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I  Neural network and dataset details 
 
 The code for generating the synthetic datasets, the hand-drawn datasets, and the image-to-

SMILES neural network can be found here: https://github.com/mtzgroup/ChemPixCH. Detailed 

output of the model for each of the test set molecules can be found in Test-set-predictions.zip, 

also available as ESI for this paper. This zipfile contains a separate image for each test set 

molecule, containing the handwritten image, the ensemble model predicted molecules (including 

the SMILES string and RDKit-rendered image), correctness of the prediction, number of votes 

for the prediction and validity of the predicted SMILES string.  

 Chemical structure recognition is a supervised learning problem: each input is associated 

with an output label. During the training process, a defined loss function, which depends on the 

error between the predicted NN label and the reference label, is minimized. Our image-to-

SMILES network is an example of an encoder-decoder network: the input is encoded to create a 

compressed representation of the data, which is subsequently decoded to the predicted output. 

The key idea behind these encoder-decoder workflows is the ability to learn a mapping between 

two different representations of the same data by compressing it to its key “features” through the 

central bottleneck called the latent space. One of the properties of encoder-decoder frameworks 

that has made them so successful for supervised learning is the ability for the same network 

architecture to be used for many different applications by simply providing data specific to that 

application. For example, a CNN-LSTM network can be applied to chemical structure 

recognition, image caption generation,1 mathematical formula recognition,2 optical character 

recognition (OCR) in natural scenes3 and hand-writing recognition4 to name a few. Moreover, 

since the encoder and decoder networks are swappable components, they generalize well beyond 

the CNN-LSTM applications: machine translation can be achieved by simply swapping the CNN 

with another LSTM to form a sequence-to-sequence model for instance. Autoencoders are a 

special case of encoder-decoder networks in which the target output space is equal to the input 

space, used as a way of performing dimensionality reduction.  

 In our image-to-SMILES network, the LSTM decoder uses an attention mechanism to 

improve the accuracy of the output text sequence.1, 5-6 The attention mechanism learns a 

probability mask over the image by calculating a “context vector” which acts as a dynamic 

pointer to relevant areas of the image during decoding. This reduces the loss of higher-level 
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image features at the encoder bottleneck. For example, a high attention score for pixels showing 

two parallel lines in the chemical structure might prompt “=” to be output from the LSTM.  

 In addition to attention, beam search was also used in the decoding layers. During training, 

recurrent neural networks (RNNs) output predicted characters of the SMILES string and pass 

them back into the network, which outputs the next predicted character and so on. Applying 

beam search to an RNN allows the network to keep track of the strings with the k highest 

cumulative probability at each decoding step, while the other predictions are pruned. The final 

output of the NN is a list of k SMILES strings, with the highest ranked prediction being the first 

entry. A greedy decoder would have k = 1, meaning that only the highest probability characters 

are used at each step.  

 The CNN encoder architecture outlined in Table S1 was implemented. An LSTM with 512 

units and embedding dimension of size 80 was used for decoding, with beam search (k = 5) and 

attention mechanism intermediary vector dimension of 512. We used the Adam optimizer7 and a 

batch size of 20 for training. Network weights were saved based on the validation set’s 

perplexity, p, calculated as 

𝑝 = − exp
𝐻!!!"#
𝑛!!!"#

 

where 𝐻!!!"# is the sum of the cross-entropy loss for the characters in the validation set, and 

𝑛!!!"# is the number of characters in the validation set. A learning rate of 1x10-4 was used for all 

training runs and the model was implemented in Tensorflow.8 We define the NN accuracy as the 

proportion of molecules predicted exactly correctly, i.e., the predicted SMILES matches the 

target SMILES character-by-character. 

 
Table S1. Encoder architecture used in the image-to-SMILES neural network. “valid” refers to 

no padding, and “same” refers to even padding to the left/right or up/down to produce the same 

shape as the input.  

