SUPPORTING MATERIAL FOR

Coumarin luciferins and mutant luciferases for robust multicomponent bioluminescence imaging

Zi Yao^{1,‡}, Donald R. Caldwell^{4,‡}, Anna C. Love^{1,‡}, Bethany Kolbaba-Kartchner^{5,6}, Jeremy H. Mills^{5,6}, Martin J. Schnermann^{4,*}, Jennifer A. Prescher^{1,2,3,*}

Departments of ¹Chemistry, ²Molecular Biology & Biochemistry, and ³Pharmaceutical Sciences, University of California, Irvine, Irvine CA, United States

⁴Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick MD, United States

⁵School of Molecular Sciences, and ⁶The Biodesign Center for Molecular Design and Biomimetics, Arizona State University, Tempe AZ, United States

*Correspondence should be addressed to <u>martin.schnermann@nih.gov</u> and <u>jpresche@uci.edu</u> [‡]These authors contributed equally to the work.

TABLE OF CONTENTS

Figures S1-S20	S2-15
Materials and Methods	S16-22
Rosetta Methods	S22-36
Synthetic Procedures	S36-41
References	S41-42
NMR Spectra	S43-60

Figure S1. 2D NOESY spectrum (diagonal peak suppression) of CouLuc-1-NMe₂ in DMSO- d_6 showing the correlation of H_d and H_e.

Figure S2. Chromatography-free synthesis of cyanomethylene coumarin 2a from commercial coumarin. Starting from a flame-dried round-bottom flask under nitrogen; (a) The flask was charged with THF, CH₃CN, and *n*-BuLi at -78 °C; (b) After addition of coumarin 1a in THF; (c) Reaction quenched with aqueous NH₄Cl solution and the -78 °C bath was removed; (d) Extraction with EtOAc; (e) Addition of 0.5 M HCl and stirred at 1000 rpm; (f) Precipitation of cyanomethylene coumarin 2a as a yellow solid; (g) Vacuum filtration; (h) Isolated cyanomethylene coumarin 2a.

Figure S3. Chromatography-free synthesis of CouLuc-1-NMe₂ from cyanomethylene coumarin. Starting from a flame-dried round-bottom flask under nitrogen; (a) Flask charged with 2a, D-cysteine, NaHCO₃ and degassed EtOH; (b) Reaction after >75% conversion; (c) Crude mixture after removing EtOH; (d) After triturating with EtOAc; (e) Color change after acidifying with 1.0 M HCl; (f) After centrifugation and supernatant removal; (g) Transferred product to round-bottomed flask with MeOH/H₂O, red color change; (h) Lyophilized CouLuc-1-NMe₂.

Figure S4. CouLuc-1 analogs are competent, albeit weak, emitters with Fluc. (a) Light emission of CouLuc-1 analogs $(2.5-250 \ \mu\text{M})$ or D-luc $(2.5-250 \ \mu\text{M})$ when incubated with ATP (1 mM), coenzyme A (1 mM) and recombinant Fluc (160 nM). Emission intensities are plotted as total photon flux values. Error bars represent the standard error of the mean for n = 3 experiments. (b) Tabulated photon outputs from (a). Relative emission values for each analog (compared to D-luc) at 100 μ M are also listed

Figure S5. Biochemical analyses of Fluc with CouLuc-1 analogs. (a) Kinetics studies revealed CouLuc-1 analogs were poor binders of Fluc. (b) Kinetic constants shown are apparent values, determined via measurements of the initial rates of light emission over a range of substrate concentrations. ^[a]Values were normalized to emission of Fluc/D-luciferin. Error bars represent the standard error of the mean for n = 3 experiments. ^[b]Kinetic parameters could not be determined due to low levels of light production.

Figure S6. Comparison of CouLuc-1 analogs to other synthetic luciferins. (a) Chemical structures of the synthetic luciferins tested. (b) CouLuc-1 analogs or synthetic luciferins (2.5-250 µM) were incubated with ATP (1 mM), coenzyme A (1 mM) and recombinant Fluc (160 nM). Emission intensities are plotted as total photon flux values. Error bars represent the standard error of the mean for n = 3 experiments. (c) Tabulated photon outputs from (b) with [luciferin] = 100 µM. Relative emission values for each analog (compared to D-luciferin) are also listed.

1.6 ± 0.02 x 10⁷

 $2.2 \pm 0.04 \times 10^7$

 $3.4 \pm 0.1 \times 10^{8}$

2.7 ± 0.06 x 10⁹

 $2.4 \pm 0.04 \times 10^9$

0.018 ± 0.0004

0.27 ± 0.01

 2.12 ± 0.05

 1.92 ± 0.04

4'-MorphoLuc

7'-MorpipLuc

7'-DMAMeLuc

7'-pyrLuc

Luciferin	BL λ _{max} (nm)	FL λ	FL λ _{max} (nm)		
	(with Fluc)	pH 7.4 PBS	MeOH	DMF	
CouLuc-1-NMe ₂	620	627	650	609	
CouLuc-1-NH ₂	597	593	588	476	
CouLuc-1-OH	625	600	541	644	

Table S1. Bioluminescence and fluorescence emission of CouLuc-1 analogs.

Figure S7. The binding pocket of Fluc does not accommodate the CouLuc-1 architecture. (a) CouLuc-1-NMe₂ was docked into the Fluc active site (PDB: 4G36) using the RosettaMatch algorithm.¹⁻² Residues within 5 Å of the bound luciferin are highlighted in orange. (b-c) Zoom-in view of (a). The coumarin portion of the luciferin is located near residues adjacent to C4' in bound D-luc.

Figure S8. Searching for a complementary luciferase via Rosetta-guided library design. (a) Residues within 6 Å of the docked CouLuc-1-NMe₂ scaffold were subjected to RosettaDesign.¹⁻² From the analysis, 40 residues were mutated (orange). (b-c) Zoom-in view of (a). Active site residues sculpted to accommodate the CouLuc-1 structures mitigating the steric clash observed in Figure S7b was mitigated. (d). From the analysis, 20 of the 40 residues mutated by Rosetta were targeted for library construction.

Figure S9. Evolving a brighter luciferase for CouLuc-1-NMe₂ via RosettaDesign. (a) Functional mutants identified from on-plate screens were picked and subjected to two secondary screens. In the first round, luciferase expression was auto-induced³ and mutants with >10-fold light emission (compared to Fluc) were re-examined via IPTG induction. (b) Variants with reproducible improvements were considered hits and sequenced. (c) Unique sequences identified from (b). Plasmids encoding mutant hits were isolated and re-introduced to *E. coli*. The magnitude of improvement was re-analyzed in a final assay using IPTG induction. Relative light emissions are plotted as fold over the native enzyme. Error bars represent the standard error of the mean for n = 3 experiments.

Figure S10. Evolving a brighter luciferase for CouLuc-1-OH via RosettaDesign. (a) Functional mutants identified from on-plate screens were picked and subjected to two secondary screens. In the first round, luciferase expression was autoinduced³ and mutants with >10-fold light emission (compared to Fluc) were re-examined via IPTG induction. (b) Variants with reproducible improvements were considered hits and sequenced. (c) Unique sequences identified from (b). Plasmids encoding these mutants were isolated and re-introduced to *E. coli*. The magnitude of improvement was re-analyzed in a final assay using IPTG induction. Relative light emissions are plotted as fold over the native enzyme. Error bars represent the standard error of the mean for n = 3 experiments.

Figure S11. Identifying complementary luciferases for CouLuc-1 analogs via semi-rational library design. (a-c) CouLuc-1-NH₂ and (d-e) CouLuc-1-OH were screened against a panel of mutant luciferases using a protocol from Rathbun, *et al.*,⁴ with some modifications. Bacteria harboring the luciferase gene were induced for protein expression in a 96 deep-well plate. The cells were pelleted and resuspended in phosphate buffer (250 mM sodium phosphate, pH 8). Each luciferin was added (100 μ M) and the plate was imaged, and the luminescent values for each mutant were referenced to native Fluc. Mutants with >5-fold improvement in flux (black) with (b) CouLuc-1-NH₂ or (e) CouLuc-1-OH were classified as "hits" and their sequences were listed in (c) and (f), respectively.

Figure S12. Improved light emission was recapitulated with recombinant Pecan (a) Light emission of CouLuc-1 analogs (250–2.5 μ M) when incubated with ATP (1 mM), coenzyme A (1 mM) and recombinant Pecan (160 nM). Emission intensities are plotted as total photon flux values. Error bars represent the standard error of the mean for n = 3 experiments. (b) Tabulated photon outputs from (a) with [luciferin] = 100 μ M. Fold improvements for each analog with Pecan (compared to Fluc) are also listed.

Figure S13. Biochemical analyses of Fluc with CouLuc-1 analogs. (a) Kinetics studies revealed CouLuc-1 analogs were poor binders of native luciferase. (b) Kinetic constants are apparent values, determined via measurements of initial light emission over a range of substrate concentrations. ^[a]Values were normalized to emission of Fluc/D-luciferin. Error bars represent the standard error of the mean for n = 3 experiments. ^[b]Kinetic parameters could not be determined due to low photon outputs.

Figure S14. Red-shifted bioluminescence was maintained with Pecan. (a) Recombinant Pecan was incubated with CouLuc-1 analogs and emission spectra were recorded. (b) Emission maxima (λ_{em}) for each analog. The corresponding emission maxima with Fluc are also shown.

Figure S15. Cellular imaging with Pecan and CouLuc-1-NMe₂. HEK293 cells (5 x 10⁴) expressing Fluc or Pecan were incubated with CouLuc-1-NMe₂ (250–2.5 μ M) or D-luciferin (250–2.5 μ M). Transfection efficiencies were determined via co-expression of GFP. (a) Maximum photon outputs ([luciferin] = 250 μ M) were determined by monitoring signals over time. (b) Peak emission intensities for each probe combination are shown as photon flux values per cell. Error bars represent the standard error of the mean for n = 3 experiments. (c) Tabulated photon outputs from (b) with [luciferin] = 250 μ M. Relative emission values for each luciferase/luciferin pair (compared to Fluc/D-luciferin) are also listed.

Figure S16. Improved light emission observed with Pecan and other CouLuc-1 analogs *in cellulo*. HEK293 cells (5 x 10⁴) expressing Fluc or Pecan were incubated with CouLuc-1-NH₂ (250–2.5 μ M), CouLuc-1-OH (250–2.5 μ M) or D-luciferin (250–2.5 μ M). Transfection efficiencies were determined via co-expression of GFP. (a) Peak emission intensities for each probe combination are shown as photon flux values per cell. Error bars represent the standard error of the mean for n = 3 experiments. (b) Tabulated photon outputs from (a) with [luciferin] = 250 μ M. Relative emission values for each luciferase/luciferin pair (compared to Fluc/D-luciferin) are also listed.

Figure S17. Robust light emission observed in DB7 cells. DB7 cells stably expressing Pecan (5 x 10^4) were incubated with CouLuc-1 analogs (250–2.5 μ M). Photon outputs were measured immediately post substrate addition. Emission intensities are plotted as total photon flux values and error bars represent the standard error of the mean for n = 3 experiments.

Figure S18. Cellular light emission from Pecan/CouLuc-1-NMe₂ is comparable to other redemitting bioluminescence probes. HEK293 cells (5 x 10⁴) expressing mutant luciferases or Fluc were incubated with either D-luciferin (250–2.5 μ M), CouLuc-1-NMe₂ (250–2.5 μ M), CycLuc1 (250–2.5 μ M) or AkaLumine (250–2.5 μ M). (a) Peak emission intensities for each probe combination are shown as photon flux values per cell. Error bars represent the standard error of the mean for n = 3 experiments. (b) Tabulated photon outputs from (a) with [luciferin] = 250 μ M. Relative emission values for each luciferase/luciferin pair (compared to Fluc/D-luciferin) are also listed.

Figure S19. Pecan/CouLuc-1-NMe₂ produces a significant amount of near infrared photons. Luciferase-expressing DB7 cells (5 x 10⁴) were treated with either CouLuc-1-NMe₂ (100 μ M), D-luciferin (100 μ M), CycLuc1 (100 μ M), AkaLumine (100 μ M) or furimazine (1:100 dilution from commercial stock). Photons produced in the near-infrared window were recorded by measuring through a Cy5.5 emission filter (695–770 nm). Emission intensities are plotted as total photon flux values and error bars represent the standard error of the mean for n = 3 experiments.

Figure S20. Multiplexed imaging with Pecan/CouLuc-1-NMe₂. Gradients of DB7 cells (1-4 x 10^4) expressing Pecan, Akaluc, or Antares were plated in a 96-well plate as shown. (a) Raw luminescent images from sequential substrate administration of CouLuc-1-NMe₂ (100 μ M), AkaLumine (100 μ M), and furimazine (1:100 dilution from commercial stock). Data are representative of n = 3 replicates. (b) Quantified photon outputs for the images in (a). Photon flux from wells containing a single population of 4.0 x 10^4 luciferase-expressing cells were plotted. Minimal crosstalk was observed between Pecan/CouLuc-1-NMe₂ and Akaluc/AkaLumine. Error bars represent the standard error of the mean for n = 3 experiments.

General biological methods

Fluorescent spectra and assays

Absorption curves were obtained on a Shimadzu UV-2550 spectrophotometer operated by UVProbe 2.32 software. Fluorescence traces were recorded on a PTI QuantaMaster steady state spectrofluorometer operated by FelixGX 4.2.2 software, with 5 nm excitation and emission slit widths, 0.1 s integration rate, and enabled emission correction. Data analyses and curve fitting were performed using MS Excel 2019 and GraphPad Prism 8. Luciferins (10 μ M) were analyzed in a variety of solvents.

Bioluminescence emission spectra with recombinant luciferases

Emission spectra for all luciferin analogs were recorded on an Agilent Cary Eclipse Fluorescence Spectrophotometer. Each luciferin (100 μ M) was incubated in an Eppendorf tube with ATP (1 mM) and diluted to 1 mL with bioluminescence reaction buffer (20 mM Tris•HCl, 0.5 mg/mL BSA, 0.1 mM EDTA, 1 mM TCEP, 2 mM MgSO₄, pH = 7.8). Purified luciferase enzyme (6–600 μ g) was added, and an aliquot (700 μ L) was transferred to a 10 mm pathlength cuvette. The emission slit widths were set to 5–10 nm. The detector gain was set to 600 mV. Emission data were collected at 1 nm intervals from 400–850 nm at ambient temperature. The acquisition times were set to 1–60 s/wavelength depending on the amount of light produced from each sample. Light emission was recorded as relative luminescence units (RLU), and the intensities were normalized. Area under the curve was estimated via the trapezoid rule on MS Excel.

Bioluminescence emission spectra with luciferase expressing cells

For *in cellulo* emission spectra, 1 x 10⁶ DB7 cells stably expressing the luciferase of interest⁵⁻⁶ were added to an Eppendorf tube in DMEM with 10% FBS. Cells were then incubated with luciferin (200 μ M final concentration) diluted in PBS or DMSO (7-NMe2-CouLuc1 only, 10% DMSO final concentration) and an aliquot (700 μ L) was transferred to a 10 mm pathlength cuvette. The emission slit widths were set to 20 nm. The detector gain was set to 800 mV. Emission data were collected at 5 nm intervals from 400–850 nm at ambient temperature. The acquisition times were set to 1 s/wavelength for all samples. Light emission was recorded at relative luminescence units (RLU) and the intensities were normalized. Area under the curve was estimated via the trapezoid rule on MS Excel.

Reagents

All reagents purchased from commercial supplies were of analytical grade and used without further purification. 4'-MorphoLuc, 7'-MorpipLuc, 7'-DMAMeLuc and 7'-pyrLuc, CycLuc1 were prepared and used as previously described.^{5,7-8}

General bioluminescence imaging protocol

All analyses were performed in black 96-well plates (Grenier Bio One). Plates containing luminescent reagents were allowed to sit at room temperature for 5 min post-luciferin addition, and were then imaged in a light-proof chamber with an IVIS Lumina II (Xenogen) CCD camera chilled to -90 °C. The stage was kept at 37 °C during the imaging session, and the camera was controlled using Living Image software. The exposure time was 1–60 s, and data binning levels were set to medium. Regions of interests were selected for quantification and total flux values were

analyzed using Living Image software. All data were exported to Microsoft Excel or Prism (GraphPad) for further analyses.

