Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2021

Electronic Supplementary Information (ESI)

Surface Chiroselective Assembly of Enantiopure Crystalline Porous Films Containing Bichiral Building Blocks

Hao Chen ac, Zhi-Gang Gu*abc and Jian Zhang *abc

^a State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China

^b Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, P. R. China

^c University of Chinese Academy of Sciences, Beijing 100049, P.R. China

Address correspondence to zggu@fjirsm.ac.cn and zhj@fjirsm.ac.cn

Table of Contents

- **Figure S1.** (a) Structures of the Δ-Ti₄L₆ and Λ-Ti₄L₆ isomers in racemic Ti₄L₆ cages; (b) Model structures of the (R)- and (S)-DCH (DCH = 1,2-diaminocyclohexane) units.
- **Figure S2.** Two adjacent Δ -Ti₄L₆ cages linked by one (*R*)-Mn(DCH)₃ unit through N–H···O hydrogen bonds.
- **Figure S3.** Structures of the (R, Δ) -CPM film along [111] orientation.
- **Figure S4.** The preparation diagrammatic sketch of (S, Λ) -CPM film by the autoarm immersion layer-by-layer assembly method.
- **Figure S5.** IR spectra of racemic Ti_4L_6 , (R)-DCH, (R, Δ)- and (S, Λ)-CPM films.
- **Figure S6.** UV-vis spectra of (R, Δ) and (S, Λ) -CPM films and powder of (R, Δ) -CPM.
- **Figure S7.** SEM EDS of (R, Δ) -CPM film.
- **Figure S8.** Survey XPS spectra of (R, Δ) and (S, Λ) -CPM films and powder of (R, Δ) -CPM.
- **Figure S9.** The high resolution of XPS: Mn 2p XPS spectra of (R, Δ) -CPM film (a), (S, Λ) -CPM film (b) and powder of (R, Δ) -CPM (c); Ti 2p XPS spectra of (R, Δ) -CPM film (d), (S, Λ) -CPM film (e) and powder of (R, Δ) -CPM (f).
- **Figure S10.** (a) Surface and cross-sectional SEM images of (R, Δ) -CPM-20, (R, Δ) -CPM-30 (b) and (R, Δ) -CPM-40 (c).
- **Figure S11.** Plot of (R, Δ) -CPM film thickness versus preparation cycles.
- **Figure S12.** Plot of (R, Δ) -CPM film CD peak at 360 nm versus preparation cycles.
- **Figure S13.** The CD liquid-state spectra of (R, Δ) and (S, Λ) -CPM in ethanolic solution.

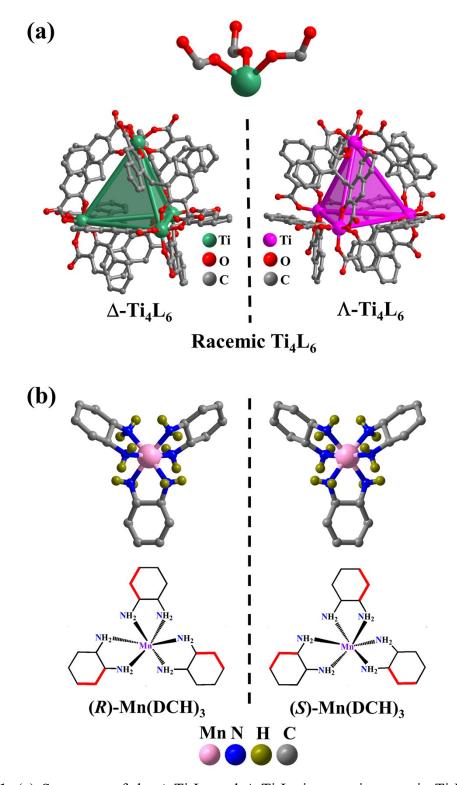

Figure S14. The CD liquid-state spectra of (R)- and (S)-Mn(DCH)₃, (R)- and (S)-DCH in ethanolic solution.

Figure S15. CPL dissymmetry factor (g_{lum}) spectra of (R, Δ)- and (S, Λ)-CPM films (excitation at 365 nm).

Figure S16. Mass uptakes of D- and L-methyl lactate in (R, Δ) - (a) and (S, Λ) -CPM films (b) using by a gas phase QCM technique; Mass uptakes (c) and enantioselectivity (d) of D- and L-methyl lactate in (R, Δ) - and (S, Λ) -CPM films.

