Guest-Mediated Phase Transitions in a Flexible Pillared-Layered Metal-Organic Framework under High-Pressure

Gemma F. Turner,^a Scott C. McKellar,^b David R. Allan,^c Anthony K. Cheetham,^d, Sebastian Henke,^{*e} and Stephen A. Moggach^{*a}

- ^{a.} School of Molecular Sciences, University of Western Australia, Perth, 6009, Western Australia, Australia
- ^{b.} EastChem School of Chemistry, University of Edinburgh, Edinburgh, EH9 3JW, United Kingdom
- ^c Diamond Light Source, Harwell Science and Innovation Campus, Didcot, O11 ODE, United Kingdom
- ^d Materials Research Laboratory, University of California, Santa Barbara, CA 93106, USA
- e Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Dortmund, 44227, Germany

Table of Contents

1. Crystallographic data	1-3
2. Pore Volume and Contents	4
3. Thermogravimetric Analysis	5-6
4. FT-IR Spectroscopy	7
5. Twin Analysis	8

1. Crystallographic Data

Supplementary Table S1. Experimental and crystallographic data for $Zn_2bdc_2dabco \cdot X(EtOH)$ (1) in a PTM of EtOH at T = 298 K. Diffraction experiments were carried out on a Bruker Apex II diffractometer using a Mo X-ray source. Absorption was corrected for by multi-scan methods, SADABS (Siemens, 1996).

	Ambient	0.31 GPa	0.69 GPa	1.19 GPa	2.10 GPa
Crystal data					
Chemical formula	$(C_{22}H_{12}N_2O_8Zn_2)_n \cdot 3.9n(C_2H_6O)$	(C ₂₂ H ₁₂ N ₂ O ₈ Zn ₂) _n ·7.8n(C ₂ H ₆ O)	$(C_{22}H_{12}N_2O_8Zn_2)_n \cdot 8.1n(C_2H_6O)$	$(C_{22}H_{12}N_2O_8Zn_2)_n \cdot 11.9n(C_2H_6O)$	$(C_{22}H_{12}N_2O_8Zn_2)_n \cdot 11.9n(C_2H_6O)$
M _r	756.90	936.56	950.39	1125.4	1125.4
Crystal system, space group	Tetragonal, P4/mmm	Tetragonal, P4/mmm	Tetragonal, P4/mmm	Monoclinic, C2/m	Monoclinic, C2/m
a, b, c (Å)	10.91350(4), 10.91350(4), 9.62600(4)	10.98050(4), 10.98050(4), 9.7220	00(4) 10.98300(4), 10.98300(4), 9.2720	00(4) 14.4123(12), 16.3757(13), 9.7030	0(4) 14.177(3), 16.361(3), 9.6086(11)
α, β, γ (°)	90, 90, 90	90, 90, 90	90, 90, 90	90, 92.158(4), 90	90, 92.168(10), 90
V (ų)	1146.50(1)	1172.20(1)	1118.45(1)	2288.4(3)	2227.1(6)
Ζ	1	1	1	2	2
ρ (g cm ⁻³)	1.097	1.329	1.348	1.633	1.678
Crystal size (mm)	0.05 × 0.15 × 0.15	0.05 × 0.15 × 0.15	0.05 × 0.15 × 0.15	0.05 × 0.15 × 0.15	0.05 × 0.15 × 0.15
Data collection					
T _{min} , T _{max}	0.78, 0.95	0.82, 0.95	0.83, 0.95	0.70, 0.95	0.71, 0.95
No. of measured, independent and observed $[l > 2.0\sigma(l)]$ reflections	24471, 745, 718	4042, 386, 333	4233, 399, 346	8127, 1089, 824	2069, 769, 511
R _{int}	0.043	0.048	0.044	0.088	0.183
θ _{max} (°)	26.4	25.0	25.6	23.3	20.8
(sin θ/λ) _{max} (Å ⁻¹)	0.626	0.595	0.609	0.556	0.501
Refinement					
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.024, 0.067, 1.04	0.076, 0.190, 1.02	0.076, 0.213, 1.04	0.133, 0.276, 1.51	0.177, 0.377, 1.30
No. of reflections	745	379	399	1038	747
No. of parameters	32	31	31	44	50
No. of restraints	73	78	69	121	86
Δρ _{max} , Δρ _{min} (e Å ⁻³)	0.36, -0.37	1.89, -1.17	1.26, -1.03	1.34, -1.38	1.46, -1.83

Supplementary Table S2. Experimental and crystallographic data for $Zn_2bdc_2dabco \cdot X(DMF)$ (2) in a PTM of DMF or Fluorinert[®] FC-70 at T = 298 K. Diffraction experiments were carried out using synchrotron radiation ($\lambda = 0.48590$ Å). Absorption was corrected for by multi-scan methods, *SADABS* (Siemens, 1996).