General cell culture methods

HEK293 and DB7 cells were cultured in complete media: DMEM (Corning) containing 10% (v/v) fetal bovine serum (FBS, Life Technologies), 4.5 g/L glucose, 2 mM L-glutamine, penicillin (100 U/mL), and streptomycin (100 µg/mL, Gibco). DB7 cells stably expressing Fluc were generated according to Jones et al. via transduction with ecotropic retrovirus (Phoenix packaging system).4-⁵ DB7 cells stably expressing Pecan, Akaluc, and Antares were generated according to Rathbun et al. via CRISPR-mediated gene insertion.⁶ For transient transfection experiments, HEK293 cells were plated 24-48 h prior to transfection in tissue culture treated 6-well dishes (Corning). Transfections were performed with luc2-IRES-eGFP or Pecan-IRES-eGFP plasmids using Lipofectamine 2000 according to the manufacturer's instructions when cells were 75-80% confluent (1-2 d post plating). Cells were manipulated 24-48 h post transfection. Expression of all transient and stable cell lines were checked via flow cytometry using an ACEA NovoCyte flow cytometer and the appropriate filter settings. Fluorescence was analyzed and quantified using the NovoExpress software (ACEA). Stably expressing luciferase cells were maintained under puromycin selection (20 µg/mL) to ensure gene incorporation was preserved. Cells were incubated at 37 °C in a 5% CO₂ humidified chamber. Cells were serially passaged using trypsin (0.25% in HBSS, Gibco).

General cloning methods

Polymerase chain reaction (PCR) methods were performed to isolate the luciferase and IRESeGFP genes. Mutant luciferase inserts were amplified from pET vectors using the following primers:

5'- CGACTCACTATAGGGAGACCCAAGCTTATGGAAGATGCCAAAAACATTAAGAAG -3' and 5'-CACCGGCCTTATTCCAAGCGGCTTCGGCCAGTAACGTTTACACGGCGATCTTGCC-3'

IRES-eGFP insert was amplified from pcDNA vectors using the following primers: 5'- AAGGGCGGCAAGATCGCCGTGTAAACGTTACTGGCCGAAGCCGCTTGGAATAAG-3' and 5'-GCCGCCAGTGTGATGGATATCTGCAGAATTCttaCTTGTACAGCTCGTCCATGC-3'

All PCR reactions (unless otherwise stated) were performed in a BioRad C3000 Thermocycler using the following conditions: 1) 95 °C for 3 min, 2) 95 °C for 30 s, 3) Tm of primers for 30 s, 4) 72 °C for 3 min, repeat steps 2-4 twenty times, then 72 °C for 5 min, and hold at 12 °C until retrieved from the thermocycler. Linearized vectors were generated via digestion with restriction enzymes *Hlind*III and *Xho*I (New England BioLabs). The linearized vectors were combined with the appropriate luciferase insert by Gibson assembly (50 °C for 60 min). A portion of the reactions (3.0 μ L) was directly transformed into TOP10 competent *E. coli* cells. Colonies containing the genes of interest were expanded overnight in 5 mL LB broth supplemented with ampicillin (100 μ g/mL) or kanamycin (100 μ g/mL) and DNA was extracted from colonies using a Zymo Research Plasmid Mini-prep Kit. Sequencing analysis confirmed successful plasmid generation.

In cellulo bioluminescence imaging

Stably expressing luciferase cells, or transiently transfected HEKs were plated in DMEM containing 10% FBS (90 μ L, 50,000 cells/well). Measurements were carried out in triplicate using black 96-well plates (Grenier Bio One). Luciferin analogs (0–250 μ M) were prepared as a 10X

stock in PBS and then 10 μ L was added to assay wells. Images for all assays were acquired as described above.

Construction of combinatorial codon mutagenesis (CCM) libraries

DNA inserts for the combinatorial libraries (on average 3–4 mutations per clone) were generated as described by Belsare, *et al.*, with some modifications.⁹⁻¹⁰ The library template was first amplified using primers ZY040 and ZY041 (Table S2). The following thermal cycling conditions was used in a BioRad C3000 Thermocycler: 1) 95 °C for 3 min, 2) 95 °C for 30 s, 3) 65 °C for 30 s, 4) 72 °C for 45 s min, repeat steps 2-4 twenty times, then 72 °C for 5 min, and hold at 12 °C until retrieved from the thermocycler.

The forward fragment reactions were performed using an equimolar of mixture of mutagenic forward primers and ZY041 (Table S2). The reverse fragment reactions were performed using an equimolar mixture of mutagenic reverse primers and ZY040 (Table S2). The following thermal cycling conditions were used for the fragmentation reaction: 1) 95 °C for 3 min, 2) 95 °C for 30 s, 3) 60 °C for 30 s, 4) 72 °C for 45 s min, repeat steps 2-4 seven times, then 72 °C for 5 min, and hold at 12 °C until retrieved from the thermocycler. These reactions were used in a joining PCR reaction using the following conditions: ZY040 (1 μ L, 100 μ M), ZY041 (1 μ L, 100 μ M), 10x Q5® Reaction Buffer (6 μ L), 10x Q5® GC Enhancer Buffer, 1:4 dilution of the forward fragment reaction (4 μ L), 1:4 dilution of the reverse fragment reaction (4 μ L), dNTPs (1 μ L, 0.8 mM), and Q5® High-Fidelity DNA polymerase (0.3 μ L, 1U, New England BioLabs) totaling 30 μ L. DNA was amplified using thermal cycling conditions for insert amplification as descried above. This PCR product was used as template for the second round of fragmentation (12 cycles) and joining PCRs. Mutagenesis was confirmed using Sanger sequencing (Genewiz).

Library DNA inserts were incorporated into linearized pQE vector. The linearized pQE vector was generated via digestion with restriction enzymes *BamH*I and *Xba*I. Library inserts were assembled with the linearized pET vectors using Gibson assembly. For each assembly, 25 ng of the linearized vector was combined with insert (5:1 insert:vector ratio) and added to 5 μ L of master mix mixed with 5 μ L NanoPure H₂O. The mixtures were incubated at 50 °C for 60 min, then the entire reaction mixture was transformed into chemically competent TOP10 E. coli (70 μ L). Transformants were recovered with SOC (100 μ L) for 30 mins at 37 °C and 25 μ L plated per square, agar plate containing ampicillin.

 Table S2: Primers used to construct Rosetta CCM library. The bases highlighted in red denote sites targeted for mutagenesis.

Forward CCM Primers	
ZY040	ATCGCATCACCATCACCGGATCCATGGAAGATGCCAAAAACATTAAGAAGG
RosCCM1-F-218	CGCTTGTGTCndtTTCAGTCATGCCC
RosCCM1-F-221	CGATTCAGTndtGCCCGCG
RosCCM1-F-222	GATTCAGTCATndtCGCGACCCCATC
RosCCM1-F-229	GACCCCATCTTCGGCndtCAGATCATC
RosCCM1-F-245	GCCATTTCACndtGGCTTCGGCAT
RosCCM1-F-246	CCATTTCACCACndtTTCGGCATGTT
RosCCM1-F-247	CACCACGGCndtGGCATGTTC
RosCCM1-F-250	CTTCGGCATGndtACCACGCTG
RosCCM1-F-251	CTTCGGCATGTTCndtACGCTGG
RosCCM1-F-254	TCACCACGCTGndtTACTTGATCTG
RosCCM1-F-314	GATCGCCndtGGCGGG
RosCCM1-F-338	GCATCCGCndtGGCTACGG
RosCCM1-F-342	AGGGCTACGGCndtACAGAAACAA
RosCCM1-F-343	CTACGGCCTGndtGAAACAACTAGTG
RosCCM1-F-347	CTGACAGAAACAACTndtGCCATTCTGATCACC
RosCCM1-F-351	TGCCATTCTGndtACCCCCGAAG
RosCCM1-F-352	CATTCTGATCndtCCCGAAGGGG
RosCCM1-F-420	GGCTGCACndtGGCGACATCGC
RosCCM1-F-437	TCATCGTGGACndtCTGAAGAGCC
RosCCM1-F-519	TGACCGGCndtTTGGACGCC

Reverse CCM Primers	
ZY041	TTTCGTTTTATTTGATGCCTCTAGATTACACGGCGATCTTGCCGCCCTTCTT
RosCCM1-R-218	GGGCATGACTGAAahnGACACAAGCG
RosCCM1-R-221	CGCGGGCahnACTGAATCG
RosCCM1-R-222	GATGGGGTCGCGahnATGACTGAATC
RosCCM1-R-229	GATGATCTGahnGCCGAAGATGGGGTC
RosCCM1-R-245	ATGCCGAAGCCahnGTGAAATGGC
RosCCM1-R-246	AACATGCCGAAahnGTGGTGAAATGG
RosCCM1-R-247	GAACATGCCahnGCCGTGGTG
RosCCM1-R-250	CAGCGTGGTahnCATGCCGAAG
RosCCM1-R-251	CCAGCGTahnGAACATGCCGAAG
RosCCM1-R-254	CAGATCAAGTAahnCAGCGTGGTGA
RosCCM1-R-314	CCCGCCahnGGCGATC
RosCCM1-R-338	CCGTAGCCahnGCGGATGC
RosCCM1-R-342	TTGTTTCTGTahnGCCGTAGCCCT
RosCCM1-R-343	CACTAGTTGTTTCahnCAGGCCGTAG
RosCCM1-R-347	GGTGATCAGAATGGCahnAGTTGTTTCTGTCAG
RosCCM1-R-351	CTTCGGGGGTahnCAGAATGGCA
RosCCM1-R-352	CCCCTTCGGGahnGATCAGAATG
RosCCM1-R-420	GCGATGTCGCCahnGTGCAGCC
RosCCM1-R-437	GGCTCTTCAGahnGTCCACGATGA
RosCCM1-R-519	GGCGTCCAAahnGCCGGTCA

Primary screening protocol

The aforementioned agar plates were sprayed with either a solution of CouLuc-1-NMe₂ or CouLuc-1-OH (100–500 μ M, 500 μ L per plate). The plates were incubated at 25 °C for 5 minutes and imaged as described above. Light emitting colonies were picked and grown for secondary screenings.

Secondary screening protocol

Hits from the primary screen were further analyzed as described in Jones, *et al.*, with some modifications.⁵ Light-emitting colonies from the agar plates were picked and expanded in LB broth containing ampicillin (100 µg/mL, LB-AMP) in a 96-well deep-well plate (500 µg/well). The plate was incubated at 37 °C overnight. An aliquot of the overnight culture (4 µL) was then used to inoculate 400 µL of auto-induction LB media, and the cells were incubated as 30 °C with shaking (250 rpm) for 24 h. The remaining starter cultures were mixed with 50% glycerol (1:1) and stored at -80 °C for subsequent plasmid recovery and sequencing analysis. The cells were pelleted by centrifugation (4000 rpm for 10 min) and resuspended in phosphate buffer (600 µL, 250 mM sodium phosphate, pH = 7.8). Bacterial culture (90 µL) was added to 96-well black plates, followed by a 10X solution of luciferin and ATP in phosphate buffer (10 µL, 250 mM phosphate, pH = 7.8, 100 µM luciferin and 1 mM ATP final concentration). The plate was then imaged as described above. Mutants with light emission 10-fold greater than wild type Fluc were considered as hits.

The panel of mutants from above was further validated in a second round of analysis. TOP10 E. coli cells expressing the desired mutants (glycerol stocks) were used to inoculate 5 mL LB-AMP media. The cultures were incubated at 37 °C overnight. An aliquot of the starter culture (150 μ L) was used to inoculate a fresh solution of LB-AMP (5 mL) and incubated at 37 °C to mid-log phase (O.D.₆₀₀ ~0.8). The cultures were then induced with isopropyl β-D-1- thiogalactopyranoside (IPTG, 500 μ M final concentration), and incubated at 23 °C for 16–18 h. The cells were harvested by centrifugation at 3600 rpm for 15 min. The cells were pelleted by centrifugation (4000 rpm for 10 min) and resuspended in phosphate buffer (600 μ L, 250 mM sodium phosphate, pH = 7.8). Bacterial culture (90 μ L) was added to 96-well black plates, followed by a 10X solution of luciferin and ATP final concentration). The plate was then imaged as described above. Mutants with reproducible improvement (>10-fold over Fluc) were sequenced.

Complete analog/mutant luciferase screen

The panel of luciferin analogs was screened against a library of functional luciferase mutants described in Rathbun, *et al.*⁴ BL21 *E. coli* cells expressing mutant luciferases (glycerol stocks) were used to inoculate LB-Kan media in a 96-well deep-well plate (500 μ L/well). The plate was incubated at 37 °C overnight. An aliquot of the overnight culture (4 μ L) was used to inoculate 400 μ L of auto-induction LB media³, and the cells were incubated at 30 °C with shaking (250 rpm) for 24 h. The cells were pelleted by centrifugation at 4000 rpm for 10 min and resuspended in sodium phosphate buffer (600 μ L, 100 mM, pH 8). Cell lysate was spread across six cells (90 μ L/well) on six different 96-well black plates. Native Fluc expressing bacteria were included in each screen as a control for compound integrity. To each well, a 10X solution of luciferin and ATP in phosphate buffer (10 μ L, 250 mM phosphate, pH = 7.8, 250 μ M luciferin and 1 mM ATP final concentration)

was added, and the plate was imaged as described above. This process was repeated until all compounds were imaged with all 222 luciferase mutants.

Substrate unmixing analysis with orthogonal pairs

Substrate unmixing was conducted using ImageJ (installed under the FIJI package) as described in Rathbun, *et al.*⁶ Luminescence images containing raw photon counts were imported into FIJI and subjected to a 2-pixel median filter. Next, the signal at each pixel was min-max scaled to lie between 0 and 65535 (the maximum value that can be stored in a 16-bit image). Images were then stacked, and an additional image containing the maximum value of the stack was computed (as a Z projection). This new image was added to the stack, and signal was unmixed using the ImageJ plugin developed by Gammon *et al.*¹¹ Pseudocolors were assigned in FIJI through the "Merge Channels" tool.

Recombinant protein expression and purification

Luciferases were expressed and purified as described by Jones, et al.⁵ The pET-luciferase plasmids (WT, Pecan) were transformed into chemically competent BL21 E. coli cells. The transformants were plated on agar plates containing kanamycin. Cells were expanded in LB-Kan at 37 °C overnight. The overnight culture (20 mL) was used to inoculate 1 L LB-Kan and incubated at 37 °C to mid-log phase (O.D.~0.8). The culture was then induced with isopropyl β -D-1thiogalactopyranoside (IPTG, 500 µM final concentration), and incubated at 22 °C for 16–18 h. The cells were harvested at 4 °C by centrifugation at 4000 rpm for 15 min. Cell pellets were resuspended in 40 mL of phosphate buffer (50 mM phosphate, 300 mM NaCl, 1 mM dithiothreitol (DTT), and 1 mM phenylmethylsulfonyl fluoride, pH = 7.4). Lysozyme (2 mg) was added, and the cells were sonicated and centrifuged at 10000 rpm for 1 h at 4 °C. WT Fluc and mutant luciferases were purified from clarified supernatants using nickel affinity chromatography (BioLogic Duo Flow Chromatography System, Bio-Rad). Proteins were dialyzed into a Tris-acetate buffer (25 mM Tris-acetate, 1 mM EDTA, and 0.2 mM ammonium sulfate, pH = 7.8) at 4 °C for 16 h. DTT (1 mM final concentration) and 15% glycerol were added to the dialyzed samples prior to storage at -20°C. Final protein concentrations were determined using absorbance at 280 nm using a JASCO V730 UV-vis spectrophotometer. SDS-PAGE was also performed to verify protein purify, and gels were stained with Coomassie R-250.

Light emission assays with recombinant luciferase

Bioluminescence assays were performed as described by Jones, *et al.*⁵ Measurements were carried out in triplicate, using solid black, flat-bottom, 96-well plates (Grenier Bio One). Assay wells contained purified Fluc (0 or 1 mg), luciferin analogs (0–250 μ M), ATP (Sigma Aldrich, 1 mM), coenzyme-A (trilithium salt, NanoLight Technologies, 1 mM), and diluted with bioluminescence reaction buffer to a total volume of 100 μ L. Luciferins and ATP were premixed in the wells prior to Fluc addition. Images for all assays were acquired as described above.

Bioluminescence kinetic measurements

Bioluminescence kinetics assays were performed as described by Jones, *et al.* with some modifications.⁵ Measurements were acquired on a Tecan F200 Pro injection port luminometer with a neutral density filter. Reactions were performed in black 96-well flat- bottom plates (Greiner). Solutions of luciferin analog in bioluminescence reaction buffer were prepared (0.2–100 μ M analog), and 50 μ L were added to each well. The luminescence from each well was measured for

1.5 s prior to the addition of Fluc or mutant in bioluminescence buffer with ATP. For wells containing D-luciferin, a 1.6 μ M solution of enzymes (50 μ L) was used. For other compounds, a 160 μ M solution of enzyme (50 μ L) was administered. Following the addition of enzyme, luminescence was recorded every 0.2 s over a 60 s period. Samples were analyzed in triplicate. The peak intensities were determined by averaging the five maximum photon outputs per run. $K_{\rm M}$ and relative $k_{\rm cat}$ values were determined using nonlinear regression analyses in Prism (GraphPad).

