Supporting Information

Enantioselective Total Synthesis of Parnafungin A1 and

10a-epi-Hirtusneanine

Jiawei Sun,^a Wei Gu, ^a He Yang,^{*a} and Wenjun Tang^{*a, b}

^a State Key Laboratory of Bio-Organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Ling Ling Rd, Shanghai 200032, China

^b School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China

*Corresponding Authors: yanghe@sioc.ac.cn (H. Y.); tangwenjun@sioc.ac.cn (W. T.).

Table of contents

Table S1	S2
Synthetic Route to compound 19	S3
General Procedures	S4
Synthetic Procedures	S5
Comparison of NMR Data of Derivative 12 from Merck Lab and Our Lab	S46
NMR Data (in CDCl ₃) of Parnafungin A1	S49
Comparison of NMR Data of Natural and Synthetic Parnafungins	S50
Comparison of NMR Data of Reported and Synthetic 10a-epi-Hirtusneanine	S60
Experimental CD Spectra of 53	S63
Single Crystal X-Ray Diffraction Data	S64
References	S68
¹ H and ¹³ C NMR Spectra	S69

HO	OH O OMe OH O OMe HO2C OH	HO OH O OMe B C C C, 1.5 h TBSO OH	HQ CO ₂ Me OH OH O OMe OH O OMe OH O OMe OH TBSO OH
	38	39	51
	Entry ^[a]	Derivations	Results
	1	none	15%
	2	DIPEA	< 5%
	3	no water	0%
	4	Pd ₂ dba ₃	< 5%
	5	PPh ₃	0%
	6	L2	0%
	7	45 min	25%
	8 ^[b]	60 °C	43%
	9 ^[p]	50 °C	27%
	10 ^[b]	30 °C	no reaction

Table S1. Optimization of the Suzuki-Miyaura cross-coupling reaction.

Reaction conditions: [a] Benzoxaborole **39** (1.0 equiv), aryl bromide **38** (0.02 mmol, 1.0 equiv), Pd(OAc)₂ (20 mol %), Sphos (30 mol %) and K_3PO_4 (3.0 equiv) in THF (0.8 mL) and H_2O (0.2 mL) at 70 °C for 1.5 h. [b] 45min.

1. Synthetic route to known compound 19

(A) Corey's synthetic route to (R)-19 intermediate

Figure S1. (A) Corey's synthetic approach to (R)-16 intermediate¹ [*Tetrahedron Lett.* 32, 5025-5028 (1991).]. (B) Our developed synthetic route to (S)-19 intermediate

2. General Procedures:

Most of reactions were carried out under nitrogen atmosphere using Schlenk techniques. Reagents were purchased at the highest commercial quality and used without further purification, unless otherwise stated. Anhydrous tetrahydrofuran, diethyl ether and toluene were distilled immediately before us from sodium-benzophenone ketyl. Methylene chloride (CH₂Cl₂), N,N-dimethylformamide (DMF), N,N,N',N'-Tetramethylethylenediamine (TMEDA), tert-butanol (t-BuOH), diisopropylamine (i-Pr₂NH), trimethylamine (Et₃N), were distilled from calcium hydride and stored under an argon atmosphere. Methanol (MeOH) and ethanol (EtOH) was distilled from magnesium and stored under a nitrogen atmosphere. All other solvents and reagents were used as received from commercial sources, unless otherwise specified Solvents for chromatography were used as supplied by Adamas-beta[®]. Flash column chromatography was performed employing Qingdao Haiyang silica gel 60 (200-300 mesh). TLC analyses were performed on EMD 250 µm Silica Gel HSGF₂₅₄ plates (and visualized by quenching of UV fluorescence ($\lambda_{max} = 254$ nm), or by staining ceric ammonium molybdate, ammonium molybdate, or potassium permanganate. ¹H and ¹³C NMR spectra were recorded on a Bruker Avance III 400 MHz, an Agilent DD2 500 MHz, or a Bruker Avance III HD 600 MHz NMR spectrometer. Chemical shifts for ¹H and ¹³C NMR spectra are reported in ppm (δ) relative to residue protium and carbon resonance in the solvent (chloroform-d: δ 7.26, 77.0 ppm; methanol-d4: δ = 3.31, 48.8 ppm; acetone-d6: δ = 2.05, 29.7, 206.2 ppm) and the multiplicities are presented as follows: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad. High-resolution mass spectra (HRMS) were recorded on a Bruker maXis 4G mass spectrometer. Chiral HPLC analyses were performed on an Agilent 1100 Series using a Daicel Chiralpak column with hexane/iPrOH or MeCN/H2O as the eluent. Optical rotations were measured on an Anton Paar Modular Circular Polarimeter. X-ray structures were measured on BRUKER APEX II and SC-XRD.

3. Synthetic Procedures

Preparation of alcohol S9

An oven-dried, 5 L three-necked, round-bottomed flask was treated with Bis(trifluoroacetoxy)iodo]benzene (306 g, 711 mmol, 1.1 equiv) and CH₂Cl₂ (2.0 L). The reaction mixture was cooled to 0 °C via ice/water bath. After 30 min of continued stirring at 0 °C, the solution of benzyl alcohol S8 (100 g, 647 mmol, 1.0 equiv) and neopentyl glycol (101 g, 970 mmol, 1.5 equiv) in CH₂Cl₂ (800 mL) was added dropwise via addition funnel over a period of 80 min. Upon complete addition, the resulting yellow reaction mixture was stirred at 0 $\,$ °C for an additional 60 min at which point TLC analysis indicated the complete consumption of starting material. The reaction was carefully guenched with sat. aq. NaHCO₃ (300 mL) and then warmed to ambient temperature. The layers were separated and aqueous layer was extracted with CH_2Cl_2 (3 × 300 mL) and the combined layers were washed with brine (300 mL), dried over Na₂SO₄, filtered and concentration in vacuo. The crude residue was purified via SiO_2 flash chromatography (eluent: EtOAc/hexanes = 5/1) to give alcohol S9 (129 g, 89% yield) as a yellow solid.

 $R_f = 0.33$ (silica gel, 2:1 hexanes:EtOAc); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.15 (dt, J = 3.1, 1.5 Hz, 1H), 7.11 (dd, J = 10.2, 3.2 Hz, 1H), 6.20 (d, J = 10.2 Hz, 1H), 4.41 (s, 2H), 3.73 (d, J=11.6 Hz, 1H), 3.67 (d, J=11.5 Hz, 1H), 1.10 (s, 3H), 1.06 (s, 3H); ¹³C NMR (126 MHz, Chloroform-*d*) $\delta = 185.7, 142.5, 137.2, 135.9, 128.5, 89.2, 71.4, 60.5, 30.1, 22.7, 22.6; HRMS (ESI) calcd.for C₁₂H₁₆O₄Na [M+Na]+: 247.0941; found: 247.0945.$

Preparation of cyclic ketal S10

An oven-dried, 2.0 L round-bottomed flask was treated with alcohol **S9** (130 g, 579 mmol, 1.0 equiv), imidazole (59.1 g, 869 mol, 1.5 equiv) and CH₂Cl₂ (800 mL). The reaction mixture was cooled to 0 °C via ice/water bath. After 30 min of continued stirring at -40 °C, TBSCl (91.7 g, 608 mmol, 1.05 equiv.) was added in portions during a period of 30 min. Upon complete addition, the resulting dark-brown reaction mixture was stirred at -40 °C for an additional 6 h at which point TLC analysis indicated the complete consumption of starting material. The reaction was quenched with *sat.* aq. NaHCO₃ (100 mL) and then warmed to ambient temperature. The layers were separated and aqueous layer was extracted with CH₂Cl₂ (3 × 200 mL) and the combined layers were washed with brine (400 mL), dried over Na₂SO₄, filtered and concentration *in vacu*o. The crude residue was purified via SiO₂ flash chromatography (eluent: EtOAc/hexanes = 1:15) to give cyclic ketal **S10** (190 g, 97% yield) as a yellow solid.

 $R_f = 0.45$ (silica gel, 5:1 hexanes:EtOAc); ¹H NMR (500 MHz, Chloroform-d) δ 7.31 (dt, J = 3.2, 2.2 Hz, 1H), 7.00 (dd, J = 10.2, 3.3 Hz, 1H), 6.15 (d, J = 10.2 Hz, 1H), 4.44 (d, J = 2.2 Hz, 2H), 3.76 (d, J = 11.8 Hz, 2H), 3.63 (d, J = 11.8 Hz, 2H), 1.14 (s, 3H), 1.00 (s, 3H), 0.95 (s, 9H), 0.10 (s, 6H); ¹³C NMR (126 MHz, Chloroform-*d*) δ 185.2, 143.1, 138.0, 133.7, 128.9, 89.6, 71.6, 59.4, 30.2, 23.0, 22.8, 18.4, -5.3; HRMS (ESI) calcd.for C₁₈H₃₀O₄SiNa [M+Na]⁺: 361.1806; found: 361.1810.

Preparation of enone S11

In a nitrogen-filled glovebox, a clean autoclave was treated with ketoketal **S10** (190 g, 562 mmol, 1.0 equiv), Wilkinson's catalyst (5.20 g, 5.62 mmol, 0.01 equiv) and anhydrous PhMe (250 mL). The autoclave was sealed, removed from the glovebox, and was then evaluated/refilled three times with

hydrogen gas under 20 atm pressure. The suspension was placed in preheated 40 °C water bath and vigorously stirred for 8 h (Note: if hydrogen gas was consumed too quickly, autoclave need to be refilled with hydrogen gas under 20 atm pressure) at which point ¹H-NMR analysis indicated the complete consumption of the starting material. The suspension was diluted with CH₂Cl₂, filtered through a short pad of celite, and concentrated *in vacuo*. Purification of crude residue by SiO₂ flash chromatography (eluent: EtOAc/hexanes = 1/10) yielded enone **S11** as a white solid (184 g, 96%).

 $R_f = 0.42$ (silica gel, 5:1 hexanes:EtOAc); ¹H NMR (500 MHz, Chloroform-*d*) δ 7.26 (tt, J = 2.1, 1.0 Hz, 1H), 4.29 (d, J = 2.2 Hz, 2H), 3.63 (d, J = 11.5 Hz, 2H), 3.44 (d, J = 11.9 Hz, 2H), 2.51 (dd, J = 7.1, 6.0 Hz, 2H), 2.17 (ddd, J = 7.3, 6.0, 1.0 Hz, 2H). 1.07 (s, 3H), 0.83 (s, 9H), 0.83 (s, 3H), 0.02 (s, 6H); ¹³C NMR (126 MHz, Chloroform-d): δ 198.5, 139.3, 136.9, 94.3, 71.1, 59.5, 34.6, 33.5, 30.2, 25.9, 22.8, 22.4, 18.3, -5.4; HRMS (ESI) calcd.for C₁₈H₃₂O₄SiNa [M+Na]⁺: 363.1962; found: 363.1965.

Preparation of enantioenriched alcohol S12

Entry	Conditions		Ee
1	CBS catalyst, BH ₃ (1.0 M in THF), THF, 0 °C, 30 min	< 5%	-
2	CBS catalyst, BH ₃ (1.0 M in THF), THF, -78 °C, 30 min	SM	-
3	CBS catalyst, catecholborane, PhMe, -78°C to rt, 30 min	66%	91%
4	CBS catalyst, catecholborane, PhMe, rt, 20 min	50%	71%
5	CBS catalyst, BH ₃ (10 M in Me ₂ S), THF, 0 °C, 20 min	92%	>99%

An oven-dried, 250 mL round-bottomed flask was treated with enone **S11** (5.78 g, 17.0 mmol, 1.0 equiv), (R)-Me-CBS-oxazaborolidine (3.39 mL, 1.0 M in Toluene, 3.4 mmol, 0.2 equiv) and anhydrous THF (50 mL). The reaction was cooled to 0 °C via ice/water bath. After 15 min of continued stirring at 0 °C, BH₃ SMe₂ (1.86 mL, 10.0 M in Me₂S, 18.7 mmol, 1.1 equiv) in anhydrous THF (10 mL) was added dropwise via syringe. Upon complete addition, the reaction was continued

at 0 °C for 20 min at which point TLC analysis indicated the complete consumption of starting material and quenched with carefully addition of MeOH (5 mL) followed by H₂O (10 mL). The layers were separated and aqueous layer was extracted with EtOAc (3×20 mL) and the combined layers were washed with brine (30 mL), dried over Na₂SO₄, filtered and concentration *in vacu*o. The crude residue was purified via SiO₂ flash chromatography (eluent: EtOAc/hexanes = 1/5) to give enantioenriched alcohol **S12** (5.3 g, 92% yield, >99% ee) as a white solid.

Enantiomeric excess was determined by HPLC, OD-H, n-hexane/isopropanol 95/5 isocratic, 23 ^oC, 1.0 mL/min, 6.97 min (*S*), 7.95 min (*R*); $R_f = 0.47$ (silica gel, 3:1 hexanes:EtOAc); Optical rotation: $[\alpha]_D^{25} = -18.2$ (c = 1.01, CHCl₃]; ¹H NMR (500 MHz, Chloroform-*d*): δ 6.08 (s, 1H), 4.34 (dd, *J*=12.9, 1.4 Hz, 1H), 4.23 (dd, *J*=13.0, 1.3 Hz, 1H), 4.23 (d, *J*=5.1 Hz, 1H), 3.65-3.46 (m, 4H), 2.77 (d, *J* = 3.8 Hz, -OH), 2.07 (ddd, *J* = 12.8, 9.8, 2.9 Hz, 1H), 1.99 (dddd, *J* = 12.6, 9.5, 6.0, 3.5 Hz, 1H), 1.96-1.89 (m, 1H). 1.82 (dddd, *J* = 13.1, 7.9, 5.2, 2.8 Hz, 1H), 1.01 (s, 3H), 0.96 (s, 3H), 0.91 (s, 9H), 0.10 (d, *J* = 2.9 Hz, 6H); ¹³C NMR (126 MHz, Chloroform-d): δ 142.4, 122.4, 95.4, 70.8, 70.7, 66.9, 66.2, 30.3, 28.5, 28.4, 26.0, 22.9, 22.7, 18.3, -5.3; HRMS (ESI) calcd.for C₁₈H₃₄O₄SiNa [M+Na]⁺: 365.2119; found: 365.2122.

Preparation of acetonide (S)-19

An oven-dried, 500 mL round-bottomed flask was treated with enantioenriched alcohol **S12** (55.0 g, 0.160 mmol, 1.0 equiv) and 200 mL AcOH/water (3:1). The reaction mixture was placed in a preheated oil bath at 50 °C and stirred for 10 hours at which point TLC analysis indicated the complete consumption of starting material. The reaction was cooled to ambient temperature and concentrated *in vacuo*. The crude residue was purified via SiO₂ flash chromatography (eluent: $CH_2Cl_2/MeOH = 20/1$) to give diol **S13** (21.0 g, 92% yield) as a colorless oil.

An oven-dried, 1.0 L round-bottomed flask was treated with diol **S13** (22.7 g, 160 mmol, 1.0 equiv), 2,2-dimethoxy-propane (400 mL) and 400 mL acetone. After 10 min of continued stirring, pyridinium 4-toluenesulfonate (PPTS) (3.25 g, 12.8 mmol, 0.08 equiv) was added in one portion. The reaction mixture was vigorously stirred for 4 h at ambient temperature at which point TLC analysis indicated the complete consumption of starting material. The reaction was quenched with the addition of *sat.* aq. NaHCO₃ (100 ml) and concentrated *in vacuo*. The residue was diluted with EtOAc (400 mL) and the layers were separated. Aqueous layer was extracted with EtOAc (3 × 200 mL) and the combined layers were washed with brine (100 mL), dried over Na₂SO₄, filtered and concentration *in vacuo*. The crude residue was purified via SiO₂ flash chromatography (eluent: EtOAc/hexanes = 30/1) to give acetonide (*S*)-**19** (25.9 g, 89% yield) as a white solid.

 $R_f = 0.37$ (silica gel, 2:1 hexanes:EtOAc); Optical rotation: [α]_D²⁵ = -69.5 (c = 1.04, CHCl₃); ¹H NMR (500 MHz, Chloroform-*d*) δ 5.76 (q, *J* = 1.6 Hz, 1H), 4.65 (ddt, *J* = 10.8, 5.2, 1.7 Hz, 1H), 4.50 (dt, *J*=16.3, 1.5 Hz, 1H), 4.41 (dt, *J*=16.3, 1.8 Hz, 1H), 2.57 (dddd, *J* = 16.9, 4.1, 2.7, 1.2 Hz, 1H), 2.37 (ddd, *J* = 16.9, 14.9, 4.8 Hz, 1H), 2.28 (dtd, *J* = 12.7, 5.0, 2.6 Hz, 1H), 1.98 (dddd, *J* = 15.1, 12.5, 10.8, 4.4 Hz, 1H), 1.52 (s, 3H), 1.43 (s, 3H); ¹³C NMR (126 MHz, Chloroform-*d*) δ 197.5, 160.6, 121.9, 100.1, 66.6, 61.7, 35.9, 29.4, 26.2, 21.9; HRMS (ESI) calcd.for C₁₀H₁₄O₃Na [M+Na]⁺: 205.0835; found: 205.0838.

Preparation of α,β-Unsaturated enone S14

An oven-dried, 250 mL round-bottomed flask was treated with acetonide (*S*)-**19** (10.0 g, 54.9 mmol, 1.0 equiv) and 109 mL CH₂Cl₂. The reaction was cooled to -40 °C via an ice/MeCN bath and stirring was continued at this temperature for 15 min prior to the addition dropwise of Br₂ (2.8 mL, 54.9 mmol, 1.0 equiv) via syringe. The reaction was continued for 30 min at -40 °C at which point TLC indicated the complete consumption of starting material. Et₃N (7.6 mL, 54.9 mmol, 1.0 equiv) was added dropwise via syringe. The reaction was warmed to ambient temperature over 10 min and quenched with addition of *sat.* aq. NaHCO₃ (20 mL). The layers were separated and the aqueous layer was extracted with CH₂Cl₂ (3 × 30 mL). The combined layers were washed with brine (30 mL), dried over Na₂SO₄, filtered and concentrated *in vacuo* to give crude residue. The crude residue was purified via SiO₂ flash chromatography (eluent: EtOAc/hexanes = 1/5) to give α,β -Unsaturated enone **S14** (12.7 g, 89 % yield) as a colorless oil. [Note: α,β -Unsaturated enone **S14** is not stable to storage and was used immediately upon isolation].

