Supporting Information

Ratiometric Photoelectrochemical Microsensor Based on SmallMolecule Organic Semiconductor for Reliable in Vivo Analysis

Yunhui Xiang, ${ }^{\text {a }}$ Yao Kong, ${ }^{\text {b }}$ Wenqi Feng, ${ }^{\text {a }}$ Xiaoxue Ye, ${ }^{* b}$ and Zhihong Liu, ${ }^{\text {a }}$

[^0]
Table of Contents

Experimental section 4
Scheme S1. 6
Figure S1. 7
Figure S2. 8
Figure S3 9
Figure S4. 10
Figure 55. 11
Figure S6. 12
Scheme S2. 13
Figure $\mathbf{S 7}$ 14
Figure $\mathbf{S 8}$. 15
Table S1. 16
Table S2. 17
Figure S9. 18
Figure S10 19
Figure S11 20
Figure S12. 21
Scheme S3 22
Figure S13. 23
Figure S14. 24
Figure S15. 25
Figure S16. 26
Figure S17 27
Figure S18. 28
Figure S19 29
Figure S20. 30
Figure S21. 31
Figure $\mathbf{S 2 2}$ 32
Table S3. 33
Figure S23 34
Figure S24 34
Figure S25. 36
Figure S26. 37
Figure S27. 38
Figure $\mathbf{S 2 8}$ 39
Scheme S4. 40
Figure S29. 41
Scheme S5 42
Figure S30. 43
Figure S31 44
Figure S32. .. 45
Figure S33. .. 46
Reference... 47

Experimental section

Reagents and Solutions. Benz[cd]indol-2(1H)-one, Cyclohexanone, 2-Hydroxy-4-Methoxybenzaldehyde, Phosphorus oxychloride, 2,4Dinitrobenzenesulfonyl chloride, Acetyl chloride, 3-Bromopropyne, 3-(azidopropyl)triethoxysilane, N-methyl-D-aspartic acid (NMDA), 4,4'-Diisothiocyanatostilbene-2,2'-disulfonic acid disodium salt hydrate (DIDS), ascorbate (AA), dopamine (DA), uric acid (UA), 3,4dihydroxyphenylacetic acid (DOPAC), 5-hydroxytryptamine (5-HT), epinephrine (E), and norepinephrine (NE) etc. were all purchased from Sigma and the solutions were prepared just before use. Unless otherwise stated, all reagents were purchased from commercial suppliers and used without further purification. All aqueous solutions were prepared by using ultrapure water with a resistivity of $18.25 \mathrm{M} \Omega$ (purified by Milli-Q system supplied by Millipore). The pH of the buffer solution was controlled by a digital pH meter (FE20, Mettler-Toledo). Artificial cerebrospinal fluid (aCSF) was prepared as reported previously. ${ }^{1}$ In the selectivity test, different reactive oxygen species (ROS) and reactive nitrogen species (RNS) were produced as follows: Hydroxy radical $(\cdot \mathrm{OH})$ was generated through Fenton Chemistry $\left(\mathrm{Fe}^{2+} / \mathrm{H}_{2} \mathrm{O}_{2}=1: 6\right)$. Peroxynitrite $\left(\mathrm{ONOO}^{-}\right)$stock solution was prepared by a reported method: $\mathrm{HCl}(0.6 \mathrm{M}, 10 \mathrm{~mL})$ was added to a vigorously stirred solution of $\mathrm{NaNO}_{2}(0.6 \mathrm{M}, 10 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}_{2}(0.7 \mathrm{M}, 10 \mathrm{~mL})$ in deionized $\mathrm{H}_{2} \mathrm{O}$ at $0^{\circ} \mathrm{C}$, immediately followed by the rapid addition of $\mathrm{NaOH}(1.5 \mathrm{M}$, 20 mL). Other ROS and RNS were prepared according to literature methods. ${ }^{2}$

Apparatus and Measurements. Mass spectrometry was performed on Ultimate3000\&Compact (Bruker, Germany), LTQ Orbitrap Elite (Thermo Fisher Scientific, America) and Biotech Axima TOF2 (Shimadzu, Japan) mass spectrometers. SEM images and were taken using field emission gun Hitachi S-4800 (Japan) scanning electron microscope operated at 4.0 kV . UV-Vis. spectra were recorded using a UV 2550 UV-Vis spectrophotometer (Shimadzu, Japan). NIR-II fluorescence spectra were excited by an 808-nm laser (Beijing Hi-Tech Optoelectronic Co., Ltd.) and recorded with a fluorometer (Fluorolog-3, Horiba Jobin Yvon, France). Confocal microscopy images of U87 cells were conducted on Zeiss LSM 880 Microscope. In vivo NIR-II fluorescence images were acquired by In-Vivo Master NIR-II fluorescence imaging system (Grand Imaging Technology Co. Ltd., Wuhan).