General Rosetta methods

All calculations were carried out using Rosetta master version 60589 SHA1 code: 8442bff4fb7bf2ccb44655e8d15276c9bccfbbd0 using the ref15 score function.¹²

Preparing the scaffolds

A high-resolution (2.62 Å) structure of *Photinus pyralis* luciferase (PDB ID: 4G36) was processed to remove water molecules, non-proteinogenic molecules and a second copy of the protein in the asymmetric unit. Mutations present in the Pecan and Akaluc scaffold were made using the prepared 4g36 scaffold. The structures were subjected to an energy minimization using the Rosetta relax protocol to prepare them for subsequent protocols¹³ with the following command line:

```
<Path to>/Rosetta/main/source/bin/relax.default.linuxgccrelease -s <input file> @<Path to>/relax.flags
```

The contents of relax.flags was:

```
-nstruct 1
-relax:default_repeats 5
-relax:constrain_relax_to_start_coords
-relax:coord_constrain_sidechains
-relax:ramp_constraints false
-ex1
-ex2
-use_input_sc
-flip_HNQ
-ignore_unrecognized_res
-relax:coord_cst_stdev_0.5
```

Preparing the CouLuc-1 ligands

The CouLuc-1 ligands were built in Avogadro: an open-source molecular builder and visualization tool. Version 1.2.0. <u>http://avogadro.cc/¹⁴</u> and subjected to an energy minimization using the UFF force field.¹⁵ The .mol2 files were converted to .params files for use in Rosetta using an internal script. The params files used in the RosettaMatch algorithm are as follows:

The CouLuc-1- NMe₂ params file where LCC stands for CouLuc-1-NMe₂ is as follows:

NAME LCC IO_STRING LCC Z TYPE LIGAND AA UNK ATOM N7 Ntrp X -0.50 ATOM S2 S X -0.05 ATOM 01 OOC X -0.65 ATOM 02 OOC X -0.65 ATOM 03 OH X -0.55 ATOM C5 CH2 X -0.07

ATOM	С6	CH1	Х	0.02
ATOM				-0.55
	04	OH	Х	
ATOM	С9	CH1	Х	0.02
ATOM	N4	Npro	Х	-0.26
		-		
ATOM	C11	aroC	Х	-0.01
ATOM	NЗ	Nhis	Х	-0.42
ATOM	C10	aroC	Х	-0.01
ATOM	N2	Nhis	Х	-0.42
ATOM	C13	aroC	Х	-0.01
ATOM	NG	NH2O	Х	-0.36
				0.50
ATOM	НG	Hpol	Х	0.54
ATOM	H7	Hpol	Х	0.54
ATOM	C12	aroC	Х	-0.01
ATOM	N5	Ntrp	Х	-0.50
ATOM	C14	aroC	Х	-0.01
ATOM	H15	Haro	Х	0.22
ATOM	Н2	Hpol	Х	0.54
ATOM	H14	Haro	Х	0.22
ATOM	С8	CH1	Х	0.02
ATOM	06	OH	Х	-0.55
ATOM	Н8	Hpol	Х	0.54
ATOM	C7	CH1	Х	0.02
ATOM	05	OH	Х	-0.55
ATOM	HЗ	Hpol	Х	0.54
ATOM	H11	Наро	Х	0.20
ATOM	H12	Наро	Х	0.20
ATOM	H13	Наро	Х	0.20
ATOM	Н9	Наро	Х	0.20
		-		
ATOM	H4	Наро	Х	0.20
ATOM	Н5	Наро	Х	0.20
ATOM	C4	COO	Х	0.73
ATOM	C3	aroC	Х	-0.01
ATOM	N1	Nhis	Х	-0.42
ATOM	C1	aroC	Х	-0.01
ATOM	C15	CH1	Х	0.02
ATOM	C16	COO	Х	0.73
ATOM	08	OOC	Х	-0.65
ATOM	C18			-0.01
		aroC	Х	
ATOM	C19	aroC	Х	-0.01
ATOM	C20	aroC	Х	-0.01
ATOM	C17	aroC		-0.01
			Х	
ATOM	H17	Haro	Х	0.22
ATOM	C25	CH1	Х	0.02
ATOM	F1	F	Х	-0.14
ATOM	F2	F	Х	-0.14
ATOM	F3	F	Х	-0.14
ATOM	C24	aroC	Х	-0.01
				-0.01
ATOM	C23	aroC	Х	-0.01
ATOM	C22	aroC	Х	-0.01
ATOM	C21	aroC	Х	-0.01
ATOM	Н20	Haro	Х	0.22
ATOM	N8	Nhis	Х	-0.42
ATOM	C26	CH3	Х	-0.16
ATOM	H21	Наро	Х	0.20
ATOM		-		
ATOM	H22	Hapo	Х	0.20
ATOM		-		
	H22 H23	Наро Наро	X X	0.20 0.20
	H22 H23 C27	Наро Наро СНЗ	X X X	0.20 0.20 -0.16
ATOM	H22 H23 C27 H24	Наро Наро СНЗ Наро	X X X X	0.20 0.20 -0.16 0.20
	H22 H23 C27 H24 H25	Наро Наро СНЗ	X X X	0.20 0.20 -0.16
ATOM ATOM	H22 H23 C27 H24 H25	Наро Наро СНЗ Наро Наро	X X X X X	0.20 0.20 -0.16 0.20 0.20
ATOM ATOM ATOM	H22 H23 C27 H24 H25 H26	Наро Наро СНЗ Наро Наро Наро	X X X X X X X	0.20 0.20 -0.16 0.20 0.20 0.20
ATOM ATOM ATOM ATOM	H22 H23 C27 H24 H25 H26 H19	Наро Наро СНЗ Наро Наро Наро Наро	X X X X X X X	0.20 0.20 -0.16 0.20 0.20 0.20 0.22
ATOM ATOM ATOM	H22 H23 C27 H24 H25 H26 H19 H18	Наро Наро СНЗ Наро Наро Наро	X X X X X X X X	0.20 0.20 -0.16 0.20 0.20 0.20 0.22 0.22
ATOM ATOM ATOM ATOM	H22 H23 C27 H24 H25 H26 H19	Наро Наро СНЗ Наро Наро Наро Наро	X X X X X X X X	0.20 0.20 -0.16 0.20 0.20 0.20 0.22
ATOM ATOM ATOM ATOM ATOM ATOM	H22 H23 C27 H24 H25 H26 H19 H18 H16	Наро Наро СНЗ Наро Наро Наро Наго Наго Наро	X X X X X X X X X	0.20 0.20 -0.16 0.20 0.20 0.20 0.22 0.22 0.22 0.20
ATOM ATOM ATOM ATOM ATOM ATOM	H22 H23 C27 H24 H25 H26 H19 H18 H16 S1	Hapo Hapo CH3 Hapo Hapo Haro Haro Haro S	X X X X X X X X X X X	0.20 0.20 -0.16 0.20 0.20 0.22 0.22 0.22 0.22 0.20 -0.05
ATOM ATOM ATOM ATOM ATOM ATOM ATOM	H22 H23 C27 H24 H25 H26 H19 H18 H16 S1 C2	Hapo Hapo CH3 Hapo Hapo Haro Haro Haro S aroC	X X X X X X X X X X X X	0.20 0.20 -0.16 0.20 0.20 0.22 0.22 0.22 0.22 0.20 -0.05 -0.01
ATOM ATOM ATOM ATOM ATOM ATOM	H22 H23 C27 H24 H25 H26 H19 H18 H16 S1	Hapo Hapo CH3 Hapo Hapo Haro Haro Haro S	X X X X X X X X X X X	0.20 0.20 -0.16 0.20 0.20 0.22 0.22 0.22 0.22 0.20 -0.05

ATOM	07	ONH2	Х	-0.44
ATOM	H10	Hpol	X	0.54
BOND	TYPE	C1	C15	1
_	_			
_	TYPE	C1	N1	4
BOND_	TYPE	N1	C3	4
BOND	TYPE	01	S2	2
BOND	TYPE	C1	S1	4
BOND	TYPE	S1	C2	4
BOND	-	C2	C3	4
-	TYPE	C2	H1	1
	TYPE	N2	C10	4
BOND_	-	N2	C13	4
BOND	TYPE	02	s2	2
BOND	TYPE	S2	03	1
BOND	TYPE	S2	N7	1
	TYPE	C3	C4	1
BOND		N3	C10	4
-	-			
	TYPE	N3	C11	4
	TYPE	03	С5	1
BOND	TYPE	C4	N7	1
BOND	TYPE	C4	07	2
BOND		N4	С9	1
	TYPE	N4	C11	4
			C14	4
_	TYPE	N4		
_	TYPE	04	C6	1
BOND_	TYPE	04	С9	1
BOND	TYPE	С5	С6	1
BOND	TYPE	С5	H4	1
BOND	TYPE	C5	Н5	1
	TYPE	N5	C12	4
	TYPE	N5	C14	4
	TYPE	N5	H2	1
BOND_	TYPE	05	C7	1
BOND	TYPE	05	HЗ	1
BOND	TYPE	С6	С7	1
BOND	TYPE	C6	Н9	1
BOND		N6	C13	1
-	-			
BOND	-	N6	H6	1
BOND_	TYPE	N6	H7	1
BOND	TYPE	06	C8	1
BOND	TYPE	06	Н8	1
BOND	TYPE	C7	C8	1
BOND		C7	H11	1
BOND	TYPE	N7	H10	1
BOND	-			
	TYPE	C8	C9	1
BOND	TYPE	C8	H12	1
BOND		N8	C26	1
BOND	TYPE	N8	C27	1
BOND	TYPE	08	C18	4
BOND		С9	H13	1
BOND		C10	H14	1
DOND	TYPE	C11	C12	4
BOND	TIPE			
BOND	-	C12	C13	4
BOND_		C14	H15	1
BOND	TYPE	C15	C16	1
BOND		C15	H16	1
BOND		08	C16	4
BOND	TYPE	C16	C17	4
	-	C10 C17	C20	4
BOND				
	TYPE	C17	H17	1
BOND_		C18	C19	4
	TYPE	C18	C21	4
BOND	TYPE	C19	C20	4
BOND	-	C19	C24	4
BOND	TYPE	C20	C25	1
		C20 C21		4
BOND_	- 1155	UZI	C22	4

BOND_TYPE C21 H20 1 BOND_TYPE N8 C22 1 BOND_TYPE C22 C23 4 BOND_TYPE C23 C24 4 BOND_TYPE C23 H19 1 BOND_TYPE C23 H19 1 BOND_TYPE C24 H18 1 BOND_TYPE C25 F1 1 BOND_TYPE C25 F3 1 BOND_TYPE C25 F3 1 BOND_TYPE C26 H21 1 BOND_TYPE C26 H21 1 BOND_TYPE C26 H22 1 BOND_TYPE C26 H23 1 BOND_TYPE C26 H23 1 BOND_TYPE C27 H24 1 BOND_TYPE C27 H26 1 CHI 1 C8 C7 O5 H3 PROTON_CHI 1 SAMPLES 21 45 175 180 185 190 195 EXTRA (CHI 2 C9 C8 O6 H8 PROTON_CHI 2 SAMPLES 21 45 175 180 185 190 195 EXTRA (CHI 3 N1 C1 C15 C16) 50 55 60 65				
CHI 4 N7 S2 O3 C5 CHI 5 C4 N7 S2 O1					
CHI 6 N7 C4 C3 N1 CHI 7 S2 O3 C5 C6					
CHI 8 S2 N7 C4 C3 CHI 9 O4 C9 N4 C11					
CHI 10 03 C5 C6 04					
CHI 11 C1 C15 C16 O8 CHI 12 C19 C20 C25 F1					
CHI 13 C23 C22 N8 C26 NBR ATOM N7					
NBR_RADIUS 16.480287					
—				17 S2 17 S2	01 01
ICOOR_INTERNAL 01 0.	000000 72.	104658	1.437728 S	S2 N7	01
—				52 N7 52 N7	01 02
_)3 S2	N7
—				25 03 26 C5	S2 O3
				04 C6	C5
ICOOR INTERNAL N4 -109. ICOOR INTERNAL C11 -150.				C9 04 14 C9	C6 04
				C11 N4	C9
ICOOR_INTERNAL C10 -179. ICOOR_INTERNAL N2 -0.				13 C11 210 N3	N4 C11
				10 NS 12 C10	N3
_				213 N2	C10
				16 C13 16 C13	N2 H6
				213 N2	N6
				C12 C13	N2 C13
ICOOR_INTERNAL H15 -179.				C14 N5	C12
ICOOR INTERNAL H14 179.	967987 61.			N5 C12 C10 N3	C14 N2
				04	N4
_				C8 C9 C8 C8	04 C9
_	342024 77.	546124		C9	06
ICOOR INTERNAL H3 179.	991726 70.			C7 C8 C7 C7	C9 C8
ICOOR_INTERNAL H11 117.	079816 69.	012841	1.070864 C	C7 C8	05
ICOOR_INTERNAL H12 -121.	114U// 03.	727852	1.069712 C	C9 C9	C7

ICOOR_INTERNAL ICOOR_INTERNAL	08 C18 C19 C20 C17 H17 C25 F1 F2 F3		67.676021 70.515230 70.426804 70.417410 58.281421 63.790977 59.685217 66.538537 54.751568 56.742589 59.229554 56.623479 59.212928 61.931272 61.915940 59.714914 53.469135 65.088860 70.959525 70.887590 62.667377	1.069572 1.070763 1.069592 1.069976 1.467467 1.496597 1.308129 1.363242 1.475845 1.347238 1.354592 1.354364 1.412822 1.515819 1.352930 1.087586 1.526954 1.374607 1.384707 1.383661 1.407529	C9 C6 C5 C5 N7 C4 C3 N1 C1 C15 C16 08 C18 C19 C20 C17 C20 C17 C20 C25 C25 C25 C25 C19	04 C5 O3 S2 N7 C4 C3 N1 C1 C15 C16 O8 C18 C19 C20 C19 C20 C20 C20 C20	C8 O4 C6 H4 O1 S2 N7 C4 C3 N1 C1 C15 C16 O8 C18 C19 C17 C19 F1 F2 C20
ICOOR_INTERNAL	C24 C23	0.444229	58.666119	1.396868	C19 C24	C18 C19	C20 C18
ICOOR INTERNAL	C22		58.151002	1.413573	C23	C24	C19
ICOOR INTERNAL	C21	-0.508039	63.430140	1.413587	C22	C23	C24
ICOOR INTERNAL	H20	179.170241	57.531909	1.075128	C21	C22	C23
ICOOR INTERNAL	N8	-179.834487	58.360800	1.454020	C22	C23	C21
ICOOR_INTERNAL	C26	-15.367154	57.151155	1.459721	N8	C22	C23
ICOOR_INTERNAL	H21	-4.544141	65.075936	1.099691	C26	N8	C22
ICOOR_INTERNAL		-118.257943	70.626381	1.111531	C26	N8	H21
ICOOR_INTERNAL		-119.101486	70.203809	1.111081	C26	N8	H22
ICOOR_INTERNAL		-179.704739	56.873654	1.458277	N8	C22	C26
ICOOR_INTERNAL	H24	-3.336325	65.036189	1.098860	C27 C27	N8	C22
ICOOR_INTERNAL ICOOR_INTERNAL		-118.846485 -119.305614	70.514855 70.093290	1.110651 1.110606	C27 C27	N8 N8	H24 H25
ICOOR_INTERNAL		-179.115566	64.471844	1.076073	C27	N0 C24	п23 С22
ICOOR INTERNAL		-179.865470	56.842756	1.072154	C23	C19	C22 C23
ICOOR INTERNAL		-179.288691	62.704338	1.086883	C15	C1	C16
ICOOR INTERNAL	S1	-178.645915	71.214035	1.654766	C1	N1	C15
ICOOR INTERNAL	C2	0.064084	84.137315	1.751848	S1	C1	N1
ICOOR INTERNAL	Н1	-179.571667	51.154423	1.031194	C2	S1	C1
ICOOR_INTERNAL	07	179.926420	56.571828	1.227619	C4	N7	C3
ICOOR_INTERNAL	H10	179.925774	60.889832	0.984604	N7	S2	C4

