Supplementary information

for

Aggregation-induced delayed fluorescence luminogens: the innovation of purely organic emitters for aqueous electrochemiluminescence

Baohua Zhang,^a Yi Kong,^a Huijun Liu,^b Bin Chen,^b Bolin Zhao,^a Yelin Luo,^a Lijuan Chen,^a Yuwei Zhang,^a Dongxue Han,^a Zujin Zhao,^{*b} Ben Zhong Tang^{*b,c} and Li Niu^{*a}

^a Centre for Advanced Analytical Science, c/o School of Chemistry and Chemical Engineering, Guangzhou Key Laboratory of Sensing Materials & Devices, Guangzhou University, Guangzhou 510006, P. R. China. E-mail: lniu@gzhu.edu.cn

^b State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China. E-mail: mszjzhao@scut.edu.cn; tangbenz@ust.hk

^c Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China.

*Corresponding authors.

E-mail address: lniu@gzhu.edu.cn (L. Niu); mszjzhao@scut.edu.cn (Z.-J. Zhao); tangbenz@ust.hk (B.-Z. Tang)

S1

Supplementary Figures and Tables

Figure S1. The transient PL decay curves and their exponential fitting results of the AIDF molecule, i.e. mCP-BP-PXZ, in THF/water mixtures with different water fractions (f_w), i.e. 0 %, 60 %, 70 %, 80 %, 90 %, 95 % (excitation wavelength: 363 nm, and detection wavelength: 553 nm) at 300 K.

Figure S2. The transient PL decay curves and their exponential fitting results of the AIE molecule, i.e. TPE-TAPBI, in THF/water mixtures with different water fractions (f_w) , i.e. 0 %, 70 %, 80 %, 90 %, 95 % (excitation wavelength: 363 nm, and detection wavelength: 454 nm) at 300 K.

Figure S3. PL quantum efficiency (PLQY) of the (A) AIDF molecule, i.e. mCP-BP-PXZ and (B) AIE molecule, i.e. TPE-TAPBI, in THF/water mixtures with different water fractions (f_w).

Table S1. The photophysical properties of the AIDF molecule, i.e. mCP-BP-PXZ, in THF/water mixtures with different water fractions (f_w) .

Molecule (f_w)	λ _{em} ^a [nm]	$\Phi_{_{ m PL}}^{b}$ [%]	$\tau_{p}^{\prime}/\tau_{d}^{c}$ [ns]/[ns]	$\Phi_{ m PF}^{}/\Phi_{ m DF}^{}^{}$	k_{f}^{e} [10 ⁷ s ⁻¹]	$\frac{k_{ISC}^{f}}{[10^{7} s^{-1}]}$	k_{RISC}^{g} [10 ⁶ s ⁻¹]
mCP-BP-PXZ (95 %)	553	62.2	16/702	42.1/20.1	2.63	3.62	1.17
mCP-BP-PXZ (90 %)	553	45.3	17/858	31.5/13.8	1.85	4.03	0.76
mCP-BP-PXZ (80 %)	555	11.1	12/546	10.2/0.9	0.85	7.48	0.18

mCP-BP-PXZ	(10	5 1	2 (1	51/	1 40	a c th	
(0 %)	018	5.1	3.0/-	5.1/-	1.42	26.4	-

^a Measured in THF/water mixtures at room temperature. ^b Absolute PLQY evaluated using an integrating sphere under air atmosphere. ^c The prompt fluorescence lifetime (τ_p) and the delayed fluorescence lifetime (τ_d) calculated by PL decay curves from 0 to 5 µs under air atmosphere at 300 K, the average lifetime calculated by $\tau_{av} = \sum A_i \tau_i^2 / \sum A_i \tau_i$, where A_i is the pre-exponential for lifetime τ_i (A_i and τ_i are shown in Figure S1). ^d The fractional contributions of the prompt fluorescence (Φ_{PF}) and delayed fluorescence (Φ_{DF}) to the total Φ_{PL} calculated by emission decay curves from 0 to 5 µs under air atmosphere. $\Phi_{PL} = \Phi_{PF} + \Phi_{DF}$, $\Phi_{PF} = r_{prompt} \times \Phi_{PL}$, $r_{prompt} = \tau_1 A_1 / (\tau_1 A_1 + \tau_2 A_2 + \tau_3 A_3)$, $\Phi_{DF} = r_{delayed} \times \Phi_{PL}$, $r_{delayed} = 1 - r_{prompt}$. ^e The fluorescence rate constants of S₁ calculated using equation of $k_f = \Phi_{PF} / \tau_p$. ^f The rate constants of ISC calculated using equation of $k_{ISC} = 1/\tau_p(1-\Phi_{PF})$. ^g The rate constant of RISC rate was calculated using equation of $k_{RISC} = (k_p k_d)/k_{ISC} \times (\Phi_{DF}/\Phi_{PF})$, in which $k_p = 1/\tau_p$, $k_d = 1/\tau_d$. ^h Herein, this rate stands for nonradiative decay rate for this sample without distinct delayed fluorescent property, i.e. $k_{nr} = k_p - k_f$.