Method

Optical responses of CyOR in solution. CyOR were dissolved in DMSO and then diluted with PBS/MeCN mixed solution for optical spectra measurement. The final concentration of the $\mathbf{C y O R}$ were all $10 \mu \mathrm{M}$. The absorption spectra and fluorescence spectra of $\mathbf{C y O H}$, CyOMe and CyOAc in $0.1 \mathrm{M} \mathrm{PBS} / \mathrm{MeCN}(\mathrm{pH}=7.4)$ containing $1 \% \mathrm{DMSO}$ were recorded. The absorption changes of $\mathbf{C y O H}$ in 0.1 M PBS/ $\mathrm{MeCN}(6: 4)$ with different pH values $(\mathrm{pH}=3.5,4.0,45,5.0,5.5,6.0,6.5,7.0,7.4,8,8.5$ and 9.0$)$ containing 1% DMSO were recorded. The absorption changes of CyOThiols upon the addition of $500 \mu \mathrm{M}$ Cys in $0.1 \mathrm{M} \mathrm{PBS} / \mathrm{MeCN}(6: 4, \mathrm{pH}=7.4)$ containing 1% DMSO were recorded every 1 min of mixing. The fluorescence changes of CyOThiols upon the addition of different concentrations of Cys in 0.1 M $\operatorname{PBS} / \mathrm{MeCN}(6: 4, \mathrm{pH}=7.4)$ containing 1% DMSO were recorded after 2 min of mixing. The absorption changes of CyOALP upon the addition of $500 \mathrm{U} \cdot \mathrm{L}^{-1} \mathrm{ALP}$ in $0.1 \mathrm{M} \mathrm{PBS} / \mathrm{MeCN}(8: 2, \mathrm{pH}=7.4)$ containing $1 \% \mathrm{DMSO}$ were recorded every 1 min of mixing.
Pretreatment of titanium wires. The titanium wires were soaked in concentrated nitric acid for 12 h , soaked in piranha solution for five minutes and then cleaned with ultrapure water for three times. Next, the hydroxylated titanium wires were placed in an absolute ethyl alcohol solution containing 1 mM 3 -(azidopropyl)triethoxysilane for 24 h . Finally, the obtained titanium wires were washed three times with absolute ethyl alcohol.
Preparation of microelectrodes CyOH/TiWE, CyOMe/TiWE, CyOAc/TiWE, CyOThiols/TiWE and CyOALP/TiWE. The obtained titanium wire was cut into 1 cm length for the next step of microelectrode preparation. 1 mm length of titanium wire was reserved and the rest part was sealed into the glass capillary to obtain microelectrode TiWE. Next, TiWEs were placed in a solution of DMF containing 0.1 mM copper acetate, 1.2 mM AA and $1 \mathrm{mM} \mathbf{C y O H}$ for 12 h . The obtained electrode was cleaned three times with DMF to obtain $\mathbf{C y O H} / \mathrm{TiWE}$. Similarly, the same process was used for the preparation of CyOMe/TiWE, CyOAc/TiWE, CyOThiols/TiWE and CyOALP/TiWE.
Photoelectrochemical experiment. The photoelectrochemical experiments were performed on an electrochemical workstation (CHI 660E, Chenhua Co. Ltd, Shanghai, China) with a two-electrode system, where the platinum wire was used as the counter and reference electrode, TiWE was used as the working electrode. A coaxial optical fiber containing 750-nm and 808-nm beam was employed as light sources with spots size of $1 \mathrm{~cm}^{2}\left(60 \mathrm{~mW} \cdot \mathrm{~cm}^{-2}\right)$.
Cell culture and biocompatibility test. U87 cells were used for cytotoxicity experiment. The cells were seeded on the CyOThiols coated titanium sheet substrates ($1.0 \mathrm{~cm} \times 1.0 \mathrm{~cm} \times 100 \mu \mathrm{M}$), and cultured in Dulbecco's modified Eagle's medium (DMEM) in a petri dish at 37 ${ }^{\circ} \mathrm{C}$ under $5 \% \mathrm{CO}_{2}$ atmosphere for 3 days. The DMEM contained 10% of fetal bovine serum (FBS), and $100 \mathrm{U} \cdot \mathrm{mL}{ }^{-1}$ penicillin/streptomycin. Calcein-AM (live/green cytoplasmic stain), Propidium Iodide (PI) (dead/red nucleic stain) were added to the medium at a final concentration of $3 \mu \mathrm{~g} \cdot \mathrm{~mL}^{-1}$ following the anufacturer's protocols to stain these cells before fluorescence imaging. After staining for 15 min , the residual dyes were washed off. The microphotographs were taken on the confocal fluorescence microscope.
Mice model of drug-induced cytotoxic edema. Local drug delivery by exogenous microinfusion of NMDA was constructed with a silica capillary (4 cm length, $50 \mu \mathrm{~m}$ in inner diameter, $375 \mu \mathrm{~m}$ in outer diameter) bound with the CyOThiols/TiWE in parallel. Infusion solution was delivered from a gastight syringe and pumped through tetrafluoroethylene hexafluoroproene (FEP) tubing by PHD 2000 infusion pumps.
(kd Scientific LEGATO130, USA). NMDA local microinfusion was performed at a perfusion rate of $1.0 \mu \mathrm{~L} \cdot \mathrm{~min}^{-1}$ for 1 min . In inhibitor treatment, the mixture containing $500 \mu \mathrm{M}$ NMDA and 5 mM DIDS was applied at a perfusion rate of $1.0 \mu \mathrm{~L} \cdot \mathrm{~min}^{-1}$ for 1 min .
Mice model of drug-induced epilepsy. KA-induced different stages seizure rats are ignited by injecting different doses of KA. Symptoms of epilepsy in rats were graded by Racine. Racine II stage epilepsy was induced by an injection of $30 \mathrm{mg} \cdot \mathrm{kg}^{-1} \mathrm{KA}$ while Racine III stage epilepsy was induced by injection of $50 \mathrm{mg} \cdot \mathrm{kg}^{-1} \mathrm{KA}$. Rats with facial clonus and rhythmic nodding were classified into Racine II stage. While, rats with facial clonus, rhythmic nodding and myoclonus of forelimbs, but no upright position of hind limbs were classified into Racine III stage. The rats with corresponding symptoms (Racine II stage or Racine III stage) were selected as the experimental group. The control group were intraperitoneal injection with a volume of saline equal to that of the KA injection.
In Vivo Experiments. All animal studies were performed according to the Guidelines for the Care and Use of Laboratory Animals of the Chinese Animal Welfare Committee and approved by the Institutional Animal Care and Use Committee, Wuhan University Center for Animal Experiment, Wuhan, China. The animals were housed on a $12: 12 \mathrm{~h}$ light-dark schedule with food and water ad libitum. The animals were anaesthetized with isoflurane (4% induction, 2% maintenance) through a gas pump (RWD R520, Shenzhen, China) and positioned onto a stereotaxic frame during in vivo experiment. The implanted microelectrodes were implanted into the cortex ($\mathrm{AP}=2.3 \mathrm{~mm}, L=2.4$ mm from bregma, $V=1.5 \mathrm{~mm}$ from skull) or hippocampus ($\mathrm{AP}=3.3 \mathrm{~mm}, \mathrm{~L}=1.5 \mathrm{~mm}$ from bregma, $\mathrm{V}=2.8 \mathrm{~mm}$ from skull) using standard stereotaxic procedures. Platinum wire ($100 \mu \mathrm{~m}$) was embedded in subcutaneous tissue on the brain and used as both counter and reference electrode. The CyOThiols/TiWE was respectively driven by $808 \mathrm{~nm}\left(60 \mathrm{~mW} \mathrm{~cm}^{-2}\right)$ and $750 \mathrm{~nm}\left(60 \mathrm{~mW} \mathrm{~cm}^{-2}\right)$ coaxial laser at a bias voltage of $0 \mathrm{~V}\left(\mathrm{Vs} \mathrm{Pt}^{0}\right)$.
a)

