (CH), 126.2 (CH), 123.8 (C_q), 120.7 (CH), 120.5 (CH), 109.6 (CH), 87.9 (Cage C), 85.7 (Cage C). ¹¹B NMR (96 MHz, CDCl₃): $\delta = -2.51$ (2B), -9.09 (4B), -10.13 (4B). IR (ATR): 2921, 2851, 2595, 2565, 2555, 1586, 1446, 1223, 720 cm⁻¹. MS (EI) *m/z*: 493 [M]⁺. HR-MS (EI): *m/z* calcd. for C₂₆H₂₇¹⁰B₂¹¹B₈NS [M]⁺: 493.2875, found: 493.2861.

Mechanistic studies

The general procedure A was followed using *o*-carborane **1a** (0.10 mmol, 1.0 equiv), 4methoxybenzenethiol **2a** (36.9 μ L, 0.30 mmol) and TEMPO (0.1 mmol, 1.0 equiv). Electrocatalysis was performed at room temperature with a constant current of 2.0 mA maintained for 16 h. The GF anode was washed with ethyl acetate (3×10 mL). Evaporation of the solvent and subsequent purification by column chromatography on silica gel with *n*-hexane afforded the corresponding product **3aa** (75%).

The general procedure A was followed using *o*-carborane **1a** (0.10 mmol, 1.0 equiv), 4methoxybenzenethiol **2a** (36.9 μ L, 0.30 mmol). Electrocatalysis was performed in the dark at room temperature with a constant current of 2.0 mA maintained for 16 h. The GF anode was washed with ethyl acetate (3×10 mL). Evaporation of the solvent and subsequent purification by column chromatography on silica gel with *n*-hexane afforded the corresponding product **3aa** (81%).

Cyclic voltammetry

CV measurements were conducted with a Metrohm Autolab PGSTAT204 potentiostat and Nova 2.1 software. A glassy carbon working electrode (disk, diameter: 3mm), a coiled platinum wire counter electrode and a non-aqueous Ag/Ag^+ reference electrode (ALS Japan, 10 mmol/L AgNO₃ and 100 mmol/L *n*-Bu₄NPF₆ in acetonitrile) were employed. The voltammograms were recorded at room temperature in dry acetonitrile at a substrate concentration of 5 mmol/L and with 100 mmol/L *n*-Bu₄NPF₆ as supporting electrolyte. Prior to each measurement, the working electrode was thoroughly polished with 0.05 µm alumina polishing powder and rinsed with water and methanol. All measured solutions were saturated with nitrogen gas and an overpressure of protective gas was maintained throughout the experiment. The nitrogen gas was previously saturated with solvent vapour by passing it through a gas washing bottle with acetonitrile. The scan rate is 100 mV/s. Deviations from the general experimental conditions are indicated in the respective figures.

EPR studies

The electrocatalysis was carried out in an undivided cell under air, with a graphite felt (GF) anode (10 mm \times 15 mm \times 6 mm) and a platinum cathode (10 mm \times 15 mm \times 0.25 mm). *o*-Carborane **1a** (0.10 mmol, 1.0 equiv), 4-methoxybenzenethiol **2a** (0.30 mmol, 3.0 equiv), CuOAc (15 mol %), 2-PhPy (15 mol %), LiO*t*Bu (0.2 mmol, 2.0 equiv) and TBAI (0.2 mmol, 2.0 equiv) were dissolved in THF (3.0 mL). Electrocatalysis was performed at room temperature with a constant current of 2.0 mA maintained for 2 h. Then PBN (N-tert-butyl-alpha-Phenylnitrone) (5 equiv.) (if noted) was added into the reaction system. After stirring 2 minutes, the mixture was immediately transferred into the EPR tube for EPR measurement.

The electrocatalysis was carried out in an undivided cell under air, with a graphite felt (GF) anode (10 mm \times 15 mm \times 6 mm) and a platinum cathode (10 mm \times 15 mm \times 0.25 mm). 4-methoxybenzenethiol **2a** (0.30 mmol) and LiO*t*Bu (0.2 mmol) were dissolved in THF (3.0 mL). Electrocatalysis was performed at room temperature with a constant current of 2.0 mA maintained for 2 h. Then PBN (N-tert-butyl-alpha-Phenylnitrone) (5 equiv.) was added into the reaction system. After stirring 2 minutes, the mixture was immediately transferred into the EPR tube for EPR measurement.

The electrocatalysis was carried out in an undivided cell under air, with a graphite felt (GF) anode (10 mm \times 15 mm \times 6 mm) and a platinum cathode (10 mm \times 15 mm \times 0.25 mm). o-carborane **1a** (0.10 mmol) and LiO*t*Bu (0.2 mmol) were dissolved in THF (3.0 mL). Electrocatalysis was performed at room temperature with a constant current of 2.0 mA maintained for 2 h. Then PBN (N-tert-butyl-alpha-Phenylnitrone) (5 equiv.) was added into the reaction system. After stirring 2 minutes, the mixture was immediately transferred into the EPR tube for EPR measurement.

Possible catalytic cycle

Another plausible reaction mechanism is proposed as shown in below. An anodically generated redox mediator I_2 oxidize copper(I) **A** to deliver copper(II) **B**, which next reacts with *o*-carborane **1** in the presence of LiO*t*Bu to generate a copper(II)-*o*-carborane complex **C**. Thereafter, the complex **C** is oxidized by the electricity to furnish the copper(III) species **D**, which subsequently undergoes reductive elimination, affording the final product and regenerating the catalytically active complex **A**.