Table S2. The photophysical properties of the AIE molecule, i.e. TPE-TAPBI, in THF/water mixtures with different water fractions (f_w).

Molecule (f_w)	λ _{em} ^a [nm]	$\Phi_{_{ m PL}}^{b}$ [%]	τ_p^c [ns]	k_{f}^{d} [10 ⁸ s ⁻¹]	k_{nr}^{e} [10 ⁸ s ⁻¹]
TPE-TAPBI (90 %)	454	75.9	2.7	2.8	0.9
TPE-TAPBI (80 %)	452	31.5	2.5	1.3	2.7
TPE-TAPBI (70 %)	449	15.6	1.6	1.0	5.3

TPE-TAPBI (0%)	448	6.5	0.7	0.9	13.4

^a Measured in THF/water mixtures at room temperature. ^b Absolute PL quantum yield evaluated using an integrating sphere under air atmosphere. ^c The prompt fluorescence lifetime (τ_p) calculated by emission decay curves from 0 to 40 ns under air atmosphere at 300 K, the average lifetime calculated by $\tau_{av} = \sum A_i \tau_i^2 / \sum A_i \tau_i$, where A_i is the pre-exponential for lifetime τ_i (A_i and τ_i are shown in Figure S2). ^d The radiative fluorescent decay rate from S_1 to S_0 level, $k_f = \Phi_{PL} / \tau_{p.}^{c}$ ^e The nonradiative decay rate from S_1 to S_0 level, $k_{fr} = \frac{1}{\tau_{p}} - k_{f.}$

Figure S4. The UV irradiation ($\lambda = 365$ nm) photographs of GCE modified with AIDF molecule, i.e. mCP-BP-PXZ (pre-aggregated solution condition: mCP-BP-PXZ luminogen solution dissolved in THF/H₂O mixtures with different water fractions).

Figure S5. TEM characterizations of dip-coated film morphology of AIDF luminogen solution (A), i.e. mCP-BP-PXZ, or AIE luminogen solution (B), i.e. TPE-TAPBI, (pre-aggregated solution condition: 0.1 mM, $f_w = 95$ %).

Figure S6. The transient PL decay curves of the AIDF molecule, i.e. mCP-BP-PXZ (f_w = 95 %) dip-coated film under different atmosphere condition, i.e. nitrogen, air, oxygen (excitation wavelength: 363 nm, and detection wavelength: 542 nm) at 300 K.

Figure S7. The transient PL decay curves and their exponential fitting results of the AIDF molecule, i.e. mCP-BP-PXZ ($f_w = 95\%$) dip-coated film under different atmosphere condition, i.e. nitrogen, air, oxygen (excitation wavelength: 363 nm, and detection wavelength: 542 nm) at 300 K.

film	$\lambda_{abs}^{\ a}$	$\lambda_{em}^{\ a}$	$\Phi_{_{PL}}{}^{b}$	τ_p/τ_d	° [ns]/[1	ns]	$\Phi_{\mathrm{PF}}/\Phi_{\mathrm{DF}}^{}d}$	k _f ^e	$k_{\rm ISC}^{\rm f}$	kg
	[nm]	[nm]	[%]	air	N ₂	0 ₂	[%]/[%]	$[10^7 \text{ s}^{-1}]$	$[10^7 \text{ s}^{-1}]$	$[10^{6} \text{ s}^{-1}]$
mCP- BP- PXZ	344,330, 297	542	28.3	17/ 453	19/ 877	18/ 355	15.6/12.7	0.9	5.0	2.1

Table S3. The photophysical properties of the AIDF molecule, mCP-BP-PXZ ($f_w = 95$ %) dip-coated film under different atmosphere condition.