d)

Scheme S1. Synthetic routes CyOMe, CyOH and CyOAc .

Synthesis of 1a. $\mathrm{NaH}(3.6 \mathrm{~g}, 150 \mathrm{mmol})$ was added into a solution of benzo[cd]indol-2(1H)-one ($8.5 \mathrm{~g}, 50.2 \mathrm{mmol})$ in 150 mL of anhydrous DMF under Ar atmosphere. Then the mixture was cooled to $0^{\circ} \mathrm{C}$, and 3-Bromopropyne ($7.4 \mathrm{~g}, 62.2 \mathrm{mmol}$) was added dropwise. The mixture was stirred at room temperature for 3 h and then extracted with ethyl acetate, washed with brine, and concentrated. The crude product was then purified by column chromatography to give a yellow solid of $1 \mathrm{a}(9.6 \mathrm{~g}, 46.3 \mathrm{mmol} 92.2 \%) .1 \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.08(\mathrm{~d}, \mathrm{~J}$ $=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.03(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{dd}, \mathrm{J}=8.1,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{dd}, \mathrm{J}=8.4,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{~d}, \mathrm{~J}=$ $7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.74(\mathrm{~d}, \mathrm{~J}=2.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.28(\mathrm{t}, \mathrm{J}=2.5 \mathrm{~Hz}, 1 \mathrm{H})$.

Figure S1. ${ }^{1} \mathrm{H}$ NMR spectrum (in CDCl_{3}) of an equivalent mixture of compound 1 a .

Synthesis of 2a. Methylmagnesium chloride (3 M solution in THF, $4 \mathrm{~mL}, 12 \mathrm{mmol}$) was added dropwise to a solution of 1 a ($2 \mathrm{~g}, 9.7 \mathrm{mmol}$) in 40 mL anhydrous THF under Ar atmosphere. After stirring at $60^{\circ} \mathrm{C}$ for 1 h , the mixture was cooled down and hydrochloric acid ($2 \mathrm{M}, 12$ $\mathrm{mL}, 24 \mathrm{mmol}$) was added to the mixture. Then THF was removed by vacuum distillation, and KI solution ($1 \mathrm{M}, 10 \mathrm{~mL}$) was added to obtain orange solid. The crude product was filtered, washed with water and ethyl acetate, and dried. ($2.4 \mathrm{~g}, 7.2 \mathrm{mmol}, 74 \%$). 1H NMR (400 MHz , DMSO) $\delta 7.70(\mathrm{dd}, \mathrm{J}=11.9,7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.54(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $5.16(\mathrm{~s}, 1 \mathrm{H}), 4.71(\mathrm{~s}, 1 \mathrm{H}), 4.65(\mathrm{~d}, \mathrm{~J}=1.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.18(\mathrm{~s}, 1 \mathrm{H})$.

Figure S2. ${ }^{1} \mathrm{H}$ NMR spectrum (in DMSO) of an equivalent mixture of compound $\mathbf{2 a}$.

Synthesis of 2-bromocyclohex-1-ene-1-carbaldehyde (1b). $\mathrm{PBr}_{3}(12.4 \mathrm{ml}, 130.5 \mathrm{mmol})$ was dropwise added to a mixture of DMF (11.2 mL) and chloroform $(50 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. Then the mixture was stirred for 30 min before the addition of cyclohexanone ($5 \mathrm{~mL}, 48.4 \mathrm{mmol}$). The resulting solution was stirred for 16 h at room temperature, before it was poured into 50 mL of ice water, neutralized with solid NaHCO_{3}, and extracted with dichloromethane. The layers were separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuum to provide a yellow oil, compound $1 \mathrm{~b}(7.8 \mathrm{~g}, 41.2 \mathrm{mmol}, 81 \%)$, which was used directly in the next step.