Computational studies

All DFT calculations were performed with Gaussian 16, Revision A.03 package.^[4] All structures were optimized at the TPSS^[5] level of theory in combination with D3 dispersion corrections with the Becke-Johnson damping scheme (D3BJ).^[6] All atoms were described with a def2-SVP basis set.^[7] Analytical frequency calculations were carried out at the same level of theory in order to identify each stationary point as either an intermediate (no imaginary frequencies) or as a transition state (only one imaginary frequency) and to provide thermal and non-thermal corrections to the Gibbs free energy at 298.15 K and 1 atm. The electronic energy was then improved through PW6B95^[8] single-point calculations on the optimized geometries in combination with a standalone version of Grimme's D4 dispersion corrections,^[9] with a def2-TZVP basis set.^[7] Solvent effects were taken into consideration in the single-point calculations through the use of the SMD model^[10] with dielectric constant of $\varepsilon = 35.688$, which corresponds to acetonitrile. All reported energies are based on gas-phase Gibbs free energies with def2-SVP basis set for which the electronic energies were corrected with PW6B95-D4 in combination with def2-TZVP basis set and solvent effects. Non-covalent interactions were calculated using the Multiwfn program^[11] and visualized with the help of the VMD program.^[12] Oxidation potentials were calculated using the following equation:^[13]

$$E_{1/2}^{\text{o,calc}} = -\frac{\Delta G_{\frac{1}{2}}}{n_e F} - E_{\frac{1}{2}}^{\text{o,SHE}} - E^{\text{o,SCE}}$$
(1)

with

$$\Delta G_{1/2}^o = G_{298.15}(reduced) - G_{298.15}(oxidized)$$
(2)

In equation 1, n_e is the number of electrons transferred during the oxidation process, F is the Faraday constant with a value of 23.061 kcal mol⁻¹ V⁻¹, $E_{1/2}^{o,SHE}$ is the absolute value of the standard hydrogen electrode (4.281 V),^[14] $E^{o,SCE}$ is the potential of the saturated calomel electrode relative to SHE in acetonitrile (-0.141 V).^[13]

Figure S1. Computed structure for the most stable doublet copper(II)-*o*-carborane complex **C**. Nonrelevant hydrogens were omitted for clarity.

Figure S2. Computed structure for the most stable triplet copper(III) species **D**. Nonrelevant hydrogens were omitted for clarity.

Table S2. Calculated electronic energies at the PW6B95-D4/def2-TZVP+SMD(MeCN) level of theory and Gibbs free energies with dispersion corrections (all in Hartree).^a

Structure	Electronic Energy	Gibbs Free Energy
C^2	-3430.556888	-3430.088733
C ⁴	-3430.458955	-3429.994465
C ⁶	-3430.330544	-3429.875170
\mathbf{D}^1	-3659.397710	-3658.881099
D^3	-3659.398685	-3658.883936
D ⁵	-3659.276166	-3658.767648
Acetate	-228.974116	-228.954875

^a Superscripts correspond to the respective spin state.

Cartesian coordinates of the optimized structure

 C^{2} Lowest frequency = 16.6867 cm⁻¹ Charge = 0, Multiplicity = 2

S	-1.041295	-0.953734	-1.739619
С	-2.512577	-0.058739	-1.415133
В	2.846156	1.028495	1.428656
В	1.640440	2.551790	-0.655909
В	1.481263	1.903998	2.116830
В	0.733856	2.841766	0.827039
С	-3.772094	-0.642481	-1.689789
С	-2.482294	1.262581	-0.893955
С	2.927079	1.518307	-0.209628
Н	3.151118	-0.096704	1.695049
В	4.043819	2.230285	0.872597
В	3.135102	2.508180	2.371118
В	3.296545	3.178018	-0.435186
Н	1.140055	2.436904	-1.734629
В	1.906481	4.054403	0.250918
В	1.811028	3.651185	1.992989
Н	0.817100	1.353850	2.949579
Н	-0.457828	2.949822	0.758474
Н	-3.807715	-1.656491	-2.099662
С	-4.959966	0.044811	-1.428883
С	-3.657523	1.954427	-0.634199
Н	-1.514689	1.735182	-0.696950
С	3.333558	0.425597	-1.168921
Н	5.194886	1.914400	0.801074
В	3.400551	3.848330	1.212019
Н	3.671615	2.444427	3.442322
Н	3.930413	3.470144	-1.406957
Н	1.547654	5.103170	-0.207934
Н	1.379362	4.423562	2.803996
Н	-5.916662	-0.438628	-1.641940
С	-4.909214	1.347794	-0.887188
Н	-3.639623	2.971409	-0.231948
С	2.443442	-0.021011	-2.164618
С	4.576383	-0.220302	-1.030304
Н	4.141545	4.761254	1.452808
0	-6.002978	2.094496	-0.581579
Н	1.483608	0.484175	-2.303440
С	2.776215	-1.108476	-2.984460
С	4.915496	-1.295799	-1.863312
Н	5.272493	0.116813	-0.258846
С	-7.294375	1.553055	-0.838619
Н	2.060247	-1.447252	-3.740062
С	4.012969	-1.751420	-2.836331