 $R_f = 0.61$ (silica gel, 2:1 hexanes:EtOAc); Optical rotation: $[\alpha]_D^{25} = -103.2$ (c = 1.00, CHCl₃); ¹H NMR (500 MHz, Chloroform-*d*) $\delta = 4.61$ (dd, J = 10.8, 5.2, 1H), 4.54 (dd, J = 18.0, 1.2, 1H), 4.47 (dd, J = 18.0, 2.3, 1H), 2.81 (ddd, J = 16.9, 4.3, 2.8, 1H), 2.50 (ddd, J = 16.9, 15.1, 4.7, 1H), 2.32 (dtd, J = 12.7, 5.1, 2.8, 1H), 1.98 (dddd, J = 15.1, 12.8, 10.8, 4.3, 1H), 1.47 (s, 3H), 1.42 (s, 3H); ¹³C NMR (126 MHz, Chloroform-*d*) $\delta = 189.2, 161.9, 117.8, 100.9, 68.0, 62.9, 35.3, 29.1, 24.3, 24.1; HRMS (ESI) calcd.for C₁₀H₁₃O₃BrNa [M+Na]⁺: 282.9940; found: 282.9939.$

Preparation of vinyl bromide 20

An oven-dried, 250 mL round-bottomed flask was treated with α , β -Unsaturated enone **S14** (13.2 g, 50.8 mmol, 1.0 equiv), CeCl₃ 7H₂O (18.9 g, 50.8 mmol, 1.0 equiv) and 109 mL MeOH. The reaction was cooled to 0 °C via an ice/water bath and stirring was continued at this temperature for 15 min prior to the addition of NaBH₄ (1.92 g, 50.8 mmol, 1.0 equiv) in portions. The reaction was continued for 10 min at 0 °C at which point TLC indicated the complete consumption of starting material. The reaction was concentrated *in vacuo*. EtOAc (3 × 50 mL) was added and organic layer was washed by water (3 × 30 mL) and brine (30 mL), dried over Na₂SO₄, filtered and concentrated *in vacuo*. The crude residue was purified via SiO₂ flash chromatography (eluent: EtOAc/hexanes = 1/3) to give vinyl bromide **20** (12.6 g, 95 % yield) as a colorless oil.

 $R_f = 0.40$ (silica gel, 2:1 hexanes:EtOAc); Optical rotation: $[\alpha]_D^{25} = -73.1$ (c = 1.03, CHCl₃); ¹H NMR (500 MHz, Chloroform-*d*) $\delta = 4.42$ -4.37 (m, 1H), 4.37 (d, *J* =15.6, 1H), 4.31 (d, *J* =15.6, 1H), 4.31-4.26 (m, 1H), 2.39-2.28 (m, 1H), 2.11-2.03 (m, 1H), 1.66-1.54 (m, 1H) (m, 2H), 1.44 (s, 3H), 1.38 (s, 3H); ¹³C NMR (126 MHz, Chloroform-*d*) $\delta = 138.2$, 122.1, 100.0, 70.2, 67.9, 62.4, 29.9, 27.4, 25.2, 23.2; HRMS (EI) calcd.for C₁₀H₁₅O₃Br [M]⁺: 262.0205; found: 262.0204.

Preparation of aldehyde 21

An oven-dried, 500 mL round-bottomed flask was treated with aryl bromide **S15** (22.0 g, 53.3 mmol, 1.0 equiv) THF (200 mL). The reaction was cooled to -78 $^{\circ}$ via dry ice/acetone bath, then treated with *n*BuLi (23.5 mL, 2.5 M in Toluene, 58.6 mmol, 1.1 equiv) dropwise via syringe. Upon complete addition, the reaction was stirred for 15 min at -78 $^{\circ}$ at which point TLC analysis indicated the complete consumption of starting material. A solution of *N*,*N*-Dimethylformamide (5.8 g, 80.0 mmol, 1.5 equiv) in THF (20 mL) was added dropwise via syringe. The resulting solution was stirred at -78 $^{\circ}$ for 15 min and allowed to warm up to ambient temperature. The reaction was extracted with *sat.* aq. NH₄Cl (25 mL) and the layers were separated. The aqueous layer was extracted with EtOAc (3×50 mL). The combined layers were washed with brine (50 mL), dried over Na₂SO₄, filtered and concentration *in vacu*o. The crude residue was purified via via SiO₂ flash chromatography (eluent: EtOAc/hexanes = 1/5) to give aldehyde **21** (11.0 g, 60% yield) as a pale yellow oil.

 $R_f = 0.68$ (silica gel, 3:1 hexanes:EtOAc); ¹H NMR (500 MHz, Chloroform-*d*) $\delta = 10.54$ (s, 1H), 6.54 (s, 2H), 6.05 (ddt, J = 17.3, 10.3, 4.9, 2H), 5.49 (dd, J = 17.3, 1.6, 2H), 5.30 (dd, J = 10.6, 1.5, 2H), 4.70 (s, 2H), 4.64-4.60 (m, 4H), 0.96 (s, 9H), 0.11 (s, 6H); ¹³C NMR (126 MHz, Chloroform-*d*) $\delta = 188.9$, 161.4, 150.5, 132.6, 117.9, 113.8, 102.4, 69.5, 64.8, 26.0, 18.5, -5.1; HRMS (ESI) calcd.for C₂₀H₃₁O₄Si [M+H]⁺: 363.1986; found: 363.1994.

Preparation of diketone 22

An oven-dried, 250 mL round-bottomed flask was treated with vinyl bromide **20** (4.0 g, 15.2 mmol, 1.0 equiv), *N*,*N*,*N'*,*N'*-Tetramethylethane-1,2-diamine (TMEDA) (9.2 mL, 61.0 mmol, 4.0 equiv) and Et₂O (100 mL). The reaction was cooled to -78 °C via dry ice/acetone bath, then treated with MeLi (12.9 mL, 1.3 M in Et₂O mmol, 1.1 equiv) dropwise via syringe. Upon complete addition, the reaction was stirred for 15 min at -78 °C and then transferred via cannula to a solution of *t*BuLi (21.0 mL, 1.6 M in Et₂O mmol, 33.4 mmol 1.5 equiv) in Et₂O (50 mL). After 5 min of continued stirred at -78 °C at which point TLC analysis indicated the complete consumption of starting material. A solution of aldehyde **21** (6.60 g, 18.2 mmol, 1.2 equiv) in THF (20 mL) was added dropwise via syringe. The resulting solution was stirred at -78 °C for 10 min. The reaction was quenched with *sat*. aq. NH₄Cl (50 mL) and the warmed to ambient temperature and diluted with Et₂O (50 mL). The layers were separated and the aqueous layer was extracted with EtOAc (3×50 mL). The combined layers were washed with brine (50 mL), dried over Na₂SO₄, filtered and concentration *in vacu*o. The crude residue was purified via via SiO₂ flash chromatography (eluent: EtOAc/hexanes = 5/1) to give diol (5.30 g, 64% yield) as a pale yellow oil.

An oven-dried, 100 mL round-bottomed flask was treated with diol (5.20 g, 9.50 mmol, 1.0 equiv) and DMSO (30 mL). A solution of IBX (5.80 g, 20.9 mmol, 2.2 equiv) was added. The resulting solution was stirred at ambient temperature for 1 h at which point TLC analysis indicated the complete consumption of starting material. The reaction was quenched with *sat*. aq. NaHCO₃ (20 mL). The mixture was extracted with EtOAc (3×40 mL) and the combined layers were washed with brine (50 mL), dried over Na₂SO₄, filtered and concentration *in vacu*o. The crude residue was purified via via SiO₂ flash chromatography (eluent: EtOAc/hexanes = 1/10) to give diketone **22** (3.9

g, 76% yield) as a yellow oil.

 R_f = 0.55 (silica gel, 5:1 hexanes:EtOAc); Optical rotation: [α]_D²⁵ = -64.8 (c = 1.0, CHCl₃); ¹H NMR (500 MHz, Chloroform-*d*) δ = 6.49 (s, 2H), 5.97 (ddt, *J* =17.2, 10.4, 5.1, 2H), 5.35 (dd, *J* =17.3, 1.6, 2H), 5.24 (dd, *J* =10.6, 1.5, 2H), 4.73 (dd, *J* =2.9, 1.7, 2H), 4.67 (s, 2H), 4.62 (ddt, *J* =11.1, 5.3, 1.6, 1H), 4.50 (dd, *J* =7.2, 5.3, 4H), 2.51 (ddd, *J* =16.3, 4.3, 2.9, 1H), 2.39 (ddd, *J* =16.3, 14.9, 4.7, 1H), 2.25 (dtd, *J* =12.7, 4.9, 2.9, 1H), 1.96 (dddd, *J*=15.2, 12.5, 11.1, 4.3, 1H), 1.47 (s, 3H), 1.42 (s, 3H), 0.94 (s, 9H), 0.09 (s, 6H); ¹³C NMR (126 MHz, Chloroform-*d*) δ = 194.2, 192.3, 166.1, 157.2, 146.0, 133.8, 132.9, 117.4, 102.8, 100.5, 69.4, 66.6, 64.6, 61.2, 36.5, 28.6, 25.9, 24.0, 24.0, 18.3, 14.2, -5.3; HRMS (ESI) calcd.for C₃₀H₄₂O₇SiNa [M+Na]⁺: 565.2592; found: 565.2594.

Preparation of hemiketal 23

An oven-dried, 150 mL round-bottomed flask was treated with diketone **22** (3.89 g, 7.2 mmol, 1.0 equiv) and PhMe (30 mL) at ambient temperature. AcOH (950 mg, 15.8 mmol, 2.2 equiv), nBu_3SnH (4.59 g, 15.8 mmol, 2.2 equiv) and Pd(PPh_3)_4 (0.41 g, 0.36 mmol, 0.05 equiv) was sequentially added. The resulting solution was stirred at ambient temperature for 20 min. The reaction mixture was quenched with brine (30 mL). The mixture was extracted with EtOAc (3 × 50 mL), filtered and concentration *in vacu*o. The crude residue was purified via SiO₂ flash chromatography (eluent: EtOAc/hexanes = 1/15) to give hemiketal **23** (2.69 g, 81% yield) as a yellow solid.

 R_f = 0.30 (silica gel, 5:1 hexanes:EtOAc); Optical rotation: [α]_D²⁵ = -200.3 (c = 0.56, CHCl₃); ¹H NMR (500 MHz, DMSO-d6): δ 11.23 (s, 1H), 6.45 (s, 1H), 5.62 (d, *J* = 1.3 Hz, 1H), 5.56 (d, *J* = 1.3 Hz, 1H), 3.90 (d, *J* = 1.7 Hz, 2H), 3.83 (s, 2H), 3.74 (dd, *J* = 10.9, 5.9 Hz, 1H), 1.41 (dt, *J* = 13.2, 3.5 Hz, 1H), 1.30 (td, *J* = 13.8, 13.3, 2.8 Hz, 1H), 1.21-1.14 (m, 1H), 0.93-0.82 (m, 1H), 0.54 (s, 3H), 0.51 (s, 3H), 0.09 (s, 9H), -0.74 (d, *J* = 1.2 Hz, 6H); ¹³C NMR (126 MHz, DMSO-d6): δ 186.9, 161.9, 157.8, 157.5, 153.1, 124.0, 107.3, 105.9, 104.9, 100.4, 98.4, 66.3, 63.7, 61.7, 33.5, 25.9, 25.0, 24.6, 23.4, 18.1, -5.3. HRMS (ESI) calcd.for C₂₄H₃₄O₇SiNa [M+Na]⁺: 485.1966; found: 485.1970.

Preparation of tricyclic enol 17

An oven-dried, 250 mL round-bottomed flask was treated with hemiketal **23** (2.67 g, 5.58 mmol, 1.0 equiv), K_2CO_3 (5.0 g, 36.0 mmol, 5.0 equiv) and 50 mL MeOH. The reaction mixture was vigorously stirred for 2 hours at which point TLC indicated the complete consumption of starting material then immediately diluted with EtOAc (60 mL) and water (15 mL). The reaction was neutralized with 10 w% AcOH until no CO₂ was evolved and the layers were separated. The aqueous layer was extracted with EtOAc (3×40 mL) and the combined layers were washed with brine (40 mL), dried over Na₂SO₄, filtered and concentration *in vacu*o. The crude residue was purified via SiO₂ flash chromatography (eluent: EtOAc/hexanes = 1/25) to give tricycli enol **17** (2.4 g, 91% yield) as a brown oil.

 R_f = 0.53 (silica gel, 5:1 hexanes:EtOAc); Optical rotation: [α]_D²⁵ = -23.9 (c = 1.03, CHCl₃); ¹H NMR (500 MHz, Chloroform-*d*) δ 13.42 (s, 1H), 11.41 (s, 1H), 6.51 (dd, *J* = 1.5, 0.7 Hz, 1H), 6.46 (dt, *J* = 1.6, 0.8 Hz, 1H), 4.65-4.61 (m, 2H), 4.32 (t, *J* = 3.1 Hz, 1H), 3.90 (d, *J* = 12.7 Hz, 1H), 3.40 (d, *J* = 12.7 Hz, 1H), 2.68 (ddd, *J* = 17.5, 12.9, 4.5 Hz, 1H), 2.26 (dddd, *J* = 17.6, 3.4, 2.3, 1.2 Hz, 1H), 2.04 (ddt, *J* = 13.8, 4.7, 2.4 Hz, 1H), 1.91 (tt, *J* = 13.5, 3.9 Hz, 1H), 1.50 (s, 3H), 1.31 (s, 3H), 0.94 (s, 9H), 0.10 (s, 6H); ¹³C NMR (126 MHz, Chloroform-*d*): δ 187.5, 178.0, 162.3, 157.8, 153.4, 106.9, 106.1, 102.6, 100.7, 80.6, 69.8, 65.6, 64.6, 26.1, 25.4, 25.2, 24.9, 23.5, 18.6, -5.2; HRMS (ESI) calcd.for C₂₄H₃₄O₇SiNa [M+Na]⁺: 485.1966; found: 485.1965.

Preparation of derivative 24

An oven-dried, 100 mL round-bottomed flask was treated with enol **17** (1.00 g, 2.16 mmol, 1.0 equiv), and anhydrous 20 mL CH₂Cl₂/MeOH (1:1) under a N₂ atmosphere. The resulting solution was cooled to 0 °C via an ice/water bath and stirring was continued at this temperature for 15 min prior to the addition of TMSCHN₂ (5.41 mL, 2 mol/L in hexane, 10.8 mmol, 5.0 equiv) via syringe. The reaction was warmed to ambient temperature and stirred for 15 min and quenched with 10 w% aqueous AcOH solution. The reaction was extracted twice with 30 mL of EtOAc. The combined layers were washed with brine (50 mL), dried over Na₂SO₄, filtered and concentrated *in vacu*o. The crude residue was purified via SiO₂ flash chromatography (eluent: EtOAc/hexanes = 1/10) to give enol methyl ether **S16** (450 mg, 44% yield) as a yellow foamy solid.

An oven-dried, 100 mL round-bottomed flask was treated with enol methyl ether **S16** (344 mg, 0.722 mmol, 1.0 equiv) and MeCN (20 ml). The resulting solution was treated with 3HF Et₃N(0.20 mL, 1.08 mmol 1.5 equiv) via syringe and submerged in preheated oil bath at 50 °C. The reaction was left to stir at this temperature for 10 h and TLC analysis indicated the complete consumption of starting material. The reaction was cooled to ambient temperature the quenched with the carefully addition of sat. aq. NaHCO₃ (5 ml). EtOAc (10 mL) and the layers were separated. The aqueous layer was extracted with EtOAc (3×10 mL) and the combined layers were washed with brine (50 mL), dried over Na₂SO₄, filtered and concentration *in vacu*o. The crude residue was purified via preparative TLC (eluent: EtOAc/hexanes = 1/5) to give derivative **24** (250 mg, 96% yield) as a yellow solid. Derivative **25** was crystallized from CHCl₂/MeOH for single crystal X-ray analysis.

 $R_f = 0.24$ (silica gel, 1:1 hexanes:EtOAc); Optical rotation: $[\alpha]_D^{25} = 0.37$ (c = 0.63, CHCl₃); ¹H

NMR (500 MHz, Chloroform-*d*): δ 12.65 (s, 1H), 6.45 (s, 1H), 6.44 (s, 1H), 4.58 (s, 2H), 4.25 (t, J = 3.0 Hz, 1H), 3.93 (s, 3H). 3.93 (d, J=12.8, 1H), 3.56 (d, J = 12.8 Hz, 1H), 2.67-2.49 (m, 2H), 2.10 (ddt, J = 13.9, 5.0, 2.6 Hz, 1H), 2.00-1.89 (m, 1H), 1.47 (s, 3H), 1.28 (s, 3H); ¹³C NMR (126 MHz, Chloroform-d): δ 186.3, 168.1, 163.1, 157.7, 151.4, 108.1, 107.1, 106.2, 105.6, 100.8, 81.0, 68.7, 66.0, 64.7, 56.1, 24.6, 24.3, 23.3, 21.1; HRMS (ESI) calcd.for C₁₉H₂₃O₇ [M+H]⁺: 363.1438; found: 363.1445.

Preparation of silanol 26 and di-tert-butylsiylene (DTBS) ether 25

(a) An oven-dried, 150 mL round-bottomed flask was treated with enol **17** (2.7 g, 5.85 mmol, 1.0 equiv) and anhydrous THF (30 mL). The resulting solution was cooled to 0 °C via ice/water bath and stirring was continued at this temperature for 10 min prior to the addition of NaH (699 mg, 29.2 mmol, 5.0 equiv) in several portions. After 15 min of continued stirring at 0 °C, The solution was cooled to -78 °C via a dry ice/acetone bath and stirring continued for 15 min prior to the dropwise addition of tBu₂SiOTf₂ (2.57 g, 5.85 mmol, 1.0 equiv) in THF (6.0 mL) via syringe. Upon complete addition, the reaction mixture was stirred an additional 1 hours at -78 °C. The reaction was slowly warmed to ambient temperature over 50 min and the reaction was continued at ambient temperature until TLC analysis indicated the complete consumption of starting material. The reaction was carefully quenched with the addition of *sat.* aq. NHCl₄ (10 mL) and diluted with CH₂Cl₂ (20 mL). The layers were separated and the aqueous layer was extracted with CH₂Cl₂ (3 × 15 mL). The combined layers were washed with brine (20 mL), dried over Na₂SO₄, filtered and concentrated *in vacuo*. The crude residue was purified via SiO₂ flash chromatography (eluent: EtOAc/hexanes = 1/25) to give silanol **26** (2.97 g, 82% yield. **26:25=**4:1).

(b) An oven-dried, 150 mL round-bottomed flask was treated with compound **26** (3.0 g, 4.84 mmol, 1.0 equiv) and anhydrous PhMe (50 mL). The resulting solution was heated to reflux and remove water by Dean-Stark trap for 3 h. The reaction was cooled to ambient temperature and

immediately concentrated *in vacuo* to give di-tert-butylsiylene (DTBS) ether **25** as a yellow foamy solid.

(silanol 26): $R_f = 0.58$ (silica gel, 5:1 hexanes:EtOAc); Optical rotation: $[\alpha]_D^{25} = 13.2$ (c = 1.04, CHCl₃); ¹H NMR (500 MHz, Chloroform-*d*) δ 15.45 (s, 1H), 6.71 (s, 1H), 6.56 (s, 1H), 4.62 (dd, J = 3.8, 1.0 Hz, 2H), 4.33-4.27 (m, 1H), 3.86 (d, J = 12.9 Hz, 1H), 3.72 (s, 1H), 3.40 (d, J = 12.9 Hz, 1H), 2.66 (ddd, J = 17.6, 13.2, 4.6 Hz, 1H), 2.30-2.19 (m, 1H), 2.05-1.99 (m, 1H), 1.94 (tt, J = 13.7, 3.7 Hz, 1H), 1.49 (s, 3H), 1.30 (s, 3H), 1.06 (s, 9H), 1.06 (s, 9H), 0.93 (s, 9H), 0.09 (s, 6H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 185.4, 180.5, 158.4, 156.7, 150.9, 112.4, 110.9, 108.6, 103.1, 100.6, 80.0, 69.9, 64.5, 64.2, 27.5, 27.4, 26.0, 25.3, 24.9, 23.6, 21.0, 21.0, 18.5, -5.2; HRMS (ESI) calcd.for C₃₂H₅₂O₈Si₂Na [M+Na]⁺: 643.3093; found: 643.3092.