Synthesis of 6-methoxy-2, 3-dihydro-1H-xanthene-4-carbaldehyde (2b). 2-hydroxy-4-methoxybenzaldehyde (5.8 g , 38 mmol) and $\mathrm{K}_{2} \mathrm{CO}_{3}(5.8,42 \mathrm{mmol})$ were added to compound $1 \mathrm{~b}(7.8 \mathrm{~g}, 41.3 \mathrm{mmol})$ in DMF $(40 \mathrm{~mL})$ at $25^{\circ} \mathrm{C}$. The mixture was stirred for 16 h at $37{ }^{\circ} \mathrm{C}$. Then, 200 ml water was added to the reaction system, and the product was extracted with $400 \mathrm{~mL}(2 \times 200 \mathrm{~mL})$ ethyl acetate (AcOEt). The organic layer was washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 150 \mathrm{~mL})$ and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuum. Purification by silica gelcolumn chromatography $(\mathrm{AcOEt} /$ Petroleum ether $(\mathrm{PE})=20: 1)$ provided compound 2 b as a deep yellow solid $(5.6 \mathrm{~g}, 60.8 \%) .{ }^{1} \mathrm{H} \mathrm{NMR}$ $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.30(\mathrm{~s}, 1 \mathrm{H}), 7.07(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.66-6.63(\mathrm{~m}, 3 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 2.57-2.53(\mathrm{~m}, 2 \mathrm{H}), 2.43(\mathrm{t}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H})$, $1.73-1.67(\mathrm{~m}, 2 \mathrm{H})$.

Figure S3. ${ }^{1} \mathrm{H}$ NMR spectrum (in CDCl_{3}) of an equivalent mixture of compound $\mathbf{2 b}$.

Synthesis of CyOMe. Anhydrous $\mathrm{NaOAc}(300 \mathrm{mg}, 3.7 \mathrm{mmol})$ and compound $2 \mathrm{a}(1.0 \mathrm{~g}, 3.0 \mathrm{mmol})$ were added to a solution of compound $2 \mathrm{~b}(0.75 \mathrm{~g}, 3.1 \mathrm{mmol})$ in 10 mL anhydrous $\mathrm{Ac}_{2} \mathrm{O}$. After stirring for 2 h at $70^{\circ} \mathrm{C}$, the deep green solution was obtained. Then the mixture was cooled to room temperature, and 100 mL of diethyl ether was added. The black precipitate was filtered and washed with 100 mL water. The solid with a metallic luster was recrystallized in EtOH to give CyOMe ($1^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 9.02(\mathrm{~d}, J=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.73(\mathrm{~d}$, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.38(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.08(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.94(\mathrm{~s}, 1 \mathrm{H}), 7.89(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.76-$ $7.68(\mathrm{~m}, 2 \mathrm{H}), 7.51(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{dd}, J=8.5,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~d}, J=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.46(\mathrm{~s}, 2 \mathrm{H}), 4.01(\mathrm{~s}, 3 \mathrm{H}), 3.62(\mathrm{~s}, 1 \mathrm{H}), 2.83$ $(\mathrm{d}, J=4.5 \mathrm{~Hz}, 4 \mathrm{H}), 1.95-1.85(\mathrm{~m}, 2 \mathrm{H})$. HRMS calcd for $\mathrm{C}_{30} \mathrm{H}_{24} \mathrm{NO}_{2}^{+}([\mathrm{M}]) 430.1802$ found $430.1796 . \mathrm{C}_{30} \mathrm{H}_{24} \mathrm{INO}_{2} \mathrm{Wt} 557.4315$

Figure S4. ${ }^{1} \mathrm{H}$ NMR spectrum (in DMSO) of an equivalent mixture of compound CyOMe.

Synthesis of CyOH. 6 mL BBr 3 (3 M solution in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 18 \mathrm{mmol}$) was added to an anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution containing $\mathbf{C y O M e}$ (1 g , 1.8 mmol) at $0^{\circ} \mathrm{C}$. The mixture was stirred for 16 h at $25^{\circ} \mathrm{C}$. Quenching with a saturated solution of NaHCO_{3} at $0^{\circ} \mathrm{C}$ was followed by extraction of the aqueous layer with $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}(4: 1)$. The organic layer was then washed with $\mathrm{H}_{2} \mathrm{O}$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. Purification by silica gel column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}=100: 1 \sim 10: 1\right)$ afforded $\mathbf{C y O H}$ as blue-green solid ($0.9 \mathrm{~g}, 1.65$ $\mathrm{mmol}, 91.7 \%) .1 \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{CDCl}_{3} \& \mathrm{MeOD}\right) \delta 8.62(\mathrm{~d}, \mathrm{~J}=13.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.10(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.88-7.82(\mathrm{~m}, 1 \mathrm{H}), 7.67(\mathrm{~d}, \mathrm{~J}$ $=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{~s}, 1 \mathrm{H}), 7.38(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.27(\mathrm{~s}, 3 \mathrm{H}), 6.97(\mathrm{~d}, \mathrm{~J}=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.75-6.65(\mathrm{~m}, 2 \mathrm{H}), 6.32(\mathrm{~d}, \mathrm{~J}=13.3 \mathrm{~Hz}, 1 \mathrm{H})$, $2.64(\mathrm{~s}, 4 \mathrm{H}), 2.44(\mathrm{~s}, 1 \mathrm{H}), 1.83(\mathrm{~d}, \mathrm{~J}=4.0 \mathrm{~Hz}, 2 \mathrm{H})$. HRMS calcd for $\mathrm{C}_{29} \mathrm{H}_{22} \mathrm{NO}_{2}^{+}([\mathrm{M}]) 416.1643$ found 416.1643 .

