Supplementary Information

Pyrimidine-directed metal-free C-H borylation of 2-pyrimidylanilines: A

useful process for tetra-coordinated triarylborane synthesis

Supriya Rej, Amrita Das and Naoto Chatani*

Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka

560-0871, Japan

chatani@chem.eng.osaka-u.ac.jp

Table of Contents

1.	General information				
2.	Materials				
3.	Preparation and characterization of starting materials				
4.	Optimization study				
5.	General procedure A: metal-free directed C-H borylation to access boronic esters $\dots \dots 11$				
6.	General procedure B: metal-free directed C-H borylation to access triarylboranes $\ldots 13$				
7.	General procedure C: metal-free directed C-H borylation to access dimethyl substituted				
	arylborane				
8.	Spectral data of products				
9.	Gram-scale synthesis of metal-free directed C-H borylation				
10.	Effects of external additives				
11.	Derivatization of borylated product				
12.	Reaction profile for the borylation reaction				
13.	Competition reaction				
14.	NMR studies				
15. NMR spectra of starting materials					
16.	NMR spectra of products				
Re	References				

1. General information

All reactions were performed inside a nitrogen filled glove box. ¹H NMR (400 MHz), and ¹³C{¹H} NMR (100 MHz) spectra recorded on a JEOL ECS-400 spectrometer in CDCl₃ with tetramethylsilane. All ¹H NMR chemical shifts were recorded in ppm (δ) and referenced to the tetramethylsilane. All ¹³C{¹H} NMR chemical shifts were recorded in ppm (δ) relative to carbon resonances in CDCl₃ at δ 77.16. Data are reported as follows: chemical shifts in ppm (δ), multiplicity (s = singlet, brs = broad singlet, d = doublet, t = triplet, dd = doublet of doublet, q = quartet, m = multiplet and dm = doublet of multiplet), coupling constant (Hz), and integration. Infrared spectra (IR) were obtained using a JASCO FT/IR-4200 spectrometer; absorptions are reported in reciprocal centimetres. High resolution mass spectra (HRMS) were obtained using a JEOL JMS-700 spectrometer. Melting points were determined using a Stanford research systems apparatus. Flash column chromatography was performed using SiO₂ F60 (0.040–0.0663 nm, 230-400 mesh). Some compounds were purified by LC-908 HPLC (GPC).

2. Materials

BBr₃ (17% in dichloromethane, *ca.* 1mol/L; CAS No.- 10294-33-4) was purchased from Tokyo Chemical Industry Co., Ltd. Neat boron tribromide, 99.85% (CAS No.- 10294-33-4) was purchased from Fujifilm Wako Pure Chemical Industries, Ltd. All the chemicals were used as it is received without further purification. Procedure for preparation and characterization of synthesized starting materials are given below. Dry solvents (DCM, DCE and CHCl₃) were purchased from Kanto Chemicals Co. Inc. Solvents (CHCl₃, EtOAc, Hexane, and CDCl₃) were used without further purification.

3. Preparation and characterization of starting materials

Table S1. List of starting materials which have been used for substrate scope.

General Procedure for the synthesis of starting materials:

Starting materials were synthesized by following a literature mentioned report.^{1–4} A general synthetic procedure is dictated below.

To a dry three-necked round bottom flask, 2-chloropyrimidine (573 mg, 5.0 mmol, 1.0 equiv), aniline derivative (5.0 mmol, 1.0 equiv), 1,4-dioxane (5 mL), and acetic acid (5 mL) were added in that order. The reaction mixture was refluxed at 110 °C under a N₂ atmosphere for 24 h. The reaction mixture was allowed to cool to room temperature and extracted with EtOAc, which was then washed with a saturated aq. NaHCO₃ solution. The organic phase was collected and the solvent was removed under reduced pressure. The resulting crude product was purified by column chromatography (eluent: hexane/EtOAc = 5/1) to afford the desired 2-pyrimidylanilines:

Note: Compound **1a–10a**, **13a**, **15a–20a**, **22a–24a**, **27a**, and **28a** were previously reported in literature.^{1,3,5}

N-(2-(phenylthio)phenyl)pyrimidin-2-amine (11a)

Yield – 1006 mg, 72%. Yellow oil.

¹**H NMR** (400 MHz, CDCl₃) δ 8.63 (dd, *J* = 8.3, 1.4 Hz, 1H), 8.41 (d, *J* = 4.8 Hz, 2H), 8.24 (s, 1H), 7.60 (dd, *J* = 7.8, 1.6 Hz, 1H), 7.51 – 7.39 (m, 1H), 7.23 – 7.15 (m, 2H), 7.15 – 7.08 (m, 3H), 7.04 (td, *J* = 7.5, 1.4 Hz, 1H), 6.73 (t, *J* = 4.8 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 159.90, 158.03, 141.64, 137.07, 136.49, 130.86, 129.26, 127.36, 126.05, 122.75, 119.71, 119.59, 113.24.

IR (neat, v/cm⁻¹) 3352, 3055, 2994, 1768, 1576, 1513, 1477, 1434, 1396, 1305, 1246, 1060, 988, 795, 739, 689.

HRMS Calcd for C₁₆H₁₃N₃S: 279.0830, found 279.0830.

N-(2-phenoxyphenyl)pyrimidin-2-amine (12a)

Yield – 671 mg, 51%. White solid, **MP** – 79-81 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 8.61 (dd, *J* = 8.2, 1.5 Hz, 1H), 8.43 (d, *J* = 4.8 Hz, 2H), 7.74 (s, 1H), 7.37 – 7.27 (m, 2H), 7.20 – 7.13 (m, 1H), 7.12 – 7.06 (m, 1H), 7.06 – 6.99 (m, 2H), 6.98 – 6.88 (m, 2H), 6.72 (t, *J* = 4.8 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 160.03, 158.05, 157.05, 145.25, 131.64, 129.94, 124.18, 123.52, 122.22, 119.69, 118.51, 118.34, 112.88.

IR (neat, v/cm⁻¹) 3419, 3041, 1773, 1577, 1528, 1442, 1403, 1244, 1212, 1106, 989, 865, 795, 748, 690.

HRMS Calcd for C₁₆H₁₃N₃O: 263.1059, found 263.1057.

N-(pyren-1-yl)pyrimidin-2-amine (14a)

Yield – 945 mg, 64%. Yellow solid, **MP** – 212-214 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 8.51 (d, *J* = 8.3 Hz, 1H), 8.47 – 8.37 (m, 2H), 8.31 – 8.24 (m, 1H), 8.21 (d, *J* = 8.3 Hz, 1H), 8.17 (t, *J* = 6.7 Hz, 2H), 8.13 – 7.94 (m, 5H), 6.74 (t, *J* = 4.6 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 161.59, 158.50, 132.36, 131.59, 131.19, 128.79, 127.78, 127.53, 126.60, 126.22, 125.65, 125.42, 125.31, 125.10, 124.94, 124.26, 122.22, 121.19, 112.83.

IR (neat, v/cm⁻¹) 3237, 3045, 2993, 1769, 1579, 1520, 1445, 1412, 1244, 1049, 843, 798, 712, 682.

HRMS Calcd for $C_{20}H_{13}N_3$: 295.1109, found 295.1105.

N-(4-chlorophenyl)pyrimidin-2-amine (21a)

Yield – 631 mg, 61%. Yellow solid, **MP** – 175-177 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 8.42 (d, *J* = 4.8 Hz, 2H), 7.61 – 7.54 (m, 2H), 7.52 (s, 1H), 7.32 – 7.27 (m, 2H), 6.74 (t, *J* = 4.8 Hz, 1H). ¹³**C NMR** (101 MHz, CDCl₃) δ 160.10, 158.15, 138.15, 129.03, 127.63, 120.82, 112.97. **IR** (neat, v/cm⁻¹) 3257, 3099, 1574, 1538, 1490, 1452, 1420, 1283, 1249, 1173, 1087, 1012, 913, 809, 788, 744, 695, 658.

HRMS Calcd for C₁₀H₈ClN₃: 205.0407, found 205.0404.

N-(4-bromophenyl)pyrimidin-2-amine (25a)

Yield – 992 mg, 79%. Yellow solid, MP – 172-174 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 8.42 (d, *J* = 4.8 Hz, 2H), 7.62 – 7.37 (m, 5H), 6.75 (t, *J* = 4.8 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 160.04, 158.15, 138.67, 131.96, 121.13, 115.09, 113.02.

IR (neat, v/cm⁻¹) 3256, 3096, 1610, 1572, 1535, 1489, 1452, 1421, 1285, 1245, 1174, 1072, 1007, 913, 811, 793, 744, 705.

HRMS Calcd for C₁₀H₈BrN₃: 248.9902, found 248.9901.

N-(2-iodophenyl)pyrimidin-2-amine (26a)

Yield – 564 mg, 38%. Off-white solid, **MP** – 148-150 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 8.43 (d, *J* = 4.8 Hz, 2H), 7.83 (brs, 1H), 7.62 (d, *J* = 8.6 Hz, 2H), 7.43 (d, *J* = 8.6 Hz, 2H), 6.75 (td, *J* = 4.8, 2.0 Hz, 1H). ¹³**C NMR** (101 MHz, CDCl₃) δ 160.00, 158.13, 139.38, 137.88, 121.55, 113.01, 85.35. **IR** (neat, v/cm⁻¹) 3254, 3172, 3092, 2987, 1741, 1613, 1580, 1530, 1452, 1419, 1373, 1245, 1048, 792, 700.

HRMS Calcd for C10H8IN3: 296.9763, found 296.9762.

5-methyl-N-(o-tolyl)pyrimidin-2-amine (29a)

Yield – 578 mg, 58%. White solid, **MP** – 110-112 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 8.22 (s, 2H), 7.93 (d, *J* = 8.0 Hz, 1H), 7.28 – 7.15 (m, 2H), 7.02 (td, *J* = 7.5, 1.0 Hz, 2H), 2.30 (s, 3H), 2.16 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 159.20, 158.11, 137.71, 130.60, 128.95, 126.70, 123.67, 121.84, 120.87, 18.20, 14.87.

IR (neat, v/cm⁻¹) 3433, 3241, 3000, 1757, 1591, 1518, 1453, 1427, 1247, 1112, 1046, 990, 919, 792, 747, 711, 664.

HRMS Calcd for C12H13N3: 199.1109, found 199.1110.

4-methyl-N-(o-tolyl)pyrimidin-2-amine (30a)

Yield – 558 mg, 56%. White solid, **MP** – 78-80 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 8.25 (d, *J* = 5.0 Hz, 1H), 8.03 (d, *J* = 8.2 Hz, 1H), 7.27 – 7.18 (m, 2H), 7.02 (td, *J* = 7.5, 1.2 Hz, 1H), 6.83 (s, 1H), 6.58 (d, *J* = 5.0 Hz, 1H), 2.40 (s, 3H), 2.32 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 168.32, 160.53, 157.73, 137.63, 130.61, 128.70, 126.73, 123.66, 121.81, 112.17, 24.30, 18.29.

IR (neat, v/cm⁻¹) 3440, 3238, 2995, 1769, 1566, 1526, 1446, 1409, 1247, 1050, 796, 747, 715, 667.

HRMS Calcd for C₁₂H₁₃N₃: 199.1109, found 199.1107.

5-chloro-N-(o-tolyl)pyrimidin-2-amine (31a)

Yield – 593 mg, 54%. White solid, **MP** – 70-72 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 8.29 (s, 2H), 7.78 (d, *J* = 8.0 Hz, 1H), 7.29 – 7.19 (m, 3H), 7.08 (t, *J* = 7.4 Hz, 1H), 2.28 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 159.00, 156.41, 136.86, 130.76, 130.09, 126.76, 124.78, 122.84, 120.55, 18.15.