The contents of the CouLuc-1-NH $_2$ ligand params file where LCD stands for CouLuc-1-NH $_2$ are as follows:

NAME	LCD			
IO ST	RING	LCD Z		
TYPE 1	LIGAN	JD		
AA UN	K			
ATOM	N7	Ntrp	Х	-0.51
ATOM	s2	S	Х	-0.06
ATOM	01	00C	Х	-0.66
ATOM	02	00C	Х	-0.66
ATOM	03	OH	Х	-0.56
ATOM	C5	CH2	Х	-0.08
ATOM	C6	CH1	Х	0.01
ATOM	04	OH	Х	-0.56
ATOM	С9	CH1	Х	0.01
ATOM	N4	Npro	Х	-0.27
ATOM	C11	aroC	Х	-0.01
ATOM	NЗ	Nhis	Х	-0.43
ATOM	C10	aroC	Х	-0.01
ATOM	N2	Nhis	Х	-0.43
ATOM	C13	aroC	Х	-0.01

ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	N66 H72 N67 N67 N67 H72 N66 H72 N66 H72 N67 N67 N67 N67 N67 N67 N67 N67 N67 N67	NH2Ol HpolC NH2Ol HpolC Naroro HpolO Hpapoo Aroro COC Aroro COC Aroro COC COC COC COC COC COC COC COC COC CO	X X X X X X X X X X X X X X X X X X X	$\begin{array}{c} -0.37\\ 0.53\\ 0.53\\ -0.01\\ -0.51\\ -0.01\\ 0.22\\ 0.53\\ 0.22\\ 0.01\\ -0.56\\ 0.53\\ 0.20\\ 0.01\\ -0.01\\ -0.01\\ -0.01\\ -0.01\\ -0.01\\ -0.01\\ -0.01\\ -0.01\\ -0.01\\ -0.01\\ -0.01\\ -0.01\\ 0.22\\ 0.20\\ 0.20\\ 0.53\\ 0.22\\ 0.20\\ 0.53\\ 1\\ 4\\ 4\\ 4\\ 4\\ 4\\ 4\\ 4\\ 4\\ 4\\ 4\\ 4\\ 4\\ 4\\$
-	_			
-	_			
-	_			
BOND	_	02		2
BOND	TYPE			4
-	_			
-				
-	_			
-	_			
BOND	_		C2	4
BOND	TYPE	C1	S1	4
BOND	_			
-	_			
_				
	_			
ATOM	H1	Haro	Х	0.22
		-		
				0 20
	H18			0.22
ATOM	H19		Х	0.22
				0.53
				0.53
				0.3/
				-0 37
				0.22
ATOM	C21	aroC	Х	-0.01
				-0.01
				-0.01
				_0 01
				-0 01
ATOM	FЗ	F	Х	
ATOM				
			Х	
ATOM	C17	aroC	Х	
				-0 01
			Х	-0.66
ATOM	C16	C00	Х	0.72
				_0 01
				-0.43
ATOM	C3	aroC	Х	-0.01
		-		
		-		
				0.20
	H13	Наро	Х	0.20
ATOM			Х	
		-		
		-		0.53
				0.00
	С7			
ATOM	Н8	Hpol	Х	0.53
				0.22
		-		0.00
				0 53
				0.22
		-		-0.01
ATOM	N5		Х	-0.51
ATOM	C12		Х	-0.01
ATOM	H7	Hpol	Х	0.53
ATOM	НG	Hpol	Х	0.53
ATOM	NG	NH2O	Х	

BOND TYPE	C3	C4	1															
BOND TYPE	N3	C10																
BOND TYPE	N3	C11																
_																		
BOND_TYPE	03	C5	1															
BOND_TYPE	C4	N7	1															
BOND_TYPE	C4	07	2															
BOND_TYPE	N4	С9	1															
BOND TYPE	N4	C11	4															
BOND TYPE	N4	C14	4															
BOND TYPE	04	C6	1															
BOND TYPE	04	C9	1															
BOND_TIPE BOND_TYPE																		
· _	C5	C6	1															
BOND_TYPE	C5	H4	1															
BOND_TYPE	С5	Н5	1															
BOND_TYPE	N5	C12																
BOND TYPE	N5	C14	4															
BOND TYPE	N5	H2	1															
BOND TYPE	05	C7	1															
BOND TYPE	05	нЗ	1															
BOND TYPE	C6	C7	1															
BOND TYPE	C6	Н9																
_			1															
BOND_TYPE	N6	C13																
BOND_TYPE	N6	НG	1															
BOND_TYPE	N6	H7	1															
BOND TYPE	06	C8	1															
BOND TYPE	06	Н8	1															
BOND TYPE	C7	C8	1															
BOND TYPE	C7	H11																
BOND TYPE	N7	H10																
BOND TYPE	C8	C9	1															
_																		
BOND_TYPE	C8	H12																
BOND_TYPE	N8	H21																
BOND_TYPE	N8	H22																
BOND_TYPE	08	C18	4															
BOND TYPE	С9	H13	1															
BOND TYPE	C10	H14	1															
BOND TYPE	C11	C12																
BOND TYPE	C12	C13																
BOND TYPE	C12																	
_		H15																
BOND_TYPE	C15	C16																
BOND_TYPE	C15	H16																
BOND_TYPE	08	C16	4															
BOND TYPE	C16	C17																
BOND TYPE	C17	C20	4															
BOND TYPE	C17	H17																
BOND TYPE	C18	C19																
BOND TYPE	C18	C21																
_		C20																
BOND_TYPE	C19																	
BOND_TYPE	C19	C24																
BOND_TYPE	C20	C25																
BOND_TYPE	C21	C22																
BOND TYPE	C21	H20	1															
BOND TYPE	N8	C22	1															
BOND TYPE	C22	C23	4															
BOND TYPE	C23	C24																
BOND TYPE	C23	H19																
BOND_TYPE	C23	H19																
_			_															
BOND_TYPE	C25	F1	1															
BOND_TYPE	C25	F2	1															
BOND_TYPE	C25	F3	1															
CHI 1 C8	С7	05	HЗ															
PROTON_CHI				0 55	60	65	70	75	-45	-50	-55	-60	-65	-70	-75	165	170	
$175 \ 180 \ 180$	5 190	195	EXTRA 0															
PROTON CHI				0 55	60	65	70	75	-45	-50	-55	-60	-65	-70	-75	165	170	
175 180 18																		
CHI 3 N1	C1		5 C16															
	~ -																	

CHI 4 N7 S2 CHI 5 C4 N7 CHI 6 N7 C4 CHI 7 S2 O3	03 S2 C3 C5	C5 01 N1 C6					
CHI 8 S2 N7 CHI 9 O4 C9	C4	C3 C11					
CHI 9 04 C9 CHI 10 03 C5	N4 C6	04					
CHI 11 C1 C15	C16	08					
CHI 12 C19 C20	C25	F1					
NBR_ATOM N7 NBR RADIUS 15.402	1002						
ICOOR INTERNAL	N7	0.00000	0.00000	0.00000	N7	s2	01
ICOOR_INTERNAL	S2	0.000000	180.000000	1.649480	N7	s2	01
ICOOR_INTERNAL	01	0.000000	72.115214	1.437728	S2	N7	01
ICOOR_INTERNAL ICOOR INTERNAL	02 03	-110.979907 -129.796485	68.095120 67.884564	1.445125 1.508898	S2 S2	N7 N7	01 02
ICOOR INTERNAL	C5	47.972804	59.847207	1.411561	03	s2	02 N7
ICOOR INTERNAL	C6	157.660576	70.738957	1.511080	C5	03	S2
ICOOR_INTERNAL	04	77.333973	70.005558	1.402847	C6	C5	03
ICOOR_INTERNAL	C9	125.086234	74.080093	1.413900	04	C6	C5
ICOOR_INTERNAL ICOOR_INTERNAL	N4 C11	-109.502643 -150.229052	70.720185 54.143952	1.445332 1.365802	C9 N4	04 C9	C6 04
ICOOR INTERNAL	N3	-0.892936	46.223588	1.342216	C11	N4	C9
ICOOR_INTERNAL		-179.432403	59.624923	1.326020	NЗ	C11	N4
ICOOR_INTERNAL	N2	-0.848435	57.610071	1.331554	C10	N3	C11
ICOOR_INTERNAL ICOOR INTERNAL	C13 N6	0.552053 -179.890730	58.120141 60.506917	1.342096 1.449335	N2 C13	C10 N2	N3 C10
ICOOR INTERNAL	H6	-0.115371	59.977458	0.984393	N6	C13	N2
ICOOR_INTERNAL	H7	179.952772	59.961946	0.984831	Nб	C13	НG
ICOOR_INTERNAL	C12	179.862428	62.184716	1.420651	C13	N2	N6
ICOOR_INTERNAL ICOOR_INTERNAL	N5 C14	-179.949517 179.677558	44.621863 70.203038	1.328601 1.324715	C12 N5	C13 C12	N2 C13
ICOOR INTERNAL		-179.517871	55.041066	1.032119	NJ C14	N5	C13 C12
ICOOR INTERNAL	H2	-179.976464	54.922095	0.984330	N5	C12	C14
ICOOR_INTERNAL		-179.959018	61.152494	1.031712	C10	NЗ	N2
ICOOR_INTERNAL	C8	125.404314	71.733653	1.475916	C9	04	N4
ICOOR_INTERNAL ICOOR_INTERNAL	Об Н8	90.149730 179.999645	71.799851 70.557415	1.374530 0.969220	C8 06	C9 C8	04 C9
ICOOR INTERNAL	C7	-120.391196	77.527376	1.465575	C8	C9	06
ICOOR_INTERNAL	05	150.567803	65.743236	1.380198	C7	C8	С9
ICOOR_INTERNAL	HЗ	179.981880	70.545702	0.969832	05	C7	C8
ICOOR_INTERNAL ICOOR_INTERNAL	H11 H12	117.168004 -121.158644	68.989317 63.838599	1.070413 1.069836	C7 C8	C8 C9	05 C7
ICOOR INTERNAL	H13	117.674596	67.713631	1.070064	C9	04	C8
ICOOR_INTERNAL	Н9	-119.374097	70.454273	1.069969	C6	С5	04
ICOOR_INTERNAL	H4	-119.990464	70.450854	1.069592	C5	03	C6
ICOOR_INTERNAL ICOOR_INTERNAL	Н5 С4	-119.938832 -83.828030	70.434132 58.301695	1.070190 1.468382	C5 N7	03 S2	H4 01
ICOOR INTERNAL	C3	178.603415	63.816343	1.496095	C4	N7	S2
ICOOR_INTERNAL	Nl	171.714611	59.715820	1.309092	C3	C4	N7
ICOOR_INTERNAL	C1	179.404452	66.574660	1.362844	N1	C3	C4
ICOOR_INTERNAL ICOOR_INTERNAL	C15 C16	179.343162 179.978262	54.627824 56.646772	1.477523 1.345610	C1 C15	N1 C1	C3 N1
ICOOR INTERNAL	08	0.981830	59.223614	1.354162	C15 C16	C15	C1
ICOOR INTERNAL	C18	179.745138	56.639084	1.351881	08	C16	C15
ICOOR_INTERNAL	C19		59.068241	1.419987	C18	08	C16
ICOOR_INTERNAL	C20		62.167587	1.515074	C19	C18	08
ICOOR_INTERNAL ICOOR_INTERNAL	С17 н17	0.167837 -179.921795	61.905154 59.732081	1.351574 1.088256	C20 C17	C19 C20	C18 C19
ICOOR INTERNAL		-179.891720	53.582674	1.526174	C20	C19	C17
ICOOR_INTERNAL	F1	-0.070420	65.114755	1.374596	C25	C20	C19
ICOOR_INTERNAL	F2	-120.759332	70.951926	1.385320	C25	C20	F1
ICOOR_INTERNAL ICOOR_INTERNAL	F3 C24	-118.384368 -179.946722	70.903342 62.419046	1.383675 1.414589	C25 C19	C20 C18	F2 C20
ICOOR_INTERNAL	C24 C23		59.023358	1.398205	C19 C24	C18 C19	C20 C18
ICOOR_INTERNAL	C22		59.392855	1.396772	C23	C24	C19
—							

ICOOR_INTERNAL ICOOR_INTERNAL ICOOR_INTERNAL	C21 H20 N8	-0.022927 179.999029 -179.722109	60.637687 60.022004 59.603023	1.395543 1.082887 1.416893	C22 C21 C22	C23 C22 C23	C24 C23 C21
ICOOR_INTERNAL	H21	179.543056	59.258297	1.030065	N8	C22	C23
ICOOR_INTERNAL	H22	-179.490041	59.252862	1.031163	N8	C22	H21
ICOOR INTERNAL	H19	-179.986643	60.635697	1.083038	C23	C24	C22
ICOOR INTERNAL	H18	-179.867044	56.526093	1.071263	C24	C19	C23
ICOOR INTERNAL	H16	-179.940476	62.786240	1.087599	C15	C1	C16
ICOOR INTERNAL	S1	-179.929034	71.177075	1.654766	C1	N1	C15
ICOOR INTERNAL	C2	0.061092	84.158025	1.751119	S1	C1	N1
ICOOR INTERNAL	H1	-179.547396	51.165815	1.032145	C2	S1	C1
ICOOR INTERNAL	07	179.981870	56.614562	1.227206	C4	N7	C3
ICOOR_INTERNAL	H10	179.984530	60.814997	0.984262	N7	S2	C4

The contents of the CouLuc-1-OH ligand params file where LCE stands for CouLuc-1-OH are as follows:

NAME I	CE			
IO STR	RING	LCE Z		
_	IGAN			
AA UNK				
ATOM	N7	Ntrp	Х	-0.50
ATOM	s2	S	X	-0.05
ATOM	01	OOC	X	-0.65
ATOM	02	000	X	-0.65
ATOM	03	OH	X	-0.55
ATOM	C5	CH2	X	-0.07
ATOM	C6	CH1	X	0.02
ATOM	04	OH	X	-0.55
ATOM	C9	CH1	X	0.02
ATOM	N4	Npro	X	-0.26
ATOM	N4 C11	-	л Х	-0.20
		aroC		-0.42
ATOM	N3	Nhis	Х	
ATOM	C10	aroC	Х	-0.00
ATOM	N2	Nhis	Х	-0.42
ATOM	C13	aroC	Х	-0.00
ATOM	N6	NH2O	Х	-0.36
ATOM	Н6	Hpol	Х	0.54
ATOM	H7	Hpol	Х	0.54
ATOM	C12	aroC	Х	-0.00
ATOM	N5	Ntrp	Х	-0.50
ATOM	C14	aroC	Х	-0.00
ATOM	H15	Haro	Х	0.23
ATOM	H2	Hpol	Х	0.54
ATOM	H14	Haro	Х	0.23
ATOM	C8	CH1	Х	0.02
ATOM	06	OH	Х	-0.55
ATOM	Н8	Hpol	Х	0.54
ATOM	C7	CH1	Х	0.02
ATOM	05	OH	Х	-0.55
ATOM	HЗ	Hpol	Х	0.54
ATOM	H11	Наро	Х	0.21
ATOM	H12	Наро	Х	0.21
ATOM	H13	Наро	Х	0.21
ATOM	Н9	Наро	Х	0.21
ATOM	H4	Наро	Х	0.21
ATOM	Н5	Наро	Х	0.21
ATOM	C4	C00	Х	0.73
ATOM	C3	aroC	Х	-0.00
ATOM	N1	Nhis	Х	-0.42
ATOM	C1	aroC	Х	-0.00
ATOM	C15	CH1	Х	0.02
ATOM	C16	C00	Х	0.73
ATOM	08	00C	Х	-0.65