(**DTBS ether 25**): $R_f = 0.58$ (silica gel, 5:1 hexanes:EtOAc); Optical rotation: $[\alpha]_D^{25} = 67.8$ (c = 1.00, CHCl₃); ¹H NMR (500 MHz, Chloroform-*d*): δ 6.57 (s, 1H), 6.51 (s, 1H), 4.62 (d, J = 2.7 Hz, 2H), 4.32 (s, 1H), 3.77 (d, J = 13.0 Hz, 1H), 3.37 (d, J = 13.0 Hz, 1H), 2.59 (ddd, J = 18.2, 14.1, 4.6 Hz, 1H), 2.31–2.15 (m, 2H), 2.03 (d, J = 13.9 Hz, 1H), 1.50 (s, 3H), 1.30 (s, 3H), 1.15 (s, 9H), 1.05 (s, 9H), 0.95 (s, 9H), 0.11 (s, 6H); ¹³C NMR (126 MHz, Chloroform-*d*): δ 196.3, 154.1, 154.0, 151.9, 148.7, 129.1, 128.3, 125.4, 109.3, 107.7, 106.5, 104.8, 100.7, 82.4, 70.4, 64.6, 63.6, 33.6, 27.5, 26.3, 26.1, 26.1, 25.0, 24.8, 23.7, 21.8, 20.9, 18.6, -5.2, -5.2. HRMS (ESI) calcd.for C₃₂H₅₁O₇Si₂ [M+H]⁺: 603.3168; found: 603.3173.

Preparation of tricyclic alcohol 27

An oven-dried, 150 mL round-bottomed flask was treated with silanol **26** (3.6 g, 6.12 mmol, 1.0 equiv), CeCl₃ 7H₂O (6.84 g, 18.4 mmol, 3.0 equiv), (COOH)₂ (27.6 mg, 0.306 mmol, 0.05 equiv) and MeCN (50 mL). The reaction mixture was vigorously stirred for 5 hours and quenched with the addition of *sat.* aq. NaHCO₃ (10 mL). EtOAc (20 mL) was added and the layers were separated. The aqueous layer was extracted with EtOAc (3×20 mL). The combined layers were washed with brine (20 mL), dried over Na₂SO₄, filtered and concentrated *in vacuo*. The crude residue was purified via SiO₂ flash chromatography (eluent: CH₂Cl₂/MeOH = 30/1) to give tricyclic **27** (2.86 g, 81% yield) as

a yellow foamy solid.

 $R_f = 0.28$ (silica gel, 2:1 hexanes:EtOAc); Optical rotation: $[\alpha]_D^{25} = 6.7$ (c = 1.00, CHCl₃); ¹H NMR (500 MHz, Chloroform-*d*) $\delta = 16.03$ (s, 1H), 6.74 (s, 1H), 6.55 (s, 1H), 4.60 (s, 2H), 4.39 (s, 1H), 4.26 (d, *J* =12.1, 1H), 3.93 (dd, *J* =12.9, 7.0, 1H), 3.85 (d, *J* =13.2, 1H), 3.80 (s, 1H), 2.57-2.47 (m, 2H), 2.13-1.95 (m, 2H), 1.05 (s, 9H), 1.02 (s, 9H), 0.91 (s, 9H), 0.07 (s, 6H).; ¹³C NMR (126 MHz, Chloroform-*d*) $\delta = 182.5$, 181.9, 158.8, 156.7, 150.9, 112.6, 110.7, 107.8, 103.1, 79.7, 74.2, 64.2, 63.1, 27.4, 25.9, 21.0, 20.8, 18.4, -5.3; HRMS (ESI) calcd.for C₂₉H₄₈O₈Si₂Na [M+Na]⁺: 603.2780; found: 603.2772.

Preparation of tricyclic methyl ester 28

An oven-dried, 100 mL round-bottomed flask was treated with alcohol **27** (1.54 g, 2.66 mmol, 1.0 equiv) and CH₂Cl₂ (26 mL). The resulting solution was cooled to 0 °C via ice/water bath and stirring was continued at this temperature for 10 min prior to the addition of Dess-Martin periodinane (1.12g, 2.66 mmol, 1.0 equiv) in several portions. The reaction was continued at 0 °C for 3 hours. The reaction was quenched was the addition of *sat.* aq. NaHCO₃ (10 mL). The layers was separated and the aqueous layer was extracted with CH₂Cl₂ (3 × 15 mL) The combined layers were washed with brine (20 mL), dried over Na₂SO₄, filtered and concentrated *in vacuo*. The crude residue was purified via SiO₂ flash chromatography (eluent: EtOAc/hexanes = 1/5) to give aldehyde **S17** (1.12 g, 66% yield) as a yellow foamy solid.

An oven-dried, 100 mL round-bottomed flask was treated with aldehyde **S17** (1.46 g, 2.52 mmol, 1.0 equiv), 2-methyl-2-butene (14 mL) and *t*BuOH (26 mL). NaClO₂ (296 mg, 3.28 mmol, 5.0 equiv) and NaH₂PO₄ (6.06 g, 13.2 mmol, 10.0 equiv) was dissolved in 34 mL water and added to the above solution. The reaction mixture was vigorously stirred for 5 hours at which point TLC indicated the complete consumption of starting material. EtOAc (20 mL) was added and the layers were separated. The aqueous layer was extracted with EtOAc (3 × 20 mL). The combined layers were washed with brine (30 mL), dried over Na₂SO₄, filtered and concentrated *in vacuo*. The crude residue acid **S18** was used without further purification.

An oven-dried, 100 mL round-bottomed flask was treated with crude acid **S18** and anhydrous 10 mL CH₂Cl₂/MeOH(1:1) under a N₂ atmosphere. The resulting solution was cooled to 0 °C via an ice/water bath and stirring was continued at this temperature for 15 min prior to the addition of TMSCHN₂ (1.26 mL, 2.0 mol/L in hexane, 2.52 mmol, 1.0 equiv) via syringe. The reaction was warmed to ambient temperature and stirred for 15 min and quenched with 10 w% aqueous AcOH solution. The reaction was extracted twice with 30 mL of EtOAc. The combined layers were washed with brine (30 mL), dried over Na₂SO₄, filtered and concentrated *in vacu*o. The crude residue was purified via SiO₂ flash chromatography (eluent: EtOAc/hexanes = 1/5) to give methyl ester **28** (1.4 g, 83% yield, 2 steps) as a yellow foamy solid.

 $R_f = 0.32$ (silica gel, 2:1 hexanes:EtOAc); Optical rotation: $[\alpha]_D^{25} = 0.2$ (c = 1.00, CHCl₃); ¹H NMR (500 MHz, Chloroform-*d*) $\delta = 15.81$ (s, 1H), 6.73 (s, 1H), 6.62 (s, 1H), 4.62 (s, 2H), 4.27 (dd, *J*=12.7, 4.5, 1H), 3.91 (s, 1H, -OH), 3.60 (s, 3H), 2.64-2.52 (m, 2H), 2.22-2.09 (m, 1H), 2.04-1.96 (m, 1H), 1.02 (s, 9H), 1.00 (s, 9H), 0.90 (s, 9H), 0.06 (s, 6H); ¹³C NMR (126 MHz, Chloroform-*d*) $\delta = 183.0, 181.3, 170.4, 160.0, 156.7, 151.0, 112.8, 110.9, 107.6, 102.7, 84.5, 72.0, 64.2, 52.9, 29.2, 27.3, 27.3, 25.9, 24.2, 20.9, 20.9, 18.4, -5.3; HRMS (ESI) calcd.for C₃₀H₄₈O₉Si₂Na [M+Na]⁺: 631.2729; found: 631.2734.$

Preparation of tricyclic silyl ether 29

An oven-dried, 100 mL round-bottomed flask was treated with **28** (1.30 g, 2.2 mmol, 1.0 equiv) anhydrous PhMe (22 mL). The resulting solution was heated to reflux and remove water by Dean-Stark trap for 3 h. The reaction was cooled to ambient temperature and immediately concentrated *in vacuo* to give di-tert-butylsilylene (DTBS) product **S19** as a yellow solid.

An oven-dried, 100 mL round-bottomed flask was treated with di-tert-butylsilylene (DTBS) product **S19**, Et₃N (0.467 mL, 6.6 mmol, 3.0 equiv) and anhydrous CH_2Cl_2 (40 mL) under N₂ atmosphere. The resulting solution was cooled to 0 °C via ice/water bath and stirring was continued at this temperature for 10 min. TBSOTf (1.52 mL, 6.6 mmol, 3.0 equiv) was added dropwise via syringe. The reaction was continued at 0 °C for 15 min at which point TLC indicated the complete consumption of starting material. The reaction was quenched was the addition of *sat*. aq. NaHCO₃ (10 mL). The layers was separated and the aqueous layer was extracted with CH_2Cl_2 (3 × 15 mL) The combined layers were washed with brine (50 mL), dried over Na₂SO₄, filtered and concentrated *in vacu*o. The crude residue **S20** was hydrolysed and purified via SiO₂ flash chromatography (eluent: EtOAc/hexanes = 1/20) to give tricyclic silyl ether **29** (1.36 g, 85 yield) as a yellow foamy solid.

 $R_f = 0.57$ (silica gel, 5:1 hexanes:EtOAc); Optical rotation: $[\alpha]_D^{25} = 19.4$ (c = 0.99, CHCl₃); ¹H NMR (500 MHz, Chloroform-d): δ 15.77 (s, 1H), 6.64 (s, 1H), 6.62 (s, 1H), 4.67 (s, 2H), 4.23 (dd, J = 12.1, 4.9 Hz, 1H), 3.56 (s, 3H), 2.63-2.57 (m, 2H), 2.33 (dddd, J = 13.6, 12.2, 10.5, 7.9 Hz, 1H), 1.86 (dtd, J = 13.5, 5.2, 3.1 Hz, 1H), 1.04 (s, 9H), 1.02 (s, 9H), 0.95 (s, 9H), 0.90 (s, 9H), 0.22 (s,

3H), 0.12 (s, 3H), 0.09 (s, 6H); ¹³C NMR (126 MHz, Chloroform-*d*): δ 182.5, 181.9, 170.7, 161.1, 156.5, 151.2, 112.4, 111.3, 107.7, 103.3, 84.6, 73.0, 64.2, 52.4, 29.2, 27.5, 27.4, 26.5, 26.0, 25.8, 25.8, 21.1, 18.4, 18.2, -3.4, -4.4, -4.7, -5.2, -5.2; HRMS (ESI) calcd.for C₃₆H₆₂O₉Si₃Na [M+Na]⁺: 745.3594; found: 745.3595.

Preparation of benzyl alcohol S22

An oven-dried, 100 mL round-bottomed flask was treated with tricyclic silyl ether **29** (1.30 g, 1.80 mmol, 1.0 equiv) anhydrous MeCN (15 mL). The resulting solution was added 3HF Et₃N (0.86 mL, 5.4 mmol, 3.0 equiv) dropwise via syringe at ambient temperature. The reaction mixture was continued at ambient temperature until TLC analysis indicated the complete consumption of the starting material. The reaction was quenched with *sat*. aq. NaHCO₃ (5 mL) and diluted with EtOAc (10 mL). The layers were separated and the aqueous layer was extracted with EtOAc (3 × 10 mL). The combined layers were washed with brine (20 mL), dried over Na₂SO₄, filtered and concentrated *in vacu*o. The crude residue was purified via SiO₂ flash chromatography (eluent: EtOAc/hexanes = 1/5) to give enol **S21** (794 mg, 95% yield) as a yellow foamy solid.

An oven-dried, 100 mL round-bottomed flask was treated with enol **S21** (794 mg, 1.71 mmol, 1.0 equiv) and anhydrous 16 mL CH₂Cl₂/MeOH (1:1) under a N₂ atmosphere. The resulting solution was cooled to 0 °C via an ice/water bath and stirring was continued at this temperature for 15 min prior to the addition of TMSCHN₂ (1.7 mL, 2.0 mol/L in hexane, 3.42 mmol, 2.0 equiv) via syringe. The reaction was warmed to ambient temperature and stirred for 15 min and quenched with 10 w% aqueous AcOH solution. The reaction was extracted twice with 30 mL of CH₂Cl₂. The combined

layers were washed with brine (20 mL), dried over Na_2SO_4 , filtered and concentrated *in vacu*o. The crude residue was purified via SiO_2 flash chromatography (eluent: EtOAc/hexanes = 1/5) to give benzyl alcohol **S22** (500 mg, 65% yield) as a yellow foamy solid.

 $R_f = 0.39$ (silica gel, 1:1 hexanes:EtOAc); Optical rotation: $[\alpha]_D^{25} = -76.3$ (c = 0.75, CHCl₃); ¹H NMR (500 MHz, Chloroform-d): δ 12.52 (s, 1H), 6.42 (s, 1H), 6.42 (s, 1H), 4.57 (s, 2H), 4.18 (dd, J = 11.8, 4.4 Hz, 1H), 3.87 (s, 3H), 3.58 (s, 3H), 2.72 (ddd, J = 18.6, 6.1, 2.6 Hz, 1H), 2.57 (ddd, J = 18.2, 10.7, 6.2 Hz, 1H), 2.30 (ddq, J = 17.7, 11.0, 6.0 Hz, 1H), 1.88 (dd, J = 11.8, 5.0 Hz, 1H), 0.87 (s, 9H), 0.19 (s, 3H), 0.11 (s, 3H); ¹³C NMR (126 MHz, Chloroform-d): δ 185.5, 170.2, 168.4, 163.0, 159.6, 151.7, 107.5, 107.2, 106.1, 104.4, 86.4, 72.4, 64.6, 56.2, 52.7, 26.4, 25.7, 24.6, 18.1, -4.4, -4.8. HRMS (ESI) calcd.for C₂₃H₃₂O₈SiNa [M+Na]⁺: 487.1759; found: 487.1758.

Preparation of tricyclic iodide 30

An oven-dried, 25 mL round-bottomed flask was treated with benzyl alcohol **S22** (200 mg, 0.43 mmol, 1.0 equiv) and CaCO₃ (302 mg, 3.02 mmol, 7.0 equiv), Me₃NBnICl₂ (150 mg, 0.43 mmol, 1.0 equiv), and anhydrous 5 mL CH₂Cl₂/MeOH (5:1). The suspension was vigorously stirred for 12 h at which time TLC analysis indicated the complete consumption of starting material then diluted with CH₂Cl₂, filtered through a short pad of Celite and concentrated *in vacuo*. Purification of the crude residue by SiO₂ flash chromatography (eluent: EtOAc/hexanes = 1/4) to give tricyclic iodide **30** (246 mg, 97% yield) as a yellow foamy solid.

 $R_f = 0.55$ (silica gel, 1:1 hexanes:EtOAc); Optical rotation: $[\alpha]_D^{25} = -19.2$ (c = 1.00, CHCl₃); ¹H NMR (500 MHz, Chloroform-*d*): δ 13.57 (d, J = 1.0 Hz, 1H), 6.72 (s, 1H), 4.60 (d, J = 2.8 Hz, 2H), 4.22 (dd, J = 11.8, 4.5 Hz, 1H), 3.91 (s, 3H), 3.59 (d, J = 1.4 Hz, 3H), 2.75 (ddd, J = 18.6, 6.1, 2.5 Hz, 1H), 2.61 (ddd, J = 18.5, 10.7, 6.2 Hz, 1H), 2.39-2.26 (m, 1H), 1.95-1.86 (m, 1H), 0.88 (s, 9H), 0.20 (s, 3H), 0.12 (s, 3H); ¹³C NMR (126 MHz, Chloroform-*d*): δ 184.8, 170.0, 169.4, 161.0, 160.0, 152.2, 107.5, 106.8, 105.2, 86.6, 76.4, 72.3, 69.5, 56.4, 52.8, 26.4, 25.7, 24.7, 18.1, -4.7; HRMS (ESI) calcd.for C₂₃H₃₁IO₈SiNa [M+Na]⁺: 613.0725; found: 613.0723.

Preparation of benzoxaborole 31

To a mixture of ary iodide **30** (70.0 mg, 0.12 mmol, 1.0 equiv), bis(pinacolato)diboron (60.2 mg, 0.24 mmol, 2 equiv), sodium acetate (29.2 mg, 0.35 mmol, 3.0 equiv), Pd(OAc)₂ (5.3 mg, 0.024 mmol, 0.2 equiv) and AntPhos (13.2 mg, 0.035 mmol, Pd/ligand mol ratio: 1/1.5) under N₂ was charged freshly degassed 5.0 mL THF/water (4:1). The biphasic mixture was immediately placed in preheated oil bath at 70 °C and the reaction was continued at 70 °C for 3.5 h. The reaction mixture was cooled to ambient temperature, diluted with EtOAc (10 mL), and treated with sat. aq. NH₄Cl (5 mL). The layers were separated and the aqueous layer was extracted with EtOAc (3×10 mL). The combined layers were washed with brine (10 mL), dried over Na₂SO₄, filtered and concentrated *in vacu*o. The crude residue was purified via SiO₂ flash chromatography (eluent: CH₂Cl₂/MeOH = 30/1) to give benzoxaborole **31** (39 mg, 67% yield) as a yellow foamy solid.

 $R_f = 0.10$ (silica gel, 1:1 hexanes:EtOAc); Optical rotation: $[\alpha]_D^{25} = -32.2$ (c = 1.00, CHCl₃); ¹H NMR (500 MHz, Acetone- d_6) $\delta = 13.53$ (s, 1H), 7.61 (s, 1H), 6.49 (s, 1H), 4.92 (dd, J = 3.7, 0.9, 2H), 4.36-4.32 (m, 1H), 3.91 (s, 3H), 3.58 (s, 3H), 2.89-2.85 (m, 1H). 2.36-2.25 (m, 1H), 1.97 (m, 2H). 0.92 (s, 9H), 0.25 (s, 3H), 0.18 (s, 3H); ¹³C NMR (126 MHz, Chloroform-d) $\delta = 185.7, 169.8, 168.6, 165.9, 164.2, 162.6, 107.1, 105.7, 103.4, 100.4, 86.6, 75.1, 72.3, 71.2, 56.2, 55.5, 52.7, 26.3, 25.6, 24.8, 24.6, 18.0, -4.5, -4.8; HRMS (ESI) calcd.for C₂₃H₃₁BO₉SiNa [M+Na]⁺: 512.1759; found: 512.1765.$

Preparation of coupling product 32

To a mixture of benzoxaborole 31 (45 mg, 91.8 µmol, 1.0 equiv), aryl bromide 14 (23.8 mg,

91.8 µmol, 1.0 equiv), DIPEA (35 mg, 0.275 mmol, 3.0 equiv), Pd(OAc)₂ (4.12 mg, 18.4 µmol, 0.2 equiv) and AntPhos (10.2 mg, 27.5 µmol, 0.3 equiv, Pd/ligand mol ratio: 1/1.5) under N₂ was charged freshly degassed 5.0 mL THF/water (4:1) . The biphasic mixture was immediately placed in preheated oil bath at 70 °C and the reaction was continued at 70 °C for 3 h. The reaction mixture was cooled to ambient temperature, diluted with EtOAc (10 mL), and treated with *sat.* aq. NH₄Cl (5 mL). The layers were separated and the aqueous layer was extracted with EtOAc (3 × 10 mL). The combined layers were washed with brine (10 mL), dried over Na₂SO₄, filtered and concentrated *in vacu*o. The crude residue was purified via SiO₂ flash chromatography (eluent: EtOAc/hexanes = 1/1) to give coupling products **32** (37.2 mg, 63% yield, atropisomeric mixture, dr 1.5:1) as a yellow foamy solid.