Н	5.887723	-1.785027	-1.742141
Н	-7.432154	1.336055	-1.914671
Н	-7.466462	0.628572	-0.254944
Н	-8.012875	2.323626	-0.524410
Н	4.274827	-2.599270	-3.477911
С	1.424966	1.309837	0.511604
Cu	0.358647	-0.229611	-0.154940
С	-0.033368	-2.735706	1.279823
С	2.139687	-2.588707	0.412696
С	0.176576	-4.079686	1.635819
С	-1.301216	-2.014795	1.530121
С	2.413929	-3.919081	0.741334
Н	2.881799	-1.955846	-0.083192
С	1.411069	-4.677357	1.360655
Н	-0.619025	-4.633256	2.141903
С	-1.255889	-0.662673	1.941897
С	-2.551448	-2.629802	1.325109
Н	3.394135	-4.344231	0.509133
Н	1.591549	-5.721593	1.635577
С	-2.441259	0.058124	2.134138
Н	-0.292988	-0.192384	2.172601
С	-3.732161	-1.900859	1.511887
Н	-2.595525	-3.666179	0.975039
С	-3.680866	-0.557907	1.915801
Н	-2.388630	1.102844	2.454807
Н	-4.699121	-2.378494	1.323901
Н	-4.606292	0.010701	2.049921
Ν	0.947759	-2.018527	0.670660

C⁴

Lowest frequency = 20.4062 cm^{-1} Charge = 0, Multiplicity = 4

S	-1.278054	1.330720	1.198630
С	-2.618272	0.231224	1.094701
В	3.076910	-1.094679	-1.308420
В	1.285107	-2.518607	0.400488
В	1.759396	-1.723358	-2.306138
В	0.650417	-2.602316	-1.246986
С	-3.918245	0.687332	1.438016
С	-2.471973	-1.117335	0.662879
С	2.764230	-1.666673	0.285834
Н	3.577128	-0.018508	-1.426391
В	3.959041	-2.485741	-0.616363
В	3.331947	-2.558954	-2.280192
В	2.847223	-3.373206	0.454346
Н	0.597796	-2.372240	1.368408
В	1.506750	-3.999482	-0.546233
В	1.814211	-3.507865	-2.243945
Н	1.343320	-1.033206	-3.190976
Н	-0.534911	-2.517885	-1.401331

Н	-4.045496	1.726439	1.755691
С	-5.022196	-0.162262	1.372547
С	-3.562135	-1.970417	0.601656
Н	-1.481683	-1.488940	0.378846
С	3.096491	-0.672158	1.371361
н	5,105405	-2.348524	-0.307869
B	3,174349	-3,971214	-1, 189419
н	4 075136	-2 533097	-3 220206
н	3 226112	-3 80117/	1 50/586
ц	0 010771	-1 008086	-0 236628
н Ц	1 110160	-4.998880	2 172070
	1.440400	-4.1/00/0	-5.1/59/0
п С	-0.009030	0.221202	1.040151
C 	-4.851518	-1.501052	0.953125
Н	-3.4526/3	-3.008944	0.2//355
C	2.082221	-0.135938	2.188903
C	4.408636	-0.184549	1.510248
Н	3.809668	-4.975922	-1.352557
0	-5.854350	-2.405052	0.851015
Н	1.062625	-0.531442	2.131680
С	2.364920	0.892152	3.097884
С	4.694372	0.827946	2.435748
Н	5.201682	-0.589475	0.877227
С	-7.182792	-2.003395	1.180239
Н	1.555296	1.308693	3.705040
С	3.672341	1.379987	3,222096
Н	5,720424	1.198352	2.528520
Н	-7.252639	-1.683529	2,236506
н	-7.525735	-1,182794	0.522877
н	-7 812176	-2 890297	1 021318
н	3 89/909	2.090297	3 929/58
C	1 /02368	_1 221052	_0 700537
	0 367090	0 250159	0.700557
cu	0.307000	0.239130	1 150013
C	0.21//16	2.849563	-1.159813
C	2.40/503	2.403551	-0.299144
C	0.52/9/8	4.238664	-1.165809
C	-1.040180	2.2/6202	-1.54654/
С	2.754490	3.747014	-0.329365
Н	3.106941	1.642289	0.060407
С	1.774977	4.689864	-0.769113
Н	-0.231787	4.939443	-1.525457
С	-1.102292	0.894844	-2.000093
С	-2.297341	2.980328	-1.425235
Н	3.754542	4.056071	-0.015490
Н	2.011282	5.758105	-0.801260
С	-2.325829	0.264506	-2.205386
Н	-0.177445	0.399776	-2.322067
С	-3.500950	2.326096	-1.626700
Н	-2.291883	4.025549	-1.100938
С	-3.541742	0.951034	-1.987049
H	-2.340147	-0.770204	-2.564197
н	-4.439062	2.873297	-1,482480
н	-4.499675	0.440180	-2,119738
 N	1 10/10/	1 959693	-0 680803
1.1	エ・エンサエンチ	T. CCCC	0.00002