Figure S5. ${ }^{1} \mathrm{H}$ NMR spectrum (in $\mathrm{CDCl}_{3} \& \mathrm{MeOD}$) of an equivalent mixture of compound $\mathbf{C y O H}$.

Synthesis of CyOAc. CyOH ($54 \mathrm{mg}, 0.1 \mathrm{mmol}$) and $15 \mu \mathrm{~L}$ triethylamine were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 10 min , and then acetylchloride $10 \mu \mathrm{~L}(\sim 0.3 \mathrm{mmol})$ dissolved in $2 \mathrm{ml} \mathrm{CH}_{2} \mathrm{Cl}_{2}(30.1 \mathrm{mg} 0.25 \mathrm{mmol})$ was added slowly. After overnight reaction, the solvent was removed under reduced pressure. The resulting residue was purified by a silica gel column $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}=10: 1\right)$ to afford compound CyOAc as a green solid ($37 \mathrm{mg}, 0.064 \mathrm{mmol}$ isolated yield: 64%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 9.12(\mathrm{~s}, 1 \mathrm{H}), 8.87(\mathrm{~d}$, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.52(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.15(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.07(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.99(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{dd}, J=8.1,7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.78-7.76(\mathrm{~m}, 2 \mathrm{H}), 7.74(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{dd}, J=8.4,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.57(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 2 \mathrm{H})$, $3.64(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.84(\mathrm{~s}, 4 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 1.95-1.87(\mathrm{~m}, 2 \mathrm{H})$. HRMS calcd for $\mathrm{C}_{31} \mathrm{H}_{24} \mathrm{NO}_{3}{ }^{+}([\mathrm{M}]) 458.1751$ found 458.1755 .

Figure S6. ${ }^{1} \mathrm{H}$ NMR spectrum (in DMSO) of an equivalent mixture of compound CyOAc.

Deprotonated form (CyO^{-})
Protonated form ($\mathbf{C y O H}$)
Scheme S2. Protonation and deprotonation of $\mathbf{C y O H}$.

Figure S7. Absorption of $\mathbf{C y O H}$ versus pH values in $\mathrm{PBS} / \mathrm{MeCN}(6: 4, \mathrm{pH}=3.5,4.0,45,5.0,5.5,6.0,6.5,7.0,7.4,8,8.5$ and 9.0$)$ at 808 nm excitation.

$-3.31 \mathrm{eV}$

$-3.39 \mathrm{eV}$

$-5.40 \mathrm{eV}$

$-5.51 \mathrm{eV}$

Figure S8. DFT optimized structures and molecular orbital plots (LUMO and HOMO) of CyOMe (left column) and CyOAc (right column) in $\mathrm{H}_{2} \mathrm{O}$. In the ball-and-stick representation, carbon, nitrogen, and oxygen atoms are colored in gray, blue, and red, respectively.

Table S1. The effect of O-linked functional group on the HOMO/LUMO.

	-O-of CyO-	-OMe of CyOMe	-OH of CyOH	-OAc of CyOAc
HOMO	8.05%	2.20%	1.78%	0.87%
LUMO	3.46%	0.84%	0.76%	0.52%
HOMO-LUMO	4.59%	1.36%	1.02%	0.35%

Table S2. The HOMO-LUMO Gaps of $\mathbf{C y O A c}, \mathbf{C y O H}, \mathbf{C y O M e}$ and $\mathbf{C y O}^{-}$determined by DFT calculations.

	CyO $^{-}$	CyOMe	CyOH	CyOAc
HOMO-LUMO Gap (eV)	2.087	2.092	2.099	2.124

Figure S9. EDS analysis of titanium wire (yellow) and TiWE (red).

Figure S10. IS-FTIR spectra of hydroxylated titanium wire (black) and TiWE (red).

Figure S11. Optical microscope image of TiWE (a), and SEM images of TiWE with low-magnification (b) and high-magnification (c).

Figure S12. The photocurrent profiles of $\mathbf{C y O H} / \mathrm{TiWE}$ (a), CyOMe/TiWE (c) and CyOAc/TiWE (e) under 750-nm laser excitation in the presence of varying amounts of AA, and the corresponding dependence of photocurrent intensities of $\mathbf{C y O H} / \mathrm{TiWE}(\mathrm{b}), \mathrm{CyOMe} / \mathrm{TiWE}(\mathrm{d})$ and CyOAc/TiWE (f) on the concentration of AA.
a)

b)

Scheme S3. Synthetic routes of CyOThiols (a) and its response to thiols (b)

Synthesis of CyOThiols. CyOH ($54 \mathrm{mg}, 0.1 \mathrm{mmol}$) and $15 \mu \mathrm{~L}$ triethylamine were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 10 min , and then 2, 4-dinitrobenzenesulfonyl chloride dissolved in $2 \mathrm{ml} \mathrm{CH}_{2} \mathrm{Cl}_{2}(66.7 \mathrm{mg} 0.25 \mathrm{mmol})$ was added slowly. After stirring at room temperature for 24 hours, the solvent was evaporated at reduced pressure. The resulting residue was purified by a silica gel column $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}=100: 1 \sim 10: 1\right)$ to afford compound $\mathbf{C y O T h i o l s}$ as a green solid ($46.4 \mathrm{mg}, 0.06 \mathrm{mmol}$, isolated yield: $\left.60 \%\right) .{ }^{1} \mathrm{H} \mathrm{NMR}(400$ $\mathrm{MHz}, \mathrm{DMSO}) \delta 9.07(\mathrm{~d}, J=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.99(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.82(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.59-8.46(\mathrm{~m}, 2 \mathrm{H}), 8.10-7.97(\mathrm{~m}, 3 \mathrm{H}), 7.90$ $(\mathrm{d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{dd}, J=19.6,11.1 \mathrm{~Hz}, 3 \mathrm{H}), 7.49(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{dd}, J=8.6,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{~d}, J=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.56$ $(\mathrm{t}, J=10.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.65(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.91-2.72(\mathrm{~m}, 4 \mathrm{H}), 1.93(\mathrm{dd}, J=15.4,9.9 \mathrm{~Hz}, 2 \mathrm{H})$. HRMS calcd for $\mathrm{C}_{35} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{8} \mathrm{~S}^{+}([\mathrm{M}])$ 646.1279 found 646.1279.