IR (neat, v/cm⁻¹) 3246, 2993, 1740, 1577, 1517, 1458, 1419, 1373, 1235, 1136, 1050, 935, 787, 751, 727.

HRMS Calcd for C₁₁H₁₀ClN₃: 219.0563, found 219.0565.

5-bromo-*N*-(*o*-tolyl)pyrimidin-2-amine (32a)

Yield – 647 mg, 49%. White solid, **MP** – 101-103 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 8.38 (s, 2H), 7.79 (d, *J* = 8.0 Hz, 1H), 7.40 – 7.20 (m, 3H), 7.10 (t, *J* = 7.5 Hz, 1H), 2.31 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 159.14, 158.44, 136.77, 130.74, 126.74, 124.85, 122.97, 108.10, 18.14.

IR (neat, v/cm⁻¹) 3424, 3246, 2994, 1769, 1571, 1514, 1457, 1416, 1245, 1112, 1051, 934,

786, 749, 720.

HRMS Calcd for C₁₁H₁₀BrN₃: 263.0058, found 263.0053.

4. Optimization study

To a dry sample vial in a glovebox, 2-pyrimidylaniline derivative (0.1 mmol, 1 equiv), base (no base; 0.12 mmol, 1.2 equiv; 0.2 mmol, 2 equiv; or 0.3 mmol, 3 equiv), and DCE (0.5 mL) were added. BBr₃ (0.1 mmol, 1 equiv; 0.2 mmol, 2 equiv; or 0.3 mmol, 3 equiv; in the form of a 1 mol/L solution in DCM) was then added dropwise into the reaction mixture with stirring, and the reaction mixture was continuously stirred for 4 h at room temperature. The reaction was quenched with pinacol (0.1 mmol, 1 equiv; 0.2 mmol, 2 equiv; or 0.3 mmol, 3 equiv) and triethylamine (1.0 mmol, 10 equiv; 2.0 mmol, 10 equiv; or 3.0 mmol, 10 equiv), and stirred for another 2 h at room temperature. The volatiles were then removed under reduced pressure and the crude mixture was dissolved in a mixture of CDCl₃ (1 mL) and H₂O (1 mL). Mesitylene (7.0 μ L, 0.05 mmol, 0.5 equiv) was then added to the mixture as an internal standard and an ¹H NMR spectrum was obtained for the contents of the CDCl₃ layer. The yield of the desired product was determined by ¹H NMR analysis and the data are given below.

	H N N DCE (0.5 n	BBr ₃ (XX equiv), Base (YY equiv) EE (0.5 mL), rt, 4 h			
	ii) pinacol (DCE (0.5 n	2 equiv), NEt ₃ (1 nL), rt, 2 h	0 equiv)	Bpin 1b	
Entry	Base (YY equiv)	BBr3 (XX equiv)	Solvent	Yield of 1b (%)	
1^{a}	-	1 equiv	DCE	21	
2	-	2 equiv	DCE	50	
3	B1 (2 equiv)	2 equiv	DCE	71	
4	B2 (2 equiv)	2 equiv	DCE	66	
5	pyridine (2 equiv)	2 equiv	DCE	5	
6	NEtiPr ₂ (2 equiv)	2 equiv	DCE	65	
7	B3 (2 equiv)	2 equiv	DCE	3	
8	B4 (2 equiv)	2 equiv	DCE	17	
9	NEt ₃ (2 equiv)	2 equiv	DCE	61	
10	B5 (2 equiv)	2 equiv	DCE	84	
11 ^b	B5 (3 equiv)	3 equiv	DCE	93	
12 ^b	B5 (1.2 equiv)	3 equiv	DCE	92 (77)	
13 ^b	B5 (1.2 equiv)	3 equiv	CHCl ₃	90 (76)	

Table S2. Optimization of metal-free borylation of 2-pyrimidylaniline 1a

Reaction condition: 2-pyrimidylaniline (0.1 mmol, 1 equiv), BBr₃ and base in DCE (0.5 mL) at rt for 4 h, then pinacol (0.2 mmol) and NEt₃ (1.0 mmol) in DCE (0.5 mL) for 2 h at rt. Yields of the product were determined by ¹H NMR of the crude mixture using 1,1,2,2-tetrachloroethane as an internal standard. Isolated yields are given in parentheses. ^a 1 equiv of pinacol was used in final step. ^b 3 equiv of pinacol was used in final step.

5. General procedure A: metal-free directed C-H borylation to access boronic esters

To a dry sample vial in a glovebox, the 2-pyrimidylaniline derivative (0.3 mmol, 1 equiv), tetramethylpyrazine (49 mg, 0.36 mmol, 1.2 equiv), and DCE (0.5 mL) were added. BBr3 (0.9 mmol, 3 equiv; in the form of a 1 mol/L solution in DCM) was then added dropwise into the reaction mixture while stirring, and the reaction mixture was stirred for an additional 4 h at room temperature. The reaction was quenched with pinacol (106 mg, 0.9 mmol, 3 equiv) and triethylamine (0.42 mL, 3.0 mmol, 10 equiv), and stirred for another 2 h at room temperature. After the reaction reached completion, the volatiles were removed under reduced pressure and the crude mixture was dissolved in EtOAc (5 mL) and H₂O (5 mL). The aqueous layer was washed with EtOAc (3 x 10 mL) and the organic layers were collected, dried over MgSO4 and filtered. The solvent was removed under reduced pressure and the product was isolated by column chromatography (eluent: hexane/CHCl₃ = 10/1 to 2/1)

Table S3. Substrate scope for metal-free borylation of 2-pyrimidylanilines

Substrate scope. Reaction conditions: 2-pyrimidylaniline derivative (0.3 mmol, 1 equiv), BBr₃ (0.9 mmol, 3 equiv) and tetramethylpyrazine (0.36 mmol, 1.2 equiv) in DCE (1.0 mL) at rt for 4 h, then pinacol (0.9 mmol, 3 equiv) and NEt₃ (3.0 mmol, 10 equiv) in DCE (1.0 mL) for 2 h at rt. Isolated yields of the product are given. ^a Reaction was performed on a 5 mmol scale.

6. General procedure B: metal-free directed C-H borylation to access triarylboranes

To a dry sample vial in a glovebox, 2-pyrimidylaniline derivatives (0.15 mmol, 1 equiv), tetramethylpyrazine (25 mg, 0.18 mmol, 1.2 equiv), and CHCl₃ (0.5 mL) were added. BBr₃ (42.7 μ L, 0.45 mmol, 3 equiv) was then added dropwise into the reaction mixture with stirring, and the reaction stirred for an additional 4 h at room temperature. The volatiles were removed by evaporation under reduced pressure and 1 mL of toluene was added. ZnAr'₂ (0.45 mmol, 3 equiv) was then added into the mixture which was then heated at 70°C for 12 h. After the reaction reached completion, the volatiles were removed under reduced pressure and the crude mixture was partitioned between EtOAc (5 mL) and H₂O (5 mL). The aqueous layer was washed with EtOAc (3 x 10 mL) and the organic layers were collected, dried over MgSO₄ and filtered. The solvent was removed under reduced pressure and the product was isolated by column chromatography (eluent: hexane/EtOAc = 20/1 to 2/1).

Table S4. Synthesis of tetra-coordinated triarylborane via a metal-free C-H borylation

Reaction conditions: 2-pyrimidylaniline derivative (0.15 mmol, 1 equiv), BBr₃ (0.45 mmol, 3 equiv), and tetramethylpyrazine (0.18 mmol, 1.2 equiv) in CHCl₃ (1.0 mL) at rt for 4 h, evaporated under reduced pressure, then toluene (1.5 mL) and ZnAr'₂ (0.45 mmol, 3 equiv) was added and heated at 70°C for 12 h.

7. General procedure C: metal-free directed C-H borylation to access dimethyl substituted arylborane

To a dry sample vial in a glovebox, 2-pyrimidylaniline **1a** (25.7 mg, 0.15 mmol, 1 equiv) and 2,6-lutidine (52 μ L, 0.45 mmol, 3 equiv), and DCE (0.5 mL) were added. BBr₃ (0.45 mmol, 3 equiv; in the form of a 1 mol/L solution in DCM) was then added dropwise into the reaction mixture with stirring, and the reaction stirred for 4 h at room temperature.

AlMe₃ (0.9 mmol, 6 equiv; in the form of 1.8 mol/L solution in toluene) was then added dropwise into the reaction mixture which was then stirred at room temperature for another 12 h. After the reaction reached completion, the volatiles were removed under reduced pressure and the crude mixture was partitioned between EtOAc (5 mL) and H₂O (5 mL). The aqueous layer was washed with EtOAc (3 x 10 mL) and the organic layers were collected, dried over MgSO₄ and filtered. The solvent was removed under reduced pressure and the product was isolated by column chromatography (eluent: hexane/EtOAc = 20/1 to 2/1).

8. Spectral data of products

N-(2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)pyrimidin-2-amine (1b)

This compound was synthesized by following general procedure A. The reaction was performed on a 0.3 mmol scale.

Yield – 69 mg, 77%. Pale-yellow solid, MP - 205-207 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 9.05 (brs, 1H), 8.65 (d, *J* = 5.1 Hz, 2H), 7.72 (d, *J* = 7.1 Hz, 1H), 7.22 – 7.02 (m, 3H), 6.88 (t, *J* = 5.1 Hz, 1H), 1.32 (s, 12H).

¹³C NMR (101 MHz, CDCl₃) δ 155.44, 140.21, 132.24, 128.25, 123.67, 115.75, 111.59, 81.26, 26.45.

IR (neat, v/cm⁻¹) 3055, 2976, 1770, 1626, 1565, 1538, 1461, 1366, 1245, 1150, 1041, 989, 913, 758, 730.

HRMS Calcd for C₁₆H₂₀BN₃O₂: 297.1649, found 297.1645.

N-(2-methyl-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)pyrimidin-2amine (2b)

This compound was synthesized by following general procedure A. The reaction was performed on a 0.3 mmol scale.

Yield - 67 mg, 72%. Pale-yellow solid, MP - 211-213 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 8.86 (brs, 1H), 8.58 (brs, 1H), 8.38 (brs, 1H), 7.58 (d, *J* = 7.0 Hz, 1H), 7.09 (t, *J* = 7.4 Hz, 1H), 7.03 (d, *J* = 7.4 Hz, 1H), 6.98 – 6.91 (m, 1H), 2.25 (s, 3H), 1.27 (s, 12H).

¹³C NMR (101 MHz, CDCl₃) δ 160.90, 154.54, 148.81, 137.26, 129.23, 129.07, 124.23, 122.46, 111.69, 80.54, 26.58, 17.20.

¹¹**B** NMR (128 MHz, CDCl₃) δ 6.05.

IR (neat, v/cm⁻¹) 2984, 1738, 1624, 1538, 1373, 1237, 1045, 916, 732.

HRMS Calcd for C₁₇H₂₂BN₃O₂: 311.1805, found 311.1800.

N-(5-methyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)pyrimidin-2amine (3b)

This compound was synthesized by following general procedure A. The reaction was performed on a 0.3 mmol scale.

Note: >5% of pinacol present as an impurity, which could not be removed by column chromatography.