Coupling product (major):

 $R_f = 0.23$ (silica gel, 1:1 hexanes:EtOAc); Optical rotation: $[\alpha]_D^{25} = 40.1$ (c = 1.00, CHCl₃); ¹H NMR (500 MHz, Chloroform-*d*) $\delta = 12.75$ (s, 1H), 8.03 (dd, *J* =7.8, 1.4, 1H), 7.60 (t, *J*=7.7, 1H), 7.46 (dd, *J* =7.7, 1.4, 1H), 6.70 (s, 1H), 4.41 (dd, *J* =14.3, 3.2, 1H), 4.27 (dd, *J* =14.4, 5.8, 1H), 4.22 (dd, *J* =11.9, 4.5, 1H), 3.90 (s, 3H), 3.89 (s, 3H), 3.65 (s, 3H), 2.77 (ddd, *J* =18.6, 6.1, 2.4, 1H), 2.60 (ddd, *J* =18.3, 10.8, 6.2, 1H), 2.37 (dtd, *J* =13.2, 11.5, 6.0, 1H), 1.90 (dddd, *J* =13.3, 6.5, 4.4, 2.3, 1H), 0.91 (s, 9H), 0.23 (s, 3H), 0.14 (s, 3H); ¹³C NMR (126 MHz, Chloroform-*d*) δ = 185.2, 170.3, 169.0, 164.0, 160.4, 160.3, 150.7, 149.6, 136.9, 130.9, 130.5, 129.3, 123.9, 113.5, 107.2, 106.1, 105.5, 86.7, 72.5, 62.8, 56.4, 53.2, 52.9, 26.4, 25.7, 24.9, 18.2, -4.3, -4.7; HRMS (ESI) calcd.for C₃₁H₃₇O₁₂NSiNa [M+Na]⁺: 666.1977; found: 666.1982.

Coupling product (minor):

 R_f = 0.32 (silica gel, 1:1 hexanes:EtOAc); Optical rotation: [α]_D²⁵ = -62.6 (c = 0.50, CHCl₃); ¹H NMR (500 MHz, Chloroform-*d*) δ = 12.82 (s, 1H), 8.04 (dd, *J* =7.8, 1.4, 1H), 7.62 (t, *J* =7.8, 1H), 7.50 (dd, *J* =7.6, 1.5, 1H), 6.74 (s, 1H), 4.38 (d, *J* =14.2, 1H), 4.30 (d, *J* =14.3, 1H), 4.23 (dd, *J* =11.8, 4.5, 1H), 3.92 (s, 3H), 3.89 (s, 3H), 3.66 (s, 3H), 2.75 (ddd, *J*=18.4, 6.0, 2.5, 1H), 2.69-2.58 (m, 1H), 2.36 (ddd, *J*=24.3, 11.1, 6.2, 1H), 1.99-1.86 (m, 1H), 0.91 (s, 9H), 0.23 (s, 3H), 0.15 (s, 3H); ¹³C NMR (126 MHz, Chloroform-*d*) δ = 185.32, 169.95, 168.72, 164.04, 160.33, 160.25, 150.80, 149.73, 136.73, 130.91, 130.47, 129.37, 123.92, 113.58, 107.28, 105.87, 105.72, 86.63, 72.41, 62.96, 56.38, 53.24, 52.87, 26.59, 25.95, 25.77, 24.65, 18.16, 1.17, 0.15, -4.34, -4.67; HRMS (ESI) calcd.for C₃₁H₃₇O₁₂NSiNa [M+Na]⁺: 666.1977; found: 666.1984.

Preparation of isoxazolidinone 34

An oven-dried, 25 mL round-bottomed flask was treated with coupling product **32** (25 mg, 38.8 μ mol, 1.0 equiv), NH₄Cl (10.4 mg, 0.194 mmol, 5.0 equiv), AcOH (18.6 mg, 0.310 mmol, 8.0 equiv) freshly activated zinc power (10.1 mg, 0.155 mmol, 4.0 equiv) and 1.0 mL THF/MeOH/Water(3:3:1). The resulting solution was sonicated for 15 min at ambient temperature. EtOAc (5 mL) was added and the layers were separated. The aqueous layer was extracted with EtOAc (3×5 mL) and the combined layers were washed with brine (50 mL), dried over Na₂SO₄, filtered. Concentration *in vacu*o to give crude residue **33** as a pale yellow oil.

An oven-dried, 25 ml round-bottomed flask was treated with crude residue **33** and anhydrous THF (1.0 mL). The resulting solution was cooled to 0 °C via an ice/water bath and PPh₃ (20.4 mg, 77.8 μ mol, 2.0 equiv) was charged *as a single portion* prior to the addition dropwise of DIAD (15.7 mg, 77.8 μ mol, 2.0 equiv) in THF (0.5 mL) via syringe. The reaction was allowed 5 min at 0 °C and concentrated *in vacuo*. The crude residue was purified via SiO₂ flash chromatography (eluent: EtOAc/hexanes = 1/1) to give isoxazolidinone **34** (18.0 mg, 80% yield) as a yellow solid.

 $R_f = 0.32$ (silica gel, 1:1 hexanes:EtOAc); Optical rotation: $[\alpha]_D^{25} = 28.0$ (c = 0.2, CH₂Cl₂); ¹H NMR (500 MHz, Chloroform-*d*) $\delta = 13.72$ (s, 1H), 8.46 (d, *J* =7.6, 1H), 7.62 (d, *J* =7.8, 1H), 7.29 (t, *J* =7.7, 1H), 6.43 (s, 1H), 4.52 (s, 2H), 4.24 (dd, *J* =12.0, 4.6, 1H), 3.96 (s, 3H), 3.64 (s, 3H), 2.85-2.74 (m, 1H), 2.65 (ddd, *J* =18.2, 10.9, 6.2, 1H), 2.38 (dtd, *J* =18.3, 11.3, 6.0, 1H), 1.98-1.88 (m, 1H), 0.91 (d, *J* =3.1, 9H), 0.22 (d, *J* =5.2, 3H), 0.15 (s, 3H); ¹³C NMR (126 MHz, Chloroform-*d*) $\delta =$ 185.6, 169.9, 169.7, 168.4, 161.3, 159.6, 155.9, 140.9, 131.4, 125.9, 122.9, 119.7, 110.9, 110.5, 110.2, 108.4, 107.1, 105.5, 86.9, 72.3, 56.5, 56.1, 53.0, 26.4, 25.7, 25.7, 24.8, 18.2, -4.3, -4.6; HRMS

(ESI) calcd.for $C_{30}H_{33}O_9NSiNa [M+Na]^+$: 602.1817; found: 666.1823.

Preparation of 12-O-methyl-parnafungin A1 (12) and parnafungin A1 (1)

10 mL plastic tube was treated with **34** (15 mg, 25.9 μ mol, 1.0 equiv) and MeCN (1.0 ml). The resulting solution was treated with HF (0.3 mL, 48-51% solution in water) via syringe. The reaction was left to stir at ambient temperature for 10 h. The reaction was cooled to ambient temperature the quenched with the carefully addition of *sat.* aq. NaHCO₃ (3 mL). EtOAc (5 mL) was added and the layers were separated. The aqueous layer was extracted with EtOAc (3×50 mL) and the combined layers were washed with brine (5 mL), dried over Na₂SO₄, filtered and concentration *in vacu*o. The crude residue was purified via preparative TLC (eluent: CH₂Cl₂/MeOH = 30/1) to give 12-O-methyl-parnafungin A1 (**12**) (2.2 mg, 18% yield) and parnafungin A1 (**1**) (7.7 mg, 66% yield) as a yellow solid.

12-O-methyl-parnafungin A1 (12) :

 $R_f = 0.40$ (silica gel, 10:1 CH₂Cl₂:MeOH); Optical rotation: $[\alpha]_D^{25} = 25.2$ (c = 0.2, CH₂Cl₂); ¹H NMR (600 MHz, DMSO- d_6) $\delta = 14.14$ (s, 1H), 8.36 (dd, J = 7.5, 0.8, 1H), 7.68 (dd, J = 7.9, 0.8, 1H), 7.38 (t, J = 7.7, 1H), 6.71 (s, 1H), 5.94 (d, J = 4.9, 1H, -OH), 4.71 (s, 2H), 4.15 (dt, J = 12.0, 4.7, 1H), 3.91 (s, 3H), 3.58 (s, 3H), 2.94-2.78 (m, 2H), 2.15-2.05 (m, 1H), 1.94-1.85 (m, 1H); ¹³C NMR (151 MHz, DMSO- d_6) $\delta = 184.8, 173.2, 169.8, 167.4, 160.2, 159.3, 155.6, 141.1, 130.6, 125.9, 122.6, 119.1, 109.8, 109.4, 107.5, 107.4, 103.4, 87.1, 69.8, 56.3, 54.8, 52.8, 25.4, 24.0; HRMS (ESI) calcd.for C₂₄H₁₉O₉NNa [M+Na]⁺: 488.0952; found: 488.0958.$

Parnafungin A1 (1):

 $R_f = 0.40$ (silica gel, 10:1 CH₂Cl₂:MeOH); Optical rotation: $[\alpha]_D^{25} = 30.5$ (c = 0.20, CH₂Cl₂); ¹H NMR (600 MHz, Chloroform-*d*) $\delta = 13.78$ (s, 1H), 12.30 (s, 1H), 8.43 (dd, *J*=7.6, 0.8, 1H), 7.66 (dd,

J=7.8, 0.8, 1H), 7.30 (t, *J*=7.7, 1H), 6.58 (s, 1H), 4.53 (m, 2H), 4.36 (dd, *J*=12.4, 4.7, 1H), 3.74 (s, 3H), 2.82 (s, 1H, -OH), 2.72 (m, 2H), 2.26 (m, 1H), 2.13 (m, 1H); ¹³C NMR (151 MHz, Chloroform-*d*) δ = 186.8, 179.5, 169.9, 168.1, 160.1, 159.0, 155.9, 142.0, 131.6, 125.9, 123.5, 119.1, 112.0 110.7, 108.3, 107.2, 101.3, 85.1, 71.9, 56.0, 53.6, 27.9, 24.0, 1.2; HRMS (ESI) calcd.for C₂₃H₁₈O₉N [M+H]⁺: 452.0976; found: 452.0968.

Equilibrating mixture of four interconverting isomers in DMSO-d6

Parnafungin B1 ($\mathbf{3}$, syn -CO₂Me) Parnafungin B2 ($\mathbf{4}$, anti -CO₂Me)

Mixture of parnafungins:

Optical rotation: synthetic: $[\alpha]_D^{25} = 30.5$ (c = 0.20, CH₂Cl₂); natural: $[\alpha]_D = 38.0$ (c = 0.20, CH₂Cl₂);

Preparation of diene 40

An oven-dried, 100 mL round-bottomed flask was treated with **26** (1.60 g, 2.6 mmol, 1.0 equiv) and anhydrous PhMe (30 mL). The resulting solution was heated to reflux and remove water by Dean-Stark trap for 3 h. The reaction was cooled to ambient temperature and immediately concentrated *in vacuo* to give di-tert-butylsilylene (DTBS) product **25** as a yellow solid.

An oven-dried, 150 mL round-bottomed flask was treated with **25** and anhydrous THF (26 mL), The solution was cooled to -78 °C via a dry ice/acetone bath and stirring continued for 10 min prior to the dropwise addition of LDA (2.0 M in THF, 1.9 mL, 3.9 mmol, 1.5 equiv) via syringe. Upon complete addition, the reaction mixture was warmed up to 0 °C via an ice/water bath and stirring was continued at this temperature for 25 min. [Note: the mixture turned dark brown gradually]. Then the mixture was placed back to -78 °C and stirring continued for 10 min prior to the dropwise addition of PhSeCl (787 mg, 4.1 mmol, 1.6 equiv) in anhydrous THF (4 mL) via syringe. The reaction was continued at -78 °C until TLC analysis indicated the complete consumption of starting material (*ca.* 1.0 h). The reaction was quenched with the addition of *sat.* aq. NH₄Cl (10.0 ml) and then warmed to ambient temperature and diluted with EtOAc (20 mL). The layers were separated and the aqueous layer was extracted with EtOAc (3×20 mL) and the combined layers were washed with brine (10 mL), dried over Na₂SO₄, filtered and concentration *in vacuo* to yield the crude residue **S23**.

An oven-dried, 150 mL round-bottomed flask was treated with crude residue **S23**, pyridine (0.66 mL, 8.3 mmol, 3.2 equiv) and THF (30 mL). After 5 min of continued stirring, H_2O_2 (35% in water, 0.92 mL, 8.3 mmol, 3.2 equiv) was added dropwise. The reaction was stirred an additional 20 min at ambient temperature at which point TLC analysis indicated the complete consumption of starting material. The reaction was quenched with the addition of *sat*. aq. Na₂S₂O₃ (2 mL). EtOAc (20 mL) was added and the layers were separated. The aqueous layer was extracted with EtOAc (3×20 mL) and the combined layers were washed with brine (10 mL), dried over Na₂SO₄, filtered and concentration *in vacuo*. The crude residue was purified via SiO₂ flash chromatography (eluent: EtOAc/hexanes = 1/10) to give diene **40** (910 mg, 57% yield) as a yellow foamy solid.

 $R_f = 0.40$ (silica gel, 5:1 hexanes:EtOAc); Optical rotation: $[\alpha]_D^{25} = 103.7$ (c = 1.00, CHCl₃); ¹H NMR (500 MHz, Chloroform-d) $\delta = 15.77$ (s, 1H), 6.81 (d, *J*=1.4, 1H), 6.71 (dd, *J*=10.3, 2.3, 1H), 6.68 (d, *J*=1.4, 1H), 6.08 (dd, *J*=10.3, 2.8, 1H), 5.10 (d, *J*=2.1, 1H), 4.65 (s, 2H), 3.86 (d, *J*=13.3, 1H), 3.80 (dd, *J*=13.3, 1.6, 1H), 3.27 (s, 1H, -OH), 1.53 (s, 3H), 1.50 (s, 3H), 1.07 (s, 9H), 1.05 (s, 9H), 0.94 (s, 9H), 0.10 (d, *J*=1.5, 6H); ¹³C NMR (126 MHz, Chloroform-d) $\delta = 178.8$, 176.1, 157.7, 150.8, 146.7, 125.8, 112.6, 108.7, 98.9, 75.0, 73.0, 64.3, 60.1, 29.7, 27.5, 27.4, 26.3, 26.1, 26.1, 26.0, 23.5, 21.0, 21.0, 18.5, -5.2, -5.2; HRMS (ESI) calcd.for C₃₂H₅₀O₈Si₂Na [M+Na]⁺: 641.2936; found:

641.2933.

Preparation of methyl tetracyclic compound 41

Preparation of dimethylcopperlithium reagent:

An oven-dried, 150 mL round-bottomed flask was treated with CuI (2.08 g, 10.9 mmol, 1.0 equiv) and anhrydrous Et₂O (20 mL). The resulted solution was cooled to 0 °C via an ice/water bath and stirring was continued at this temperature for 10 min prior to the addition of MeLi (1.3 M in Et₂O, 16.8 mL, 21.8 mmol, 2.0 equiv) via syringe. The reaction was allowed 25 min at 0 °C, during which time the CuI power was dissolved completely. And the dimethylcopperlithium reagent (0.3 M in Et₂O) was used immediately.

An oven-dried, 150 mL round-bottomed flask was treated with diene **40** (1.50 g, 2.4 mmol, 1.0 equiv) and anhrydrous Et₂O (20 mL). The resulted solution was cooled to 0 °C via an ice/water bath and stirring was continued at this temperature for 10 min prior to the addition of dimethylcopperlithium reagent (0.3 M in Et₂O, 24.3 mL, 7.3 mmol, 3.0 equiv) via syringe. Upon the complete addition, the reaction was continued at 0 °C for 20 min at which point TLC analysis indicated the complete consumption of starting material. The reaction was quenched with the addition of *sat.* aq. NH₄Cl (5 mL). EtOAc (20 mL) was added and the layers were separated. The aqueous layer was extracted with EtOAc (3×20 mL) and the combined layers were washed with diluted ammonia (3×10 mL) and brine (10 mL), dried over Na₂SO₄, filtered and concentration *in vacuo*. The crude residue was purified via SiO₂ flash chromatography (eluent: EtOAc/hexanes = 1/15) to give methyl tetracyclic compound **41** (1.30 g, 85% yield) as a yellow foamy solid.

 $R_f = 0.67$ (silica gel, 5:1 hexanes:EtOAc); Optical rotation: $[\alpha]_D^{25} = 7.4$ (c = 1.00, CHCl₃); ¹H NMR (500 MHz, Chloroform-d) $\delta = 15.54$ (s, 1H), 6.71 (s, 1H), 6.56 (s, 1H), 4.62 (s, 2H), 4.04 (dd, J=2.8, 1.2, 1H), 3.86 (d, J=12.9, 1H), 3.41 (d, J=12.9, 1H), 2.83 (dd, J=17.1, 5.1, 1H), 2.31 (ddq, J=7.5, 5.0, 2.5, 1H), 2.12 (ddd, J=17.1, 2.8, 1.3, 1H), 1.50 (s, 3H), 1.31 (s, 3H), 1.10 (d, J=7.5, 3H), 1.07 (s, 9H), 1.06 (s, 9H), 0.94 (s, 9H), 0.10 (s, 6H); ¹³C NMR (126 MHz, Chloroform-d) $\delta = 183.6, 112.4, 108.6, 100.6, 79.6, 74.6, 64.2, 64.2, 34.7, 31.7, 31.2, 30.3, 29.8, 27.5, 27.5, 26.1, 26.0, 25.0,$

24.0, 21.1, 21.0, 16.6, 1.2, -5.2; HRMS (ESI) calcd.for $C_{33}H_{54}O_8Si_2Na [M+Na]^+$: 657.3249; found: 657.3250.

Preparation of dimethyl tetracyclic compound 42

An oven-dried, 150 mL round-bottomed flask was treated with methyl tetracyclic compound **41** (1.30 g, 2.1 mmol, 1.0 equiv) and anhydrous PhMe (30 mL). The resulting solution was heated to reflux and remove water by Dean-Stark trap for 3 h. The reaction was cooled to ambient temperature and immediately concentrated *in vacuo* to give di-tert-butylsilylene (DTBS) product as a yellow solid.