Layer #filters Kernel size Pool size Strides Padding Activation 

Conv2D 64 (3,3) - (1,1) “same” ReLU 

Max Pool - - (2,2) (2,2) “same” - 

Conv2D 128 (3,3) - (1,1) “same” ReLU 

Max Pool - - (2,2) (2,2) “same” - 

Conv2D 256 (3,3) - (1,1) “same” ReLU 
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Conv2D 256 (3,3) - (1,1) “same” ReLU 

Max Pool - - (2,1) (2,1) “same” - 

Conv2D 512 (3,3) - (1,1) “same” ReLU 

Max Pool - - (1,2) (1,2) “same” - 

Conv2D 512 (3,3) - (1,1) “valid” ReLU 
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II     Data collection app 
 

 
 
Figure S1. (a) Screen captures of the data collection web application. (b) Examples of 
photographs of hand-drawn chemical structures collected by the application. (c) Images collected 
from the app were checked against the RDKit structure to ensure that the data was accurate.  
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III     Image processing 
 

 
Figure S2. Demonstration of the brittleness of background removal (2nd row) and edge detection 
(3rd row) pre-processing algorithms on representative examples from the hand-drawn dataset (1st 
row). The algorithms break down when there are shadows, page features such as lines, or faint 
pen marks.   
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Table S2. Descriptions of image transformation functions used in augment molecule, augment 
background and degrade image pipelines. OpenCV and PIL python packages were used for all 
transformations. 

Name Description 

Rotate Rotate image randomly from 0 to 360° and fill blank space with white for (augment 
molecule) and reflected image (augment background) 

Resize Resize image randomly to (N,N) pixels where N is between 200 and 300. 

Blur Convolves image with kernel 

Dilate Dilate image 

Erode Erodes image 

Aspect_ratio Randomly adjusts the image aspect ratio by adding a border to top, bottom, left and 
right of image with width up to 50 pixels. 

Affine Applies as random affine transform with  +/- 20 pixels from each corner  

Flip_V Flips the image vertically with a 50% probability  

Flip_H Flips the image vertically with a 50% probability  

Distort Applies a random distortion to the image using a set of nine different distortion options 

Translate 
Augment molecule: generates bounding box around molecule and translates randomly 
up to the edge of the image. Augment background: randomly translate image +/- 100 
pixels and reflect image in the shifted portion. 

Crop Crop image on left, right, top and bottom up to 50 pixels each. 

Border Add a border on left, right, top and bottom of up to 40 pixels each. Reflect image to fill 
border 80% of the time, and 20% of the time use a constant value taken from the image 

Salt+pepper Set random pixels in image to 1 and 0 in an even ratio 

Scale Resize image up to half its size to 1.5x its size and resize back to (256,256) 

Contrast Randomly enhance (80%) or decrease (20%) the contrast  

Quantize Apply image quantization 

Sharpness Increase or decrease sharpness with equal probability.  

Darken Subtract value between 0 and 50 from image 

Invert Invert the image bitwise 
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Figure S3. Representative examples taken from dataset of background images (greyscale). These 
images are added to augmented RDKit images during the synthetic data generation workflow. 

 

The background images are randomly selected from a dataset of 1052 photographs 

(Figure S3). This backgrounds dataset was collected relatively easily as it did not require 

labelling. By adding the photographed backgrounds to a known molecule, a labelled synthetic 

dataset with realistic background textures and photograph features is produced. Since it is 

common for the act of labelling data to be the most time intensive step of dataset generation, 

sourcing a large dataset of an unlabelled component of the data and combining it with a synthetic 

labelled component can be an inexpensive way of generating synthetic data with realistic 

features.  
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Figure S4. Example of the same molecule (SMILES: CC(C)C=CC=C) being passed through the 
synthetic data pipeline many times.  
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Representative examples of the synthetic and real hand-drawn datasets are compared in 

Figure S5. By eye, the synthetic images strongly resemble the hand-drawn data. However, since 

neural networks read the images as an array of pixel values, an important comparison metric is 

the frequency of the pixel values found in the images. We do this by comparing histograms of 

pixel intensity, which ranges from 0 (black) to white (255), for the synthetic and hand-drawn 

data. It can be seen that the synthetic data often has less of a smooth, continuous pixel count and 

less texture than the real-life data. Also, the frequency of pixel intensities is generally higher for 

the synthetic data in comparison to the hand-drawn data. These differences are due to the heavy 

augmentations of the backgrounds in the synthetic data pipeline (e.g., cropping and adding 

borders) which results in reduced image texture. This discrepancy could be reduced by 

increasing the size of the background dataset such that less aggressive augmentations would be 

required. 