ATOM	C18	aroC	Х	-0.00
				0.00
ATOM	C19	aroC	Х	-0.00
ATOM	C20	aroC	Х	-0.00
ATOM	C17	aroC	Х	-0.00
ATOM	H17	Haro	Х	0.23
ATOM	C25	CH1	Х	0.02
ATOM	F1	F	Х	-0.14
ATOM	F2	F	Х	-0.14
ATOM	F3	F	Х	-0.14
ATOM	C24	aroC	Х	-0.00
ATOM	C23	aroC	Х	-0.00
ATOM	C22	aroC	Х	-0.00
ATOM	C21	aroC	Х	-0.00
ATOM	Н20	Haro	Х	0.23
ATOM	09	OH	Х	-0.55
ATOM	H21	Hpol	Х	0.54
		-		
ATOM	H19	Haro	Х	0.23
ATOM	H18	Haro	Х	0.23
ATOM	H16	Наро	Х	0.21
ATOM	S1	S	Х	-0.05
ATOM	C2	aroC	Х	-0.00
ATOM	H1	Haro	Х	0.23
ATOM	07	ONH2	Х	-0.44
ATOM	H10	Hpol	Х	0.54
BOND	TYPE	C1	C15	1
	-			
BOND_	TYPE	C1	N1	4
BOND	TYPE	N1	C3	4
BOND	TYPE	01	s2	2
	-	C1	S1	4
	TYPE			
BOND_	TYPE	S1	C2	4
BOND	TYPE	C2	C3	4
	TYPE	C2	Н1	1
	-			
BOND_	TYPE	N2	C10	4
BOND	TYPE	N2	C13	4
BOND	TYPE	02	s2	2
	-			
BOND_	TYPE	S2	03	1
BOND	TYPE	s2	N7	1
BOND	TYPE	C3	C4	1
	-		C10	4
BOND_	TYPE	N3	CIU	
BOND	TYPE	NЗ	C11	4
BOND	TYPE	03	С5	1
	TYPE	C4	N7	1
	-			
BOND_	TYPE	C4	07	2
BOND	TYPE	N4	С9	1
BOND	TYPE	N4	C11	4
BOND_	TYPE	N4	C14	4
BOND	TYPE	04	С6	1
BOND	TYPE	04	С9	1
	-	C5	C6	1
BOND_	TYPE			
BOND_	TYPE	С5	H4	1
BOND	TYPE	С5	H5	1
BOND	TYPE	N5	C12	4
	-			
BOND_	TYPE	N5	C14	4
BOND	TYPE	N5	H2	1
	TYPE	05	С7	1
BOND_	TYPE	05	ΗЗ	1
BOND	TYPE	C6	С7	1
	TYPE	C6	Н9	1
BOND_	TYPE	N6	C13	1
BOND	TYPE	NG	НG	1
BOND	TYPE	NG	H7	1
	TYPE	06	C8	1
BOND_				
	TYPE	06	Н8	1
BOND	TYPE	С7	C8	1
BOND	TYPE	C7	H11	1
	-			
BOND_	TYPE	N7	Н10	1