|--|

Crystal data					
PTM	n/a	DMF	DMF	Fluorinert [®] FC-70	Fluorinert [®] FC-70
Chemical formula	(C ₂₂ H ₁₂ N ₂ O ₈ Zn ₂) _n ·4n(C ₃ H ₇ NO)	$(C_{22}H_{12}N_2O_8Zn_2)_n \cdot 4n(C_3H_7NO)$	$(C_{22}H_{12}N_2O_8Zn_2)_n \cdot 4n(C_3H_7NO)$	$(C_{22}H_{12}N_2O_8Zn_2)_n \cdot 4n(C_3H_7NO)$	$(C_{22}H_{12}N_2O_8Zn_2)_n \cdot 4n(C_3H_7NO)$
M _r	855.49	863.55	863.55	863.55	863.55
Crystal system, space group	Tetragonal, I4/mcm	Tetragonal, I4/mcm	Tetragonal, P4/mmm	Tetragonal, I4/mcm	Tetragonal, I4/mcm
<i>a, c</i> (Å)	15.1208(10), 19.314(2)	15.110(1), 19.2672(12)	10.6890(6), 9.6506(5)	15.130(18), 19.32(4)	14.9647(9), 19.266(4)
<i>V</i> (Å ³)	4415.9(8)	4398.9(6)	1102.63(14)	4423(14)	4314.4(11)
Ζ	4	4	1	4	4
ρ (g cm ⁻³)	0.830	1.15	1.11	1.14	1.17
Crystal size (mm)	0.25 x 0.16 x 0.13	$0.05 \times 0.15 \times 0.15$			
Data collection					
T _{min} , T _{max}	0.04, 1.00	0.73, 0.94	0.58, 0.95	0.70, 0.94	0.57, 0.94
No. of measured, independent and observed $[l > 2.0\sigma(l)]$ reflections	5445, 1416, 850	10160, 935, 575	5314, 600, 506	9425, 476, 386	5869, 301, 244
R _{int}	0.055	0.112	0.093	0.083	0.068
θ _{max} (°)	28.9	15.7	17.0	17.2	14.1
$(\sin \theta / \lambda)_{max} (Å^{-1})$	0.680	0.625	0.625	0.610	0.500
Refinement					
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.065, 0.214, 1.11	0.101, 0.197, 0.98	0.117, 0.203, 1.01	0.179, 0.229, 1.08	0.193, 0.221, 1.03
No. of reflections	1416	904	557	428	261
No. of parameters	70	70	51	70	48
No. of restraints	18	165	167	165	79
Δho_{max} , Δho_{min} (e Å ⁻³)	0.66, -0.56	1.79, -1.28	1.74, -0.79	0.46, -0.37	0.65, -0.60

[a] From CSD reference: 'HIVSAI' (deposit no. 986887)^{12a} at ambient pressure and 270 K

Supplementary Table S3. Experimental and crystallographic data for $Zn_2bdc_2dabco \cdot 3$ (Benzene) (3) in a PTM of benzene or Fluorinert[®] FC-70 at T = 298 K. Diffraction experiments were carried out on a Bruker Apex II using a Mo X-ray source. Absorption was corrected for by multi-scan methods, SADABS (Siemens, 1996).

	0.15 GPa	0.20 GPa	
Crystal data			
PTM	Benzene	Fluorinert [®] FC-70	
Chemical formula	$(C_{22}H_{12}N_2O_8Zn_2)_n \cdot 2n(C_6H_6)$	$C_{22}H_{12}N_2O_8Zn_2 \cdot 2n(C_6H_6)$	

M _r	733.44	733.44	
Crystal system, space group	Orthorhombic, Cmmm	Orthorhombic, Cmmm	
a, b, c (Å)	13.6785 (13), 16.9282 (15), 9.6888 (8)	13.575 (3), 16.993 (3), 9.6680 (11)	
<i>V</i> (Å ³)	2243.5 (3)	2230.3 (7)	
Ζ	2	2	
ρ (g cm ⁻³)	1.11	1.12	
Crystal size (mm)	0.05 × 0.15 × 0.15	$0.05 \times 0.15 \times 0.15$	
Data collection			
T _{min} , T _{max} 0.58, 0.95		0.71, 0.95	
No. of measured, independent and 3438, 682, 572 observed $[l > 2.0\sigma(l)]$ reflections		2039, 490, 351	
R _{int}	0.068	0.082	
θ _{max} (°)	23.3	22.0	
(sin θ/λ) _{max} (Å ⁻¹)	0.556	0.527	
Refinement			
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.084, 0.210, 1.01	0.113, 0.287, 1.01	
No. of reflections	667	485	
No. of parameters	91	54	
No. of restraints	185	144	
Δρ _{max} , Δρ _{min} (e Å ⁻³)	0.68, -1.02	1.16, -0.97	

2. Pore Volume and Guest Content

Supplementary Table S4. Ethanol content per pore of $Zn_2bdc_2dabco \cdot X(EtOH)$ (1) at variable pressure in a PTM of EtOH. Pore content and volume was calculated using the SQUEEZE algorithm in PLATON.⁵