An oven-dried, 150 mL round-bottomed flask was treated with (DTBS) product and anhydrous THF (20 mL), The solution was cooled to -78 °C via a dry ice/acetone bath and stirring continued for 10 min prior to the dropwise addition of LDA (2.0 M in THF, 1.5 mL, 3.1 mmol, 1.5 equiv) via syringe. Upon complete addition, the reaction mixture was warmed up to 0 °C via an ice/water bath and stirring was continued at this temperature for 25 min. [Note: the mixture turned dark brown gradually]. Then the mixture was placed back to -78 °C and stirring continued for 10 min prior to the dropwise addition of MeI (0.25 ml, 4.1 mmol, 2 equiv) via syringe. The reaction was continued at -78 °C for 20min prior to the dropwise addition of HMPA (1.5 ml, 8.2 mmol, 4 equiv) via syringe. Upon the complete addition of HMPA, the reaction was slowly warmed to -40 °C over 6 h. The reaction was quenched with the addition of *sat.* aq. NH₄Cl (10.0 ml) and then warmed to ambient temperature and diluted with EtOAc (20 mL). The layers were separated and the aqueous layer was extracted with EtOAc (3 ×20 mL) and the combined layers were washed with brine (10 mL), dried over Na₂SO₄, filtered and concentration *in vacuo*. The crude residue was purified via SiO₂ flash chromatography (eluent: EtOAc/hexanes = 1/20) to give dimethyl tetracyclic compound **42** (1.11 g, 68% yield) as a yellow foamy solid.

 $R_f = 0.72$ (silica gel, 5:1 hexanes:EtOAc); Optical rotation: $[\alpha]_D^{25} = 8.2$ (c = 1.00, CHCl₃); ¹H NMR (500 MHz, Chloroform-d) $\delta = 15.63$ (s, 1H), 6.69 (s, 1H), 6.57 (s, 1H), 4.63 (s, 2H), 4.03 (d, *J*=3.8, 1H), 3.92 (d, *J*=12.8, 1H), 3.49 (d, *J*=12.8, 1H), 2.34 (tdd, *J*=7.9, 6.8, 3.2, 1H), 2.13 (d, *J*=7.3, 1H), 1.49 (s, 3H), 1.37 (d, *J*=7.5, 3H), 1.34 (s, 3H), 1.12 (d, *J*=7.3, 3H), 1.08 (s, 9H), 1.05 (s, 9H),

0.94 (s, 9H), 0.09 (s, 6H); ¹³C NMR (126 MHz, Chloroform-d) δ = 184.4, 182.8, 158.7, 156.6, 151.1, 112.4, 111.5, 108.5, 101.5, 100.2, 78.9, 76.3, 64.1, 63.8, 41.9, 37.1, 27.5, 27.5, 27.4, 27.4, 26.0, 26.0, 25.9, 25.2, 24.6, 21.1, 21.0, 18.7, 18.5, 18.4, -5.3; HRMS (ESI) calcd.for C₃₄H₅₆O₈Si₂Na [M+Na]⁺: 671.3406; found: 671.3407.

Preparation of dimethyl tricyclic alcohol 43

An oven-dried, 150 mL round-bottomed flask was treated with dimethyl tetracyclic compound **42** (600 mg, 0.93 mmol, 1.0 equiv), CeCl₃ 7H₂O (1.03 g, 2.78 mmol, 3.0 equiv), (COOH)₂ (4.2 mg, 0.05 mmol, 0.05 equiv) and MeCN (10 mL). The reaction mixture was vigorously stirred for 5 hours at which point TLC indicated the complete consumption of starting material and quenched with the addition of *sat*. aq. NaHCO₃ (5 mL). EtOAc (20 mL) was added and the layers were separated. The aqueous layer was extracted with EtOAc (3 × 10 mL). The combined layers were washed with brine (20 mL), dried over Na₂SO₄, filtered and concentrated *in vacuo*. The crude residue was purified via SiO₂ flash chromatography (eluent: EtOAc/hexanes = 1/3) to give dimethyl tricyclic alcohol **43** (401 mg, 73% yield) as a yellow foamy solid.

 $R_f = 0.57$ (silica gel, 2:1 hexanes:EtOAc); Optical rotation: $[\alpha]_D^{25} = 17.8$ (c = 1.00, CHCl₃); ¹H NMR (500 MHz, Chloroform-d) $\delta = 16.22$ (s, 1H), 6.72 (s, 1H), 6.56 (s, 1H), 4.62 (s, 2H), 3.96 (d, *J*=12.8, 1H), 3.84 (d, *J*=11.4, 1H), 3.78 (d, *J*=12.8, 1H), 2.20 (p, *J*=7.3, 1H), 1.78 (ddt, *J*=16.1, 10.1, 5.1, 1H), 1.28 (d, *J*=6.4, 3H), 1.19 (d, *J*=6.2, 3H), 1.06 (s, 9H), 1.05 (s, 9H), 0.93 (s, 9H), 0.09 (s, 6H); ¹³C NMR (126 MHz, Chloroform-d) $\delta = 183.8$, 182.7, 158.9, 156.7, 151.0, 112.8, 110.9, 108.0, 102.6, 79.7, 78.7, 64.3, 64.2, 42.4, 38.2, 27.5, 27.4, 26.0, 21.1, 20.9, 18.5, 16.6, 16.4, -5.2; HRMS (ESI) calcd.for C₃₁H₅₂O₈Si₂Na [M+Na]⁺: 631.3093; found: 631.3090.

Preparation of dimethyl tricyclic ester 44

An oven-dried, 150 mL round-bottomed flask was treated with dimethyl tricyclic alcohol **43** (480 mg, 0.79 mmol, 1.0 equiv) and CH₂Cl₂ (15 mL). The resulting solution was cooled to 0 °C via ice/water bath and stirring was continued at this temperature for 10 min prior to the addition of Dess-Martin periodinane (334 mg, 0.79 mmol, 1.0 equiv) in several portions. The reaction was continued at 0 °C for 3 hours. The reaction was quenched was the addition of *sat.* aq. NaHCO₃ (10 mL). The layers were separated and the aqueous layer was extracted with CH₂Cl₂ (3 × 15 mL). The combined layers were washed with brine (20 mL), dried over Na₂SO₄, filtered and concentrated *in vacuo*. The crude residue was purified via SiO₂ flash chromatography (eluent: EtOAc/hexanes = 1/5) to give aldehyde **S24** (350 mg, 73% yield) as a yellow foamy solid.

An oven-dried, 150 mL round-bottomed flask was treated with aldehyde **S24** (400 g, 0.66 mmol, 1.0 equiv), 2-methyl-2-butene (3.5 mL) and *t*BuOH (7.2 mL). NaClO₂ (298 mg, 3.3 mmol, 5.0 equiv) and NaH₂PO₄ (1.58 g, 6.6 mmol, 10.0 equiv) was dissolved in 9.6 mL water and added to the above solution. The reaction mixture was vigorously stirred for 5 hours at which point TLC indicated the complete consumption of starting material. EtOAc (20 mL) was added and the layers were separated. The aqueous layer was extracted with EtOAc (3 × 20 mL). The combined layers were washed with brine (30 mL), dried over Na₂SO₄, filtered and concentrated *in vacuo*. The crude residue acid **S25** was used without further purification.

An oven-dried, 150 mL round-bottomed flask was treated with crude acid S25 and anhydrous 10

mL CH₂Cl₂/MeOH(1:1) under a N₂ atmosphere. The resulting solution was cooled to 0 °C via an ice/water bath and stirring was continued at this temperature for 15 min prior to the addition of TMSCHN₂ (0.66 mL, 2.0 mol/L in hexane, 0.66 mmol, 2.0 equiv) via syringe. The reaction was warmed to ambient temperature and stirred for 15 min and quenched with 10 w% aqueous AcOH solution. The reaction was extracted twice with 30 mL of EtOAc. The combined layers were washed with brine (30 mL), dried over Na₂SO₄, filtered and concentrated in vacuo. The crude residue was purified via SiO₂ flash chromatography (eluent: EtOAc/hexanes = 1/5) to give dimethyl tricyclic ester 44 (380 mg, 90% yield) as a yellow foamy solid.

 $R_f = 0.45$ (silica gel, 2:1 hexanes:EtOAc); Optical rotation: $[\alpha]_D^{25} = 0.9$ (c = 1.00, CHCl₃); ¹H NMR (500 MHz, Chloroform-d) $\delta = 16.07$ (s, 1H), 6.72 (d, J=1.6, 1H), 6.63 (d, J=1.5, 1H), 4.65 (s, 2H), 3.90 (dd, J=11.3, 2.3, 1H), 3.63 (s, 3H), 2.87 (s, 1H, -OH), 2.26 (dq, J=9.4, 7.0, 1H), 1.93 (ddq, J=12.8, 10.3, 6.4, 1H), 1.36 (d, J=7.0, 3H), 1.18 (d, J=6.5, 3H), 1.04 (s, 18H), 0.94 (s, 9H), 0.10 (d, J=2.3, 6H). ¹³C NMR (126 MHz, Chloroform-d) δ = 184.7, 182.0, 170.5, 160.0, 156.6, 151.1, 113.1, 111.1, 107.7, 102.2, 84.3, 76.4, 64.2, 53.0, 41.9, 36.6, 27.5, 27.4, 26.0, 21.1, 21.0, 18.5, 16.5, 15.7, -5.2; HRMS (ESI) calcd.for C₃₂H₅₂O₉Si₂Na [M+Na]⁺: 659.3042; found: 659.3048.

Preparation of dimethyl benzyl alcohol 45

An oven-dried, 100 mL round-bottomed flask was treated with dimethyl tricyclic ester 44 (269 mg, 0.42 mmol, 1.0 equiv) anhydrous MeCN (5 mL). The resulting solution was added 3HF Et₃N (0.23 mL, 1.27 mmol, 3.0 equiv) dropwise via syringe at ambient temperature. The reaction mixture was continued at ambient temperature until TLC analysis indicated the complete consumption of the starting material (ca. 8 h). The reaction was quenched with sat. aq. NaHCO₃ (2 mL) and diluted with EtOAc (10 mL). The layers were separated and the aqueous layer was extracted with EtOAc (3 \times 10 mL). The combined layers were washed with brine (10 mL), dried over Na₂SO₄, filtered and concentrated in vacuo. The crude residue was purified via SiO₂ flash chromatography (eluent: $CH_2Cl_2/MeOH = 30/1$) to give dimethyl benzyl alcohol 45 (183 mg, 99% yield) as a faint yellow solid.

$$R_f = 0.25$$
 (silica gel, 10:1 CH₂Cl₂:MeOH); Optical rotation: $[\alpha]_D^{25} = 4.1$ (c = 1.00, MeOH); ¹H s33

NMR (600 MHz, DMSO) δ = 14.56 (s, 1H), 10.94 (s, 1H), 6.54 (s, 1H), 6.45 (s, 1H), 4.46 (d, *J*=5.8, 2H), 3.78 (dd, *J*=11.1, 5.7, 1H), 3.57 (s, 3H), 2.4 (dq, *J*=9.4, 7.0, 1H), 1.8 (ddd, *J*=11.2, 9.4, 6.5, 1H), 1.25 (d, *J*=7.0, 3H), 1.08 (d, *J*=6.5, 3H); ¹³C NMR (151 MHz, DMSO) δ = 185.5, 181.6, 170.1, 160.6, 159.4, 154.9, 106.7, 105.1, 105.1, 101.0, 84.4, 74.5, 62.3, 52.8, 37.3, 16.3, 15.4; HRMS (ESI) calcd.for C₁₈H₂₀O₈Na [M+Na]⁺: 387.1050; found: 387.1058.

Preparation of dimethyl tricyclic iodide 38

An oven-dried, 100 mL round-bottomed flask was treated with dimethyl benzyl alcohol **45** (183 mg, 0.50 mmol, 1.0 equiv) and anhydrous 4.0 mL CH₂Cl₂/MeOH (1:1) under a N₂ atmosphere. The resulting solution was cooled to 0 °C via an ice/water bath and stirring was continued at this temperature for 15 min prior to the addition of TMSCHN₂ (1.25 mL, 2.0 mol/L in hexane, 2.5 mmol, 5.0 equiv) via syringe. The reaction was warmed to ambient temperature and stirred for 15 min and quenched with 10 w% aqueous AcOH solution. The reaction was extracted twice with 20 mL of CH₂Cl₂. The combined layers were washed with brine (10 mL), dried over Na₂SO₄, filtered and concentrated *in vacu*o. The crude residue was purified via SiO₂ flash chromatography (eluent: CH₂Cl₂/MeOH = 30/1) to give product **S26** (140 mg, 74% yield) as a yellow foamy solid.

An oven-dried, 25 mL round-bottomed flask was treated with product **S26** (98 mg, 0.25 mmol, 1.0 equiv) and CaCO₃ (181 mg, 1.81 mmol, 7.0 equiv), Me₃NBnICl₂ (90.2 mg, 0.25 mmol, 1.0 equiv), and anhydrous 5 mL CH₂Cl₂/MeOH (5:1). The suspension was vigorously stirred for 6 h at which time TLC analysis indicated the complete consumption of starting material then diluted with CH₂Cl₂, filtered through a short pad of Celite and concentrated *in vacuo*. Purification of the crude residue by SiO₂ flash chromatography (eluent: CH₂Cl₂/MeOH = 30/1) to give dimethyl tricyclic iodide **38** (115 mg, 85% yield) as a yellow foamy solid.

 $R_f = 0.31$ (silica gel, 10:1 CH₂Cl₂:MeOH); Optical rotation: $[\alpha]_D^{25} = 11.5$ (c = 1.00, CHCl₃); ¹H NMR (600 MHz, Chloroform-d) $\delta = 13.43$ (s, 1H), 6.90 (s, 1H), 4.63 (d, *J*=2.1, 2H), 3.86 (d, *J*=11.7, 1H), 3.84 (s, 3H), 3.68 (s, 3H), 2.27 (dq, *J*=8.9, 6.9, 1H), 1.85 (ddq, *J*=12.8, 8.9, 6.4, 1H), 1.35 (d, *J*=6.9, 3H), 1.17 (d, *J*=6.5, 3H); ¹³C NMR (151 MHz, Chloroform-d) $\delta = 184.6$, 175.1, 170.0, 160.7, 159.3, 153.1, 107.3, 106.9, 105.5, 87.6, 76.7, 76.0, 69.5, 61.9, 53.6, 42.2, 35.9, 17.2, 16.3; HRMS (ESI) calcd.for C₁₉H₂₁O₈INa [M+Na]⁺: 527.0173; found: 527.0165.

Preparation of methyl tricyclic alcohol 46

An oven-dried, 100 mL round-bottomed flask was treated with methyl tetracyclic compound **41** (660 mg, 1.04 mmol, 1.0 equiv) and MeOH (30 mL). The resulting solution was addition HCl (*conc.*) (0.45 mL, 5.20 mmol, 5.0 equiv) *as a single portion* via syringe. The reaction was allowed 15 min at ambient temperature at which point TLC analysis indicated the complete consumption of the starting material. The reaction was quenched with *sat.* aq. NaHCO₃ (30 mL) and MeOH was removed by vacuum distillation. Crude residue was diluted with EtOAc (20 mL) and the layers were separated. The aqueous layer was extracted with EtOAc (3×20 mL). The combined layers were washed with brine (20 mL), dried over Na₂SO₄, filtered and concentrated in vacuo. The crude residue was purified via SiO2 flash chromatography (eluent: CH₂Cl₂/MeOH = 20/1) to give methyl tricyclic alcohol **46** (465 mg, 93% yield) as a yellow foamy solid.

 $R_f = 0.16$ (silica gel, 10:1 CH₂Cl₂:MeOH); Optical rotation: $[\alpha]_D^{25} = 24.1$ (c = 1.00, CHCl₃); ¹H NMR (500 MHz, Chloroform-d) $\delta = 15.99$ (s, 1H), 6.69 (s, 1H), 6.63 (s, 1H), 4.67 (s, 2H), 4.47 (s, 2H), 3.87 (t, J=9.4, 1H), 3.80 (d, J=12.9, 1H), 3.70 (dd, J=11.4, 4.3, 1H), 2.63-2.50 (m, 1H), 2.25-2.07 (m, 2H), 1.10 (d, J=6.1, 3H), 1.05 (s, 9H), 0.98 (s, 9H); ¹³C NMR (126 MHz, Chloroform-d) $\delta = 182.4$, 181.2, 171.4, 158.9, 157.0, 149.8, 112.8, 110.9, 108.7, 103.2, 79.5, 64.0, 60.6, 38.5, 27.4, 27.4, 20.9, 20.8, 18.0, 14.3; HRMS (ESI) calcd.for C₂₄H₃₆O₈SiNa [M+Na]⁺: 503.2072; found: 503.2073.

Preparation of methyl tricyclic ketone 47

(a) Preparation of methyl tricyclic silyl ketone S28

An oven-dried, 150 mL round-bottomed flask was treated with methyl tricyclic alcohol **46** (465 mg, 0.97 mmol, 1.0 equiv), imidazole (329 mg, 4.84 mol, 5.0 equiv) and CH_2Cl_2 (10 mL). After 10 min of continued stirring at ambient temperature, TBSCl (581 mg, 3.9 mmol, 4.0 equiv.) was added in portions during a period of 30 min. Upon complete addition, the resulting reaction mixture was stirred for an additional 2 hour at which point TLC analysis indicated the complete consumption of starting material. The reaction was quenched with *sat.* aq. NaHCO₃ (5 mL) and then warmed to ambient temperature. The layers were separated and aqueous layer was extracted with CH_2Cl_2 (3 × 20 mL) and the combined layers were washed with brine (10 mL), dried over Na₂SO₄, filtered and concentration *in vacu*o. The crude residue was purified via SiO₂ flash chromatography (eluent: EtOAc/hexanes = 1:20) to give TBS silyl product **S27** (684 mg, 99% yield) as a yellow oil.

An oven-dried, 150 mL round-bottomed flask was treated with TBS silyl product **S27** (684 mg, 0.96 mmol, 1.0 equiv) and CH_2Cl_2 (10 mL). The resulting solution was stirred at ambient temperature for 10 min prior to the addition of Dess-Martin periodinane (609 mg, 1.44 mmol, 1.5 equiv) in several portions. The reaction was continued at ambient temperature for 3 hours. The reaction was quenched was the addition of *sat.* aq. NaHCO₃ (5 mL). The layers were separated and the aqueous layer was extracted with CH_2Cl_2 (3 × 15 mL). The combined layers were washed with brine (10 mL), dried over Na₂SO₄, filtered and concentrated *in vacuo*. The crude residue was purified
via SiO₂ flash chromatography (eluent: EtOAc/hexanes = 1/20) to give methyl tricyclic silyl ketone S28 (544 mg, 85% yield) as a yellow foamy solid.

 $R_f = 0.34$ (silica gel, 10:1 hexanes:EtOAc); Optical rotation: [α]_D²⁵ = -28.5 (c = 1.00, CHCl₃); ¹H NMR (500 MHz, Chloroform-d) δ = 15.98 (s, 1H), 6.74 (d, *J*=1.4, 1H), 6.63 (d, *J*=1.4, 1H), 4.60 (s, 2H), 3.87 (d, *J*=10.4, 1H), 3.83 (d, *J*=10.4, 1H), 3.67 (t, *J*=5.8, 1H), 3.14 (dddd, *J*=13.2, 11.8, 10.1, 5.9, 1H), 3.02 (dd, *J*=18.2, 8.0, 1H), 2.45 (dd, *J*=18.2, 9.4, 1H), 1.20 (d, *J*=6.6, 3H), 1.06 (s, 9H), 1.04 (s, 9H), 0.91 (s, 9H), 0.80 (s, 9H), 0.07 (s, 6H), -0.09 (d, *J*=7.4, 6H); ¹³C NMR (126 MHz, Chloroform-d) δ = 203.5, 181.4, 181.3, 158.5, 156.8, 151.3, 112.4, 110.0, 108.2, 103.0, 81.8, 66.6, 64.3, 39.4, 38.6, 27.4, 27.4, 26.2, 26.1, 26.1, 26.0, 25.8, 21.0, 20.9, 18.4, 18.2, 15.1, -5.3, -5.3; HRMS (ESI) calcd.for C₃₆H₆₂O₈Si₃Na [M+Na]⁺: 729.3645; found: 729.3646.