BOND_TYPE	C8		1							
BOND_TYPE	C8	H12								
BOND_TYPE	08	C18	4							
BOND_TYPE	С9	H13								
BOND_TYPE	09	H21								
BOND_TYPE	C10	H14								
BOND_TYPE	C11	C12	4							
BOND_TYPE	C12	C13								
BOND_TYPE	C14	H15	1							
BOND_TYPE	C15	C16	1							
BOND_TYPE	C15	H16	1							
BOND_TYPE	08	C16	4							
BOND_TYPE	C16	C17	4							
BOND_TYPE	C17	C20	4							
BOND_TYPE	C17	H17								
BOND_TYPE	C18	C19	4							
BOND_TYPE	C18	C21	4							
BOND_TYPE	C19	C20	4							
BOND_TYPE	C19	C24								
BOND_TYPE	C20	C25								
BOND_TYPE	C21	C22	4							
BOND_TYPE	C21	H20	1							
BOND_TYPE	09	C22	1							
BOND_TYPE	C22	C23	4							
BOND_TYPE	C23	C24	4							
BOND_TYPE	C23	H19	1							
BOND_TYPE	C24	H18	1							
BOND_TYPE	C25	F1	1							
BOND_TYPE	C25	F2	1							
BOND_TYPE	C25	F3	1							
CHI 1 C8	C7	05	нЗ							
_				50 55 6	0 65 70 75 -45	-50 -55 -6	60 -65	-70 -7	75 165 1	170
175 180 185										
CHI 2 C9	C8	06	Н8							
	O O N N									
				50 55 6	0 65 70 75 -45	-50 -55 -6	60 -65	- 1/0 -	75 165 1	170
175 18 0 185	5 190	195	EXTRA 0	50 55 6	0 65 70 75 -45	-50 -55 -6	60 -65	- 70 -	75 165 3	170
175 180 185 CHI 3 C23	5 190 C22	195 09	EXTRA 0 H21	50 55 6	0 65 70 75 -45	-50 -55 -6	60 -65	- 70 -	75 165 1	170
175 180 185 CHI 3 C23 CHI 4 N1	5 190 C22 C1	195 09 C15	EXTRA 0 H21 C16	50 55 6	0 65 70 75 -45	5 -50 -55 -6	60 -65	-70 -	75 165 3	170
175 180 185 CHI 3 C23 CHI 4 N1 CHI 5 N7	5 190 C22 C1 S2	195 09 C15 03	EXTRA 0 H21 C16 C5	50 55 6	0 65 70 75 -45	; −50 −55 −€	60 -65	-70 -	75 165 3	170
175 180 185 CHI 3 C23 CHI 4 N1 CHI 5 N7 CHI 6 C4	5 190 C22 C1 S2 N7	195 09 C15 03 S2	EXTRA 0 H21 C16 C5 O1	50 55 6	0 65 70 75 -45	6 -50 -55 -(60 -65	-70 -	75 165 3	170
175 180 185 CHI 3 C23 CHI 4 N1 CHI 5 N7 CHI 6 C4 CHI 7 N7	5 190 C22 C1 S2 N7 C4	195 09 C15 03 S2 C3	EXTRA 0 H21 C16 C5 O1 N1	50 55 6	0 65 70 75 -45	5 -50 -55 -6	60 -65	-70 -	75 165 1	170
175 180 185 CHI 3 C23 CHI 4 N1 CHI 5 N7 CHI 6 C4 CHI 7 N7 CHI 8 S2	5 190 C22 C1 S2 N7 C4 O3	195 09 C15 03 S2 C3 C5	EXTRA 0 H21 C16 C5 01 N1 C6	50 55 6	0 65 70 75 -45	i −50 −55 −€	60 -65	-70 -	75 165 3	170
175 180 185 CHI 3 C23 CHI 4 N1 CHI 5 N7 CHI 6 C4 CHI 7 N7 CHI 8 S2 CHI 9 S2	5 190 C22 C1 S2 N7 C4 O3 N7	195 09 C15 03 S2 C3 C3 C5 C4	EXTRA 0 H21 C16 C5 O1 N1 C6 C3	50 55 6	0 65 70 75 -45	i −50 −55 −(60 -65	-70 -	75 165 :	170
175 180 185 CHI 3 C23 CHI 4 N1 CHI 5 N7 CHI 6 C4 CHI 7 N7 CHI 8 S2 CHI 9 S2 CHI 10 04	5 190 C22 C1 S2 N7 C4 O3 N7 C9	195 09 C15 03 S2 C3 C5 C4 N4	EXTRA 0 H21 C16 C5 O1 N1 C6 C3 C11	50 55 6	0 65 70 75 -45	5 -50 -55 -6	60 -65	-70 -	75 165 3	170
175 180 185 CHI 3 C23 CHI 4 N1 CHI 5 N7 CHI 6 C4 CHI 7 N7 CHI 8 S2 CHI 9 S2 CHI 10 O4 CHI 11 O3	5 190 C22 C1 S2 N7 C4 O3 N7 C9 C5	195 09 C15 03 S2 C3 C5 C4 N4 C6	EXTRA 0 H21 C16 C5 01 N1 C6 C3 C11 04	50 55 6	0 65 70 75 -45	5 -50 -55 -6	5U -65	-70 -	75 165 3	170
175 180 185 CHI 3 C23 CHI 4 N1 CHI 5 N7 CHI 6 C4 CHI 7 N7 CHI 8 S2 CHI 9 S2 CHI 10 04 CHI 11 03 CHI 12 C1	5 190 C22 C1 S2 N7 C4 O3 N7 C9 C5 C15	195 09 C15 03 S2 C3 C5 C4 N4 C6 5 C1	EXTRA 0 H21 C16 C5 01 N1 C6 C3 C11 04 6 08	50 55 6	0 65 70 75 -45	5 -50 -55 -6	6U -65	-70 -	75 165 3	170
175 180 189 CHI 3 C23 CHI 4 N1 CHI 5 N7 CHI 6 C4 CHI 7 N7 CHI 8 S2 CHI 9 S2 CHI 10 04 CHI 11 03 CHI 12 C1 CHI 13 C19	5 190 C22 C1 S2 N7 C4 O3 N7 C9 C5 C15 O C20	195 09 C15 03 S2 C3 C5 C4 N4 C6 5 C1	EXTRA 0 H21 C16 C5 01 N1 C6 C3 C11 04 6 08	50 55 6	0 65 70 75 -45	5 -50 -55 -6	6U -65	-70 -	75 165 3	170
175 180 189 CHI 3 C23 CHI 4 N1 CHI 5 N7 CHI 6 C4 CHI 7 N7 CHI 8 S2 CHI 9 S2 CHI 10 04 CHI 11 03 CHI 12 C1 CHI 13 C19 NBR_ATOM N	5 190 C22 C1 S2 N7 C4 03 N7 C9 C5 C15 9 C20 N7	195 09 C15 03 S2 C3 C5 C4 N4 C6 5 C1) C2	EXTRA 0 H21 C16 C5 01 N1 C6 C3 C11 04 6 08 5 F1	50 55 6	0 65 70 75 -45	5 -50 -55 -6	oU -65	-70 -	75 165 3	170
175 180 185 CHI 3 C23 CHI 4 N1 CHI 5 N7 CHI 6 C4 CHI 7 N7 CHI 8 S2 CHI 9 S2 CHI 10 04 CHI 11 03 CHI 12 C1 CHI 13 C15 NBR_ATOM N NBR_RADIUS	5 190 C22 C1 S2 N7 C4 O3 N7 C9 C5 C15 9 C20 N7 15.40	195 09 c15 03 c2 c3 c5 c4 N4 c6 c1 0 c2	EXTRA 0 H21 C16 C5 01 N1 C6 C3 C11 04 6 08 5 F1							170
175 180 185 CHI 3 C23 CHI 4 N1 CHI 5 N7 CHI 6 C4 CHI 7 N7 CHI 8 S2 CHI 9 S2 CHI 10 04 CHI 11 03 CHI 12 C1 CHI 13 C15 NBR_ATOM N NBR_RADIUS ICOOR_INTEH	5 190 C22 C1 S2 N7 C4 O3 N7 C9 C5 C15 O C20 N7 15.40 RNAL	195 09 c15 03 c2 c3 c5 c4 N4 c6 c1 0 c2 01802 N7	EXTRA 0 H21 C16 C5 O1 N1 C6 C3 C11 O4 6 O8 5 F1	000000	0.00000	0.000000	N7	52	01	170
175 180 185 CHI 3 C23 CHI 4 N1 CHI 5 N7 CHI 6 C4 CHI 7 N7 CHI 8 S2 CHI 9 S2 CHI 10 04 CHI 11 03 CHI 12 C1 CHI 13 C15 NBR_ATOM N NBR_RADIUS ICOOR_INTEH ICOOR_INTEH	5 190 C22 C1 S2 N7 C4 O3 N7 C9 C5 C15 O C20 N7 15.40 RNAL	195 09 c15 03 s2 c3 c5 c4 N4 c6 5 c1 0 c2 01802 N7 s2	EXTRA 0 H21 C16 C5 O1 N1 C6 C3 C11 O4 6 O8 5 F1	000000	0.000000 180.000000	0.000000 1.649480	N7 N7	S2 S2	01 01	170
175 180 185 CHI 3 C23 CHI 4 N1 CHI 5 N7 CHI 6 C4 CHI 7 N7 CHI 8 S2 CHI 9 S2 CHI 10 O4 CHI 11 O3 CHI 12 C1 CHI 13 C12 NBR_ATOM N NBR_RADIUS ICOOR_INTEH ICOOR_INTEH	5 190 C22 C1 S2 N7 C4 O3 N7 C9 C15 O C20 V7 15.40 RNAL RNAL	195 09 c15 03 s2 c3 c5 c4 N4 c6 c1 0 c2 01802 N7 s2 01	EXTRA 0 H21 C16 C5 O1 N1 C6 C3 C11 O4 6 O8 5 F1 0. 0. 0.	000000 000000 000000	0.000000 180.00000 72.115214	0.000000 1.649480 1.437728	N7 N7 S2	S2 S2 N7	01 01 01	170
175 180 185 CHI 3 C23 CHI 4 N1 CHI 5 N7 CHI 6 C4 CHI 7 N7 CHI 8 S2 CHI 9 S2 CHI 10 04 CHI 11 03 CHI 12 C1 CHI 13 C12 NBR ATOM 1 NBR RADIUS ICOOR INTEH ICOOR INTEH ICOOR INTEH	5 190 C22 C1 S2 N7 C4 O3 N7 C9 C15 9 C20 N7 15.40 RNAL RNAL RNAL	195 09 C15 03 S2 C3 C5 C4 N4 C6 5 C1 0 C2 01802 N7 S2 01 02 01 02 01 02 01 02 03 03 03 03 03 03 03 03 03 03	EXTRA 0 H21 C16 C5 O1 N1 C6 C3 C11 O4 6 O8 5 F1 0. 0. 0. 0. 0.	000000 000000 000000 979907	0.000000 180.00000 72.115214 68.095120	0.000000 1.649480 1.437728 1.445125	N7 N7 S2 S2	S2 S2 N7 N7	01 01 01 01	170
175 180 185 CHI 3 C23 CHI 4 N1 CHI 5 N7 CHI 6 C4 CHI 7 N7 CHI 8 S2 CHI 9 S2 CHI 10 04 CHI 11 03 CHI 12 C1 CHI 13 C12 NBR ATOM N NBR RADIUS ICOOR INTEH ICOOR INTEH ICOOR INTEH ICOOR INTEH	5 190 C22 C1 S2 N7 C4 O3 N7 C5 C15 9 C15 9 C15 9 C15 9 T5.40 RNAL RNAL RNAL RNAL	195 09 c15 03 s2 c3 c5 c4 N4 c6 c1 0 c2 018020000000000	EXTRA 0 H21 C16 C5 01 N1 C6 C3 C11 04 6 08 5 F1 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	000000 000000 000000 979907 796485	0.000000 180.000000 72.115214 68.095120 67.884564	0.000000 1.649480 1.437728 1.445125 1.508898	N7 N7 S2 S2 S2	S2 S2 N7 N7 N7	01 01 01 01 01 02	170
175 180 185 CHI 3 C23 CHI 4 N1 CHI 5 N7 CHI 6 C4 CHI 7 N7 CHI 8 S2 CHI 9 S2 CHI 9 S2 CHI 10 04 CHI 11 03 CHI 12 C1 CHI 13 C15 NBR_ATOM N NBR_RADIUS ICOOR_INTEH ICOOR_INTEH ICOOR_INTEH ICOOR_INTEH ICOOR_INTEH ICOOR_INTEH	5 190 C22 C1 S2 N7 C4 O3 N7 C9 C5 C15 9 C15 9 C15 9 T5.40 RNAL RNAL RNAL RNAL RNAL	195 09 C15 03 S2 C3 C5 C4 N4 C6 C1 0 C2 018020000000000	EXTRA 0 H21 C16 C5 01 N1 C6 C3 C11 04 6 08 5 F1 0. 0. 0. 0. 0. 0. 0. 47.	000000 000000 000000 979907 796485 972804	0.000000 180.000000 72.115214 68.095120 67.884564 59.847207	0.000000 1.649480 1.437728 1.445125 1.508898 1.411561	N7 N7 S2 S2 S2 O3	S2 S2 N7 N7 S2	01 01 01 01 01 02 N7	170
175 180 185 CHI 3 C23 CHI 4 N1 CHI 5 N7 CHI 6 C4 CHI 7 N7 CHI 8 S2 CHI 9 S2 CHI 9 S2 CHI 10 04 CHI 11 03 CHI 12 C1 CHI 13 C15 NBR_ATOM N NBR_RADIUS ICOOR_INTEH ICOOR_INTEH ICOOR_INTEH ICOOR_INTEH ICOOR_INTEH ICOOR_INTEH ICOOR_INTEH	5 190 C22 C1 S2 N7 C4 03 N7 C9 C5 C15 9 C15 9 C15 9 15.40 RNAL RNAL RNAL RNAL RNAL RNAL RNAL	195 09 C15 03 S2 C3 C5 C4 N4 C6 C1 0 C2 018020000000000	EXTRA 0 H21 C16 C5 01 N1 C6 C3 C11 04 6 08 5 F1 0. 0. 0. 0. 0. 0. 0. 110. -129. 47. 157.	000000 000000 000000 979907 796485 972804 660576	0.000000 180.000000 72.115214 68.095120 67.884564 59.847207 70.738957	0.000000 1.649480 1.437728 1.445125 1.508898 1.411561 1.511080	N7 N7 S2 S2 S2 O3 C5	S2 S2 N7 N7 S2 O3	01 01 01 01 02 N7 S2	170
175 180 185 CHI 3 C23 CHI 4 N1 CHI 5 N7 CHI 6 C4 CHI 7 N7 CHI 8 S2 CHI 9 S2 CHI 9 S2 CHI 10 04 CHI 11 03 CHI 12 C1 CHI 13 C15 NBR_ATOM N NBR_RADIUS ICOOR_INTEH ICOOR_INTEH ICOOR_INTEH ICOOR_INTEH ICOOR_INTEH ICOOR_INTEH ICOOR_INTEH ICOOR_INTEH ICOOR_INTEH	5 190 C22 C1 S2 N7 C4 03 N7 C9 C5 C15 9 C20 7 15.40 RNAL RNAL RNAL RNAL RNAL RNAL RNAL RNAL	195 09 C15 03 S2 C3 C5 C4 N4 C6 C1 0 C2 01802 01802 01802 01802 01802 01802 01802 01802 01802 01802 01802 01802 01802 01802 015 01802 015 03 03 03 03 03 03 03 03 03 03 03 03 03	EXTRA 0 H21 C16 C5 01 N1 C6 C3 C11 04 6 08 5 F1 0. 0. 0. 0. 0. 0. 0. 129. 47. 157. 77.	000000 000000 979907 796485 972804 660576 333973	0.000000 180.000000 72.115214 68.095120 67.884564 59.847207 70.738957 70.005558	0.000000 1.649480 1.437728 1.445125 1.508898 1.411561 1.511080 1.402847	N7 N7 S2 S2 S2 O3 C5 C6	S2 S2 N7 N7 S2 O3 C5	01 01 01 01 02 N7 52 03	170
175 180 185 CHI 3 C23 CHI 4 N1 CHI 5 N7 CHI 6 C4 CHI 7 N7 CHI 8 S2 CHI 9 S2 CHI 10 04 CHI 11 03 CHI 12 C1 CHI 13 C15 NBR_ATOM N NBR_RADIUS ICOOR_INTEH ICOOR_INTEH ICOOR_INTEH ICOOR_INTEH ICOOR_INTEH ICOOR_INTEH ICOOR_INTEH ICOOR_INTEH ICOOR_INTEH ICOOR_INTEH ICOOR_INTEH	5 190 C22 C1 S2 N7 C4 O3 N7 C9 C5 C15 0 C20 0 T 15.40 RNAL RNAL RNAL RNAL RNAL RNAL RNAL RNAL RNAL RNAL RNAL	195 09 C15 03 S2 C3 C5 C4 N4 C6 C1 0 C2 01802 01802 01802 01802 01802 01802 01802 01802 01802 01802 01802 01802 01802 01802 015 03 C5 C4 C15 C15 C4 C15 C4 C15 C4 C15 C15 C4 C15 C15 C4 C15 C15 C4 C15 C15 C4 C15 C15 C15 C15 C4 C18 C15 C15 C15 C15 C4 C15 C15 C4 C15 C15 C15 C4 C15 C15 C4 C15 C15 C4 C15 C15 C4 C15 C15 C15 C4 C15 C15 C15 C15 C4 C15 C15 C15 C15 C15 C15 C15 C15 C15 C15	EXTRA 0 H21 C16 C5 01 N1 C6 C3 C11 04 6 08 5 F1 0. 0. 0. 0. 0. 0. 0. 0. 129. 47. 157. 77. 125.	000000 000000 979907 796485 972804 660576 333973 086234	0.000000 180.000000 72.115214 68.095120 67.884564 59.847207 70.738957 70.005558 74.080093	0.000000 1.649480 1.437728 1.445125 1.508898 1.411561 1.511080 1.402847 1.413900	N7 N7 S2 S2 S2 O3 C5 C6 O4	S2 S2 N7 N7 S2 O3 C5 C6	01 01 01 02 N7 S2 03 C5	170
175 180 185 CHI 3 C23 CHI 4 N1 CHI 5 N7 CHI 6 C4 CHI 7 N7 CHI 8 S2 CHI 9 S2 CHI 9 S2 CHI 10 04 CHI 11 03 CHI 12 C1 CHI 13 C15 NBR_ATOM N NBR_RADIUS ICOOR_INTEH ICOOR_INTEH ICOOR_INTEH ICOOR_INTEH ICOOR_INTEH ICOOR_INTEH ICOOR_INTEH ICOOR_INTEH ICOOR_INTEH ICOOR_INTEH ICOOR_INTEH ICOOR_INTEH ICOOR_INTEH ICOOR_INTEH	5 190 C22 C1 S2 N7 C4 O3 N7 C9 C5 C15 0 C20 V7 15.40 RNAL RNAL RNAL RNAL RNAL RNAL RNAL RNAL RNAL RNAL RNAL RNAL RNAL RNAL	195 09 C15 03 S2 C3 C5 C4 N4 C6 C1 0 C2 01802 N7 S2 01802 01802 01802 01802 01802 N7 S2 01802 N7 S2 01802 N7 S2 01802 N7 S2 01802 N7 S2 S3 S2 S3 S2 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3	EXTRA 0 H21 C16 C5 01 N1 C6 C3 C11 04 6 08 5 F1 0. 0. 0. 0. 0. 0. 0. 129. 47. 157. 77. 125. -109.	000000 000000 979907 796485 972804 660576 333973 086234 502643	0.000000 180.000000 72.115214 68.095120 67.884564 59.847207 70.738957 70.005558 74.080093 70.720185	0.000000 1.649480 1.437728 1.445125 1.508898 1.411561 1.511080 1.402847 1.413900 1.445332	N7 N7 S2 S2 S2 C5 C6 O4 C9	S2 S2 N7 N7 S2 O3 C5 C6 O4	01 01 01 02 N7 S2 03 C5 C6	170
175 180 185 CHI 3 C23 CHI 4 N1 CHI 5 N7 CHI 6 C4 CHI 7 N7 CHI 8 S2 CHI 9 S2 CHI 9 S2 CHI 10 04 CHI 11 03 CHI 12 C1 CHI 13 C15 NBR_ATOM N NBR_RADIUS ICOOR_INTEH ICOOR_INTEH ICOOR_INTEH ICOOR_INTEH ICOOR_INTEH ICOOR_INTEH ICOOR_INTEH ICOOR_INTEH ICOOR_INTEH ICOOR_INTEH ICOOR_INTEH ICOOR_INTEH ICOOR_INTEH ICOOR_INTEH ICOOR_INTEH	5 190 C22 C1 S2 N7 C4 O3 N7 C9 C5 C15 9 C20 9 T5.40 RNAL RNAL RNAL RNAL RNAL RNAL RNAL RNAL RNAL RNAL RNAL RNAL RNAL RNAL RNAL RNAL RNAL RNAL RNAL	195 09 C15 03 S2 C3 C5 C4 N4 C6 C1 0 C2 01802 N7 S2 01802 01802 01802 01802 01802 N7 S2 01802 N7 S2 01802 N7 S2 01802 N7 S2 01802 N7 S2 C3 C4 N4 C5 C4 N7 C5 C4 N7 C5 C4 N7 C5 C4 N7 C5 C4 N7 C5 C4 N7 C5 C4 N7 C5 C4 N7 C5 C4 C1 C2 C1 C1 C2 C1 C1 C2 C1 C1 C2 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1	EXTRA 0 H21 C16 C5 01 N1 C6 C3 C11 04 6 08 5 F1 0. 0. 0. 0. 0. 0. 0. 157. 77. 125. -109. 1 -150.	000000 000000 979907 796485 972804 660576 333973 086234 502643 229052	0.000000 180.000000 72.115214 68.095120 67.884564 59.847207 70.738957 70.005558 74.080093 70.720185 54.143952	0.000000 1.649480 1.437728 1.445125 1.508898 1.411561 1.511080 1.402847 1.413900 1.445332 1.365802	N7 N7 S2 S2 S2 O3 C5 C6 O4 C9 N4	S2 S2 N7 N7 S2 O3 C5 C6 O4 C9	01 01 01 02 N7 S2 03 C5 C6 04	170
175 180 185 CHI 3 C23 CHI 4 N1 CHI 5 N7 CHI 6 C4 CHI 7 N7 CHI 8 S2 CHI 9 S2 CHI 10 O4 CHI 11 O3 CHI 12 C1 CHI 13 C19 NBR ATOM N NBR RADIUS ICOOR_INTEH ICOOR_INTEH ICOOR_INTEH ICOOR_INTEH ICOOR_INTEH ICOOR_INTEH ICOOR_INTEH ICOOR_INTEH ICOOR_INTEH ICOOR_INTEH ICOOR_INTEH ICOOR_INTEH ICOOR_INTEH ICOOR_INTEH ICOOR_INTEH ICOOR_INTEH ICOOR_INTEH	5 190 C22 C1 S2 N7 C4 O3 N7 C9 C5 C15 O C20 V7 15.40 RNAL	195 09 C15 03 S2 C3 C5 C4 N4 C6 C1 0 C2 01802 N7 S2 018020000000000	EXTRA 0 H21 C16 C5 01 N1 C6 C3 C11 04 6 08 5 F1 0. 0. 0. 0. -110 -129. 47. 157. 77. 125. -109. 1 -150. -0.	000000 000000 979907 796485 972804 660576 333973 086234 502643 229052 892936	0.000000 180.000000 72.115214 68.095120 67.884564 59.847207 70.738957 70.005558 74.080093 70.720185 54.143952 46.223588	0.000000 1.649480 1.437728 1.445125 1.508898 1.411561 1.511080 1.402847 1.413900 1.445332 1.365802 1.342216	N7 N7 S2 S2 O3 C5 C6 O4 C9 N4 C11	S2 S2 N7 N7 S2 O3 C5 C6 O4 C9 N4	01 01 01 02 N7 S2 03 C5 C6 04 C9	170
175 180 185 CHI 3 C23 CHI 4 N1 CHI 5 N7 CHI 6 C4 CHI 7 N7 CHI 8 S2 CHI 9 S2 CHI 10 04 CHI 11 03 CHI 12 C1 CHI 13 C12 NBR_ATOM M NBR_RADIUS ICOOR_INTEH ICOOR_INTEH ICOOR_INTEH ICOOR_INTEH ICOOR_INTEH ICOOR_INTEH ICOOR_INTEH ICOOR_INTEH ICOOR_INTEH ICOOR_INTEH ICOOR_INTEH ICOOR_INTEH ICOOR_INTEH ICOOR_INTEH ICOOR_INTEH ICOOR_INTEH ICOOR_INTEH	5 190 C22 C1 S2 N7 C4 O3 N7 C9 C5 C15 O C20 V7 15.40 RNAL	195 09 C15 03 S2 C3 C5 C4 N4 C6 C1 0 C2 01802 N7 S2 01 02 01802 01802 N7 S2 01 02 03 C5 C4 N4 C6 C1 0 C1 5 C4 N4 C6 C1 5 C4 N4 C6 C1 5 C4 N4 C6 C1 5 C4 N4 C6 C1 5 C4 N4 C6 C1 5 C4 N4 C6 C1 5 C4 N4 C6 C1 5 C4 N4 C6 C1 5 C4 N4 C6 C1 5 C4 N4 C6 C1 5 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1	EXTRA 0 H21 C16 C5 01 N1 C6 C3 C11 04 6 08 5 F1 0. 0. 0. 0. -110 -129 47. 157. 77. 125. -109. 1 -150. 0 -179.	000000 000000 000000 979907 796485 972804 660576 333973 086234 502643 229052 892936 432403	0.000000 180.000000 72.115214 68.095120 67.884564 59.847207 70.738957 70.005558 74.080093 70.720185 54.143952 46.223588 59.624923	0.000000 1.649480 1.437728 1.445125 1.508898 1.411561 1.511080 1.402847 1.413900 1.445332 1.365802 1.342216 1.326020	N7 N7 S2 S2 O3 C5 C6 O4 C9 N4 C11 N3	S2 S2 N7 N7 S2 O3 C5 C6 O4 C9 N4 C11	01 01 01 02 N7 S2 03 C5 C6 04 C9 N4	170
175 180 185 CHI 3 C23 CHI 4 N1 CHI 5 N7 CHI 6 C4 CHI 7 N7 CHI 8 S2 CHI 9 S2 CHI 10 04 CHI 11 03 CHI 12 C1 CHI 13 C12 NBR_ATOM N NBR_RADIUS ICOOR_INTEH	5 190 C22 C1 S2 N7 C4 O3 N7 C9 C5 C15 O C20 V7 15.40 RNAL	195 09 C15 03 S2 C3 C4 N4 C6 5 C1 0 22 01802 N7 S2 01802	EXTRA 0 H21 C16 C5 O1 N1 C6 C3 C11 O4 6 O8 5 F1 0. 0. 0. 0. 0. 0. 0. 129. 47. 157. 77. 125. -109. 1 -150. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	000000 000000 979907 796485 972804 660576 333973 086234 502643 229052 892936 432403 848435	0.000000 180.000000 72.115214 68.095120 67.884564 59.847207 70.738957 70.005558 74.080093 70.720185 54.143952 46.223588 59.624923 57.610071	0.000000 1.649480 1.437728 1.445125 1.508898 1.411561 1.511080 1.402847 1.413900 1.445332 1.365802 1.342216 1.326020 1.331554	N7 N7 S2 S2 S2 C5 C6 04 C9 N4 C11 N3 C10	S2 S2 N7 N7 S2 O3 C5 C6 O4 C9 N4 C11 N3	01 01 01 01 02 N7 S2 03 C5 C6 04 C9 N4 C11	170
175 180 185 CHI 3 C23 CHI 4 N1 CHI 5 N7 CHI 6 C4 CHI 7 N7 CHI 8 S2 CHI 9 S2 CHI 10 04 CHI 11 03 CHI 12 C1 CHI 13 C12 NBR_ATOM N NBR_RADIUS ICOOR_INTEH	5 190 C22 C1 S2 N7 C4 O3 N7 C9 C5 C15 O C20 V7 15.40 RNAL	195 09 C15 03 S2 C3 C4 N4 C6 5 C1 0 22 01802 N7 S2 01 02 03 C5 C6 04 C9 N4 C1 03 C5 C1 03 C1 03 C5 C4 N4 C1 03 C5 C1 03 C5 C4 N4 C1 03 C5 C4 N4 C1 03 C5 C4 N4 C1 03 C5 C4 N4 C1 03 C5 C4 N4 C1 03 C5 C4 N4 C1 03 C5 C4 N7 C1 03 C5 C4 N7 C1 03 C5 C1 03 C5 C4 N7 C1 03 C5 C1 03 C5 C1 03 C5 C1 03 C5 C1 03 C5 C1 03 C5 C1 03 C5 C1 03 C5 C1 03 C5 C1 03 C5 C1 03 C5 C6 04 C1 03 C5 C4 C1 03 C5 C6 C1 03 C5 C6 C1 03 C5 C6 C1 03 C5 C1 03 C5 C6 C1 03 C5 C6 C1 03 C5 C6 C1 03 C5 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1	EXTRA 0 H21 C16 C5 O1 N1 C6 C3 C11 O4 6 O8 5 F1 0. 0. 0. 0. -110. -129. 47. 157. 77. 125. -109. 1 -150. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	000000 000000 979907 796485 972804 660576 333973 086234 502643 229052 892936 432403 848435 552053	0.000000 180.000000 72.115214 68.095120 67.884564 59.847207 70.738957 70.005558 74.080093 70.720185 54.143952 46.223588 59.624923 57.610071 58.120141	0.000000 1.649480 1.437728 1.445125 1.508898 1.411561 1.511080 1.402847 1.413900 1.445332 1.365802 1.342216 1.326020 1.331554 1.342096	N7 N7 S2 S2 S2 C5 C6 04 C9 N4 C11 N3 C10 N2	S2 S2 N7 N7 S2 O3 C5 C6 O4 C9 N4 C11 N3 C10	01 01 01 01 02 N7 S2 03 C5 C6 04 C9 N4 C11 N3	170
175 180 185 CHI 3 C23 CHI 4 N1 CHI 5 N7 CHI 6 C4 CHI 7 N7 CHI 8 S2 CHI 9 S2 CHI 10 04 CHI 11 03 CHI 12 C1 CHI 13 C12 NBR_ATOM N NBR_RADIUS ICOOR_INTEH	5 190 C22 C1 S2 N7 C4 O3 N7 C9 C15 O C20 V7 15.40 RNAL	195 09 C15 03 S2 C3 C4 N4 C6 5 C1 0 22 01802 N7 S2 01802	EXTRA 0 H21 C16 C5 01 N1 C6 C3 C11 04 6 08 5 F1 0. 0. 0. 0. 0. 100. 129. 47. 157. 77. 125. -109. 1 -150. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	000000 000000 979907 796485 972804 660576 333973 086234 502643 229052 892936 432403 848435	0.000000 180.000000 72.115214 68.095120 67.884564 59.847207 70.738957 70.005558 74.080093 70.720185 54.143952 46.223588 59.624923 57.610071	0.000000 1.649480 1.437728 1.445125 1.508898 1.411561 1.511080 1.402847 1.413900 1.445332 1.365802 1.342216 1.326020 1.331554	N7 N7 S2 S2 S2 C5 C6 04 C9 N4 C11 N3 C10	S2 S2 N7 N7 S2 O3 C5 C6 O4 C9 N4 C11 N3	01 01 01 01 02 N7 S2 03 C5 C6 04 C9 N4 C11	170