Yield – 38 mg, 41%. Yellow solid, **MP** – 197-199 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 8.63 (d, *J* = 5.1 Hz, 2H), 8.59 (s, 1H), 7.62 (d, *J* = 7.5 Hz, 1H), 7.21 (s, 1H), 6.94 (dd, *J* = 7.5, 0.7 Hz, 1H), 6.86 (t, *J* = 5.1 Hz, 1H), 2.33 (s, 3H), 1.31 (s, 12H).

¹³C NMR (101 MHz, CDCl₃) δ 156.46, 155.94, 141.27, 139.11, 133.09, 124.43, 116.68, 111.84, 81.70, 26.20, 21.71.

IR (neat, v/cm⁻¹) 2971, 2925, 1628, 1568, 1540, 1490, 1457, 1365, 1215, 1154, 1133, 1114, 1016, 989, 813, 753, 674.

HRMS Calcd for C₁₇H₂₂BN₃O₂: 311.1805, found 311.1809.

N-(4-methyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)pyrimidin-2amine (4b)

This compound was synthesized by following general procedure A. The reaction was performed on a 0.3 mmol scale.

Yield – 59 mg, 63%. Yellow solid, MP – 189-191 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 8.64 (d, *J* = 5.1 Hz, 2H), 8.42 (s, 1H), 7.53 (d, *J* = 1.6 Hz, 1H), 7.25 – 7.19 (m, 1H), 7.09 (dd, *J* = 8.1, 1.6 Hz, 1H), 6.87 (t, *J* = 5.1 Hz, 1H), 2.34 (s, 3H), 1.31 (s, 12H).

¹³**C NMR** (101 MHz, CDCl₃) δ 156.20, 155.83, 138.50, 133.26, 132.86, 129.54, 116.00, 111.71, 81.58, 26.32, 21.18.

IR (neat, v/cm⁻¹) 2965, 1622, 1565, 1538, 1482, 1453, 1364, 1221, 1180, 1147, 1116, 1034, 987, 911, 816, 772, 747.

HRMS Calcd for C17H22BN3O2: 311.1805, found 311.1802.

N-(2-ethyl-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)pyrimidin-2-amine (5b)

Yield -70 mg, 72%. Pale-yellow solid, MP -169-171 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 8.87 (brs, 1H), 8.59 (brs, 1H), 8.25 (brs, 1H), 7.59 (d, *J* = 7.0 Hz, 1H), 7.15 (t, *J* = 7.4 Hz, 1H), 7.09 (d, *J* = 7.4 Hz, 1H), 6.96 (t, *J* = 5.2 Hz, 1H), 2.65 (q, *J* = 7.5 Hz, 2H), 1.33 – 1.21 (m, 15H).

¹³C NMR (101 MHz, CDCl₃) δ 160.99, 154.63, 148.85, 136.61, 129.29, 127.93, 126.86, 124.42, 111.78, 80.53, 26.66, 23.54, 13.79.

IR (neat, v/cm⁻¹) 3056, 2968, 1623, 1565, 1537, 1430, 1244, 1156, 1080, 1043, 984, 890, 786, 758, 731.

HRMS Calcd for C₁₈H₂₄BN₃O₂: 325.1962, found 325.1965.

N-(2-benzyl-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)pyrimidin-2amine (6b)

This compound was synthesized by following general procedure A. The reaction was performed on a 0.3 mmol scale.

Yield – 73 mg, 63%. Pale-yellow solid, MP – 176-178 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 8.84 (brs, 1H), 8.53 (brs, 1H), 8.17 (s, 1H), 7.66 (dd, *J* = 7.4, 1.1 Hz, 1H), 7.35 – 7.27 (m, 2H), 7.25 – 7.18 (m, 3H), 7.16 (t, *J* = 7.4 Hz, 1H), 7.02 (dd, *J* = 7.4, 1.4 Hz, 1H), 6.93 (t, *J* = 5.2 Hz, 1H), 4.02 (s, 2H), 1.26 (s, 12H).

¹³C NMR (101 MHz, CDCl₃) δ 161.09, 154.47, 148.87, 138.84, 137.20, 130.26, 129.30, 129.01, 128.95, 126.77, 125.10, 124.40, 111.88, 80.59, 37.73, 26.75.

IR (neat, v/cm⁻¹) 3057, 2978, 1738, 1622, 1536, 1462, 1429, 1369, 1243, 1155, 1064, 999, 969, 894, 783, 733.

HRMS Calcd for C₂₃H₂₆BN₃O₂: 387.2118, found 387.2117.

N-(3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-[1,1'-biphenyl]-2-yl)pyrimidin-2amine (7b)

This compound was synthesized by following general procedure A. The reaction was performed on a 0.3 mmol scale.

Yield - 83 mg, 74%. White solid, **MP** - 200-202 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 8.91 (brs, 1H), 8.56 (brs, 1H), 8.18 (s, 1H), 7.76 (dd, *J* = 7.2, 1.5 Hz, 1H), 7.55 – 7.38 (m, 5H), 7.28 – 7.18 (m, 2H), 6.98 (t, *J* = 5.2 Hz, 1H), 1.29 (s, 12H).

¹³C NMR (101 MHz, CDCl₃) δ 161.24, 154.50, 149.03, 138.25, 135.54, 131.13, 129.58, 129.44, 128.93, 128.45, 128.00, 124.40, 111.95, 80.64, 26.85.

IR (neat, v/cm⁻¹) 3403, 2978, 1736, 1619, 1566, 1524, 1459, 1243, 1155, 1097, 1040, 1012, 789, 761, 731.

HRMS Calcd for C₂₂H₂₄BN₃O₂: 373.1962, found 373.1963.

N-(2,3-dimethyl-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)pyrimidin-2amine (8b)

Yield – 78 mg, 80%. Yellow solid, MP – 184-186 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 8.86 (brs, 1H), 8.61 (brs, 1H), 8.19 (s, 1H), 7.47 (d, *J* = 7.4 Hz, 1H), 7.02 (d, *J* = 7.4 Hz, 1H), 6.96 (t, *J* = 5.2 Hz, 1H), 2.30 (s, 3H), 2.22 (s, 3H), 1.25 (s, 12H).

¹³C NMR (101 MHz, CDCl₃) δ 160.83, 154.76, 148.79, 137.38, 135.54, 128.51, 126.29, 120.92, 111.64, 80.50, 26.60, 20.64, 12.70.

IR (neat, v/cm⁻¹) 2983, 1738, 1623, 1541, 1450, 1373, 1239, 1157, 1045, 917, 848, 790, 732.

HRMS Calcd for C₁₈H₂₄BN₃O₂: 325.1962, found 325.1964.

N-(2,4-dimethyl-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)pyrimidin-2amine (9b)

This compound was synthesized by following general procedure A. The reaction was performed on a 0.3 mmol scale.

Yield – 69 mg, 71%. Yellow solid, MP – 202-204 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 8.85 (brs, 1H), 8.60 (brs, 1H), 7.99 (s, 1H), 7.37 (s, 1H), 6.95 (td, *J* = 5.2, 0.6 Hz, 1H), 6.90 (d, *J* = 0.6 Hz, 1H), 2.32 (s, 3H), 2.30 (s, 3H), 1.26 (s, 12H).

¹³C NMR (101 MHz, CDCl₃) δ 160.88, 154.61, 149.04, 134.97, 133.60, 130.00, 129.79, 122.00, 111.62, 80.52, 26.69, 21.23, 17.13.

IR (neat, v/cm⁻¹) 3206, 2979, 1769, 1624, 1566, 1539, 1461, 1363, 1244, 1183, 1150, 1089, 988, 899, 819, 784, 732.

HRMS Calcd for C₁₈H₂₄BN₃O₂: 325.1962, found 325.1959.

N-(2-(methylthio)-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)pyrimidin-2-amine (10b)

This compound was synthesized by following general procedure A. The reaction was performed on a 0.3 mmol scale.

Yield - 63 mg, 61%. Pale-yellow solid, **MP** - 116-118 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 9.21 (s, 1H), 8.90 (brs, 1H), 8.67 (brs, 1H), 7.69 (dd, *J* = 7.3, 1.4 Hz, 1H), 7.48 (dd, *J* = 7.5, 1.4 Hz, 1H), 7.16 (t, *J* = 7.5 Hz, 1H), 7.06 – 6.99 (m, 1H), 2.41 (s, 3H), 1.27 (s, 12H).

¹³C NMR (101 MHz, CDCl₃) δ 161.52, 154.57, 149.01, 139.47, 133.18, 131.95, 124.90, 121.31, 112.20, 80.67, 26.81, 20.06.

IR (neat, v/cm⁻¹) 3349, 2986, 2359, 1740, 1614, 1522, 1450, 1376, 1244, 1156, 1048, 915, 788, 735.

HRMS Calcd for C₁₇H₂₂BN₃O₂S: 343.1526, found 343.1521.

N-(2-(phenylthio)-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)pyrimidin-2-amine (11b)

Yield – 66 mg, 54%. Off-white solid, MP – 144-146 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 9.09 (s, 1H), 8.89 (brs, 1H), 8.61 (brs, 1H), 7.84 (dd, *J* = 7.5, 1.4 Hz, 1H), 7.55 (dd, *J* = 7.5, 1.4 Hz, 1H), 7.26 – 7.15 (m, 3H), 7.14 – 7.07 (m, 3H), 7.01 (t, *J* = 5.2 Hz, 1H), 1.28 (s, 12H).

¹³C NMR (101 MHz, CDCl₃) δ 161.62, 154.36, 149.02, 140.57, 136.58, 136.03, 133.82, 129.26, 127.33, 126.06, 125.12, 116.52, 112.36, 80.77, 26.92.

IR (neat, v/cm⁻¹) 3357, 2979, 1770, 1614, 1578, 1520, 1450, 1384, 1245, 1141, 1050, 1019, 788, 740, 692.

HRMS Calcd for C22H24BN3O2S: 405.1682, found 405.1678.

N-(2-phenoxy-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)pyrimidin-2amine (12b)

This compound was synthesized by following general procedure A. The reaction was performed on a 0.3 mmol scale.

Yield – 86 mg, 74%. White solid, MP – 120-122 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 8.78 (brs, 2H), 8.62 (s, 1H), 7.46 (dd, *J* = 7.4, 1.2 Hz, 1H), 7.34 (t, *J* = 7.9 Hz, 2H), 7.19 – 7.03 (m, 4H), 7.00 (t, *J* = 5.2 Hz, 1H), 6.77 (dd, *J* = 8.0, 1.2 Hz, 1H), 1.29 (s, 12H).

¹³C NMR (101 MHz, CDCl₃) δ 156.39, 154.51, 143.86, 129.98, 129.81, 125.96, 124.59, 123.94, 119.17, 115.56, 111.99, 80.68, 26.84.

IR (neat, v/cm⁻¹) 3419, 3066, 2980, 1770, 1621, 1564, 1532, 1490, 1460, 1246, 1155, 1080, 972, 931, 904, 784, 748, 694.

HRMS Calcd for C₂₂H₂₄BN₃O₃: 389.1911, found 389.1910.

N-(2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)naphthalen-1-yl)pyrimidin-2amine (13b)

This compound was synthesized by following general procedure A. The reaction was performed on a 0.3 mmol scale.

Note: 8% of pinacol present as an impurity, which could not be removed by column chromatography.

Yield – 73 mg, 70%. Yellow solid, MP – 210-212 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 9.01 (s, 1H), 8.86 (brs, 2H), 7.89 (d, *J* = 8.4 Hz, 1H), 7.86 – 7.78 (m, 2H), 7.64 (d, *J* = 8.2 Hz, 1H), 7.53 – 7.39 (m, 2H), 7.04 (t, *J* = 5.2 Hz, 1H), 1.32 (s, 12H).