	Ambient	0.31 GPa	0.69 GPa	1.19 GPa	2.10 GPa
Pore V (ų)	695	719	720	1431	1330
Red. pore V (ų)	695	719	720	716	665
<i>e</i> - count per unit cell	102	202	211	620	617
EtOH per pore	3.9	7.8	8.1	11.9	11.9

Supplementary Table S5. *N*,*N*-Dimethylformamide content per pore of $Zn_2bdc_2dabco \cdot X(DMF)$ (**2**) at variable pressure in a PTM of DMF or Fluorinert FC-70[®]. Pore content and volume was calculated using the SQUEEZE algorithm in PLATON.⁵

	0.1 GPa	0.33 GPa	0.10 GPa	0.32 GPa	
PTM	DMF	DMF	FC-70	FC-70	
Pore V (ų)	438	511	2586	502	
Red. pore V (ų)	438	511	646.5	502	
<i>e</i> - count	852	1011	1011	158	
DMF per pore	5.5	4.5	6.5	4.1	

3. Thermogravimetric Analysis

Thermogravimetric and differential thermal analysis (TG-DTA) was performed on a TA Instruments Q600 (sample weight approximately 5-10 mg) under nitrogen flow (flow rate 100 mL min⁻¹) in the temperature range from 25 °C to 600 °C with a heating rate of 10 °C min⁻¹. The solvated samples were taken out of the respective solvent (DMF, EtOH, or benzene), air-dried for approximately 1 h and placed in alumina crucibles for the measurement.

Figure S1: TG/DTA trace **2**. 32% weight loss up to a temperature of ~200 °C corresponds to the loss of 4.0 DMF molecules per formula unit of Zn_2bdc_2dabco . This is in excellent agreement with the single crystal XRD data. The second step in the range from 300 to 350 °C corresponds to the loss of dabco.

Figure S2: TG/DTA trace of **1**. 33% weight loss up to a temperature of ~100 °C corresponds to the loss of 6.1 EtOH molecules per formula unit of $Zn_2(bdc)_2$ dabco. The second step in the range from 300 to 350 °C corresponds to the loss of dabco.

Figure S3: TG/DTA trace of **3**. 30% weight loss up to a temperature of ~150 °C corresponds to the loss of 3.1 benzene molecules per formula unit of Zn_2bdc_2dabco . Only two benzene molecules per formula unit could be located crystallographically, suggesting further disorder of the benzene guests. The second step in the range from 300 to 350 °C corresponds to the loss of dabco.

4. FT-IR spectroscopy

IR spectroscopy was carried out on air-dried samples on a Bruker Tensor 27 FT-IR spectrometer (ψ = 520 cm⁻¹ – 4000 cm⁻¹) in reflection mode using a diamond ATR (attenuated total reflectance) unit.

Figure S4: ATR-FTIR spectra of **1** (EtOH@Zn₂bdc₂dabco), **2** (DMF@Zn₂bdc₂dabco), and **3** (Benzene@Zn₂bdc₂dabco),. Top: Spectral region from 2500 to 4000 cm⁻¹. Bottom: Spectral region from 500 to 2000 cm⁻¹. The specific vibrational bands of the respective guest molecules are observed.

5 Twin Analysis

The structural phase transition of the ethanol-containing framework, **1**, during compression in a PTM of ethanol from P4/mmm to C2/m is accompanied by a three-fold reduction in symmetry, thereby inducing twinning of the crystal. Two twin laws were found using ROTAX in CRYSTALS, as listed below.

$$\begin{pmatrix} 1 & 0 & 0 \\ -0 & -1 & 0 \\ -0.051 & 0 & -1 \end{pmatrix} \times \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} a & 0 & 0 \\ -0 & -b & 0 \\ -0.051a & 0 & -c \end{pmatrix}$$
(figure of merit = 8.171)

$$\begin{array}{ccc} \begin{pmatrix} 1 & 0 & 0.112 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \times \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} a & 0 & 0.112c \\ 0 & -b & 0 \\ 0 & 0 & -c \end{pmatrix}$$
 (figure of merit 8.709)

Twining in framework, **1**, was also evidenced from synthetic precession images (Figure S5), where the separate components could be clearly resolved.

Figure S5: Framework, **1**, showing hkO synthetic precession image. Note the two overlays from the predicted positions for reflections from component **1** (green overlay) and **2** (white overlay) caused by the phase transition.

References

- (1) Piermanrini, S. B. G. J., Barnett, J. D., Forman, R. A., J Appl Phys, 1975, 46, 2774-2780
- (2) Bruker, Madison, Wisconsin, USA, 2006
- (3) Krause, R. H.-I. L., Sheldrick, D. M., Stalke, D., *J Appl Cryst*, **2013**, *48*, 3-10
- (4) Betteridge, P.W., Carruthers, J. R., Cooper, R. I., Prout, K. P., Watkin, D. J., J Appl Cryst, 2003, 36, 1487
- (5) Spek, A. L., Acta Cryst C, **2015**, 71, 9-18
- (6) Dawson, A., Parsons, S., Ruf, M., J Appl Cryst, 2004, 37, 410-416
- (7) Parsons, S., 2004