C⁶

Lowest frequency = 16.4769 cm^{-1} Charge = 0, Multiplicity = 6

S	-1.232597	1.313642	1.229589
С	-2.559601	0.212071	1.169407
В	3.121862	-1.041943	-1.314130
В	1.407097	-2.473685	0.467258
В	1.819995	-1.761134	-2.272157
В	0.758225	-2.642736	-1.167547
С	-3.867019	0.673974	1.502869
С	-2.405093	-1.150553	0.771680
С	2.850283	-1.568675	0.304209
Н	3.571049	0.051309	-1.475044
В	4.066147	-2.371958	-0.582971
В	3.424652	-2.531327	-2.234940
В	3.002459	-3.263454	0.532715
Н	0.722813	-2.321340	1.436383
В	1.677525	-3.978475	-0.427760
В	1.946266	-3.538000	-2.145586
Н	1.366961	-1.121665	-3.176388
Н	-0.432116	-2.609698	-1.307074
Н	-3.995378	1.719265	1.798036
С	-4.967033	-0.176808	1.442416
С	-3.489356	-2.006750	0.729383
Н	-1.411303	-1.521223	0.499494
С	3.157558	-0.526296	1.351543
Н	5.209208	-2.179449	-0.292172
В	3.335467	-3.907916	-1.092199
Н	4.155406	-2.511641	-3.184795
Н	3.409504	-3.637563	1.593005
Н	1.134215	-4.987577	-0.074686
Н	1.597215	-4.248924	-3.046196
Н	-5.958955	0.208370	1.689924
C	-4.786801	-1.526256	1.056121
H	-3.378560	-3.053260	0.433080
C	2.142891	-0.029098	2.192003
C	4.442625	0.039830	1.4314/9
Н	4.008/65	-4.8920/4	-1.226044
0	-5./82224	-2.432396	0.9640/1
H	1.145353	-0.4/9005	2.1/1364
C	2.39/969	1.031206	3.0/1449
C	4.701238	1.08//08	2.324653
H C	5.235125	-0.331815	0.////2/
C II	-/.121648	-2.033235	1.262506
н С	1.5881/4	1.414805	3.699744
с u	5.0/839/ 5.706160	1.5948/4 1.510706	3,13720/ 2,270775
п	-2 20020E	-1 601/00 T.JTA/00	2.3/0//3
п	-7 156160	-1.021400 _1.020727	2.5669525
п	-7.430100 _7 730013	-1.230/3/ _7 070106	1 117500
11	-1.122052	-2.929100	T.TTC200

Н	3.879036	2.425823	3.823399
С	1.551336	-1.211725	-0.683038
Cu	0.397250	0.266131	-0.099381
С	0.035371	2.739597	-1.300518
С	2.246305	2.474803	-0.386421
С	0.175592	4.203496	-1.190924
С	-1.158467	2.110672	-1.713441
С	2.402412	3.915078	-0.270997
Н	3.017184	1.780574	-0.048865
С	1.385266	4.770443	-0.652166
Н	-0.607062	4.832319	-1.620821
С	-1.158701	0.680206	-2.048507
С	-2.448160	2.786223	-1.688628
Н	3.353415	4.290634	0.120396
Н	1.491972	5.855284	-0.567244
С	-2.355566	-0.009340	-2.186505
Н	-0.216230	0.213330	-2.358973
С	-3.618614	2.063438	-1.798230
Н	-2.483337	3.861658	-1.496333
С	-3.598740	0.650261	-2.017562
Н	-2.335604	-1.069148	-2.461869
Н	-4.581392	2.580248	-1.720380
Н	-4.536378	0.093838	-2.109043
Ν	1.087854	1.924820	-0.920212

\mathbf{D}^1

Lowest frequency = 11.6905 cm^{-1} Charge = 0, Multiplicity = 1

S	-0.368640	-0.141127	-1.523468
С	-2.013333	-0.634008	-1.162846
В	3.224145	-0.802237	1.023607
В	2.680551	-0.499765	-1.746856
В	3.559785	0.886036	0.589671
В	3.208272	1.068665	-1.135758
С	-3.111815	0.138846	-1.600599
С	-2.266114	-1.842441	-0.461658
С	2.761546	-1.592677	-0.428764
Н	2.734860	-1.144221	2.049096
В	4.362103	-1.846322	0.140975
В	4.899401	-0.272938	0.774595
В	4.023753	-1.654333	-1.591638
Н	1.828383	-0.637817	-2.565056
В	4.341554	0.033952	-2.044425
В	4.897889	0.895790	-0.581560
Н	3.286180	1.741199	1.375287
Н	2.671282	2.040719	-1.571414
Н	-2.920458	1.071313	-2.140254
С	-4.425620	-0.271376	-1.356719
С	-3.569127	-2.245122	-0.193612
Н	-1.419659	-2.444397	-0.120805
С	1.732708	-2.695438	-0.379459
---------	-----------	-----------	-----------
Н	4.606174	-2.923739	0.599328
В	5.390860	-0.792279	-0.858950
Н	5.644148	-0.206702	1.712376
н	4.046617	-2.600975	-2.321625
Н	4.681167	0.319068	-3.158683
н	5,657094	1.824298	-0.627291
н	-5.255894	0.342216	-1.714898
C	-4.660349	-1.462998	-0.636798
н	-3.777807	-3.167837	0.355653
c	1,261930	-3,260619	-1.580728
c	1,260411	-3,203280	0.842385
н	6 518371	-1 111069	-1 119899
0	-5 89/838	_1 93//32	-0 320098
ц	1 619/52	-2 860065	-0.520050
C	0 3/5/03	-1 317116	-2.550250
c	0.345405	4.317110	0 962165
с u	1 500000	-4.23/419	1 702000
п С	1.592560	-2.705194	1.702090
	-7.03/015	-1.205159	-0./52145
H	-0.008908	-4./43/23	-2.503129
C II	-0.119/92	-4.823127	-0.335850
н	-0.024651	-4.633075	1.824946
н	-7.052962	-0.186150	-0.315615
н	-7.0/2/94	-1.126830	-1.855219
Н	-7.910549	-1.768153	-0.395105
Н	-0.838166	-5.649769	-0.318661
С	2.295649	0.009701	-0.156140
С	-1.681355	2.484905	0.431528
С	-2.237522	0.535252	1.623698
С	-2.997709	2.961244	0.578379
С	-0.638047	3.274402	-0.258341
С	-3.551406	0.966712	1.814701
Н	-1.863095	-0.415362	2.011913
С	-3.940129	2.197072	1.270730
Н	-3.253426	3.940790	0.165923
С	0.637359	3.415731	0.328990
С	-0.912490	3.908241	-1.486868
Н	-4.250597	0.335885	2.369242
Н	-4.964858	2.563138	1.392702
С	1.619592	4.181780	-0.310352
Н	0.846961	2.948493	1.296736
С	0.078464	4.662018	-2.125130
Н	-1.894043	3.781265	-1.955738
С	1.344884	4.802489	-1.536613
Н	2.606211	4.282821	0.151323
н	-0.134010	5.133660	-3.090068
Н	2.120164	5.389472	-2.039478
N	-1.335063	1.275048	0.943932
Cu	0.462758	0.494485	0.483872
0	1.103565	1.028513	2,277903
Č	0.742674	0.027201	3,021131
č	1.167897	0.099365	4.474570
н	2,207992	-0.267043	4 544099
н	1.152158	1.137878	4.840119