¹³C NMR (101 MHz, CDCl₃) δ 154.52, 133.53, 128.94, 125.84, 125.29, 124.27, 122.43, 118.68, 112.22, 80.72, 26.80.

IR (neat, v/cm⁻¹) 3051, 2978, 1769, 1633, 1615, 1573, 1533, 1452, 1359, 1242, 1154, 1095, 1049, 988, 809, 741.

HRMS Calcd for C₂₀H₂₂BN₃O₂: 347.1805, found 347.1804.

N-(2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyren-1-yl)pyrimidin-2-amine (14b)

Yield – 92 mg, 73%. Orange solid, **MP** – 258-260 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 10.75 (s, 1H), 8.91 (brs, 1H), 8.58 (brs, 1H), 8.28 (s, 1H), 7.89 (d, *J* = 9.2 Hz, 1H), 7.83 (d, *J* = 6.9 Hz, 1H), 7.77 – 7.67 (m, 2H), 7.66 – 7.56 (m, 2H), 7.36 (d, *J* = 8.8 Hz, 1H), 6.92 (t, *J* = 5.1 Hz, 1H), 1.52 (d, *J* = 15.0 Hz, 12H).

¹³C NMR (101 MHz, CDCl₃) δ 154.71, 132.50, 130.93, 130.36, 128.29, 127.85, 127.51, 126.27, 125.09, 124.75, 124.33, 124.11, 123.82, 119.24, 117.37, 111.33, 81.12, 26.55.

IR (neat, v/cm⁻¹) 3038, 2978, 1619, 1561, 1530, 1452, 1429, 1358, 1246, 1194, 1135, 1089, 1055, 1001, 970, 823, 729.

HRMS Calcd for C₂₆H₂₄BN₃O₂: 421.1962, found 421.1967.

This compound was synthesized by following general procedure A. The reaction was performed on a 0.3 mmol scale.

Yield – 67 mg, 71%. White solid, **MP** – 183-185 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 8.94 – 8.69 (m, 3H), 7.48 (d, *J* = 7.2 Hz, 1H), 7.12 (td, *J* = 7.8, 5.0 Hz, 1H), 7.08 – 6.95 (m, 2H), 1.27 (s, 12H).

¹³C NMR (101 MHz, CDCl₃) δ 154.58, 150.69 (d, J = 245.3 Hz), 126.79 (d, J = 8.6 Hz), 126.60 (d, J = 3.3 Hz), 124.77 (d, J = 5.9 Hz), 113.25 (d, J = 17.6 Hz), 112.35, 80.78, 26.68. ¹⁹F NMR (376 MHz, CDCl₃) δ -136.27.

IR (neat, v/cm⁻¹) 2976, 1630, 1568, 1534, 1445, 1363, 1251, 1154, 1082, 970, 901, 845, 777.

HRMS Calcd for C₁₆H₁₉BFN₃O₂: 315.1554, found 315.1551.

N-(3-fluoro-2-methyl-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-

yl)phenyl)pyrimidin-2-amine (16b)

This compound was synthesized by following general procedure A. The reaction was performed on a 0.3 mmol scale.

Yield – 74 mg, 75%. White solid, **MP** – 204-206 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 9.01 – 8.45 (m, 3H), 7.50 (t, *J* = 7.4 Hz, 1H), 6.97 (t, *J* = 5.2 Hz, 1H), 6.88 (dd, *J* = 8.4, 1.2 Hz, 1H), 2.10 (d, *J* = 1.5 Hz, 3H), 1.28 (s, 12H).

¹³**C NMR** (101 MHz, CDCl₃) δ 160.56 (d, *J* = 240.9 Hz), 154.74, 138.41 (d, *J* = 6.5 Hz), 129.60 (d, *J* = 9.3 Hz), 111.95, 111.07 (d, *J* = 21.9 Hz), 110.37 (d, *J* = 19.3 Hz), 80.69, 26.51, 8.43 (d, *J* = 5.9 Hz).

¹⁹**F NMR** (376 MHz, CDCl₃) δ -119.26.

IR (neat, v/cm⁻¹) 3205, 2978, 1738, 1628, 1600, 1566, 1544, 1474, 1362, 1249, 1149, 1075, 972, 795, 762, 730.

HRMS Calcd for C₁₇H₂₁BFN₃O₂: 329.1711, found 329.1713.

N-(4-fluoro-2-methyl-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-

yl)phenyl)pyrimidin-2-amine (17b)

This compound was synthesized by following general procedure A. The reaction was performed on a 0.3 mmol scale.

Yield – 72 mg, 73%. White solid, **MP** – 245-247 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 8.82 (brs, 1H), 8.66 (s, 1H), 8.55 (brs, 1H), 7.23 (dd, *J* = 8.5, 2.9 Hz, 1H), 6.94 (t, *J* = 5.2 Hz, 1H), 6.71 (ddd, *J* = 9.2, 2.9, 0.6 Hz, 1H), 2.18 (s, 3H), 1.28 (s, 12H).

¹³**C NMR** (101 MHz, CDCl₃) δ 160.98, 160.03 (d, *J* = 242.7 Hz), 154.36, 148.57, 133.20, 125.28 (d, *J* = 7.3 Hz), 115.72 (d, *J* = 23.6 Hz), 114.56 (d, *J* = 19.6 Hz), 111.59, 80.76, 26.51, 17.28.

¹⁹F NMR (376 MHz, CDCl₃) δ -120.04.

¹¹**B NMR** (128 MHz, CDCl₃) δ 5.52.

IR (neat, v/cm⁻¹) 3218, 2994, 1740, 1630, 1550, 1461, 1367, 1240, 1178, 1137, 1082, 1002, 966, 899, 782, 722, 667.

HRMS Calcd for C₁₇H₂₁BFN₃O₂: 329.1711, found 329.1712.

N-(2-chloro-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)pyrimidin-2amine (18b)

Yield – 70 mg, 70%. White solid, **MP** – 114-116 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 8.91 (brs, 1H), 8.70 (brs, 1H), 8.51 (s, 1H), 7.63 (dd, *J* = 7.3, 1.0 Hz, 1H), 7.31 (dd, *J* = 7.8, 1.4 Hz, 1H), 7.13 (t, *J* = 7.8 Hz, 1H), 7.07 (t, *J* = 5.2 Hz, 1H), 1.26 (s, 12H).

¹³C NMR (101 MHz, CDCl₃) δ 161.63, 154.49, 148.97, 135.04, 130.00, 127.65, 125.18, 119.94, 112.67, 80.80, 26.71.

¹¹**B NMR** (128 MHz, CDCl₃) δ 5.85.

IR (neat, v/cm⁻¹) 3407, 2972, 1739, 1618, 1575, 1528, 1433, 1364, 1234, 1139, 1049, 1014, 886, 786, 743.

HRMS Calcd for C₁₆H₁₉BClN₃O₂: 331.1259, found 331.1255.

N-(3-chloro-2-methyl-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-

yl)phenyl)pyrimidin-2-amine (19b)

This compound was synthesized by following general procedure A. The reaction was performed on a 0.3 mmol scale.

Yield – 53 mg, 51%. White solid, **MP** – 198-200 °C.

¹H NMR (400 MHz, CDCl₃) δ 8.86 (brs, 1H), 8.62 (brs, 1H), 8.52 (s, 1H), 7.48 (d, *J* = 7.8 Hz, 1H), 7.20 (d, *J* = 7.8 Hz, 1H), 7.00 (t, *J* = 5.2 Hz, 1H), 2.31 (s, 3H), 1.27 (s, 12H).
¹³C NMR (101 MHz, CDCl₃) δ 161.16, 154.65, 148.76, 138.37, 133.46, 129.69, 125.19, 120.78, 112.16, 80.75, 26.57, 13.67.

IR (neat, v/cm⁻¹) 2978, 1621, 1564, 1535, 1452, 1246, 1155, 1082, 1002, 969, 915, 788, 761, 732.

HRMS Calcd for C₁₇H₂₁BClN₃O₂: 345.1415, found 345.1415.

N-(4-chloro-2-methyl-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-

This compound was synthesized by following general procedure A. The reaction was performed on a 0.3 mmol scale.

Yield – 69 mg, 67%. White solid, **MP** – 238-240 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 8.84 (brs, 1H), 8.65 (s, 1H), 8.57 (brs, 1H), 7.49 (d, *J* = 2.3 Hz, 1H), 7.01 – 6.94 (m, 2H), 2.17 (s, 3H), 1.28 (s, 12H).

¹³C NMR (101 MHz, CDCl₃) δ 161.17, 154.41, 148.82, 135.74, 129.49, 128.81, 128.74, 124.72, 111.98, 80.82, 26.60, 17.07.

¹¹**B NMR** (128 MHz, CDCl₃) δ 5.66.

IR (neat, v/cm⁻¹) 2978, 1738, 1623, 1565, 1536, 1458, 1363, 1243, 1156, 1087, 1002, 968, 897, 802, 735.

HRMS Calcd for C₁₇H₂₁BClN₃O₂: 345.1415, found 345.1415.

N-(4-chloro-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)pyrimidin-2amine (21b)

Yield – 45 mg, 45%. Off-white solid, MP - 224-226 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 9.02 (s, 1H), 8.66 (d, *J* = 5.1 Hz, 2H), 7.64 (d, *J* = 2.4 Hz, 1H), 7.11 (dd, *J* = 8.5, 2.4 Hz, 1H), 6.97 – 6.87 (m, 2H), 1.31 (s, 12H).

¹³C NMR (101 MHz, CDCl₃) NMR (101 MHz,) δ 155.10, 138.41, 131.71, 129.26, 127.98, 117.12, 111.87, 81.41, 26.55.

IR (neat, v/cm⁻¹) 2871, 1625, 1570, 1537, 1459, 1365, 1250, 1192, 1168, 1149, 1137, 1116, 1088, 1017, 894, 849, 784, 746, 712, 661.

HRMS Calcd for C₁₆H₁₉BClN₃O₂: 331.1259, found 331.1256.

N-(2-bromo-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)pyrimidin-2amine (22b)

This compound was synthesized by following general procedure A. The reaction was performed on a 0.3 mmol scale.

Yield – 51 mg, 45%. Yellow solid, MP – 167-169 °C.

¹H NMR (400 MHz, CDCl₃) δ 8.91 (d, J = 4.3 Hz, 1H), 8.70 (s, 1H), 8.52 (s, 1H), 7.67 (dd, J = 7.3, 0.9 Hz, 1H), 7.47 (dd, J = 7.9, 1.4 Hz, 1H), 7.14 – 7.00 (m, 2H), 1.25 (s, 12H).
¹³C NMR (101 MHz, CDCl₃) δ 161.65, 154.53, 148.95, 136.12, 130.87, 130.71, 125.67, 112.71, 110.39, 80.81, 26.71.

IR (neat, v/cm⁻¹) 3394, 2980, 1771, 1616, 1574, 1522, 1449, 1431, 1246, 1156, 1136, 1046, 1014, 885, 785, 742.

HRMS Calcd for C₁₆H₁₉BBrN₃O₂: 375.0754, found 375.0753.

N-(3-bromo-2-methyl-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-

This compound was synthesized by following general procedure A. The reaction was performed on a 0.3 mmol scale.

Yield – 75 mg, 64%. White solid, MP – 206-208 °C.