 

 
Figure S5. Comparison of representative images taken from synthetic dataset (left) and real-life 
hand-drawn dataset (right) and their pixel count histogram calculated by flattening the greyscale 
images and calculating the frequency of pixel intensities (values from 0 to 255 where 0 is black 
and 255 is white). 
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Analysis of the pixel counts in Figure S5 highlights the dangers of over-augmentation. A 

compromise must be reached between augmenting enough to prevent overfitting, but not so 

much that the data no longer resembles the target. An example of an overly-augmented 

background image can be found in Figure S6, which was generated with heavily cropped 

backgrounds. Since we have access to only a limited number of background images, we choose 

to augment our synthetic data relatively aggressively. However, we limit overly excessive 

cropping and resizing so not to remove completely the continuous texture of the image. Heavy 

augmentation can also lead to uninterpretable data, for example, molecules may be distorted such 

that bonds cannot be distinguished (Figure S6). This can confuse the training process and result 

in an increased error rate. 

 
Figure S6. Demonstrating the effects of over-augmentation on data. Top: Overly-augmented 
molecule via heavy distortion leads to an indiscernible molecule. Bottom: Overly-augmented 
background image via excessive cropping shows the lack of structure and high value pixel 
intensities of the image. 
  



Weir et al. – Hand-drawn hydrocarbon recognition SI – Page S 12 

IV Neural network training 

In order to examine how each stage of the synthetic data generation workflow (Figure 5a) affects 

training, we train our CNN-LSTM network with data from each stage of the pipeline. Datasets of 

200,000 images from each of the four steps in the workflow were split into train, validation and 

test sets as detailed in the Methods section. The results of the training are presented in Figure 

S7a. As the steps proceed through the synthetic data generation pipeline, the non-uniformity of 

the data increases, making it more complex, and hence more challenging for the NN to learn. As 

a result, slower optimization and a reduction in final accuracy is observed (Figure S9). The 

image-to-SMILES network is tested on the same datatype used for training (e.g. if the network 

was trained with RDKit’-aug data, it would also be tested on RDKit’-aug data) as well as our 

real-life hand-drawn dataset. The test set accuracy of the hand-drawn data is seen to increase 

from ~8% to ~47% as we proceed through the steps in the data generation pipeline, illustrating 

that each stage performs the desired effect of bringing the computer-generated data and the hand-

drawn data distributions closer together.  

 From Figure S7a, it can be seen that augmenting the images increases the hand-drawn 

hydrocarbon recognition accuracy by ~20 percentage points. Moreover, degrading the images 

increases the accuracy from ~30% to nearly 50%. The change in accuracy when adding in 

backgrounds is insignificant in comparison to the addition of augmentation and degradation. This 

is a surprising result, since observation by human eye would suggest the opposite.  

 Next, we investigate how the size of our synthetic dataset (RDKit'-aug-bkg-deg) impacts the 

training and test set accuracies. The network was trained with datasets of size 50,000, 100,000, 

200,000 and 500,000 images (split between training, validation and test sets according to the 

Methods section). As the number of images in the synthetic dataset increases, the out-of-sample 

recognition accuracy on the synthetic data grows from 0% to nearly 90% (Figure 7b). It can be 

seen that the difference between the accuracy of the synthetic and hand-drawn test sets increases 

with dataset size, demonstrating how the network begins to overfit to the synthetic data. 

Remarkably, the NN trained with 500,000 images achieves an accuracy of over 50% on real-

world hand-drawn data, despite not having been exposed to hand-drawn data at any point during 

the learning process. This result suggests that the auxiliary data bears significant resemblance to 

the target datatype, and hence assigns some confidence that the workflow developed in the 



Weir et al. – Hand-drawn hydrocarbon recognition SI – Page S 13 

previous section behaves as desired. For reference, training with 500,000 raw RDKit images 

results in a real-life hand-drawn hydrocarbon recognition accuracy of 0%.  

 

 
Figure S7. Training experiments with synthetic data showing the test set accuracy of the 
datatype used for training (x) and hand-drawn data (o). (a) Results of training with 200,000 
images from each stage of the synthetic data generation pipeline: modified RDKit images 
(RDKit'), augmented RDKit images (RDKit'-aug), augmented RDKit images with background 
addition (RDKit'-aug-bkg), and augmented RDKit images with background addition and 
degradation (RDKit'-aug-bkg-deg). (b) Results of training with different sized training sets of the 
final synthetic data (RDKit'-aug-bkg-deg). Equivalent training runs in the two sets of 
experiments are indicated (*).  
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Figure S8. Recognition accuracy of the hand-drawn hydrocarbon test set of neural network 
trained with increasing sized synthetic training sets and hand-drawn hydrocarbon validation set.  
 