Figure S13. ${ }^{1} \mathrm{H}$ NMR spectrum (in DMSO) of an equivalent mixture of compound CyOThiols.

Figure S14. Time-dependent absorption spectra (a) and plots of absorbance at $808 \mathrm{~nm}(\mathrm{~b})$ of CyOThiols in the presence of $500 \mu \mathrm{M}$ Cys in aCSF.

Figure S15. The reaction time-dependent ratiometric signal ($r=j_{808} / j_{750}$) of CyOThiols/TiWE toward $500 \mu \mathrm{M}$ Cys in aCSF containing $250 \mu \mathrm{MAA}$ ($\mathrm{n}=3$, S.D.).

Figure S16. Selectivity (black) and competition (red) tests for Cys (1 mM) with CyOThiols/TiWE: (a) $1, \mathrm{Cu}^{2+} ; 2, \mathrm{Ca}^{2+} ; 3, \mathrm{Na}^{+} ; 4 \mathrm{Mg}^{2+} ; 5$, $\mathrm{K}^{+} ; 6, \mathrm{Cu}^{+} ; 7, \mathrm{Mn}^{2+} ; 8, \mathrm{Fe}^{3+} ; 9, \mathrm{Zn}^{2+} ; 10, \mathrm{Fe}^{2+}\left(3 \mathrm{mM}\right.$ for $\mathrm{K}^{+}, 150 \mathrm{mM}$ for $\mathrm{Na}^{+}, 1 \mathrm{mM}$ for Ca^{2+} and $\mathrm{Mg}^{2+}, 50 \mu \mathrm{M}$ for Mn^{2+} and $10 \mu \mathrm{M}$ for others metal ions); (b) 11, Glu; 12, Gly; 13, His; 14, Leu; 15, Iso; 16, Try; 17, Val; 18, Met; 19, NMDA; 20, DIDS; (20 μ M for Glu, Gly, His, Leu, Iso, Try, Val, Met, $50 \mu \mathrm{M}$ for Lys, Arg, and Thr; and 1 mM NMDA and DIDS); (c) 21, AA; 22, UA; 23, DA; 24, ATP; 25, glucose; 26, $\mathrm{O}_{2} ; 27, \mathrm{H}_{2} \mathrm{O}_{2} ; 28$, NADPH; 29, NADH; 30, ALP; ($30 \mu \mathrm{M}$ for $\mathrm{H}_{2} \mathrm{O}_{2} ; 200 \mu \mathrm{M}$ for AA, 10 mM for glucose, $1000 \mathrm{U} \cdot \mathrm{L}^{-1}$ for ALP and 50 $\mu \mathrm{M}$ for other species); (d) 31, $\mathrm{NO}_{3}-; 32, \mathrm{Cl} ; 33, \mathrm{HCO}_{3}{ }^{-} ; 34, \mathrm{~S}_{2} \mathrm{O}_{3}{ }^{2-} ; 35, \mathrm{SO}_{4}{ }^{2-} ; 36, \mathrm{ClO} ; 37, \mathrm{ONOO} ; 38, \mathrm{OH} ; 39, \mathrm{O}_{2}{ }^{-} ; 40, \mathrm{GSH} ; 41$, Cys; 42, Hcy, ($100 \mu \mathrm{M}$ for $\mathrm{NO}_{3}-, 0.1 \mathrm{M}$ for $\mathrm{Cl}, 50 \mathrm{mM}$ for $\mathrm{HCO}_{3}^{-}, 1 \mathrm{mM}$ for GSH and $\mathrm{Hcy}, 10 \mu \mathrm{M}$ for other species).

Figure S17. (a) Normalized photocurrent intensities of CyOThiols/TiWE in aCSF containing $250 \mu \mathrm{MAA}$ toward different concentrations of Cys. (b) Linear fitting curves between the ratiometric signal $\left(r=j_{808} / j_{750}\right)$ and the log concentration of Cys.

Figure S18. Photocurrent stability of CyOThiols/TiWE under 808-nm and 750-nm light irradiation for 380s in aCSF containing $250 \mu \mathrm{M}$ AA.

Figure S19. Photocurrent responses obtained at 12 independent CyOThiols/TiWE under $808-\mathrm{nm}$ and $750-\mathrm{nm}$ light excitation in the same rat brain.

Figure S20. Confocal fluorescence (a, b) and merged (c) images of cultured cells on the titanium sheet modified by CyOThiols: (a) with Propidium Iodide (red, dead cells) stain; (b) with Calcein-AM (green, live cells) stain. (c) Merged image from (a) and (b). Scale bar: 200 $\mu \mathrm{m}$.

Figure S21. Infrared thermal image of rat head before (a), (c) and after (b), (d) the irradiation with 750-nm laser and $808-\mathrm{nm}$ laser for 10 s , respectively.