¹**H** NMR (400 MHz, CDCl₃) δ 8.85 (brs, 1H), 8.73 – 8. 45 (m, 2H, overlapped with brs), 7.46 – 7.34 (m, 2H), 6.99 (t, *J* = 5.2 Hz, 1H), 2.34 (s, 3H), 1.27 (s, 12H).

¹³C NMR (101 MHz, CDCl₃) δ 161.17, 154.61, 148.74, 138.24, 130.11, 128.47, 124.30,

122.53, 112.12, 80.77, 26.53, 16.86.

IR (neat, v/cm⁻¹) 2984, 1738, 1446, 1373, 1236, 1097, 1044, 918, 848, 787, 733.

HRMS Calcd for C₁₇H₂₁BBrN₃O₂: 389.0910, found 389.0908.

N-(4-bromo-2-methyl-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2yl)phenyl)pyrimidin-2-amine (24b)

Yield – 90 mg, 77%. White solid, **MP** – 232-234 °C.

¹**H** NMR (400 MHz, CDCl₃) δ 8.85 (brs, 1H), 8.60 (brs, 1H), 8.46 (s, 1H), 7.64 (d, J = 2.1

Hz, 1H), 7.19 – 7.13 (m, 1H), 6.98 (t, *J* = 5.2 Hz, 1H), 2.21 (s, 3H), 1.27 (s, 12H).

¹³C NMR (101 MHz, CDCl₃) δ 161.17, 154.42, 148.84, 136.22, 131.84, 131.55, 125.12, 117.74, 112.02, 80.84, 26.60, 17.00.

IR (neat, v/cm⁻¹) 2973, 1739, 1622, 1536, 1458, 1364, 1232, 1155, 1088, 1002, 897, 791, 735.

HRMS Calcd for C₁₇H₂₁BBrN₃O₂: 389.0910, found 389.0905.

N-(4-bromo-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)pyrimidin-2amine (25b)

This compound was synthesized by following general procedure A. The reaction was performed on a 0.3 mmol scale.

Note: >5% of pinacol present as an impurity, which could not be removed by column chromatography.

Yield – 43 mg, 38%. Off-white solid, MP – 221-223 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 8.68 (d, *J* = 5.1 Hz, 2H), 8.54 (s, 1H), 7.80 (d, *J* = 2.3 Hz, 1H), 7.33 (dd, *J* = 8.5, 2.3 Hz, 1H), 7.06 (d, *J* = 8.5 Hz, 1H), 6.95 (t, *J* = 5.1 Hz, 1H), 1.30 (s, 12H).

¹³C NMR (101 MHz, CDCl₃) δ 155.46, 139.13, 135.07, 131.18, 117.58, 117.25, 112.21, 81.59, 26.48.

IR (neat, v/cm⁻¹) 2973, 1624, 1567, 1533, 1453, 1365, 1247, 1197, 1150, 1116, 1012, 949, 891, 848, 813, 757, 705.

HRMS Calcd for C₁₆H₁₉BBrN₃O₂: 375.0754, found 375.0756.

N-(2-iodo-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)pyrimidin-2-amine (26b)

This compound was synthesized by following general procedure A. The reaction was performed on a 0.3 mmol scale.

Note: >5% of pinacol present as an impurity, which could not be removed by column chromatography.

Yield – 51 mg, 40%. Off-white solid, **MP** – decomposed over >280 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 8.74 (brs, 1H), 8.68 (d, *J* = 5.1 Hz, 2H), 7.99 (d, *J* = 2.0 Hz, 1H), 7.49 (dd, *J* = 8.4, 2.1 Hz, 1H), 6.94 (t, *J* = 5.1 Hz, 1H), 6.87 (d, *J* = 8.4 Hz, 1H), 1.30 (s, 12H).

¹³C NMR (101 MHz, CDCl₃) δ 155.57, 155.31, 141.00, 139.66, 136.90, 117.94, 112.11, 88.41, 81.50, 26.48.

IR (neat, v/cm⁻¹) 2979, 2962, 2925, 1771, 1625, 1573, 1528, 1453, 1246, 1151, 1043, 913, 785, 744.

HRMS Calcd for C₁₆H₁₉BIN₃O₂: 423.0615, found 423.0613.

N-(2-methyl-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-3-(trifluoromethyl)phenyl)pyrimidin-2-amine (27b)

This compound was synthesized by following general procedure A. The reaction was performed on a 0.3 mmol scale.

Yield – 92 mg, 81%. White solid, **MP** – 244-246 °C.

¹H NMR (400 MHz, CDCl₃) δ 8.88 (brs, 1H), 8.72 (brs, 1H), 8.63 (brs, 1H), 7.65 (d, *J* = 7.8 Hz, 1H), 7.45 (d, *J* = 7.8 Hz, 1H), 7.02 (t, *J* = 5.2 Hz, 1H), 2.32 (s, 3H), 1.28 (s, 12H).
¹³C NMR (101 MHz, CDCl₃) δ 161.39, 154.71, 148.73, 138.43, 128.84, 128.21 (q, *J* = 29.1 Hz), 124.79 (q, *J* = 273.4 Hz), 121.43 (q, *J* = 5.5 Hz), 121.18, 112.33, 80.92, 26.54, 12.99.
¹⁹F NMR (376 MHz, CDCl₃) δ -59.58.

IR (neat, v/cm⁻¹) 2975, 1739, 1623, 1543, 1453, 1364, 1318, 1245, 1172, 1104, 1085, 1005, 969, 830, 791, 768, 733.

HRMS Calcd for C₁₈H₂₁BF₃N₃O₂: 379.1679, found 379.1676.

```
N-(2-methyl-3-nitro-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-
yl)phenyl)pyrimidin-2-amine (28b)
```


This compound was synthesized by following general procedure A. The reaction was

performed on a 0.3 mmol scale.

Yield – 48 mg, 45%. White solid, MP – 248-250 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 8.98 (brs, 1H), 8.88 (brs, 1H), 8.65 (brs, 1H), 7.72 7.60 (m, 2H), 7.07 (t, *J* = 5.2 Hz, 1H), 2.30 (s, 3H), 1.29 (s, 12H).

¹³C NMR (101 MHz, CDCl₃) δ 161.58, 154.78, 150.05, 148.69, 138.42, 129.33, 119.89, 117.72, 112.70, 81.14, 26.48, 12.96.

IR (neat, v/cm⁻¹) 2985, 1738, 1623, 1519, 1448, 1373, 1240, 1046, 917, 734.

HRMS Calcd for C₁₇H₂₁BN₄O₄: 356.1656, found 356.1661.

5-methyl-*N*-(2-methyl-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2yl)phenyl)pyrimidin-2-amine (29b)

This compound was synthesized by following general procedure A. The reaction was performed on a 0.3 mmol scale.

Yield – 62 mg, 64%. White solid, **MP** – 184-186 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 8.58 (brs, 2H), 7.86 (s, 1H), 7.61 – 7.56 (m, 1H), 7.11 – 7.06 (m, 2H), 2.34 (s, 3H), 2.32 (s, 3H), 1.26 (s, 12H).

¹³C NMR (101 MHz, CDCl₃) δ 162.06, 153.37, 147.72, 137.59, 129.45, 129.04, 123.95, 121.71, 121.38, 80.49, 26.73, 17.20, 15.03.

IR (neat, v/cm⁻¹) 3220, 3055, 2973, 1739, 1631, 1569, 1537, 1468, 1410, 1372, 1245, 1217, 1157, 1089, 992, 896, 854, 759, 726.

HRMS Calcd for C₁₈H₂₄BN₃O₂: 325.1962, found 325.1958.

4-methyl-N-(2-methyl-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-

yl)phenyl)pyrimidin-2-amine (30b)

This compound was synthesized by following general procedure A. The reaction was performed on a 0.3 mmol scale.

Yield – 71 mg, 73%. White solid, **MP** – 231-233 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 8.71 (d, *J* = 6.2 Hz, 1H), 7.96 (s, 1H), 7.58 (dd, *J* = 6.7, 1.9 Hz, 1H), 7.12 – 7.02 (m, 2H), 6.83 (d, *J* = 6.2 Hz, 1H), 2.52 (s, 3H), 2.32 (s, 3H), 1.26 (s, 12H).

¹³**C NMR** (101 MHz, CDCl₃) δ 172.19, 154.10, 147.92, 137.39, 129.39, 128.97, 124.02, 121.84, 112.16, 80.38, 26.76, 24.67, 17.23.

δ 194.8, 141.4, 135.6, 133.1, 130.9, 128.0, 84.5, 25.0.

IR (neat, v/cm⁻¹) 3184, 3055, 2995, 1771, 1631, 1545, 1456, 1246, 1154, 1078, 986, 901, 777, 758.

HRMS Calcd for C₁₈H₂₄BN₃O₂: 325.1962, found 325.1964.

5-chloro-N-(2-methyl-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-

yl)phenyl)pyrimidin-2-amine (31b)

This compound was synthesized by following general procedure A. The reaction was performed on a 0.3 mmol scale.
Yield – 63 mg, 61%. Yellow solid, MP – 151-153 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 8.62 (s, 2H), 8.29 (s, 1H), 7.57 (dd, *J* = 6.7, 2.0 Hz, 1H), 7.16 – 7.05 (m, 2H), 2.25 (s, 3H), 1.27 (s, 12H).

¹³C NMR (101 MHz, CDCl₃) δ 153.92, 137.79, 130.02, 124.82, 124.44, 120.01, 81.28, 26.36, 17.47.

IR (neat, v/cm⁻¹) 3206, 3058, 2980, 1770, 1625, 1537, 1466, 1410, 1368, 1246, 1155, 1088, 994, 776, 749, 710, 665.

HRMS Calcd for C₁₇H₂₁BClN₃O₂: 345.1415, found 345.1410.

5-bromo-N-(2-methyl-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-

yl)phenyl)pyrimidin-2-amine (32b)

This compound was synthesized by following general procedure A. The reaction was performed on a 0.3 mmol scale.

Yield – 60 mg, 51%. Yellow solid, **MP** – 156-158 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 8.70 (brs, 2H), 8.29 (brs, 1H), 7.57 (d, *J* = 6.1 Hz, 1H), 7.17 – 7.05 (m, 2H), 2.25 (s, 3H), 1.27 (s, 12H).

¹³C NMR (101 MHz, CDCl₃) δ 153.94, 137.69, 129.99, 124.82, 124.29, 106.62, 81.26, 26.38, 17.46.

IR (neat, v/cm⁻¹) 3198, 3063, 2978, 1770, 1622, 1535, 1466, 1408, 1370, 1246, 1155, 1086, 994, 777, 754, 704.

HRMS Calcd for C₁₇H₂₁BBrN₃O₂: 389.0910, found 389.0914.

N-(2-(diphenylboraneyl)phenyl)pyrimidin-2-amine (33)

This compound was synthesized by following general procedure B. The reaction was performed on a 0.15 mmol scale.

Yield – 41 mg, 82%. Yellow solid, MP – 232-234 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 8.54 (dd, *J* = 4.4, 2.3 Hz, 1H), 8.10 (dd, *J* = 6.2, 2.3 Hz, 1H), 7.87 (s, 1H), 7.24 – 7.02 (m, 13H), 6.83 – 6.72 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 161.60, 154.12, 153.07, 136.70, 134.43, 134.05, 127.44, 126.36, 125.75, 124.78, 113.67, 112.17.

IR (neat, v/cm⁻¹) 3351, 3064, 3000, 1621, 1585, 1533, 1475, 1456, 1371, 1244, 1180, 1045, 784, 734.

HRMS Calcd for $[M+H] = C_{22}H_{19}BN_3$: 336.1672, found 336.1673.