(b) Preparation of methyl tricyclic ketone 47

An oven-dried, 150 mL round-bottomed flask was treated with methyl tricyclic silyl ketone **S28** (550 mg, 0.78 mmol, 1.0 equiv), CeCl₃ 7H₂O (1.45 g, 3.90 mmol, 5.0 equiv), (COOH)₂ (144 mg, 1.56 mmol, 2.0 equiv) and 30 mL MeCN/H₂O (20:1). The reaction mixture was vigorously stirred for 8 hours at which point TLC indicated the complete consumption of starting material and quenched with the addition of *sat*. aq. NaHCO₃ (5 mL). EtOAc (20 mL) was added and the layers were separated. The aqueous layer was extracted with EtOAc (3 × 20 mL). The combined layers were washed with brine (20 mL), dried over Na₂SO₄, filtered and concentrated *in vacuo*. The crude residue was purified via SiO₂ flash chromatography (eluent: CH₂Cl₂/MeOH = 20/1) to give dimethyl tricyclic ketone **47** (335 mg, 90% yield) as a yellow foamy solid.

 $R_f = 0.29$ (silica gel, 10:1 CH₂Cl₂:MeOH); Optical rotation: $[\alpha]_D^{25} = -56.6$ (c = 1.00, CHCl₃); ¹H NMR (500 MHz, Chloroform-d) $\delta = 16.12$ (s, 1H), 6.78 (s, 1H), 6.70 (s, 1H), 4.47 (d, *J*=7.5, 2H), 4.07 (d, *J*=12.7, 1H), 3.81 (d, *J*=12.7, 1H), 3.17 (dt, *J*=14.3, 7.3, 1H), 3.02 (dd, *J*=18.7, 8.2, 1H), 2.46 (dd, *J*=18.9, 10.8, 1H), 1.12 (d, *J*=6.4, 3H), 1.03 (s, 9H), 0.97 (s, 9H); ¹³C NMR (126 MHz, Chloroform-d) $\delta = 204.0$, 182.2, 180.0, 157.3, 157.3, 150.5, 112.9, 109.8, 108.9, 102.6, 83.4, 66.1, 63.8, 60.6, 40.5, 37.3, 27.3, 27.3, 26.1, 25.9, 21.2, 20.8, 20.7, 14.3, 14.3. HRMS (ESI) calcd.for C₂₄H₃₄O₈SiNa [M+Na]⁺: 501.1915; found: 501.1910.

Preparation of methyl tricyclic alcohol 48

An oven-dried, 150 mL round-bottomed flask was treated with tetramethylammonium triacetoxyborohydride (1.75 g, 6.58 mmol, 5.0 equiv) and MeCN (10 mL). After 10 min of continued stirring at ambient temperature, AcOH (2.5 mL) was added *as a single portion* via syringe. Upon complete addition, the resulting reaction was cooled to -40 °C and after 15 min of continued stirring, methyl tricyclic ketone **47** (630 mg, 1.32 mmol, 1.0 equiv) was added dropwise via syringe. Upon complete addition, the reaction was continued at -40 °C for 12 h at which point TLC analysis indicated the complete consumption of starting material. The reaction was quenched with aqueous sodium potassium tartrate (0.5 M, 30 mL) at 0 °C and then warm to ambient temperature. The mixture was vigorously stirred for 1 h. Then the mixture diluted with EtOAc (30 mL) and washed with aqueous saturated sodium bicarbonate. The layers were separated and the aqueous layer was extracted with EtOAc (3×30 mL). The combined layers were washed with brine (15 mL), dried over Na₂SO₄, filtered and concentrated in vacuo. The crude residue was purified via SiO₂ flash chromatography (eluent: CH₂Cl₂/MeOH = 20/1) to give dimethyl tricyclic alcohol **48** (588 mg, 93% yield) as a yellow foamy solid.

 $R_f = 0.19$ (silica gel, 10:1 CH₂Cl₂:MeOH); Optical rotation: $[\alpha]_D^{25} = -38.0$ (c = 1.00, CHCl₃); ¹H NMR (500 MHz, Chloroform-d) $\delta = 16.21$ (s, 1H), 6.70 (s, 1H), 6.52 (s, 1H), 4.41 (s, 2H), 4.18 (s, 1H), 3.86 (d, *J*=13.1, 1H), 3.43 (d, *J*=13.2, 1H), 3.18 (s, 1H), 2.39 (dd, *J*=19.1, 11.3, 1H), 2.28 (dd, *J*=19.3, 6.0, 1H), 2.11 (td, *J*=13.1, 6.8, 1H), 1.09 (d, *J*=6.1, 3H), 1.04 (s, 9H), 0.99 (s, 9H); ¹³C NMR (126 MHz, Chloroform-d) $\delta = 187.5$, 179.7, 158.1, 157.1, 149.3, 112.9, 110.5, 108.3, 101.0, 83.6, 69.3, 63.9, 63.6, 35.0, 28.3, 27.4, 26.2, 26.0, 20.9, 20.8, 18.0; HRMS (ESI) calcd.for C₂₄H₃₆O₈SiNa [M+Na]⁺: 503.2072; found: 503.2067.

Preparation of methyl tricyclic silyl 50 and alcohol 49

An oven-dried, 150 mL round-bottomed flask was treated with methyl tricyclic alcohol **48** (550 mg, 1.15 mmol, 1.0 equiv), imidazole (389 mL, 5.73 mol, 5.0 equiv) and CH₂Cl₂ (11 mL). After 10 min of continued stirring at ambient temperature, TBSCl (687 mg, 4.58 mmol, 4.0 equiv.) was added in portions during a period of 30 min. Upon complete addition, the resulting reaction mixture was stirred for an additional 2 hour at which point TLC analysis indicated the complete consumption of starting material. The reaction was quenched with *sat.* aq. NaHCO₃ (5 mL) and then warmed to ambient temperature. The layers were separated and aqueous layer was extracted with CH₂Cl₂ (3 × 15 mL) and the combined layers were washed with brine (10 mL), dried over Na₂SO₄, filtered and concentration *in vacu*o. The crude residue was purified via SiO₂ flash chromatography (eluent: EtOAc/hexanes = 1:20) to give TBS silyl product **S29** (803 mg, 99% yield) as a yellow oil.

Preparation of hydrogen fluoride pyridine solution: 100 mL plastic tube was treated with 65-70 wt% HF Py (6.6 mL, 45.3 mmol, 40.0 equiv) and THF (11.2 mL), The resulting solution was cooled to 0 °C via an ice/water bath and stirring was continued at this temperature for 10 min prior to the addition of pyridine (11.0 mL). Upon complete addition, the resulting reaction mixture was stirred for an additional 20 min at 0 °C.

150 mL plastic tube was treated with TBS silyl product **S29** (803 mg, 1.13 mmol, 1.0 equiv) and THF (12 mL). The resulting solution was cooled to 0 °C via an ice/water bath and stirring was continued at this temperature for 10 min prior to the addition of above HF Py solution dropwise via syringe. The reaction mixture was continued at 0 °C until TLC analysis indicated the complete consumption of the starting material (*ca.* 50 min). The reaction was carefully quenched with *sat.* aq.

NaHCO₃ (30 mL) and diluted with EtOAc (50 mL). The layers were separated and the aqueous layer was extracted with EtOAc (3×50 mL). The combined layers were washed with brine (30 mL), dried over Na₂SO₄, filtered and concentrated *in vacu*o. The crude residue was purified via SiO₂ flash chromatography (eluent: EtOAc/hexanes = 1:2) to give methyl tricyclic silyl **50** (400 mg, 81% yield) as a faint yellow solid;

 $R_f = 0.58$ (silica gel, 1:1 hexanes:EtOAc); Optical rotation: $[\alpha]_D^{25} = -71.3$ (c = 1.00, CHCl₃); ¹H NMR (500 MHz, Chloroform-*d*) $\delta = 13.93$ (s, 1H), 11.46 (s, 1H), 6.41 (s, 1H), 6.38 (s, 1H), 4.54 (s, 2H), 4.07 (s, 1H), 3.77 (d, *J*=11.6, 1H), 3.56 (d, *J*=11.6, 1H), 2.44 (dd, *J*=18.9, 11.1, 1H), 2.31 (dd, *J*=19.0, 6.2, 1H), 2.24 (dd, *J*=12.2, 6.6, 1H), 1.16 (d, *J*=6.7, 3H), 0.80 (s, 9H), -0.11 (d, *J*=12.2, 6H); ¹³C NMR (126 MHz, Chloroform-*d*) $\delta = 187.5$, 178.8, 162.0, 158.3, 152.1, 107.4, 105.7, 84.3, 71.0, 66.1, 64.5, 33.0, 28.3, 25.7, 18.1, 17.9, -5.5, -5.6; HRMS (ESI) calcd.for C₂₂H₃₃O₇Si [M+Na]⁺: 437.1990; found: 437.1983.

The crude residue was purified via SiO_2 flash chromatography (eluent: $CH_2Cl_2/MeOH = 20/1$) to give alcohol **49** (40.2 mg, 11% yield) as a yellow oil.

 $R_f = 0.08$ (silica gel, 1:1 hexanes:EtOAc); Optical rotation: $[\alpha]_D^{25} = -69.3$ (c = 1.00, CHCl₃); ¹H NMR (500 MHz, DMSO- d_6) $\delta = 14.02$ (s, 1H), 11.36 (s, 1H), 6.41 (s, 1H), 6.38 (s, 1H), 4.42 (d, J=5.5, 2H), 3.93 (d, J=4.1, 1H), 3.64 (dd, J=12.6, 5.6, 1H), 3.44 (dd, J=12.6, 5.7, 1H), 3.37 (s, 3H), 2.32 (q, J=11.8, 11.2, 1H), 2.21 (d, J=12.6, 2H), 1.01 (d, J=5.7, 3H); ¹³C NMR (126 MHz, DMSO- d_6) $\delta = 186.8, 178.9, 160.9, 158.8, 154.1, 105.8, 105.7, 104.8, 101.4, 84.5, 68.8, 64.5, 62.4, 33.0, 27.8, 17.9; HRMS (ESI) calcd.for C₁₆H₁₉O₇ [M+H]⁺: 323.1125; found: 323.1132.$

Preparation of methyl tricyclic iodide 51

An oven-dried, 100 mL round-bottomed flask was treated with methyl tricyclic silyl **50** (220 mg, 0.50 mmol, 1.0 equiv) and anhydrous 4.0 mL CH₂Cl₂/MeOH (1:1) under a N₂ atmosphere. The resulting solution was cooled to 0 °C via an ice/water bath and stirring was continued at this temperature for 15 min prior to the addition of TMSCHN₂ (1.25 mL, 2.0 mol/L in hexane, 2.5 mmol, 5.0 equiv) via syringe. The reaction was warmed to ambient temperature and stirred for 15 min and quenched with 10 w% aqueous AcOH solution. The reaction was extracted twice with 20 mL of CH₂Cl₂. The combined layers were washed with brine (10 mL), dried over Na₂SO₄, filtered and concentrated *in vacu*o. The crude residue was purified via SiO₂ flash chromatography (eluent: EtOAc/hexanes = 1:2) to give product **S30** (134 mg, 65% yield) as a yellow foamy solid.

An oven-dried, 25 mL round-bottomed flask was treated with product **S30** (105 mg, 0.23 mmol, 1.0 equiv) and CaCO₃ (163 mg, 1.63 mmol, 7.0 equiv), Me₃NBnICl₂ (81.2 mg, 0.23 mmol, 1.0 equiv), and anhydrous 5 mL CH₂Cl₂/MeOH (5:1). The suspension was vigorously stirred for 6 h at which time TLC analysis indicated the complete consumption of starting material then diluted with CH₂Cl₂, filtered through a short pad of Celite and concentrated *in vacuo*. Purification of the crude residue by SiO₂ flash chromatography (eluent: EtOAc/hexanes = 1:2) to give dimethyl tricyclic iodide **51** (123 mg, 92% yield) as a yellow foamy solid.

 $R_f = 0.39$ (silica gel, 1:1 hexanes:EtOAc); Optical rotation: $[\alpha]_D^{25} = -70.0$ (c = 1.00, CHCl₃); ¹H NMR (500 MHz, Chloroform-*d*) $\delta = 13.80$ (s, 1H), 6.60 (s, 1H), 4.77-4.40 (m, 2H), 4.09 (s, 1H), 3.93 (s, 3H), 3.80 (d, *J*=11.7, 1H), 3.58 (d, *J*=11.5, 1H), 2.53-2.39 (m, 2H), 2.19 (p, *J*=10.8, 9.0, 1H), 1.20 (d, *J*=7.1, 3H), 0.78 (s, 9H), -0.14 (d, *J*=6.5, 3H); ¹³C NMR (126 MHz, Chloroform-*d*) $\delta = 185.3$,

171.0, 160.9, 157.9, 152.1, 107.3, 106.9, 103.5, 85.8, 70.2, 69.4, 65.7, 56.1, 30.3, 28.2, 25.9, 25.7, 18.1, 17.9, -5.5, -5.6; HRMS (ESI) calcd.for C₂₂H₃₃IO₇SiNa [M+Na]⁺: 599.0932; found: 599.0924.

Preparation of benzoxaborole 39

To a mixture of aryl iodide **51** (30.0 mg, 0.052 mmol, 1.0 equiv), bis(pinacolato)diboron (26.4 mg, 0.104 mmol, 2.0 equiv), sodium acetate (15.3 mg, 0.156 mmol, 3.0 equiv), Pd(OAc)₂ (2.34 mg, 0.01 mmol, 0.2 equiv) and AntPhos (5.57 mg, 0.015 mmol, Pd/ligand mol ratio: 1/1.5, 0.3 equiv) under N₂ was charged freshly degassed 2.5 mL THF/water (4:1). The biphasic mixture was immediately placed in preheated oil bath at 70 °C and the reaction was continued at 70 °C for 3.5 h. The reaction mixture was cooled to ambient temperature, diluted with EtOAc (10 mL), and treated with sat. aq. NH₄Cl (5 mL). The layers were separated and the aqueous layer was extracted with EtOAc (3 × 10 mL). The combined layers were washed with brine (50 mL), dried over Na₂SO₄, filtered and concentrated *in vacu*o. The crude residue was purified via SiO₂ flash chromatography (eluent: CH₂Cl₂/MeOH = 30/1) to give benzoxaborole **39** (17.6 mg, 71% yield) as a yellow oil.

 R_f = 0.07 (silica gel, 1:1 hexanes:EtOAc); Optical rotation: [α]_D²⁵ = -115.5 (c = 1.00, CHCl₃); ¹H NMR (500 MHz, Chloroform-*d*) δ = 13.50 (s, 1H), 6.34 (s, 1H), 5.28 (s, 1H), 4.96 (s, 2H), 4.14 (d, *J*=1.5, 1H), 3.93 (s, 3H), 3.89 (d, *J*=11.9, 1H), 3.61 (d, *J*=11.8, 1H), 2.51 (s, 1H), 2.47 (d, *J*=2.7, 1H), 2.23-2.14 (m, 1H), 1.22 (d, *J*=6.7, 3H), 0.81 (s, 9H), -0.12 (d, *J*=1.2, 6H); ¹³C NMR (126 MHz, Chloroform-*d*) δ = 186.5, 170.1, 166.0, 163.9, 161.1, 107.1, 104.0, 101.0, 86.0, 71.3, 69.8, 65.7, 56.1, 30.2, 28.4, 25.8, 18.2, 18.0, -5.5, -5.6; HRMS (ESI) calcd.for C₂₂H₃₃BO₈SiNa [M+Na]⁺: 498.1968; found: 498.1965.

Preparation of coupling product 52

To a mixture of iodide **38** (15.0 mg, 0.032 mmol, 1.0 equiv), benzoxaborole **39** (17.0 mg, 0.036 mmol, 1.2 equiv), K_3PO_4 (19.0 mg, 0.089 mmol, 3.0 equiv), $Pd(OAc)_2$ (1.37 mg, 6.0 µmol, 0.2 equiv) and SPhos (3.88 mg, 8.9 µmol, 0.3 equiv, Pd/ligand mol ratio: 1/1.5) under N₂ was charged freshly degassed 1.6 mL THF/water (4:1). The biphasic mixture was immediately placed in preheated oil bath at 60 °C and the reaction was continued at 60 °C for 45 min. The reaction mixture was cooled to ambient temperature, diluted with EtOAc (10 mL), and treated with *sat.* aq. NH₄Cl (5 mL). The layers were separated and the aqueous layer was extracted with EtOAc (3 × 10 mL). The combined layers were washed with brine (10 mL), dried over Na₂SO₄, filtered and concentrated *in vacu*o. The crude residue was purified via SiO₂ flash chromatography (eluent: EtOAc/hexanes = 1/1) to give coupling products **52** (10.6 mg, 43% yield) as a yellow oil.

 R_f = 0.25 (silica gel, 10:1 CH₂Cl₂:MeOH); Optical rotation: [α]_D²⁵ = -31.6 (c = 0.4, CHCl₃); ¹H NMR (500 MHz, Chloroform-*d*) δ = 13.39 (s, 1H), 12.83 (s, 1H), 6.83 (s, 1H), 6.69 (s, 1H), 4.37 (d, *J*=13.0, 1H), 4.32 (d, *J*=12.9, 1H), 4.27 (d, *J*=13.0, 1H), 4.22 (d, *J*=12.9, 1H), 4.12 (d, *J*=1.8, 1H), 3.93 (d, *J*=11.7, 1H), 3.89 (s, 3H), 3.87 (d, *J*=9.5, 1H), 3.82 (s, 3H), 3.73 (s, 3H), 3.68 (d, *J*=10.2, 1H), 2.49-2.42 (m, 2H), 2.26 (dd, *J*=8.9, 6.9, 1H), 2.20 (dt, *J*=12.0, 6.9, 1H), 1.88 (ddt, *J*=15.3, 12.7, 6.6, 1H), 1.36 (d, *J*=6.9, 3H), 1.23 (d, *J*=7.0, 3H), 1.18 (d, *J*=6.5, 3H), 0.83 (s, 9H), -0.08 (d, *J*=3.3, 6H); ¹³C NMR (151 MHz, Chloroform-*d*) δ = 186.2, 185.2, 174.5, 169.9, 160.0, 159.8, 158.6, 157.6, 151.1, 149.7, 114.3, 113.2, 109.1, 107.5, 107.4, 107.0, 106.2, 105.9, 104.1, 87.2, 85.5, 69.8, 65.8, 63.4, 63.2, 61.9, 55.9, 53.3, 42.2, 35.7, 30.1, 29.7, 28.4, 25.7, 18.2, 17.9, 17.1, 16.2, -5.7, -5.7; HRMS (ESI) calcd.for C₄₂H₅₄O₁₅SiNa [M+Na]⁺: 849.3124; found: 849.3134.