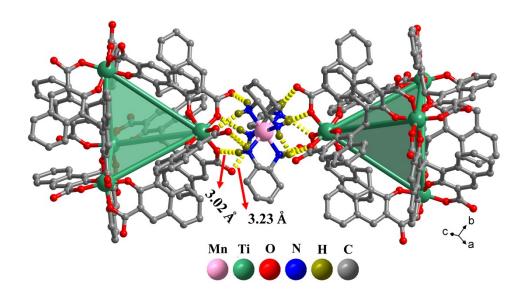

Figure S17. SEM images (a, b), AFM image (c), SEM EDS (d) and element mapping (e) of (S, Λ) -CPM film.

Figure S18. The liquid-state CD spectra of racemic Ti₄L₆ cages in ethanolic solution.

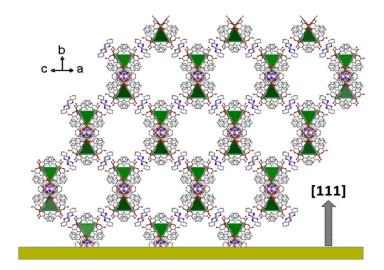
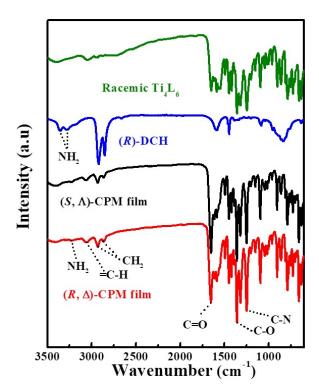
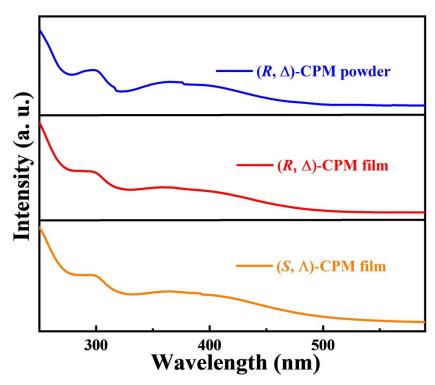
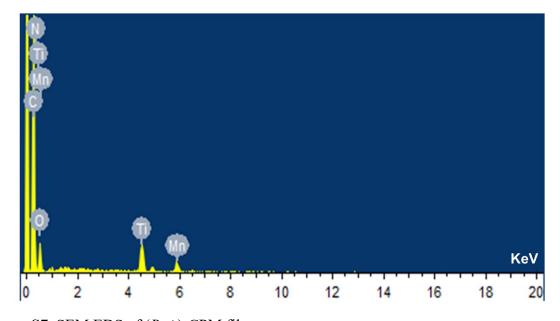


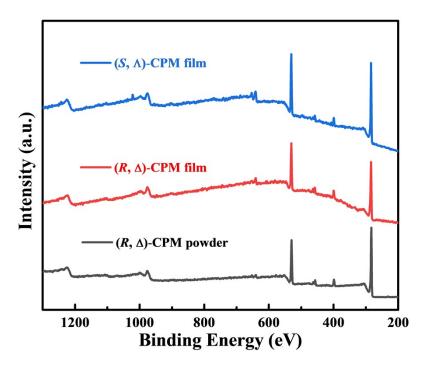
Figure S1. (a) Structures of the Δ-Ti₄L₆ and Λ-Ti₄L₆ isomers in racemic Ti₄L₆ cages; (b) Model structures of the (R)- and (S)-DCH (DCH = 1,2-diaminocyclohexane) units.

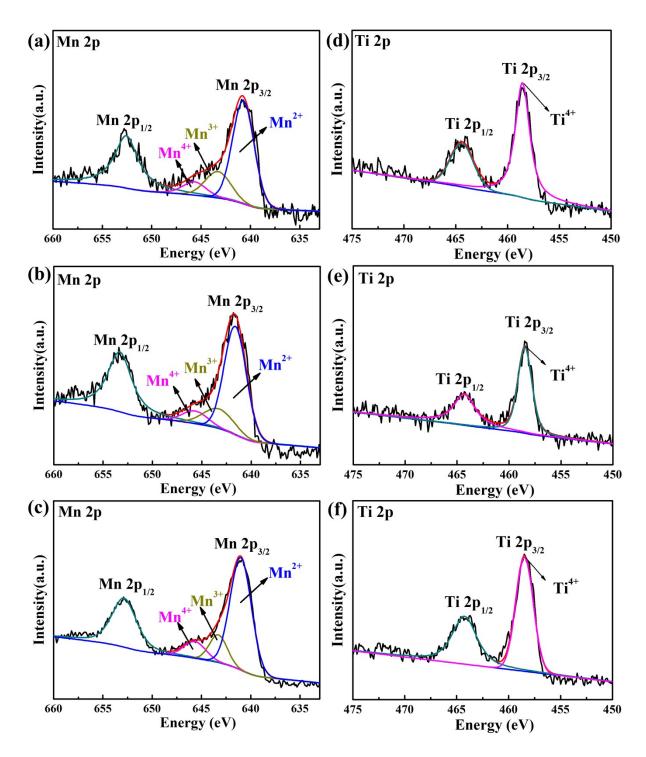
 Ti_4L_6 cage with calixarene-like coordination-active vertices has many carbonyl oxygen atoms, which are not coordinated to any metal ions. Such vertex of Ti_4L_6 cage looks like a claw. The Mn-complexs are positive bivalent, and the anion is the CH_3COO^- .