ICOOR_INTERNAL	Н7 179.952772	59.961946	0.984831	N6	C13	НG
ICOOR_INTERNAL	C12 179.862428	62.184716	1.420651	C13	N2	N6
ICOOR INTERNAL	N5 -179.949517	44.621863	1.328601	C12	C13	N2
ICOOR INTERNAL	C14 179.677558	70.203038	1.324715	N5	C12	C13
ICOOR INTERNAL	H15 -179.517871	55.041066	1.032119	C14	N5	C12
ICOOR INTERNAL	H2 -179.976464	54.922095	0.984330	N5	C12	C14
ICOOR INTERNAL	H14 -179.959018	61.152494	1.031712	C10	N3	N2
ICOOR INTERNAL	C8 125.404314	71.733653	1.475916	С9	04	N4
ICOOR INTERNAL	06 90.149730	71.799851	1.374530	C8	C9	04
ICOOR INTERNAL	н8 179.999645	70.557415	0.969220	06	C8	C9
ICOOR INTERNAL	C7 -120.391196	77.527376	1.465575	C8	C9	06
ICOOR INTERNAL	05 150.567803	65.743236	1.380198	C7	C8	C9
ICOOR INTERNAL	НЗ 179.981880	70.545702	0.969832	05	C7	C8
ICOOR INTERNAL	H11 117.168004	68.989317	1.070413	C7	C8	05
ICOOR INTERNAL	H12 -121.158644	63.838599	1.069836	C8	C9	C7
ICOOR INTERNAL	H13 117.674596	67.713631	1.070064	C9	04	C8
ICOOR INTERNAL	H9 -119.374097	70.454273	1.069969	C6	C5	04
ICOOR INTERNAL	H4 -119.990464	70.450854	1.069592	C5	03	C6
ICOOR INTERNAL	H5 -119.938832	70.434132	1.070190	C5	03	H4
ICOOR INTERNAL	C4 -83.828030	58.301695	1.468382	N7	S2	01
ICOOR INTERNAL	C3 178.603415	63.816343	1.496095	C4	N7	S2
ICOOR INTERNAL	N1 171.714611	59.715820	1.309092	C3	C4	N7
ICOOR INTERNAL	C1 179.404452	66.574660	1.362844	N1	C4 C3	C4
ICOOR INTERNAL	C1 179.404432 C15 179.223421	54.664545	1.476648	C1	N1	C4 C3
—	C15 179.223421 C16 -179.989679	56.710153	1.346762		C1	
ICOOR_INTERNAL				C15		N1
ICOOR_INTERNAL	08 0.912521	59.265165	1.353938	C16	C15	C1
ICOOR_INTERNAL	C18 179.613843	56.700286	1.353045	08	C16	C15
ICOOR_INTERNAL	C19 0.696119	58.989698	1.419737	C18	08	C16
ICOOR_INTERNAL	C20 -0.534929	62.229493	1.516594	C19	C18	08
ICOOR_INTERNAL	C17 -0.014746	61.919117	1.352467	C20	C19	C18
ICOOR_INTERNAL	H17 -179.863883	59.795042	1.088156	C17	C20	C19
ICOOR_INTERNAL	C25 -179.760539	53.572574	1.525937	C20	C19	C17
ICOOR_INTERNAL	F1 -0.152786	65.152910	1.374488	C25	C20	C19
ICOOR_INTERNAL	F2 -120.702945	70.924488	1.383259	C25	C20	F1
ICOOR_INTERNAL	F3 -118.504269	70.882734	1.383434	C25	C20	F2
ICOOR_INTERNAL	C24 -179.969607	62.368500	1.414553	C19	C18	C20
ICOOR_INTERNAL	C23 0.083722	59.067642	1.398551	C24	C19	C18
ICOOR_INTERNAL	C22 0.123564	59.352531	1.393135	C23	C24	C19
ICOOR_INTERNAL	C21 -0.006879	60.580877	1.397258	C22	C23	C24
ICOOR_INTERNAL	H20 179.995074	60.167720	1.083846	C21	C22	C23
ICOOR_INTERNAL	09 -179.830419	60.331140	1.346965	C22	C23	C21
ICOOR_INTERNAL	H21 179.547800	57.851533	0.967795	09	C22	C23
ICOOR_INTERNAL	H19 -179.995294	60.475787	1.083563	C23	C24	C22
ICOOR_INTERNAL	H18 179.968998	56.552726	1.071404	C24	C19	C23
ICOOR_INTERNAL	H16 -179.899585	62.673003	1.087086	C15	C1	C16
ICOOR_INTERNAL	S1 -179.809293	71.177075	1.654766	C1	N1	C15
ICOOR_INTERNAL	C2 0.061092	84.158025	1.751119	S1	C1	N1
ICOOR_INTERNAL	H1 -179.547396	51.165815	1.032145	C2	S1	C1
ICOOR_INTERNAL	07 179.981870	56.614562	1.227206	C4	N7	C3
ICOOR_INTERNAL	H10 179.984530	60.814997	0.984262	N7	S2	C4
—						

The Fluc structure was used as input to the RosettaMatch protocol.¹⁶ This algorithm identifies potential binding modes of input ligands based on user-defined constraints. A binding interaction is considered a "hit" if the ligand atoms do not collide with the protein backbone atoms. The following command line was used to call the RosettaMatch application.

```
<Path to>/Rosetta/main/source/bin/match.linuxgccrelease -s <input_file> @<Path
to>//general_match.flags -match:scaffold_active_site_residues_for_geomcsts <Path
to>/pos_file <Path to>/CouLuc-1_ligand.flags
Where the contents of the pos file was as follows.
```

N_CST 1 1: 308 The contents of the constraint file were as follows.

```
CST::BEGIN
NATIVE
               ATOM MAP: 1 atom name: 07 C4 C3
  TEMPLATE::
  TEMPLATE:: ATOM MAP: 1 residue3: LCC/LCD/LCE
  TEMPLATE:: ATOM MAP: 2 atom name: N CA C ,
  TEMPLATE:: ATOM MAP: 2 residue1: G
  TEMPLATE:: ATOM MAP: 2 is backbone
  CONSTRAINT:: distanceAB: 4.30 1.50 80.0 1
                                                            1
  CONSTRAINT:: angle_A: 135.3 10.0 10.0 360. 1
 CONSTRAINT::angle_B:43.610.010.0360.1CONSTRAINT::torsion_A:10.710.010.0360.1CONSTRAINT::torsion_AB:-160.710.010.0360.1CONSTRAINT::torsion_B:-134.110.010.0360.1
  ALGORITHM INFO:: match
     CHI STRATEGY:: CHI 1 EX THREE THIRD STEP STDDEVS
     CHI STRATEGY:: CHI 2 EX THREE THIRD STEP STDDEVS
  ALGORITHM INFO::END
CST::END
```

The contents of the CouLuc-1 ligand.flags files were as follows.

```
-extra_res_fa <Path to>/CouLuc-1_ligand.params
-match:geometric_constraint_file <Path to>/CouLuc-1_ligand.cst
-match:lig_name_LCC/LCD/LCE
```

The contents of the general match.flags files was as follows.

```
-packing
 -ex1
 -ex2
 -ex2aro
 -exlaro
-extrachi cutoff 0
-use input sc true
-database <Path to>/Rosetta/main/database/
-match:filter colliding upstream residues
-match:filter_upstream_downstream_collisions
-match:upstream residue collision tolerance 0.95
-match:updown collision tolerance 0.3
-match::bump tolerance \overline{0.3}
-match grouper SameSequenceAndDSPositionGrouper
-match:grouper downstream rmsd 0.5
-match: euclid \overline{b}in size 0.\overline{5}
-match:euler bin size
                         5.0
-output format PDB
-exclude patches N acetylated
-consolidate matches 1
-output matches per group 1
-output matchres only false
-enumerate ligand rotamers
-only enumerate non match redundant ligand rotamers
-out::file::output virtual
```

The pdb files generated in the matching run were then used as inputs for RosettaDesign calculations. The RosettaDesign algorithm is used to re-sculpt the pocket surrounding the docked luciferin analogue in order to remove clashing side chains and introduce new, productive

interactions with the ligand. The RosettaDesign application was called with the following command line:

```
<Path to>/Rosetta/main/source/bin/rosetta_scripts.linuxgccrelease -s <input_file> -
parser:protocol <Path to>/enzdes.xml -nstruct 1 -jd2:ntrials 1 -database <Path
to>/Rosetta/main/database/ @<Path to>/CouLuc-1 ligand.flags @<Path to>/general.flags
```

The contents of the RosettaDesign general.flags file was as follows:

```
-run::preserve_header
-enzdes::minimize_ligand_torsions 7.0
-enzdes::detect design interface
-unmute protocols.enzdes.EnzRepackMinimize
-packing::use input sc
-packing::extrachi_cutoff 1
-packing::ex1
-packing::ex2
-linmem ig 10
-in:ignore unrecognized res
-ligand::old estat
-jd2:enzdes out
-nblist autoupdate
-score:weights <Path to>/Rosetta/main/database/scoring/weights/ref2015.wts
-enzdes::bb min allowed dev 0.05
-no his his pairE
```

The contents of the RosettaDesign enzdes.xml file was as follows:

<ROSETTASCRIPTS>

```
<TASKOPERATIONS>
              <DetectProteinLigandInterface name="dsgn cuts on" cut1="6" cut2="8"</pre>
cut3="10" cut4="12" design="1"/>
              <DetectProteinLigandInterface name="dsgn cuts off" cut1="6" cut2="8"</pre>
cut3="10" cut4="12" design="0"/>
              <RestrictResiduesToRepacking name="pack only" residues="210,221"/>
       </TASKOPERATIONS>
       <SCOREFXNS>
              <ScoreFunction name="ref2015" weights="ref2015.wts"/>
       </SCOREFXNS>
       <MOVERS>
              #Add constraints to file
              AddOrRemoveMatchCsts name="addcst" cst instruction=add new
cstfile="../inputs/FAB.cst"/>
              <AddOrRemoveMatchCsts name="addcst" cst_instruction="add_new"/>
<AddOrRemoveMatchCsts name="rmvcst" cst_instruction="remove"</pre>
keep covalent="1"/>
              <AddOrRemoveMatchCsts name="addprg" cst instruction=add pregenerated/>
              #Optimize the pose per the cst file
              <EnzRepackMinimize name="cstopt" scorefxn_minimize="ref2015" cst_opt="1"
design="0" repack only="0" fix catalytic="0" minimize rb="1" minimize bb="1"
minimize sc="1" minimize liq="1" min in stages="1" cycles="1"
task operations="dsgn cuts off"/>
              #Design and repacking around the catalytic residues; keep the catalytic
residues fixed in this instance.
              <EnzRepackMinimize name="dsgn" scorefxn_minimize="ref2015" cst_opt="0"</pre>
design="1" repack_only="0" fix_catalytic="1" minimize_rb="1" minimize_bb="1"
minimize sc="1" minimize lig="1" min in stages="1" backrub="0" cycles="1"
task operations="dsgn cuts on, pack only"/>
```

```
#Minimize after each design.
             <EnzRepackMinimize name="min" scorefxn minimize="ref2015" cst opt="0"</pre>
design="0" repack only="0" fix catalytic="1" minimize rb="1" minimize bb="1"
minimize sc="1" minimize lig="1" min in stages="1" backrub="0" cycles="1"
task operations="dsgn cuts off"/>
             #Perform a final repacking step.
             <EnzRepackMinimize name="rpkmin" scorefxn minimize="ref2015" cst opt="0"</pre>
design="0" repack only="1" fix catalytic="0" minimize rb="1" minimize bb="1"
minimize sc="1" minimize lig="0" min in stages="1" backrub="0" cycles="1"
task operations="dsqn cuts off"/>
             #Monte Carlo movers for each step in the enzdes process (helps to
generate )
             <GenericMonteCarlo name="multi cstopt" mover name="cstopt"
scorefxn name="ref2015" trials="10" sample type="low" temperature="0.6" drift="1"
recover low="1" preapply="0"/>
       </MOVERS>
       <PROTOCOLS>
             <Add mover_name="addcst"/>
             <Add mover_name="multi_cstopt"/>
             <Add mover_name="dsgn"/>
             <Add mover name="min"/>
             <Add mover name="dsgn"/>
             <Add mover name="min"/>
             <Add mover name="dsgn"/>
             <Add mover name="min"/>
             Add mover=rmvcst/>
             Add mover=rpkmin/>
             Add mover=des min/>
             Add mover=des min/>
             Add mover=des min/>
             Add mover name="rmvcst"/>
             Add mover_name="rpkmin"/>
             Add mover=finmin_rpkmin/>
       </PROTOCOLS>
```

```
</ROSETTASCRIPTS>
```

Synthetic materials and methods

Unless stated otherwise, reactions were conducted in oven-dried glassware under an atmosphere of nitrogen using anhydrous solvents. All commercially obtained reagents were used as received. Flash column chromatography was performed using reversed phase (100 Å, 20-40 micron particle size, RediSep® Rf Gold® Reversed-phase C18 or C18Aq) on a CombiFlash® Rf 200i (Teledyne Isco, Inc.). High-resolution LC/MS analyses were conducted on a Thermo-Fisher LTQ-Orbitrap-XL hybrid mass spectrometer system with an Ion MAX API electrospray ion source in negative ion mode. Analytical LC/MS was performed using a Shimadzu LCMS-2020 Single Quadrupole utilizing a Kinetex 2.6 µm C18 100 Å (2.1 x 50 mm) column obtained from Phenomenex, Inc. Runs employed a gradient of $0 \rightarrow 90\%$ MeCN/0.1% aqueous formic acid over 4.5 min at a flow rate of 0.2 mL/min. ¹H NMR and ¹³C NMR spectra were recorded on Bruker spectrometers (at 400 or 500 MHz or at 100 or 125 MHz) and are reported relative to deuterated solvent signals. Data for ¹H NMR spectra are reported as follows: chemical shift (δ ppm), multiplicity, coupling constant (Hz), and integration. Data for ¹³C NMR spectra are reported in terms of chemical shift. Absorption curves were obtained on a Shimadzu UV-2550 spectrophotometer operated by UVProbe 2.32 Fluorescence traces were recorded on a PTI QuantaMaster steady-state software. spectrofluorometer operated by FelixGX 4.2.2 software, with 5 nm excitation and emission slit
widths, 0.1 s integration rate, and enabled emission correction. Data analysis and curve fitting were performed using MS Excel 2019 and GraphPad Prism 8.

Synthetic procedures

General procedure for the synthesis of nitrile (2)

To a solution of CH₃CN (8.0 mmol, 4.0 eq) in THF (20 mL) was added *n*-BuLi (8.0 mmol, 2.5 M, 4.0 eq) at -78 °C. The solution was stirred at -78 °C 10 minutes, after which a solution of coumarin (1) (2.0 mmol, 1.0 eq) in 5 mL of THF was added slowly. The reaction was stirred at -78 °C for 10-15 min and quenched with 15 mL aqueous NH₄Cl solution. The mixture was warmed to room temperature and extracted with EtOAc and concentrated. To the crude oil was added 125 mL of 0.5 M HCl and stirred vigorously for 1-4 h. The precipitate was extracted with EtOAc, dried Na₂SO₄ and concentrated to give nitrile **2** as a mixture of isomers. Based on ¹H NMR spectroscopic analysis, the resulting product was typically >90% pure and was typically used in the next step without further purification. Silica gel column chromatography could be performed using EtOAc/hexanes to obtain high purity material (>95%).

(Z/E)-2-(7-Dimethylamino)-4-(trifluoromethyl)-2H-chromen-2-ylidene)acetonitrile (2a).