Н	0.523283	-0.545160	5.090679
0	0.122021	-0.953388	2.556707

D³

Lowest frequency = 19.2771 cm^{-1} Charge = 0, Multiplicity = 3

S	-0.483642	-0.013362	-1.246960
С	-1.990996	-0.665256	-0.708878
В	3.038588	-1.390378	1.216560
В	2.805728	-0.306113	-1.399888
В	3.846387	0.173627	1.215876
В	3.694204	0.847741	-0.401952
С	-2.981419	-0.984317	-1.677136
С	-2.272819	-0.911504	0.667252
С	2.505770	-1.651295	-0.388757
Н	2.400101	-1.804352	2.130598
В	3.922716	-2.477834	0.107452
В	4.811792	-1.317948	1.115093
В	3.782925	-1.791128	-1.527747
Н	1.988241	-0.011638	-2.220505
В	4.571329	-0.202479	-1.544410
В	5.227969	0.087578	0.093382
Н	3.759887	0.869596	2.180473
Н	3.507969	2.020053	-0.549375
Н	-2.759302	-0.812100	-2.734771
С	-4.217997	-1.500646	-1.297095
С	-3.505599	-1.417739	1.047791
Н	-1.494670	-0.722036	1.416284
С	1.223179	-2.416388	-0.604010
Н	3.826901	-3.659151	0.272668
В	5.271479	-1.551756	-0.596487
Н	5.479187	-1.689358	2.040587
Н	3.617892	-2.513566	-2.466963
Н	5.064223	0.233671	-2.548511
Н	6.210980	0.750615	0.280205
Н	-4.962847	-1.733295	-2.061947
С	-4.490431	-1.717158	0.074927
Н	-3.736651	-1.614058	2.098785
С	0.805948	-2.723583	-1.920187
С	0.441133	-2.862593	0.478029
Н	6.286363	-2.104709	-0.921460
0	-5.657054	-2.212369	0.550438
Н	1.405240	-2.376665	-2.764933
С	-0.358508	-3.467894	-2.145502
С	-0.724737	-3.600789	0.245800
Н	0.723539	-2.598400	1.498296
С	-6.690922	-2.557018	-0.370510
Н	-0.664194	-3.693876	-3.172160
С	-1.129153	-3.909843	-1.063038
Н	-1.328155	-3.929447	1.097469

Н	-7.024680	-1.673084	-0.945004
Н	-6.355733	-3.345958	-1.069038
Н	-7.522670	-2.935045	0.240440
Н	-2.044624	-4.485466	-1.234401
С	2.436611	-0.100222	0.264184
С	-1.382770	2.995148	0.075786
С	-1.684716	1.966735	2.152032
С	-2.507762	3.812774	0.301444
С	-0.604484	3.088293	-1.178532
С	-2.812031	2.740570	2.434723
Н	-1.330707	1.194442	2.840590
С	-3.230988	3.684773	1.489055
Н	-2.784929	4.557142	-0.449743
С	0.803945	2.987894	-1.158657
С	-1.267226	3.244511	-2.414573
Н	-3.345166	2.597850	3.378715
Н	-4.103663	4.318613	1.677259
С	1.527629	3.018382	-2.356163
Н	1.332345	2.910532	-0.199981
С	-0.539262	3.272410	-3.608426
Н	-2.360693	3.296314	-2.438266
С	0.858433	3.153949	-3.581059
Н	2.616641	2.931452	-2.328922
Н	-1.064545	3.370758	-4.564071
Н	1.428915	3.167370	-4.515365
Ν	-0.988147	2.084012	1.003355
Cu	0.629152	0.745812	0.704767
0	1.327042	1.335460	2.532739
С	0.918155	0.329269	3.220712
С	1.474853	0.177506	4.622541
Н	2.464529	-0.306898	4.540573
Н	1.622072	1.161052	5.095601
Н	0.818080	-0.460317	5.232908
0	0.111439	-0.521247	2.748534

D⁵

Lowest frequency = 10.2928 cm^{-1} Charge = 0, Multiplicity = 5

S	-0.488583	0.721627	-1.431249
С	-2.059081	0.125622	-1.049421
В	2.773545	-1.820560	0.886653
В	2.104155	-1.184407	-1.783310
В	3.772477	-0.444670	0.400394
В	3.343202	-0.051712	-1.267847
С	-3.125853	0.377283	-1.959306
С	-2.329227	-0.619865	0.136402
С	1.848665	-2.254947	-0.485597
Н	2.308773	-1.962509	1.971906
В	3.218203	-3.222074	-0.118516
В	4.469611	-2.084816	0.427685