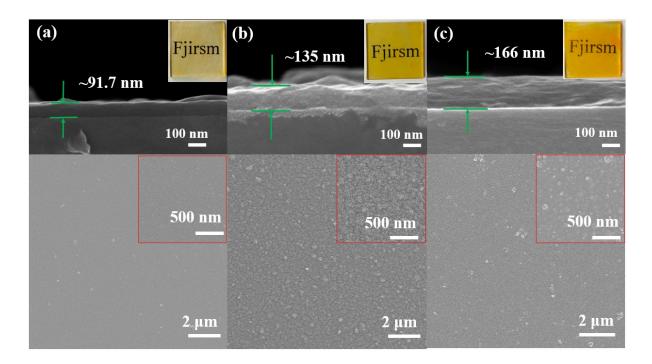

Figure S2. Two adjacent Δ -Ti₄L₆ cages linked by one (*R*)-Mn(DCH)₃ unit through N–H···O hydrogen bonds.

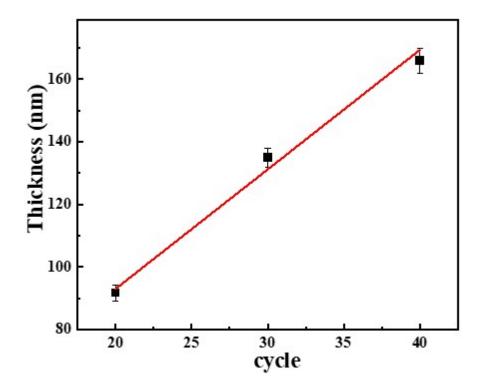

Figure S3. Structures of the (R, Δ) -CPM film along [111] orientation.

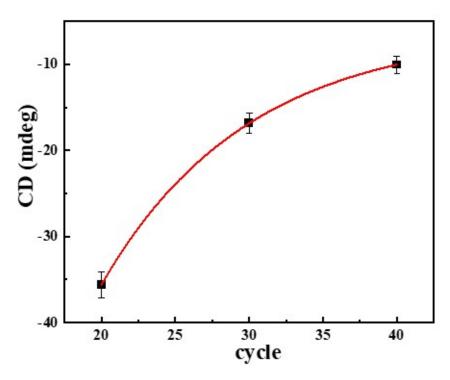

Figure S4. The preparation diagrammatic sketch of (S, Λ) -CPM film by the autoarm immersion layer-by-layer assembly method.

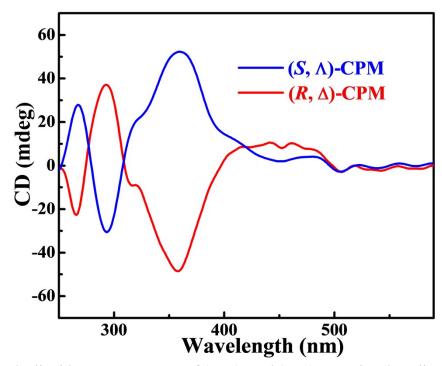

Figure S5. IR spectra of racemic Ti_4L_6 , (R)-DCH, (R, Δ)- and (S, Λ)-CPM films.

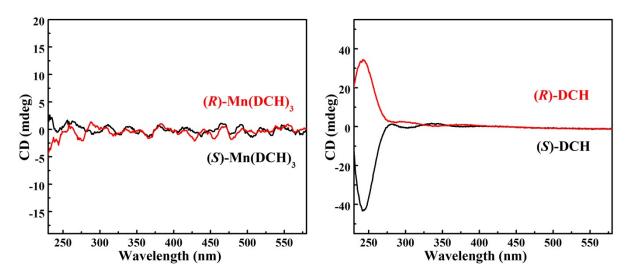

Figure S6. UV-vis spectra of (R, Δ) - and (S, Λ) -CPM films and powder of (R, Δ) -CPM.