^a Measured in neat film at room temperature. ^b Absolute PL quantum yield evaluated using an integrating sphere under air atmosphere. ^c The prompt fluorescence lifetime (τ_p) and the delayed fluorescence lifetime (τ_d) calculated by emission decay curves from 0 to 5 µs under air, nitrogen and oxygen atmosphere at 300 K. ^d The fractional contributions of the fluorescence (Φ_F) and TADF (Φ_{TADF}) to the total Φ_{PL} calculated by emission decay curves from 0 to 5 µs under air atmosphere. $\Phi_{PL} = \Phi_{PF} + \Phi_{DF}$, $\Phi_{PF} = r_{prompt} \times \Phi_{PL}$, $r_{prompt} = \tau_1 A_1 / (\tau_1 A_1 + \tau_2 A_2 + \tau_3 A_3)$, $\Phi_{DF} = r_{delayed} \times \Phi_{PL}$, $r_{delayed} = 1 - r_{prompt}$. ^c The fluorescence rate constants of S₁ calculated using equation of $k_f = \Phi_{PF} / \tau_p$. ^f The rate constants of ISC calculated using equation of $k_{ISC} = (k_p k_d)/K_{ISC} \times (\Phi_{DF}/\Phi_{PF})$, in which $k_p = 1/\tau_p$, $k_d = 1/\tau_d$.

Figure S8. Normalized PL spectra of the AIDF luminogen, i.e. mCP-BP-PXZ, or AIE luminogen, i.e. TPE-TAPBI ($f_w = 95$ %) in PBS solution or in dip-coated neat film.

Figure S9. Cyclic voltammograms of mCP-BP-PXZ and TPE-TAPBI in solution (1 mM) (measured in high purity nitrogen-filled glovebox, using the solvent of dichloromethane (DCM) and acetonitrile (ACN) for oxidation and reduction scan, respectively. 0.1 M TBAPF₆, scan rate: 0.1 V s⁻¹, potential versus Ag/Ag^+).

Molecule	$E_{1/2}^{OX}$ a)	$E_{1/2}^{Red}$ a)	HOMO ^{b)}	LUMO ^{b)}	E _g ^{b)}
	[V]	[V]	[eV]	[eV]	[eV]
mCP-BP-PXZ	0.49	-2.16	-5.09	-2.60	2.49
TPE-TAPBI	0.85	_ c)	-5.46	-2.67 ^{d)}	2.93 ^{e)}

Table S4. Electrochemical data of AIDF molecule, i.e. mCP-BP-PXZ, and AIE molecule, i.e. TPE-TAPBI, and the calculated energy levels and energy gap.

^{a)} Potential was versus Ag/Ag⁺, in which $E_{1/2}^{OX}$ and $E_{1/2}^{Red}$ are the half wave potential for oxidation and reduction, respectively (calculated as the mean value of the redox peaks) ^{s1, s2}. ^{b)} Ferrocene couple (Fc/Fc⁺) was used as the internal reference. The energy levels were calculated using the following equations: $E_{HOMO} = -\left(\frac{E_{1/2}^{OX} - E_{Fc/Fc^{+}}}{E_{Fc/Fc^{+}}}\right)$ eV, $E_{LUMO} = -\left(\frac{E_{1/2}^{Red} - E_{Fc/Fc^{+}}}{E_{HOMO} - E_{HOMO^{-C}}}\right)$ not precisely available due to irreversible redox process. ^{d)} $E_{LUMO} = E_g + E_{HOMO^{-C}}$ from ref. ^{s3}, i.e. optical bandgap calculated from the onset of the absorption spectrum.

Figure S10. Anodic cyclic voltammograms and the corresponding oxidative-reduction ECL responses of bare GCE, or bare GCE/40 mM TPrA or AIDF-luminogen-modified GCE/40 mM TPrA couple (while the dip-coated AIDF film was fabricated by using different AIDF luminogen solution in THF/water mixtures with different water fractions, i.e. 50 % - 95 %. CV/ECL test conditions: a potential window ranging from 0 V to 1.3 V (vs, Ag/AgCl), scan rate: 0.5 V s⁻¹, 0.1 M PBS containing 0.1 M KCl, pH: 7.44. PMT Voltage: 850 V.