This compound was synthesized by following general procedure B. The reaction was performed on a 0.15 mmol scale.

Yield – 39 mg, 72%. Yellow solid, **MP** – 182-184 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 8.53 (dd, *J* = 4.4, 2.3 Hz, 1H), 8.09 (dd, *J* = 6.1, 2.3 Hz, 1H), 7.82 (s, 1H), 7.27 – 7.08 (m, 10H), 7.04 – 6.94 (m, 3H), 6.79 (dd, *J* = 6.1, 4.4 Hz, 1H), 2.67 (q, *J* = 7.6 Hz, 2H), 1.32 (t, *J* = 7.6 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 161.52, 154.19, 152.94, 134.52, 134.06, 132.40, 127.39, 126.21, 125.86, 125.68, 124.59, 112.21, 23.68, 13.93.

¹¹**B** NMR (128 MHz, CDCl₃) δ -1.19.

IR (neat, v/cm⁻¹) 3433, 3063, 3004, 1620, 1565, 1528, 1461, 1433, 1394, 1187, 913, 869, 772, 704.

HRMS Calcd for C₂₄H₂₂BN₃: 363.1907, found 363.1905.

N-(2-benzyl-6-(diphenylboraneyl)phenyl)pyrimidin-2-amine (35)

This compound was synthesized by following general procedure B. The reaction was performed on a 0.15 mmol scale.

Yield -38 mg, 60%. Pale-yellow solid, MP -249-251 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 8.44 (dd, J = 4.4, 2.3 Hz, 1H), 8.08 (dd, J = 6.1, 2.3 Hz, 1H), 7.72 (s, 1H), 7.36 – 7.28 (m, 2H), 7.25 – 7.08 (m, 13H), 7.05 – 6.95 (m, 3H), 6.74 (dd, J = 6.1, 4.4 Hz, 1H), 4.06 (s, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 161.52, 153.93, 152.77, 138.84, 135.20, 134.11, 133.22, 129.13, 128.68, 128.39, 127.39, 126.91, 125.69, 124.52, 123.14, 112.25, 37.78.

IR (neat, v/cm⁻¹) 3408, 3062, 3002, 1619, 1566, 1527, 1460, 1433, 1220, 1169, 1124, 1075, 1029, 913, 868, 772, 702.

HRMS Calcd for $[M+H] = C_{29}H_{25}BN_3$: 426.2142, found 426.2137.

N-(6-(diphenylboraneyl)-2,3-dimethylphenyl)pyrimidin-2-amine (36)

This compound was synthesized by following general procedure B. The reaction was performed on a 0.15 mmol scale.

Yield – 32 mg, 59%. Yellow solid, **MP** – 234-236 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 8.54 (dd, *J* = 4.4, 2.3 Hz, 1H), 8.08 (dd, *J* = 6.1, 2.2 Hz, 1H), 7.84 (s, 1H), 7.23 – 7.07 (m, 10H), 6.94 – 6.84 (m, 2H), 6.80 (dd, *J* = 6.1, 4.4 Hz, 1H), 2.28 (s, 3H), 2.24 (s, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 161.46, 154.34, 152.90, 135.27, 134.36, 134.02, 131.65, 127.39, 126.48, 125.65, 119.02, 112.14, 20.55, 12.63.

IR (neat, v/cm⁻¹) 3436, 3044, 3002, 2924, 1619, 1576, 1532, 1474, 1362, 1220, 1167, 1030, 912, 871, 771, 704.

HRMS Calcd for C24H22BN3: 363.1907, found 363.1909.

N-(2-(diphenylboraneyl)-6-(methylthio)phenyl)pyrimidin-2-amine (37)

This compound was synthesized by following general procedure B. The reaction was performed on a 0.15 mmol scale.

Yield – 34 mg, 59%. Yellow solid, MP – 218-220 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 9.06 (s, 1H), 8.58 (dd, *J* = 4.4, 2.3 Hz, 1H), 8.10 (dd, *J* = 6.1, 2.3 Hz, 1H), 7.36 (dd, *J* = 7.5, 1.4 Hz, 1H), 7.24 – 6.98 (m, 12H), 6.82 (dd, *J* = 6.1, 4.4 Hz, 1H), 2.40 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 161.81, 154.10, 152.96, 137.33, 134.61, 134.00, 131.82, 127.46, 125.80, 125.02, 120.01, 112.42, 20.11.

IR (neat, v/cm⁻¹) 3342, 3044, 3006, 2921, 1615, 1577, 1523, 1449, 1430, 1380, 1179, 1124, 1029, 867, 773, 704.

HRMS Calcd for C23H20BN3S: 381.1471, found 381.1466.

N-(2-(diphenylboraneyl)-6-fluorophenyl)pyrimidin-2-amine (38)

This compound was synthesized by following general procedure B. The reaction was performed on a 0.15 mmol scale.

Yield -43 mg, 81%. Pale-yellow solid, **MP** -222-224 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 8.59 (dd, *J* = 4.5, 2.3 Hz, 1H), 8.27 (s, 1H), 8.11 (dd, *J* = 6.1, 2.3 Hz, 1H), 7.27 – 7.07 (m, 10H), 7.03 – 6.80 (m, 4H).

¹³**C NMR** (101 MHz, CDCl₃) δ 161.94, 153.89, 153.22, 149.90 (d, *J* = 245.6 Hz), 133.96, 129.26 (d, *J* = 3.1 Hz), 127.53, 125.94, 124.84 (d, *J* = 6.0 Hz), 124.58 (d, *J* = 8.0 Hz), 112.72, 112.05 (d, *J* = 17.5 Hz).

¹⁹F NMR (376 MHz, CDCl₃) δ -138.04.

IR (neat, v/cm⁻¹) 3419, 3276, 3065, 3004, 1626, 1568, 1532, 1461, 1255, 1223, 1190, 1031, 913, 846, 773, 743, 704.

HRMS Calcd for C₂₂H₁₇BFN₃: 353.1500, found 353.1501.

N-(2-chloro-6-(diphenylboraneyl)phenyl)pyrimidin-2-amine (39)

This compound was synthesized by following general procedure B. The reaction was performed on a 0.15 mmol scale.

Yield – 39 mg, 70%. Off-white solid, MP – 213-215 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 8.58 (dd, *J* = 4.5, 2.3 Hz, 1H), 8.35 (s, 1H), 8.14 – 8.05 (m, 1H), 7.27 – 7.13 (m, 7H), 7.12 – 7.05 (m, 4H), 7.05 – 6.94 (m, 2H), 6.84 (dd, *J* = 6.1, 4.5 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 161.92, 154.00, 152.98, 133.95, 132.98, 132.73, 127.54, 126.39, 125.96, 125.28, 118.84, 112.91.

IR (neat, v/cm⁻¹) 3402, 3293, 3063, 1615, 1576, 1523, 1448, 1388, 1219, 1176, 1119, 915, 866, 818, 773, 739, 704.

HRMS Calcd for C₂₂H₁₇BClN₃: 369.1204, found 369.1200.

N-(3-chloro-6-(diphenylboraneyl)-2-methylphenyl)pyrimidin-2-amine (40)

This compound was synthesized by following general procedure B. The reaction was performed on a 0.15 mmol scale.

Yield -36 mg, 63%. Pale-yellow solid, **MP** -242-244 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 8.58 (dd, *J* = 4.5, 2.3 Hz, 1H), 8.09 (dd, *J* = 6.1, 2.3 Hz, 1H), 7.81 (s, 1H), 7.24 – 7.13 (m, 6H), 7.11 – 7.04 (m, 5H), 6.90 (d, *J* = 8.0 Hz, 1H), 6.85 (dd, *J* = 6.1, 4.5 Hz, 1H), 2.40 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 161.73, 154.20, 152.92, 136.29, 133.95, 132.73, 132.29, 127.51, 125.90, 125.27, 118.60, 112.76, 13.49.

IR (neat, v/cm⁻¹) 3429, 3064, 3004, 1618, 1524, 1452, 1366, 1218, 1168, 1025, 974, 912, 871, 771, 704.

HRMS Calcd for C23H19BClN3: 383.1361, found 383.1357.

This compound was synthesized by following general procedure B. The reaction was

performed on a 0.15 mmol scale.

Yield – 44 mg, 71%. Off-white solid, MP - 236-238 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 8.58 (dd, *J* = 4.4, 2.3 Hz, 1H), 8.37 (s, 1H), 8.09 (dd, *J* = 6.1, 2.3 Hz, 1H), 7.33 (dd, *J* = 7.9, 1.4 Hz, 1H), 7.25 – 7.13 (m, 6H), 7.12 – 7.01 (m, 5H), 6.94 – 6.87 (m, 1H), 6.84 (dd, *J* = 6.1, 4.5 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 161.92, 154.12, 152.91, 134.07, 133.95, 133.48, 129.60, 127.54, 125.96, 125.77, 112.94, 109.33.

¹¹**B** NMR (128 MHz, CDCl₃) δ -0.60.

IR (neat, v/cm⁻¹) 3386, 3004, 1739, 1614, 1573, 1521, 1434, 1366, 1217, 1107, 1031, 913, 866, 771, 704.

HRMS Calcd for C₂₂H₁₇BBrN₃: 413.0699, found 413.0691.

This compound was synthesized by following general procedure B. The reaction was performed on a 0.15 mmol scale.

Yield -46 mg, 73%. Off-white solid, MP -235-237 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 8.62 (dd, *J* = 4.5, 2.3 Hz, 1H), 8.09 (dd, *J* = 6.1, 2.3 Hz, 1H), 7.91 (s, 1H), 7.32 (d, *J* = 7.8 Hz, 1H), 7.25 – 7.14 (m, 6H), 7.12 – 7.04 (m, 5H), 6.89 (dd, *J* = 6.1, 4.5 Hz, 1H), 2.42 (s, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 161.87, 154.20, 152.92, 136.39, 133.87, 131.82, 127.53, 127.10 (d, *J* = 29.2 Hz), 125.98, 121.52 (d, *J* = 5.5 Hz), 120.00 (d, *J* = 270.3 Hz), 112.90, 12.79.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -59.39.

IR (neat, v/cm⁻¹) 3441, 3067, 1618, 1580, 1533, 1478, 1317, 1168, 1113, 1028, 980, 771, 737, 704.

HRMS Calcd for C₂₄H₁₉BF₃N₃: 417.1624, found 417.1623.

N-(2-(diphenylboraneyl)-6-methylphenyl)-4-methylpyrimidin-2-amine (43)

This compound was synthesized by following general procedure B. The reaction was performed on a 0.15 mmol scale.

Yield – 36 mg, 66%. Off-white solid, MP – 203-205 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 7.92 (d, *J* = 6.3 Hz, 1H), 7.64 (s, 1H), 7.23 – 7.09 (m, 10H),

7.01 – 6.91 (m, 3H), 6.65 (d, *J* = 6.3 Hz, 1H), 2.50 (s, 3H), 2.33 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 172.67, 153.61, 151.93, 135.38, 134.05, 132.43, 127.93, 127.34, 125.57, 124.19, 120.28, 112.55, 24.71, 17.16.

IR (neat, v/cm⁻¹) 3410, 3063, 1626, 1539, 1462, 1252, 1167, 1032, 913, 772, 746, 705.

HRMS Calcd for C₂₄H₂₂BN₃: 363.1907, found 363.1908.

N-(2-(bis(perfluorophenyl)boraneyl)phenyl)pyrimidin-2-amine (44)

This compound was synthesized by following general procedure B. The reaction was performed on a 0.15 mmol scale.