Figure S22. Effects of AA concentration on PEC signals of CyOThiols/TiWE under $808-\mathrm{nm}$ (left column) and $750-\mathrm{nm}$ (right column) excitation. Curves a \sim f: 100, 200, 300, 400, 500 and $600 \mu \mathrm{M} \mathrm{AA} \mathrm{in} \mathrm{aCSF)} .\mathrm{Figures} \mathrm{a)}, \mathrm{c)} \mathrm{and} \mathrm{e):} \mathrm{without} \mathrm{normalization;} \mathrm{figures} \mathrm{b)}, \mathrm{d)} \mathrm{and}$ f): normalized to $750-\mathrm{nm}$ intensities. The concentrations of Cys were $10 \mu \mathrm{M}, 70 \mu \mathrm{M}$ and $500 \mu \mathrm{M}$ in Figure a) and b), c) and d), and e) and f), respectively.

Table S3. Effects of AA concentration on recovery of Cys at different concentrations.

$\boldsymbol{c}[\mathbf{A A}](\mu \mathrm{M})$	Group1		Group2		Group3	
		Recovery (\%)	$70 \mu \mathrm{M} \mathrm{Cys}$	Recovery (\%)	$10 \mu \mathrm{M} \mathrm{Cys}$	Recovery (\%)
100.00	534.47	106.89	76.34	109.05	10.55	105.53
200.00	516.19	103.24	67.46	96.38	9.01	90.13
300.00	538.19	107.64	75.42	107.74	9.35	93.46
400.00	548.16	109.63	65.62	93.74	9.14	91.42
500.00	476.05	95.21	75.26	107.52	9.12	91.24
600.00	462.88	92.58	75.41	107.73	9.56	95.65

Figure S23. (a) Effects of BSA concentration ($0 \%, 5 \%, 10 \%, 15 \%, 20 \%$ and 25%) on CyOThiols/TiWE. r_{0} represents the value of j_{808} / j_{750} obtained in aCSF without BSA, while $r_{\mathrm{c}[\mathrm{BSA}]}$ indicates the value of j_{808} / j_{750} obtained in aCSF containing varying concentrations of BSA. (b) Photocurrent signals obtained at one photoelectrode excited 16 cycles under $808-\mathrm{nm}$ and $750-\mathrm{nm}$ in the cortex of normal rat brain. (c) Photocurrent intensities value and r value obtained in the curve of (b), where $n(n=1,2, \ldots, 16)$ represents the number of cycles.

Figure S24. In vivo experiment equipment diagram and laser exposure location diagram.

Figure S25. Photocurrent intensities (a) and normalized photocurrent intensities (b) recorded by a same CyOThiols/TiWE at five randomized distances between electrode and optical fiber. Left column: 808-nm excitation; right column: 750-nm excitation

Figure S26. Normalized photocurrent intensities of CyOThiols/TiWE pre- (black) and post- (red) local microinjection with $0 \mu \mathrm{M}(\mathrm{a}), 100$ $\mu \mathrm{M}$ (b), $300 \mu \mathrm{M}$ (c), $500 \mu \mathrm{M}$ (d) $1000 \mu \mathrm{M}$ (e) NMDA in rat brains under 808-nm and $750-\mathrm{nm}$ excitation.

Figure S27. (a) Fluorescence spectra of CyOThiols ($10 \mu \mathrm{M}$) in response to Cys (a-g: 0, 40, 80, 100, 150, 200 and $300 \mu \mathrm{M}$) in PBS buffer ($\mathrm{pH} 7.4,40 \% \mathrm{MeCN}$). (b) Titration curve of CyOThiols to Cys. CyOThiols and Cys were incubated together at $37{ }^{\circ} \mathrm{C}$ for 2 minutes and the fluorescence was collected under 808-nm laser excitation.

Figure S28. (a) In vivo fluorescence images of living rat brains and (b) fluorescence intensity of the injection point: The living rat brains were co-injected with aCSF $+10 \mu \mathrm{M}$ CyOThiols, $500 \mu \mathrm{M}$ NMDA $+10 \mu \mathrm{M}$ CyOThiols and $500 \mu \mathrm{M} \mathrm{NMDA}+5 \mathrm{mM}$ DIDS $+10 \mu \mathrm{M}$ CyOThiols ($1 \mu \mathrm{~L} \mathrm{~min}^{-1}$ for $60 \mathrm{~s}, \mathrm{n}=3$) respectively. NIR-II fluorescence images were gained under 808 nm excitation with 1000 nm longpass filter 2 min after co-injection. Exposure time was 300 ms .

Scheme S4. Synthetic routes of CyOALP.

Synthesis of CyOALP. CyOH ($109 \mathrm{mg}, 0.2 \mathrm{mmol}$) was dissolved in 5 mL pyridine and then phosphorus oxychloride ($62 \mathrm{mg}, 0.4 \mathrm{mmol}$) was added. After overnight reaction, 2 mL saturated salt-water was added to the reaction system. The precipitated solids were recrystallized with dichloromethane to afford compound CyOALP as a green solid ($78.5 \mathrm{mg}, 0.126 \mathrm{mmol}$, isolated yield: 63%). ${ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, DMSO\&MeOD) $\delta 8.76(\mathrm{~d}, J=14.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.43(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.18(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.05(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{dd}, J=14.2$, $6.7 \mathrm{~Hz}, 4 \mathrm{H}), 7.64-7.61(\mathrm{~m}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{dd}, J=8.6,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~d}, J=14.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.38(\mathrm{~d}, J=2.0 \mathrm{~Hz}$, $2 \mathrm{H}), 3.52(\mathrm{t}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.78(\mathrm{dd}, J=9.1,2.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.71(\mathrm{dd}, J=5.2,3.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.92-1.81(\mathrm{~m}, 2 \mathrm{H})$. HRMS calcd for $\mathrm{C}_{28} \mathrm{H}_{25} \mathrm{NO}_{5} \mathrm{P}^{+}([\mathrm{M}]) 496.1308$ found 496.1301 .