Figure S11. (A) Anodic cyclic voltammograms and (B) the corresponding oxidativereduction ECL responses of bare GCE, or bare GCE/40 mM TPrA or AIE-luminogenmodified GCE/40 mM TPrA couple (Condition: the dip-coated AIE-luminogenmodified GCE used the TPE-TAPBI luminogen solution in THF/water mixture containing the water fraction of 95%). Inset: PL and ECL spectra of the AIE molecule in the solid state. CV/ECL test condition: a potential window ranging from 0 V to 1.3 V (vs, Ag/AgCl), scan rate: 0.5 V s⁻¹, 0.1 M PBS containing 0.1 M KCl, pH: 7.44. PMT: 850 V.

calculating the relative ECL efficiency of TPE-TAPBI (f_w : 95 %)-luminogen-modified GCE/TPrA vs. mCP-BP-PXZ (f_w : 95 %)-luminogen-modified GCE/TPrA in the PBS medium.

System	$\int_{a}^{b} I dt$	$\int_{a}^{b} i dt$	$\Phi_{_{ m ECL}}$ [%]
TPE-TAPBI/TPrA	536.26	1.39	100
mCP-BP-PXZ/TPrA	2217.52	1.06	540

Molecule	Moloculo	$f_{(y_0,10/)}$	PL lif	etime ^a	$\lambda_{_{\rm PL}}$	λ FCL °	$\Phi_{_{\mathrm{PL}}}{}^{\mathrm{d}}$	Φ _{ECL} ^e [%] 540
	$f_{\rm w}$ (volve)	τ _{PF} (ns)	τ _{DF} (ns)	[nm]	[nm]	[%]	[%]	
mCP-BP-PXZ	95	17	453	542 ^a 553 ^b	596	28.3	540	
TPE-TAPBI	95	2.7	-	456 ^a 454 ^b	477	34.0	100	

Table S6. Main photophysical and ECL parameters for the AIDF molecule, i.e. mCP-BP-PXZ, and the AIE molecule, i.e. TPE-TAPBI, respectively.

^a Tested for neat dip-coated film (f_w : 95 %) in air. ^b Tested for the solution (f_w : 95 %). ^c ECL peak position for oxidative-reduction ECL with TPrA. ^d Absolute PLQY evaluated using an integrating sphere under air atmosphere. ^e Relative ECL efficiency of mCP-BP-PXZ -modified GCE (f_w : 95 %)/TPrA (40 mM) vs. TPE-TAPBI -modified GCE (f_w : 95 %)/TPrA (40 mM) reference (setting as 100 %).

Figure S12. ECL stability test (50 cycles) for the AIDF-luminogen-modified GCE/TPrA couple (the dip-coated mCP-BP-PXZ solution contained different water fractions ranging from 50 % to 95 %. ECL test condition: a potential window: 0 V-1.3 V (vs, Ag/AgCl), scan rate: 0.5 V s⁻¹, 0.1 M PBS containing 0.1 M KCl and 40 mM TPrA, pH: 7.44. PMT: 850 V.

Figure S13. Normalized PL spectra of AIDF (A) or AIE (B) luminogen modified GCE sample, i.e. before and after oxidative-reduction ECL test using such sample discussed above.

Figure S14. ECL stability test (50 cycles) for the AIDF-luminogen-modified GCE/TPrA couple (the dip-coated mCP-BP-PXZ solution contained 95% water fraction. ECL test condition: a potential window: 0 V - 1.3 V (vs, Ag/AgCl), scan rate: 0.5 V s⁻¹, 0.1 M PBS containing 0.1 M KCl) using different concentration of TPrA, i.e. 80, 120, 160 and 200 mM, respectively.

Reference:

- S1. H. D. Li, J. Daniel, J. B. Verlhac, M. Blanchard-Desce and N. Sojic, *Chem.-Eur. J.*, 2016, **22**, 12702-12714.
- S2. K. Redin, A. D. Wilson, R. Newell, M. R. DuBois and D. L. DuBois, *Inorg. Chem.*, 2007, **46**, 1268-1276.
- S3. B. Chen, B. Q. Liu, J. J. Zeng, H. Nie, Y. Xiong, J. H. Zou, H. L. Ning, Z. M. Wang, Z. J. Zhao and B. Z. Tang, *Adv. Funct. Mater.*, 2018, 28, 1803369.