 

 
 
Figure S9. The accuracy of the validation set (measured as percentage of exactly matching 
predicted and reference SMILES) during the neural network training (measured in number of 
epochs) for (a) stages of the synthetic data generation pipeline and (b) different sized training 
sets of the synthetic data (RDKit’-aug-bkg-deg). The weights are saved according to maximum 
perplexity, indicated with triangle markers.  
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 Since the model is constructed based on only the data used for training, if the training data 

more closely matches the desired testing data the model will perform better. After each epoch, 

the NN weights are tested on the validation set to track the model’s accuracy as the training 

proceeds. Weights that achieve the best results are saved according to the network’s perplexity 

score, a measure of the uncertainty of the prediction. Although the validation set is not directly 

used for optimizing the weights, it can be thought of as a “target” that the NN is aiming for and 

therefore should be equivalent to the desired use case. As a result, we expect that adding hand-

drawn structures to the training and validation sets will increase the hand-drawn molecule 

recognition accuracy. 
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Figure S10. The accuracy of the validation set (measured as percentage of exactly matching 
predicted and reference SMILES) during the neural network training (measured in number of 
epochs). (a) Varying sized synthetic  data training  sets and hand-drawn validation set. (b) 
Varying ratios of synthetic data to augmented hand-drawn data training set and validation set of 
hand-drawn hydrocarbons. (c) Pre-training with synthetic data and a synthetic dataset  (orange) 
or hand-drawn validation set (blue) before fine-tuning with 90:10 synthetic:augmented hand-
drawn training dataset and hand-drawn validation set. The weights are saved according to 
maximum perplexity, indicated with triangle markers and point at which weights are restarted for 
fine-tuning is indicated  (black dotted line). 
 

Va
lid

at
io

n 
se

t a
cc

ur
ac

y [
%

]
Va

lid
at

io
n 

se
t a

cc
ur

ac
y [

%
] 50 000 100 000 200 000 500 000

Weights saved

0:100 10:90 50:50 90:10

Weights saved

0:100

(a)

(b)

Va
lid

at
io

n 
se

t a
cc

ur
ac

y [
%

]

Training progress [epochs]

(c)
Weights saved

Pre-training

w
eights restarted

Training data
Synthetic

Fine-tuning

Hand-drawn validation set

Hand-drawn data in training set

Training data
90:10

Hand-drawn:Synthetic

Hand-drawn validation set

Synthetic validation set 



Weir et al. – Hand-drawn hydrocarbon recognition SI – Page S 17 

 
References 
1. Xu, K.; Ba, J.; Kiros, R.; Cho, K.; Courville, A.; Salakhudinov, R.; Zemel, R.; Bengio, Y. 
In Show, attend and tell: Neural image caption generation with visual attention, International 
conference on machine learning, 2015; pp 2048-2057. 
2. Deng, Y.; Kanervisto, A.; Ling, J.; Rush, A. M. In Image-to-markup generation with 
coarse-to-fine attention, International Conference on Machine Learning, PMLR: 2017; pp 980-
989. 
3. Shi, B.; Bai, X.; Yao, C., An end-to-end trainable neural network for image-based 
sequence recognition and its application to scene text recognition. IEEE Trans. Patt. Anal. Mach. 
Learn. 2016, 39 (11), 2298-2304. 
4. Ingle, R. R.; Fujii, Y.; Deselaers, T.; Baccash, J.; Popat, A. C. In A scalable handwritten 
text recognition system, 2019 International Conference on Document Analysis and Recognition 
(ICDAR), IEEE: 2019; pp 17-24. 
5. Bahdanau, D.; Cho, K.; Bengio, Y., Neural machine translation by jointly learning to 
align and translate. arXiv preprint arXiv:1409.0473 2014. 
6. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A. N.; Kaiser, Ł.; 
Polosukhin, I. In Attention is all you need, Advances in neural information processing systems, 
2017; pp 5998-6008. 
7. Kingma, D. P.; Ba, J., Adam: A method for stochastic optimization. arXiv preprint 
arXiv:1412.6980 2014. 
8. Abadi, M. i.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean, J.; Devin, M.; Ghemawat, 
S.; Irving, G.; Isard, M.; Kudlur, M.; Levenberg, J.; Monga, R.; Moore, S.; Murray, D. G.; 
Steiner, B.; Tucker, P.; Vasudevan, V.; Warden, P.; Wicke, M.; Yu, Y.; Zheng, X. In 
TensorFlow: A System for Large-Scale Machine Learning, Savannah, GA, 2016/11//; 
{USENIX} Association: Savannah, GA, 2016; pp 265-283. 
 