Yield – 35 mg, 45%. Yellow solid, MP – 186-188 °C.

¹**H** NMR (400 MHz, CDCl₃) δ 8.67 (dd, J = 4.3, 2.1 Hz, 1H), 8.09 (dd, J = 6.3, 2.1 Hz, 1H), 8.03 (s, 1H), 7.25 (d, J = 6.1 Hz, 1H, overlapped with CDCl₃ residual peak), 7.20 (td, J = 7.5, 1.5 Hz, 1H), 7.08 (td, J = 7.5, 1.0 Hz, 1H), 6.92 (dd, J = 6.3, 4.3 Hz, 1H), 6.83 (dd, J = 7.8, 0.5 Hz, 1H).

¹³**C NMR** (101 MHz, CDCl₃) δ 163.23, 153.29, 151.68, 148.06 (dm, *J* = 245.0 Hz), 139.95 (dm, *J* = 243.9 Hz), 137.37 (dm, *J* = 247.1 Hz), 134.89, 132.42, 127.55, 125.65, 114.52, 113.13.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -132.54 (d, J = 23.5 Hz, 2F), -156.78 (d, J = 23.5 Hz, 1F), -162.87 (t, J = 19.5 Hz, 2F).

IR (neat, v/cm⁻¹) 3422, 3044, 1635, 1546, 1517, 1458, 1282, 1092, 977, 913, 840, 772, 669. **HRMS** Calcd for C₂₂H₈BF₁₀N₃: 515.0652, found 515.0645.

N-(2-(dimethylboraneyl)phenyl)pyrimidin-2-amine (45)

This compound was synthesized by following general procedure C. The reaction was performed on a 0.15 mmol scale.

Yield – 23 mg, 74%. Yellow solid, MP – 168-170 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 8.48 (dd, *J* = 4.5, 2.3 Hz, 1H), 8.34 (dd, *J* = 6.1, 2.3 Hz, 1H), 7.59 (s, 1H), 7.33 (dd, *J* = 5.5, 3.3 Hz, 1H), 7.11 – 7.02 (m, 2H), 6.85 (dd, *J* = 6.1, 4.5 Hz, 1H), 6.71 – 6.64 (m, 1H), 0.12 (s, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 160.91, 153.88, 151.60, 135.98, 131.96, 125.61, 124.57, 113.50, 112.39.

IR (neat, v/cm⁻¹) 3276, 2993, 2909, 1769, 1628, 1538, 1461, 1411, 1369, 1272, 1245, 1056, 1024, 950, 914, 784, 735.

HRMS Calcd for $[M+H] = C_{12}H_{15}BN_3$: 212.1359, found 212.1357.

9. Gram-scale synthesis of metal-free directed C-H borylation

In a dry flux in a glovebox, the 2-pyrimidylaniline (856 mg, 5.0 mmol, 1 equiv) and tetramethylpyrazine (817mg, 6.0 mmol, 1.2 equiv), and DCE (10 mL) were added. BBr₃ (15.0 mmol, 3 equiv; in the form of a 1 mol/L solution in DCM) was then added dropwise

into the reaction mixture with stirring, and the reaction mixture was stirred for 4 h at room temperature. The reaction was quenched with pinacol (1773 mg, 15.0 mmol, 3 equiv) and triethylamine (7 mL, 50 mmol, 10 equiv), and stirred for another 2 h at room temperature. After the reaction reached completion, the volatiles were removed under reduced pressure and the crude mixture was dissolved in EtOAc (50 mL) and H₂O (25 mL). The aqueous layer was washed with EtOAc (3 x 50 mL) and the organic layers were collected, dried over MgSO₄ and filtered. The solvent was removed under reduced pressure and the product was isolated by column chromatography (eluent: hexane/CHCl₃ = 10/1 to 2/1).

10. Effects of external additives

Procedure for evaluating the effect of external impurities:

To a dry sample vial inside a glovebox, **1a** (17 mg, 0.1 mmol, 1 equiv), tetramethylpyrazine (16 mg, 0.12 mmol, 1.2 equiv), **external additive** (0.1 mmol, 1 equiv), and 0.5 mL of DCE were added. BBr₃ (0.3 mmol, 3 equiv; in the form of a 1 mol/L solution in DCM) was added dropwise into the reaction mixture with stirring and the reaction was stirred for an additional 4 h at room temperature. The reaction was quenched with pinacol (35 mg, 0.3 mmol, 3 equiv) and triethylamine (0.14 mL, 1.0 mmol, 10 equiv) and stirred for another 2 h at room temperature after which, the volatiles were removed under reduced pressure. The crude mixture was dissolved in CDCl₃ (1 mL) and H₂O (1 mL). Mesitylene (7.0 μ L, 0.05 mmol, 0.5 equiv) was added into the mixture and an ¹H NMR spectrum was obtained on the CDCl₃ layer. The yield of the desired product was determined by quantitative ¹H NMR analysis and data are given below. A graphical presentation is presented to emphasize the effect of external impurities on this process.

Figure S1. Metal-free directed borylation of 2-pyrimidylaniline in the presence of (a) inorganic salts and reactive functionalities (b) heterocycles and transition metals as external impurities.

11. Derivatization of borylated product

N-(3-methyl-[1,1'-biphenyl]-2-yl)pyrimidin-2-amine (46)

The boronic ester (47 mg, 0.15 mmol, 1 equiv), PPh₃ (8 mg, 0.03 mmol, 20 mol%), K₃PO₄ (95 mg, 0.45 mmol, 3 equiv), and Pd₂(dba)₃ (7 mg, 0.0075mmol, 5 mol%) were added to a dry sealed tube. The sealed tube was degassed, flushed with nitrogen and DMF (2 mL) and phenyl bromide (19 μ L, 0.18 mmol, 1.2 equiv) were then added. The tube was sealed and the reaction mixture was heated at 90 °C for 24 h. The solvent was removed under reduced pressure and the crude product was purified by column chromatography (eluent: hexane/EtOAc = 4/1) to give the corresponding product in 81% yield.

Yield – 32 mg, 81%. White solid, MP – 87-89 °C.

¹**H NMR** (400 MHz, CDCl₃) NMR δ 8.28 (d, *J* = 4.8 Hz, 2H), 7.37 – 7.19 (m, 8H), 6.58 (t, *J* = 4.8 Hz, 1H), 6.46 (s, 1H), 2.29 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 161.70, 158.42, 140.00, 139.81, 137.05, 134.22, 130.33, 129.03, 128.36, 128.32, 127.29, 127.08, 111.67, 19.03.

IR (neat, v/cm⁻¹) 3220, 3026, 2969, 1579, 1519, 1445, 1406, 1256, 1221, 1032, 993, 911, 795, 754, 700, 665.

HRMS Calcd for C₁₇H₁₅N₃: 261.1266, found 261.1264.

(E)-N-(2-benzyl-6-styrylphenyl)pyrimidin-2-amine (47)

The boronic ester (58 mg, 0.15 mmol, 1 equiv), PPh₃ (8 mg, 0.03 mmol, 20 mol%), K₃PO₄ (95 mg, 0.45 mmol, 3 equiv), and Pd₂(dba)₃ (7 mg, 0.0075mmol, 5 mol%) were added to a dry sealed tube. The sealed tube was degassed, flushed with nitrogen and DMF (2 mL) and (*E*)-(2-bromovinyl)benzene (23 μ L, 0.18 mmol, 1.2 equiv) were then added. The tube was sealed and the reaction mixture was heated at 90 °C for 24 h. The solvent was removed under reduced pressure and the crude product was purified by column chromatography (eluent: hexane/EtOAc = 4/1) to give the corresponding product in 82% yield.

Yield – 45 mg, 82%. White solid, MP – 204-206 °C.

¹**H** NMR (400 MHz, CDCl₃) δ 8.30 (d, J = 4.8 Hz, 2H), 7.68 (dd, J = 7.9, 1.3 Hz, 1H), 7.40 – 7.02 (m, 14H, overlapped with CDCl₃ residual peak), 6.60 (t, J = 4.8 Hz, 1H), 6.47 (s, 1H), 3.96 (s, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 161.86, 158.55, 140.14, 139.84, 137.59, 136.53, 134.63, 130.60, 130.23, 128.97, 128.71, 128.65, 127.77, 127.75, 126.75, 126.25, 125.09, 124.63, 111.94, 38.69.

IR (neat, v/cm⁻¹) 3219, 3025, 2924, 1580, 1519, 1494, 1446, 1409, 1267, 1178, 1074, 964, 772, 694.

N-(6-(cyclohexylidenemethyl)-2,3-dimethylphenyl)pyrimidin-2-amine (48)

The boronic ester (49 mg, 0.15 mmol, 1 equiv), PPh₃ (8 mg, 0.03 mmol, 20 mol%), K₃PO₄ (95 mg, 0.45 mmol, 3 equiv), and Pd₂(dba)₃ (7 mg, 0.0075mmol, 5 mol%) were added to a dry sealed tube. The sealed tube was degassed, flushed with nitrogen and DMF (2 mL) and (bromomethylene)cyclohexane (40 μ L, 0.3 mmol, 2 equiv) were then added. The tube was sealed and the reaction mixture was heated at 90 °C for 24 h. The solvent was removed under reduced pressure and the crude product was purified by column chromatography (eluent: hexane/EtOAc = 4/1) to give the corresponding product in 78% yield.

Yield – 34 mg, 78%. Off white, MP – 146-148 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 8.31 (d, *J* = 4.8 Hz, 2H), 7.06 (d, *J* = 7.8 Hz, 1H), 6.99 (d, *J* = 7.7 Hz, 1H), 6.59 (t, *J* = 4.8 Hz, 1H), 6.55 (s, 1H), 6.04 (s, 1H), 2.31 (s, 3H), 2.23 – 2.09 (m, 7H), 1.58 – 1.37 (m, 6H).

¹³**C NMR** (101 MHz, CDCl₃) δ 161.78, 158.41, 144.18, 136.01, 135.00, 134.85, 133.49, 128.10, 127.48, 119.17, 111.49, 37.36, 29.87, 28.74, 27.97, 26.76, 20.67, 15.13.

IR (neat, v/cm⁻¹) 3225, 2924, 2853, 1584, 1522, 1446, 1404, 1264, 1217, 1178, 1088, 990, 909, 799, 753, 700.

HRMS Calcd for C19H23N3: 293.1892, found 293.1894.

12. Reaction profile for the borylation reaction

A stock solution of pinacol (354 mg, 3 mmol, 3 equiv) and triethylamine (1.4 mL, 10 mmol, 10 equiv) in 3 mL CDCl₃ were prepared beforehand in a glovebox. The stock solution was distributed in 15 sample vials (0.3 mL in each vial). A magnetic stir bar was added to each

vial and the resulting solution was continuously stirred.

To a dry sample vial in a glovebox, **1a** (171 mg, 1.0 mmol, 1 equiv), tetramethylpyrazine (163 mg, 1.2 mmol, 1.2 equiv), mesitylene (70 μ L, 0.5 mmol, 0.5 equiv) and CDCl₃ (2.5 mL) were added. Neat BBr₃ (285 μ L, 3.0 mmol, 3 equiv) was then quickly added to the reaction mixture in one portion while the stirring continued. From the reaction mixture, 15 fractions (each 0.2 mL) were obtained at regular intervals (1 min, 2.5 min, 5 min, 7.5 min, 10 min, 12.5 min, 15 min, 17.5 min, 20 min, 22.5 min, 25 min, 27.5 min, 30 min, 32.5 min, 35 min) and each fraction was immediately injected into a vial that contained pinacol and NEt₃ that had been prepared beforehand. All of these reactions were stirred for another 30 min at room temperature. CDCl₃ (0.5 mL) and H₂O (0.5 mL) was then added to the reaction mixtures. ¹H NMR spectra were obtained for the CDCl₃ layer. The yield of the desired product was determined by quantitative ¹H NMR analysis and the data are given below. Yield (%) vs time (min) plots are given in Figure S2.