В	2.799931	-2.822383	-1.798178
Н	1.184933	-0.876913	-2.481725
В	3.781157	-1.434426	-2.303795
В	4.831141	-0.977873	-0.930562
Н	3.995429	0.405604	1.210449
Н	3.259998	1.071636	-1.661202
н	-2.919246	0.945484	-2.871260
C	-4.412796	-0.079041	-1.697083
c	-3.609652	-1.074117	0.398202
н	-1.512646	-0.848656	0.826997
c	0 462149	-2 822708	-0 305933
н	3 001010	-4 316997	0.314654
R	1 185118	-2 695/18	_1 252015
ы	F 777725	2.000410	1 250019
п	2 201672	-2.400102	2 507054
п u	2.301073 A 001014	-3.040043	-2.50/954
	4.001014	-1.2/3365	-3.454025
н	5.913842	-0.483/1/	-1.08////
Н	-5.215005	0.132965	-2.40/804
C	-4.664/62	-0.809259	-0.50881/
Н	-3.827924	-1.657651	1.296207
C	-0.398031	-2.945323	-1.415164
С	0.041743	-3.333029	0.935454
Н	5.311589	-3.472224	-1.645454
0	-5.874700	-1.298817	-0.160539
Н	-0.076927	-2.569772	-2.389205
С	-1.648640	-3.559564	-1.284708
С	-1.212030	-3.943335	1.065753
Н	0.700753	-3.252941	1.800602
С	-6.990005	-1.087452	-1.027893
Н	-2.301994	-3.644198	-2.159264
С	-2.061075	-4.062451	-0.043048
Н	-1.521114	-4.333393	2.041145
Н	-7.196288	-0.008771	-1.153360
н	-6.816586	-1.549862	-2.016746
Н	-7.845368	-1.572775	-0.537665
н	-3.039363	-4.543959	0.059818
C	2.171044	-0.616767	-0.162448
Ċ	-0.689651	3.175502	0.327986
c	-1.778142	1.773016	1,898233
c	-1.934116	3,847087	0.074339
c	0 556632	3 523234	-0 255879
c	-2 991329	2 /63816	1 75/0/1
с ц	1 600205	2.403810 0 012850	2 571120
п С	-1.090505	2 504012	2.371123
с u	1 050700	J. J04912 A 655741	0.777411
п С	-1.900/02	4.055/41 2.070494	-0.001221
c	1./94552	2.9/9404	1 4252294
	0.0/90/5	4.359333	-1.425228
Н	-3.855212	2.1/6463	2.358808
H	-4.0151/8	4.02//29	0.59823/
C	3.025865	3.225073	-0.297802
H	1.772473	2.558739	1.323636
C	1.908060	4.565149	-2.013694
Н	-0.218098	4.786327	-1.881089
С	3.106736	3.994700	-1.465291

Н	3.934653	2.827743	0.163310
Н	1.974225	5.168715	-2.925520
Н	4.070840	4.181086	-1.946918
Ν	-0.669433	2.072328	1.214157
Cu	0.749266	0.637161	0.640293
0	1.685547	0.726337	2.527944
С	0.907238	-0.148334	3.031977
С	1.116166	-0.596836	4.457774
Н	1.909667	-1.365474	4.461564
Н	1.456075	0.245333	5.080244
Н	0.193644	-1.038281	4.864123
0	-0.011817	-0.662197	2.317030

X-Ray crystallographic analysis

CCDC 2049567 3aa

Identification code mo_1224_CG_0m **Empirical** formula $C_{15}H_{22}B_{10}OS$ Formula weight 358.48 Temperature/K 100.0 Crystal system monoclinic Space group $P2_1/n$ a/Å 7.0280(5) b/Å 18.2663(11) c/Å 15.1077(11) α/° 90 β/° 99.556(2) γ/° 90 Volume/Å³ 1912.5(2) Ζ 4 $\rho_{calc}g/cm^3$ 1.245 μ/mm^{-1} 0.171 F(000) 744.0 Crystal size/mm³ $0.529 \times 0.459 \times 0.168$ Radiation MoK α ($\lambda = 0.71073$) 20 range for data collection/° 4.46 to 63.05 Index ranges $-10 \le h \le 10, -26 \le k \le 26, -22 \le l \le 22$ Reflections collected 103018 6368 [$R_{int} = 0.0250$, $R_{sigma} = 0.0120$] Independent reflections Data/restraints/parameters 6368/0/285 Goodness-of-fit on F² 1.025 Final R indexes $[I \ge 2\sigma(I)]$ $R_1 = 0.0282, wR_2 = 0.0777$ Final R indexes [all data] $R_1 = 0.0304, wR_2 = 0.0798$ Largest diff. peak/hole / e Å⁻³ 0.46/-0.21

CCDC 2049566 **3am**

Identification code Empirical formula Formula weight Temperature/K Crystal system Space group a/Å b/Å c/Å $\alpha/^{\circ}$ β/° γ/° Volume/Å³ Ζ $\rho_{calc}g/cm^3$ μ/mm^{-1} F(000) Crystal size/mm³ Radiation 20 range for data collection/° Index ranges Reflections collected Independent reflections Data/restraints/parameters Goodness-of-fit on F² Final R indexes $[I \ge 2\sigma(I)]$ Final R indexes [all data] Largest diff. peak/hole / e Å⁻³

mo_1222_CG_0m $C_{14}H_{19}B_{10}FS$ 346.45 100.0 monoclinic $P2_1/c$ 6.5577(11) 27.778(5) 10.1198(10) 90 100.877(5) 90 1810.3(5) 4 1.271 0.182 712.0 $0.358 \times 0.268 \times 0.263$ MoKα ($\lambda = 0.71073$) 4.352 to 63.066 $\textbf{-9} \leq h \leq \textbf{9}, \, \textbf{-40} \leq k \leq \textbf{40}, \, \textbf{-14} \leq \textbf{l} \leq \textbf{14}$ 63225 $6029 [R_{int} = 0.0240, R_{sigma} = 0.0130]$ 6029/0/275 1.084 $R_1 = 0.0289, wR_2 = 0.0773$ $R_1 = 0.0328$, $wR_2 = 0.0802$ 0.38/-0.22