Preparation of dimer 53

An oven-dried, 25 mL round-bottomed flask was treated with iodine (25.7 mg, 0.102 mmol, 6.0 equiv) and anhydrous 1.0 mL CH₂Cl₂ under a N₂ atmosphere. After 10 min of continued stirring, triphenylphosphine (26.7 mg, 0.102 mmol, 6.0 equiv) was added. The reaction was continued at ambient temperature for another additional 15 min prior to the addition of coupling products **52** (14.0 mg, 0.017 mmol, 1.0 equiv). Upon complete addition, the reaction was closely monitored by TLC analysis. The reaction was allowed to continue for an additional 20 min before it was diluted with CH₂Cl₂ and quenched with *sat.* aq. Na₂S₂O₃. The layers were separated and the aueous layer was extracted with (3 × 10 mL). The combined layers were washed with brine (10 mL), dried over Na₂SO₄, filtered and concentrated *in vacu*o. The crude residue diiodide **53** was used without further purification.

An oven-dried, 25 mL round-bottomed flask was treated with crude residue diiodide **53** and THF (5 mL). After 5 min of continued stirring, Raney nickel (50 mg, 0.847 mmol, 50.0 equiv) was added. The reaction was continued at ambient temperature for another additional 30 min. The suspension was vigorously stirred until the TLC analysis indicated complete consumption of starting material then diluted with EtOAc, filtered through a short pad of Celite and concentrated in vacuo. Purification of the crude residue by preparative TLC (eluent: EtOAc/hexanes = 1/1) to give dimer **53** (7.53 mg, 56%) as a yellow solid.

*R*_f = 0.53 (silica gel, 1:2 hexanes:EtOAc); Optical rotation: $[\alpha]_D^{25}$ = -100.7 (c = 0.4, CHCl₃); ¹H NMR (600 MHz, Chloroform-*d*) δ = 13.02 (s, 1H), 12.56 (s, 1H), 6.51 (s, 1H), 6.37 (s, 1H), 4.10 (s, 1H), 3.94 (d, *J*=11.7, 1H), 3.86 (s, 3H), 3.86 (d, *J*=11.8, 1H), 3.81 (s, 3H), 3.69 (s, 3H), 3.64 (d, *J*=11.8, 1H), 2.49-2.37 (m, 2H), 2.23 (dd, *J*=8.8, 6.8, 1H), 2.16 (dt, *J*=16.3, 8.7, 1H), 2.04 (s, 3H), 1.99 (s, 3H), 1.90-1.81 (m, 1H), 1.34 (d, *J*=6.8, 3H), 1.22 (d, *J*=6.6, 3H), 1.16 (d, *J*=6.4, 3H), 0.83 (s, 9H), -0.10 (d, *J*=3.7, 6H); ¹³C NMR (151 MHz, Chloroform-*d*) δ = 186.3, 185.2, 173.6, 170.1, 168.9, 160.3, 160.2, 157.8, 156.7, 149.6, 148.2, 117.2, 116.1, 108.7, 108.2, 106.7, 106.5, 106.4, 104.5, 87.1, 85.3, 76.4, 69.7, 65.6, 62.1, 56.0, 53.2, 42.5, 35.8, 30.2, 29.8, 28.5, 25.9, 20.9, 20.7, 18.3, 18.0, 17.1, 16.2, -5.6, -5.7; CD (c, 0.3 dioxan) λ (Δε) 400 (0.27), 329 (-10.1), 392 (-1.8), 282 (2.8), 258 (-2.4), 245 (-7.4), 233(13.5), 224 (37.9), 210 (14.8) nm; HRMS (ESI) calcd.for C₄₂H₅₄O₁₃SiNa [M+Na]⁺: 817.3226; found: 817.3224.

Preparation of 10a-epi-hirtusneanine (36)

10 mL plastic tube was treated with **53** (4.0 mg, 5.0 µmol, 1.0 equiv) and MeCN (0.5 ml). The resulting solution was treated with HF (0.16 mL, 48-51% solution in water) via syringe. The reaction was left to stir at ambient temperature for 2 days and TLC analysis indicated the complete consumption of starting material. The reaction was cooled to ambient temperature the quenched with the carefully addition of *sat.* aq. NaHCO₃ (3 mL). EtOAc (5 mL) was added and the layers were separated. The aqueous layer was extracted with EtOAc (3×10 mL) and the combined layers were washed with brine (5 mL), dried over Na₂SO₄, filtered and concentration *in vacu*o. The crude residue was purified via preparative TLC (eluent: CH₂Cl₂/MeOH = 30/1) to give 10a-*epi*-hirtusneanine (**36**) (2.3 mg, 66% yield) as a yellow solid.

 $\mathbf{R}_{f} = 0.38$ (silica gel, 10:1 CH₂Cl₂:MeOH); Optical rotation: synthetic: $\left[\alpha\right]_{D}^{25} = -62.4$ (c = 0.05, MeOH); natural: $[\alpha]_D^{23} = -232$ (c = 0.01, MeOH); (Chloroform-d); ¹H NMR (500 MHz, Chloroform-*d*) $\delta = 14.22$ (s, 1H), 13.92 (s, 1H), 11.73 (s, 1H), 11.47 (s, 1H), 6.57 (s, 1H), 6.47 (s, 1H), 6.4 1H), 4.25 (s, 1H), 4.05 (d, J=12.9, 1H), 3.92 (d, J=11.4, 1H), 3.74 (s, 3H), 3.56 (d, J=12.9, 1H), 2.50 (dd, J=19.0, 11.3, 1H), 2.38-2.31 (m, 2H), 2.28-2.19 (m, 1H), 2.09 (s, 3H), 2.04 (s, 3H), 1.94 (ddd, J=11.2, 8.9, 6.2, 1H), 1.37 (d, J=7.0, 3H), 1.29 (d, J=8.4, 3H), 1.21 (d, J=6.5, 3H); ¹³C NMR (126 MHz, Chloroform-*d*) δ = 187.4, 186.6, 180.4, 178.9, 170.4, 159.7, 159.3, 157.8, 156.2, 150.0, 149.8, 117.1, 116.8, 109.4, 109.2, 104.9, 104.7, 100.4, 99.9, 84.3, 84.2, 76.4, 69.3, 64.9, 53.2, 36.8, 32.8, 32.0, 29.7, 21.0, 20.8, 17.8, 16.6, 15.8. (**DMSO-***d*₆); ¹H NMR (500 MHz, DMSO-*d*₆) $\delta = 14.25$ (s, 1H), 13.89 (s, 1H), 11.61 (s, 1H), 11.18 (s, 1H), 6.58 (s, 1H), 6.43 (s, 1H), 3.95 (s, 1H), 3.81 (dd, J=11.1, 5.5, 1H), 3.69 (dd, J=12.3, 4.5, 1H), 3.60 (s, 3H), 3.46 (dd, J=12.2, 5.0, 1H), 2.47 (m, 1 H), 2.34 (dd, J=23.5, 10.6, 1H), 2.23 (m, 1H), 2.20 (m, 1H), 2.02 (s, 3H), 1.93 (s, 3H), 1.85 (ddq, J=11.3, 9.0, 6.2 Hz, 1 H), 1.26 (d, J=7.2, 3H), 1.09 (d, J=6.5, 3H), 1.02 (d, J=5.5, 3H); ¹³C NMR (126 MHz, DMSO- d_6) $\delta = 187.1, 186.2, 180.9, 178.5, 170.2, 158.5, 158.5, 158.3, 157.9, 149.8, 148.8, 116.4,$ 115.0, 109.5, 108.9, 104.4, 104.0, 101.2, 101.0, 84.5, 84.4, 74.5, 68.8, 64.6, 52.8, 37.4, 33.7, 31.3, 29.1, 20.6, 20.3, 17.9, 16.3, 15.5; HRMS (ESI) calcd.for C₃₄H₃₇O₁₃ [M+H]⁺: 653.2229; found: 653.2226.

Table S2	. Comparison of	¹ H NMR data fo	or (158,15a	aS)-12-O-metl	hyl-parnafungin	A1 (12).

Proton	Natural	Synthetic	Chemical
No.	¹ H NMR, 499 MHz, DMSO- <i>d</i> 6	¹ H NMR, 600 MHz,	shift, $\Delta \delta$
	¹ Η [δ, multi., <i>J</i> (Hz)]	DMSO-d6	(ppm)
		¹ H [δ , multi., J (Hz)]	
O(7)-H	14.13 (s, 1 H)	14.13 (s), 1 H	0.00
8	8.34 (d, <i>J</i> = 7.5 Hz, 1 H)	8.36 (dd, <i>J</i> = 7.5, 0.8 Hz), 1 H	0.02
10	7.68 (d, <i>J</i> = 7.8 Hz, 1 H)	7.68 (dd, <i>J</i> = 7.9, 0.8 Hz), 1 H	0.00
9	7.36 (dd, <i>J</i> =7.8, 7.5 Hz, 1 H)	7.38 (t, <i>J</i> =7.7 Hz, 1 H)	0.02
5	6.68 (s, 1 H)	6.71 (s, 1 H)	0.03
O(15)-H	5.92 (d, <i>J</i> = 3.4 Hz, 1 H)	5.94 (d, <i>J</i> = 4.8 Hz, 1 H)	0.02
4	4.70 (s, 2 H)	4.71 (s, 2 H)	0.01
15	4.15 (m, 1 H)	4.15 (dt, <i>J</i> = 12.0, 4.7 Hz)	0.00
12-0-CH ₃	3.88 (s, 3 H)	3.91 (s, 3 H)	0.03
17	3.55 (s, 3 H)	3.58 (s, 3 H)	0.03
13	2.83 (m, 2 H)	2.86 (m, 2 H)	0.03
14	2.06 (m, 1 H)	2.10 (m, 2 H)	0.04
14'	1.87 (m, 1 H)	1.90 (m, 2 H)	0.03
1			
4a			
6			
ба			
7			
7a			
10a			
10b			
11			
11a			

carbon	Natural	Syntehtic	Chemical
No.	¹³ C NMR, 125 MHz,	¹³ C NMR, 151 MHz,	shift, $\Delta \delta$
	DMSO-d6	DMSO-d6	(ppm)
	1 H [δ , multi., J (Hz)]	¹ H [δ , multi., J (Hz)]	
11	184.8	184.8	0.0
12	173.2	173.2	0.0
16	169.8	169.8	0.0
1	167.3	167.4	0.1
7	160.1	160.2	0.1
6	159.3	159.3	0.0
10b	155.5	155.6	0.1
4a	141.1	141.1	0.0
8	130.5	130.5	0.0
9	125.9	125.9	0.0
10	122.6	122.6	0.0
7b	119.1	119.1	0.0
10a	109.8	109.8	0.0
7a	109.4	109.4	0.0
5	107.5	107.5	0.0
ба	107.4	107.4	0.0
11a	103.3	103.4	0.1
15a	87.0	87.1	0.1
15	69.8	69.8	0.0
12-0-CH ₃	56.2	56.3	0.1
4	54.8	54.8	0.0
17	52.7	52.8	0.1
14	25.3	25.4	0.1
13	24.0	24.0	0

Table S3. Comparison of ¹³C NMR data for (15S,15aS)-12-O-methyl-parnafungin A1 (12).

5. NMR Data (in CDCl₃) of Parnafungin A1 (1)

Proton	Synthetic	carbon	Synthetic
No.	¹ H NMR, 600 MHz, CDCl ₃	No.	¹³ C NMR, 151 MHz, CDCl ₃
	${}^{1}\mathrm{H}\left[\delta,\mathrm{multi.},J\left(\mathrm{Hz}\right)\right]$		¹ Η [δ, multi., <i>J</i> (Hz)]
O(7)-H	13.78 (s, 1 H)	11	188.8
О(12)-Н	12.30 (s, 1 H)	12	179.5
8	8.43 (dd, <i>J</i> = 7.6, 0.8 Hz, 1 H)	16	169.9
10	7.66 (dd, <i>J</i> = 7.8, 0.8 Hz, 1 H)	1	168.1
9	7.30 (t, <i>J</i> =7.7 Hz, 1 H)	7	160.1
5	6.58 (s, 1 H)	6	159.0
4	4.53 (m, 1 H)	10b	155.9
	4.53 (m, 1 H)	4a	142.0
15	4.15 (dd, <i>J</i> = 12.0, 4.7 Hz)	8	131.6
17	3.74 (s, 3 H)	9	125.9
13	2.72 (m, 2 H)	10	123.5
14	2.26 (m, 1 H)	7b	119.1
	2.13 (m, 1 H)	10a	112.0
1		7a	110.7
4a		5	108.3
6		6a	107.2
ба		11a	101.3
7		15a	85.1
7a		15	71.9
10a		4	56.0
10b		17	53.6
11		14	27.9
11a		13	24.0
12			
15a			
16			

Table S4. ¹H NMR and ¹³C NMR data for parnafungin A1 (1).

6. Comparison of NMR Data of Natural² and Synthetic Parnafungins

Proton	Natural	Synthetic	Chemical
No.	¹ H NMR, 499 MHz,	¹ H NMR, 600 MHz,	shift, $\Delta \delta$
	DMSO-d6	DMSO-d6	(ppm)
	¹ H [δ , multi., <i>J</i> (Hz)]	1 H [δ , multi., J (Hz)]	
O(12)-H	13.85 (br, 1 H)	13.78 (br, 1 H)	-0.07
O(7)-H	12.35 (br, 1 H)	12.44 (br, 1 H)	0.10
8	8.27 (d, <i>J</i> = 7.3 Hz, 1 H)	8.29 (d, <i>J</i> = 7.4, 1 H)	0.02
10	7.65 (d, <i>J</i> = 7.8 Hz, 1 H)	7.65 (dd, <i>J</i> = 7.8, 1 H)	0.00
9	7.34 (dd, <i>J</i> =7.8, 7.3 Hz, 1 H)	7.34 (dd, <i>J</i> =7.8, 7.3 Hz, 1 H)	0.00
5	6.72 (s, 1 H)	6.73 (s, 1 H)	0.01
О(15)-Н	5.92 (d, <i>J</i> = 4.6 Hz, 1 H)	5.97 (d, <i>J</i> = 4.8 Hz, 1 H)	0.05
4	4.70 (d, <i>J</i> = 11.9 Hz, 1 H)	4.70 (d, <i>J</i> = 10.4 Hz, 1 H)	0.00
	4.67 (d, <i>J</i> = 11.9 Hz, 1 H)	4.68 (d, <i>J</i> = 10.4 Hz, 1 H)	0.01
15	4.20 (dt, <i>J</i> = 12.0, 4.6 Hz, 1 H)	4.20 (dt, <i>J</i> = 12.3, 4.8 Hz)	0.00
17	3.56 (s, 3 H)	3.56 (s, 3 H)	0.00
13	2.82 (m, 1 H)	2.82 (m, 2 H)	0.00
	2.60 (m, 1 H)	2.58 (m, 1 H)	-0.02
14	2.13 (m, 1 H)	2.12 (m, 2 H)	-0.01
	1.94 (m, 1 H)	1.95 (m, 2 H)	0.01
1			
4a			
6			
ба			
7			
7a			
10a			
10b			
11			
11a			
12			
15a			
16			

 Table S5. Comparison of ¹H NMR data for parnafungin A1.

carbon	Natural	Synthetic	Chemical
No.	¹³ C NMR, 125 MHz,	¹³ C NMR, 151 MHz,	shift, $\Delta \delta$
	DMSO-d6	DMSO-d6	(ppm)
	¹ H [δ , multi., J (Hz)]	¹ H [δ , multi., J (Hz)]	
11	185.6	185.5 (br)	0.0
12	179.8	180.0(br)	0.0
16	169.7	169.7	0.0
1	167.2	167.3	0.1
7	160.9	161.0	0.1
6	159.5	159.6	0.0
10b	155.5	155.6	0.1
4a	142.0	142.0	0.0
8	130.7	130.7	0.0
9	125.9	125.9	0.0
10	122.8	122.8	0.0
7b	118.7	118.8	0.0
10a	109.9	109.9	0.0
7a	109.8	109.9	0.0
5	108.5	108.5	0.0
ба	106.5	106.6	0.0
11a	101.1	101.2	0.1
15a	85.3	85.4	0.1
15	70.0	70.1	0.0
4	54.8	54.8	0.0
17	53.0	53.0	0.1
13	27.7	28.0 (br)	0.1
14	25.3	25.5	0

Table S6. Comparison of ¹³C NMR data for parnafungin A1.

Proton	Natural	Synthetic	Chemical
No.	¹ H NMR, 499 MHz,	¹ H NMR, 600 MHz,	shift, $\Delta \delta$
	DMSO-d6	DMSO-d6	(ppm)
	¹ Η [δ, multi., <i>J</i> (Hz)]	¹ Η [δ, multi., <i>J</i> (Hz)]	
О(12)-Н	13.85 (br, 1 H)	13.78 (br, 1 H)	-0.07
O(6)-H	11.62 (br, 1 H)	11.67 (br, 1 H)	0.06
8	8.32 (d, <i>J</i> = 7.3 Hz, 1 H)	8.34 (d, <i>J</i> = 7.6, 1 H)	0.01
10	7.67 (d, <i>J</i> = 7.6 Hz, 1 H)	7.70 (d, <i>J</i> = 8.0, 1 H)	0.00
9	7.40 (dd, <i>J</i> = 7.3, 7.6 Hz, 1	7.40 (t, <i>J</i> =7.8, 1 H)	0.00
	H)		
5	6.74 (s, 1 H)	6.74 (s, 1 H)	0.00
O(15)-H	5.97 (obscured)	5.97 (obscured)	0.02
4	4.70-4.68 (obscured)	4.70-4.67 (obscured)	0.00
			0.00
15	4.39 (t, <i>J</i> = 4.6 Hz, 1 H)	4.39 (d, <i>J</i> = 4.2 Hz)	0.01
17	3.59 (s, 3 H)	3.59 (s, 3 H)	0.00
13	2.70 (m, 1 H)	2.72 (m, 1 H)	0.00
	2.40 (m, 1 H)k	2.42 (m, 1 H)	-0.02
14	2.13 (m, 1 H)	2.14 (m, 1 H)	0.00
	1.94 (m, 1 H)	1.94 (m, 1 H)	0.00
1			
4a			
6			
6а			
7			
7a			
10a			
10b			
11			
11a			
12			
15a			
16			

 Table S7. Comparison of ¹H NMR data for parnafungin B1.

carbon	Natural	Synthetic	Chemical
No.	¹³ C NMR, 125 MHz,	¹³ C NMR, 151 MHz,	shift, $\Delta\delta$
	DMSO-d6	DMSO-d6	(ppm)
	1 H [δ , multi., J (Hz)]	1 H [δ , multi., J (Hz)]	
11	185.5	185.5(br)	0.0
12	180.9	180.7(br)	-0.2
16	171.1	171.2	0.1
1	167.2	167.3	0.1
7	158.8	158.9	0.1
6	158.2	158.3	0.1
10b	155.7	155.8	0.1
4a	142.0	142.0	0.0
8	130.8	130.8	0.0
9	125.9	125.9	0.0
10	122.9	122.9	0.0
7b	118.7	118.8	0.1
10a	110.4	110.4	0.0
7a	109.9	109.9	0.0
5	108.5	108.5	0.0
ба	106.6	106.7	0.1
11a	100.6	100.6	0.0
15a	84.5	84.6	0.1
15	65.7	65.8	0.1
4	54.7	54.8	0.1
17	53.6	53.6	0.0
13	24.7	24.5	-0.2
		(br)	
14	23.8	23.8	0

 Table S8. Comparison of ¹³C NMR data for parnafungin B1.