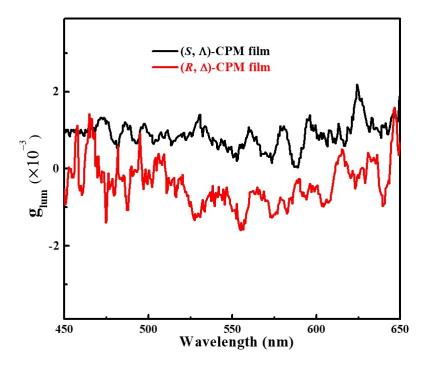

Figure S7. SEM EDS of (R, Δ) -CPM film.

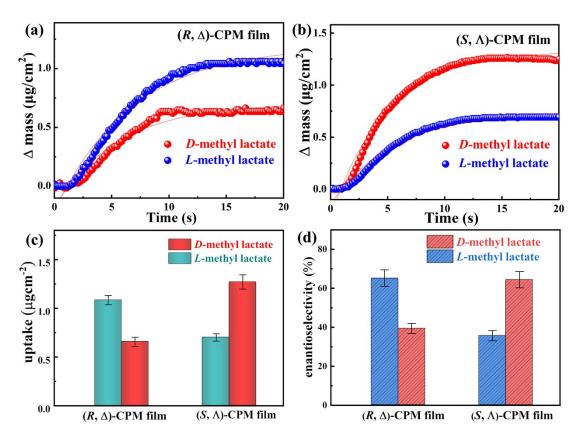

Figure S8. Survey XPS spectra of (R, Δ) - and (S, Λ) -CPM films and powder of (R, Δ) -CPM.


Figure S9. The high resolution of XPS: Mn 2p XPS spectra of (R, Δ) -CPM film (a), (S, Λ) -CPM film (b), and powder of (R, Δ) -CPM (c); Ti 2p XPS spectra of (R, Δ) -CPM film (d), (S, Δ) -CPM film (e), and powder of (R, Δ) -CPM (f).


Figure S10. (a) Surface and cross-sectional SEM images of (R, Δ) -CPM-20, (R, Δ) -CPM-30 (b), and (R, Δ) -CPM-40 (c).


Figure S11. Plot of (R, Δ) -CPM film thickness versus preparation cycles.


Figure S12. Plot of (R, Δ) -CPM film CD peak at 360 nm versus preparation cycles.


Figure S13. The liquid-state CD spectra of (R, Δ) - and (S, Λ) -CPM in ethanolic solution.

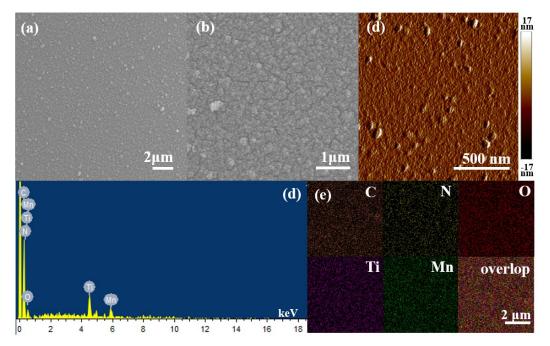

Figure S14. The liquid-state CD spectra of (R)- and (S)-Mn(DCH)₃, (R)- and (S)-DCH in ethanolic solution.

Figure S15. CPL dissymmetry factor (g_{lum}) spectra of (R, Δ) - and (S, Λ) -CPM films (excitation at 365 nm).

Figure S16. Mass uptakes of D- and L-methyl lactate in (R, Δ) - (a) and (S, Λ) -CPM films (b) using by a gas phase QCM technique; Mass uptakes (c) and enantioselectivity (d) of D- and L-methyl lactate in (R, Δ) - and (S, Λ) -CPM films.

Figure S17. SEM images (a, b), AFM image (c), SEM EDS (d) and element mapping (e) of (S, Λ) -CPM film.

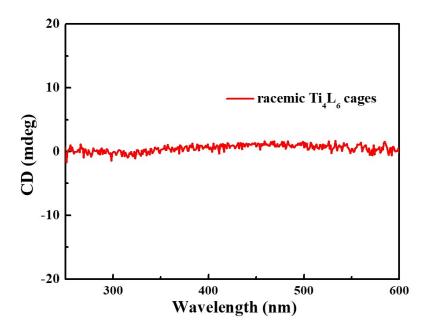


Figure S18. The liquid-state CD spectra of racemic Ti_4L_6 cages in ethanolic solution.