Figure S2. Yield (%) vs. time (min) reaction profile for directed metal-free *ortho*-C-H borylation of 2-pyrimidylanilines

13. Competition reaction

To a dry sample vial in a glovebox, **10a** (22 mg, 0.1 mmol, 1 equiv), **18a** (21 mg, 0.1 mmol, 1 equiv), tetramethylpyrazine (16 mg, 0.12 mmol, 1.2 equiv), and DCE (0.5 mL) were added. BBr₃ (0.3 mmol, 3 equiv; in the form of a 1 mol/L solution in DCM) was added dropwise into the reaction mixture with stirring and the reaction mixture was stirred for 4 h at room temperature. The reaction was quenched with pinacol (35 mg, 0.3 mmol, 3 equiv) and triethylamine (0.14 mL, 1.0 mmol, 10 equiv), and stirred for another 2 h at room temperature. After the reaction reached completion, the volatiles were removed unde reduced pressure and the crude mixture was dissolved in CDCl₃ (1 mL) and H₂O (1 mL). Mesitylene (7.0 μ L, 0.05 mmol, 0.5 equiv) was added into the mixture and an ¹H NMR spectrum was obtained on the CDCl₃ layer. The yields of **10b** and **18b** were determined by quantitative ¹H NMR analysis.

Another competition reaction similar to that described above, was performed between **2a** and **22a**. The results are presented in below Scheme.

14. NMR studies

The reaction of tetramethylpyrazine and BBr₃ resulted in only one NMR signal which appeared in the negative region, and corresponds to the formation of the adduct complex (49). The signal for a similar adduct complex Br₃B•pyridine was reported to appear at $\delta = -7.8$.⁶

A similar signal was also observed in the case of the reaction of 2-pyrimidylaniline **1a** with BBr₃, which could be attributed to the formation of the adduct complex **50**. Unfortunately, we were not able to detect the exact species that is responsible for the reaction, due to the speed of the reaction.

Figure S3. Reaction of 2-pyrimidylaniline and BBr₃ (top) and reaction of tetramethylpyrazine and BBr₃ (bottom).

15. NMR spectra of starting materials

¹H NMR spectrum of **11a** (400 MHz, CDCl₃):

¹³C NMR spectrum of **11a** (101 MHz, CDCl₃):

¹H NMR spectrum of **12a** (400 MHz, CDCl₃):

¹³C NMR spectrum of **12a** (101 MHz, CDCl₃):

¹H NMR spectrum of **14a** (400 MHz, CDCl₃):

¹³C NMR spectrum of **14a** (101 MHz, CDCl₃):

¹H NMR spectrum of **21a** (400 MHz, CDCl₃):

¹³C NMR spectrum of **21a** (101 MHz, CDCl₃):

¹H NMR spectrum of **25a** (400 MHz, CDCl₃):

¹³C NMR spectrum of **25a** (101 MHz, CDCl₃):

¹H NMR spectrum of **26a** (400 MHz, CDCl₃):

¹³C NMR spectrum of **26a** (101 MHz, CDCl₃):

¹H NMR spectrum of **29a** (400 MHz, CDCl₃):

¹³C NMR spectrum of **29a** (101 MHz, CDCl₃):

¹H NMR spectrum of **30a** (400 MHz, CDCl₃):

¹H NMR spectrum of **31a** (400 MHz, CDCl₃):

¹³C NMR spectrum of **31a** (101 MHz, CDCl₃):

¹H NMR spectrum of **32a** (400 MHz, CDCl₃):

16. NMR spectra of products

¹H NMR spectrum of **1b** (400 MHz, CDCl₃):

¹H NMR spectrum of **2b** (400 MHz, CDCl₃):

¹³C NMR spectrum of **2b** (101 MHz, CDCl₃):

¹¹B NMR spectrum of **2b** (128 MHz, CDCl₃):

¹³C NMR spectrum of **3b** (101 MHz, CDCl₃):

¹H NMR spectrum of **4b** (400 MHz, CDCl₃):

¹³C NMR spectrum of **4b** (101 MHz, CDCl₃):

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 f1 (ppm)

¹H NMR spectrum of **5b** (400 MHz, CDCl₃):

¹³C NMR spectrum of **5b** (101 MHz, CDCl₃):

¹³C NMR spectrum of **6b** (101 MHz, CDCl₃):

¹³C NMR spectrum of **7b** (101 MHz, CDCl₃):

¹³C NMR spectrum of **8b** (101 MHz, CDCl₃):

¹H NMR spectrum of **9b** (400 MHz, CDCl₃):

¹³C NMR spectrum of **9b** (101 MHz, CDCl₃):

¹H NMR spectrum of **10b** (400 MHz, CDCl₃):

¹³C NMR spectrum of **10b** (101 MHz, CDCl₃):

¹³C NMR spectrum of **11b** (101 MHz, CDCl₃):

¹³C NMR spectrum of **12b** (101 MHz, CDCl₃):

¹³C NMR spectrum of **13b** (101 MHz, CDCl₃):

¹³C NMR spectrum of **14b** (101 MHz, CDCl₃):

¹H NMR spectrum of **15b** (400 MHz, CDCl₃):

¹³C NMR spectrum of **15b** (101 MHz, CDCl₃):

¹⁹F NMR spectrum of **15b** (376 MHz, CDCl₃):

¹H NMR spectrum of **16b** (400 MHz, CDCl₃):

¹³C NMR spectrum of **16b** (101 MHz, CDCl₃):

¹⁹F NMR spectrum of **16b** (376 MHz, CDCl₃):

¹³C NMR spectrum of **17b** (101 MHz, CDCl₃):

200 180 160 140 120 100 60 40 20 0 -10 f1 (ppm) -30 -50 -70 -90 -120 -150 -180 80

¹¹B NMR spectrum of **17b** (128 MHz, CDCl₃):

¹³C NMR spectrum of **18b** (101 MHz, CDCl₃):

¹¹B NMR spectrum of **18b** (128 MHz, CDCl₃):

---5.85

¹H NMR spectrum of **19b** (400 MHz, CDCl₃):

¹³C NMR spectrum of **19b** (101 MHz, CDCl₃):

¹H NMR spectrum of **20b** (400 MHz, CDCl₃):

¹³C NMR spectrum of **20b** (101 MHz, CDCl₃):

¹¹B NMR spectrum of **20b** (128 MHz, CDCl₃):

¹³C NMR spectrum of **21b** (101 MHz, CDCl₃):

¹H NMR spectrum of **22b** (400 MHz, CDCl₃):

¹³C NMR spectrum of **22b** (101 MHz, CDCl₃):

¹H NMR spectrum of **23b** (400 MHz, CDCl₃):

¹³C NMR spectrum of **23b** (101 MHz, CDCl₃):

¹³C NMR spectrum of **24b** (101 MHz, CDCl₃):

¹H NMR spectrum of **25b** (400 MHz, CDCl₃):

¹³C NMR spectrum of **25b** (101 MHz, CDCl₃):

¹³C NMR spectrum of **26b** (101 MHz, CDCl₃):

¹³C NMR spectrum of **27b** (101 MHz, CDCl₃):

¹⁹F NMR spectrum of **27b** (376 MHz, CDCl₃):

----59.58

¹H NMR spectrum of **28b** (400 MHz, CDCl₃):

¹³C NMR spectrum of **28b** (101 MHz, CDCl₃):

¹H NMR spectrum of **29b** (400 MHz, CDCl₃):

¹³C NMR spectrum of **29b** (101 MHz, CDCl₃):

¹H NMR spectrum of **30b** (400 MHz, CDCl₃):

¹³C NMR spectrum of **30b** (101 MHz, CDCl₃):

¹H NMR spectrum of **31b** (400 MHz, CDCl₃):

¹³C NMR spectrum of **31b** (101 MHz, CDCl₃):

¹H NMR spectrum of **32b** (400 MHz, CDCl₃):

¹³C NMR spectrum of **32b** (101 MHz, CDCl₃):

¹H NMR spectrum of **33** (400 MHz, CDCl₃):

¹³C NMR spectrum of **33** (101 MHz, CDCl₃):

¹H NMR spectrum of **34** (400 MHz, CDCl₃):

¹³C NMR spectrum of **34** (101 MHz, CDCl₃):

¹¹B NMR spectrum of **34** (128 MHz, CDCl₃):

¹³C NMR spectrum of **35** (101 MHz, CDCl₃):

¹H NMR spectrum of **36** (400 MHz, CDCl₃):

¹³C NMR spectrum of **36** (101 MHz, CDCl₃):

¹³C NMR spectrum of **37** (101 MHz, CDCl₃):

¹H NMR spectrum of **38** (400 MHz, CDCl₃):

¹³C NMR spectrum of **38** (101 MHz, CDCl₃):

+																			
200	180	160	140	120	100	80	60	40	20	f1 (0 (ppm	-10 1)	-30	-50	-70	-90	-120	-150	-180

¹H NMR spectrum of **39** (400 MHz, CDCl₃):

¹³C NMR spectrum of **39** (101 MHz, CDCl₃):

¹H NMR spectrum of **40** (400 MHz, CDCl₃):

S108
¹H NMR spectrum of **41** (400 MHz, CDCl₃):

¹³C NMR spectrum of **41** (101 MHz, CDCl₃):

¹¹B NMR spectrum of **41** (128 MHz, CDCl₃):

S110

¹³C NMR spectrum of **42** (101 MHz, CDCl₃):

¹⁹F NMR spectrum of **42** (376 MHz, CDCl₃):

ec: 65-----

¹H NMR spectrum of **43** (400 MHz, CDCl₃):

¹³C NMR spectrum of **43** (101 MHz, CDCl₃):

S112

¹H NMR spectrum of **44** (400 MHz, CDCl₃):

¹³C NMR spectrum of **44** (101 MHz, CDCl₃):

¹⁹F NMR spectrum of **44** (376 MHz, CDCl₃):

¹H NMR spectrum of **46** (400 MHz, CDCl₃):

¹³C NMR spectrum of **46** (101 MHz, CDCl₃):

¹H NMR spectrum of **47** (400 MHz, CDCl₃):

¹³C NMR spectrum of **48** (101 MHz, CDCl₃):

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 f1 (ppm)

References

- 1 L. Ackermann and A. V. Lygin, *Org. Lett.*, 2012, **14**, 764–767.
- 2 X. Huang, S. Xu, Q. Tan, M. Gao, M. Li and B. Xu, *Chem. Commun.*, 2014, **50**, 1465–1468.
- 3 G. Qian, B. Liu, Q. Tan, S. Zhang and B. Xu, *European J. Org. Chem.*, 2014, 4837–4843.
- 4 X.-F. Cui, Z.-H. Ban, W.-F. Tian, F.-P. Hu, X.-Q. Zhou, H.-J. Ma, Z.-Z. Zhan and G.-S. Huang, *Org. Biomol. Chem.*, 2019, **17**, 240–243.
- 5 S. M. Khake and N. Chatani, Org. Lett., 2020, 22, 3655–3660.
- 6 M. J. Farquharson and J. S. Hartman, *Can. J. Chem.*, 1996, **74**, 1309–1320.