Proton	Natural	Synthetic	Chemical
No.	¹ H NMR, 499 MHz,	¹ H NMR, 600 MHz,	shift, $\Delta \delta$
	DMSO-d6	DMSO-d6	(ppm)
	¹ H [δ , multi., <i>J</i> (Hz)]	¹ H [δ , multi., <i>J</i> (Hz)]	
O(12)-H	13.85 (br, 1 H)	13.78 (br, 1 H)	-0.07
O(6)-H	11.47 (br, 1 H)	12.53 (br, 1 H)	0.06
8	8.67 (d, <i>J</i> = 7.3 Hz, 1 H)	8.68 (d, <i>J</i> = 7.6, 1 H)	0.01
10	7.66 (d, <i>J</i> = 7.3 Hz, 1 H)	7.66 (d, <i>J</i> = 7.8, 1 H)	0.00
9	7.32 (t, <i>J</i> = 7.3 Hz, 1 H)	7.32 (t, <i>J</i> =7.8, 1 H)	0.00
5	6.67 (s, 1 H)	6.67 (s, 1 H)	0.00
O(15)-H	6.01 (d, <i>J</i> = 5.3 Hz, 1 H)	6.03 (d, <i>J</i> = 5.5 Hz, 1 H)	0.02
4	4.76 (d, <i>J</i> = 11.7 Hz, 1 H)	4.76 (d, <i>J</i> = 11.8 Hz, 1 H)	0.00
	4.54 (d, <i>J</i> = 11.7 Hz, 1 H)	4.54 (d, <i>J</i> = 11.8 Hz, 1 H)	0.00
15	4.30 (dt, <i>J</i> = 12.0, 5.3 Hz, 1 H)	4.31 (dt, <i>J</i> = 11.0, 5.1 Hz)	0.01
17	3.59 (s, 3 H)	3.59 (s, 3 H)	0.00
13	2.82 (dd, <i>J</i> = 19.0, 8.0 Hz, 1 H)	2.82 (dd, <i>J</i> = 19.0, 7.7 Hz, 1	0.00
		H)	
	2.60 (m, 1 H)	2.58 (m, 1 H)	-0.02
14	2.17 (m, 1 H)	2.17 (m, 2 H)	0.00
	1.97 (m, 1 H)	1.97 (m, 2 H)	0.00
1			
4a			
6			
ба			
7			
7a			
10a			
10b			
11			
11a			
12			
15a			
16			

 Table S9.Comparison of ¹H NMR data for parnafungin A2.

carbon	Natural	Synthetic	Chemical
No.	¹³ C NMR, 125 MHz,	¹³ C NMR, 151 MHz,	shift, $\Delta \delta$
	DMSO-d6	DMSO-d6	(ppm)
	1 H [δ , multi., J (Hz)]	1H [δ, multi., J (Hz)]	
11	184.6	184.5(br)	-0.1
12	180.5	180.7(br)	0.2
16	169.5	169.5	0.0
1	167.3	167.4	0.1
7	161.0	161.0	0.0
6	156.9	156.9	0.0
10b	155.6	155.6	0.0
4a	141.8	141.8	0.0
8	133.2	132.2	0.0
9	126.0	126.0	0.0
10	122.7	122.7	0.0
7b	118.7	118.8	0.0
10a	109.7	109.7	0.0
7a	109.2	109.2	0.0
5	110.4	110.4	0.0
ба	106.9	107.0	0.0
11a	101.5	101.5	0.0
15a	85.5	85.6	0.1
15	70.2	70.3	0.1
4	55.0	55.0	0.0
17	52.9	52.9	0.0
13	28.0	28.0 (br)	0.0
14	25.4	25.5	0.1

 Table S10. Comparison of ¹³C NMR data for parnafungin A2.

Proton	Natural	Synthetic	Chemical
No.	¹ H NMR, 499 MHz, DMSO-d6	¹ H NMR, 600 MHz,	shift, $\Delta \delta$
	¹ H [δ , multi., <i>J</i> (Hz)]	DMSO-d6	(ppm)
		¹ H [δ , multi., <i>J</i> (Hz)]	
О(12)-Н	13.85 (br, 1 H)	13.78 (br, 1 H)	-0.07
O(6)-H	12.48 (br, 1 H)	12.67 (br, 1 H)	0.19
8	8.63 (d, <i>J</i> = 7.3 Hz, 1 H)	8.63 (d, <i>J</i> = 7.6, 1 H)	0.01
10	7.70 (d, <i>J</i> = 7.8 Hz, 1 H)	7.70 (d, <i>J</i> = 7.8, 1 H)	0.00
9	7.36 (dd, <i>J</i> = 7.8, 7.3 Hz, 1 H)	7.36 (dd, <i>J</i> =7.8, 7.6, 1 H)	0.00
5	6.72 (s, 1 H)	6.72 (s, 1 H)	0.00
O(15)-H	5.89 (d, <i>J</i> = 3.6 Hz, 1 H)	5.89 (d, <i>J</i> = 4.4 Hz, 1 H)	0.00
4	4.73 (d, <i>J</i> = 11.9 Hz, 1 H)	4.73 (d, <i>J</i> = 11.6 Hz, 1 H)	0.00
	4.61 (d, <i>J</i> = 11.9 Hz, 1 H)	4.61 (d, <i>J</i> = 11.6 Hz, 1 H)	0.00
15	4.24 (br s)	4.24 (br s)	0.00
17	3.65 (s, 3 H)	3.64 (s, 3 H)	-0.01
13	2.73 (m, 1 H)	2.73 (m, 1 H)	0.00
	2.42 (ddd, <i>J</i> = 19.0, 13.0, 6.0 Hz,	2.42 (m, 1 H)	0.00
	1 H)		
14	2.17 (m, 1 H)	2.17 (m, 2 H)	0.00
	1.97 (m, 1 H)	1.97 (m, 2 H)	0.00
1			
4a			
6			
6а			
7			
7a			
10a			
10b			
11			
11a			
12			
15a			
16			

 Table S11. Comparison of ¹H NMR data for parnafungin B2.

carbo	Natural	Synthetic	Chemical
n	¹³ C NMR, 125 MHz,	¹³ C NMR, 151 MHz,	shift, $\Delta \delta$
No.	DMSO-d6	DMSO-d6	(ppm)
	1 H [δ , multi., J (Hz)]	1H [δ, multi., J (Hz)]	
11	185.9	185.9(br)	0.0
12	181.9	182.0(br)	0.1
16	170.9	171.0	0.1
1	167.2	167.3	0.1
7	158.9	158.9	0.0
6	158.9	158.9	0.0
10b	155.5	155.6	0.1
4a	142.0	142.0	0.0
8	132.0	132.0	0.0
9	126.0	126.0	0.0
10	123.0	123.0	0.0
7b	118.6	118.7	0.1
10a	109.2	109.2	0.0
7a	109.8	109.7	-0.1
5	110.9	110.9	0.0
ба	106.5	106.3	-0.2
11a	100.8	100.9	0.1
15a	84.9	84.9	0.1
15	65.3	65.4	0.1
4	54.9	55.0	0.1
17	53.6	53.6	0.0
13	24.9	24.9 (br)	0.1
14	24.0	24.0	0

Table S12.Comparison of ¹³C NMR data for parnafungin B2.

7. Comparison of NMR Data of reported hirtusneanine (6)³ and Synthetic

10a-epi-hirtusneanine (36)

10a-epi-hirtusneanine (36)

Table S13. Comparison of ¹H NMR data

Proton	Reported	Synthetic	Chemical
No.	¹ H NMR, DMSO- <i>d6</i>	¹ H NMR, 500 MHz, DMSO- <i>d</i> 6	shift, $\Delta \delta$
	¹ Η [δ, multi., <i>J</i> (Hz)]	¹ Η [δ, multi., <i>J</i> (Hz)]	(ppm)
O(8)-H	13.7 (br, 1 H)	14.25 (br, 1 H)	0.55
O(8')-H	13.7 (br, 1 H)	13.89 (br, 1 H)	0.19
O(1')-H	11.5 (br, 1 H)	11.61 (s, 1 H)	0.11
O(1)-H	11.5 (br, 1 H)	11.18 (s, 1 H)	-0.32
4,4'	6.66 (s, 1 H), 6.69 (s, 1 H)	6.58 (s, 1 H), 6.43 (s, 1 H)	
5'	4.07 (d, <i>J</i> = 1.3 Hz, 1 H)	3.95 (s, 1 H)	-0.12
5	4.02 (d, <i>J</i> = 9.5 Hz, 1 H)	3.81 (dd, <i>J</i> = 11.1, 5.5 Hz, 1 H)	-0.21
12'	4.14 (dd, <i>J</i> = 7.0, 13.0 Hz, 1 H)	3.69 (dd, J=4.5,12.3 Hz, 1H)	-0.45
	3.75 (dd, <i>J</i> = 4.7, 13.0 Hz, 1 H)	3.46 (dd, <i>J</i> = 5.0, 12.2 Hz, 1 H)	-0.29
12a	3.73 (s, 3 H)	3.60 (s, 3 H)	-0.13
7'	2.48 (dd, <i>J</i> = 19.2, 11.3 Hz, 1 H)	2.34 (dd, <i>J</i> = 23.5, 10.6 Hz, 1 H)	-0.14
	2.35 (dd, <i>J</i> = 19.2, 6.5 Hz, 1 H)	2.20 (m, 1 H)	-0.15
7	2.36 (dq, <i>J</i> = 10.3, 6.4 Hz, 1 H)	2.47 (m, 1 H)	0.11
6'	2.28 (dddq, <i>J</i> = 1.3, 6.5, 11.3,6.7	2.23 (m, 1 H)	-0.05
	Hz, 1 H)		
6	2.05 (ddq, <i>J</i> = 9.5, 10.3, 6.7 Hz, 1	1.85 (ddq, <i>J</i> =11.3, 9.0, 6.2 Hz, 1	-0.20
	H)	H)	
11,11'	1.96 (s, 3 H), 1.94 (s, 3 H)	2.02 (s, 3 H), 1.93 (s, 3 H)	
13	1.09 (d, J = 6.7 Hz, 3 H)	1.02 (d, J = 6.7 Hz, 3 H)	-0.07
13'	1.04 (d, J = 6.7 Hz, 3 H)	1.09 (d, <i>J</i> = 6.5 Hz, 3 H)	0.05

14	1.01 (d, <i>J</i> = 6.4 Hz, 3 H)	1.26 (d, <i>J</i> = 7.2 Hz, 3 H)	0.25
О(12')-Н	3.28 (m, 1 H)		

Table S14.Comparison of ¹³C NMR data

carbon	Reported	Synthetic	Chemical
No.	¹³ C NMR, DMSO- <i>d</i> 6	¹³ C NMR, 126 MHz,	shift, $\Delta \delta$
	¹ H [δ , multi., J (Hz)]	DMSO-d6	(ppm)
		1H [δ, multi., <i>J</i> (Hz)]	
9	186.8	187.1	0.3
9'	186.6	186.2	-0.4
8	177.8	180.9	3.1
8'	177.6	178.5	-0.1
12	171.3	170.2	-1.1
1'	159.6	158.6	-1.5
1	159.2	158.5	-0.7
4a	156.8	158.3	1.5
4a'	156.7	157.9	1.2
3'	150.2	149.8	-0.4
3	149.6	148.8	-0.8
2'	118.1	116.4	-1.7
2	116.7	115.0	-1.7
4'	109.3	109.5	0.2
4	109.2	108.9	-0.3
9a'	106.3	104.4	-1.9
9a	105.7	104.0	-1.7
8a'	102.1	101.2	-0.9
8a	101.3	101.0	-0.3
10a	85.1	84.5	-0.6
10a'	84.1	84.4	0.3
5	68.8	68.8	0.0
5'	68.7	74.5	5.8
12'	68.7	64.6	-4.1
12a	54.3	52.8	-1.5

7	36.7	37.4	0.7
7'	33.6	33.7	0.1
6	31.3	31.3	0.0
6'	28.5	29.1	0.6
11	20.7	20.6	-0.1
11'	20.6	20.3	-0.3
13'	17.7	17.9	0.2
14	17.3	16.3	-1.0
13	15.6	15.5	-0.1

8. Experimental CD spectra of 53

Figure S2. Experimental CD (Dioxane) spectra of 53

Figure S3. Experimental ECD (MeOH) spectra of phomalevones A-C⁴

9. Single Crystal X-Ray Diffraction Data

Figure S4. ORTEP drawing of compound 23 at 50% probability

Method for crystal growth

Compound **23** (5 mg) was dissolved in $CH_2Cl_2/MeOH$ (0.2 ml/0.05 ml). With slow evaporation of the solvent, crystal suitable for X-ray diffraction was obtained.

Crystal data and structure refinement for compound 23 Identification code CCDC 2026687 **Empirical** formula C24 H34 O7 Si Formula weight 462.60 Temperature 293(2) K 0.71073 Å Wavelength Monoclinic Crystal system Space group P 21 Unit cell dimensions a = 6.3380(3) Å $=90^{\circ}$. b = 27.3588(13) Å $= 110.458(2)^{\circ}$. $=90^{\circ}$. c = 7.5392(4) Å1224.84(11) Å³ Volume Ζ 2 1.254 Mg/m^3 Density (calculated) 0.136 mm⁻¹ Absorption coefficient F(000) 496 0.170 x 0.120 x 0.080 mm³ Crystal size 2.978 to 27.474 °. Theta range for data collection Index ranges -8<=h<=8, -35<=k<=35, -9<=l<=9 Reflections collected 22029 Independent reflections 5595 [R(int) = 0.0486]Completeness to theta = 25.242° 99.6 %

Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7456 and 0.6012
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	5595 / 7 / 315
Goodness-of-fit on F ²	1.020
Final R indices [I>2sigma(I)]	R1 = 0.0374, $wR2 = 0.0862$
R indices (all data)	R1 = 0.0453, wR2 = 0.0915
Absolute structure parameter	-0.13(6)
Extinction coefficient	n/a
Largest diff. peak and hole	0.163 and -0.171 e.Å ⁻³

Figure S5. ORTEP drawing of compound 24 at 50% probability

Method for crystal growth

Compound 24 (5 mg) was dissolved in $CH_2Cl_2/MeOH$ (0.2 ml/0.05 ml). With slow evaporation of the solvent, crystal suitable for X-ray diffraction was obtained.

Crystal data and structure refinement for compound 24

CCDC 2026689
C19 H22 O7
362.36
173(2) K
1.54178 A
Orthorhombic, $P2(1)2(1)2(1)$
a = 5.33940(10) A alpha = 90 deg.
b = 10.5708(2) A beta = 90 deg.
c = 29.8220(6) A gamma = 90 deg.

Volume
Z, Calculated density
Absorption coefficient
F(000)
Crystal size
Theta range for data collection
Limiting indices
Reflections collected / unique
Completeness to theta = 67.679
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^2
Final R indices [I>2sigma(I)]
R indices (all data)
Absolute structure parameter
Extinction coefficient
Largest diff. peak and hole

1683.21(6) A^3 4, 1.430 Mg/m^3 0.915 mm^-1 768 0.200 x 0.180 x 0.150 mm 2.963 to 68.347 deg. -6<=h<=6, -12<=k<=11, -35<=l<=35 20234 / 3092 [R(int) = 0.0576]100.0 % Full-matrix least-squares on F^2 3092 / 0 / 209 1.017 R1 = 0.0467, wR2 = 0.1109R1 = 0.0528, wR2 = 0.11660.09(12) n/a 0.389 and -0.411 e.A^-3

Figure S6. ORTEP drawing of compound 45 at 50% probability

Method for crystal growth

Compound **45** (5 mg) was dissolved in $CH_2Cl_2/MeOH$ (0.2 ml : 0.05 ml). With slow evaporation of the solvent, crystal suitable for X-ray diffraction was obtained.

Crystal data and structure refinement for 45.

Identification code	CCDC 2068312
Empirical formula	C18 H20 O8
Formula weight	364.34
Temperature	293(2) K

Wavelength	1.54178 Å	
Crystal system	Monoclinic	
Space group	P 21/c	
Unit cell dimensions	a = 8.2810(4) Å	= 90°.
	b = 26.6332(13) Å	$= 104.3000(10)^{\circ}.$
	c = 8.0706(4) Å	= 90°.
Volume	1724.82(15) Å ³	
Z	4	
Density (calculated)	1.403 Mg/m ³	
Absorption coefficient	0.942 mm ⁻¹	
F(000)	768	
Crystal size	0.200 x 0.150 x 0.110 mm ³	
Theta range for data collection	3.319 to 65.500 °.	
Index ranges	-9<=h<=9, -31<=k<=31, -9<=l<=9	
Reflections collected	22297	
Independent reflections	2904 [R(int) = 0.0530]	
Completeness to theta = 67.679°	97.9 %	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	0.7456 and 0.5945	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	2904 / 0 / 247	
Goodness-of-fit on F ²	1.127	
Final R indices [I>2sigma(I)]	R1 = 0.0839, wR2 = 0.2582	
R indices (all data)	R1 = 0.0864, wR2 = 0.2601	
Extinction coefficient	0.020(4)	
Largest diff. peak and hole	0.351 and -0.237 e.Å ⁻³	

10. References

- 1. E. Corey and H. Kigoshi, Tetrahedron Lett., 1991, 32, 5025-5028.
- 2. G. C. Adam, C. A. Parish, D. Wisniewski, J. Meng, M. Liu, K. Calati, B. D. Stein, J. Athanasopoulos, P. Liberator and T. Roemer, *J. Am. Chem. Soc.*, 2008, **130**, 16704-16710.
- 3. T. Rezanka and K. Sigler, J. Nat. Prod., 2007, 70, 1487-1491.
- 4. S. H. Shim, J. Baltrusaitis, J. B. Gloer and D. T. Wicklow, J. Nat. Prod., 2011, 74, 395-401.

11. ¹H and ¹³C NMR Spectral Data

¹³C NMR spectrum of compound S10

¹³C NMR spectrum of compound S11

¹³C NMR spectrum of compound S12

¹³C NMR spectrum of compound 19

¹³C NMR spectrum of compound 21

¹³C NMR spectrum of compound 22

¹³C NMR spectrum of compound 17

¹³C NMR spectrum of compound 24

¹³C NMR spectrum of compound 25

¹³C NMR spectrum of compound 26

¹³C NMR spectrum of compound 29

¹³C NMR spectrum of compound S22

¹³C NMR spectrum of compound 32 (major)

¹H NMR spectrum of compound 32 (minor)

¹³C NMR spectrum of compound 12

¹³C NMR spectrum of compound 1

¹H NMR spectrum of interconverting mixture of parnafungins

¹³C NMR spectrum of interconverting mixture of parnafungins

¹H NMR spectrum of interconverting mixture of parnafungins

¹³C NMR spectrum of interconverting mixture of parnafungins

¹³C NMR spectrum of compound 40

¹³C NMR spectrum of compound 41

¹³C NMR spectrum of compound 42

¹³C NMR spectrum of compound 45

HMBC spectrum of compound 36

¹³C NMR spectrum of compound S28

¹³C NMR spectrum of compound 48

¹³C NMR spectrum of compound 49

¹³C NMR spectrum of compound 50

¹³C NMR spectrum of compound 39

¹³C NMR spectrum of compound 52

¹³C NMR (CDCl₃) spectrum of compound 36

¹³C NMR(DMSO-*d6*) spectrum of compound 36