Identification code **Empirical** formula Formula weight Temperature/K Crystal system Space group a/Å b/Å c/Å $\alpha/^{\circ}$ β/° γ/° Volume/Å³ Ζ $\rho_{calc}g/cm^3$ μ/mm^{-1} F(000) Crystal size/mm³ Radiation 20 range for data collection/° Index ranges Reflections collected Independent reflections Data/restraints/parameters Goodness-of-fit on F² Final R indexes $[I \ge 2\sigma(I)]$ Final R indexes [all data] Largest diff. peak/hole / e Å⁻³ Flack parameter

1284_Pna21 $C_{19}H_{24}B_{10}S$ 392.54 100.0 orthorhombic $Pna2_1$ 23.8557(17) 12.6391(11) 6.8918(6) 90 90 90 2078.0(3) 4 1.255 0.160 816.0 $0.454 \times 0.198 \times 0.066$ MoK α ($\lambda = 0.71073$) 4.696 to 61.138 $-34 \le h \le 34, -18 \le k \le 18, -9 \le l \le 9$ 136112 6375 [$R_{int} = 0.0363$, $R_{sigma} = 0.0124$] 6375/1/302 1.095 $R_1 = 0.0254, wR_2 = 0.0696$ $R_1 = 0.0262, wR_2 = 0.0703$ 0.32/-0.18 0.009(9)

Identification code Empirical formula Formula weight Temperature/K Crystal system Space group a/Å b/Å c/Å $\alpha/^{\circ}$ β/° γ/° Volume/Å³ Ζ $\rho_{calc}g/cm^3$ μ/mm^{-1} F(000) Crystal size/mm³ Radiation 2Θ range for data collection/° Index ranges Reflections collected Independent reflections Data/restraints/parameters Goodness-of-fit on F² Final R indexes $[I \ge 2\sigma(I)]$ Final R indexes [all data] Largest diff. peak/hole / e Å⁻³

mo_1218_CG_0m $C_{14}H_{20}B_{10}Se$ 375.36 110 monoclinic $P2_1/c$ 7.6595(9) 28.316(4) 8.5737(12) 90 103.115(3) 90 1811.0(4) 4 1.377 2.065 752.0 $0.221\times0.162\times0.058$ MoK α ($\lambda = 0.71073$) 5.086 to 61.016 $-10 \le h \le 10, -40 \le k \le 40, -12 \le l \le 11$ 40969 5465 [$R_{int} = 0.0296$, $R_{sigma} = 0.0194$] 5465/0/306 1.074 $R_1 = 0.0229, wR_2 = 0.0502$ $R_1 = 0.0291, wR_2 = 0.0528$ 0.38/-0.43

CCDC 2063919 5b

Identification code Empirical formula Formula weight Temperature/K Crystal system Space group a/Å b/Å c/Å $\alpha/^{\circ}$ β/° γ/° Volume/Å³ Ζ $\rho_{calc}g/cm^3$ μ/mm^{-1} F(000) Crystal size/mm³ Radiation 20 range for data collection/° Index ranges Reflections collected Independent reflections Data/restraints/parameters Goodness-of-fit on F² Final R indexes $[I \ge 2\sigma(I)]$ Final R indexes [all data] Largest diff. peak/hole / e Å⁻³

mo_1274_CG_0m C₂₆H₂₇B₁₀NS 493.64 100.0 monoclinic $P2_1/n$ 14.2524(16) 12.5432(12) 14.6594(17) 90 95.765(4) 90 2607.4(5) 4 1.258 0.143 1024.0 $0.563 \times 0.352 \times 0.202$ MoKα ($\lambda = 0.71073$) 4.202 to 59.248 $-19 \le h \le 19, -17 \le k \le 17, -20 \le l \le 20$ 64184 7308 [$R_{int} = 0.0311$, $R_{sigma} = 0.0193$] 7308/0/373 1.064 $R_1 = 0.0429$, $wR_2 = 0.1143$ $R_1 = 0.0456$, $wR_2 = 0.1164$ 0.56/-0.32