Following general procedure using commercial 7-(dimethylamino)-4the (trifluoromethyl)coumarin (1a) (514 mg, 2.0 mmol). Purification by flash chromatography on silica gel (hexanes/EtOAc, 0% to 20%) afforded 2a as an orange solid (358 mg, 64% yield). ¹H NMR (CDCl₃, 400 MHz, compound exists as a mixture of isomers, Z-isomer denoted by *, Eisomer denoted by §) δ 7.32 – 7.26 (m, 1H*, 1H§), 6.85 (s, 1H§), 6.50 – 6.47 (m, 2H*, 1H§), 6.38 (s, 1H*), 6.33 (d, J = 2.6 Hz, 1H[§]), 4.78 (s, 1H[§]), 4.48 (s, 1H*), 3.05 (s, 6H*), 3.04 (s, 6H[§]); ¹³C NMR (CDCl₃, 100 MHz) δ 164.1[§], 162.6^{*}, 154.6[§], 153.1^{*}, 131.7 (q, J = 33.0 Hz)[§], 131.1 (q, J =33.0 Hz)*, 125.8 (q, J = 2.2 Hz)[§], 125.6 (q, J = 2.2 Hz)*, 122.3 (q, J = 272.8 Hz)[§], 122.2 (q, J = 272.8 Hz)[§], 122.8 Hz)[§], 122.2 (272.6 Hz)*, 117.7[§], 116.9*, 112.6 (q, J = 6.3 Hz)*, 111.2 (q, J = 6.3 Hz)[§], 108.7[§], 108.7*, 103.4*, 103.3[§], 98.7^{*}, 98.1[§], 73.6[§], 72.3^{*}, 40.2^{*}, 40.2[§]; ¹⁹F NMR (CDCl₃, 377 MHz) δ -64.5[§], -64.6^{*}; HRMS (ESI) calculated for Z-isomer C₁₄H₁₂F₃N₂O (M+H)⁺ 290.0896, observed 290.0900; Eisomer C₁₄H₁₂F₃N₂O (M+H)⁺ 290.0896, observed 290.0901.

(Z/E)-2-(7-Amino-4-(trifluoromethyl)-2H-chromen-2-ylidene)acetonitrile (2b).

Following the general procedure using commercial 7-amino-4-(trifluoromethyl)coumarin (**1b**) (458 mg, 2.0 mmol). Purification by flash chromatography on silica gel (hexanes/EtOAc, 0% to 30%) afforded **2b** as an orange solid (308 mg, 61% yield). ¹H NMR (CD₃CN, 400 MHz, compound exists as a mixture of isomers, *Z*-isomer denoted by *, *E*-isomer denoted by [§]) δ 7.24 – 7.18 (m, 1H*, 1H[§]), 6.77 (dd, *J* = 2.4, 1.2 Hz, 1H[§]), 6.62 (dd, *J* = 2.4, 1.2 Hz, 1H*), 6.51 – 6.49 (m, 1H*, 1H[§]), 6.44 (d, *J* = 2.3 Hz, 1H*), 6.37 (d, 1H[§]), 5.00 – 4.92 (m, 2H*, 2H[§]), 4.91 (s, 1H[§]), 4.73 (s, 1H*); ¹³C NMR (CD₃CN, 125 MHz) δ 164.6[§], 163.3*, 155.6[§], 155.4*, 153.7[§], 153.5*, 131.8 (q, *J* = 32.1 Hz)[§], 130.7 (q, *J* = 32.1 Hz)*, 126.8 (q, *J* = 2.2 Hz)[§], 126.6 (q, *J* = 2.2 Hz)*, 123.3 (q, *J* = 273.7 Hz)[§], 123.3 (q, *J* = 273.5 Hz)*, 118.1[§], 117.3*, 114.8 (q, *J* = 6.5 Hz)*, 112.2 (q, *J* = 6.5 Hz)[§], 112.1*, 112.0[§], 104.8*, 104.5[§], 101.1*, 100.9[§], 74.7[§], 73.5*; ¹⁹F NMR (CD₃CN, 377 MHz) δ - 64.6*, -64.7[§]; HRMS (ESI) calculated for C₁₂H₈F₃N₂O (M+H)⁺ 253.0583, observed 253.0582.

(Z/E)-2-(7-Hydroxy-4-(trifluoromethyl)-2H-chromen-2-ylidene)acetonitrile (2c).

Following the general procedure using commercial 7-hydroxy-4-(trifluoromethyl)coumarin (1c) (460 mg, 2.0 mmol). Purification by flash chromatography on silica gel (hexanes/EtOAc, 0% to 50%) afforded 2c as a yellow solid (354 mg, 70% yield). ¹H NMR (CD₃OD, 400 MHz, compound exists as a mixture of isomers, *Z*-isomer denoted by *, *E*-isomer denoted by [§]) δ 7.37 – 7.31 (m, 1H*, 1H[§]), 6.93 – 6.92 (m, 1H[§]), 6.86 – 6.84 (m, 1H*), 6.71 – 6.66 (m, 2H*, 1H[§]), 6.60 (d, *J* = 2.4 Hz, 1H[§]), 5.11 (s, 1H[§]), 4.96 (s, 1H*); ¹³C NMR (CD₃OD, 100 MHz) δ 164.7[§], 163.5*, 163.4[§], 163.1*, 155.9[§], 155.6*, 132.3 (q, *J* = 323.0 Hz)[§], 131.1 (q, *J* = 323.0 Hz)*, 127.6*, 127.6[§], 127.2 (q, *J* = 1.8 Hz)[§], 127.0 (q, *J* = 1.8 Hz)*, 124.9*, 124.8[§], 122.1*, 122.1[§], 117.9*, 117.1 (q, *J* = 6.5 Hz)*, 117.0[§], 114.3 (q, *J* = 6.4 Hz)[§], 114.0[§], 114.0*, 107.6*, 107.3[§], 104.1[§], 104.0*, 75.9[§], 74.4*; ¹⁹F NMR (CD₃OD, 377 MHz) δ -66.1[§], -66.2*; HRMS (ESI) calculated for C₁₂H₅F₃NO₂ (M–H)⁻ 252.0278, observed 252.0270.

General procedure for the synthesis of CouLuc-1-R

To a microwave vial containing nitrile (2) (0.15 mmol, 1.0 eq), D-cysteine hydrochloride monohydrate (0.23 mmol, 1.5 eq) and NaHCO₃ (0.60 mmol, 4.0 eq) was added N₂-sparged EtOH (1.5 mL). The suspension was heated at 85 °C under N₂ and monitored by LC/MS. After 3-5 days the consumption of 2 is greater than 75%. The reaction mixture was cooled to room temperature and EtOH was evaporated under vacuum. The crude solid was triturated with Et₂O (3 x 5 mL), acidified to pH 1.0, filtered and wash with cold water (3 x 5 mL). The crude mixture was purified directly by reversed phase chromatography (C₁₈, 0-100% MeOH/water). The solvent was removed *in vacuo* to afford **CouLuc-1-R**.

(Z)-2-((7-(Dimethylamino)-4-(trifluoromethyl)-2H-chromen-2-ylidene)methyl)-4,5-dihydrothiazole-4-carboxylic acid (CouLuc-1-NMe₂).

Following the general procedure using **2a** (42 mg, 0.15 mmol), **CouLuc-1-NMe**₂ was obtained as a red solid (23 mg, 40% yield). ¹H NMR (CD₃OD + TFA- d_1 , 500 MHz) δ 7.56 – 7.53 (m, 1H), 6.93 (s, 1H), 6.89 (dd, J = 9.3, 2.6 Hz, 1H), 6.76 (d, J = 2.6 Hz, 1H), 6.18 (s, 1H), 5.16 (dd, J = 9.4, 5.6 Hz, 1H), 4.00 – 3.90 (m, 2H), 3.14 (s, 6H); ¹³C NMR (125 MHz, DMSO- d_6 + TFA- d_1) δ 186.3, 179.5, 173.0, 164.0, 163.1, 143.1 (q, J = 32.5 Hz), 135.0, 131.6 (q, J = 275.6 Hz), 128.3, 122.4 (q, J = 6.1 Hz), 121.1, 112.9, 106.7, 102.8, 72.0, 43.4; ¹⁹F NMR (DMSO- d_6 , 377 MHz) δ - 63.4; HRMS (ESI) calculated for C₁₇H₁₅F₃N₂O₃S (M+H)⁺ 385.0828, observed 385.0833.

(Z)-2-((7-Amino-4-(trifluoromethyl)-2H-chromen-2-ylidene)methyl)-4,5-dihydro-thiazole-4carboxylic acid (CouLuc-1-NH₂).

Following the general procedure using **2b** (37 mg, 0.15 mmol), **CouLuc-1-NH**₂ was obtained as an orange solid (28 mg, 52% yield). ¹H NMR (400 MHz, DMSO-*d*₆) δ 7.09 – 7.02 (m, 1H), 6.87 (s, 1H), 6.45 – 6.38 (m, 2H), 6.14 (s, 2H), 5.94 (s, 1H), 4.96 (t, *J* = 9.0 Hz, 1H), 3.49 (dd, *J* = 11.1, 9.5 Hz, 1H), 3.41 (dd, *J* = 11.1, 8.5 Hz, 1H); ¹³C NMR (125 MHz, DMSO-*d*₆) δ 172.3, 162.5, 153.8, 152.8, 152.7, 126.5 (q, *J* = 30.6 Hz), 124.9, 122.5 (q, *J* = 271.9 Hz), 115.9 (q, *J* = 6.3 Hz), 110.3, 102.2, 101.8, 99.3, 76.2, 32.2; ¹⁹F NMR (DMSO-*d*₆, 377 MHz) δ -63.4; HRMS (ESI) calculated for C₁₅H₁₂F₃N₂O₃S (M+H)⁺ 357.0515, observed 357.0523.

(Z)-2-((7-hydroxy-4-(trifluoromethyl)-2H-chromen-2-ylidene)methyl)-4,5-dihydro-thiazole-4carboxylic acid (CouLuc-1-OH).

Following the general procedure using **2c** (38 mg, 0.15 mmol), **CouLuc-1-OH** was obtained as an orange solid (24 mg, 45% yield). ¹H NMR (500 MHz, CD₃OD + TFA- d_1) δ 7.63 – 7.61 (m, 1H), 7.25 (s, 1H), 7.03 (d, J = 2.4 Hz, 1H), 6.97 (dd, J = 8.9, 2.4 Hz, 1H), 6.32 (s, 1H), 5.29 (dd, J = 9.8, 5.7 Hz, 1H), 4.06 (dd, J = 12.1, 9.8 Hz, 1H), 4.01 (dd, J = 12.0, 5.7 Hz, 1H); ¹³C NMR (125 MHz, CD₃OD + TFA- d_1) δ 180.3, 170.6, 165.3, 164.7, 156.1, 136.4 (q, J = 33.2 Hz). 127.9 (q, J = 2.4 Hz), 123.2 (q, J = 272.3 Hz), 116.8 (q, J = 5.9 Hz), 116.4, 108.4, 104.3, 64.4, 35.1; ¹⁹F NMR (CD₃OD + TFA- d_1 , 377 MHz) δ -65.5; HRMS (ESI) calculated for C₁₅H₁₁F₃NO₄S (M+H)⁺ 358.0355, observed 358.0358.

Synthesis of CouLuc-1-NMe2 with chromatography-free procedure

To a reaction flask containing nitrile (2a) (1.25 g, 4.49 mmol), D-cysteine hydrochloride monohydrate (1.18 g, 6.73 mmol) and NaHCO₃ (1.51 g, 17.94 mmol) was N₂-sparged EtOH (45 mL) was heated at 85 °C under N₂. After heating for 3 days the EtOH was evaporated under vacuum. The yellow solid was triturated with Et₂O (3 x 20 mL), acidified to pH 1.0 with 1M HCl to give a red solid that was separated by centrifugation and the supernatant was discarded. The precipitates were suspended in 15 mL water and then centrifuged. The washing process was repeated twice. The precipitate was dried under reduced pressure to afford CouLuc-1-NMe₂ as a red solid (468 mg, 27% yield) to provide high purity material by NMR (>95%).

References

- Tinberg, C. E.; Khare, S. D.; Dou, J.; Doyle, L.; Nelson, J. W.; Schena, A.; Jankowski, W.; Kalodimos, C. G.; Johnsson, K.; Stoddard, B. L.; Baker, D. Computational design of ligand-binding proteins with high affinity and selectivity. *Nature* 2013, *501*, 212.
- Zanghellini, A.; Jiang, L.; Wollacott, A. M.; Cheng, G.; Meiler, J.; Althoff, E. A.; Röthlisberger, D.; Baker, D. New algorithms and an in silico benchmark for computational enzyme design. *Protein Sci.* 2006, 15, 2785.
- 3. Studier, F. W. Protein production by auto-induction in high-density shaking cultures. *Protein Expr. Purif.* **2005**, *41*, 207.
- 4. Rathbun, C. M.; Porterfield, W. B.; Jones, K. A.; Sagoe, M. J.; Reyes, M. R.; Hua, C. T.; Prescher, J. A. Parallel screening for rapid identification of orthogonal bioluminescent tools. *ACS Cent. Sci.* **2017**, *3*, 1254.
- 5. Jones, K. A.; Porterfield, W. B.; Rathbun, C. M.; McCutcheon, D. C.; Paley, M. A.; Prescher, J. A. Orthogonal luciferase–luciferin pairs for bioluminescence imaging. *J. Am. Chem. Soc.* **2017**, *139*, 2351.
- 6. Rathbun, C. M.; Ionkina, A. A.; Yao, Z.; Jones, K. A.; Porterfield, W. B.; Prescher, J. A. Rapid multicomponent bioluminescence imaging via substrate unmixing. *ACS Chem. Biol.* **2021**, *16*, 682.
- 7. Zhang, B. S.; Jones, K. A.; McCutcheon, D. C.; Prescher, J. A. Pyridone luciferins and mutant luciferases for bioluminescence imaging. *ChemBioChem* **2018**, *19*, 470–477.
- 8. Harwood, K. R.; Mofford, D. M.; Reddy, G. R.; Miller, S. C. Identification of mutant firefly luciferases that efficiently utilize aminoluciferins. *Chem. Biol.* **2011**, *18*, 1649.

- 9. Belsare, K. D.; Andorfer, M. C.; Cardenas, F. S.; Chael, J. R.; Park, H. J.; Lewis, J. C. A simple combinatorial codon mutagenesis method for targeted protein engineering. *ACS Synth. Biol.* **2017**, *6*, 416.
- 10. Yao, Z.; Zhang, B. S.; Steinhardt, R. C.; Mills, J. H.; Prescher, J. A. Multicomponent bioluminescence imaging with a π -extended luciferin. *J. Am. Chem. Soc.* **2020**, *142*, 14080.
- 11. Gammon, S. T.; Leevy, W. M.; Gross, S.; Gokel, G. W.; Piwnica-Worms, D. Spectral unmixing of multicolored bioluminescence emitted from heterogeneous biological sources. *Anal. Chem.* **2006**, *78*, 1520.
- Alford, R. F.; Leaver-Fay, A.; Jeliazkov, J. R.; O'Meara, M. J.; DiMaio, F. P.; Park, H.; Shapovalov, M. V.; Renfrew, P. D.; Mulligan, V. K.; Kappel, K.; Labonte, J. W.; Pacella, M. S.; Bonneau, R.; Bradley, P.; Dunbrack, R. L.; Das, R.; Baker, D.; Kuhlman, B.; Kortemme, T.; Gray, J. J. The Rosetta all-atom energy function for macromolecular modeling and design. *J. Chem. Theory Comput.* **2017**, *13*, 3031.
- 13. Nivón, L. G.; Moretti, R.; Baker, D. A pareto-optimal refinement method for protein design scaffolds. *PLoS One* **2013**, *8*, e59004.
- Hanwell, M. D.; Curtis, D. E.; Lonie, D. C.; Vandermeersch, T.; Zurek, E.; Hutchison, G. R. Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. *J. Cheminformatics* 2012, *4*, 17.
- 15. Rappe, A. K.; Casewit, C. J.; Colwell, K. S.; Goddard, W. A.; Skiff, W. M. UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. *J. Am. Chem. Soc.* **1992**, *114*, 10024–10035.
- 16. Richter, F.; Leaver-Fay, A.; Khare, S. D.; Bjelic, S.; Baker, D. De novo enzyme design using Rosetta3. *PLoS One* **2011**, *6*, e19230.

NMR Spectra

10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190	-200	-210
											f1 (ppm)											

																							-
10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100 f1 (ppm)	-110	-120	-130	-140	-150	-160	-170	-180	-190	-200	-210	

																			· · ·			
10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100 f1 (ppm)	-110	-120	-130	-140	-150	-160	-170	-180	-190	-200	-210