Figure S29. ${ }^{1} \mathrm{H}$ NMR spectrum (in $\mathrm{DMSO} \& \mathrm{CD}_{3} \mathrm{OD}$) of an equivalent mixture of compound CyOALP.

Scheme S5. Recognition reaction of ALP by CyOALP/TiWE.

Figure S30. (a) Absorption spectra of $6 \mu \mathrm{M}$ CyOALP in pH $7.4 \mathrm{PBS} / \mathrm{MeCN}(6: 4)$ before and after reacting with $200 \mathrm{U} \cdot \mathrm{L}^{-1} \mathrm{ALP}$ for 5 min . (b) Normalized photocurrent intensities of CyOALP/TiWE in 0.1 M PBS containing $250 \mu \mathrm{M} \mathrm{AA}$ driven by $808-\mathrm{nm}$ (left column) and $750-\mathrm{nm}$ (right column) light before and after reacting with $500 \mathrm{U} \cdot \mathrm{L}^{-1}$ ALP for 5 min .

Figure S31. Time-dependent absorption spectra (a) and plots of absorbance at $808 \mathrm{~nm}(\mathrm{~b})$ of CyOALP toward $500 \mathrm{U} \cdot \mathrm{L}^{-1} \mathrm{ALP}$ in aCSF containing $250 \mu \mathrm{M} \mathrm{AA}(\mathrm{n}=3$, S.D.).

Figure S32. Time dependence of r values $\left(j_{808} / j_{750}\right)$ of the CyOALP/TiWE toward $500 \mathrm{U} \cdot \mathrm{L}^{-1}$ ALP in aCSF containing $250 \mu \mathrm{MAA}(\mathrm{n}=3$, S.D.).

Figure S33. Selectivity (black) and competition (red) tests for ALP ($500 \mathrm{U} \cdot \mathrm{L}^{-1}$) obtained with CyOALP/TiWE: (a) $1, \mathrm{Cu}^{2+} ; 2, \mathrm{Ca}^{2+} ; 3, \mathrm{Na}^{+}$; $4 \mathrm{Mg}^{2+} ; 5, \mathrm{~K}^{+} ; 6, \mathrm{Cu}^{+} ; 7, \mathrm{Mn}^{2+} ; 8, \mathrm{Fe}^{3+} ; 9, \mathrm{Zn}^{2+} ; 10, \mathrm{Fe}^{2+}\left(3 \mathrm{mM}\right.$ for $\mathrm{K}^{+}, 150 \mathrm{mM}$ for $\mathrm{Na}^{+}, 1 \mathrm{mM}$ for Ca^{2+} and $\mathrm{Mg}^{2+}, 50 \mu \mathrm{M}$ for Mn^{2+} and 10 $\mu \mathrm{M}$ for others metal ions); (b) 11, Glu; 12, Gly; 13, His; 14, Leu; 15, Iso; 16, Try; 17, Val; 18, Met; 19, NMDA; 20, DIDS; (20 $\mu \mathrm{M}$ for Glu, Gly, His, Leu, Iso, Try, Val, Met, $50 \mu \mathrm{M}$ for Lys, Arg and Thr; 1 mM for NMDA and DIDS); (c) 21, $\mathrm{NO}_{3}^{-} ; 22, \mathrm{Cl}$; 23, $\mathrm{HCO}_{3}{ }^{-} ; 24, \mathrm{~S}_{2} \mathrm{O}_{3}^{2-}$; $25, \mathrm{Na}_{2} \mathrm{~S}_{2} ; 26, \mathrm{SO}_{4}{ }^{--} ; 27, \mathrm{ClO}^{-} ; 28, \mathrm{ONOO} ; 29, \mathrm{OH} ; 30, \mathrm{O}_{2}^{-}\left(100 \mu \mathrm{M}\right.$ for $\mathrm{NO}_{3}^{-}, 0.1 \mathrm{M}$ for $\mathrm{Cl}, 50 \mathrm{mM}$ for $\mathrm{HCO}_{3}^{-}, 1 \mathrm{mM}$ for GSH and Hcy , $10 \mu \mathrm{M}$ for other species); (d) 31, AA; 32, UA; 33, DA; 34, ATP; 35, glucose; $36, \mathrm{H}_{2} \mathrm{O}_{2} ; 37$, NADPH; 38 , NADH; 39 , GSH; 40, Cys; 41, Hcy, 42, Horseradish Peroxidase, 43, galactosidase 44, ALP, ($500 \mathrm{U} \cdot \mathrm{L}^{-1}$ Horseradish Peroxidase and galactosidase; $30 \mu \mathrm{M}$ for $\mathrm{H}_{2} \mathrm{O}_{2} ; 200$ $\mu \mathrm{M}$ for AA, 10 mM for glucose, $1000 \mathrm{U} \cdot \mathrm{L}^{-1}$ for ALP and $50 \mu \mathrm{M}$ for other species).

Reference

1 Liu, Z. et al. Angew. Chem., Int. Ed. 2021, doi:10.1002/anie.202101468
2 Dong, H., Zhou, Q., Zhang, L. \& Tian, Y. Angew. Chem., Int. Ed. 2019, 58, 13948-13953.

[^0]: a. College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China. E-mail: zhhliu@whu.edu.cn
 b. College of Chemistry and Chemical Engineering, Hubei university, Wuhan 430062,

 China.E-mail: yexxchem@hubu.edu.cn