References

- A. Toppino, A. R. Genady, M. E. El-Zaria, J. Reeve, F. Mostofian, J. Kent and J. F. Valliant, *Inorg. Chem.*, 2013, 52, 8743–8749.
- [2] C. Tang and Z. Xie, Angew. Chem. Int. Ed., 2015, 54, 7662–7665.
- [3] C. Viñas, R. Benakki, F. Teixidor and J. Casabó, Inorg. Chem., 1995, 34, 3844–3845.
- [4] Gaussian 16, Revision A.03, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria,
 - M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X.
 Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci,
 H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F.
 Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe,
 V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota,
 R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven,
 K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E.
 N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K.
 Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam,
 M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas,
 J. B. Foresman, D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.
- [5] J. M. Tao, J. P. Perdew, V. N. Staroverov and G. E. Scuseria, *Phys. Rev. Lett.*, 2003, 91, 146401.
- [6] a) S. Grimme, Ehrlich and L. Goerigk, J. Comput. Chem., 2011, 32, 1456–1465; b) S.
 Grimme, J. Antony, S. Ehrlich and H. Krieg, J. Chem. Phys., 2010, 132, 154104.
- [7] a) F. Weigend, *Phys. Chem. Chem. Phys.*, 2006, **8**, 1057–1065; b) F. Weigend and R. Ahlrichs, *Phys. Chem. Chem. Phys.*, 2005, **7**, 3297–3305; c) A. Schaefer, C. Huber and R. Ahlrichs, *J. Chem. Phys.*, 1994, **100**, 5829–5835; d) A. Schaefer, H. Horn and R. Ahlrichs, *J. Chem. Phys.*, 1992, **97**, 2571–2577.
- [8] Y. Zhao and D. G. Truhlar, J. Phys. Chem. A, 2005, 109, 5656–5667.
- [9] a) E. Caldeweyher, S. Ehlert, A. Hansen, H. Neugebauer, Se. Spicher, C. Bannwarth and S. Grimme, J. Chem. Phys., 2019, 150, 154122; b) E. Caldeweyher, C. Bannwarth and S. Grimme, J. Chem. Phys., 2017, 147, 034112.
- [10] A. V. Marenich, C. J. Cramer and D. G. Truhlar, J. Phys. Chem. B, 2009, 113, 6378–6396.
- [11] T. Lu and F. Chen, J. Comput. Chem., 2012, 33, 580-592.
- [12] W. Humphrey, A. Dalke and K. Schulten, J. Molec. Graphics, 1996, 14, 33–38.
- [13] H. G. Roth, N. A. Romero and D. A. Nicewicz, Synlett, 2016, 27, 714-723.
- [14] A. A. Isse and A. Gennaro, J. Phys. Chem. B, 2010, 114, 7894–7899.

¹H, ¹³C, ¹⁹F and ¹¹B NMR spectra

- 1.33

400 MHz, CDCI₃

141.6 136.7 132.2 132.2 130.9 130.8 129.8 128.5 126.5

3ac 101 MHz, CDCl₃

128 MHz, CDCl₃

$\begin{array}{c} 7.56\\ 1.56\\$

3ad 128 MHz, CDCl₃

3ad 376 MHz, CDCl₃

3ae 400 MHz, CDCl₃

165.7 163.1 139.0 138.9 130.8 130.8 130.8 130.8 116.3 116.3 116.3 87.8 85.8

3ae 101 MHz, CDCl₃

 ~-8.05
 ~-8.26
 ~-8.26
 ~-9.44
 ~-9.55
 ~-10.88
 ~-11.03
 ~-12.28
 ~-12.46 ~-1.86 ~-2.06 ~-3.21 ~-3.52

138.0 137.9 132.1 131.0 131.0 130.8 129.4 129.4 128.1

-- 87.9 -- 85.4

3af 101 MHz, CDCl₃

S-61

3ag 128 MHz, CDCl₃

3ag 128 MHz, CDCl₃

S-63

3ah 128 MHz, CDCl₃

3ah 128 MHz, CDCl₃

----2.31

---1.80 ---2.31 ---2.95 ---2.95 ---3.52 ---8.48 ---8.48 ---8.48 ---8.48

3ak 128 MHz, CDCl₃

$\begin{array}{c} 7.56\\$

3al 400 MHz, CDCl₃

3al 101 MHz, CDCl₃

3al 128 MHz, CDCl₃

~ 164.5 1139.4 1134.1 1134.1 1134.1 1134.1 1134.5 1135.5 1

7.7.69 7.7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75 7.75

---2.32 ---3.49 ---7.72 ---9.03 ---10.23

9 7 -7 -9 -11 f1 (ppm) 5 3 1 -1 -3 -5 -13 -15 -17 -19 -21 -23 -25 -27

3ap 128 MHz,CDCl₃

3ap 128 MHz,CDCl₃

3aq 282 MHz, CDCl₃

-90 -91 -92 -93 -94 -95 -96 -97 -98 -99 -100 -101 -102 -103 -104 -105 -106 -107 -108 -109 -110 -111 f1 (ppm)

√ -1.80 √ -2.89 √ -3.78 √ -3.78 - -7.77 - -8.59 √ -9.88 √ -11.06 ✓ -12.11

3ar 128 MHz, CDCl₃

3as 300 MHz, CDCl₃

~ -2.17
~ -2.59
~ -2.59
~ -3.33
~ -3.75
~ -3.75
~ -3.75
~ -9.70
~ -9.70
~ -11.76

3at 128 MHz, CDCl₃

3au 75 MHz, CDCl₃

4do 400 MHz, CDCl₃

77.70 76.68 76.69 76.69 76.69 76.69 77.55 77

S-103

4fa 96 MHz, CDCl₃

18 16 14 12 10 8 6 4 2 0 -2 -4 -6 -8 -10 -12 -14 -16 -18 -20 -22 -24 -26 -28 -30 -32 -3 f1 (ppm)

$\begin{array}{c} & 85.0 \\ & 83.9 \\ & 31.6 \\ & 31.6 \\ & 31.8 \\ & 31.6 \\ & 31.8 \\ & 31.6 \\ & 31.6 \\ & 31.6 \\ & 31.6 \\ & 31.6 \\ & 31.6 \\ & 31.6 \\ & 23.9 \\ & 28.2 \\ & 28.$

4fu 75 MHz, CDCl₃

4ga 96 MHz, CDCl₃

7 6 5 4 3 2 1 0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 -17 -18 -19 -20 -21 -22 -23 f1 (ppm)

4av 300 MHz, CDCl₃

S-111

5a 101 MHz, CDCl₃

---0.0

